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Hubble parameter measurement constraints on dark energy

Omer Farooq1, Data Mania1,2, and Bharat Ratra1

ABSTRACT

We use 21 Hubble parameter versus redshift data points, from Simon et al.

(2005), Gaztañaga et al. (2009), Stern et al. (2010), and Moresco et al. (2012a),

to place constraints on model parameters of constant and time-evolving dark

energy cosmologies. The inclusion of the 8 new Moresco et al. (2012a) measure-

ments results in H(z) constraints more restrictive than those derived by Chen

& Ratra (2011b). These constraints are now almost as restrictive as those that

follow from current Type Ia supernova (SNIa) apparent magnitude versus red-

shift data (Suzuki et al. 2012), which now more carefully account for systematic

uncertainties. This is a remarkable result. We emphasize however that SNIa data

have been studied for a longer time than the H(z) data, possibly resulting in a

better estimate of potential systematic errors in the SNIa case. A joint analysis

of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors

a spatially-flat cosmological model currently dominated by a time-independent

cosmological constant but does not exclude slowly-evolving dark energy.

1. Introduction

The expansion rate of the Universe changes with time, initially slowing when matter

dominated, because of the mutual gravitational attraction of all the matter in it, and more

recently accelerating. A number of cosmological observations now strongly support the idea

that the Universe is spatially flat (provided the dark energy density is close to or time

independent) and is currently undergoing accelerated cosmological expansion. A majority of

cosmologists consider dark energy to be the cause of this observed accelerated cosmological
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expansion.1 This dark energy, most simply thought of as a negative pressure substance,

dominates the current cosmological energy budget. For reviews of dark energy see Bass

(2011), Jimenez (2011), Li et al. (2011a), Bolotin et al. (2011), and references therein.

Three observational techniques provide the strongest evidence for dark energy: SNIa

apparent magnitude measurements as a function of redshift (e.g., Sullivan et al. 2011; Suzuki

et al. 2012; Li et al. 2011b; Barreira & Avelino 2011); cosmic microwave background (CMB)

anisotropy data (Podariu et al. 2001b; Komatsu et al. 2011, and references therein) combined

with low estimates of the cosmological mass density (e.g., Chen & Ratra 2003), provided the

dark energy density is close to or time independent; and baryon acoustic oscillation (BAO)

peak length scale measurements (e.g., Beutler et al. 2011; Blake et al. 2011; Mehta et al.

2012).

The “standard” model of cosmology is the spatially-flat ΛCDM model (Peebles 1984).

In this model about 73% of the current energy budget is dark energy, Einstein’s cosmological

constant Λ. Non-relativistic cold dark matter (CDM) is the next largest contributer to the

energy budget (around 23%), followed by non-relativistic baryonic matter (about 5%). For

reviews of the standard model of cosmology see Ratra & Vogeley (2008) and references

therein. It has been known for a while that the ΛCDM model is reasonably consistent with

most observations (see, e.g., Jassal et al. 2010; Wilson et al. 2006; Davis et al. 2007; Allen

et al. 2008, for early indications).2 In the ΛCDM model the dark energy density is constant

in time and does not vary in space.

Although most predictions of the ΛCDM model are reasonably consistent with the

measurements, the ΛCDM model has some curious features. For instance, the measured

cosmological constant energy density is 120 orders of magnitude smaller than the energy

density naively expected from quantum field theory (this is known as the fine-tuning puzzle).

A second curiosity is what is known as the coincidence puzzle: the energy density of a

cosmological constant, ρΛ, is independent of time, but that of matter, ρm, decreases with

time during the cosmological expansion, so it is curious why we (observers) happen to live at

this (apparently) special time, when the dark energy and the non-relativistic matter energy

densities are of comparable magnitude.

1Some cosmologists instead view these observations as an indication that general relativity needs to be

modified on these large length scales. For recent reviews of modified gravity see Tsujikawa (2010), Bolotin

et al. (2011), Capozziello & De Laurentis (2011), Starkman (2011), and references therein. In this paper we

assume that general relativity provides an adequate description of gravitation on cosmological scales.

2Note, however, that the “standard” CDM structure formation model, which is assumed in the ΛCDM

model, might need modification (see Peebles & Ratra 2003; Perivolaropoulos 2010, and references therein).
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These puzzles could be partially resolved if the dark energy density is a slowly decreasing

function of time (Peebles & Ratra 1988; Ratra & Peebles 1988). In this case the dark energy

density will remain comparable to the non-relativistic matter density for a longer time. For

recent discussions of time-varying dark energy models, see Bauer et al. (2011), Chimento

et al. (2011), Granda et al. (2011), Garćıa-Bellido et al. (2011), Basilakos et al. (2012),

Sheykhi et al. (2012), Brax & Davis (2012), Hollenstein et al. (2012), Cai et al. (2012), and

references therein. In this paper we will consider two dark energy models (with dark energy

being either a cosmological constant or a slowly-evolving scalar field φ) as well as a dark

energy parameterization.

In the ΛCDM model, time-independent dark energy density (the cosmological constant

Λ) is modeled as a spatially homogeneous fluid with equation of state pΛ = −ρΛ. Here

pΛ and ρΛ are the fluid pressure and energy density. In describing slowly-decreasing dark

energy density much use has been made of a parameterization known as XCDM. Here dark

energy is modeled as a spatially homogeneous X-fluid with equation of state pX = wXρX.

The equation of state parameter wX < −1/3 is independent of time and pX and ρX are the

pressure and energy density of the X-fluid. When wX = −1 the XCDM parameterization

reduces to the complete and consistent ΛCDM model. For any other value of wX < −1/3

the XCDM parameterization is incomplete as it cannot describe spatial inhomogeneities (see,

e.g. Ratra 1991; Podariu & Ratra 2000). For computational simplicity, in the XCDM case

we assume a spatially-flat cosmological model.

The φCDM model is the simplest, consistent and complete model of slowly-decreasing

dark energy density (Peebles & Ratra 1988; Ratra & Peebles 1988). In this model dark energy

is modeled as a scalar field, φ, with a gradually decreasing (in φ) potential energy density

V (φ). Here we assume an inverse power-law potential energy density V (φ) ∝ φ−α, where α

is a nonnegative constant (Peebles & Ratra 1988). When α = 0 the φCDM model reduces

to the corresponding ΛCDM case. For computational simplicity, we again only consider the

spatially-flat cosmological case for φCDM.

As mentioned above, for some time now, most observational constraints have been rea-

sonably consistent with the predictions of the “standard” spatially-flat ΛCDM model. CMB

anisotropy, SNIa, and BAO measurements provide the strongest support for this conclusion.

However, the error bars associated with these three types of data are still too large to allow

for a significant observational discrimination between the ΛCDM model and the two simple

time-varying dark energy models discussed above. This is one motivation for considering

additional kinds of data.

If the constraints from the new data differ considerably from the old ones, this could

mean that at least one of the data sets had an undetected systematic error, or it could mean
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that the model being tested is observationally inconsistent. Either of these is an important

result. On the other hand, if the constraints from the new and the old data are consistent,

then a joint analysis of all the data could result in tighter constraints, and so might result

in significantly discriminating between constant and time-varying dark energy models.

Other measurements that have been used to constrain cosmological parameters3 include

galaxy cluster gas mass fraction as a function of redshift (e.g., Allen et al. 2008; Samushia &

Ratra 2008; Ettori et al. 2009; Tong & Noh 2011; Lu et al. 2011), galaxy cluster and other

large-scale structure properties (Campanelli et al. 2012; De Boni et al. 2011; Mortonson et al.

2011; Devi et al. 2011; Wang 2012, and references therein), gamma-ray burst luminosity

distance as a function of redshift (e.g., Samushia & Ratra 2010; Wang & Dai 2011; Busti

et al. 2012), lookback time as a function of redshift (Samushia et al. 2010; Dantas et al.

2011; Tonoiu et al. 2011, and references therein), HII starburst galaxy apparent magnitude

as a function of redshift (e.g., Plionis et al. 2010, 2011; Mania & Ratra 2012), angular size

as a function of redshift (e.g., Guerra et al. 2000; Bonamente et al. 2006; Chen & Ratra

2012), and strong gravitational lensing (Chae et al. 2004; Lee & Ng 2007; Biesiada et al.

2010; Zhang & Wu 2010, and references therein).4 Of particular interest to us here are

measurements of the Hubble parameter as a function of redshift (e.g., Jimenez et al. 2003;

Samushia & Ratra 2006; Samushia et al. 2007; Sen & Scherrer 2008; Pan et al. 2010; Chen &

Ratra 2011b; Kumar 2012; Wang & Zhang 2011; Duan et al. 2011; Bilicki et al. 2012; Seikel

et al. 2012). While the constraints from these data are typically less restrictive than those

derived from the SNIa, CMB anisotropy, and BAO data, both types of measurements result

in largely compatible constraints that generally support a currently accelerating cosmological

expansion. This provides confidence that the broad outlines of a “standard” cosmological

model are now in place.

In this paper we use the 21 H(z) measurements of Simon et al. (2005), Gaztañaga et al.

(2009), Stern et al. (2010), and Moresco et al. (2012a) (listed in Table 1)5 to constrain the

ΛCDM and φCDM models and the XCDM parametrization. The inclusion of the 8 new

Moresco et al. (2012a) measurements (with smaller error bars compared to the earlier data)

in the analysis results in tighter constraints than those recently derived by Chen & Ratra

3For reviews see Albrecht et al. (2006), Weinberg et al. (2012), and references therein.

4Future space-based SNIa and BAO-like meassurements (e.g., Podariu et al. 2001a; Samushia et al. 2011;

Sartoris et al. 2012; Basse et al. 2012; Pavlov et al. 2012), as well as measurements based on new techniques

(Jennings et al. 2011; van de Weygaert et al. 2011; Ziaeepour 2012, and references therein) should soon

provide interesting constraints on cosmological parameters.

5We do not include the 4 recent Zhang et al. (2012) H(z) measurements as they have somewhat larger

error bars and do not affect our results.
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z H(z) σH Reference

(km s−1 Mpc −1) (km s−1 Mpc −1)

0.090 69 12 1

0.170 83 8 1

0.179 75 4 4

0.199 75 5 4

0.240 79.69 2.65 2

0.270 77 14 1

0.352 83 14 4

0.400 95 17 1

0.430 86.45 3.68 2

0.480 97 62 3

0.593 104 13 4

0.680 92 8 4

0.781 105 12 4

0.875 125 17 4

0.880 90 40 3

0.900 117 23 1

1.037 154 20 4

1.300 168 17 1

1.430 177 18 1

1.530 140 14 1

1.750 202 40 1

Table 1: Hubble parameter versus redshift data. Last column reference numbers: 1. Simon

et al. (2005), 2. Gaztañaga et al. (2009), 3. Stern et al. (2010), 4. Moresco et al. (2012a).
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(2011b) from the previous largest set of H(z) measurements considered. The new H(z) data

constraints derived here are compatible with cosmological parameter constraints determined

by other techniques. For the first time, these H(z) limits are almost as constraining as those

derived from the most recent SNIa data compilation of Suzuki et al. (2012). In addition to

the tighter H(z) limits resulting from the new data, this is partially also a consequence of the

fact that a more careful analysis of the SNIa measurements (Suzuki et al. 2012) has resulted

in a larger systematic error estimate and thus weaker SNIa constraints. We emphasize that

the study of H(z) data is much less mature than that of SNIa apparent magnitude data, so

there is the possibility that future H(z) error bars might be larger than what we have used

in our analysis here. In addition to deriving H(z)-data only constraints, we also use these

H(z) data in combination with recent BAO and SNIa measurements to jointly constrain

cosmological parameters in these models.6 Adding the H(z) data tightens the constraints,

somewhat significantly in some parts of parameter space for some of the models we study.

Our paper is organized as follows. In Sec. 2 we present the basic equations of the three

dark energy models we consider. Constraints from the H(z) data are derived in Sec. 3. In

Sec. 4 we determine constraints from recent SNIa apparent magnitude data. In Sec. 5 we

derive constraints from recent BAO data. Joint constraints on cosmological parameters, from

a combined analysis of the three data sets, for the three models we consider, are presented

in Sec. 6. We conclude in Sec. 7.

2. Dark energy models

In this section we summarize properties of the two models (ΛCDM and φCDM) and the

one parametrization (XCDM) we use in our analyses of the data.

To determine how the Hubble parameter H(z) evolves in these models, we start from

the Einstein equation of general relativity

Rµν −
1

2
gµνR = 8πGTµν − Λgµν . (1)

Here gµν is the metric tensor, Rµν and R are the Ricci tensor and scalar, Tµν is the energy-

momentum tensor of any matter present, Λ is the cosmological constant, and G is the

Newtonian gravitational constant.

The energy-momentum tensor for an ideal fluid is Tµν = diag(ρ, p, p, p), where ρ is the

6See Moresco et al. (2012b) and Wang et al. (2012) for analyses that use most of these H(z) data in

conjunction with CMB anisotropy and other data to constrain cosmological parameters.
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energy density and p the pressure. Assuming spatial homogeneity, the Einstein equation

reduces to the two independent Friedmann equations(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K2

a2
, (2)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (3)

Here a(t) is the cosmological scale factor, an overdot denotes a derivative with respect to

time, and K2 represents the curvature of the spatial hypersurfaces. These equations, in

conjunction with the equation of state,

p = p(ρ) = ωρ, (4)

where ω is the dimensionless equation-of-state parameter (with ω = −1 corresponding to a

cosmological constant and ω < −1/3 corresponding to the XCDM parametrization), govern

the evolution of the scale factor and matter densities.

Taking the time derivative of Eq. (2) and putting it in Eq. (3) and then using Eq. (4)

yields the energy conservation equation

ρ̇ = −3
ȧ

a
(ρ+ p) = −3ρ

ȧ

a
(1 + ω) (5)

For a non-relativistic gas (matter) ω = ωm = 0 and ρm ∝ a−3, and for a cosmological constant

ω = ωΛ = −1 and ρΛ = Λ/(8πG)= constant (ρ̇Λ=0). Solving Eq. (5), the time-dependent

energy density is

ρ(t) = ρ0

(a0
a

)3(1+ω)

(6)

where ρ0 and a0 are the current values of the fluid energy density and the scale factor. If there

are a number of different species of non-interacting particles, then Eq. (6) holds separately

for each of them.

The ratio ȧ(t)/a(t) = H(t) is called the Hubble parameter. The present value of the

Hubble parameter is known as the Hubble constant and is denoted by H0. Defining the

redshift z = a0/a− 1, and the present value of the density parameters,

Ωm0 =
8πGρ0
3H2

0

, ΩK0 =
−K2

(H0a0)2
, ΩΛ =

Λ

3H2
0

, (7)

in the ΛCDM model we can rewrite Eq. (2) as

H2(z;H0,p) = H2
0

[
Ωm0(1 + z)3 + ΩΛ + (1− Ωm0 − ΩΛ)(1 + z)2

]
, (8)
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where we have made use of ΩK0 = 1−Ωm0−ΩΛ. This is the Friedmann equation of the ΛCDM

model with spatial curvature. In this model the cosmological parameters p = (Ωm0,ΩΛ).

Here Ωm0 is the non-relativistic (baryonic and cold dark) matter energy density parameter

at the present time. Below we shall have need for the dimensionless Hubble parameter

E(z) = H(z)/H0.

It has become popular to parametrize time-varying dark energy as a spatially homoge-

neous X-fluid, with a constant equation of state parameter ωX = pX/ρX < −1/3. With this

XCDM parametrization the Friedmann equation takes the form

H2(z;H0,p) = H2
0 [Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+ωX)], (9)

where for computational simplicity we consider only flat spatial hypersurfaces, and the model

parameters p = (Ωm0, ωX). The XCDM parametrization is incomplete, as it cannot describe

the evolution of energy density inhomogeneities.

The simplest complete and consistent dynamical dark energy model is φCDM. In this

model dark energy is a slowly-rolling scalar field φ with an, e.g., inverse-power-law potential

energy density V (φ) = κm2
pφ

−α where mp = 1/
√
G is the Planck mass and α is a non-

negative free parameter that determines κ. The scalar field part of the φCDM model action

is

S =
m2

p

16π

∫ √
−g

(
1

2
gµν∂µφ∂νφ− κm2

pφ
−α

)
d4x, (10)

with corresponding scalar field equation of motion

φ̈+ 3
ȧ

a
φ̇− καm2

pφ
−(α+1) = 0. (11)

In the spatially-flat case the Friedmann equation is

H2(z;H0,p) =
8πG

3
(ρm + ρφ) = H2

0 [Ωm0(1 + z)3 + Ωφ(z, α)], (12)

with scalar field energy density given by

ρφ =
m2

p

16π

(
1

2
φ̇2 + κm2

pφ
−α

)
. (13)

Solving the coupled differential Eqs. (11)—(13), with the initial conditions described in

Peebles & Ratra (1988), allows for a numerical computation of the Hubble parameter H(z).

In this case the model parameter set is p = (Ωm0, α).
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3. Constraints from the H(z) data

We use 21 independentH(z) data points (Simon et al. 2005; Gaztañaga et al. 2009; Stern

et al. 2010; Moresco et al. 2012a), listed in Table 1, to constrain cosmological model param-

eters. The observational data consist of measurements of the Hubble parameter Hobs(zi) at

redshifts zi, with the corresponding one standard deviation uncertainties σi.

To constrain cosmological parameters p of the models of interest we compute the χ2
H

function

χ2
H(H0,p) =

21∑
i=1

[Hth(zi;H0,p)−Hobs(zi)]
2

σ2
i

. (14)

where Hth(zi;H0,p) is the model-predicted value of the Hubble parameter. As discussed in

Sec. 2, Hth(zi;H0,p) = H0E(z;p), so from Eq. (14) we find

χ2
H(H0,p) = H2

0

21∑
i=1

E2(zi;p)

σ2
i

− 2H0

21∑
i=1

Hobs(zi)E(zi;p)

σ2
i

+
21∑
i=1

H2
obs(zi)

σ2
i

. (15)

χ2
H depends on the model parameters p as well as on the nuisance parameter H0 whose

value is not known exactly. We assume that the distribution of H0 is a Gaussian with one

standard deviation width σH0 and mean H̄0. We can then build the posterior likelihood

function LH(p) that depends only on the p by integrating the product of exp(−χ2
H/2) and

the H0 prior likelihood function exp[−(H0 − H̄0)
2/(2σ2

H0
)] (see, e.g., Ganga et al. 1997),

LH(p) =
1√

2πσ2
H0

∞∫
0

e−χ2
H(H0,p)/2e−(H0−H̄0)2/(2σ2

H0
)dH0. (16)

Defining

α =
1

σ2
H0

+
21∑
i=1

E2(zi;p)

σ2
i

, β =
H̄0

σ2
H0

+
21∑
i=1

Hobs(zi)E(zi;p)

σ2
i

, γ =
H̄2

0

σ2
H0

+
21∑
i=1

H2
obs(zi)

σ2
i

, (17)

the integral can be expressed in terms of the error function,7

LH(p) =
1

2
√

α σ2
H0

exp

[
−1

2

(
γ − β2

α

)][
1 + erf

(
β√
2α

)]
. (18)

7erf(x) = 2√
π

x∫
0

e−t2dt.
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Fig. 1.— Solid lines shows 1, 2, and 3 σ constraint contours for the ΛCDM model from the

H(z) data. The left panel is for the H0 = 68±2.8 km s−1 Mpc−1 prior and the right panel is

for the H0 = 73.8± 2.4 km s−1 Mpc−1 one. Thin dot-dashed lines in the left panel are 1, 2,

and 3 σ contours reproduced from Chen & Ratra (2011b), where the prior isH0 = 68±3.5 km

s−1 Mpc−1; the empty circle is the corresponding best-fit point. The dashed diagonal lines

correspond to spatially-flat models, the dotted lines demarcate zero-acceleration models, and

the shaded area in the upper left-hand corners are the region for which there is no big bang.

The filled black circles correspond to best-fit points. For quantitative details see Table 2.

We maximize the likelihood LH(p), or equivalently minimize χ2
H(p) = −2lnLH(p),

with respect to the parameters p to find the best-fit parameter values p0. In the models we

consider χ2
H depends on two parameters. We define 1σ, 2σ, and 3σ confidence intervals as

two-dimensional parameter sets bounded by χ2
H(p) = χ2

H(p0)+2.3, χ2
H(p) = χ2

H(p0)+6.17,

and χ2
H(p) = χ2

H(p0) + 11.8, respectively.

Even though the precision of measurements of the Hubble constant have greatly im-

proved over the last decade, the concomitant improvement in the precision of other cos-

mological measurements means that in some cases the Hubble constant uncertainty still

significantly affects cosmological parameter estimation. For a recent example see Calabrese

et al. (2012). The values of H̄0 ± σH0 that we use in this paper are 68 ± 2.8 km s−1 Mpc−1

and 73.8 ± 2.4 km s−1 Mpc−1. The first is from a median statistics analysis (Gott et al.

2001) of 553 measurements of H0 (Chen & Ratra 2011a); this estimate has been remarkably

stable for over a decade now (Gott et al. 2001; Chen et al. 2003). The second value is the

most precise recent one, based on HST measurements (Riess et al. 2011). Other recent mea-
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Fig. 2.— Solid lines shows 1, 2, and 3 σ constraint contours for the XCDM parametrization

from the H(z) data. The left panel is for the H0 = 68 ± 2.8 km s−1 Mpc−1 prior and the

right panel is for the H0 = 73.8 ± 2.4 km s−1 Mpc−1 one. Thin dot-dashed lines in the

left panel are 1, 2, and 3 σ contours reproduced from Chen & Ratra (2011b), where the

prior is H0 = 68 ± 3.5 km s−1 Mpc−1; the empty circle is the corresponding best-fit point.

The dashed horizontal lines at ωX = −1 correspond to spatially-flat ΛCDM models and the

curved dotted lines demarcate zero-acceleration models. The filled black circles correspond

to best-fit points. For quantitative details see Table 2.

surements are not inconsistent with at least one of the two values we use as a prior (see, e.g.,

Freedman et al. 2012; Sorce et al. 2012; Tammann & Reindl 2012).

Figures 1—3 show the constraints from the H(z) data for the three dark energy models

we consider, and for the two different H0 priors. Table 2 lists the best fit parameter values.

Comparing these plots with Figs. 1—3 of Chen & Ratra (2011b), whose 1, 2 and 3 σ con-

straint contours are reproduced here as dot-dashed lines in the left panels of Figs 1—3, we

see that the contours derived from the new data are more constraining, by about a standard

deviation, because of the 8 new, more precise, Moresco et al. (2012a) data points used here.

On comparing the left and right panels in these three figures, we see that the constraint

contours are quite sensitive to the value of H0 used, as well as to the uncertainty associated

with the Hubble constant measurement.
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Fig. 3.— Solid lines shows 1, 2, and 3 σ constraint contours for the φCDM model from the

H(z) data. The left panel is for the H0 = 68±2.8 km s−1 Mpc−1 prior and the right panel is

for the H0 = 73.8± 2.4 km s−1 Mpc−1 one. Thin dot-dashed lines in the left panel are 1, 2,

and 3 σ contours reproduced from Chen & Ratra (2011b), where the prior is H0 = 68± 3.5

km s−1 Mpc−1; the empty circle is the corresponding best-fit point. The horizontal axes at

α = 0 correspond to spatially-flat ΛCDMmodels and the curved dotted lines demarcate zero-

acceleration models. The filled black circles correspond to best-fit points. For quantitative

details see Table 2.

4. Constraints from the SNIa data

While the H(z) data provide tight constraints on a linear combination of cosmological

parameters, the very elongated constraint contours of Figs. 1—3 imply that these data alone

cannot significantly discriminate between cosmological models. To tighten the constraints

we must add other data to the mix.

The second set of data that we use are the Type Ia supernova data from the Suzuki

et al. (2012) Union2.1 compilation of 580 SNIa distance modulus µobs(zi) measurements at

measured redshifts zi (covering the redshift range of 0.015 to 1.414) with associated one

standard deviation uncertainties σi. The predicted distance modulus is

µth(zi;H0,p) = 5 log10 (3000 y(z)(1 + z)) + 25︸ ︷︷ ︸
=µ0

− 5 log10(h), (19)
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H(z) SNeIa BAO

Model and prior χ2
min B.F.P χ2

min B.F.P χ2
min B.F.P

ΛCDM
14.6

Ωm0 = 0.28

545

Ωm0 = 0.29

5.5

Ωm0 = 0.27
h = 0.68± 0.028 ΩΛ = 0.62

ΛCDM
14.6

Ωm0 = 0.42
ΩΛ=0.69 ΩΛ=0.87

h = 0.738± 0.024 ΩΛ = 0.97

XCDM
14.6

Ωm0 = 0.31

545

Ωm0 = 0.29

5.5

Ωm0 = 0.27
h = 0.68± 0.028 ωX = −0.94

XCDM
14.6

Ωm0 = 0.30
ωX = −0.99 ωX = −1.21

h = 0.738± 0.024 ωX = −1.3

φCDM
14.6

Ωm0 = 0.30

545

Ωm0 = 0.27

5.9

Ωm0 = 0.30
h = 0.68± 0.028 α = 0.25

φCDM
15.6

Ωm0 = 0.27
α = 0.20 α = 0.00

h = 0.738± 0.024 α = 0.00

Table 2: The minimum value of χ2 and the corresponding best-fit points (B.F.P) which maxi-

mize the likelihood for the three individual data sets. The SNIa values are for the case includ-

ing systematic errors. Ignoring SNIa systematic errors, for the ΛCDM model χ2
SN(p0) = 562,

at (Ωm0,ΩΛ) = (0.28, 0.73); for the XCDM case χ2
SN(p0) = 562 at (Ωm0, ωX) = (0.28,−1.01);

and for the φCDM model χ2
SN(p0) = 562, at (Ωm0, α) = (0.27, 0.05).

where H0 = 100h km s−1 Mpc−1 and y(z) is the dimensionless coordinate distance,

y(z) =



a0H0

K
sin

(
K

a0H0

z∫
0

dz′

E(z′)

)
K2 > 0

z∫
0

dz′

E(z′)
K2 = 0

a0H0√
−K2 sinh

(
√
−K2

a0H0

z∫
0

dz′

E(z′)

)
K2 < 0.

(20)

As the SNIa distance modulus measurements µobs are correlated, χ2 is defined as

χ2
SN(h,p) = ∆µT C−1 ∆µ. (21)

Here ∆µ is a vector of differences ∆µi = µth(zi;H0,p) − µobs(zi), and C−1 is the inverse of

the 580 by 580 Union 2.1 compilation covariance matrix. In index notation,

χ2
SN(h,p) =

∑
α,β

[µ0 − 5log10h− µobs]α (C
−1)αβ [µ0 − 5log10h− µobs]β . (22)
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The covariance matrix is symmetric so this can be written as

χ2
SN(h,p) = A(p)− 10B(p)log10(h) + 25C[log10(h)]

2 (23)

where
A(p) =

∑
α,β

(µ0 − µobs)α (C−1)αβ (µ0 − µobs)β

B(p) =
∑
α

(µ0 − µobs)α
∑
β

(C−1)αβ

C =
∑
α,β

(C−1)αβ.

(24)

The corresponding likelihood function, when considering a flat H0 prior, is

LSN(p) =

∞∫
0

e−χ2
SN (h,p)/2dh. (25)

Defining

δ =
25C

2(ln10)2
, ε =

B(p)ln10

5C
,

the above integral takes the form

LSN(p) =

√
π

δ
exp

[
−1

2

(
A(p)− B2(p)

C
− 2ε− 1

2δ2

)]
. (26)

The h-independent

χ2
SN(p) = −2 lnLSN(p) = A(p)− B2(p)

C
− 2ln(10)

5C
B(p)−Q, (27)

where Q is a constant that does not depend on the model parameters p,

Q =
2(ln10)4

625 C2
+ 2 ln

(
2π(ln10)2

25 C

)
,

and so can be ignored. We minimize χ2
SN(p) with respect to the model parameters p to find

the best-fit parameter values p0 and constraint contours.

Figure 4 shows constraints from the SNIa data on the three dark energy models we

consider here. For the ΛCDM model and the XCDM parametrization the constraints shown

in Fig. 4 are in very good agreement with those in Figs. 5 and 6 of Suzuki et al. (2012). The

φCDM model SNIa data constraints shown in Fig. 4 have not previously been computed.

Comparing the SNIa constraints of Fig. 4 to those which follow from the H(z) data, Figs.

1—3, it is clear that SNIa data provide tighter constraints on the ΛCDM model. For the
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Fig. 4.— Thick solid (dot-dashed) lines are 1, 2, and 3−σ constraint contours from SNIa

data with (without) systematic errors. Filled (open) circles demarcate likelihood maxima

for the case of data with (without) systematic errors. The top left plot is for the ΛCDM

model, the top right plot is for the XCDM parametrization, and the bottom one is for the

φCDM model. For quantitative details see Table 2.



– 16 –

XCDM case both SNIa data and H(z) data provide approximately similar constraints, while

the SNIa constraints are somewhat more restrictive than theH(z) ones for the φCDM model.

However, in general, the SNIa constraints are not very significantly more restrictive than the

H(z) constraints, which is a remarkable result. It is also reassuring that both data favor

approximately similar regions of parameters space, for all three models we consider. However,

given that the degeneracy in parameter space is similar for the H(z) and SNIa data, a joint

analysis of just these two data sets is unlikely to greatly improve the constraints.

5. Constraints from the BAO data

In an attempt to further tighten the cosmological parameter constraints, we now include

BAO data in the analysis. To constrain cosmological parameters using BAO data we follow

the procedure of Blake et al. (2011). To derive the BAO constraints we make use of the

distance parameter DV (z), a combination of the angular diameter distance and the Hubble

parameter, given by

DV (z) =

[
(1 + z)2dA(z)

2 c z

H(z)

]1/3
. (28)

Here dA(z) is the angular diameter distance

dA(z) =
y(z)

H0(1 + z)
(29)

where y(z) is the dimensionless coordinate distance given in Eq. (20).

We use measurements of the acoustic parameter A(z) from Blake et al. (2011), where

the theoretically-predicted Ath(z) is given in Eq. (5) of Eisenstein et al. (2005),

Ath(z) =
100 DV (z)

√
Ωmh2

z
. (30)

Using Eqs. (28)—(30) we have

Ath(z) =
√

Ωm

[
y2(z)

z2E(z)

]1/3
, (31)

which is h independent and where E(z) is defined in Sec. 2.

Using the WiggleZ Aobs(z) data from Table 3 of Blake et al. (2011), we compute

χ2
Az
(p) = ∆AT (CAz)

−1∆A. (32)
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likelihood maxima. The top left plot is for the ΛCDM model, the top right one is for the

XCDM parametrization, and the bottom plot is for the φCDM model. For quantitative

details see Table 2.
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Here ∆A is a vector consisting of differences ∆Ai = Ath(zi;p)−Aobs(zi) and (CAz)
−1 is the

inverse of the 3 by 3 covariance matrix given in Table 3 of Blake et al. (2011).

We also use the 6dFGS and SDSS data, three measurements from Beutler et al. (2011)

and Percival et al. (2010), listed in Blake et al. (2011). In this case the distilled parameter

dth(z) =
rs(zd)

DV (z)
, (33)

where rs(zd) is the sound horizon at the drag epoch, is given in Eq. (6) of Eisenstein & Hu

(1998). The correlation coefficients for this case are also given in Table 3 of Blake et al.

(2011). Using the covariance matrix we define

χ2
dz(h,p) = ∆dT (Cdz)

−1∆d (34)

where ∆d is a vector consisting of differences ∆di = dth(zi;h,p)−dobs(zi) and Cdz is the the

covariance matrix (Blake et al. 2011). We then marginalize over a flat prior for H0 to get

χ2
dz(p) = −2 ln

[∫ ∞

0

e−χ2
dz

(h,p)/2dh

]
. (35)

Since χ2
Az
(p) and χ2

dz
(p) correspond to independent data, the combined BAO data

χ2
BAO(p) = χ2

Az
(p) + χ2

dz(p). (36)

We can maximize the likelihood by minimizing χ2
BAO(p) with respect to the model param-

eters p to get best-fit parameter values p0 and constraint contours. Figure 5 show the

constraints from the BAO data on the three dark energy models we consider here. The

XCDM parametrization constraints shown in this figure are in good agreement with those

shown in Fig. 13 of Blake et al. (2011). The constraints shown in the other two panels of

Fig. 5 have not previously been computed. Comparing to the H(z) and SNIa constraint

contours of Figs. 1—4, we see that the BAO contours are also very elongated, although

largely orthogonal to the H(z) and SNIa ones. Consequently, a joint analysis of these data

will result in significantly tighter constraints than those derived using any one of these data

sets.

6. Joint constraints

To constrain cosmological parameters from a joint analysis of the H(z), SNIa, and BAO

data we compute

χ2(p) = χ2
H(p) + χ2

SN(p) + χ2
BAO(p) (37)
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Fig. 6.— Thick solid (dot-dashed) lines are 1, 2, and 3 σ constraint contours for the ΛCDM

model from a joint analysis of the BAO and SNIa (with systematic errors) data, with (with-

out) the H(z) data. The full (empty) circle marks the best-fit point determined from the

joint analysis with (without) theH(z) data. The dotted sloping line corresponds to spatially-

flat ΛCDM models. In the left panel we use the H0 = 68 ± 2.8 km s−1 Mpc−1 prior while

the right panel is for the H0 = 73.8 ± 2.4 km s−1 Mpc−1 case. For quantitative details see

Table 3.

for each of the three cosmological models considered here. We minimize χ2(p) with respect

to model parameters p to get best-fit parameter values p0 and constraint contours.

Figures 6—8 show constraints on the cosmological parameters for the ΛCDM and φCDM

models and the XCDM parametrization, from a joint analysis of the BAO and SNIa data, as

well as from a joint analysis of the BAO, SNIa andH(z) data. Table 3 lists information about

best-fit parameter values. Including the H(z) data in the analysis tightens the constraints

by more than one standard deviation, in parts of the parameter spaces.

Adding the H(z) data for the H̄0 ± σH0 = 68± 2.8 km s−1 Mpc−1 prior case improved

the constraints most significantly in the ΛCDM case (by more than 1 σ on ΩΛ in parts of

parameter space), Fig. 6, and least significantly for the φCDM model, Fig. 8. For the case of

the H̄0±σH0 = 73.8±2.4 km s−1 Mpc−1 prior, adding H(z) again tightens up the constraints

the most for the ΛCDM model (by more than 1 σ on ΩΛ), Fig. 6, and least so for the XCDM

parametrization, Fig. 7.
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Fig. 7.— Thick solid (dot-dashed) lines are 1, 2, and 3 σ constraint contours for the XCDM

parametrization from a joint analysis of the BAO and SNIa (with systematic errors) data,

with (without) the H(z) data. The full (empty) circle marks the best-fit point determined

from the joint analysis with (without) the H(z) data. The dotted horizontal line at ωX = −1

corresponds to spatially-flat ΛCDM models. In the left panel we use the H0 = 68 ± 2.8 km

s−1 Mpc−1 prior while the right panel is for the H0 = 73.8 ± 2.4 km s−1 Mpc−1 case. For

quantitative details see Table 3.

Figures 9—11 show the constraints on the cosmological parameters of the three models,

from a joint analysis of the BAO and H(z) data, as well as from a joint analysis of the three

data sets. Table 3 lists the best-fit parameter values. Comparing these figures to Figs. 6—8

allows for a comparison between the discriminating power of the SNIa and H(z) data.

Figure 9 shows that adding SNIa data to the H(z) and BAO data combination for the

H̄0 ± σH0 = 68± 2.8 km s−1 Mpc−1 prior case tightens up the constraints by more than 1 σ

on ΩΛ from below, while addition of SNIa data for the H̄0 ± σH0 = 73.8± 2.4 km s−1 Mpc−1

prior case tightens up the constraints by more than 1 σ on ΩΛ from above. Addition of SNIa

data to the H(z) and BAO combination doesn’t much improve the constraints on Ωm0 for

either prior.

Figures 9—11 show that adding SNIa data to the H(z) and BAO combination results in

the most prominent effect for the XCDM case, Fig. 10. Here for the H̄0±σH0 = 68± 2.8 km

s−1 Mpc−1 prior it tightens up the constraints by more than 1 σ on ωX from above and below

while for the H̄0 ± σH0 = 73.8 ± 2.4 km s−1 Mpc−1 prior it tightens up the constraints by
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Fig. 8.— Thick solid (dot-dashed) lines are 1, 2, and 3 σ constraint contours for the φCDM

model from a joint analysis of the BAO and SNIa (with systematic errors) data, with (with-

out) the H(z) data. The full (empty) circle marks the best-fit point determined from the

joint analysis with (without) the H(z) data (in the left panel the full and empty circles

overlap). The α = 0 horizontal axes correspond to spatially-flat ΛCDM models. In the left

panel we use the H0 = 68 ± 2.8 km s−1 Mpc−1 prior while the right panel is for the H0 =

73.8 ± 2.4 km s−1 Mpc−1 case. For quantitative details see Table 3.

more than 2 σ on ωX from below. Addition of SNIa data to the H(z) and BAO combination

doesn’t much improve the constraints on Ωm0 for either prior in this case.

In the φCDM case, Fig. 11, adding SNIa data to H(z) and BAO combination affects

the constraint on α the most for the H̄0 ± σH0 = 68 ± 2.8 km s−1 Mpc−1 prior case. The

effect on Ωm0 is little stronger than what happens in the ΛCDM and XCDM cases but still

less than 1 σ.

Table 4 lists the two standard deviation bounds on the individual cosmological param-

eters, determined from their one-dimensional posterior probability distributions functions

(which are derived by marginalizing the two-dimensional likelihood over the other cosmolog-

ical parameter) for different combinations of data set.

The constraints on the cosmological parameters that we derive from only the BAO and

SNIa data are restrictive, but less so than those shown in Fig. 4 of Chen & Ratra (2011b).

This is because the new Suzuki et al. (2012) SNIa compilation data we use here is based
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H(z)+BAO H(z)+SNIa+BAO SNIa+BAO

Model and prior χ2
min B.F.P χ2

min B.F.P χ2
min B.F.P

ΛCDM
20.7

Ωm0 = 0.31
566

Ωm0 = 0.30

551

Ωm0 = 0.30
h = 0.68± 0.028 ΩΛ = 0.68 ΩΛ = 0.70

ΛCDM
21.0

Ωm0 = 0.29
567

Ωm0 = 0.30
ΩΛ = 0.73

h = 0.738± 0.024 ΩΛ = 0.79 ΩΛ = 0.76

XCDM
20.7

Ωm0 = 0.31
566

Ωm0 = 0.31

551

Ωm0 = 0.30
h = 0.68± 0.028 ωX = −0.99 ωX = −1.02

XCDM
20.8

Ωm0 = 0.28
567

Ωm0 = 0.30
ωX = −1.03

h = 0.738± 0.024 ωX = −1.19 ωX = −1.08

φCDM
20.7

Ωm0 = 0.31
566

Ωm0 = 0.30

551

Ωm0 = 0.30
h = 0.68± 0.028 α = 0.05 α = 0.00

φCDM
22.0

Ωm0 = 0.29
567

Ωm0 = 0.29
α = 0.00

h = 0.738± 0.024 α = 0.00 α = 0.00

Table 3: The minimum value of χ2 and the corresponding best fit points (B.F.P) which

maximize the likelihood, for different combinations of data. The SNIa data values are for

the case including systematic errors.

on a more careful accounting of the systematic errors, which have increased. Consequently,

including the H(z) data, in addition to the BAO and SNIa data, in the analysis, more

significantly tightens the constraints: compare Figs. 6—8 here to Figs. 4—6 of Chen &

Ratra (2011b). We emphasize, however, that this effect is prominent only in some parts of

the parameter spaces.

7. Conclusion

In summary, the results of a joint analysis of the H(z), BAO, and SNIa data are very

consistent with the predictions of a spatially-flat cosmological model with energy budget

dominated by a time-independent cosmological constant, the standard ΛCDM model. How-

ever, the data are not yet good enough to strongly rule out slowly-evolving dark energy

density. More, and better quality, data are needed to discriminate between constant and

slowly-evolving dark energy density.

It is probably quite significant that current H(z) data constraints are almost as re-

strictive as those from SNIa data. The acquisition of H(z) data has been an interesting
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Fig. 9.— Thick solid (dot-dashed) lines are 1, 2, and 3 σ constraint contours for the ΛCDM

model from a joint analysis of the BAO and H(z) data, with (without) the SNIa data. The

full (empty) circle marks the best-fit point determined from the joint analysis with (without)

the SNIa data. The dotted sloping line corresponds to spatially-flat ΛCDM models. In the

left panel we use the H0 = 68 ± 2.8 km s−1 Mpc−1 prior while the right panel is for the H0

= 73.8 ± 2.4 km s−1 Mpc−1 case. For quantitative details see Table 3.

backwater of cosmology for the last few years. We hope that our results will help promote

more interest in this exciting area. Since the H(z) technique has not been as much studied

as, say, the SNIa apparent magnitude technique, a little more effort in the H(z) area is likely

to lead to very useful results.
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