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Chapter I

INTRODUCTION

The behavior of fluid systems in the vicinity of a critical point is a

topic that has been studied with great interest throughout this century.

In particular, interest has been focused on critical point exponents since

the middle of this century.

Most of the systems studied have been systems that are miscible at

higher temperatures, but which unmix over a range of concentrations as the

temperature is lowered below an upper critical temperature. For binary

fluid systems, it has been found that the critical exponents take on uni-

versal values. That is, they do not depend on the specific system being

studied. Furthermore, theories have been developed that have predicted

with success the values taken on by these exponents. For example, the

shear viscosity critical exponent of binary fluids has been predicted to

have a value of about 0.040 using both mode-mode coupling theory and renor-

malization group theory. Experimental tests of this prediction have

tended to support it, although there have been exceptions. For examples

of experimentally determined values for the shear viscosity critical exponent,

4>, see Table I.

In more recent years, theoreticians and experimentalists have become

more interested in systems that display reentrant behavior. These solutions,

usually mixtures of hydrogen bonding liquids, remix when the temperature is

lowered still further below a lower critical solution temperature. In Fig. 1,

we see a coexistence surface for such a liquid. Some quite satisfactory



TABLE I

Shear Viscosity Critical Exponents of Various Solutions

System

Water/Ethanol/Chloroform

2. 6-Luti dine/Water

0.054

0.052

Isobutyric Acid/Water

Aniline/Cyclohexane

0.042j)

0.038'

0.041

0.043

0.039

3-Methylpyridine/Nitroethane 0.035

0.040

0.038

0.038
b

0.038

0.040

0.039

0.039

0.038°

0.029

0.039

0.033

Comments

Analysis of data from Ref. j)

Analysis of data from Ref. j)

Analysis of data from Ref. g)

Analysis of data from Ref. g)

Analysis of data from Ref. h)

Analysis of data from Ref. h)

Analysis of data from Ref. d)

Analysis of data from Ref. d)

Analysis of data from Ref. d)

Analysis of data from Ref. d)

Analysis of data from Ref. e)

Analysis of data from Ref. e)

Analysis of data from Ref. d)

Analysis of data from Ref. f)

Analysis of data from Ref. f)

Analysis of data from Ref. f)

Analysis of data from Ref. i)

a) T. Ohta, J. Phys. C 10 (1977) 791.

b) S. P. Lee, Chem. Phys. Lett. 57 (1978) 611

c) P. Calmettes, Phys. Rev. Lett. 39 (1977) 1151

d) A. Stein, J. C. Allegra and G. F. Allen, J. Chem. Phys. 56 (1971) 4265.

e) B. C. Tsai and D. Mclntyre, J. Chem. Phys. 60 (1974) 937.

f) J. C. Allegra, A. Stein and G. F. Allen, J. Chem. Phys. 55 (1971) 1716.

g) E. Gulari, A. F. Collings, R. L. Schmidt and C. J. Pings, J. Chem.
Phys. 56 (1972) 6169.

h) A. Stein, S. J. Davidson, J. C. Allegra and G. F. Allen, J. Chem. Phys.

56 (1972) 6164.

i) C. C. Yang and F. R. Meeks, J. Phys. Chem. 75 (1971) 2619.

j) S. P. Lee and A. J. Purvis, Chem. Phys. 24 TT977) 191.



Figure 1. This figure shows the general appearance of the

miscibility dome for the H
2
0/D

2
0/3-methyl pyridine

system. Notice for mixtures rich in DoO and weak

in H~0 that the coexistance curve is a simple

closed loop with separate upper and lower critical

points that are single critical points. As the

concentration of H-0 is increased, the loop shrinks

until the upper and lower critical points merge,

becoming a double critical point. The mixtures we

are interested in are those in the immediate vicinity

of the double critical point.
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1 2
theories have been developed to account for this behavior. ' In these

theories, the specific orientational nature of hydrogen bonding has been pre-

sented as the reason why these liquids could remix at lower temperatures and

3
still have a monotonically decreasing entropy.

Consider Fig. 1, beginning with the closed loop. The upper- and lower-

most points on this loop represent an upper critical solution point and lower

critical solution point, respectively. If the 3-methylpyridine concentra-

tion is held fixed while the ratio of H-0 to D
2

is increased, the two criti-

cal points begin to approach each other as the loop closes. Eventually, they

come together to form what is called a double critical point. One result that

has come out of the study of these systems has been that the critical expon-

1-4
ents are predicted to double as the double critical point is approached.

In these theories, it is pointed out that, if the double critical point is

approached tangentially (see Fig. 2), the path followed as the critical tempe-

rature, T , is approached comes much closer to points on the critical sur-

face than to the double critical point itself. Each point on the critical

surface is an Ising critical point. The parameter determining the separation

of the system from criticality when on this tangential path should actually

be the distance from the closest point on the critical surface. In the

laboratory, we would measure the temperature deviation from critically as e

where

e =
l

T"TDCP^TDCP

and T
DCp

is the temperature at the double critical point. As can be seen in

Fig. 2, the parabolic shape of the critical surface leads us to conclude that

this deviation should actually be e . This is the source of the prediction

that the critical exponent should double.



Figure 2. In this figure, we can see the rationale behind the

prediction that the critical exponents will double

as the double critical point is approached. Here,

the solid line represents the critical points for

different concentrations of the H
2
0/D

2
0/3-methyl pyridine

system. As we progress from to 1 on the abscissa-axis,

HpO is substituted for D
2

in the system. indicates

no H-O in the system, while 1 indicates no D-O. The

dashed line represents the path taken as we fix the

concentration at the double critical point concentration

and vary the temperature. Notice as we approach P that

we are much closer to P' than to P. This is the basis

for the idea that, as the double critical point con-

centration is approached, the critical phenomena anomalies

2x x
will vary as e rather than s .
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While these predictions have been tested with success on a gas-gas

and a liquid-crystal system, no published results exist for a binary fluid

system. The purpose of this experiment was to find evidence to support or

reject the hypothesis that the shear viscosity critical exponent, $, should

double as the double critical point was approached.

The system studied in this experiment was actually a ternary mixture of

2
0, D

2
0, and 3-methyl pyridine that was initially examined by Cox andH.

Andon in a series of papers in the 1950's. For the characteristics of this

system, see Fig. 3.

While this is not a true binary system, we feel that this system can be

characterized as quasi-binary because of its unique composition. This con-

Q
cept has been tried before with success by Gulari et al . and Knobler and

g
Scott on ternary systems of deuterated or non-deuterated mixtures of iso-

butyric acid and water. These systems displayed binary solution behavior in

2
the one phase region. In addition, Goldstein has successfully treated mix-

tures of H
2

with 2 ,6-dimethylpyridine and one of the monomethyl pyridines as

a quasi-binary system. The substitution of H
2

for D
2

should not affect the

properties of the system except insofar as the strength of the hydrogen bond-

ing is weakened. The result is that the mixture of D
2

and H-0 can be treated

as one liquid whose hydrogen bond strength is, on the average, a composi-

tional ly weighted average of the D
?

and H~0 hydrogen bond strengths. There-

fore, we feel that the behavior of the shear viscosity in this mixture of

H
2
0, D

2
0, and 3-methyl pyridine should mirror that of a true binary system.

Two methods of analyzing the data will be used. These will be referred

to as the Ohta analysis and Kortan analysis.

In the Ohta analysis, the viscosity data will be examined in the manner

suggested by T. Ohta in a paper published in 1976. Prior to this time,



Figure 3. Shown are two cross-sections of the miscibility

dome for the H
2
0/D

2
0/3-methyl pyridine system. In

the upper figure, w„
n
=0 where W is weight-percent

concentration. W
n

and W,
Mp

are varied. In the

lower figure, w,_
Mp

=0.30. W„
Q

and W
D Q

are varied.
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the shear viscosity anomaly had been treated as additive in nature. In other

words,

n(T) = n (T) + An(T) (1-1)

and the background viscosity, n (T), would be subtracted from the actual

viscosity, n(T), to find the size of the anomaly. However, in this paper,

Ohta found better agreement with experiments if the anomaly was treated as

being multiplicative in nature. In other words, the correct expression was

n(T) = n (T) E
"*

(1-2)

where $ is the shear viscosity critical exponent. Note then that

n(T)/n (T) = e"* . (1-3)

We are interested in the behavior of the ratio n(T)/n (T) as T is

approached.

The Kortan analysis involves two phenomo logical expressions developed

empirically by Kortan et al . in a paper published in 1983. In this experi-

ment, reentrant behavior in a liquid crystal was studied. For concentrations

exhibiting a phase transition between nematic and smectic-A phases, the cor-

relation lengths were described by

5 = 5°[e + (T
C
/AT) E

2H (1-4)

where E. is a concentration dependent parameter and AT is the separation be-

tween upper and lower critical solution temperatures, UCST and LCST.

If the concentration was such that there was no phase transition, the

correlation lengths were described by

Z- A[(T-T
m )

2
+ a(y-y

o
)]-

v
(1-5)
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where A and a are constants, y is the double critical point concentration,

T
m

is the temperature at the center of the coexistance loop, and y is the

concentration of the solution.

As can be seen in the first expression, if the loop is large, the first

term is dominant and the correlation lengths goes as e"
v

. On the other hand,

if AT gets small enough, then the second term dominates and the correlation

length goes as e"
v

. As such, we see critical exponent doubling. In the

second expression, we see that the correlation length should go as (T-T )"2v
.



Chapter II

EXPERIMENTAL PROCEDURE

Solution Preparation

The D
2

used in this experiment was purchased from Alfa Products. The

lot analysis printed on the bottle stated the fluid to be at least 99.8% D
?
0.

Doubly distilled water was obtained from within the department. The

first distillation was through a charcoal filter unit. The second was through

an ion exchange unit.

Our 3-methyl pyridine was purchased from Aldrich. It was technical grade

and was yellow in color. We cleaned a fractional distillation unit, flushed

it twice, and oven-dried it. The 3-methylpyridine was then distilled twice,

the middle half being kept each time. The boiling point of 3-methyl-

pyridine is 144. 1°C. During distillation, the column temperature varied

between 143°C and 144°C. After distillation, the distillate was colorless.

The final distillate was stored in a clean, oven-dried, brown chemical bottle

which had a teflon seal in the cap. In addition the cap was sealed with

parafilm.

We saved the first and fourth quarters from the second distillation pro-

cess. Some of this distillate was poured into two distillation flasks. These

flasks were glass stoppered and sealed with parafilm. In addition, one of

the two flasks was wrapped in aluminum foil to exclude light. After several

months, there was still no sign of discoloration that might indicate decom-

position. We saw no change in either of these samples over the duration of

the experiment.

The rest of the first and fourth quarters was distilled a third time.

13
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The two middle quarters of the resulting distillate were again saved.

During this time the column temperature varied between 143°C and 160°C.

This was an indication that the distillate contained other methyl pyridines

and dimethylpyridines since these have higher boiling points than 3-methyl-

pyridine. We stored the distillate in a clean, oven-dried, brown chemical

bottle as before. Again, the cap had a teflon seal inside, and the cap

itself was sealed with parafilm.

Stock solutions of H-O/3-methyl pyridine and D,,0/3-methyl pyridine were

mixed under dry nitrogen such that the weight percentage of 3-methylpyridine

in each was 29. 9%±0. 1%. This ensured both ease in mixing and that any samples

made would have the same weight-percentage of 3-methylpyridine. The stock

solutions were mixed up using volumetric pipettes. Densities for D~0, H
2
0,

and 3-methylpyridine were taken from values given in the 1976-77 edition of

the CRC Handbook of Chemistry and Physics. The stock solutions were also

stored in clean, oven-dried, brown chemical bottles with teflon seals in

the caps.

All of our chemicals were stored at all times under dry nitrogen gas in

a glove box that also contained CaSO. as a dessicant. This ensured the

absence of any atmospheric water in our storage area.

All of the samples were mixed inside the glove box using volumetric

pipettes. They were stored in 10 milliliter vials that had teflon seals in

the lids. The pipettes and vials were carefully cleaned with distilled

water and acetone, flushed with distilled water, and oven-dried prior to

their use. The samples were stored in the glove box.

Determination of the Critical Concentration

From prior work done by Cox, we knew that the concentration of 3-methyl

pyridine at the tip of the miscibility dome was close to 30 weight-%. This
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number was not exact, since Cox was not really concerned with that. This

was why the stock solutions were mixed as they were. The first step in

finding the critical concentration was to find the proportion of D
2

to

HgO such that phase separation no longer occurred. Once this was accomplished,

we were able to increase the D,0 concentration by very small amounts and have

upper and lower critical solution temperatures that were only three to five

degrees apart. Because both stock solutions were mixed at the same weight

percentage of 3-methyl pyridine, the 3-methylpyridine's concentration did

not change as the D-O/H-O concentration was varied.

After this was done, we varied the 3-methylpyridine concentration and

watched to see what happened to the volume ratio of the two fluids above

and below the meniscus, while holding the temperature fixed as close to the

phase separation temperature as possible. If, on a given trial, the 3-methyl-

pyridine concentration was along the critical isochore, the ratio should be

one. If the 3-methylpyridine concentration was slightly off of the isochore,

then one of the two phase would disappear as the lower critical temperature

was approached from above. With the correct concentrations of 3-methyl-

pyridine, H
2

, and D
2
0, both the upper and lower phases would disappear

simultaneously as the lower critical temperature was approached. We started

with a known volume of a sample in the viscometer and added small amounts of

3-methylpyridine as the ratio of the upper to lower volumes was observed.

A typical sample size was 4 milliliters, and the sample concentration was

shifted in 0.1 to 0.25 mole-% increments. A volumetric micropipette was used

to shift the 3-methylpyridine concentration in each sample.

Best results were obtained when X
H Q

= 0.7880, X
Q Q

= 0.1290, and

X
3-MP

= °- 0830 - For tnis concentration, a 0.05°C shift in temperature from

the one-phase region to the two-phase region resulted in a ratio between
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the lower and upper volumes of one to two.

Viscosity Measurement and Temperature Control

Viscosity was determined by measuring capillary flowtimes. The vis-

cometer consists of a long, narrow capillary with a dumping reservoir on

one end and a sample chamber on the other end (see Fig. 4). The sample

chamber has three ports. One leads to the capillary, another leads to a

fill reservoir from which the sample chamber is filled; and the third is a

vent. In addition, the dumping reservoir, fill reservoir, and vent are all

joined by a piece of tubing. This allows the viscometer to be completely

immersed in a temperature-controlled water bath and also enables us to re-

fill the sample chamber by simply rotating the viscometer. The viscometer

is made of glass.

Sealing the viscometer was difficult. The viscometer was filled through

a port in the dumping reservoir, which was plugged after filling. The plug

had to be made of a material inert to 3-methyl pyridine. We took a piece of

teflon and inserted it into a clear glass vial containing 3-methyl pyridine.

After a week had passed, the fluid was still clear and colorless, and the

teflon appeared unchanged. So, we first tried making teflon plugs.

We found we were unable to provide a good seal with these plugs for two

reasons. The first was that the diameter of the inner wall of the port lip

was smaller than that of the inner wall of the port just past the lip. If

a plug could get by the lip, then it was too small to seal effectively

against the inner wall of the port. The second problem was that, after

cycling the temperature two or three times, the plug would take a set. In

other words, it would lose its ability to return to its former dimensions.

We solved both of these problems by modifying the plug. We drilled a

hole through the plug into which we could insert a stainless steel

bolt. We then drilled and threaded a hole about halfway through a



Figure 4. Shown is a diagram of the viscometer and the plug.

The viscometer is made from glass. The sample

chamber is filled from the fill reservoir. Flow-

times are timed with the viscometer vertical and

the fill reservoir on top. The stopwatch is started

when the upper meniscus passes through the vent and

stopped when the upper meniscus exits the bottom of

the sample chamber where the capillary begins.

17
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second piece of teflon. We then screwed the bolt through the plug, slipped

on an ethylene propylene 0-ring, and screwed the bolt into the second piece

of teflon. By turning the bolt clockwise, we compressed the 0-ring between

the two pieces of teflon. Screwing the bolt counter-clockwise let the 0-ring

relax. In this manner we could slip the plug into the viscometer and then

compress the 0-ring. This squeezed the 0-ring against the inner wall and

provided a good seal

.

In choosing ethylene propylene for the 0-ring material, we searched

technical literature to see what materials were suggested for this purpose.

We then tested an ethylene propylene 0-ring in the same manner in which we

tested the teflon. The results, as before, indicated no effect.

In addition to modifying the plug, we modified the port so that it had

a ground glass exterior and a matching ground glass cap. With the aid of a

little vacuum grease, this provided a second seal. Two spikes each were added

to both the cap and port, so that the cap could be secured with rubber bands.

Prior to loading with a sample, the viscometer was cleaned in the fol-

lowing manner. The viscometer was first flushed several times with distilled

water, then once or twice with spec grade acetone. After this, the viscometer

was again flushed several times with distilled water. No detergent was used

in the cleaning process for two reasons. The first was that we used distilled

water and 3-methylpyridine and very pure D~0. Since the pipettes used to

load the viscometer were themselves carefully cleaned and dried prior to use,

there should have been no foreign material present to require the use of

soap. The second reason was the obvious difficulty of flushing the capillary

and the fill tube completely of soap. The viscometer plug was cleaned in the

same manner.

After this, the viscometer was oven-dried to remove any water or



20

acetone left. The plug was air-dried and then placed in the glove box.

After removing the viscometer from the oven, it too was placed in the

glove box. As mentioned before, the inside of the glove box continuously

had both a dessicant present and dry nitrogen gas flowing through.

The viscometer was loaded in the glove box with pipettes that had been

cleaned and dried with the viscometer. A typical sample volume was 4 milli-

liters. After loading the viscometer, it was mounted on a stand on which

the viscometer was free to rotate. The entire apparatus was placed in a

temperature-controlled water bath.

The viscometer was first rotated so that the liquid gathered in the fill

reservoir. The viscometer was then slowly rotated to allow the sample chamber

to fill from the fill reservoir, while air in the sample chamber escaped

through the vent. After the sample chamber was filled, the viscometer was

rotated so that the capillary was vertical. The time necessary for the sample

chamber to empty was recorded with a hand held stopwatch to 0.01 seconds. By

again rotating the viscometer, the sample was transferred from the dumping

reservoir to the fill reservoir. The process could then be repeated.

We used three separate viscometers during the course of the experiment.

It was necessary to determine the viscometer constant, K, for each viscometer

as a function of temperature. To do so, we took doubly distilled water and

measured its capillary flowtime in each viscometer every ten degrees over

the entire temperature range of the experiment. We took the density and

viscosity values from tables in the 1976-77 edition of the CRC Handbook.

Then, for each, temperature, T, we have

K(T) - r,/Dt (2-1)

To determine the density of each solution over the experiment's tempe-

rature range, we used 2 milliliter and 5 milliliter pycnometers. We
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determined the density every ten to fifteen degrees for five different con-

centrations until the fluid separated each time. We used a Mettler

balance to determine the solution mass at each temperature. We used inter-

polation to determine the densities for other concentrations.

Temperature control was achieved by placing the viscometer into a

large insulated water bath. We achieved fine temperature control using a

Neslab Exocal 300DD water bath externally to control the viscometer bath

temperature to ±0.1°C for temperatures below 80°C. When the temperature

exceeded 80°C, temperature control was ±0.2°C. In addition, we used a

YSI Model 72 controller, when we made temperature changes, to speed up the

process.



Chapter III

OHTA ANALYSIS

As explained in the introduction, an expression for the behavior of

the viscosity of a solution near a critical point is

n(T) - n (T) e
"*

(3-1)

where n.(T) is the background viscosity, 4 is the critical exponent and

«- |T-T
c
|/T

c
.

Rewriting the expression and taking the logarithm of both sides, Eq.

(3-1) becomes

log[n(T)/n (T)] = -4 log e (3-2)

This suggests that as a method of determining <t>, we may graph log[n(T)/n (T)]

versus log s. With the appropriate choice of T , the result is a straight

line with slope -$. Given the data for n(T), we need nn
(T) and T before

performing our analysis.

Determining n.(T) was definitely the most difficult task in this analysis.

This would not have been the case if, in the critical regime, the actual vis-

cosity had become much greater than the background viscosity. If this had

occurred, then a small error in the determined value of nQ
(T) would not have

had a noticeable effect on the function of interest, n(T)/n (T). However,

the actual viscosity never exceeded the background viscosity by more than

about 26 percent. Much more precision in temperature control would have been

22
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necessary before we could have observed n(T) become much larger than n (T).

As such, great care needed to be taken in determining n.(T).

The first approach tried was the standard one of looking at data suf-

ficiently far from the critical point that the viscosity anomaly was neglig-

ible, and trying to fit it to a modified Arrhenius equation of the form

n(T) = A exp[B/(T-T
o
)] (3-3)

where A, B, and T are constants. In our analysis, we determined the range

of temperatures over which the viscosity anomaly could be considered neglig-

2
ible by considering the behavior of x , a measure of the goodness of our fit,

as data from temperatures successively closer to the phase separation tempe-

rature were included in our fit to Eq. (3-3). As long as the viscosity

2
anomaly remained negligible, x was not noticeably affected by the addition

of temperatures closer to the phase separation temperature. When the anomaly

was no longer negligible, the modified Arrenhius equation was no longer suf-

ficient to describe the viscosity data and x increased.

As an example, consider the H-O/3-methylpyridine solution. For this

sample, X u n = 0.9238, Xn n = 0.0000, and X, m„ = 0.0762. This solutionr HJ0 D~0 3-mp

did not phase-separate. First, the points from 10.05°C to 30.00°C were fit

to Eq. (3-3). Then, more points were successively included in the fit and

the resultant x for the fit was observed. In this example, the final fit

was determined over the temperature range from 10.05 C to 35.00 C. The

2
results are shown in Table II. Note how quickly x begins to increase when

data points for temperatures greater than 35.00°C are included in the fit.

An alternative method of determining the background viscosity occurred

to us when we examined Fig. 5. In this figure, flowtime is plotted versus

temperature for several different solutions. Note that the curves tend to
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Table II. This table lists the results of a chi-square fit of

the shear viscosity measurements of H
2
0/3-methyl pyridine

to Eq. (3-3). These fits were performed on a computer.

a was entered as 1%. The equation being fit is

n(T) - B exp [^j~).
o
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TABLE II

Number of
Points

Temperature
Range (°C) B(cp) A(°K)

T (°K) jL
5 10.05-30.00 .02899 586.0 158.1 .703

6 10.05-35.00 .02950 587.4 157.3 .770

7 10.05-40.00 .03075 581.9 157.2 1.008

8 10.05-45.05 .03125 582.2 156.6 1.039

10 10.05-55.00 .03297 579.1 155.6 1.847
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Figure 5. Viscometer flowtime is plotted versus temperature

for four representative solutions. The first two

listed below phase separated and the other two did

not phase separate.

A X
H

=0.3914 X
D Q

=0.5279 X
3 _Mp

=0.0807

O X
H

=0.7880 X
D Q

=0.1290 X
3 _Mp

=0.0830

X
H
2
(f

- 8020 X
D
2

=°" 1207 X
3-MP

= °- 0772

<^XH0=0.9238 X
Q

=0.0000 X
3 _Mp

=0.0762
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lie on top of each other when far from the critical temperatures. This led

us to consider the possibility of the background viscosity for a given con-

centration being directly proportional to the background viscosity for H~0/

3-methylpyridine, which seemed to exhibit only a small anomaly. This ap-

proach has been used successfully before. Given that the 3-methylpyridine

concentration varied so little in all of our mixtures and given the simi-

larities between D
2

and H-O, this seemed to be a reasonable system on which

to try this approach.

To test this idea, we decided to normalize n(T) by nB
(T) for each

solution and each temperature, T. iB
(T) is the background viscosity of

2
H
2
0/3-methylpyridine that we determined using the x test.

In Figures 6 and 7, n(T)/n
B
(T) is plotted versus temperature for the

separating and non-separating solutions, respectively. Note how the individ-

ual curves flatten as we get sufficiently far from the phase separation

temperatures for the separating solutions. The same thing occurs for non-

separating solutions when far enough from T
DCp , the double critical point

temperature. This seems to support the idea that the background viscosity

for each solution was a multiple of the background viscosity of H
2
0/3-methyl-

pyridine.

For each concentration, the ratio of ri(T)/ri
B
(T) was determined by

averaging the values from the flat portions of the curves in Figs. 6 and 7.

The resultant ratios are plotted versus concentration in Fig. 8. Mixtures

for which viscosity measurements were not done over a large enough tempe-

rature range to see this flattening were excluded. Note the linear nature

of this curve. The background viscosity for each solution was determined
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Figure 6. In this figure, the ratio n/n
B

is plotted versus tempe-

rature for the concentrations, given below, that phase

separated, n is the experimentally measured vis-

cosity for each mixture. nB
is the background

viscosity for H
2
0/3-methyl pyridine.

O
V=0.0000

X
D
2
°
= °" 9160 X

3-MP
=0 - 0840

A X^O.3914 X^O.5279 X
3 _Mp

=0.0807

OxHQ=0.7356 X
D Q

=0.1866 X
3 _Mp

=0.0778

xHQ-0.7926 X =0.1298 X
3 .Mp

=0.0776

H
2

=0 - 7880 \Ox
H

=0.7880 X =0.1290 X
3 _Mp

=0.0830
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Figure 7. In this figure, the ratio n/n
B

is plotted versus tempe-

rature for the concentrations, given below, that did

not phase separate, n is the experimentally measured

viscosity for each mixture. n
B

is the background

viscosity for H
2
0/3-methylpyridine.

Ax
H
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D
2
(f

- 1245 X
3-MP

=0 - 0801
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D
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Figure 8. In this figure, the ratio n /n
B

is plotted versus V

for eight concentrations, n is the background vis-

cosity for each mixture. nB
is the background vis-

cosity for HgO/S-methyl pyridine. V is the ratio of.

the volume of D
2

to the volume of (D
2
0+H

2
0) for

each solution when they were mixed. Note that

n./n
B

is fairly linear with respect to V.
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by multiplying ru(T) by the corresponding ratio for that solution. For

solutions for which a value of the ratio could not be determined from the

raw data, the value was taken from the curve in Fig. 8.

We are now left only with determining T , the critical temperature, for

each mixture. How can this be done? For any solution mixed along the criti-

cal concentration isochore, the critical temperature is identical to the

phase separation temperature. However, it was very difficult to mix our

solutions so that they were on the critical isochore since we did not know

the correct critical concentration. What happens to the relationship between

the critical temperature and phase separation temperature when we are off the

critical isochore?

The answer depends on the size and shape of the miscibility loop as well

as the degree to which we lie off of the critical isochore. If we are close

enough to the critical isochore, the critical temperature will still be very

nearly equal to the phase separation temperature. A larger loop with the

miscibility curve somewhat flatter along the bottom results in an increase in

the region on either side of the critical isochore in which the critical tem-

perature is still very nearly equal to the phase separation temperature. As

we progress further from the critical isochore, the difference between the

two temperatures increases.

The "critical temperature" for a concentration off of the critical

isochore is actually an effective critical temperature and is referred to as

12 15
a spinodal temperature. Like the critical temperature for a solution on

the critical isochore, an effective critical temperature is the temperature

at which a singularity exists for the solution in question. Unlike a solu-

tion on the critical isochore, a region of metastability exists between the

phase separation temperature and the effective critical temperature. These
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spinodal temperatures are said to lie along a spinodal curve, or spinodal.

In addition, a spinodal loop is always smaller than the corresponding misc-

ibility loop. To avoid confusion, these effective critical temperatures will

simply be referred to as critical temperatures in this paper.

How then was the critical temperature determined for a solution which

did not lie along the critical isochore? The value of T was chosen such

that the graph of log[n(T)/n
Q
(T)] versus log e was best linearized. It was

assumed that shear thinning was not involved. In addition, if viscosity data

were available for temperatures above the upper critical temperature, an

attempt was made to symmetrize the results for temperatures above and below

the upper and lower critical temperatures, respectively.

When we say the results were symmetrized, we mean the following. Con-

sider a solution with a closed coexistence curve, in other words one with

both upper and lower critical solution temperatures, UCST and LCST.

Now, simultaneously consider two identical samples. The first sample is

at a temperature T^LCST and the second T^UCST such that (LCST - T,)/

LCST = (T
2

- UCST)/UCST = e and e is large enough that log e « 0.

Then, n(T)/n
Q
(T) = 1 for both T

1
and T

2
. Furthermore, n(T,)/n (T,) =

n(T
2
)/n (T

2
) since n(T)/n (T) is only a function of e. Now, slowly increase

T
1
and slowly decrease T

2
so that the condition (LCST - TJ/LCST = (T

2
- LCST)/

UCST is retained. What do we notice about ^T^/n^T^ and n(T
2
)/n (T

2
)?

They will remain equal to each other. This is what we mean when we say the

results are symmetrized. As long as (LCST - Tj/LCST = (T
2

- UCST)/UCST,

n(T
1
)/n (T

1
) = n(T

2
)/n

Q
(T

2
)

.

So, there are two tests that can be used to see if the correct upper and

lower critical temperatures have been determined. The first is that the curve

log n(T)/n
Q
(T) versus log e be a straight line. The second is that
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nCT^/ngCTj) = n(T
2
)/n (T

2
), as long as (LCST - T^/LCST = (T

2
- LCST)/UCST,

what we call a symmetry in e. Both of these tests were taken into account

when determining the critical temperature for a given solution.

For concentrations which did not unmix, those beyond the double critical

point, symmetrization weighed more heavily than linearization. As can be seen

for such a solution in Fig. 16, a value for T cannot be chosen to perfectly

linearize the entire curve. There is not a critical point for such a mixture

and we expect Eq. (3-2) to fail to describe such a system. At some point for

each solution beyond the double critical point, n(T)/n (T) ceased to increase

and leveled off until we were past T
DCp

, the double critical point tempe-

rature. Then, it would begin to decrease. If e is defined here as |T-T
D
-
p |/

T
DCp

, the curve is symmetrical in e as before. This might be described in

terms of a virtual, or imaginary, critical point. In such a description, the

virtual critical point would be a projection of the double critical point

into composition-temperature space beyond the miscibility dome. The behavior

of the viscosity anomaly as a virtual critical point was approached could be

described empirically by the expression

log n(T)/n (T) -*H[e-£ (X
DCp

-X)]log e
(3 _4)

-*(l-H[e-e (X
DCp

-X)3) log Eo (X
Dcp

-X)

where

H[e" e
o
(X
DCP"

X)] =
I

1 £>E
o

£ (X
DCp

-X) obviously is equal to the value of e at which the curve

log n(T)/n
Q
(T) versus log e levels off. Note that £

Q
(X
DCp

-X) goes to zero

as X goes to X
DCp

. At the double critical point itself, log[n(T)/ n (T)]
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is infinite in value when T = T
DCp

and X X
DCp

.

Now that the background viscosities and critical temperatures were

known for each solution, log[n(T)/n
Q
(T)] was plotted versus log e for each

one and the graphs are shown in Figs. 9 through 21. The slopes, and hence

the critical exponents, are tabulated in Table III.

The double critical point concentration itself was never found. However,

from our observations of the relative volumes of the upper and lower solu-

tions at T for various solutions, we can say that it is in the immediate

vicinity of X
R Q

= 0.788, X
Q Q

= 0.127, and X
3

= 0.085.

The first conclusion that can be drawn from Table III is that the criti-

cal exponent definitely increased as the double critical point was approached.

Notice that $ increased from 0.038 for D
2
0/3-methyl pyridine to 0.072 for the

solution closest to the double critical point. The value of $ for D
2
0/3-

methylpyridine is somewhat less than the theoretical value of 0.041; but,

as seen in Table I which lists a variety of previous experimental results,

this is not an unusual occurrence.

The second conclusion that can be drawn from Table III is that the ex-

ponent increase did not become strong until we were within about 1 mole per-

cent of the correct H
2

concentration at the double critical point. Here,

the exponent appears to increase rapidly.

Beyond the double critical point, the shear viscosity behavior was

similar to that of the separating mixtures with some differences. When far

from T
DCp

, we found that log[n(T)/n
Q
(T)] versus log e could be both linear-

ized and symmetrized, e for non-separating solutions is defined to be

e = ' T"T
DCp' /

'T
DCP

-



Figure 9. On a log-log scale, n/n
Q

is plotted versus e. For

this mixture, X
H

=0.000, X
D Q

=0.9160, and X
3 _Mp

=

0.0840. The line has a slope of -0.038. The LCST

is 37.35°C.
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Figure 10. On a log-log scale, n/n
Q

is plotted versus e. For

this mixture, X
H Q

=0.3914, X
Q Q

=0.5279, and X
3 _Mp

=

0.0807. The line has a slope of -0.050. The LCST

is 48.50°C.
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Figure 11. On a log-log scale, n/n. is plotted versus e. For

this mixture, X„
Q
=0.7356, X

D Q
=0. 1866, and X,

Mp
=

0.0778. The line has a slope of -0.051. The LCST
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Figure 12. On a log-log scale, n/n
Q

is plotted versus e. For

this mixture, X
R

=0.7926, X
D Q

=0.1298, and X
3 _Mp

=

0.0776. The line has a slope of -0.064. The LCST

is 74.00°C.
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Figure 13. On a log-log scale, n/n is plotted versus e. For

this mixture, X
H Q

=0.7880, X
Q Q

=0.1290, and X
3 _Mp

=

0.0830. The line has a slope of -0.072. The LCST

75.50°C and the UCST is 77.50°C.

A T < LCST

V T > UCST
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Figure 14. In a log-log scale, n/n
Q

is plotted versus t for

the solution shown in Fig. 13. In this figure,

however, we have LCST=UCST=76.4°C. Notice that

the figure is somewhat less symmetric. In addition,

the graph has acquired an s-shape in its appearance.

From this we can see the necessity of using both the

tests of linearity and symmetrization in determining

the upper and lower critical solution temperatures.

A T < 76.4°C

V T > 76.4°C
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Figure 15. Shown is a composite of Figs. 9-13. We can easily

see the increase in the slope of the lines, and

hence the shear viscosity critical exponents, as

the double critical point concentration is approached.

In addition, note that the anomaly becomes visible

much sooner as we approach the double critical point

concentration.
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=0.0000 X
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3 _Mp
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Figure 16. On a log-log scale, n/n is plotted versus e. For

this mixture, X
H Q

=0.7954, X„
Q
=0.1245, and X

3_Mp
=

0.0801. The slope of the line is -0.073. The T
DCp

is 76.25°C.

A T < T
DCP

V T > T
DCP
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Figure 17. On a log-log scale, n/n. is plotted versus e. For

this mixture, X
H Q

=07987, X
Q Q

=0.1241, and X
3 _Hp

=

0.0773. The slope of the line is -0.068. The T
DCp

A T < T
DCP

V T > T
DCp



56

w o in
CSJ CVI

—



57

Figure 18. On a log-log scale, n/n is plotted versus e. For

this mixture, X
H Q

=0.8020, X
Q Q

=0.1207, and X
3 _Mp

=

0.0772. The slope of the line is -0.067. The T™
is 76.00°C.

A T < T
DCP

V T > T
DCp
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Figure 19. On a log-log scale, n/n
Q

is plotted versus e. For

this mixture, X
H Q

=0.8061, X
Q Q

=0.1165, and X
3 _Mp

=

0.0774. The slope of the line is -0.073. The T™
is 76.45°C.

A T < T
DCP

V T » T
DCP
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Figure 20. On a log-log scale, n/n is plotted versus e. For

this mixture, X
H Q

=0.9238, X
Q Q

=0.0000, and X
3 Mp

=

0.0762. The slope of the line is -0.07. The T
DCp

is 76.00°C.

A T < T
DCP

61

V T> T.
DCP
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Figure 21. Shown is a composite of Figs. 16-20. Open symbols

indicate T < TV
p

. Closed symbols indicate T > T
D
-
p

.

A X^O.7954 X^O.1245 X
3 _Mp

=0.0801

O X^O.7987 X^O.1241 X
3 _Mp

=0.0773

X^-0.8020 X^-0.1207 X
3 _Mp

=0.0772

O X^O.8061 X
D2(3

=0.1165 X
3.Mp

=0.0774

O X
H o

=0 - 9238 x
d o

=0 - 0000 X
3-MP

=0 - 0762
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Table III. This table lists our results for the shear viscosity

critical exponents, f, of the various mixtures. X

X
D Q

, and Xj_
Mp

are the mole-percent concentrations

of HgO, DpO, and 3-methyl pyridine, respectively.

H
2
0'
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TABLE III

Solution
Number

X
H
2

X
D
2

X
3-mp

1 0.0000 0.9160 0.0840 0.038

I 0.3914 0.5279 0.0807 0.050

3 0.7356 0.1866 0.0778 0.051

4 0.7926 0.1298 0.0776 0.064

5 0.7880 0.1290 0.0830 0.072

6 0.7954 0.1245 0.0801 0.073

7 0.7987 0.1241 0.0773 0.068

8 0.8020 0.1207 0.0772 0.067

9 0.8061 0.1165 0.0774 0.073

10 0.9238 0.0000 0.0762 0.07
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At a given value of c, which increased as the solution concentration receded

further from the critical isochore, n(T)/n (T) stopped increasing with de-

creasing e and leveled off. Rather than decreasing with increasing distance

from the double critical point as for separating solutions, the shear vis-

cosity critical exponent remained roughly constant with an average value of

0.070.

KORTAN ANALYSIS

In the introduction, we discussed an expression developed by Kortan,

et al . , to describe the behavior of the correlation length of a binary

solution near a double critical point. This expression was

C " 5°[e + (T
C
/AT) £

2]"V (3-5)

where £ is the correlation length, c° is concentration dependent, aT is the

separation between upper and lower critical temperatures, and v is the cor-

relation length critical exponent for a single critical point. We may express

the shear viscosity as

n « n
Q
UA)*

/v
(3-6)

so that Eq. (3-5) can be modified to

rV^tn/n,,)-
1'* - UV 1/v

[l + (T
c
/AT) e ] (3-7)

A is a microscopic cut-off wave number. It should be independent of

temperature and so

^(n/n^- 17 *- (5°r
1/v

+ UV 1/V
(T

C
/AT) E .

If Eq. (3-7) is correct, then a plot of e" (n/n ) versus e will yield
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a straight line for each separating solution. The value of $ we used in this

expression was near the predicted value for a single critical point, 0.040.

The slope for a given solution should be equal to (s°)"
1/

' v
(T /AT) and the

intercept should be U°)~ • \> is the correlation length critical exponent

and the value used is that predicted for a single critical point, 0.65.

According to Johnston, £° increases as the double critical point is ap-

proached. So, the intercept should decrease as the double critical point is

approached. Whether the slope increases, decreases, or remains the same

depends upon how rapidly T /AT increases as U°)~
1/,v

decreases.

In Figs. 22 through 27, e'
l

{ n/n
)' l/ ^ is plotted versus e for the sepa-

rating solutions. Since it was not known if T was the same for a given

solution as before, different values for T were tried and the results were

again judged based on the linearization and the symmetrization of the plots.

The agreement with Kortan can only be described as poor. The intercepts do

decrease as the double critical point is approached, as expected. However,

it was not possible to achieve any real linearization for the three plots

furthest from the double critical point, and the other two exhibited poor

linearization. Furthermore, in the solution closest to the double critical

point, satisfactory symmetrization could not be achieved.

For solutions beyond the double critical point, Kortan found that
6

5 - A[(T-T
m )

2
+ a(y-y

o
)]-

u
(3-8)

or

r l/v.
A
-l/v

(T.Tm)
2 + A

-l/v
a(y .

yo) (3_9)

where A and a are constants. T
m

is the double critical point temperature

and yQ
is the concentration at the double critical point of the binary

solution. Manipulating and substituting for 5 in Eq. (3-9), this expression
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Figure 22. On a linear scale, e (n/nJ is plotted versus e.

For this mixture, X
H Q

=0.0000, X
Q

=0.9160, and X
3 Mp

=
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Figure 23. On a linear scale, s~
1
{n/n

Q
)~ 25 is plotted versus e.

For this mixture, X
H Q

=0.3914, X
D Q

=0.5279, and X
3 _Mp

=

0.0807. The LCST is 48.46°C.
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Figure 24. On a linear scale, e'
l
[n/n )' Z5 is plotted versus e.

Five different temperature choices for the LCST are

shown to demonstrate the sensitivity of the system

to our choice of the LCST. For this mixture, X„

0.7356, X
D

=0.1866, and X
3_Mp

=0.0778.

LCST = 63.80°C

A LCST = 63.85°C

LCST = 63.90°C

*H
2

O LCST 63.95°C

A LCST = 64.00°C

73
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1 or
Figure 25. On a linear scale, e (n/nj~ is plotted versus e.

For this mixture, X
H Q

=0.7926, X
Q

=0.1298, and

X
3_Mp

=0.0776. The LCST is 74.00°C.
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Figure 26. On a linear scale, e (n/n )" is plotted versus e.

For this mixture, X
H Q

=0.7880, X
D Q

=0.1290, and

X
3 _Mp

=0.0830. The LCST is 75.5°C and the UCST is

77.5°C.

A J< LCST = 75.5°C

V T> UCST = 77.5°C
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Figure 27. This is a composite figure with e"
l
(n/n )"25 plotted

versus s on a linear scale for three of the solutions

that phase separated. While the intercepts do

decrease as the double critical point is approached

(as predicted), it is easy to see that the graphs

exhibit poor linearity.

O X^-0.7356 X^O.1866 X
3.Mp

=0.0778

X
H

-0.7926 X =0.1298 X
3 .Mp

=0.0776

O (T<LCST) X
H Q

=0.7880 X
Q

=0.1290

^ (T>UCST) X
3 _Mp

=0.0830
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becomes

A
1/v

(T,/n )

_1/* A'
1/v

(T-TJ
2

A"
1/v

a(y-y ) (3-10)

If we again assume A is independent of temperature, then a plot of (n/n )"

versus (T-T ) should yield a straight line. The slopes for these solutions

will definitely not change with concentration. However, the intercept again

will get smaller as the critical concentration is approached, in fact going

to zero as y approaches y .

In Figs. 28 through 32, (n/n
)" 1/ '

t
' is plotted versus (T-TJ

2
for four

of the five non-separating systems. T is 76°C for all four solutions. The

H
2
0/3-methylpyridine solution has been excluded. All four curves are very

linear and the symmetrization is also quite good.

A least squares fit was also performed on the data of these four mix-

tures for | T-T
|

2
less than 200 (°C)

2
. The resultant slopes for the first

three were all within 2.5% of the average. The slope of the fourth was

somewhat higher than the other three. In addition, the value of the inter-

cept divided by the slope, which is equal to a(y-y }, scales properly, de-

creasing as the double critical point concentration is approached. The

agreement with Kortan is quite good for these mixtures.
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25
Figure 29. On a linear scale, (n/n )" is plotted versus

|T-76°C|
2

. For this mixture, X
H

=0.7987,

X
D

=0.1241, and X
3 _Mp

=0.0773.
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Figure 30. On a linear scale, (n/n )~ 25 is plotted versus

|T-76°C| . For this mixture, X„ n=0.0820,MpU

X
Q Q

=0.1207, and X
3 _Mp

=0.0772.

A T<76°C

V T>76°C
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Figure 31. On a linear scale, (n/n )" 25 is plotted versus

|
T- 76°C | . For this mixture, X

H Q
=0.8061,

X
D

=0.1165, and X
3 _Mp

=0.0774.

A T<76°C

V T>76°C
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Figure 32. This is a composite figure with (n/nn ) plotted

versus |T-76°C| on a linear scale for the four

solutions shown in Figs. 28-31. The ordinate

axis values have been shifted for three solutions

as shown below. Open symbols are for T<76°C and

closed symbols are for T>76°C.

A X
Hz0

=0.7954 X^O.1245 X
3 _Mp

=0.0801

no shift

O ^0=0.7987 X^-0.1241 X
3 _Mp

=0.0773

shifted by +0.04

X^O.8020 X^O.1207 X
3_Mp

=0.0772

shifted by +0.08

O X^fO.8061 X^-0.1165 X
3 .Mp

=0.0774

shifted by +0.12
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Chapter IV

CONCLUSION

The behavior of the shear viscosity of a ternary liquid was studied both

far from and in the immediate vicinity of a double critical point. We be-

lieved that this system was more properly viewed as quasi-binary, rather than

ternary, because of its composition. As such, it was felt that the behavior

of the shear viscosity critical exponent would mirror the behavior in a true

binary system. In particular, we were interested in finding evidence to sup-

1-4
port or reject the prediction proposed by others that the exponent would

double as the double critical point was approached.

The value of the critical exponent was definitely seen to increase as

we got close to the double critical point. It nearly doubled, increasing

from 0.038 for D
2
0/3-methyl pyridine to 0.072 for the solution of H-O/D-O/S-

methyl pyridine closest to the critical concentration. Beyond the double

critical point, the critical exponent was seen to remain roughly constant

at approximately 0.070 for data far from T
DCp

. We see this as strong evi-

dence in favor of critical exponent doubling at a double critical point for

a binary system.

It might be argued that this is not a quasi-binary system, as proposed,

but is a true ternary system. When examining the critical exponents of a

ternary system, we see that they must be renormalized from the binary system

values. It has been shown that both the correlation length critical ex-

ponent, v, and the coexistence-curve critical exponent, ' b, must be

renormalized by (1-a)" , where a is the heat capacity critical exponent and

92
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is approximately equal to 0.12. If the shear viscosity critical exponent can

be similarly renormalized, then it is approximately equal to (0.04) (0.88)

or 0.046. S. P. Lee has experimentally determined the value of this expo-

20
nent to be equal to about 0.053 for a water-ethanol-chloroform system.

Looking at Table III, we see two solutions, #2 and #3, with experi-

mentally measured values equal to 0.050 and 0.051, respectively. When

closest to the double critical point with solution #5, the critical exponent

has increased to 0.072. This is an increase of about 57% over the theoretical

value and 36% over Lee's experimental value.

Given the behavior of this system, however, the hypothesis that this is

a quasi-binary system seems reasonable. As the coexistence loop was gradually

shrunk, bringing the upper and lower critical solution temperatures closer

together, the shear viscosity critical exponent gradually increased from

0.038 to 0.072. The final value is almost double the exponent value when

far from the double critical point. It remained roughly constant with an

average value of 0.070 as we progressed beyond the miscibility dome far from

the double critical point.

In addition, an attempt was made to compare our data with two expressions

developed by Kortan et al . to describe phenomenologically the behavior of

the correlation length in a reentrant liquid crystal near a double critical

point. These expressions predict that the shear viscosity critical exponent

will gradually double as the miscibility loop shrinks sufficiently and will

remain at the doubled value after the loop disappears completely. This is

in qualitative agreement with what we saw. For the non-separating systems,

the data agreed quite well with the appropriate expression. For our sepa-

rating systems, the quantitative agreement was poor unless we were close to

the double critical point. It is possible that the viscosity anomaly was
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weak enough that the statistical scatter in the data was too large to allow

us to compare this data with Kortan. A standard deviation of 0.3% in

n(T)/n (T) leads to a standard deviation of about 8% in [n(T)/n (T)]"
25

.

If so, it would be necessary to approach T much more closely and with more

precision in order to properly test Kortan's expression for a separating

system than was possible in our experiment.
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TABLE IV

Solution #1

\ =o.oooo X^O- 09160
3-mp

.0840

Temp 10
3
K Density Flowtime n

(!ci (cp-cm /g-s)

8.341

(g/cm
3

)

1.081

(s) (cp)

5.00 575.5 5.189
10.00 8.318 1.077 462.7 4.145
15.00 8.296 1.074 381.8 3.402
20.00 8.273 1.070 322.9 2.858
25.00 8.251 1.066 278.0 2.445
27.00 8.242 1.065 265.3 2.329
28.00 8.237 1.064 257.0 2.252
29.00 8.233 1.064 250.6 2.195
30.00 8.228 1.063 244.7 2.140
31.00 8.224 1.062 239.4 2.091
32.00 8.219 1.061 234.2 2.042
33.00 8.215 1.061 229.7 2.002
34.00 8.210 1.060 225.7 1.964
35.00 8.206 1.059 222.9 1.937
36.00 8.201 1.059 222.6 1.933
36.50 8.199 1.058 223.9 1.942
36.70 8.198 1.058 223.9 1.942
36.80 8.197 1.058 225.2 1.953
36.90 8.197 1.058 226.1 1.961
37.00 8.197 1.058 227.5 1.973
37.10 8.196 1.058 229.7 1.992
37.20 8.196 1.058 233.5 2.025
37.30 8.195 1.058 242.1 2.099
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Solution #2

X
H
2

'D
=0.3914 V - 5279

3-mp
.0807

Temp 10
3
K Density Flowtime n

(°0 (cp-cm /g-s)

9.820

(g/cm
3

)

1.043

(s) (cp)

10.00 358.1 3.668
15.00 9.799 1.040 295.6 3.021
20.00 9.777 1.037 249.8 2.533
25.00 9.756 1.034 215.7 2.177
30.00 9.734 1.031 191.4 1.921
35.00 9.713 1.028 167.7 1.679
40.00 9.691 1.025 151.6 1.507
41.00 9.687 1.025 148.8 1.476
42.00 9.682 1.024 145.6 1.444
43.00 9.678 1.023 142.7 1.414
44.00 9.674 1.023 140.7 1.392
45.00 9.670 1.022 139.0 1.374
46.00 9.665 1.022 138.7 1.369
47.00 9.661 1.021 138.1 1.363
47.50 9.659 1.021 139.4 1.375
47.60 9.658 1.020 140.1 1.381
47.80 9.657 1.020 141.8 1.398
47.85 9.657 1.020 140.8 1.388
47.90 9.657 1.020 141.8 1.398
48.00 9.657 1.020 142.7 1.406
48.10 9.656 1.020 144.4 1.419
48.20 9.656 1.020 146.9 1.448
48.30 9.655 1.020 149.5 1.473
48.40 9.655 1.020 152.9 1.507
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Solution #3

X
H
2

,=0.7356 X
n
2

=0 - 1866
3-mp

0778

Temp 10
3
K Density Flowtime n

(°0 (cp-cm /g-s)

8.228

(g/cm
3

)

1.006

(s) (cp)

30.00 211.1 1.747
35.05 8.205 1.002 186.8 1.536
39.95 8.183 0.9992 168.1 1.374
45.00 8.161 0.9958 152.1 1.236
49.90 8.138 0.9926 139.4 1.126
55.00 8.114 0.9892 128.9 1.035
58.00 8.100 0.9872 124.1 0.9923
59.00 8.095 0.9865 122.7 0.9798
60.10 8.090 0.9858 122.0 0.9730
61.00 8.086 0.9852 121.7 0.9695
61.95 8.081 0.9845 121.7 0.9682
63.00 8.076 0.9838 124.0 0.9852
63.10 8.076 0.9838 124.8 0.9915
63.15 8.076 0.9837 125.2 0.9946
63.20 8.075 0.9837 124.9 0.9922
63.30 8.075 0.9836 125.5 0.9968
63.40 8.074 0.9836 126.8 1.007
63.50 8.074 0.9835 127.8 1.014
63.65 8.073 0.9834 129.2 1.025
63.70 8.073 0.9834 130.0 1.032
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TABLE VII

Solution M

X
H
2

C
,=0.7926 X

D
2

=0
- 1298

3-mp
.0776

Temp 10
3
K Density Flowtime n

i!ci
3

(cp-cm /g-s) (g/cm
3

) (s) (cP )

25.00 8.251 1.006 237.3 1.970
30.00 8.228 1.002 209.3 1.726
34.90 8.206 0.9987 184.9 1.515
40.00 8.183 0.9952 165.7 1.349
45.00 8.161 0.9918 149.0 1.206
50.00 8.138 0.9883 136.3 1.096
55.00 8.114 0.9849 125.4 1.002
60.00 8.091 0.9814 117.1 0.9298
65.00 8.067 0.9780 110.9 0.8749
68.00 8.053 0.9759 108.2 0.8503
69.00 8.048 0.9752 107.4 0.8429
69.95 8.043 0.9745 107.1 0.8395
71.00 8.038 0.9738 107.2 0.8391
71.50 8.036 0.9735 107.5 0.8409
71.70 8.035 0.9733 107.6 0.8415
71.95 8.034 0.9732 107.9 0.8436
72.18 8.033 0.9730 108.4 0.8472
72.30 8.032 0.9729 108.4 0.8471
72.48 8.031 0.9728 108.8 0.8500
72.58 8.031 0.9727 109.0 0.8515
72.62 8.031 0.9727 109.1 0.8522
72.68 8.030 0.9727 109.6 0.8560
72.71 8.030 0.9726 109.5 0.8552
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TABLE VIII

Solution #5

X
H n=0.7880
2
U

X
D
2

= °- 1290
3-mp

,0830

Temp 10
3
K Dens i ty Flowtime n

i!ci (cp-cm
3
/g-s)

8.274

(g/cm
3

)

1.015

(s) (cp)

19.8 285.2 2.395
25.05 8.250 1.011 243.3 2.029
30.05 8.228 1.007 212.9 1.764
35.00 8.206 1.003 189.6 1.561
40.00 8.183 0.9990 169.5 1.386
44.98 8.161 0.9950 152.9 1.242
50.00 8.138 0.9910 139.3 1.123
55.00 8.114 0.9870 128.5 1.029
60.00 8.091 0.9830 119.4 0.9496
52.50 8.079 0.9810 116.2 0.9209
65.00 8.067 0.9790 113.0 0.8924
67.50 8.055 0.9770 110.5 0.8696
70.00 8.043 0.9750 109.2 0.8563
71.00 8.038 0.9742 109.2 0.8549
72.00 8.034 0.9734 109.4 0.8552
73.00 8.029 0.9726 110.4 0.8625
73.55 8.026 0.9722 110.6 0.8628
74.00 8.024 0.9718 111.3 0.8681
74.35 8.022 0.9715 111.8 0.8717
74.60 8.021 0.9713 112.7 0.8778
74.70 8.021 0.9712 112.6 0.8770
74.80 8.020 0.9712 112.6 0.8769
78.85 8.001 0.9769 104.6 0.8101
79.10 8.000 0.9677 103.4 0.8007
79.50 7.998 0.9674 101.9 0.7881
80.00 7.996 0.9670 99.52 0.7693
80.50 7.993 0.9666 97.41 0.7528
81.00 7.991 0.9662 96.07 0.7418
82.00 7.986 0.9654 92.43 0.7123
83.00 7.981 0.9646 89.96 0.6928
84.00 7.977 0.9638 87.68 0.6742
86.00 7.967 0.9622 83.76 0.6420
88.00 7.958 0.9606 80.21 0.6134
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TABLE IX

Solution J 6

X
H
2

i3
=0.7954 V - 1245

3-mp
.0801

Temp 10
3
K Density Flowtime n

&I (cp-cm /g-s)

8.261

(g/cm
3

)

1.007

(s) (cp)

22.70 256.9 2.137
30.10 8.228 1.002 210.1 1.732
34.85 8.206 0.9985 186.9 1.531
40.15 8.182 0.9948 167.3 1.362
44.95 8.161 0.9916 150.9 1.221
50.10 8.138 0.9880 138.1 1.110
54.95 8.114 0.9847 127.0 1.015
60.00 8.091 0.9313 118.0 0.9368
62.55 8.078 0.9795 114.4 0.9052
65.05 8.067 0.9778 111.1 0.8763
67.50 8.055 0.9761 108.8 0.8554
70.05 8.043 0.9744 106.9 0.8377
71.00 8.038 0.9737 107.2 0.8391
71.95 8.034 0.9731 106.6 0.8333
73.00 8.029 0.9723 106.8 0.8338
73.95 8.024 0.9717 107.1 0.8351
74.90 8.020 0.9710 107.5 0.8372
75.60 8.016 0.9706 105.9 0.8239
76.00 8.015 0.9703 105.9 0.8235
76.60 8.012 0.9699 105.9 0.8229
77.00 8.010 0.9696 103.7 0.8054
78.00 8.005 0.9689 101.2 0.7849
79.00 8.000 0.9682 98.37 0.7620
79.95 7.996 0.9676 95.44 0.7384
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Solution H7

X
H
2

i

,=0.7987 V - 1241
3-mp

.0773

Temp 10
3
K Density Flowtime n

(°0 (cp-an
3
/q-s)

8.341

(g/cm
3

)

1.019

(s) (cp)

5.00 467.0 3.969
10.00 8.318 1.016 386.3 3.264
15.00 8.296 1.012 324.0 2.721
20.00 8.273 1.009 274.0 2.287
25.00 8.251 1.006 237.4 1.971
30.00 8.228 1.002 209.3 1.726
34.90 8.206 0.9991 185.0 1.517
40.00 8.183 0.9957 165.7 1.350
44.90 8.161 0.9924 149.4 1.210
45.00 8.161 0.9923 148.7 1.204
50.00 8.138 0.9890 136.2 1.096
55.00 8.114 0.9857 125.1 1.001
59.90 8.091 0.9824 116.6 0.9268
64.90 8.067 0.9791 109.6 0.8657
65.00 8.067 0.9790 109.7 0.8664
70.00 8.043 0.9757 105.1 0.8248
71.00 8.038 0.9750 104.4 0.8182
72.00 8.034 0.9743 104.3 0.8164
73.00 8.029 0.9737 103.8 0.8115
74.00 8.024 0.9730 103.3 0.8065
75.00 8.019 0.9723 102.7 0.8007
75.45 8.017 0.9720 102.3 0.7972
76.00 8.015 0.9717 101.6 0.7913
77.00 8.010 0.9710 99.54 0.7742
79.00 8.000 0.9697 94.90 0.7362
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TABLE XI

Solution #8

X
H
2

0= - 8020 X
D
2

0= - 1207
3-mp

.0772

Temp 10
3
K Density Flowtime n

(°0 3
(cp-cm /g-s)

8.230

(g/cm )

1.002

(s) (cp)

29.50 211.4 1.743

39.95 8.183 0.9945 165.6 1.348
50.00 8.138 0.9878 137.4 1.105
55.05 8.114 0.9843 126.1 1.007
60.06 8.090 0.9810 117.5 0.9325
62.55 8.078 0.9793 113.2 0.8955
65.50 8.064 0.9773 110.5 0.8708
67.50 8.055 0.9759 107.4 0.8443
70.00 8.043 0.9743 105.8 0.8291
71.10 8.038 0.9735 104.7 0.8193
72.00 8.034 0.9729 104.9 0.8199
73.00 8.029 0.9722 104.4 0.8149
73.25 8.028 0.9721 103.8 0.8101
73.50 8.026 0.9719 103.9 0.8105
74.10 8.024 0.9715 103.7 0.8084
74.60 8.021 0.9711 103.4 0.8054
74.85 8.020 0.9710 103.2 0.8037
75.05 8.019 0.9710 103.1 0.8028
75.75 8.016 0.9704 102.4 0.7965
76.15 8.014 0.9701 101.9 0.7922
76.35 8.013 0.9700 101.6 0.7897
76.60 8.012 0.9698 101.1 0.7856
77.10 8.009 0.9695 100.2 0.7780
77.45 8.008 0.9692 99.57 0.7728
78.10 8.005 0.9688 97.84 0.7588
79.05 8.000 0.9681 95.46 0.7393
80.05 7,995 0.9675 92.76 0.7175
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TABLE XII

Solutii3n #9

X
lV

,=0.8061 X
D
2

=0 - 1165 W°' 0774

Temp 10
3
K Density Flowtime ri

(!ci [cp-cm /g-s)

3.189

(g/cm
3

)

0.9839

(s) (cp)

55.00 315.7 0.9905
59.90 3.180 0.9805 295.0 0.9197
65.00 3.170 0.9770 277.3 0.8588
67.45 3.166 0.9753 270.3 0.8345
70.20 3.161 0.9734 267.4 0.8226
71.05 3.159 0.9728 264.7 0.8134
72.05 3.157 0.9721 261.7 0.8031
73.05 3.155 0.9714 259.4 0.7950
74.05 3.153 0.9707 255.9 0.7833
74.50 3.152 0.9704 255.8 0.7825
75.05 3.151 0.9700 254.4 0.7777
75.50 3.151 0.9697 254.2 0.7766
76.00 3.150 0.9694 252.1 0.7697
77.05 3.148 0.9686 248.9 0.7589
78.00 3.146 0.9680 244.3 0.7439
80.05 3.142 0.9666 233.0 0.7076
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TABLE XIII

Solution #10

X
H
2

=0 - 9238 x
D Q

=0.0000
3-mp

,0762

Temp 10
3
K Density Flowtime n

i!ci (cp-cm /g-s)

9.820

(g/cm
3

)

1.007

(s) (cp)

10.05 317.8 3.144
15.00 9.799 1.004 257.2 2.628
19.60 9.779 1.000 227.7 2.228
25.00 9.756 0.9965 194.6 1.892
30.00 9.734 0.9929 171.2 1.655
35.00 9.713 0.9893 151.5 1.456
40.00 9.691 0.9857 135.8 1.297
45.05 9.669 0.9821 122.1 1.159
50.00 9.648 0.9785 112.4 1.061
55.00 9.627 0.9749 102.2 0.9591
60.00 9.605 0.9713 94.65 0.8830
65.05 9.549 0.9676 87.49 0.8084
70.05 9.493 0.9640 80.81 0.7395
75.05 9.438 0.9604 75.28 0.6823
80.05 9.382 0.9568 70.41 0.6321
85.00 9.328 0.9532 64.99 0.5778
89.90 9.273 0.9497 60.58 0.5335
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TABLE XIV

Solution #1

X
H n

=0.0000 Xn n=0.9160 X, =0.0840

Data for Figures 9 and 22

LCST = 37.35°C LCST=37.36°C

Temp

(°0 i& n/n
10!i

-1, , >-25
£ tn/n )

30.00 236.7 1.003 237.0 39.15
31.00 204.5 1.007 204.8 41.01
32.00 172.3 1.011 172.6 44.07
33.00 140.1 1.018 140.4 45.60
34.00 107.9 1.025 108.2 49.85
35.00 75.68 1.038 76.00 51.79

36.00 43.48 1.062 43.80 50.75
36.50 27.38 1.081 27.70 51.51

36.70 20.93 1.086 21.26 59.80

36.80 17.71 1.095 18.03 57.37
36.90 14.49 1.102 14.81 59.55

37.00 11.27 1.112 11.59 60.72
37.10 8.052 1.125 8.373 62.85
37.20 4.831 1.147 5.153 62.93
37.30 1.161 1.192 1.932 64.13
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TABLE XV

Soluti on #2

X
H
2
C
=0.3914 V - 5279 X

3-
=0.0807

mp

Data for Figures 10 and 23

LCST = 48 .50°C LCST = 48.46°C

Temp

10
4
e

n/n
10

4
E

-1, . .,-25

40.00 264.3 1.025 263.1 20.51
41.00 233.2 1.028 232.0 21.62
42.00 202.1 1.030 200.9 23.78
43.00 171.0 1.033 169.8 26.16
44.00 139.9 1.040 138.7 27.05
45.00 108.8 1.051 107.6 26.80
46.00 77.82 1.071 76.49 23.53
47.00 46.63 1.090 45.40 25.55
47.50 31.09 1.112 29.85 23.57
47.60 27.98 1.119 26.74 22.49
47.80 21.76 1.138 20.52 19.24
47.85 20.21 1.131 18.97 24.29
47.90 18.65 1.140 17.41 21.70
48.00 15.54 1.149 14.30 21.71
48.10 12.44 1.162 11.19 20.94
48.20 9.327 1.189 8.084 16.32
48.30 6.218 1.212 4.975 16.43
48.40 3.109 1.243 1.866 23.30
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TABLE XVI

Solution #3

X
H
2

=0.7356 X
D
2

=0 - 1866 X
3-mp=

- 0778

Data for Figures 11 and 24

LCST 64 .00°C LCST = 64.00°C

Temp

12E1 iA
1008.0

n/n
Q

1.000 1008.0

-1, , ,-25

30.00 9.916
35.05 858.7 1.006 858.7 10.03
39.95 713.3 1.017 713.3 9.198
45.00 563.5 1.029 563.5 8.683
49.90 418.2 1.045 418.2 7.956
55.00 266.9 1.066 266.9 7.580
58.00 178.0 1.085 178.0 7.310
59.00 148.3 1.092 148.3 7.469
60.10 115.7 1.109 115.7 6.508
61.00 88.98 1.123 88.98 6.183
61.95 60.80 1.142 60.80 5.959
63.00 29.66 1.185 29.66 4.840
63.10 26.69 1.194 26.69 4.451
63.15 25.21 1.200 25.21 4.158
63.20 23.73 1.197 23.73 4.703
63.30 20.76 1.206 20.76 4.457
63.40 17.80 1.220 17.80 3.897
63.50 14.83 1.230 14.83 3.813
63.65 10.38 1.247 10.38 3.865
63.70 8.898 1.257 8.898 3.692
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TABLE XVII

Solution #4

X
H
2

C
,=0.7926 X

D
2

=0 " 1298 X
3- m =0.0776
mp

Data for Figures 12 and 25

LCST = 74.00°C LCST = 74.00°C

Temp

l!ci ig\ n/n igS
-1, . ,-25

£ ln/n )

40.00 979.4 1.015 979.4 7.767
45.00 835.4 1.020 835.4 6.301
50.00 691.3 1.035 691.3 6.121
55.00 547.3 1.049 547.3 6.079
60.00 403.3 1.074 403.3 4.260
55.00 259.3 1.108 259.3 2.970
68.00 172.8 1.135 172.8 2.495
69.00 144.0 1.145 144.0 2.404
69.95 116.7 1.159 116.7 2.143
71.00 86.42 1.179 86.42 1.968
71.50 72.01 1.192 72.01 1.794
71.70 66.25 1.197 66.25 1.756
71.95 59.03 1.205 59.03 1.668
72.18 52.43 1.215 52.53 1.527
72.30 48.97 1.217 48.97 1.537
72.48 43.79 1.225 43.79 1.459
72.58 40.90 1.229 40.90 1.440
72.62 39.75 1.231 39.75 1.422
72.68 38.02 1.237 38.02 1.290
72.71 37.16 1,237 37.16 1.347
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TABLE XVIII

Solution #5

X
H n=0.7880
2
U

X
D
2

0= - 1290 X
3-
_ =0.0830
mp

Data for Figures 13 and 26

LCST 75.50°C LCST = 75.50°C

UCST = 77.50°C UCST - 77.50°C

Temp
-1/ , -25

(°C) isH-
n/n 10

4
£

c (n/n )

40.00 1018.0 1.016 1018.0 6.604

44.98 875.4 1.023 875.4 6.470
50.00 731.4 1.034 731.4 5.927

55.00 588.0 1.051 588.0 4.904
60.00 444.6 1.069 444.6 4.242
62.50 372.5 1.086 372.5 3.410
65.00 301.2 1.101 301.2 2.996
67.50 229.5 1.122 229.5 2.452
70.00 157.8 1.151 157.8 1.884
72.00 100.4 1.189 100.4 1.315
72.50 86.05 1.202 86.05 1.169
73.00 71.71 1.217 71.71 1.028
73.55 55.93 1.233 55.93 0.9512
74.00 43.02 1.249 43.02 0.8959
74.35 32.98 1.261 32.98 0.9202
74.60 25.81 1.276 25.81 0.8749
74.70 22.95 1.277 22.95 0.9648
74.80 20.08 1.279 20.08 1.060
78.85 38.50 1.258 38.50 0.8366
79.10 45.63 1.249 45.63 0.8447
79.50 57.04 1.237 57.04 0.8602
80.00 71.30 1.218 71.30 1.013
80.50 85.56 1.199 85.56 1.251
81.00 99.81 1.192 99.81 1.241
82.00 128.3 1.162 128.3 1.827

83.00 156.9 1.146 156.9 2.113
84.00 185.4 1.132 185.4 2.431
86.00 242.4 1.111 242.4 2.969
88.00 299.4 1.091 299.4 3.785



Solution #6

X
H
2
0= - 7954

TABLE XIX

V - 1245

Data for Figures 16 and 28

X-, m„=0-08013-mp

110

T
DCP

" 76.25°C

Temp
1 i I" 25(n/n )

j2ei 10
4
e

1033.0

n/n
Q

1.019

|T-76°C|
2

1285.240.15 0.6247
44.95 895.8 1.022 964.1 0.5804
50.10 748.4 1.041 670.8 0.3662
54.95 609.6 1.053 443.1 0.2750
60.00 465.1 1.072 256.0 0.1758
62.55 392.1 1.087 180.9 0.1242
65.05 320.5 1.101 119.9 0.0902
67.50 250.4 1.123 72.25 0.0550
70.05 177.4 1.149 35.40 0.0310
71.00 150.3 1.170 25.00 0.0197
71.95 123.1 1.180 16.40 0.0160
73.00 93.02 1.201 9.000 0.0103
73.95 65.83 1.222 4.203 0.0067
74.90 38.64 1.244 1.210 0.0043
75.60 18.60 1.239 0.1600 0.0047
76.00 0.0000 1.246 0.0000 0.0041
76.60 10.02 1.243 0.3600 0.0043
77.00 21.47 1.238 1.000 0.0048
78.00 50.09 1.225 4.000 0.0063
79.00 78.71 1.208 9.000 0.0089
79.95 105.9 1.188 15.60 0.0135



Solution #7

V - 7987

TABLE XX

X
D
2

=0 - 1241

Data for Figures 17 and 29

X, =0.0773
3-mp

111

T
DCP

= 76.00°C

Temp

(n/n
Q

)(°C)

1031.0

n/n

1.018

|T-76°C|
2

1296.040.00 0.6402
44.90 890.7 1.022 967.2 0.5804
45.00 887.9 1.020 961.0 0.6095
50.00 744.7 1.037 676.0 0.4032
55.00 601.5 1.050 441.0 0.2953
59.90 461.1 1.071 256.0 0.1800
64.90 317.9 1.097 123.2 0.0988
65.00 315.1 1.100 121.0 0.0923
70.00 171.8 1.143 36.00 0.0354
71.00 143.2 1.153 25.00 0.0285
72.00 114.6 1.170 16.00 0.0197
73.00 85.92 1.182 9.000 0.0153
74.00 57.28 1.194 4.000 0.0119
75.00 28.64 1.206 1.000 0.0093
75.45 15.75 1.208 0.3025 0.0089
76.00 0.0000 1.210 0.0000 0.0085
77.00 28.64 1.203 1.000 0.0098
79.00 85.92 1.181 9.000 0.0156



Solution #8

V - 8020

TABLE XXI

V - 1207

Data for Figures 18 and 30

Xo m„=0.07723-mp

112

T
DCP

" 76.00
U
C

Temp

(n/n )" 25

ifci

1045.0

n/n„

1.011

|T-76°C|
2

1332.039.95 0.7607
50.00 744.7 1.041 676.0 0.3662
55.05 600.0 1.053 438.9 0.2750
60.05 456.8 1.076 254.4 0.1602
62.55 385.2 1.082 180.9 0.1394
65.50 300.7 1.111 110.3 0.0720
67.50 243.4 1.115 72.25 0.0658
70.00 171.8 1.144 36.00 0.0346
71.10 140.3 1.151 24.01 0.0297
72.00 114.6 1.170 16.00 0.0197
73.00 85.92 1.182 9.000 0.0153
73.25 78.76 1.180 7.563 0.0160
73.50 71.60 1.185 6.250 0.0144
74.10 54.42 1.194 3.610 0.0119
74.60 40.10 1.199 1.960 0.0107
74.85 32.94 1.201 1.323 0.0103
75.05 27.21 1.204 0.9025 0.0096
75.75 7.160 1.208 0.0625 0.0089
76.15 4.296 1.209 0.0225 0.0087
76.35 10.02 1.217 0.1225 0.0074
76.60 17.18 1.208 0.3600 0.0089
77.10 31.51 1.205 1.210 0.0094
77.45 41.53 1.204 2.103 0.0096
78.10 60.15 1.194 4.410 0.0119
79.05 87.36 1.181 9.303 0.0156
80.05 116.0 1.164 16.40 0.0224
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TABLE XXII

Solution #9

X„ n=0.8061 X n -=0.1165 X, =0.0774
HnU UpU J-mp

Data for Figures 19 and 31

T
DCP

" 76.45°C

Temp
,-25

ifci

613.6

n/n
Q

1.040

|T-76°C|
2

441.0

(n/n )

55.00 0.3751

59.90 473.4 1.063 259.2 0.2171

65.00 327.5 1.091 121.0 0.1133

67.45 257.4 1.107 73.10 0.0788

70.20 178.8 1.144 33.64 0.0346

71.05 154.5 1.148 24.50 0.0317

72.05 125.9 1.152 15.60 0.0291

73.05 97.25 1.160 8.703 0.0245

74.05 68.65 1.161 3.803 0.0239

74.50 55.78 1.169 2.250 0.0202

75.05 40.05 1.172 0.9025 0.0189

75.50 27.17 1.179 0.2500 0.0163

76.00 12.87 1.178 0.0000 0.0166

77.05 17.16 1.181 1.103 0.0156

78.00 44.34 1.175 4.000 0.0177

80.05 103.0 1.153 16.40 0.0285



114

Solution #10

TABLE XXIII

X
H
2

=0 - 9238 X
D
2

=0 - 0000 X
3-mp

=0 - 0762

Data for Figure 20

T
DCP

= 76.00°C

Temp
/ 1 -25

ifci 10
4
£

1174.0

n/ti
Q

1.005

|T-76°C|
2

1681.0

(n/n )

35.00 0.8828
40.00 1031.0 1.015 1296.0 0.6892
45.05 886.4 1.020 957.9 0.6095
50.00 744.7 1.041 676.0 0.3662
55.00 601.5 1.044 441.0 0.3408
60.00 458.3 1.060 256.0 0.2330
65.05 313.6 1.066 119.9 0.2023
70.05 170.4 1.064 35.40 0.2121
75.05 27.21 1.066 0.9025 0.2023
80.05 116.0 1.068 16.40 0.1931
85.00 257.8 1.051 81.00 0.2884
89.90 398.1 1.041 193.2 0.3662
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ABSTRACT

Critical phenomena in binary fluid systems, particularly critical ex-

ponents for these systems, have been studied extensively in recent years.

Most of these studies have centered on binary mixtures that unmix when

cooled below an upper critical solution temperature. We were interested

in systems that display what is called reentrant behavior, those that will

again mix when cooled below a lower critical solution temperature. We have

attempted to answer the question "What is the behavior of the shear vis-

cosity critical exponent as the mixture concentration approaches the

double critical point concentration of a system?"

To answer this question, we have measured the shear viscosity as a

function of temperature of ternary mixtures of 3-methyl pyridine, water

(H^O), and heavy water (D-O). Because of the relationship between H
2

and D-0, we believe this is a quasi-binary system. Ten different con-

centrations, five on each side of the double critical point concentration,

were studied. Several of the mixtures were very near the double critical

point concentration.

The results were analyzed in two different ways. In the first method,

the shear viscosity anomaly is described by

n/n

'

T-T
c'

T
c

where T
c

is the critical temperature being approached and $ is the shear

viscosity critical exponent. We found the exponent to nearly double as



the double critical point concentration was approached. In the second

method, the anomaly is described by

for closed-loop systems, e, is a concentration dependent parameter, v is

the correlation length critical exponent. AT is the separation between

upper and lower critical solution temperatures. The anomaly is described

by

(n/^)-
l/^-1/v

(T.T
1||

)V 1/v
B(y.y )

for no-loop systems. A and a are constants. T is the double critical

point temperature, y is the double critical point concentration and y

is the concentration of the mixture. The agreement between this analysis

and our results was poor for closed-loop mixtures and good for no-loop

mixtures.


