SHEAR VISCOSITY BEHAVIOR NEAR THE DOUBLE CRITICAL POINT OF THE MIXTURE 3-METHYLPYRIDINE, WATER AND HEAVY WATER/

by

GEOFFRY ALAN LARSEN

B.S., Southwest Texas State University, 1981

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Physics KANSAS STATE UNIVERSITY Manhattan, Kansas 1984

n Soursen

2668 TU		AL	150	5	9Ь	0.5	2	4													
1984 137		TABLI	E OF	: CI	DNT	FEN	ITS														Page
C. Z. LIST OF FIGURES .																					111
LIST OF TABLES .																					v
ACKNOWLEDGEMENTS																					vii
Chapter I INTRODUCTION																					1
Chapter II EXPERIMENTAL	PROCEDU	IRES																			13
Solution	n Prepar	atio	n.								•	•	•		•				•		13
Determi	nation o	f th	e Ci	rit	ica	1	Сс	no	er	Itr	at	tic	n	·			·	·	•	·	14
Viscosi	ty Measu	reme	nt a	and	Te	emp	er	'a 1	ur	۰e	Сс	ont	ind	51	·	·	·	·	·	٠	16
Chapter III																					
ANALYSIS		• •	•	• •	·	٠	·	·	•	·	·	·	·	•	•	•	·	·	•	•	22
Ohta An	alysis .		•		·		•	•	•	٠		٠	•	•							22
Kortan /	\nalysis	• •	•	• •	·	·	·	·	·	·	·	·	·	•	·	·	·	·	·	·	67
Chapter IV																					
CONCLUSION .	• • • •	• •	•	• •	·	·	•	·	•	•	·	•	•	·	·	•	·	•	•	·	92
RAW VISCOSITY TAB	LES		•		·		•			•	•		•				•			•	95
ANALYZED VISCOSIT	Y ANOMAL	Y TAI	BLE	5.																	105
REFERENCES																					115
ABSTRACT																					

LIST OF FIGURES

Figu	re	Pa	ıge
1.	The Miscibility Dome of the ${\rm H_2O/O_2O/3-Methylpyridine}$ System		3
2.	Temperature-Composition Phase Diagram Near a Oouble Critical Point		6
3.	$H_20/D_20/3\text{-Methylpyridine Characteristics}$		9
4.	Viscometer Diagram		17
5.	Viscometer Flowtime Versus Temperature for Four Representative Solutions		26
6.	$n/n_{\mbox{\scriptsize 8}}$ Versus Temperature for Solutions That Phase Separated		29
7.	$n/n_{\rm B}$ Versus Temperature for Solutions That Did Not Phase Separate		31
8.	n_0/n_8 Versus Volumetric Concentration		33
9.	n/n_0 Versus ϵ for $X_{H_20}=0.0000$, $X_{D_20}=0.9160$, $X_{3-MP}=0.0840$		39
10.	n/n_0 Versus ϵ for $X_{H_20}^{-}=0.3914$, $X_{D_20}^{-}=0.5279$, $X_{3-MP}^{-}=0.0807$		41
11.	n/n_0 Versus ε for $X_{H_20}^{-}=0.7356$, $X_{0_20}^{-}=0.1866$, $X_{3-MP}^{-}=0.0778$		43
12.	n/n_0 Versus c for $X_{H_00}^{2}=0.7926$, $X_{0_00}^{2}=0.1298$, $X_{3-MP}^{2}=0.0776$		45
13.	n/n_0 Versus ϵ for $X_{H_20} = 0.7880$, $X_{D_20} = 0.1290$, $X_{3-MP} = 0.0830$		47
14.	Effects of Incorrect LCST and UCST on $_{\rm N}/_{\rm T_0}$ Versus ϵ Plot for $\rm X_{\rm H_20}{=}0.7880, \ \rm X_{\rm D_20}{=}0.1290, \ \rm X_{\rm 3-MP}{=}0.0830$		49
15.	Composite of n/n_0 Versus ϵ Plots for Solutions That Phase Separated		51
16.	n/n_0 Versus c for $X_{H_00}=0.7954$, $X_{D_00}=0.1245$, $X_{3-MP}=0.0801$		53
17.	n/n_0 Versus ε for $X_{H_0}^2 = 0.7987$, $X_{D_0}^2 = 0.1241$, $X_{3-MP}^2 = 0.0773$		55
18.	n/n_0 Versus ϵ for $X_{H_20}^2 = 0.8020$, $X_{D_20}^2 = 0.1207$, $X_{3-MP} = 0.0772$		57
19.	n/n_0 Versus c for $X_{H_20}^2$ =0.8061, $X_{0_20}^2$ =0.1165, X_{3-MP} =0.0774		59
20.	n/n_0 Versus ϵ for $X_{H_20}^{-}=0.9238$, $X_{D_20}^{-}=0.0000$, $X_{3-MP}^{-}=0.0762$		61
21.	Composite of n/n _o Versus ε Plots for Solutions That Did Not Phase Separate		63
22.	$\epsilon^{-1}(n/n_0)^{-25}$ Versus ϵ for $X_{H_20}^{=0.0000}$, $X_{0_20}^{=0.09160}$, $X_{3-MP}^{=0.00160}$		69

Figur	re	Page
23.	$\epsilon^{-1}(n/n_{0})^{-25}$ Versus ϵ for $X_{H_{2}O}^{=0.3914}, X_{D_{2}O}^{=0.5279}, X_{3-MP}^{=}$ 0.0807	. 71
24.	$\epsilon^{-1}(n/n_0)^{-25}$ Versus ϵ for $X_{H_2O}^{=0.7356}$, $X_{D_2O}^{=0.1866}$, $X_{3-MP}^{=0.0778}$. 73
25.	$e^{-1}(n/n_0)^{-25}$ Versus e for $X_{H_20}^{=0.7926}, X_{D_20}^{=0.1298}, X_{3-MP}^{=0.1298}, X_{3-MP}^{=0.1298}$. 75
26.	$e^{-1}(n/n_0)^{-25}$ Versus e for $X_{H_20}^{=0.7880}$, $X_{D_20}^{=0.1290}$, $X_{3-MP}^{=0.0830}$. 77
27.	$\begin{array}{c} \text{Composite of } {\varepsilon}^{-1} {\left({n / {n_0}} \right)}^{-25} \text{ Versus } {\varepsilon} \text{ Plots for Solutions That} \\ \text{Phase Separated} \end{array}$. 79
28.	$(n/n_0)^{-25}$ Versus $ T-76^{\circ}C ^2$ for $X_{H_20}=0.7954$, $X_{D_20}=0.1245$, $X_{3-MP}=0.0801$.	. 82
29.	$(n/n_0)^{-25}$ Versus $ T-76^{\circ}C ^2$ for $X_{H_20}=0.7987$, $X_{D_20}=0.1241$, $X_{3-MP}=0.0773$. 84
30.	$(n/n_0)^{-25}$ Versus $ T-76^0C ^2$ for $X_{H_20}^{=0.8020}$, $X_{D_20}^{=0.1207}$, $X_{3-MP}^{=0.0772}$.	. 86
31.	(n/n ₀) ⁻²⁵ Versus T-76 ⁰ C ² for X _{H2} 0 ^{=0.8061} , X _{D2} 0 ^{=0.1165} , X _{3-M0} ^{=0.0774}	. 88
32.	Composite of $(n/n_0)^{-25}$ Versus $ T-76^0C ^2$ Plots for Solutions That Did Not Phase Separate	. 90

iv

LIST OF TABLES

Table		Page
Ι.	$\ensuremath{Previous}$ Measurements of Shear Viscosity Critical Exponents	2
II.	Background Shear Viscosity Fits for ${\rm H_20/3\text{-}Methylpyridine}$	24
III.	Shear Viscosity Critical Exponents for the ${\rm H_20/0_20/3-Methyl-pyridine}$ System	65
IV.	Raw Viscosity Oata for ${\rm X}_{\rm H_20}{=}0.0000,\;{\rm X}_{\rm O_20}{=}0.9160,\;{\rm X}_{\rm 3-MP}{=}0.0840$.	95
۷.	Raw Viscosity Oata for $X_{H_20}^{-}=0.3914$, $X_{0_20}^{-}=0.5279$, $X_{3-MP}^{-}=0.0807$.	96
VI.	Raw Viscosity Oata for $X_{H_20}^{-}=0.7356$, $X_{0_20}^{-}=0.1866$, $X_{3-MP}^{-}=0.0778$.	97
VII.	Raw Viscosity Oata for $X_{H_20}^{-}=0.7926$, $X_{0_20}^{-}=0.1298$, $X_{3-MP}^{-}=0.0776$.	98
VIII.	Raw Viscosity Oata for $X_{H_20}^2=0.7880$, $X_{0_20}^2=0.1290$, $X_{3_{-MP}}=0.0830$.	99
IX.	Raw Viscosity Oata for $X_{H_{2}0}^{2}=0.7954$, $X_{0_{2}0}^{2}=0.1245$, $X_{3_{-MP}}^{2}=0.0801$.	100
х.	Raw Viscosity Oata for $X_{H_00}^2 = 0.7987$, $X_{0_00}^2 = 0.1241$, $X_{3-MP} = 0.0773$.	101
XI.	Raw Viscosity Oata for $X_{H_0}^2=0.8020$, $X_{0,0}^2=0.1207$, $X_{3-MP}^2=0.0772$.	102
XII.	Raw Viscosity Oata for X _{H_0} =0.8061, X _{0_0} =0.1165, X _{3-MP} =0.0774 .	103
XIII.	Raw Viscosity Oata for $X_{H_0}^2=0.9238$, $X_{0,0}^2=0.0000$, $X_{3-MP}^2=0.0762$.	104
XIV.	Analyzed Viscosity Anomaly Values for $\frac{1}{2}$ H ₂ 0 ^{=0.0000, X} 0 ₂ 0 ^{=0.5279, X} 3 _{-MP} =0.0840	105
XV.	Analyzed Viscosity Anomaly Values for $\rm X_{H_20}^{=0.3914}, \rm X_{0_20}^{=0.5279}, \rm X_{3-MP}^{=0.0807}$	106
XVI.	Analyzed Viscosity Anomaly Values for ${\rm X}_{\rm H_20}{=}0.7356,{\rm X}_{020}{=}0.1866,{\rm X}_{3-\rm MP}{=}0.0778$	107
XVII.	Analyzed Viscosity Anomaly Values for X _{H2} 0 ^{=0.7926} , X ₀₂ 0 ^{=0.1298} , X _{3-MP} =0.0776	108
XVIII	. Analyzed Viscosity Anomaly Values for $X_{H_20}^{=0.7880}$, $X_{0_20}^{=0.1298}$, $X_{3_{-MP}}^{=0.0830}$.	109
XIX.	Analyzed Viscosity Anomaly Values for X _{H20} =0.7954, X ₀₂₀ =0.1245, X _{3_M0} =0.0801	110

Table					F	Page
XX.	Analyzed Viscosity X _{3-MP} =0.0773	Anomaly	Values fo	r X _{H20} =0.7987,	x _{D20} =0.1241,	111
XXI.	Analyzed Viscosity X _{3-MP} =0.0772	Anomaly	Values fo	r X _{H2} 0 [∞] 0.8020,	× _{D20} =0.1207,	112
XXII.	Analyzed Viscosity X _{3-MP} =0.0774	Anomaly	Values fo	r X _{H20} =0.8061,	^X D ₂ 0 ^{=0.1165} ,	113
XXIII.	Analyzed Viscosity X _{3-MP} =0.0762	Anomaly	Values fo	r X _{H20} =0.9238,	× _{D20} =0.0000,	114

ACKNOWLEDGEMENTS

This thesis is dedicated to my mother, Mary Patricia Larsen. While she did not live to see it completed, I could never have gotten this far without her support and love.

I would like to thank both my father, Pernell Larsen, Sr., and my wife, Lew. My father was always there with his advice and help. If I am half the man he is when I reach his age, I will have achieved something in this world. Lew, my wife, was always there with her love and encouragement. She waited many times for me to come home from the lab late into the night, but always was patient with me.

I would also like to thank chris Sorensen, my major professor. Not only was he patient with me and supportive, but he taught me two important attitudes. First, always try to look at things as simply as you can. Second, do things one step at a time. It was always a pleasure to work with him and I learned volumes just watching him think about problems.

Special thanks go to Dave Hill and Bob Geering. Without the fellows in the machine shop, none of us would ever get anything done. Their knowledge, experience, and willingness to help make them invaluable to this department.

I also would like to thank KoKo Himes. She typed the manuscript for me and shepherded me through the process of meeting all of my deadlines.

Lastly, I would like to thank Dave Hare for the help he gave me when I was calibrating the viscometers and measuring solution densities.

vii

Chapter I INTRODUCTION

The behavior of fluid systems in the vicinity of a critical point is a topic that has been studied with great interest throughout this century. In particular, interest has been focused on critical point exponents since the middle of this century.

Most of the systems studied have been systems that are miscible at higher temperatures, but which ummix over a range of concentrations as the temperature is lowered below an upper critical temperature. For binary fluid systems, it has been found that the critical exponents take on universal values. That is, they do not depend on the specific system being studied. Furthermore, theories have been developed that have predicted with success the values taken on by these exponents. For example, the shear viscosity critical exponent of binary fluids has been predicted to have a value of about 0.000 using both mode-mode coupling theory and renormalization group theory. Experimental tests of this prediction have tended to support it, although there have been exceptions. For examples of experimentally determined values for the shear viscosity critical exponent, a, see Table I.

In more recent years, theoreticians and experimentalists have become more interested in systems that display reentrant behavior. These solutions, usually mixtures of hydrogen bonding liquids, remix when the temperature is lowered still further below a lower critical solution temperature. In Fig. 1. we see a coexistence surface for such al louid. Some outes satisfactory

TABLE I

Shear Viscosity Critical Exponents of Various Solutions

System	¢	Comments				
Water/Ethanol/Chloroform	0.054 ^{b)} 0.052 ^{b)} 0.042 ^{j)}	Analysis of data from Ref. j) Analysis of data from Ref. j)				
2.6-Lutidine/Water	0.038 ^{a)} 0.041 ^{b)} 0.043 ^{b)} 0.039 ^{c)}	Analysis of data from Ref. g) Analysis of data from Ref. g) Analysis of data from Ref. h) Analysis of data from Ref. h)				
3-Methylpyridine/Nitroethane	0.035 ^a) 0.040 ^b) 0.038 ^b) 0.038 ^b) 0.038 ^b) 0.038 ^b) 0.040 ^c) 0.039 ^c) 0.039 ^e)	Analysis of data from Ref. d) Analysis of data from Ref. e) Analysis of data from Ref. e) Analysis of data from Ref. d)				
Isobutyric Acid/Water	0.038 ^{a)} 0.029 ^{b)} 0.039 ^{c)}	Analysis of data from Ref. f) Analysis of data from Ref. f) Analysis of data from Ref. f)				
Aniline/Cyclohexane	0.033 ^{b)}	Analysis of data from Ref. i)				
 a) T. Ohta, J. Phys. C <u>10</u> (1977) 791. b) S. P. Lee, Chem. Phys. Lett. <u>57</u> (1978) 611 c) P. Calmettes, Phys. Rev. Lett. <u>39</u> (1977) 1151 d) A. Szein, J. C. Allegra and G. F. Allem, J. Chem. Phys. <u>56</u> (1971) 4265. e) C. Tasi and D. McIntyre, J. Chem. Phys. <u>50</u> (1974) <u>3377</u>. f) L. Calmetter, J. Chem. Phys. <u>50</u> (1974) <u>3377</u>. f) L. Calmetter, J. Chem. Phys. <u>50</u> (1974) <u>3377</u>. f) L. Calmetter, J. Chem. Phys. <u>50</u> (1974) <u>3377</u>. f) L. Calmetter, J. Chem. Phys. <u>50</u> (1974) <u>5171</u>. F) L. Savidson, J. C. Allegra and G. F. Allen, J. Chem. Phys. <u>56</u> (1972) <u>5164</u>. G. C. Yang and F. R. Meeks, J. Phys. Chem. <u>75</u> (1971) <u>2619</u>. J) S. P. Lee and A. J. Purvis, Chem. Phys. <u>24</u> (1977) 191. 						

Figure 1. This figure shows the general appearance of the miscibility dome for the $k_2/D_2/D_2$ -methylpyridine system. Notice for mixtures rich in D_20 and weak in H_20 that the coexistance curve is a simple closed loop with separate upper and lower critical points that are single critical points. As the concentration of H_20 is increased, the loop shrinks until the upper and lower critical point. The mixtures we are interested in are those in the immediate vicinity of the double critical point.

theories have been developed to account for this behavior.^{1,2} In these theories, the specific orientational nature of hydrogen bonding has been presented as the reason why these liquids could remix at lower temperatures and still have a monotonically decreasing entropy.³

Consider Fig. 1, beginning with the closed loop. The upper- and lowermost points on this loop represent an upper critical solution point and lower critical solution point, respectively. If the 3-methylpyridine concentration is held fixed while the ratio of H20 to D20 is increased, the two critical points begin to approach each other as the loop closes. Eventually, they come together to form what is called a double critical point. One result that has come out of the study of these systems has been that the critical exponents are predicted to double as the double critical point is approached. 1-4 In these theories, it is pointed out that, if the double critical point is approached tangentially (see Fig. 2), the path followed as the critical temperature, T,, is approached comes much closer to points on the critical surface than to the double critical point itself. Each point on the critical surface is an Ising critical point. The parameter determining the separation of the system from criticality when on this tangential path should actually be the distance from the closest point on the critical surface. In the laboratory, we would measure the temperature deviation from critically as a where

 $\varepsilon = |T-T_{DCP}|/T_{DCP}$

and T_{DCP} is the temperature at the double critical point. As can be seen in Fig. 2, the parabolic shape of the critical surface leads us to conclude that this deviation should actually be e^2 . This is the source of the prediction that the critical exponent should double.

Figure 2. In this figure, we can see the rationale behind the prediction that the critical exponents will double as the double critical point is approached. Here, the solid line represents the critical points for different concentrations of the Hg/D/2/J-methylpyridine system. As we progress from 0 to 1 on the abscissa-axis, Hg0 is substituted for Dg0 in the system. 0 indicates no Hg0 in the system, while 1 indicates no Dg0. The dashed line represents the path taken as we fix the concentration at the double critical point concentration and vary the temperature. Notice as we approach P that we are much closer to P' than to P. This is the basis for the idea that, as the double critical point concentration is approach, the critical point concentration is approached.

While these predictions have been tested with success on a gas-gas⁵ and a liquid-crystal⁶ system, no published results exist for a binary fluid system. The purpose of this experiment was to find evidence to support or reject the hypothesis that the shear viscosity critical exponent, 0, should double as the double critical point was approached.

The system studied in this experiment was actually a ternary mixture of H_0^{0} , D_0 , and 3-methylpyridine that was initially examined by Cox and Andon⁷ in a series of papers in the 1950's. For the characteristics of this system, see Fig. 3.

While this is not a true binary system, we feel that this system can be characterized as quasi-binary because of its unique composition. This concept has been tried before with success by Gulari <u>et al.</u>⁸ and Knobler and Soct⁹ on termary systems of deuterated or non-deuterated mixtures of isobutyric acid and water. These systems displayed binary solution behavior in the one phase region. In addition, Goldstein² has successfully treated mixtures of μ_0 with 2,6-dimethylpyridine and one of the momenthyl pyridines as a quasi-binary system. The substitution of H_20 for D_20 should not affect the properties of the system exceed insoftma as the strength of the hydrogen bonding is weakened. The result is that the mixture of D_20 and H_20 can be treated as one liquid whose hydrogen bond strength is, on the average, a compositionally weighted average of the D_20 and μ_20 hydrogen bond strengths. Therefore, we feel that the behavior of the shear viscosity in this mixture of H_20 , D_20 , and -amethylpyridine should mirror that of a true binary system.

Two methods of analyzing the data will be used. These will be referred to as the Ohta analysis and Kortan analysis.

In the Ohta analysis, the viscosity data will be examined in the manner suggested by T. Ohta in a paper published in 1976. 10 Prior to this time,

Figure 3. Shown are bwo cross-sections of the miscibility dome for the H₂0/D₂0/3-methylpyridine system. In the upper figure, $M_{4,2}$ -0 where W is weight-percent concentration $M_{0,2}$ and M_{3-M_2} are varied. In the lower figure, M_{3-M_2} -0.30. $W_{4,2}$ and $M_{2,0}$ are varied.

the shear viscosity anomaly had been treated as additive in nature. In other words,

$$\eta(T) = \eta_{\alpha}(T) + \Delta \eta(T) \qquad (1-1)$$

and the background viscosity, $n_0(T)$, would be subtracted from the actual viscosity, n(T), to find the size of the anomaly. However, in this paper, Ohta found better agreement with experiments if the anomaly was treated as being multiplicative in nature. In other words, the correct expression was

$$\eta(T) = \eta_0(T)e^{-\phi}$$
(1-2)

where ϕ is the shear viscosity critical exponent. Note then that

$$\eta(T)/\eta_0(T) = e^{-\phi}$$
, (1-3)

We are interested in the behavior of the ratio $\eta(T)/\eta_0(T)$ as $T_{\mbox{\scriptsize C}}$ is approached.

The Kortan analysis involves two phenomological expressions developed empirically by Kortan et al. in a paper published in 1983.⁶ In this experiment, reentrant behavior in a liquid crystal was studied. For concentrations exhibiting a phase transition between nematic and smectic-A phases, the correlation lengths were described by

$$\varepsilon = \varepsilon^{0} [\varepsilon + (T_{c}/\Delta T)\varepsilon^{2}]^{-\nu} \qquad (1-4)$$

where ε^0 is a concentration dependent parameter and ΔT is the separation between upper and lower critical solution temperatures, UCST and LCST.

If the concentration was such that there was no phase transition, the correlation lengths were described by

$$\xi = A[(T-T_m)^2 + a(y-y_0)]^{-v}$$
(1-5)

where A and a are constants, y_0 is the double critical point concentration, T_m is the temperature at the center of the coexistance loop, and y is the concentration of the solution.

As can be seen in the first expression, if the loop is large, the first term is dominant and the correlation lengths goes as e^{-N} . On the other hand, if ΔT gets small enough, then the second term dominates and the correlation length goes as $e^{-2\nu}$. As such, we see critical exponent doubling. In the second expression, we see that the correlation length should go as $(T-1)e^{-2\nu}$.

Chapter II

EXPERIMENTAL PROCEDURE

Solution Preparation

The D_20 used in this experiment was purchased from Alfa Products. The lot analysis printed on the bottle stated the fluid to be at least 99.8% D_20 .

Doubly distilled water was obtained from within the department. The first distillation was through a charcoal filter unit. The second was through an ion exchange unit.

Our 3-methylpyridine was purchased from Aldrich. It was technical grade and was yellow in color. We cleaned a fractional distillation unit, flushed it brice, and oven-dried it. The 3-methylpyridine was then distilled bric, he middle half being kept each time. The boiling point of 3-methylpyridine is 144.1°C. During distillation, the column temperature varied between 143°C and 144°C. After distillation, the distillate was colorless. The final distillate was stored in a clean, oven-dried, brown chemical bottle which had a tefion seal in the cap. In addition the cap was sealed with parafilm.

We saved the first and fourth quarters from the second distillation process. Some of this distillate was poured into two distillation flasks. These flasks were glass stoppered and sealed with parafilm. In addition, one of the two flasks was wrapped in aluminum foil to exclude light. After several months, there was still no sign of discoloration that might indicate decomposition. We saw no change in either of these samples over the duration of the experiment.

The rest of the first and fourth quarters was distilled a third time.

The two middle quarters of the resulting distillate were again saved. During this time the column temperature varied between 143°C and 160°C. This was an indication that the distillate contained other methylpyridines and dimethylpyridines since these have higher boiling points than 3-methylpyridine. We stored the distillate in a clean, oven-dried, brown chemical bottle as before. Again, the cap had a terion seal inside, and the cap tiself was sealed with parefilm.

Stock solutions of H₂0/3-methylpyridine and D₂0/3-methylpyridine were mixed under dry nitrogen such that the weight percentage of 3-methylpyridine in each was 23.932.015. This ensured both ease in mixing and that any samples made would have the same weight-percentage of 3-methylpyridine. The stock solutions were mixed up using volumetric pipettes. Oensities for D₂0, H₂0, and 3-methylpyridine were taken from values given in the 1976-77 edition of the GRC Nandbook of Chemistry and Physics. The stock solutions were also stored in clean, oven-dried, brown chemical bottles with teflon seals in the caps.

All of our chemicals were stored at all times under dry nitrogen gas in a glove box that also contained CaSO₄ as a dessicant. This ensured the absence of any atmospheric water in our storage area.

All of the samples were mixed inside the glove box using volumetric pipettes. They were stored in 10 milliter vials that had teflon seals in the lids. The pipettes and vials were carefully cleaned with distilled water and acetone, flushed with distilled water, and oven-dried prior to their use. The samples were stored in the glove box.

Determination of the Critical Concentration

From prior work done by Cox,⁷ we knew that the concentration of 3-methyl pyridine at the tip of the miscibility dome was close to 30 weight-%. This number was not exact, since Cox was not really concerned with that. This was why the stock solutions were mixed as they were. The first step in finding the critical concentration was to find the proportion of D_20 to H_20 such that phase separation no longer occurred. Once this was accomplished, we were able to increase the D_20 concentration by very small amounts and have upper and lower critical solution temperatures that were only three to five degrees apart. Because both stock solutions were mixed at the same weight percentage of 3-methylpyridine, the 3-methylpyridine's concentration did not change as the D_20/R_20 concentration way veried.

After this was done, we varied the 3-methylpyridine concentration and watched to see what happened to the volume ratio of the two fluids above and below the meniscus, while holding the temperature fixed as close to the phase separation temperature as possible. If, on a given trial, the 3-methylpyridine concentration was along the critical isochore, the ratio should be one. If the 3-methylpyridine concentration was slightly off of the isochore, then one of the two phase would disappear as the lower critical temperature was approached from above. With the correct concentrations of 3-methylpyridine, H_2O , and D_2O , both the upper and lower phases would disappear simultaneously as the lower critical temperature was approached. We started with a known volume of a sample in the viscometer and added small amounts of 3-methylpyridine as the ratio of the upper to lower volumes was observed. A typical sample size was 4 millifiters, and the sample concentration was shifted in 0.1 to 0.25 moles increments. A volumetric micropipette was used to shift the 3-methylpyridine concentration in each sample.

Best results were obtained when $X_{H_{20}} = 0.7880$, $X_{D_{20}} = 0.1290$, and $X_{3-AP} = 0.0830$. For this concentration, a $0.05^{\circ}C$ shift in temperature from the one-phase region to the two-phase region resulted in a ratio between

the lower and upper volumes of one to two.

Viscosity Measurement and Temperature Control

Viscosity was determined by measuring capillary flowtimes. The viscometer consists of a long, narrow capillary with a dumping reservoir on one end and a sample chamber on the other end (see Fig. 4). The sample chamber has three ports. One leads to the capillary; another leads to a fill reservoir from which the sample chamber is filled; and the third is a vent. In addition, the dumping reservoir, fill reservoir, and vent are all joined by a piece of tubing. This allows the viscometer to be completely immersed in a temperature-controlled water bath and also enables us to refill the sample chamber by simply rotating the viscometer. The viscometer is made of glass.

Sealing the viscometer was difficult. The viscometer was filled through a port in the dumping reservoir, which was plugged after filling. The plug had to be made of a material inert to 3-methylpyridine. We took a piece of teflon and inserted it into a clear glass vial containing 3-methylpyridine. After a week had passed, the fluid was still clear and colorless, and the teflon appeared unchanged. So, we first tried making teflon plugs.

We found we were unable to provide a good seal with these plugs for two reasons. The first was that the diameter of the inner wall of the port lip was smaller than that of the inner wall of the port just past the lip. If a plug could get by the lip, then it was too small to seal effectively against the inner wall of the port. The second problem was that, after cycling the temperature two or three times, the plug would take a set. In other words, it would lose its ability to return to its former dimensions.

We solved both of these problems by modifying the plug. We drilled a hole through the plug into which we could insert a stainless steel bolt. We then drilled and threaded a hole about halfway through a Figure 4. Shown is a diagram of the viscometer and the plug. The viscometer is made from glass. The sample chamber is filled from the fill reservoir. Flowtimes are timed with the viscometer vertical and the fill reservoir on top. The stopwatch is started when the upper meniscus passes through the vent and stopped when the upper meniscus exits the bottom of the sample chamber where the capillary begins.

second piece of teflom. We them screwed the bolt through the plug, slipped on an ethyleme propyleme O-ring, and screwed the bolt into the second piece of teflon. By turning the bolt clockwise, we compressed the O-ring between the two pieces of teflon. Screwing the bolt counter-clockwise let the O-ring relax. In this manner we could slip the plug into the viscometer and then compress the O-ring. This squeezed the O-ring against the inner wall and provided agood seal.

In choosing ethylene propylene for the 0-ring material, we searched technical literature to see what materials were suggested for this purpose. We then tested an ethylene propylene 0-ring in the same manner in which we tested the teffon. The results, as before, indicated no effect.

In addition to modifying the plug, we modified the port so that it had a ground glass exterior and a matching ground glass cap. With the aid of a little vacuum grease, this provided a second seal. Two spikes each were added to both the cap and port, so that the cap could be secured with rubber bands.

Prior to loading with a sample, the viscometer was cleaned in the following manner. The viscometer was first flushed several times with distilled water, then once or twice with spec grade acetone. After this, the viscometer was again flushed several times with distilled water. No detergent was used in the cleaning process for two reasons. The first was that we used distilled water and 3-methylpyridine and very pure D_20 . Since the pipettes used to load the viscometer were themselves carefully cleaned and dried prior to use, there should have been no foreign material present to require the use of soap. The second reason was the obvious difficulty of flushing the capillary and the fill tube completely of soap. The viscometer plug was cleaned in the same manner.

After this, the viscometer was oven-dried to remove any water or

acetone left. The plug was air-dried and then placed in the glove box. After removing the viscometer from the oven, it too was placed in the glove box. As mentioned before, the inside of the glove box continuously had both a destinant present and dry nitrogen gas flowing through.

The viscometer was loaded in the glove box with pipettes that had been cleaned and dried with the viscometer. A typical sample volume was 4 milliliters. After loading the viscometer, it was mounted on a stand on which the viscometer was free to rotate. The entire apparatus was placed in a temperature-controlled water bath.

The viscometer was first rotated so that the liquid gathered in the fill reservoir. The viscometer was then slowly rotated to allow the sample chamber to fill from the fill reservoir, while air in the sample chamber escaped through the vent. After the sample chamber was filled, the viscometer was rotated so that the capillary was vertical. The time necessary for the sample chamber to empty was recorded with a hand held stopwatch to 0.01 seconds. By again rotating the viscometer, the sample was transferred from the dumping reservoir to the fill reservoir. The process could then be repeated.

We used three separate viscometers during the course of the experiment. It was necessary to determine the viscometer constant, K, for each viscometer as a function of temperature. To do so, we took doubly distilled water and measured its capillary flowtime in each viscometer every ten degrees over the entire temperature range of the experiment. We took the density and viscosity values from tables in the 1976-77 edition of the CRC Handbook. Then, for each.temperature, T, we have

$$K(T) = n/Dt$$
 (2-1)

To determine the density of each solution over the experiment's temperature range, we used 2 milliliter and 5 milliliter pycnometers. We determined the density every ten to fifteen degrees for five different concentrations until the fluid separated each time. We used a Mettler balance to determine the solution mass at each temperature. We used interpolation to determine the densities for other concentrations.

Temperature control was achieved by placing the viscometer into a large insulated water bath. We achieved fine temperature control using a Neslab Exocal 30000 water bath externally to control the viscometer bath temperature to $\pm 0.1^{9}$ C for temperatures below 80°C. When the temperature exceeded 80°C, temperature control was $\pm 0.2^{9}$ C. In addition, we used a VSI Model 72 controller, when we made temperature changes, to speed up the process.

Chapter III

OHTA ANALYSIS

As explained in the introduction, an expression for the behavior of the viscosity of a solution near a critical point is

$$\eta(T) = \eta_0(T)e^{-\phi}$$
(3-1)

where $\eta_{\alpha}(T)$ is the background viscosity, ϕ is the critical exponent and

 $\varepsilon = |T-T_c|/T_c$.

Rewriting the expression and taking the logarithm of both sides, Eq. (3-1) becomes

$$log[n(T)/n_{c}(T)] = -\phi log e \qquad (3-2)$$

This suggests that as a method of determining o, we may graph $\log[n(T)/n_0(T)]$ versus log c. With the appropriate choice of T_{c^+} the result is a straight line with slope -o. Given the data for n(T), we need $n_0(T)$ and T_c before performing our analysis.

Determining $n_0(T)$ was definitely the most difficult task in this analysis. This would not have been the case if, in the critical regime, the actual viscosity had become much greater than the background viscosity. If this had occurred, then a small error in the determined value of $n_0(T)$ would not have had a noticeable effect on the function of interest, $n(T)/n_0(T)$. However, the actual viscosity never exceeded the background viscosity by more than about 26 percent. Much more precision in temperature control would have been necessary before we could have observed $\eta(T)$ become much larger than $\eta_0(T)$. As such, great care needed to be taken in determining $\eta_n(T)$.

The first approach tried was the standard one of looking at data sufficiently far from the critical point that the viscosity anomaly was negligible, and trying to fit it to a modified Arrhenius equation of the form

$$n(T) = A \exp[B/(T-T_0)]$$
 (3-3)

where A, B, and T₀ are constants. In our analysis, we determined the range of temperatures over which the viscosity anomaly could be considered negligible by considering the behavior of χ^2 , a measure of the goodness of our fit, as data from temperatures successively closer to the phase separation temperature were included in our fit to Eq. (3-3). As long as the viscosity anomaly remained negligible, χ^2 was not noticeably affected by the addition of temperatures. Closer to the phase separation temperature. When the anomaly was no longer negligible, the modified Arrenhus equation was no longer sufficient to describe the viscosity data and χ^2 increased.

As an example, consider the H_20/3-methylpyridine solution. For this sample, $X_{\rm H_20} = 0.9238$, $X_{\rm D_20} = 0.0000$, and $X_{\rm 3-mp} = 0.0762$. This solution did not phase-separate. First, the points from 10.05% to 30.00% were fit to Eq. (3-3). Then, more points were successively included in the fit and the resultant χ^2 for the fit was observed. In this example, the final fit was determined over the temperature range from 10.05% to 35.00%. The results are shown in Table II. Note how quickly χ^2 begins to increase when data points for temperatures greater than 35.00% are included in the fit.

An alternative method of determining the background viscosity occurred to us when we examined Fig. 5. In this figure, flowtime is plotted versus temperature for several different solutions. Note that the curves tend to Table II. This table lists the results of a cht-square fit of the shear viscosity measurements of H₂0/3-methylpyridine to Eq. (3-3). These fits were performed on a computer. or was entered as 15. The equation being fit is

$$\eta(T) = B \exp\left(\frac{A}{T-T_0}\right)$$
.

- 10-1	<u> </u>			٠
- 14				
			٠	

Number of Points	Temperature Range (°C)	B(cp)	<u>A(⁰K)</u>	Т ₀ (⁰ К)	_x ² _
5	10.05-30.00	.02899	586.0	158.1	.703
6	10.05-35.00	.02950	587.4	157.3	.770
7	10.05-40.00	.03075	581.9	157.2	1.008
8	10.05-45.05	.03125	582.2	156.6	1.039
10	10.05-55.00	.03297	579.1	155.6	1.847

Figure 5. Viscometer flowtime is plotted versus temperature for four representative solutions. The first two listed below phase separated and the other two did not phase separate.

Δ×	H20 ^{=0.3914}	× _{D20} =0.5279	X _{3-MP} =0.0807
O X	H ₂₀ =0.7880	× _{D20} =0.1290	X _{3-MP} =0.0830
□ ×	H ₂ 0 ^{=0.8020}	× _{D20} =0.1207	X _{3-MP} =0.0772
Ø X	H ₂ 0 ^{=0.9238}	× _{D20} =0.0000	X _{3-MP} =0.0762

lie on top of each other when far from the critical temperatures. This led us to consider the possibility of the background viscosity for a given concentration being directly proportional to the background viscosity for H_2/J -amethylpyridine, which seemed to exhibit only a small anomaly. This approach has been used successfully before.¹¹ Given that the 3-methylpyridine concentration varied so little in all of our mixtures and given the similarities between D_2O and H_2O , this seemed to be a reasonable system on which to try this approach.

To test this idea, we decided to normalize $\eta(T)$ by $\eta_g(T)$ for each solution and each temperature, T. $\eta_g(T)$ is the background viscosity of H_0/3-methylpyridine that we determined using the χ^2 test.

In Figures 6 and 7, n(T)/ng(T) is plotted versus temperature for the separating and non-separating solutions, respectively. Note how the individual curves flatten as we get sufficiently far from the phase separation temperatures for the separating solutions. The same thing occurs for non-separating solutions when far enough from $T_{\rm OCP}$, the double critical point temperature. This seems to support the idea that the background viscosity for each solution was a multiple of the background viscosity of H₂0/3-methyl-pyridine.

For each concentration, the ratio of $n(T)/n_{\rm B}(T)$ was determined by averaging the values from the flat portions of the curves in Figs. 6 and 7. The resultant ratios are plotted versus concentration in Figs. 8. Mixtures for which viscosity measurements were not done over a large enough temperature range to see this flattening were excluded. Note the linear nature of this curve. The background viscosity for each solution was determined Figure 6. In this figure, the ratio n/n_g is plotted versus temperature for the concentrations, given below, that phase separated. n is the experimentally measured viscosity for each mixture. n_g is the background viscosity for hg/3-methylpyridine.

	× _{D20} =0.9160	X _{3-MP} =0.0840
$\Delta x_{\rm H_{20}^{=0.3914}}$	X _{D2} 0=0.5279	X _{3-MP} =0.0807
$O x_{H_20^{=0.7356}}$	× ₀₂ 0=0.1866	Х _{З-МР} =0.0778
□ X _{H20} =0.7926	X _{D20} =0.1298	X _{3-MP} =0.0776
O X _{H20} =0.7880	X ₀₂ 0=0.1290	X _{3-MP} =0.0830

Figure 7. In this figure, the ratio $n/n_{\rm B}$ is plotted versus temperature for the concentrations, given below, that did not phase separate. n is the experimentally measured viscosity for each mixture. $n_{\rm B}$ is the background viscosity for $\mu_{\rm Q}/3$ -methylpyrdine.

∆ x _{H20} =0.7954	× ₀₂ 0 ^{=0.1245}	X _{3-MP} =0.0801
O x _{H20} =0.7987	× ₀₂ 0=0.1241	X _{3-MP} =0.0773
□ x _{H20} =0.8020	× ₀₂ 0=0.1207	X _{3-MP} =0.0772
O X _{H20} =0.8061	X ₀₂₀ =0.1165	X _{3-MP} =0.0774
\$\$ x_{H_20}=0.9238	× ₀₂₀ =0.0000	X _{3-MP} =0.0762

Figure 8. In this figure, the ratio $n_0/n_{\rm B}$ is plotted versus V for eight concentrations. n_0 is the background viscosity for each mixture. $n_{\rm B}$ is the background viscosity for H_20/3-methylpyridine. V is the ratio of. the volume of D_20 to the volume of (D_20H_20) for each solution when they were mixed. Note that $n_0/n_{\rm B}$ is fairly linear with respect to V.

by multiplying $\eta_{g}(T)$ by the corresponding ratio for that solution. For solutions for which a value of the ratio could not be determined from the raw data, the value was taken from the curve in Fig. 8.

We are now left only with determining T_c , the critical temperature, for each mixture. How can this be done? For any solution mixed along the critical concentration isochore, the critical temperature is identical to the phase separation temperature. However, it was very difficult to mix our solutions so that they were on the critical isochore since we did not know the correct critical concentration. What happens to the relationship between the critical temperature and phase separation temperature when we are off the critical isochore?

The answer depends on the size and shape of the miscibility loop as well as the degree to which we lie off of the critical isochore. If we are close enough to the critical isochore, the critical temperature will still be very nearly equal to the phase separation temperature. A larger loop with the miscibility curve somewhat flatter along the bottom results in an increase in the region on either side of the critical isochore in which the critical temperature is still very nearly equal to the phase separation temperature. As we progress further from the critical isochore, the difference between the two temperatures increases.

The "critical temperature" for a concentration off of the critical . isochore is actually an effective critical temperature and is referred to as a spinodal temperature.¹²⁻¹⁵ Like the critical temperature for a solution on the critical isochore, an effective critical temperature is the temperature at which a singularity exists for the solution in question. Unlike a solution on the critical isochore, a region of metastability exists between the phase separation temperature and the effective critical temperature. These

sphnodal temperatures are said to lie along a sphnodal curve, or spinodal. In addition, a spinodal loop is always smaller than the corresponding miscibility loop. To avoid confusion, these effective critical temperatures will simply be referred to as critical temperatures in this paper.

Now then was the critical temperature determined for a solution which did not lie along the critical isochore? The value of T_c was chosen such that the graph of $\log[n(T)/n_0(T)]$ versus log c was best linearized. It was assumed that shear thinning was not involved. In addition, if viscosity data were available for temperatures above the upper critical temperature, an attempt was made to symmetrize the results for temperatures above and below the upper and lower critical temperatures, respectively.

When we say the results were symmetrized, we mean the following. Consider a solution with a closed coexistence curve, in other words one with both upper and lower critical solution temperatures, UCST and LCST. Now, simultaneously consider two identical samples. The first sample is at a temperature $T_1 \leq LCST$ and the second $T_2 > > UCST$ such that $(LCST - T_1) / LCST = (T_2 - UCST) / UCST = c$ and c is large enough that $\log c = 0$. Then, $n(T_1)/n_0(T_1) = 1$ for both T_1 and T_2 . Furthermore, $n(T_1)/n_0(T_1) = n(T_2)/n_0(T_1) = n(T_2)/n_0(T_2)$ so that the condition (LCST - $T_1 / LCST = (T_2 - LCST) / UCST is retained. What do we notice about <math>n(T_1)/n_0(T_1)$ and $n(T_2)/n_0(T_2)$? They will remain equal to each other. This is what we mean when we say the results are symmetrized. As long as (LCST - $T_1 / LCST = (T_2 - UCST) / UCST, n(T_1)/n_0(T_2) = n(T_2)/n_0(T_2)$.

So, there are two tests that can be used to see if the correct upper and lower critical temperatures have been determined. The first is that the curve log $n(T)/n_{\mu}(T)$ versus log c be a straight line. The second is that

$$\begin{split} n(T_1)/\eta_0(T_1) &= n(T_2)/\eta_0(T_2), \text{ as long as } (LCST - T_1)/LCST = (T_2 - LCST)/UCST, \\ \text{what we call a symmetry in ε. Both of these tests were taken into account when determining the critical temperature for a given solution. \end{split}$$

For concentrations which did not unmix, those beyond the double critical point, symmetrization weighed more heavily than linearization. As can be seen for such a solution in Fig. 16, a value for $T_{\rm c}$ cannot be chosen to perfectly linearize the entire curve. There is not a critical point for such at some point for each solution beyond the double critical point, $n(T)/n_0(T)$ ceased to increase and leveled off until we were past $T_{\rm OCP}$, the double critical point. In such a described in terms of a virtual, or insginary, critical point. In such a described in the virtual critical point would be a projection of the double critical point for extend solution, the behavior of the viscosity anomaly as a virtual critical point was approached could be described empirically by the expression

$$\log_{n}(T)/\eta_{0}(T) = -\phiH[\epsilon - \epsilon_{0}(X_{DCP}-X)]\log \epsilon$$

$$-\phi(1-H[\epsilon - \epsilon_{0}(X_{DCP}-X)])\log\epsilon_{0}(X_{DCP}-X)$$
(3-4)

where

$$H[\varepsilon - \varepsilon_0(X_{DCP} - X)] = \begin{cases} 1 & \varepsilon > \varepsilon_0 \\ 0 & \varepsilon \le \varepsilon_0 \end{cases}$$

 $c_0(X_{DCP}-X)$ obviously is equal to the value of c at which the curve log $n(T)/n_0(T)$ versus log c levels off. Note that $c_0(X_{DCP}-X)$ goes to zero as X goes to X_{DCP} . At the double critical point itself, $\log[n(T)/\pi_n(T)]$

is infinite in value when T = Tprp and X = Xprp.

Now that the background viscosities and critical temperatures were known for each solution, $\log[n(1)/n_0(T)]$ was plotted versus log c for each one and the graphs are shown in Figs. 9 through 21. The slopes, and hence the critical exponents, are tabulated in Table III.

The double critical point concentration itself was never found. However, from our observations of the relative volumes of the upper and lower solutions at T_{sep} for various solutions, we can say that it is in the immediate vicinity of $X_{\rm H_{2}0} = 0.788$, $X_{\rm D_{2}0} = 0.127$, and $X_{\rm 3-mp} = 0.085$.

The first conclusion that can be drawn from Table III is that the critical exponent definitely increased as the duble critical point was approached. Notice that ϕ increased from 0.038 for $D_20/3$ -methylpyridine to 0.072 for the solution closest to the double critical point. The value of ϕ for $D_20/3$ methylpyridine is somewhat less than the theoretical value of 0.041; but, as seen in Table I which lists a variety of previous experimental results, this is not an unusual occurrence.

The second conclusion that can be drawn from Table III is that the exponent increase did not become strong until we were within about 1 mole percent of the correct H_2O concentration at the double critical point. Here, the exponent appears to increase reguldy.

Beyond the double critical point, the shear viscosity behavior was similar to that of the separating mixtures with some differences. When far from T_{DCP} , we found that $\log[n(T)/n_0(T)]$ versus $\log c$ could be both linearized and symmetrized. c for non-separating solutions is defined to be

 $\epsilon = |T-T_{DCP}|/T_{DCP}$.

Figure 9. On a log-log scale, n/n_0 is plotted versus ϵ . For this mixture, h_{μ_0} °0.000, h_{μ_0} °0.9160, and k_{3-MP} = 0.0840. The line has a slope of -0.038. The LCST is 37.35°C.

Figure 10. On a log-log scale, n/n_0 is plotted versus c. For this mixture, h_{μ_0} -0.3914, x_{D_20} -0.5279, and x_{3-MP} -0.0807. The line has a slope of -0.050. The LCST is 44.50°C.

Figure 11. On a log-log scale, n/n_0 is plotted versus c. For this mixture, H_{μ_0} °0.7356, X_{μ_0} °0.1866, and X_{3-M^0} ° 0.0778. The line has a slope of -0.051. The LCST is 66.00°C.

Figure 12. On a log-log scale, m/n_0 is plotted versus ϵ . For this mixture, μ_{μ_0} =0.7926, $\chi_{0,2}$ =0.1298, and χ_{3-MP} = 0.0776. The line has a slope of -0.064. The LGST is 74.00°C.

Figure 13. On a log-log scale, n/n_0 is plotted versus e. For this mixture, $X_{H_0}^{-0}0.780$, $X_{D_0}^{-0}0.1290$, and X_{2-10}^{-0} 0.0830. The line has a slope of -0.072. The LCST 75.50°C and the UCST is 77.50°C.

> Δ T < LCST ∇ T > UCST

Figure 14. In a log-log scale, n/n₀ is plotted versus c for the solution shown in Fig. 13. In this figure, however, we have LCST=UCST=76.4⁹C. Notice that the figure is somewhat less symmetric. In addition, the graph has acquired an s-shape in its appearance. From this we can see the necessity of using both the tests of linearity and symmetrization in determining the upper and lower critical solution tempertures.

Figure 15. Shown is a composite of Figs. 9-13. We can easily see the increase in the slope of the lines, and hence the shear viscosity critical exponents, as the double critical point concentration is approached. In addition, note that the anomaly becomes visible much sooner as we approach the double critical point concentration.

♦ x _{H20} =0.0000	X _{D2} 0=0.9160	X _{3-MP} =0.0840
$\Delta x_{\rm H_20}^{=0.3914}$	× _{D20} =0.5279	X _{3-MP} =0.0807
O x _{H20} [™] 0.7356	× _{D20} =0.1866	X _{3-MP} =0.0778
□ x _{H20} =0.7926	× _{D20} =0.1298	X _{3-MP} =0.0776
(T < LCST)	× _{H20} =0.7880	X _{D20} =0.1290
🔘 (T > USCT)	X _{3-MP} =0.0830	

Figure 15. On a log-log scale, n/n_0 is plotted versus ϵ . For this mixture, $X_{H_Q}\sigma^{m}$, 7954, $X_{D_Q}\sigma^{m}$.01245, and X_{3-KP}^{m} 0.0801. The slope of the line is -0.073. The T_{DCP} is 76.25°C.

> Δ T < T_{DCP} ∇ T > T_{DCP}

Figure 17. On a log-log scale, n/n_0 is plotted versus ϵ . For this mixture, $x_{H_0} \alpha^{\alpha} U^{307}$, $x_{D_2} \alpha^{\alpha} 0.1241$, and $x_{3,44P}^{-1}$ 0.0773. The slope of the line is -0.068. The T_{DCP} is 76.00²C.

 Δ T < T_{DCP} ∇ T > T_{DCP}

Figure 18. On a log-log scale, ${}_{1}{}_{1}{}_{0}{}_{0}$ is plotted versus c. For this mixture, χ_{1j_0} 0.8020, χ_{2j_0} 0.1207, and $\chi_{3,40}$ = 0.0772. The slope of the line is -0.067. The T_{DCP} is 76.00°C.

 Δ T < T_{DCP} ∇ T > T_{DCP}

Figure 19. On a log-log scale, n/n_0 is plotted versus c. For this mixture, $X_{\rm H_20}{}^{\rm m0.061}$, $N_{\rm D_20}{}^{\rm m0.1165}$, and $X_{\rm 3,40}{}^{\rm m}$ 0.0774. The slope of the line is -0.073. The T_{\rm DCP} is 76.49°C.

 Δ T < T_{DCP} ∇ T > T_{DCP}

Figure 20. On a log-log scale, n/n_0 is plotted versus ϵ . For this mixture, $X_{\rm H_20}{=}0.2238, X_{\rm D_20}{=}0.0000$, and $X_{\rm 3-M^{\rm B}}{=}0.0762$. The slope of the line is -0.07. The $T_{\rm DCP}$ is 76.00°C.

 $\Delta T < T_{DCP}$ $\nabla T > T_{DCP}$

Figure 21. Shown is a composite of Figs. 16-20. Open symbols indicate T < T_{DCP}. Closed symbols indicate T > T_{DCP}.

Δ	X _{H20} =0.7954	X _{D20} =0.1245	X _{3-MP} =0.0801
0	× _{H20} =0.7987	X _{D20} =0.1241	Х _{3-МР} =0.0773
	× _{H20} =0.8020	X _{D20} =0.1207	Х _{З-МР} =0.0772
0	× _{H20} =0.8061	X _{D20} =0.1165	X _{3-MP} =0.0774
\diamond	× _{H20} =0.9238	× _{D2} 0=0.0000	X _{3-MP} =0.0762

Table III. This table lists our results for the shear viscosity critical exponents, ϕ , of the various mixtures. $X_{\rm H_20},$ $X_{\rm D_20},$ and $X_{\rm 3-MP}$ are the mole-percent concentrations of H_20, D_20, and 3-methylpyridine, respectively.
TABLE III

Solution Number	^х н ₂ 0	× _{D2} 0	X _{3-mp}	¢	
1	0.0000	0.9160	0.0840	0.038	
2	0.3914	0.5279	0.0807	0.050	
3	0.7356	0.1866	0.0778	0.051	
4	0.7926	0.1298	0.0776	0.064	
5	0.7880	0.1290	0.0830	0.072	
6	0.7954	0.1245	0.0801	0.073	
7	0.7987	0.1241	0.0773	0.068	
8	0.8020	0.1207	0.0772	0.067	
9	0.8061	0.1165	0.0774	0.073	
10	0.9238	0.0000	0.0762	0.07	

At a given value of ε , which increased as the solution concentration receded further from the critical isochore, $\eta(T)/\eta_0(T)$ stopped increasing with decreasing c and leveled off. Rather than decreasing with increasing distance from the double critical point as for separating solutions, the shear viscosity critical exponent remained roughly constant with an average value of 0.070.

KORTAN ANALYSIS

In the introduction, we discussed an expression developed by Kortan, <u>et al.</u>, 6 to describe the behavior of the correlation length of a binary solution near a double critical point. This expression was

$$\xi = \xi^0 [\varepsilon + (T_C/\Delta T)\varepsilon^2]^{-\nu} \qquad (3-5)$$

where ξ is the correlation length, ξ^0 is concentration dependent, ΔT is the separation between upper and lower critical temperatures, and v is the correlation length critical exponent for a single critical point. We may express the shear viscosity as 10

$$\eta = \eta_0 (\xi \Lambda)^{\phi/\nu} \qquad (3-6)$$

so that Eq. (3-5) can be modified to

$$e^{-1}\Lambda^{1/\nu}(n/n_0)^{-1/\phi} = (\xi^0)^{-1/\nu}[1 + (T_c/\Delta T)\epsilon]$$
 (3-7)

 Λ is a microscopic cut-off wave number. It should be independent of temperature and so

$$\begin{split} & \varepsilon^{-1} (n/n_0)^{-1/\phi_{\infty}} \left(\xi^0\right)^{-1/\nu} + \left(\xi^0\right)^{-1/\nu} \left(T_c/\mathbb{A}T\right)\varepsilon \quad . \\ & \text{ If Eq. (3-7) is correct, then a plot of } \varepsilon^{-1} (n/n_0)^{-1/\phi} \text{ versus } \varepsilon \text{ will yield} \end{split}$$

a straight line for each separating solution. The value of ϕ we used in this expression was near the predicted value for a single critical point, 0.040. The slope for a given solution should be equal to $(c^0)^{-1/\nu}(T_d/sT)$ and the intercept should be $(c^0)^{-1/\nu}$, ν is the correlation length critical exponent and the value used is that predicted for a single critical point, 0.55. According to Johnston, ¹⁶ c^0 increases as the double critical point is approached. So, the intercept should decrease as the double critical point is approached. Whether the slope increases, decreases, or remains the same depends upon how rapidly $T_c/\Delta T$ increases as $(c^0)^{-1/\nu}$

In Figs. 22 through 27, $c^{-1}(n/n)^{-1/\phi}$ is plotted versus c for the separating solutions. Since it was not known if T_c was the same for a given solution as before, different values for T_c were tried and the results were again judged based on the linearization and the symmetrization of the plots. The agreement with Kortan can only be described as poor. The intercepts do decrease as the double critical point is approached, as expected. However, it was not possible to achieve any real linearization for the three plots furthest from the double critical point, and the other suo exhibited poor linearization. Furthermore, in the solution closest to the double critical point, satisfactory symmetrization could not be achieved.

For solutions beyond the double critical point, Kortan found that⁶

$$\xi = A[(T-T_m)^2 + a(y-y_0)]^{-v}$$
(3-8)

or

$$\epsilon^{-1/\nu} = A^{-1/\nu} (T-T_m)^2 + A^{-1/\nu} a(y-y_0)$$
 (3-9)

where A and a are constants. T_m is the double critical point temperature and y_0 is the concentration at the double critical point of the binary solution. Manipulating and substituting for ε in Eq. (3-9), this expression Figure 22. On a linear scale, $c^{-1}(\,\pi/n_0)^{-25}$ is plotted versus c. For this mixture, $X_{\rm H_20}{=}0.0000, \; X_{0_20}{=}0.9160,$ and $X_{\rm 3-MP}{=}$ 0.0840. The LCST is 37.36°C.

Figure 23. On a linear scale, $c^{-1}(n/n_0)^{-25}$ is plotted versus c. For this mixture, $X_{\rm H_20}{=}0.3914$, $X_{\rm D_20}{=}0.5279$, and $X_{\rm 3-MP}{=}$ 0.0807. The LCST is 48.46°C.

Figure 24. On a linear scale, $e^{-1}(n/n_0)^{-25}$ is plotted versus e. Five different temperature choices for the LCST are shown to demonstrate the sensitivity of the system to our choice of the LCST. For this mixture, $X_{\rm H_20}^{-0}$ 0.7356, $X_{\rm D_20}^{-0}$ 0.1866, and $X_{\rm 3-MP}^{-0}$ 0.0778.

$$\begin{array}{c|c} & LCST = 63.80^{\circ}C \\ \hline & LCST = 63.85^{\circ}C \\ \hline & LCST = 63.90^{\circ}C \\ \hline & LCST = 63.95^{\circ}C \\ \hline & LCST = 63.95^{\circ}C \\ \hline & LCST = 63.95^{\circ}C \\ \hline \end{array}$$

Figure 25. On a linear scale, $e^{-1}(n/n_0)^{-25}$ is plotted versus e. For this mixture, $X_{\mu_0}00.7926, X_{D_0}0^{-0.1298}$, and $X_{3,WP}=0.0776$. The LCST is 74.00°C.

Figure 26. On a linear scale, $e^{-1}(\pi/\eta_0)^{-25}$ is plotted versus e. For this mixture, $\chi_{\rm H_20}$ =0.7880, $\chi_{\rm D_20}$ =0.1230, and $\chi_{\rm 3-MP}$ =0.0830. The LCST is 75.5°C and the UCST is 77.5°C.

 Δ T < LCST = 75.5°C ∇ T > UCST = 77.5°C

Figure 27. This is a composite figure with $c^{-1}(n/n_0)^{-25}$ plotted versus c on a linear scale for three of the solutions that phase separated. While the intercepts do decrease as the double critical point is approached (as predicted), it is easy to see that the graphs exhibit poor linearity.

0	X _{H20} =0.7356	^X D20 ^{=0.1866}	X _{3-MP} =0.0778
	× _{H20} =0.7926	× _{D20} =0.1298	X _{3-MP} =0.0776
0	(T <lcst)< th=""><th>×H20=0.7880</th><th>X_{D2}0=0.1290</th></lcst)<>	×H20=0.7880	X _{D2} 0=0.1290
•	(T>UCST)	X _{3-MP} =0.0830	

becomes

$$\Lambda^{1/\nu}(n/n_0)^{-1/\phi} = \Lambda^{-1/\nu} (T-T_m)^2 + \Lambda^{-1/\nu} a(y-y_0)$$
 (3-10)

If we again assume Λ is independent of temperature, then a plot of $(n/n_0)^{-1/4}$ versus $(T-T_m)^2$ should yield a straight line. The slopes for these solutions will definitely not change with concentration. However, the intercept again will get smaller as the critical concentration is approached, in fact going to zero asy approaches y.

In Figs. 28 through 32, $(n/n_0)^{-1/\phi}$ is plotted versus $(T-T_m)^2$ for four of the five non-separating systems. T_m is 76^{0} C for all four solutions. The H_0/3-methylpyridine solution has been excluded. All four curves are very linear and the symmetrization is also quite good.

A least squares fit was also performed on the data of these four mixtures for $|T-T_{\rm m}|^2$ less than 200 (°C)². The resultant slopes for the first three were all within 2.5% of the average. The slope of the fourth was samewhat higher than the other three. In addition, the value of the intercept divided by the slope, which is equal to $a(y-y_0)$, scales properly, decreasing as the double critical point concentration is approached. The agreement with Kortan is quite good for these mixtures.

Figure 29. On a linear scale, $(n/r_0)^{-25}$ is plotted versus $|T-76^{\circ}C|^2$. For this mixture, $X_{H_20}^{-0}0.7987$, $X_{D_20}^{-0}0.1241$, and $X_{3-KP}^{-0}0.0773$.

Figure 30. On a linear scale, $(n/r_0)^{-25}$ is plotted versus $|T-76^{\circ}C|^2$. For this mixture, $X_{H_20}^{-0.0820}$, $X_{D_20}^{-0.1207}$, and $X_{3-MP}^{-0.0772}$.

△ T<76⁰C
▽ T>76⁰C

Figure 31. On a linear scale, $(n/n_0)^{-25}$ is plotted versus $|T-76^{\circ}C|^2$. For this mixture, $X_{H_20}^{=0.8061}$, $X_{D_20}^{=0.1165}$, and $X_{3-MP}^{=0.0774}$.

△ T<76°C</p>
∇ T>76°C

- Figure 32. This is a composite figure with $(n/n_0)^{-25}$ plotted versus $[T-76^{\circ}C]^2$ on a linear scale for the four solutions shown in Figs. 28-31. The ordinate axis values have been shifted for three solutions as shown below. Open symbols are for $T_76^{\circ}C$ and closed symbols are for $T_76^{\circ}C$.

Chapter IV CONCLUSION

The behavior of the shear viscosity of a ternary liquid was studied both far from and in the immediate vicinity of a double critical point. We believed that this system was more properly viewed as quasi-binary, rather than ternary, because of its composition. As such, it was felt that the behavior of the shear viscosity critical exponent would mirror the behavior in a true binary system. In particular, we were interested in finding evidence to support or reject the prediction proposed by others¹⁻⁴ that the exponent would double as the double critical point was approached.

The value of the critical exponent was definitely seen to increase as we got close to the double critical point. It nearly doubled, increasing from 0.038 for $D_20/3$ -methylpyridine to 0.072 for the solution of $H_20/D_20/3$ -methylpyridine closest to the critical exponent was seen to remain roughly constant at approximately 0.070 for data far from $T_{\rm DCP}$. We see this as strong evidence in favor of critical exponent doubling at a double critical point for a binary ystem.

It might be argued that this is not a quasi-binary system, as proposed, but is a true termary system. When examining the critical exponents of a termary system, we see that they must be renormalized from the binary system values. It has been shown that both the correlation length critical exponent, I^7 v, and the coexistence-curve critical exponent, 16,19 s, must be emommalized by $(1-a)^{-1}$, where a is the heat capacity critical exponent and

is approximately equal to 0.12. If the shear viscosity critical exponent can be similarly renormalized, then it is approximately equal to (0.04)(0.88)⁻¹ or 0.046. S. P. Lee has experimentally determined the value of this expoment²⁰ to be equal to about 0.053 for a water-ethanol-chloroform system. Looking at Table III, we see two solutions, #2 and #3, with experimentally measured values equal to 0.050 and 0.051, respectively. When closest to the double critical point with solution #5, the critical exponent has increased to 0.022. This is an increase of about 57% over the theoretical value and 35% over Les's experimental Yale.

Given the behavior of this system, however, the hypothesis that this is a quasi-binary system seems reasonable. As the coexistence loop was gradually shrunk, bringing the upper and lower critical solution temperatures closer together, the shear viscosity critical exponent gradually increased from 0.038 to 0.072. The final value is almost double the exponent value when far from the double critical point. It remained roughly constant with an average value of 0.070 as we progressed beyond the miscibility dome far from the double critical point.

In addition, an attempt was made to compare our data with two expressions developed by Kortam <u>et al.</u>⁶ to describe phenomenologically the behavior of the correlation length in a reentrant liquid crystal near a double critical point. These expressions predict that the shear viscosity critical exponent will gradually double as the miscibility loop shrinks sufficiently and will remain at the doubled value after the loop disappears completely. This is in qualitative agreement with what we saw. For the non-separating systems, the data agreed quite well with the appropriate expression. For our separating systems, the quantitative agreement was poor unless we were close to the double critical point. It is possible that the viscosity anomaly was weak enough that the statistical scatter in the data was too large to allow us to compare this data with Kortan. A standard devlation of 0.3% in $n(T)/n_0(T)$ leads to a standard devlation of about 8% in $[n(T)/n_0(T)]^{-25}$. If so, it would be necessary to approach T_c much more closely and with more precision in order to properly test Kortan's expression for a separating system than was possible in our experiment.

X_{H20}=0.0000 ×_{D20}=0.09160 X_{3-mp}=0.0840 10³K Density Flowtime Temp n (g/cm³) (°C) (cp-cm³/g-s) (s) (cp) 5.00 8.341 1.081 575.5 5.189 10.00 8.318 1.077 462.7 4.145 15.00 8.296 8.273 1.074 381.8 3.402 20.00 1.070 322.9 2.858 25.00 8.251 1.066 278.0 2.445 27.00 8.242 8.237 1.065 265.3 2.329 28.00 1.064 257.0 2.252 29.00 8.233 1.064 250.6 2.195 30.00 8.228 1.063 2.140 244.7 31.00 239.4 1.062 2.091 32.00 8,219 1.061 234.2 2.042 33.00 8,215 1.061 229.7 2.002 34.00 8.210 1.060 225.7 1,964 35.00 8.206 1.059 222.9 1.937 8.201 36.00 1.933 36.50 8.199 1.058 223.9 1,942 36.70 8.198 1.058 223.9 1,942 36.80 8.197 1.058 225.2 1.953 36.90 8.197 1.058 226.1 1,961 37.00 37.10 37.00 8.197 37.10 8.196 37.20 8.196 37.30 8.195 8.197 1.058 227.5 1.973 1.058 229.7 1,992 1.058 233.5 2.025 1.058 242.1 2.099

Solution #2			
× _{H20} =0.3914	× _{D2} 0=0.5279	×3-mp ⁼⁰	0.0807
Temp 10 ³ K (^o C) (cp-cm ³ /g-s)	Density (g/cm ³)	Flowtime (s)	n <u>(cp)</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.043 1.040 1.037 1.034 1.034 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.022 1.022 1.022 1.022 1.022 1.022 1.022 1.020 1.020 1.020 1.020 1.020	358.1 295.6 249.8 215.7 191.4 151.6 145.6 145.6 145.6 145.7 140.7 140.7 138.7 138.7 138.1 140.1 140.8 141.8 141.8 141.8 141.8 141.8 141.8 144.9 149.5 152.9	3.668 3.021 2.533 2.177 1.921 1.679 1.507 1.476 1.476 1.474 1.392 1.379 1.363 1.375 1.381 1.3888 1.388 1.388 1.3888 1.3888 1.3888 1.3888 1.3888 1.3888 1.3888 1.3888 1.3888 1.3888 1

001001	511 g 5			
×	120 ^{=0.7356}	× ₀₂ 0=0.1866	×3-mp ⁼⁰	0.0778
Temp (^O C)	10 ³ K (cp-cm ³ /g-s)	Density (g/cm ³)	Flowtime _(s)	n (cp)
30.00 35.05 39.95 45.00 55.00 58.00 59.00 60.10 61.95 63.10 63.15 63.20 63.30 63.40 63.50	8.228 8.205 8.183 8.161 8.138 8.114 8.100 8.095 8.095 8.095 8.095 8.095 8.075 8.075 8.075 8.075 8.074 8.074	1.006 1.002 0.9992 0.9958 0.9926 0.9826 0.9872 0.9872 0.9865 0.9852 0.9852 0.9852 0.9845 0.9838 0.9837 0.9837 0.9836 0.9837 0.9836 0.9836 0.9837 0.9836 0.9836 0.9837 0.9836 0.9835 0.9855	211.1 186.8 168.1 152.1 139.4 128.9 124.1 122.7 122.7 122.7 122.7 122.7 121.7 124.0 124.8 125.2 124.9 124.9 124.9 124.9 124.9 125.5 126.8 127.8	1.747 1.536 1.374 1.236 1.126 1.035 0.979 0.979 0.968 0.985 0.991 0.9946 0.992 0.9946 0.992 0.9946 1.007 1.014 1.025 1.007 1.014 1.025
03./0	8.0/3	0.9834	130.0	1.032

So	bat i	lon	#4
-30	L L L		

x _{H20} =0.7926		× _{D20} =0.1298	× _{3-mp} =0.0776	
Temp (^O C)	10 ³ K (cp-cm ³ /q-s)	Density (g/cm ³)	Flowtime (s)	n (cp)
25.00 30.00 34.90 40.00 45.00 55.00 60.00 65.00 68.00 69.95 71.00 71.50 71.70 71.70 72.18 72.30 72.48 72.58 72.62 72.62 72.62	$\begin{array}{c} 8.251\\ 8.228\\ 8.206\\ 3.206\\ 8.183\\ 8.183\\ 8.114\\ 8.091\\ 8.067\\ 8.053\\ 8.048\\ 8.038\\ 8.036\\ 8.043\\ 8.036\\ 8.035\\ 8.035\\ 8.035\\ 8.035\\ 8.035\\ 8.035\\ 8.033\\ 8.035\\ 8.031\\ 8.031\\ 8.031\\ 8.031\\ 8.033\\ 8.$	1.006 1.002 0.9957 0.9957 0.9957 0.9958 0.9849 0.9849 0.9780 0.9759 0.9775 0.9775 0.9775 0.9775 0.9775 0.9773 0.9773 0.9773 0.9772 0.9778 0.9772 0.9778 0.9772 0.9778 0.9772 0.9772 0.9772 0.9772 0.9727 0.9727 0.9727	237,3 209,3 184,9 165,7 149,0 125,4 117,1 110,9 108,2 107,4 107,1 107,2 107,6 107,6 107,6 107,6 107,6 107,6 107,6 107,6 107,6 107,6 108,4 108,4 108,4 108,4 108,4 108,4 109,0 109,6 109,5	1.970 1.726 1.515 1.349 1.206 1.092 0.8274 0.8503 0.8409 0.8395 0.8395 0.8409 0.8415 0.8422 0.8472 0.8500 0.8502 0.8502 0.8550 0.8552 0.8555 0.85

X_{H20}=0.7880 ×_{D20}=0.1290 X_{3-mp}=0.0830 10³K Temp Density Flowtime n (cp-cm³/g-s) (°C) (g/cm³) (s) (cp) 19.8 8.274 1.015 285.2 2.395 25.05 8,250 1.011 243.3 2.029 30.05 8.228 1.007 212.9 1.764 35.00 8,206 1.003 189.6 1.561 40.00 8.183 0.9990 169.5 1.386 44.98 8,161 0.9950 152.9 1.242 50.00 8.138 0.9910 139.3 1.123 55.00 8.114 0.9870 128.5 1.029 60.00 8.091 0.9830 119.4 0.9496 62.50 8.079 0.9810 116.2 0.9209 65.00 8.067 0.9790 113.0 0.8924 67.50 8,055 0.9770 110.5 0.8696 70.00 8.043 0.9750 109.2 0.8563 71.00 8,038 0.9742 109.2 0.8549 72.00 8.034 0.9734 109.4 0.8552 73.00 8.029 0.9726 110.4 0.8625 73.55 8.026 0.9722 110.6 0.8628 74.00 8.024 0.9718 111.3 0.8681 74.35 8.022 0.9715 111.8 0.8717 74.60 8,021 0.9713 112.7 0.8778 74.70 8,021 0.9712 112.6 0.8770 74.80 8.020 0.9712 112.6 0.8769 78.85 8,001 0.9769 104.6 0.8101 79.10 8.000 0.9677 103.4 0.8007 79.50 7,998 0.9674 0.7881 101.9 80.00 7.996 0.9670 99.52 0.7693 7.993 80.50 0.9666 97.41 0.7528 81.00 7.991 0.9662 96.07 0.7418 82.00 7,986 0.9654 92.43 0.7123 83.00 7.981 0.9646 89.96 0.6928 84.00 0.9638 7,977 87.68 0.6742 7.967 86.00 0.9622 83.76 0.6420 88.00 7.958 0.9606 80.21 0.6134

Sol	luti	on	#6

X_{H20}=0.7954

×₀₂₀=0.1245

×_{3-mp}=0.0801

Temp	10 ³ K	0ensity	Flowtime	n
(^O C)	(cp_cm ³ /g-s)	(g/cm ³)	(s)	(cp)
(°C) 22.70 30.10 34.85 40.15 44.95 50.10 54.95 60.05 62.55 67.50 70.05 71.00 71.95 73.90 73.95 74.90 75.60 76.00 77.00 76.00	$\begin{array}{c} (cp-cm^3/g-s) \\ \hline 8,261 \\ 8,228 \\ 8,206 \\ 8,182 \\ 8,161 \\ 8,138 \\ 8,161 \\ 8,138 \\ 8,114 \\ 8,091 \\ 8,078 \\ 8,043 \\ 8,043 \\ 8,034 \\ 8,034 \\ 8,024 \\ 8,024 \\ 8,020 \\ 8,016 \\ 8,015 \\ 8,010 \\ \end{array}$	(g/cm ³) 1.007 1.002 0.9948 0.9916 0.9880 0.9847 0.9813 0.9778 0.9778 0.9776 0.97777 0.9776 0.9970 0.9970 0.9999 0.96999 0.969996 0.96996 0.96996 0.96996 0.96909 0.96996 0.96909 0.96996 0.96900 0.96909 0.96996 0.96900 0.96000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.900000 0.900000 0.900000 0.90000000000	(s) 256.9 210.1 186.9 167.3 150.9 133.1 127.0 118.0 118.0 118.0 118.0 118.0 106.8 107.1 106.6 107.1 107.5 105.9 105.	(cp) 2.137 1.732 1.531 1.362 1.221 1.110 1.015 0.9356 0.9052 0.8763 0.8376 0.8377 0.8337 0.8338 0.8338 0.8338 0.8338 0.8332 0.8332 0.8329 0.8229 0.8229 0.8229
79.00	8.000	0.9682	98.37	0.7620
79.95	7.996	0.9676	95.44	

TABLE X

So	lution	#7

X_{H20}=0.7987

x_{D20}=0.1241

Х_{3-тр}≃0.0773

Temp	10 ³ K	Density	Flowtime	n
(°C)	(cp-cm ³ /g-s)	<u>(g/cm³)</u>	<u>(s)</u>	(cp)
5.00	8.341	1.019	467.0	3.969
15.00	8.296	1.012	324.0	2.721
20.00	8.273	1.009	274.0	2,287
25.00	8.251	1.006	237.4	1.971
34.90	8.206	1.002	209.3	1.726
40.00	8,183	0.9957	165.7	1.51/
44.90	8.161	0.9924	149.4	1.330
45.00	8.161	0.9923	148.7	1.204
50.00	8.138	0.9890	136.2	1.096
59.90	8 091	0.985/	125.1	1.001
64.90	8.067	0.9791	109.6	0.9268
65.00	8.067	0.9790	109.7	0.8664
70.00	8.043	0.9757	105.1	0.8248
72.00	8.038	0.9750	104.4	0.8182
73.00	8.029	0.9743	104.3	0.8164
74.00	8,024	0.9730	103.8	0.8115
75.00	8.019	0.9723	102.7	0.8005
/5.45	8.017	0.9720	102.3	0.7972
77.00	8.015	0.9717	101.6	0.7913
79.00	8,000	0.9/10	99.54	0.7742
	0.000	0.503/	94.90	u. 7362

XH20=0.8020

×_{0,0}=0.1207

X_{3-mp}=0.0772

Temp	10 [°] K	Density	Flowtime	n
(°C)	(cp-cm ³ /g-s)	<u>(g/cm³)</u>	(s)	<u>(cp)</u>
29.50	8.230	1.002	211.4	1.743
39,95	8.183	0.9945	165.6	1.348
50.00	8.138	0.9878	137.4	1.105
55.05	8.114	0,9843	126.1	1.007
60.06	8.090	0.9810	117.5	0,9325
62.55	8.078	0.9793	113.2	0.8955
65.50	8.064	0.9773	110.5	0.8708
67.50	8.055	0.9759	107.4	0.8443
70.00	8.043	0.9743	105.8	0.8291
71.10	8.038	0.9735	104.7	0.8193
72.00	8.034	0.9729	104.9	0.8199
73.00	8.029	0.9722	104.4	0.8149
73.25	8.028	0.9721	103.8	0.8101
73.50	8.026	0.9719	103.9	0.8105
74.10	8.024	0.9715	103.7	0.8084
74.60	8.021	0.9711	103.4	0.8054
74.85	8.020	0.9710	103.2	0.8037
75.05	8.019	0.9710	103.1	0.8028
75.75	8.016	0.9704	102.4	0.7965
76.15	8.014	0.9701	101.9	0.7922
76.35	8.013	0.9700	101.6	0.7897
76.60	8.012	0.9698	101.1	0.7856
77.10	8.009	0.9695	100.2	0.7780
77.45	8.008	0.9692	99.57	0.7728
78.10	8.005	0.9688	97.84	0.7588
79.05	8.000	0.9681	95.46	0.7393
80.05	7,995	0.9675	92.76	0.7175
X_{H20}=0.8061

×₀₂0=0.1165

X_{3-mp}=0.0774

Temp	10 ³ K	Oensity	Flowtime	η
(°C)	(cp-cm ³ /g-s)	<u>(g/cm³)</u>	_(s)	(cp)
55.00 59.90 65.00 67.45 70.20 71.05	3.189 3.180 3.170 3.166 3.161 3.159	0.9839 0.9805 0.9770 0.9753 0.9734 0.9728	315.7 295.0 277.3 270.3 267.4 264.7	0.9905 0.9197 0.8588 0.8345 0.8226 0.8134
72.05 73.05 74.05 74.50	3.157 3.155 3.153	0.9721 0.9714 0.9707	261.7 259.4 255.9	0.8031 0.7950 0.7833
75.05 75.50 76.00	3.151 3.151 3.150	0.9700 0.9697 0.9694	255.8 254.4 254.2 252.1	0.7777 0.7766 0.7697
77.05 78.00 80.05	3.148 3.146 3.142	0.9686 0.9680 0.9666	248.9 244.3 233.0	0.7589 0.7439 0.7076

XH20=0.9238

×_{D20}=0.0000

X_{3-mp}=0.0762

Temp	10 ³ K	Density	Flowtime	η
(°C)	(cp-cm ³ /g-s)	(g/cm ³)	(s)	(cp)
10.05	9.820	1.007	317.8	3.144
19.60	9.799	1.004	25/.2	2.628
25.00	9.756	0.9965	194.6	1.892
30.00	9.734	0.9929	171.2	1,655
35.00	9.713	0.9893	151.5	1.456
40.00	9.691	0.9857	135.8	1.297
45.05	9.669	0.9821	122.1	1.159
50.00	9.648	0.9785	112.4	1.061
55.00	9.627	0.9749	102.2	0.9591
60.00	9.605	0.9713	94.65	0.8830
65.05	9.549	0.9676	87.49	0.8084
70.05	9.493	0.9640	80.81	0.7395
75.05	9.438	0.9604	75.28	0.6823
80.05	9.382	0.9568	70.41	0.6321
85.00	9.328	0.9532	64.99	0.5778
89.90	9.273	0.9497	60.58	0.5335

X_{H20}=0.0000 X₀₂₀=0.9160

X_{3-mp}=0.0840

Oata for Figures 9 and 22

LCST = 37.35⁰C

LCST=37.36⁰C

Temp				-125
(°C)	<u>10⁴ε</u>	n/n_0	<u>10⁴e</u>	ε (n/n ₀) ===
30.00	236.7	1.003	237.0	39.15
31.00	204.5	1.007	204.8	41.01
32.00	172.3	1.011	172.6	44.07
33.00	140.1	1.018	140.4	45.60
34.00	107.9	1.025	108.2	49.85
35.00	75.68	1.038	76.00	51.79
36.00	43.48	1.062	43.80	50.75
36.50	27.38	1.081	27.70	51.51
36.70	20.93	1.086	21.26	59.80
36.80	17.71	1.095	18.03	57.37
36.90	14.49	1.102	14.81	59.55
37.00	11.27	1.112	11.59	60.72
37.10	8,052	1.125	8.373	62.85
37.20	4,831	1.147	5.153	62.93
37.30	1.161	1.192	1.932	64.13

TABLE XV

Solution #2

X _{µ 0} ≈0.3914	X _{0.0} =0.5279
"H ₂ 0 010511	~0 ₂ 0 010E/ 5

X_{3-mp}=0.0807

Data for Figures 10 and 23

 $LCST = 48.50^{\circ}C$

 $LCST = 48.46^{\circ}C$

Temp	4	n/n	4	-1/- 1-25
(°C)	10 ⁴ ε	10 10	10"c	c (1/10/
40.00	264.3	1.025	263.1	20.51
41.00	233.2	1.028	232.0	21.62
42.00	202.1	1.030	200.9	23.78
43.00	171.0	1.033	169.8	26.16
44.00	139.9	1.040	138.7	27.05
45.00	108.8	1.051	107.6	26.80
46.00	77.82	1.071	76.49	23.53
47.00	46.63	1.090	45.40	25.55
47.50	31.09	1.112	29.85	23.57
47.60	27.98	1.119	26.74	22.49
47.80	21.76	1.138	20.52	19.24
47.85	20.21	1.131	18.97	24.29
47.90	18.65	1.140	17.41	21.70
48.00	15.54	1.149	14.30	21.71
48.10	12.44	1.162	11.19	20.94
48.20	9.327	1.189	8.084	16.32
48.30	6.218	1.212	4.975	16.43
48.40	3.109	1.243	1.866	23.30

106

TABLE XVI

Solution #3 ×_{D20}=0.1866 X_{H_0}=0.7356 X_{3-mp}=0.0778 Data for Figures 11 and 24 $LCST = 64.00^{\circ}C$ $LCST = 64.00^{\circ}C$ Tenn $e^{-1}(n/n_0)^{-25}$ (°C) 10⁴ε n/n_ 10⁴ε 30.00 1008.0 1.000 1008.0 9,916 35.05 858.7 1.006 858 7 10.03 39.95 713.3 9.198 1.017 713.3 45.00 563.5 1.029 563.5 8,683 49,90 418.2 1.045 418.2 7.956 55.00 266.9 1.066 266.9 7.580 58.00 178.0 1.085 178.0 7.310 59.00 148.3 1.092 148.3 7.469 60.10 61.00 1.109 115.7 115.7 6.508 88.98 1.123 88.98 6.183 61.95 60.80 1.142 60.80 5.959 63.00 29.66 1.185 29.66 4,840 63.10 26.69 1,194 26.69 25.21 23.73 20.76 17.80 26.69 4.451 63.15 25.21 1.200 4,158 63.20 23.73 1.197 4.703 63.30 20.76 1.206 4.457 3.897 63.40 17.80 1.220 63.50 14.83 1.230 3.813 63.65 10.38 1.247 10.38 3.865 10.38 3.865 8.898 3.692 63.70 1.257 8.898

107

X _{H20} =0.7926	× _{D20} =0.1298	X _{3-mp} =0.0776

Data for Figures 12 and 25

 $LCST = 74.00^{\circ}C$

T

 $LCST = 74.00^{\circ}C$

remp	4	- /-	4	-1/- 1-25
(°C)	10 ⁴ c	1/ 1 ₀	10 ⁴ c	E (1/10)
40.00	979.4	1.015	979.4	7.767
45.00	835.4	1.020	835.4	6.301
50.00	691.3	1.035	691.3	6.121
55.00	547.3	1.049	547.3	6.079
60.00	403.3	1.074	403.3	4.260
65.00	259.3	1.108	259.3	2.970
68.00	172.8	1.135	172.8	2.495
69.00	144.0	1.145	144.0	2.404
69.95	116.7	1.159	116.7	2.143
71.00	86.42	1.179	86.42	1.968
71.50	72.01	1.192	72.01	1.794
71.70	66.25	1.197	66.25	1.756
71.95	59.03	1.205	59.03	1.668
72.18	52.43	1.215	52.53	1.527
72.30	48.97	1.217	48.97	1.537
72.48	43.79	1.225	43.79	1.459
72.58	40.90	1.229	40.90	1.440
72.62	39.75	1.231	39.75	1.422
72.68	38.02	1.237	38.02	1.290
72.71	37.16	1.237	37.16	1.347

TABLE XVIII

Solution	#5			
X _{H2}	0=0.7880	× ₀₂₀ =0.1290	х _{з-п}	np ^{=0.0830}
Data for	Figures 13 a	ind 26		
LCST = UCST =	75.50 ⁰ C 77.50 ⁰ C			LCST = 75.50°C UCST = 77.50°C
Temp (^O C)	<u>10⁴ε</u>	n/n_0	$10^4 \epsilon$	$e^{-1}(n/n_0)^{-25}$
40.00 44.98 55.00 62.00 62.50 65.00 67.50 72.00 72.50 73.00 72.50 73.55 74.00 74.35 74.60 74.80 74.80 74.80 74.80 80.00 80.00 83.00 84.00	1013.0 875.4 573.1 575.1 573.1	1.016 1.023 1.024 1.051 1.051 1.069 1.1051 1.105 1.1051 1.122 1.151 1.233 1.249 1.251 1.276 1.255 1.256 1.257 1.276 1.258 1.249 1.258 1.249 1.258 1.259 1.258 1.259 1.152 1.152 1.152 1.152	$\begin{array}{c} 1018.0\\ 875.4\\ 731.4\\ 588.0\\ 444.6\\ 372.5\\ 229.5\\ 157.8\\ 100.4\\ 86.05\\ 71.71\\ 32.99\\ 43.02\\ 32.98\\ 45.63\\ 57.04\\ 71.30\\ 85.56\\ 99.81\\ 128.3\\ 156.9\\ 185.4\\ 242.4\\ 2$	6,604 6,470 5,927 4,904 4,242 1,496 2,495 1,315 1,028 1,315 1,028 1,315 1,028 0,9512 0,9512 0,9512 0,9512 0,9512 0,9512 0,9512 0,9512 0,8356 0,8366 0,8366 0,8366 0,8366 1,2241 1,2245 1,24555 1,24555 1,24555 1,24555555 1,24555555555555555555555555

X_{H20}=0.7954 X_{D20}=0.1245

X_{3-mp}=0.0801

Oata for Figures 16 and 28

 $T_{DCP} = 76.25^{\circ}C$

(⁰ C)	$10^4 \epsilon$	n/n_o	T-76°C 2	(n/n_0)-25
40.15	1033.0	1.019	1285.2	0.6247
44.95	895.8	1.022	964.1	0.5804
50.10	748.4	1.041	670.8	0.3662
54.95	609.6	1.053	443.1	0.2750
60.00	465.1	1.072	256.0	0.1758
62.55	392.1	1.087	180.9	0.1242
65.05	320.5	1.101	119.9	0.0902
67.50	250.4	1.123	72.25	0.0550
70.05	177.4	1.149	35.40	0.0310
71.00	150.3	1.170	25.00	0.0197
71.95	123.1	1.180	16.40	0.0160
/3.00	93.02	1.201	9.000	0.0103
/3.95	65.83	1.222	4.203	0.0067
74.90	38.64	1.244	1.210	0.0043
/5.60	18.60	1.239	0.1600	0.0047
76.00	0.0000	1.246	0.0000	0.0041
77.00	10.02	1.243	0.3600	0.0043
77.00	21.4/	1.238	1.000	0.0048
70.00	30.09	1.225	4.000	0.0063
79.00	/8./1	1.208	9.000	0.0089
/9.95	102.3	1.188	15.60	0.0135

Solution #7 X_{H20}=0.7987 X_{D20}=0.1241 X_{3-mp}=0.0773 Data for Figures 17 and 29 $T_{DCP} = 76.00^{\circ}C$ Temp (n/n_)⁻²⁵ (°C) 10⁴ε n/n_o T-76°C12 40.00 1031.0 1.018 1296.0 0.6402 44.90 890.7 1.022 967.2 0.5804 45.00 887.9 1.020 961.0 0.6095 50.00 744.7 1.037 676.0 0.4032 55.00 601.5 1.050 441.0 0.2953 59.90 461.1 1.071 256.0 0.1800 64.90 317.9 1.097 123.2 0.0988 65.00 315.1 1.100 121.0 0.0923 70,00 171.8 1.143 36.00 0.0354 71.00 143.2 1.153 25.00 0.0285 72.00 114.6 1.170 16.00 0.0197 73.00 85.92 1.182 9.000 0.0153 74.00 57.28 1.194 4.000 0.0119 75.00 28.64 1.206 1.000 0.0093 75.45 15.75 1.208 0.3025 0.0089 76.00 0.0000 1.210 0.0000 0.0085 77.00 28.64 1.203 1.000 0.0098 79.00 85.92 1.181 9,000 0.0156

X_{H20}=0.8020

×₀₂₀=0.1207

X_{3-mp}=0.0772

Oata for Figures 18 and 30

T_{OCP} = 76.00°C

Temp				
(°c)	<u>10⁴ε</u>	n/n_0	T-76°C 2	(n/n _o) 20
39.95	1045.0	1.011	1332.0	0.7607
50.00	744.7	1.041	676.0	0.3662
55.05	600.0	1.053	438.9	0.2750
60.05	456.8	1.076	254.4	0.1602
62.55	385.2	1.082	180.9	0.1394
65.50	300.7	1.111	110.3	0.0720
67.50	243.4	1,115	72.25	0.0658
70.00	171.8	1.144	36.00	0.0346
71.10	140.3	1.151	24.01	0.0297
72.00	114.6	1,170	16.00	0 0197
73.00	85.92	1,182	9,000	0.0153
73.25	78.76	1,180	7,563	0.0160
73.50	71.60	1,185	6.250	0.0144
74.10	54.42	1,194	3,610	0.0119
74.60	40.10	1,199	1,960	0.0107
74.85	32.94	1.201	1.323	0.0103
75.05	27.21	1.204	0,9025	0.0096
75.75	7.160	1.208	0.0625	0.0089
76.15	4.296	1.209	0.0225	0.0087
76.35	10.02	1.217	0.1225	0.0074
76.60	17.18	1.208	0.3600	0.0089
77.10	31.51	1,205	1,210	0.0094
77.45	41.53	1.204	2,103	0.0096
78.10	60.15	1.194	4.410	0.0119
79.05	87.36	1.181	9.303	0.0156
80.05	116.0	1.164	16.40	0.0224

x_{H20}=0.8061 x₀₂₀=0.1165

X_{3-mp}=0.0774

Data for Figures 19 and 31

T_{OCP} = 76.45⁰C

(⁰ C)	$10^4 \epsilon$	n/n ₀	T-76 ⁰ C ²	(n/n ₀) ⁻²⁵
55.00 59.90 65.00 67.45 70.20 71.05 72.05 73.05 74.05 74.50 75.50 75.50 76.00 77.05	613.6 473.4 327.5 257.4 178.8 154.5 125.9 97.25 68.65 55.78 40.05 27.17 12.87 17.16	1.040 1.063 1.091 1.144 1.148 1.152 1.160 1.161 1.169 1.172 1.179 1.178 1.181	441.0 259.2 121.0 73.10 33.64 24.50 15.60 8.703 3.803 2.250 0.9025 0.2500 0.00000 1.103 4.000	0.3751 0.2171 0.1133 0.0788 0.0346 0.0317 0.0291 0.0245 0.0229 0.0202 0.0163 0.0163 0.0166 0.0156
80.05	103.0	1.153	16.40	0.0285

TABLE XXIII

X _{H20} =0.9238	× ₀₂₀ =0.0000	X _{3-mp} =0.0762
Data for Figure 20	_	

 $T_{DCP} = 76.00^{\circ}C$

Solution #10

temp				- 25
(°C)	<u>10⁴ε</u>	n/n	T-76°C 2	$(n/n_0)^{-23}$
35.00	1174.0	1.005	1681.0	0.8828
40.00	1031.0	1.015	1296.0	0.6892
45.05	886.4	1.020	957.9	0.6095
50.00	744.7	1.041	676.0	0.3662
55.00	601.5	1.044	441.0	0.3408
60.00	458.3	1.060	256.0	0.2330
65.05	313.6	1.066	119.9	0.2023
70.05	170.4	1.064	35.40	0.2121
75.05	27.21	1.066	0.9025	0.2023
80.05	116.0	1.068	16.40	0.1931
85.00	257.8	1.051	81.00	0.2884
89.90	398.1	1.041	193.2	0.3662

REFERENCES

1.	H. M. J. Boots and A. C. Michels, Physica 103A, 316-324 (1980).
2.	R. E. Goldstein and J. S. Walker, J. Chem. Phys. <u>78</u> , 1506-1508 (1983).
3.	J. S. Walker and C. A. Vause, J. Chem. Phys. 79, 2674-2675 (1983).
4.	R. E. Goldstein, J. Chem. Phys. 79, 4445-4446 (1983).
5.	A. Geerenberg, J. A. Schouten and N. J. Trappeniers, Physica 103A, 183
	(1980).
6.	A. R. Kortan, H. V. Känel, R. J. Birgeneau and J. O. Lister, Phys. Rev.
	Lett. 47, 1206-1209 (1981).
7.	J. O. Cox, J. Chem. Soc., pp. 4606-4608 (1952).
8.	E. Gulari, B. Chu and O. Woerman, J. Chem. Phys. 73, 2480 (1980).
9.	C. M. Knobler and R. L. Scott, J. Chem. Phys. <u>76</u> , 2606 (1982).
10.	T. Ohta, J. Phys. <u>C10</u> , 791 (1977).
11.	P. Calmettes, P. Phys. Lett. 39, 1152-1153 (1977).
12.	B. Chu, F. J. Schoenes and M. E. Fisher, Phys. Rev. <u>185</u> , 220-221 (1969).
13.	C. M. Sorensen and M. O. Semon, Phys. Rev. A 21, 340 (1980).
14.	J. Osman and C. M. Sorensen, J. Chem. Phys. 73, 4142-4144 (1980).
15.	J. Osman, M.S. Thesis, Kansas State University, 1981 (unpublished).
16.	R. G. Johnston, Ph.O. Thesis, University of Colorado, 1983 (unpublished).
17.	K. Ohbayashi and B. Chu, J. Chem. Phys. <u>68</u> , 5066-5068 (1978).
18.	B. Widom, J. Chem. Phys. <u>46</u> , 3324-3334 (1967).
19.	J. C. Wheeler and B. Widom, J. Am. Chem. Soc. <u>90</u> , 3067-3068 (1968).
20.	S. P. Lee, Chem. Phys. Lett. 57, 612-613 (1978).

SHEAR VISCOSITY BEHAVIOR NEAR THE DOUBLE CRITICAL POINT OF THE MIXTURE 3-METHYLPYRIDINE, WATER AND HEAVY WATER

by

GEOFFRY ALAN LARSEN

B.S., Southwest Texas State University, 1981

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Physics KANSAS STATE UNIVERSITY Manhattan, Kansas

1984

ABSTRACT

Critical phenomena in binary fluid systems, particularly critical exponents for these systems, have been studied extensively in recent years. Most of these studies have centered on binary mixtures that unmix when cooled below a upper critical solution temperature. We were interested in systems that display what is called reentrant behavior, those that will again mix when cooled below a lower critical solution temperature. We have attempted to answer the question "what is the behavior of the shear viscosity critical exponent as the mixture concentration approaches the double critical point concentration of a system?"

To answer this question, we have measured the shear viscosity as a function of temperature of termary mixtures of 3-methylpyridine, water (H_20) , and heavy water (B_20) . Because of the relationship between H_20 and D_20 , we believe this is a quasi-binary system. Ten different concentrations, five on each side of the double critical point concentration.

The results were analyzed in two different ways. In the first method, the shear viscosity anomaly is described by

$$n/n_0 = e^{-\phi}$$

 $c = \frac{|T-T_c|}{T_c}$

where T_c is the critical temperature being approached and ϕ is the shear viscosity critical exponent. We found the exponent to nearly double as the double critical point concentration was approached. In the second method, the anomaly is described by

$$\varepsilon^{-1}(\eta/\eta_0)^{-1/\phi}(\xi^0)^{-1/\nu}(\xi^0)^{-1/\nu}(\frac{T_c}{\Delta T})\varepsilon$$

for closed-loop systems. ξ^0 is a concentration dependent parameter. ν is the correlation length critical exponent. ΔT is the separation between upper and lower critical solution temperatures. The anomaly is described by

$$(n/n_0)^{-1/\phi} A^{-1/\nu} (T-T_m)^2 A^{-1/\nu} a(y-y_0)$$

for no-loop systems. A and a are constants. $T_{\rm m}$ is the double critical point temperature. y_0 is the double critical point concentration and y is the concentration of the mixture. The agreement between this analysis and our results was poor for closed-loop mixtures.