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Abstract 

Energy consumption due to dairy production constitutes 10% of all energy usage in the U.S. 

Food Industry. Improving energy efficiency in food refrigeration and freezing plays an important 

role in meeting the energy challenges of today. Freezing and hardening are important but energy-

intensive steps in ice cream manufacturing. This thesis presents a series of models to address 

these issues. The first step taken to model energy consumption was to create a temperature-

dependent ice cream material using empirical properties available in the literature. The 

homogeneous ice cream material is validated using finite element analysis (FEA) and previously 

published experimental findings. The validated model is then used to study the efficiency of 

various package configurations in the ice cream hardening process.  The next step taken is to 

consider product quality by modeling the ice crystal size distribution (CSD) throughout the 

hardening process. This is achieved through the use of population balance equations (PBE). 

Crystal size and corresponding hardened ice cream coarseness can be predicted through the PBE 

model presented in this thesis. The crystallization results are validated through previous 

experimental study. After the hardening studies are presented, the topic of continuous freezing is 

discussed. The actual ice cream continuous freezing process is inherently complex, and therefore 

simplifying assumptions are utilized in this work. Simulation is achieved through combined 

computational fluid dynamics (CFD) and PBE modeling of a sucrose solution. By assuming 

constant fluid viscosity, a two-dimensional cross section is able to be employed by the model. 

The results from this thesis provide a practical advancement of previous ice cream simulations 

and lay the groundwork for future studies. 

 



iv 

 

 

Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................ viii 

Acknowledgements ........................................................................................................................ ix 

Chapter 1 - Introduction .................................................................................................................. 1 

1. Thesis Format .......................................................................................................................... 1 

2. Thesis Overview ...................................................................................................................... 1 

3. Literature Review .................................................................................................................... 2 

3.1. Ice Cream Manufacturing ................................................................................................. 2 

3.1.1. Processing Stage 1 ......................................................................................................... 2 

3.1.2 Processing Stage 2 .......................................................................................................... 3 

3.2. Energy Usage ................................................................................................................... 4 

3.3. Crystallization .................................................................................................................. 5 

4. Summary of Thesis Goals ....................................................................................................... 7 

References for Chapter 1 ............................................................................................................. 8 

Chapter 2 - Finite Element Analysis of Ice Cream Hardening ..................................................... 12 

Abstract ..................................................................................................................................... 12 

1. Introduction ........................................................................................................................... 12 

2. Materials and Methods .......................................................................................................... 15 

2.1 Governing Equations ....................................................................................................... 15 

2.2 FEA Models .................................................................................................................... 16 

2.3. Mesh Refinement, Convective Coefficient, and Time Step ........................................... 19 

3. Results and Discussion .......................................................................................................... 19 

3.1 Model Results .................................................................................................................. 19 

3.2 Discussion ....................................................................................................................... 26 

4. Conclusions ........................................................................................................................... 27 

References for Chapter 2 ........................................................................................................... 29 

Nomenclature for Chapter 2 ...................................................................................................... 31 

Chapter 3 - Population Balance Model for Ice Cream Hardening ................................................ 39 



v 

 

Abstract ..................................................................................................................................... 39 

1. Introduction ........................................................................................................................... 39 

2. Materials and Methods .......................................................................................................... 41 

2.1 Theory ............................................................................................................................. 41 

2.2 Simulation ....................................................................................................................... 45 

3. Results and Discussion .......................................................................................................... 50 

3.1 Model 3.1: Single Phase Cylindrical ............................................................................... 50 

3.2 Model 3.2: Single Phase Cubical and Model 3.3: Multiphase Cubical ........................... 51 

4. Conclusions ........................................................................................................................... 53 

References for Chapter 3 ........................................................................................................... 54 

Chapter 4 - Combined Computational Fluid Dynamics and Population Balance Freezing .......... 61 

Abstract ..................................................................................................................................... 61 

1. Introduction ........................................................................................................................... 61 

2. Materials and Methods .......................................................................................................... 63 

3. Results and Discussion .......................................................................................................... 67 

4. Conclusions ........................................................................................................................... 69 

References for Chapter 4 ........................................................................................................... 70 

Nomenclature for Chapter 4 ...................................................................................................... 72 

Chapter 5 - Conclusions and Future Work .................................................................................... 78 

1. Thesis Discussion .................................................................................................................. 78 

2. Thesis Conclusions................................................................................................................ 79 

2.1. FEA Hardening .............................................................................................................. 79 

2.2. PBM Hardening .............................................................................................................. 80 

2.3. CFD-PBE Freezing ........................................................................................................ 80 

3. Future Work .......................................................................................................................... 81 

References for Chapter 5 ........................................................................................................... 82 

Appendix A - Thesis Publications ................................................................................................. 83 

Appendix B - Calculation of Convective Heat Transfer Coefficient ............................................ 84 

 



vi 

 

 

List of Figures 

Figure 2.1 Model 2.2 ..................................................................................................................... 32 

Figure 2.2 Model 2.3 Temperature Distribution ........................................................................... 32 

Figure 2.3 Model 2.1 Temperature Variations .............................................................................. 33 

Figure 2.4 Temperature variation at three locations for Model 2.2. ............................................. 33 

Figure 2.5 Model 2.2 Temperature Distribution at 3900 sec (1 hr, 5 min). .................................. 34 

Figure 2.6 Model 2.2 Results with Experimental Comparison. .................................................... 34 

Figure 2.7 Model 2.3 Mid-Center Temperature Variation. ........................................................... 35 

Figure 2.8 Transient response of horizontal temperature distribution from center to outer surface 

from Model 2.3 with a convective coefficient of 30 W/(m2•K). ........................................... 35 

Figure 2.9 Variation of residence time   versus the convective coefficient h for draw temperatures 

of -10,-8,-6,-4 and -2°C from Model 2.3. .............................................................................. 36 

Figure 2.10 Transient temperature distribution at 1 hr for Model 2.5. ......................................... 36 

Figure 2.11 Percent time saved for Models 2.4-2.7 compared to Model 2.3. ............................... 37 

Figure 3.1 Dimensions and boundary conditions for Model 3.1. .................................................. 56 

Figure 3.2 Cubical setup with Model 3.2 temperature contours at 20 min. .................................. 56 

Figure 3.3 Temperature history plot for center point of Model 3.1. ............................................. 57 

Figure 3.4 Temperature history comparison for Models 3.2 and 3.3. ........................................... 57 

Figure 3.5 Model 3.2 temperature contours at hardening completion (64 min). .......................... 58 

Figure 3.6 Model 3.3 temperature contours at 64 min. ................................................................. 58 

Figure 3.7 Model 3.3 ice volume fraction at 64 min. .................................................................... 59 

Figure 3.8 Comparison of Russell et al. (1999) and PBM calculated mean crystal length versus 

ice phase content. .................................................................................................................. 59 

Figure 3.9 Volume-averaged crystal size distribution (CSD) after 64 min of residence time. ..... 60 

Figure 4.1 Components of the KSU Freezer ................................................................................. 73 

Figure 4.2 CFD-PBE Model Conditions ....................................................................................... 73 

Figure 4.3 Relative Velocity Vectors Colored by Relative Velocity Magnitude in m/s ............... 74 

Figure 4.4 Temperature Distribution (in °C) after 20 sec of Dwell Time in the Freezer .............. 74 

Figure 4.5 Ice Fraction for 0.25 Sucrose Soln. after 20 sec of Dwell Time in the Freezer........... 75 



vii 

 

Figure 4.6 Ice Fraction for 0.15 Sucrose Soln. after 20 sec of Dwell Time in the Freezer........... 75 

Figure 4.7 Discrete Crystal Number Density Based on Volume-Average for 0.25 Sucrose Soln. 

after 20 sec of Dwell Time .................................................................................................... 76 

Figure 4.8 Discrete Crystal Number Density Based on Volume-Average for 0.15 Sucrose Soln. 

after 20 sec of Dwell Time .................................................................................................... 76 

Figure B.1 ...................................................................................................................................... 84 

 



viii 

 

 

List of Tables 

Table 1.1 Ice Cream Manufacturing ............................................................................................. 11 

Table 2.1 Ice Cream Material Properties (Cogne et al. 2003; Cordell and Webb 1985) .............. 37 

Table 2.2 Material Properties of Container (Incropera et al. 2007) .............................................. 38 

Table 2.3 Geometric Properties of Sqround Container ................................................................. 38 

Table 4.1 Zones and Boundary Conditions ................................................................................... 77 

 



ix 

 

 

Acknowledgements 

I would like to thank my graduate committee: Profs. Jack Xin, Z.J. Pei, Karen Schmidt, 

and Sameer Madanshetty. I would also like to thank Will Cromer and Nick Rauth for the 

assistance they provided on this work. I am also grateful to ASME for the opportunity to present 

the work of Chapter 4 and portions of Chapter 3 at the 2010 Manufacturing Science and 

Engineering Conference (MSEC) in Erie, PA. Lastly I would like to thank my fellow graduate 

students who have enriched my education. 

 



1 

 

Chapter 1 - Introduction 

 1. Thesis Format 

Following this introductory chapter, three technical chapters are presented. At the time of 

the thesis submission, Chapters 2 and 3 are in the process of being submitted to the International 

Journal of Refrigeration and Computational Materials Science, respectively. The fourth chapter 

was presented at the ASME 2010 Manufacturing Science and Engineering Conference (MSEC) 

in Erie, PA. The reference number for that paper is MSEC2010-34218. Also note that two other 

MSEC papers were presented on this work: MSEC2010-34103 and 34104. Appendix A provides 

complete references for each paper. The fifth chapter of this thesis summarizes conclusions and 

future research directions. 

 

 2. Thesis Overview 

Ice cream manufacturing is comprised of several carefully-controlled steps. The 

following work addresses the freezing and hardening process steps through numerical 

simulation. The primary motivation for these analyses is to reduce energy consumption 

throughout the manufacturing process. Secondary goals include better fundamental 

understanding of the material science and improving quality control through ice crystal size 

prediction. To provide an adequate background and context for the present work, a literature 

review on ice cream manufacturing and related topics is presented in Section 3. Thesis goals are 

expanded in Section 4. 

The second chapter develops a single phase, finite element model for energy analysis in 

the hardening process step. The model is validated using previously published experimental 
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results, and then specific energy saving approaches are presented and quantified. The third 

chapter advances the hardening model using the population balance (PB) method of Randolph 

and Larson (1988). This approach allows for greater microstructural representation. A 

multiphase material is used to predict the ice crystal size distribution (CSD) throughout the 

hardening process. The simulation is carried out using Fluent 6.3 (2006) for its heat transfer and 

PB capabilities. The material is assumed to be internally static in the blast freezer, and therefore 

flow calculations are not required.  

The fourth chapter focuses on the continuous freezing process within a scraped surface 

heat exchanger (SSHE). The process is highly complex given the non-Newtonian, temperature-

dependent viscosity of the ice cream mix. Chapter 4 takes a different approach to this step by 

using computational fluid dynamics (CFD) to model a sucrose solution instead of the ice cream 

mix. Flow characteristics are simulated using a constant sucrose solution viscosity. The ice CSD 

is predicted and compared with previous experimental and numerical work. Conclusions and 

future research are restated in the fifth chapter. 

 

 3. Literature Review 

 3.1. Ice Cream Manufacturing 

 3.1.1. Processing Stage 1 

A typical ice cream mix is composed of 10% milk fat, 20% milk solids (including the 

10% milk fat), 16% sweeteners, and 0.5% stabilizers and emulsifiers, with the remaining portion 

being water (Marshall et al., 2003). These ingredients will be combined and then blended, 

pasteurized, homogenized, and cooled (Fellows, 2000). Table 1.1 shows each of the 
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manufacturing steps with their associated process stages. The first process stage will result in a 

homogenous liquid mix which can then be converted to the partially frozen foam of many 

different flavors.  To produce a high quality ice cream product, the homogenization process is 

important, as it breaks large fat globules into much smaller ones (from approximately 10 to 1 µm 

in diameter). This is achieved by forcing the globules through a series of small valves using 

pressures up to about 150 atm on the first stage and 35 atm on the second stage. This two-stage 

system reduces the propensity of fat globules to cluster. At the same time surface active 

components reorient and form a new membrane around the individual fat globules.   

The cooled mix is then pumped into aging tanks. Several chemical reactions occur during 

aging that contribute to high-quality ice cream. First, the emulsifiers displace proteins and adsorb 

on the fat globule surfaces, forming a weaker membrane (Clarke, 2004). Second, the milk fat 

begins to crystallize.  Most ice cream mixes require 2 to 6 hours to age properly.  

 

 3.1.2 Processing Stage 2 

The second stage consists of flavoring and coloring, freezing, particulate addition, 

packaging, hardening, and storage. While the flavoring and coloring step provides the 

characteristic flavor and color to the ice cream mix, freezing is usually achieved by pumping 2 to 

4°C mix into a scraped-surface heat exchanger (Marshall et al., 2003) to form the partially-frozen 

foam. In the freezer, the ice cream mix is vigorously agitated and cooled, and thin layers of ice 

form on the barrel wall. These crystals are removed by the dasher, and return to the mix along 

with air bubbles. The freezing process is maintained at a relatively high rate, because this 

supports the greatest amount of nucleation (Goff, 2009). Agitation also causes the fat globules to 

partially coalesce, and that in turn allows them to capture the air bubbles within the fat crystal 
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networks. Together these components create the colloidal foam of ice cream. A useful review of 

ice cream structure formation and stabilization is available from Goff (2002). Processing time for 

continuous freezers is typically on the order of 30 seconds and during this time about 50% of 

water in the mix is frozen.  

Ice cream exits the freezer at -5 to -6°C with 20 to 60% fat destabilization (Marshall et 

al., 2003). Particulates such as nuts or fruits are sometimes added after the processing step, but 

all ice cream will be quickly packaged and will undergo the hardening process. Hardening is 

usually performed in a tunnel with airflow at -30 to -45°C. The final product emerges between 

about -15 and -20°C (Schmidt, 2004). 

 

 3.2. Energy Usage 

Nearly six billion liters of ice cream and related frozen desserts were produced in the 

United States in 2006. Total sales for the year were close to $23 billion (IDFA, 2009). Energy 

consumption by the U.S. dairy industry was 121 Trillion Btu (35B kW·h). This is equivalent to 

11 months of electricity consumption for the state of Kansas in 2006 (EIA, 2006). This usage 

constitutes 10.2% of all energy consumed by the U.S. food industry (EIA, 2006). Consequently, 

manufacturers are becoming increasingly interested in strategies to reduce energy needs 

(Higgins, 2009).  

Ice cream manufacturing requires several meticulous steps. These have been discussed in 

the preceding section and are detailed at length by Marshall et al. (2003), as well as Schmidt 

(2004) and Clarke (2004). Freezing, hardening, and storage make up the most significant energy 

usage (Greener, 2010), and all three involve refrigeration. Ice cream studies have been 

predominantly experimental with focus on the freezing process (Adapa et al., 2000; Flores and 
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Goff, 1999; Russell et al., 1999; Donhowe et al., 1991; Bolliger et al., 2000). Specific ice cream 

energy studies are quite limited. One of the few ice cream energy efficiency studies available in 

the literature is an experimental study by Smith et al. (1985). That work considered the effect of 

sweeteners and gums on the electrical energy requirements of the freezing process. Energy 

simulations are also few in number. One example is the continuous freezer heat transfer model of 

Bongers (2006). 

Although hardening is actually the most energy intensive step, consuming roughly 45% 

of the total energy in ice cream manufacturing (Greener, 2010), little has been published on 

energy consumption during the process. Air temperatures in the hardening room may be lower 

than -35°C, yet it can take hours for the ice cream to reach the required temperature of -18°C 

(Marshall et al., 2003). Tracey and McCown (1934) experimentally studied the effects of forced 

convection and packaging. De Cindio et al. (1985) investigated the ice cream hardening using a 

2D transient finite element analysis. Rauth et al. (2010) used a three-dimensional FEA model to 

replicate the experimental hardening results of Tracey and McCown (1934). Cromer et al. (2010) 

studied energy efficiency in the hardening process by varying package configurations. 

Temperature fluctuations of the subsequent process, storage, were modeled by Zuritz and Singh 

(1985).  

 

 3.3. Crystallization 

The main difficulty in modeling ice cream is its complex microstructure. In order for 

meaningful conclusions on energy efficiency to be drawn, product quality (texture) must be 

considered. This means that the microstructure must be accounted for in some regard. While 

each individual step is required to achieve an acceptable mouthfeel (texture), the freezing and 



6 

 

hardening processes have the greatest impact on the ice cream microstructure. Crystals form and 

grow in order to alleviate undercooling during these refrigeration steps (Fennema et al., 1973; 

Sutton and Bracey, 1996). Substantial research has been conducted in this field, but much 

uncertainty remains due to the inherent complexity of the crystallization kinetics (Cook and 

Hartel, 2010). Most ice crystallization studies have focused on experimental investigation, rather 

than computational modeling. 

Experimental ice cream research includes an extensive study by Russell et al. (1999) to 

determine the most dominant crystallization mechanisms within an SSHE. They also briefly 

considered the conventional hardening process. Adapa et al. (2000) reviewed the influence of fat 

content and fat replacers on the viscoelastic properties of ice cream. Crilly et al. (2008), as well 

as Regand and Goff (2005), studied the effects of ice structuring proteins (ISPs). 

Recrystallization has been discussed by Donhowe and Hartel (1996), and ice recrystallization 

inhibition was studied by Aleong et al. (2008). Other innovations include the low temperature 

extrusion (LTE) process detailed by Wildmoser et al. (2004). Their work showed that the twin 

screw extrusion system (TS-LTE) resulted in significant quality improvements over the 

conventional SSHE / hardening combination. As reviewed by Zheng and Sun (2006), ultrasound 

vibrations have been used to break up ice crystals during food freezing processes, including ice 

cream. 

In contrast to the quickly developing experimental research, ice cream freezing and 

hardening simulations are fewer in number. Aldazabal et al. (2006) performed a hardening 

simulation in which sugar diffusion and ice crystal microstructure were modeled. Ben-Yoseph 

and Hartel (1998) simulated recrystallization during ice cream storage. A popular approach for 

simulating particulate processes is through the use of the population balance equations (PBE) 
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presented by Hulburt and Katz (1964) and refined for continuous crystallization by Randolph 

and Larson (1988). Examples of PBE simulations include those of Hey and MacFarlane (1998); 

Shirai et al. (1986). Some researchers have combined PBE with computational fluid dynamics 

(CFD) to model dynamic crystallization processes. Woo et al. (2006) modeled antisolvent 

crystallization in an agitated semibatch vessel using combined CFD-PBE. Similarly, Lian et al. 

(2006) simulated the crystallization of a sucrose solution within an SSHE using this method. 

PBE have also been applied to lactose crystallization by Griffiths et al. (1982); Shi et al. (1990). 

Engineering Aspects of Milk and Dairy Products provides a wealth of information on dairy 

crystallization topics (dos Reis Coimbra and Teixeira, 2010). 

 

 4. Summary of Thesis Goals 

The primary goal of this work is to advance current energy and material simulations of 

ice cream manufacturing. To achieve this aim, the following intermediate goals have been 

developed. 

1. Create a robust and accurate single phase ice cream material for FEA and CFD 

simulations. 

2. Validate the single phase ice cream material with experimental results. 

3. Utilize the validated hardening model to quantify process efficiency and to develop 

energy saving strategies. 

4. Advance the single phase material to include multiphase ice CSD prediction in the 

hardening process. 

5. Also use the multiphase approach to study the continuous freezing process. 
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Table 1.1 Ice Cream Manufacturing 

Processing Stage Manufacturing Step
Blending

Stage 1 Pasteurization
Homogenization

Cooling and Aging
Flavoring and Coloring

Freezing
Stage 2 Particulate Addition

Packaging
Hardening 

Storage  
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Chapter 2 - Finite Element Analysis of Ice Cream 

Hardening 

 Abstract 

Energy consumption by the dairy industry in the United States constitutes 10% of all 

energy consumed by the U.S. food industry. Reducing energy consumption in cooling and 

refrigeration of foods plays an important role in meeting the energy challenges of today. 

Hardening is an important but energy-intensive step in ice cream manufacturing. This paper 

presents a finite element analysis (FEA) investigation of the ice cream hardening process. 

Temperature dependent ice cream properties were retrieved from published data, and FEA 

results were compared with previously published experimental results. The simulation shows 

how the most energy efficient processing variables can be determined. The effects of package 

configuration, heat transfer coefficient, and draw temperature on hardening time and energy 

efficiency were investigated.  

 

 1. Introduction 

In the United States, close to six billion liters of ice cream and related frozen desserts 

were produced in 2006. The year saw total sales of nearly $23 billion (IDFA, 2009). In the same 

year, energy consumption by the dairy industry in the U.S. was 121 Trillion Btu, constituting 

10.2% of all energy consumed by the U.S. food industry (EIA, 2006). Manufacturers are 

becoming more interested in ways to reduce energy consumption in their facilities (Higgins, 

2009). The goal of this paper is to generate fundamental knowledge of ice cream hardening and 
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provide insight for energy savings in ice cream manufacturing, as well as other food freezing and 

storage processes. 

Ice cream manufacturing involves numerous carefully controlled steps which have been 

thoroughly detailed by Marshall et al. (2003), as well as Schmidt (2004) and Clarke (2004). 

Freezing, hardening, and storage comprise the greatest energy usage (Greener, 2010), and all 

three process steps share the need for refrigeration. Studies on ice cream manufacturing have 

been predominantly experimental with focus on the freezing process (Adapa et al., 2000; Flores 

and Goff, 1999; Russell et al., 1999; Donhowe et al., 1991; Bolliger et al., 2000). Only limited 

computational models have been presented for any of these steps in the literature. Most studies 

on freezing have focused on the mechanisms of crystallization through experimentation as 

reviewed by Adapa et al. (2000), and demonstrated by Flores and Goff (1999); Russell et al. 

(1999). 

Hardening is important to achieve an acceptable mouthfeel (texture). Very few crystals 

are formed during hardening since undercooling is mainly relieved by the growth of existing ice 

crystals (Fennema et al., 1973; Sutton and Bracey, 1996). Although the air temperature in the 

hardening room may be lower than -35°C, it can take hours for the ice cream to reach -18°C 

(Marshall et al., 2003). Tracey and McCown (1934) experimentally studied the effects of forced 

convection and packaging. De Cindio et al. (1985) investigated the hardening of ice cream using 

a 2D transient finite element analysis. Aldazabal et al. (2006) simulated the crystallization of an 

unaerated (no air incorporation) ice cream mix. Temperature fluctuations of the subsequent 

process, storage, were modeled by Zuritz and Singh (1985), and recrystallization was modeled 

by Donhowe and Hartel (1996); Ben-Yoseph and Hartel (1998). Ice recrystallization inhibition 

was studied by Aleong et al. (2008). Although hardening is actually the most energy intensive 
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step, consuming roughly 45% of the total energy in ice cream manufacturing (Greener, 2010), 

little has been published on energy consumption during the process. 

The current work aims to achieve a better understanding of ice cream hardening using 

finite element analysis (FEA) and theoretical study, which can eventually be used to develop 

strategies for more efficient energy usage in a manufacturing site. The work addresses the 

following questions on ice cream hardening:  

(a) How well can the process be modeled assuming ice cream as a homogeneous, solid 

material?  

(b) How do the heat transfer boundary conditions affect the time required for hardening 

(residence time) and corresponding energy usage?  

(c) How do the size and shape of the ice cream affect its residence time?  

(d) Does an optimal hardening condition exist, and if so, how is it determined?  

A series of FEA models were used to answer these questions. A rectangular model was 

studied to compare with a previously published simulation (de Cindio et al., 1985), and a 

cylindrical model was utilized to compare with previously published experimental data (Tracy 

and McCown, 1934). These comparisons helped establish the accuracy of the simulations. 

Further studies were then carried out to investigate the effects of boundary condition, container 

layer, ice cream package configuration, heat transfer coefficient, and draw temperature. The 

draw temperature is defined as the temperature of the ice cream product when exiting the freezer 

and before going into the hardening chamber. These models are described in Section 2, and the 

simulation results are discussed in Section 3. An optimal hardening condition was explored, and 

energy consumption was also considered. Conclusions are stated in Section 4. 
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 2. Materials and Methods 

 2.1 Governing Equations 

A number of assumptions were made in this study, including the following:  

(1) The ice cream is a homogeneous, isotropic material. 

(2) Phase changes in the ice cream are captured implicitly through temperature dependent 

material properties including heat conductivity and specific heat capacity.  

(3) The convective heat transfer coefficient and the mass density remain constant during 

hardening.  

For ice cream with 15% cane sugar, about 35% of the water was frozen at -3.9°C (25°F), and 

82% was frozen at -17.8°C (0°F) (Tracy and McCown, 1934). Therefore, strictly speaking, the 

ice cream is not a solid, and localized heat convection may occur during the hardening process. 

However, without shearing and other mechanical agitation, the ice cream behaves much like a 

solid. Assumption (1) is therefore reasonable. With assumption (2), temperature dependent 

material properties represent the “smeared out” ice cream properties. While assumptions (1) to 

(3) are approximations of the real manufacturing conditions, they capture the essence of the heat 

transfer phenomenon in hardening, while simplifying the model. 

 

The classical heat transfer equation for the problem is  
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where x, y and z are the Cartesian coordinates, t is time, T is the temperature which 

changes with position and time, i.e., )t;z,y,x(TT = , k(T) is the temperature dependent thermal 
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conductivity, ρ  is the mass density, and )T(C p  is the temperature dependent specific heat 

capacity. In this work, a commercial Finite Element solver, SolidWorks Simulation (SolidWorks, 

2010), was used to simulate the heat transfer process. The model development is as follows: (1) 

2D rectangle; (2) 3D cylinder; (3) 3D sqround. Sqround, also squround, is an industry term that 

describes the hybrid square/round ice cream carton that eliminates sharp corners and provides 

easier scooping. 

 2.2 FEA Models 

Density of the material was assumed constant at 500 kg/m3. This is based on the work of 

de Cindio et al. (1985). The temperature dependent thermal conductivity was retrieved from the 

experimental data presented by Cogne et al. (2003), and specific heat capacity was from Cordell 

and Webb (1972). Thermal conductivity ranged from 0.48 W/(m·K) at -25oC to 0.2 W/(m·K) at 

0oC. The heat capacity had the following characteristics: at -30oC or lower it had a value of about 

2 kJ/(kg·K), which is also the heat capacity for ice. Above -30oC it rose rapidly, and spiked 

during the phase change; reaching a maximum of approximately 84 kJ/(kg·K) at 0oC. It then 

abruptly transitioned to about 4 kJ/(kg·K) for temperatures above 0oC. Table 2.1 shows the 

temperature dependent ice cream properties.  

 2.2.1 Model 2.1: Two-Dimensional, Quarter-Rectangle without Container 

Model 2.1 was used to compare with the numerical results of de Cindio et al. (1985). This 

model represents a rectangular ice cream section. The dimensions for the ice cream geometry 

were 166 mm by 84 mm. Two planes of symmetry permitted the use of a one-quarter model of 

size 83 mm by 42 mm. The container was excluded; thus Model 2.1 represented the ice cream 

only. A shell mesh with an element size of 3.80 mm was used. This resulted in 484 elements. 
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Convection was applied to the two outer edges, while the symmetric (interior) edges were 

adiabatic. The initial temperature of the ice cream was uniformly -6°C, and the air temperature 

was -34°C. Three values of the convective coefficient, 63, 210, and 630 W/(m2·K), were used for 

comparison with the results of de Cindio et al. (1985).  

 2.2.2 Model 2.2: Three-Dimensional, Eighth-Cylinder with Container 

Model 2.2 was created to compare with the experiments of Tracy & McCown (1934). 

Their contributions included numerous configurations of 19 L (5 gal) ice cream volumes with 

forced and free convective conditions. They obtained measurements using copper-constantan 

thermocouples accurate within 0.1oF (Tracy and McCown, 1934). The models in this study were 

validated using their results. The height of the cylindrical model was 508 mm, and the diameter 

was 217.8 mm. A one-eighth model was employed to utilize symmetry. Figure 2.1 shows the 

geometry and mesh of the ice cream and container. The ice cream was modeled using second 

order solid elements, while the container was modeled as a 1 mm thick surface using second 

order shell elements. Both the solid and shell meshes had an average element size of 12.7 mm; 

resulting in a total of 16688 elements. 

The container material was an alloy steel (Tracy and McCown, 1934) with a thermal 

conductivity of 45.3 W/(m·K). A specific heat of Cp = 460 J/(kg·K) was used. The ice cream 

thermal properties themselves were not studied by Tracy and McCown (1934). This led to the 

use of the properties listed in Table 2.1. While the mixture compositions were slightly different, 

the overall material behavior was very similar. A convective boundary condition was applied to 

all outer surfaces of the ice cream container, while adiabatic boundary conditions were applied to 

the symmetric planes of the one-eighth model. The bulk ambient temperature was -30°C (-22°F). 

Convective coefficients of 30, 40, and 63 W/(m2·K) were used.  
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 2.2.3 Model 2.3: Three-Dimensional, Quarter-Sqround with Container 

Model 2.3 was motivated by the increased popularity of the sqround shape. Here a 1.66 L 

sqround with container was modeled. The solid model was created by scanning the top surface of 

an actual sqround and extruding it to a depth of 98 mm. The model was then drafted inward 

about the top edge at an angle of 5.46°. Figure 2.2 illustrates the sqround geometry, and Table 

2.3 provides details about the geometric parameters of the sqround. Two planes of symmetry 

allowed for the use of a one-quarter model. Second order solid elements were used for the ice 

cream, and second order shell elements for the container. The average size of the solid and shell 

elements was 6.59 mm, which resulted in 16199 total elements for the quarter-model. Material 

properties are listed in Tables 2.1 and 2.2. Boundary conditions were similar to Model 2.1. 

 2.2.4 Models 2.4 and 2.5: Sqrounds with Holes 

Since ice cream is a poor heat conductor, having a central hole in the sqround may help 

cool the ice cream more quickly. This was tested with Models 2.4 and 2.5. Model 2.4 was 

created by placing a 30 mm diameter hole (Hole 1) in the center of Model 2.3. To make up for 

the volume lost due to the hole, a scaling factor was used to maintain the volume of the original. 

Two symmetric planes permitted the use of a quarter model. Second order solid elements with an 

average size of 7 mm resulted in a total of 8188 elements. Conditions were similar to Model 2.3. 

Model 2.5 increased the hole of Model 2.4 to a 50 mm diameter.  

 2.2.5 Models 2.6 and 2.7: Reduced Heights 

These models were used to investigate how much time and energy could be saved if an 

individual sqround was hardened in subcomponents. Portions of two halves and four quarters 

were considered. Model 2.6 was created by reducing the original Model 2.3 to half its height and 
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maintaining all of its conditions. The container was omitted. A smaller element size of 5.75 mm 

resulted in a total of 8648 elements. The quarter height Model 2.7 was created by cutting the 

original Model 2.3 into one quarter of its height and maintaining all of its conditions. Again, the 

container was omitted. A smaller element size of 4.55 mm resulted in a total of 8624 elements.  

 2.3. Mesh Refinement, Convective Coefficient, and Time Step 

For all models, the element size was progressively refined and the model was re-analyzed 

to ensure numerical accuracy. A model was regarded as converged when temperature changes 

caused by mesh refinement were below 0.5%. The element sizes reported for all models were for 

converged meshes. 

Convective coefficients of 63, 210, and 630 W/(m2·K) were used in the work of de 

Cindio et al. (1985). However, the value was estimated to be about 23 W/(m2·K) using 

parameters typical of an actual hardening process. This is detailed in Appendix B. This value 

agrees well with the range of 25 to 30 W/(m2·K) presented by Fellows (2000). For parametric 

study, however, convective coefficients from 0.1 to 1000 W/(m2·K) were used to investigate a 

wider range. 

Time discretization scheme was based on the Fourier Number. Details of this 

dimensionless parameter can be found elsewhere (Incropera et al., 2007). Critical time steps in 

this study ranged from 50 to 300 sec.  

 3. Results and Discussion 

 3.1 Model Results 

For conciseness, the dimensionless temperature θ is defined as: 
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where tT  is the ice cream temperature at a given time, ∞T  is the bulk ambient 

temperature, and iT  is the initial ice cream temperature. 

 3.1.1 Model 2.1 Results 

The 2D results agreed well with those of de Cindio et al. (1985). Figure 2.3 shows the 

temperature evolution of the ice cream center. A total of 6000 sec (1.67 hr) was simulated for the 

shell mesh. Results from de Cindio et al. (1985) are shown as data markers for comparison. The 

discrepancy with the results of de Cindio et al. (1985) was less than 5%. A significant 

temperature change occurs within an hour of residence time. For a convective coefficient of 63 

W/(m2·K), the center dimensionless temperature θ reaches 0.5 (-20°C) in about 5220 sec (1.45 

hr). 

 3.1.2 Model 2.2 Results 

Three locations within Model 2.2 were selected for temperature monitoring. They were 

the radial center, midpoint, and outside of the mid-plane between the top and bottom of the 

container. These were designated as the center, middle circumference, and outer circumference. 

Figure 2.4 shows the evolution of these temperatures with time for a convective coefficient of 30 

W/(m2·K). The center temperature remained unchanged for about 15000 sec (4 hr 10 min) before 

decreasing to -17.8°C (0°F) at 24000 sec (6 hr 40 min). Note that lengthy hardening time 

resulted from the large volume of the cylinders 19 L (5 gal). The actual experimental values were 

14400 sec (4 hr) for the center to begin changing and 22320 sec (6 hr 12 min) to reach -17.8°C 

(0°F) (Tracy and McCown, 1934). This shows that there was less than roughly 8% discrepancy 
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between the studies. The temperature at the outer circumference cooled rapidly almost from the 

start, while the middle circumference temperature behaved somewhere in between. Figure 2.5 

shows the temperature contours in the FEA model after 3900 sec (1 hr 5 min). The center 

temperature remained at -4.78°C (23.4°F) at 3900 sec, while the edge temperature had reached 

approximately -24.4°C (-12°F). The simulation was repeated with convective coefficients of 40 

and 63 W/(m2·K).  Figure 2.6 shows a comparison of the simulated center temperature with the 

experimental results (Tracy and McCown, 1934). Overall, 40 W/(m2·K)  curve fits the 

experimental data most closely.  

 3.1.3 Model 2.3 Results 

Once the FEA models were validated, Model 2.3 was created to investigate the effects of 

geometry, convective coefficient, boundary conditions, and draw temperature. Convection was 

applied to all surfaces except for the bottom (which was adiabatic). Three convective coefficients 

were used: 30, 210, and 630 W/(m2·K). 30 W/(m2·K) was considered more representative of the 

realistic hardening conditions than 63 W/(m2·K); a representative convective coefficient 

calculation can be found in Appendix B. The temperature variation of the mid-center of the 

sqround is shown in Figure 2.7. At 6000 sec (1.67 hr), the mid-center reached a temperature of 

θ = 0.418 (-22.3°C) and θ = 0.357 (-24.0oC) for 210 and 630 W/(m2·K) respectively. 

For a convective coefficient of 30 W/(m2·K), the mid-center reached a dimensionless 

temperature of θ = 0.84 (-10.3°C) in about 6000 sec (1.67 hr). This indicates that the necessary 

residence time is probably closer to 2 hr. This corresponds well to field-observed dwell times of 

1 to 2 hrs reported by Clarke (2004). 

These results have other implications such as the likelihood of recrystallization to occur 

in areas which remain warmer for longer periods of time. Figure 2.2 shows temperature contours 
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of the center section of the sqround at 5400 sec (1.5 hrs). Note how the upper edge of the volume 

is clearly approaching the ambient temperature more quickly than the other regions. This aligns 

well with physical intuition about temperature changes in the product. Figure 2.8 shows the 

progression of the horizontal temperature distributions for a convective coefficient of 30 

W/(m2·K). The temperatures are taken along the major horizontal axis from the mid-center to the 

outer surface center at three selected time steps: 1800, 3600, and 5400 sec (0.5, 1, and 1.5 hrs). 

The figure reveals that at the first selected time step, 1800 sec, the surface temperature had 

already dropped to about -20oC, while even after 5400 sec the mid-center temperature was still 

around -8oC. For a convective coefficient of 210 W/(m2·K), the mid-center temperature was θ = 

0.58 (-17.8oC) at 5400 sec. For 630 W/(m2·K), the mid-center temperature reached θ = 0.52 (-

19.4oC) at 5400 sec.  

The temperature decay results for the two larger coefficients are similar. Although there 

is a 3-fold increase in the convective coefficient, the mid-center temperature decreases by only 

8.6% more for the largest coefficient. The low thermal conductivity of the ice cream dominates 

the hardening process. Newton’s Law of Cooling dictates that heat transfer between an object 

and its environment is proportional to their temperature difference. The initial transfer rates are 

high, especially for larger convective coefficients, but drop rapidly with time. Since heat flow 

through convection at the surface is much faster than heat flow by conduction inside the ice 

cream, heat near the surface is depleted by convection after a short period of time in hardening. 

After the initial burst of cooling, the low conductivity of ice cream becomes the limiting factor, 

and a large convective coefficient helps little.  

The ice cream will eventually approach the air temperature if it resides in the hardening 

room long enough. In manufacturing, however, time is always an important factor. For 
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hardening, a longer residence time also means higher energy consumption. An appropriate 

condition under which the hardening is deemed accomplished needed to be established. In this 

work, when the warmest point in the ice cream reaches -15oC, hardening is considered finished. 

The time required for this is referred to here as the hardening residence time and denoted by 

Ct 15− . The residence time provides a basis for determining the efficiency of the hardening 

process. 

To reach a bottom-center (warmest point) temperature of θ = 0.68 (-15oC), Model 2.3 

required 7020 sec (1.95 hr), 5148  sec (1.43hr), and 4860 sec (1.35 hr) for coefficients of h = 30, 

210, and 630 W/(m2·K), respectively. To investigate how residence time Ct 15−  changes with the 

convective coefficient, the model was rerun using a wider range of convective coefficients 

including 1, 3, 6, 10, 30, 60, 100, 210 and 630 W/(m2·K).  Figure 2.9 shows the variation of 

residence time Ct 15−  versus the convective coefficient h (the middle grey solid line labeled -6oC). 

The draw temperature is the temperature of the ice cream when exiting the freezer, which 

is consequently the initial hardening temperature. The effect of the draw temperature on 

hardening time was achieved by changing its initial temperature for the transient analysis. The 

initial temperature of the base Model 2.3 was changed from -6oC to -2,-4,-8 and -10oC. The 

results, presented in Figure 2.9, show an interesting trend. When the initial temperature was 

lowered by 4oC over all convective coefficients studied it resulted in t-15C being reduced by 40% 

on average. The trend is seen through the -2oC to -6oC draw temperature data which had a 39% 

difference and for -6oC to -10oC draw temperature data which had a 40.8% difference. It is 

reasonable to conclude that decreasing draw temperature will reduce hardening energy 

significantly when only the hardening process is considered.  
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All five curves in Figure 2.9 share one common characteristic: at small h, Ct 15−  decreases 

rapidly with increasing h; after a certain value, however, further increase in h has little impact on 

Ct 15− . The phenomenon can be explained in light of competition in heat transfer between 

convection and conduction. At small h, heat flow from the inside of the ice cream to the surface 

by conduction is faster relative to convection, and consequently convective heat transfer at the 

surface is the bottleneck of the process. This leads to convection-control. At large h, convective 

heat transfer at the surface is faster relative to conduction, and conduction from the inside to the 

surface becomes the bottleneck of the process, leading to conduction-control. The concept of 

convection-conduction control transition (CCCT) is hereby proposed which signifies the 

transition from convection to conduction control. For convenience, the convective coefficient at 

CCCT is denoted here as CCCTh . When h is less than CCCTh , increasing air velocity, which in turn 

increases h, significantly accelerates heat transfer and hence reduces hardening residence time. 

But when h is greater than CCCTh , increasing air velocity does not have a significant impact on 

residence time since heat transfer is predominantly limited by conduction inside the ice cream. 

As shown in Figure 2.9, CCCT corresponds to the “knee” region of the curve, and CCCTh  is in the 

range of 30 to 100 W/(m2·K). Since the body size affects transient heat transfer, the Biot number, 

defined by  

 

k
hL

Bi C=       (2.3) 

 

where LC is the characteristic length (Incropera et al., 2007), is a more appropriate parameter to 

indicate CCCT. As the characteristic length for the sqround, CL , commonly defined as the ratio 
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of volume to surface area, is about 20 mm for the sqround geometry, and the average 

conductivity for ice cream from -6 to -15 oC is about 0.4 W/(m·K), the Biot number for CCCT, 

denoted as CCCTBi , is about 1.5 to 5. It is worth noting that CCCT is not a well defined point but 

rather a gradual transition, and therefore the value of 1.5 to 5 for CCCTBi  should be used only as 

an indicator, rather than a precisely defined value. 

 3.1.4 Results for Models 2.4 and 2.5 

The purpose of Models 2.4 and 2.5 was to investigate how hardening residence time 

would be affected if convection was allowed by cutting a hole in the center of the sqround. The 

transient temperature distribution at 1 hr for Model 2.5 is shown in Figure 2.10. The figure 

shows that the hole has moved the warmest point from the bottom center to an area in the mid 

section of the sqround. The data shows that for h from 10 to 210 W/(m2·K), the average time 

saved was 47% for Model 2.4 (Hole 1) and 58% for Model 2.5 (Hole 2). The knee shape of the 

three response curves is similar to that of Figure 2.9, reaffirming the convection-conduction 

control transition. 

 3.1.5 Results for Models 2.6 and 2.7 

Slicing the volume into separate parts for the hardening process was investigated through 

Models 2.6 and 2.7. Ice cream is insulatory, so reducing the thickness leads to faster cooling. The 

models showed that hardening a sqround in 4 pieces dramatically reduces the overall time in 

comparison with hardening the whole volume. 

The percentage of time saved with Models 2.4-2.7 is shown in Figure 2.11. For h of 30 

W/(m2·K), Model 2.7 had a 63.1% decrease in residence time compared with the base Model 2.3, 

Model 2.5 had a 54.6% decrease, Model 2.4 had a 44.2% decrease, and Model 2.6 had a 25.9% 
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decrease. It was found that slicing the volume into 4 pieces was the best option in this study for 

saving time and energy in the hardening process. 

 3.2 Discussion 

Feasibility of modeling ice cream hardening with a homogeneous, solid material. 

Comparisons with Tracey and McCown’s (1934) experiments show that ice cream hardening can 

be modeled with reasonable accuracy using a homogeneous solid material with temperature 

dependent properties. Discrepancies between the current FEA models and experiments are 

generally within 10%. It should also be noted that although the solid model captures heat transfer 

in ice cream hardening satisfactorily, it lacks the ability to capture explicit phase change and 

other important microstructural changes during hardening. 

Effects of boundary conditions on hardening residence time and energy usage. 

Convection is the primary mode of heat transfer during the process. An increase in air velocity 

will lead to an increase in convective heat transfer, which will result in a shortened hardening 

time. However, the rate of reduction in residence time depends on operational conditions. When 

the convective coefficient h is less than CCCTh , increasing h by increasing air velocity decreases 

residence time appreciably. When the convective coefficient h is greater than CCCTh , increasing h 

does not have a significant impact on residence time since heat transfer is limited by conduction 

inside the ice cream. A shorter residence time saves manufacturing time which may result in 

energy savings, but increasing the convective coefficient requires more energy. This indicates 

that energy consumption for operating the hardening chamber must be known to predict net 

energy savings. Since increasing h above CCCTh  has small effect on shortening residence time, it 

can be concluded that the optimal convective coefficient should not exceed CCCTh .  
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Effects of shape and size on residence time and energy usage. In general, smaller sizes 

result in shorter residence times, and package shapes that have a larger surface to volume ratio 

also help reduce residence times. Producing small size packages for hardening and packing them 

into larger sizes after hardening is one way to reduce residence time and save energy. 

Optimal hardening condition. The simulation shows that the convection-conduction 

control transition, CCCTh , is characterized by a Biot number ranging from 1.5 to 5. This provides a 

simple way to estimate the optimal hardening condition. For example, for a cubic gallon of ice 

cream, with an average thermal conductivity of 0.4 W/(m·K) and an LC of 26 mm, CCCTh  turns 

out to be in the range of 23 to 77 W/(m2·K). Typical conditions of 30 to 60 W/(m2·K) coincide 

with the predicted transition. Further increase in h beyond the convection-conduction control 

transition escalates energy consumption but does not have a significant impact on the residence 

time. A smaller package size decreases the characteristic length LC and leads to a smaller optimal 

heat transfer coefficient CCCTh . 

 4. Conclusions 

Industrial ice cream production encompasses a number of processes to create a product 

with desirable qualities. The hardening process has a significant impact on the quality of the final 

product. In this work, finite element models were used to investigate the hardening process. 

Temperature dependent properties were retrieved from the literature. FEM results were 

compared with previously published experimental data (Tracy and McCown, 1934). The 

comparison validated the FEA models. 



28 

 

The study quantifies conditions for optimal energy efficiency for ice cream hardening. 

The coefficient for convection-conduction control transition, CCCTh , is characterized by a Biot 

number in the range of 1.5 to 5. For a gallon of typical ice cream, CCCTh  is 23 to 77 W/(m2·K). 

Increasing the convective coefficient up to CCCTh  by increasing air flow or decreasing air 

temperature shortens the residence time significantly. Values beyond CCCTh  do not have a 

significant impact on the residence time. This work also demonstrates the design capability of 

the models to optimize energy usage in the hardening process. 

Draw temperature has a significant impact on hardening time and can reduce residence 

time by 40% for every 4oC dropped. Hardening a given volume with a central hole can lead to 

significant energy savings as it reduces residence time by up to 50%. Furthermore, slicing a 

volume into separate sections is also a promising way to decrease hardening time. 
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  Nomenclature for Chapter 2 

 

Parameter Meaning Value used 
Ac Cross section of the channel, m2 0.1329 
Cp Specific heat capacity, J/(kg·K) 500 
DH Hydraulic diameter, m 0.1284 
Em Lower reference energy, kW·hr  
En Higher reference energy, kW·hr  
Fo Fourier number ≤ 0.25 
h Convective heat transfer coefficient, W/(m2·K) 30; 60; 210; 630 

CCCTh  h at convection-conduction control transition  

hm Lower reference heat transfer coefficient, W/(m2·K) 30 
hn Higher reference heat transfer coefficient, W/(m2·K) 210; 630 
H1 Approximate height of ice cream package, m 0.10 
H2   Vertical clearance between conveyor belts, m 0.1113 
kf Thermal conductivity of fluid, W/(m·K) 0.0223 
L Length in depth dimension of the channel, m 0.0633 

DNu  Average Nusselt number ≥131.3 

fdDNu ,  Nusselt number for fully developed region 131.3 

Pr Prandtl number 0.720 
Pw Wetted perimeter of the channel, m 1.039 
qt Heat transfer rate at a given time step, W  
Qt Total heat transferred up to a given time step, kW·hr  

DeR  Reynolds number 41061.5 ×  
tm Lower reference time, hr 1.58 
tn Higher reference time, hr 1.18; 1.13 
Ti Initial ice cream temperature, °C -6 (= 267 K) 

(de Cindio et al. 1985) 
T∞ Air temperature, °C -34 (= 239 K) 

(de Cindio et al. 1985) 
Tf Final surface temperature of ice cream container, K 255 
Ts Average surface temperature of ice cream container, K 261 
Tm Mean temperature for determining fluid properties, K 250 
V∞ Air velocity, m/s 5 m/s, into page 

(Fellows 2000) 
W1   Approximate width of ice cream package, m 0.12 
W2 Distance between conveyor brackets, m 0.4064 
νf Kinematic viscosity of fluid, m2/s 126 sm1044.11 −− ⋅×  
ρ Mass Density, kg/m3 500 
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Figure 2.1 Model 2.2 

 

 

 

 

Figure 2.2 Model 2.3 Temperature Distribution 
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Figure 2.3 Model 2.1 Temperature Variations 

 

 

 

 

Figure 2.4 Temperature variation at three locations for Model 2.2. 
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Figure 2.5 Model 2.2 Temperature Distribution at 3900 sec (1 hr, 5 min). 
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Figure 2.6 Model 2.2 Results with Experimental Comparison. 
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Figure 2.7 Model 2.3 Mid-Center Temperature Variation. 
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Figure 2.8 Transient response of horizontal temperature distribution from center to outer 

surface from Model 2.3 with a convective coefficient of 30 W/(m2•K). 
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Figure 2.9 Variation of residence time   versus the convective coefficient h for draw 

temperatures of -10,-8,-6,-4 and -2°C from Model 2.3. 

 

 

 

 

Figure 2.10 Transient temperature distribution at 1 hr for Model 2.5. 
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Figure 2.11 Percent time saved for Models 2.4-2.7 compared to Model 2.3. 

 

 

Table 2.1 Ice Cream Material Properties (Cogne et al. 2003; Cordell and Webb 1985) 

Ice Cream Material Properties 
Mass Density ρ (kg/m^3) 

Constant 500 
Thermal Conductivity  

Temperature Dependent: T (°C) k (W/(m*K)) 
-25 0.48 
-20 0.46 
-15 0.44 
-10 0.41 
-5 0.35 
0 0.2 

Specific Heat Capacity  
Temperature Dependent: T (°C) Cp (J/(kg*K)) 

-30 2100 
-25 2300 
-20 3000 
-15 4700 
-9.5 9000 
-7 13000 
-6 17000 

-5.5 21500 
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Table 2.2 Material Properties of Container (Incropera et al. 2007) 

 

 

 

 

Table 2.3 Geometric Properties of Sqround Container 

Major Diameter of Top Surface (mm) 172.96 
Minor Diameter of Top Surface (mm) 130.99 

Major Diameter of Bottom Surface (mm) 150.51 
Minor Diameter of Bottom Surface (mm) 108.52 

Height (mm) 98 
Draft Angle (Degrees) 5.46 
Wall Thickness (mm) 1 
Volume Capacity (L) 1.66 

Mass Density ρ (kg/m3) 
Constant 930 

Thermal Conductivity k (W/(m·K)) 
Constant 0.18 

Specific Heat Capacity Cp (J/(kg·K)) 
Constant 1340 



39 

 

 

Chapter 3 - Population Balance Model for Ice Cream 

Hardening 

 Abstract 

A three-dimensional population balance model (PBM) is constructed for the simulation 

of ice crystal nucleation and growth in the ice cream hardening process. Microstructural 

characteristics are achieved through a three-part model development: (1) a single-phase cylinder 

with temperature-dependent material properties is validated with previous experimental data, (2) 

the single-phase material is reconfigured into a cube, and (3) the cubical model is then advanced 

to a multiphase PBM approach. The final crystallization results are verified with previous 

experimental research. The work provides a flexible and efficient approach to predict the ice 

crystal size distribution (CSD) of ice cream following the hardening process. The computational 

method is applicable for myriad food-freezing processes, alloy solidification, and other 

multiphase systems. 

 1. Introduction 

Ice cream manufacturing requires numerous carefully-controlled processes to yield a high 

quality final product (Marshall et al., 2003). While each individual step is required to achieve 

this goal, the freezing and hardening processes have the greatest impact on the ice cream 

microstructure and therefore the resulting texture quality. Substantial research has been 

conducted in this field, but much uncertainty remains due to the inherent complexity of the 

crystallization kinetics (Cook and Hartel, 2010). Most ice crystallization studies have focused on 

experimental investigation, rather than computational modeling. Experimental examples include 
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an extensive study by Russell et al. (1999) to determine the most dominant crystallization 

mechanisms within a scraped surface heat exchanger (SSHE). They also briefly considered the 

conventional hardening process. Adapa et al. (2000) reviewed the influence of fat content and fat 

replacers on the viscoelastic properties of ice cream. Crilly et al. (2008), as well as Regand and 

Goff (2005), studied the effects of ice structuring proteins (ISPs). Other innovations include the 

low temperature extrusion (LTE) process detailed by Wildmoser et al. (2004). Their work 

showed that the twin screw extrusion system (TS-LTE) resulted in significant quality 

improvements over the conventional SSHE / hardening combination. As reviewed by Zheng and 

Sun (2006), ultrasound vibrations have been used to break up ice crystals during food freezing 

processes, including ice cream. 

In contrast to the quickly developing experimental research, ice cream freezing and 

hardening simulations are fewer in number. Computational examples include a two-dimensional 

FEA study by de Cindio et al. (1985), which considered hardening of ice cream as a 

homogeneous single phase solid material. Rauth et al. (2010) used a three-dimensional FEA 

model to replicate the experimental hardening results presented by Tracey and McCown (1934). 

Cromer et al. (2010) studied energy efficiency in the hardening process by varying package 

configurations. Aldazabal et al. (2006) performed a hardening simulation in which sugar 

diffusion and ice crystal microstructure were modeled. Ben-Yoseph and Hartel (1998) simulated 

recrystallization during ice cream storage. A popular approach for simulating particulate 

processes is through the use of the population balance equations (PBE) presented by Hulburt and 

Katz (1964) and refined for continuous crystallization by Randolph and Larson (1988). Some 

researchers have combined PBE with computational fluid dynamics (CFD) to model dynamic 

crystallization processes. Woo et al. (2006) modeled antisolvent crystallization in an agitated 
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semibatch vessel using combined CFD-PBE. Similarly, Lian et al. (1988) simulated the 

crystallization of a sucrose solution within an SSHE using this method. 

In this work, a three-dimensional population balance model (PBM) is constructed for the 

simulation of ice crystal nucleation and growth in the ice cream hardening process. The 

crystalline microstructure is rendered through the following three-part model development. (1) A 

single-phase cylinder with temperature-dependent material properties is compared with previous 

experimental results to verify the accuracy of the heat transfer model. (2) Next, the single-phase 

material is reconfigured into a cube to bridge to previous empirical crystallization data. (3) The 

cubical model is then advanced to a multiphase PBM approach to simulate the crystal size 

distribution (CSD). The final crystallization results are verified with previous experimental 

research. The work provides a flexible and efficient approach to predict the CSD throughout the 

ice cream hardening process. The computational method is applicable for myriad food-freezing 

processes, alloy solidification, and other multiphase systems. 

 

 2. Materials and Methods 

 

 2.1 Theory 

This section outlines the underlying theory and equations that characterize heat transfer 

for all three models as well as crystallization for the multiphase model. Assumptions are 

provided in this section, and computational-specific details are presented in Section 2.2. 

 

 2.1.1 Model 3.1: Single Phase Cylindrical 
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The ice cream hardening process was modeled by starting with a homogeneous single 

phase material (ice cream mix), and then advancing the approach to explicitly include phase 

change and crystal growth. The term “explicitly” refers to the fact that in the multiphase model, 

ice is modeled explicitly as a separate phase. In the single phase model, phase change is not 

modeled explicitly but captured through temperature dependent properties of real ice cream 

material. Thus the Model 3.1 approach is considered “implicit.” The following assumptions were 

made for Model 3.1: 

 

1. Air velocity in the hardening chamber, air temperature, and convective heat transfer 

coefficient (HTC) are constant. An example HTC calculation is provided in Appendix 

B. 

2. Internal flow is negligible during blast freezer hardening. This precludes the need for 

momentum calculations. 

3. The material is isotropic, and phase change is modeled implicitly through temperature 

dependent properties. Additional details are available in Section 2.2.1. 

4. The cylindrical geometry of the ice cream is simplified through the use of an 

axisymmetric mesh. Moreover, the height dimension is also symmetric. This allows 

for half the height to be modeled, with the symmetric boundary maintained as 

adiabatic. 

 

With these assumptions, the following governing equation characterizes heat transfer in a 

single phase material: 

 



43 

 

02

2

2

2

2

2

=
∂
∂

ρ−








∂
∂

+
∂
∂

+
∂
∂

t
T

)T(C
z
T

y
T

x
T

)T(k p    (3.1) 

 

where x, y, and z are the Cartesian coordinates, t is time, T is the temperature which changes with 

position and time, i.e., )t;z,y,x(TT = , k(T) is the temperature dependent thermal conductivity, 

ρ  is the mass density, and )T(C p  is the temperature dependent specific heat capacity. The 

equation can be solved by considering the initial and boundary conditions. In this study 

convective and adiabatic boundary conditions were modeled. 

 

 2.1.2 Model 3.2: Single Phase Cubical and Model 3.3: Multiphase Cubical 

Model 3.1 was useful as it gave experimental validation for using the single phase 

material. This verification allowed for the single phase material to be employed by Model 3.2, 

which was a single phase, cubical model. As the only parameter changed between Models 3.1 

and 3.2 was the geometry, results from Model 3.2 were used as a benchmark for Model 3.3. The 

third model employed a multiphase cubical geometry. The primary phase was the ice cream mix 

used for Models 3.1 and 3.2, while the secondary phase was pure ice. Mass transfer between 

these phases is described in Section 2.2.2. Assumptions for Model 3.2 were the same as Model 

3.1. Assumptions for Model 3.3 are provided below.  

 

1. As with the previous models, air velocity, air temperature, and convective HTC are 

constant. An example HTC calculation is provided in Appendix B. 

2. Internal flow is negligible during blast freezer hardening. Again, this precludes the 

need for flow calculations. 
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3. The primary phase (ice cream mix) has the same properties as the material used for 

Models 3.1 and 3.2. The secondary phase (pure ice) is generated by transferring mass 

from the primary phase. This is governed by the user defined functions (UDFs) 

provided in Section 2.2.2. 

4. One-eighth of the cube is modeled to utilize problem symmetry. 

5. Only primary nucleation and growth are considered. 

6. Ice crystals are circular. The term “crystal length” refers to diameter. 

 

With these assumptions, Equation 3.1 was solved on a multiphase basis. These 

calculations were iteratively alternated with PBE. This was a combined theoretical and empirical 

approach in which the crystal nucleation and growth terms are handled by UDFs. The method 

has many similarities with the work of Lian et al. (2006). But, their study involved a pure sucrose 

solution in a continuous freezer, whereas in this study the parameters differed as the material was 

an ice cream mixture. Moreover, the process studied was hardening. This step involves blowing 

cold air (roughly -30°C) across the product to solidify and preserve it. 

Three techniques are available using the PBM of Fluent 6.3 (2006): Discrete, Standard 

Moment, and Quadrature Moment. Crystallization in this simulation was carried out using the 

Discrete Method of PBE developed by Hounslow (1988), Litster (1995), and Ramkrishna (2000). 

This approach allows for the crystal size distribution (CSD) to be computed directly. It is 

especially useful when the range of crystal sizes is known a priori (Fluent 6.3, 2006). The PB 

equation that governs ice crystallization is as follows. 

 

( )[ ] ( )[ ] ( )[ ] bragbragVV DDBBtVnGtVnutVn
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Here n(V,t) refers to crystal density (#·m-3) as a function of crystal volume (V) and time 

(t). ( )[ ]tVnu ,
r

⋅∇  refers to crystal flow through the control volume, which is zero due to 

Assumption 2. ( )[ ]tVnGVV ,⋅∇  represents volumetric crystal growth. B refers to crystal birth, D 

refers to crystal death, and the subscripts ag and br refer to aggregation and breakage. 

Aggregation and breakage are not considered here, therefore the right-hand side of Equation 3.2 

is zero. Equation 3.2 is subject to the boundary and initial conditions given by Equations 3.3 and 

3.4 below. 

 

( ) VntVn == 0,      (3.3) 

( ) 0,0 ntVnGV &==      (3.4) 

  

Specific values of these parameters are provided in the Simulation Section. When cell 

conditions were appropriate, as described in Section 2.2.2, ice crystals proceeded to nucleate and 

grow. This mass was transferred from the primary phase to the secondary. Heat transfer 

equations were solved for the effective composite material. Its behavior was similar to the single 

phase material. The crystallization results from Model 3.3 were compared with the previously 

published experimental data of Russell et al. (1999). 

 

 2.2 Simulation 

 

 2.2.1 Model 3.1: Single Phase Cylindrical  
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The first simulation modeled an experimental study by Tracey and McCown (1934). In 

their work, the temperature histories of ice cream volumes placed in a conventional hardening 

room were measured and recorded. Copper-constantan thermocouples, which were accurate to 

within 0.06°C (0.1°F), were used to measure temperature changes at selected surface, interior, 

and center points. The following simulation corresponds to Figure 6 from Tracey and McCown 

(1934); forced convective cooling of 19 L (5 gal) cylindrical cans of ice cream at -30°C (-22°F). 

The height of each can was 50.8 cm (20 in), which corresponded to a radius of 10.9 cm (4.29 in). 

For the current model, an axisymmetric mesh approach was taken to utilize the inherent 

symmetry of the analysis. Moreover, the top and base of the cylinder were assumed to share 

equal convective boundary conditions, thus only half the height needed to be modeled. The 

symmetric base was maintained as adiabatic to enforce the height-symmetric boundary 

condition. The height of the symmetric (reduced) model was 25.4 cm (10 in). Figure 3.1 shows 

the domain of simulation and boundary conditions. Note that the container layer was not 

included since it was a thin layer of steel, and its thermal resistivity was negligible compared to 

the relatively large and insulatory ice cream volume. The commercial CFD software Fluent 6.3 

(2006) was used to model the heat transfer, but flow calculations were not needed since the ice 

cream was assumed to be internally static. The ice cream initial temperature was -4.78°C (-

23.4°F). Hardening residence or dwell time was defined from the start of the hardening process 

until the temperature at the warmest point of the ice cream (base-center of the symmetric model) 

decreased to at least -18°C. Convective conditions were maintained at the outer faces (line 

segments for the axisymmetric plane). Convective heat transfer coefficients of 30 and 40 W·m-

2·K-1 were used in two separate studies, and a bulk ambient air temperature of -30°C was 

enforced. The first HTC was calculated using correlation equations from Incropera et al. (2007), 
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and the second value of the HTC was used to fit the experimental temperature history more 

closely. These values compare reasonably well with the range given by Fellows (2000) of 25~30 

W·m-2·K-1. An example HTC calculation is provided in Appendix B. 

Other model details include geometry creation and mesh generation, each of which was 

performed using Gambit 2.4.6 (Fluent 6.3, 2006). Both the height and radial dimensions were 

divided into ten segments using quad-elements. Subsequent studies were run using finer and 

coarser meshes to ensure convergence. The initial time step was determined using the Fourier 

Number, and was varied similarly with the mesh to ensure numerical accuracy. Details of the 

Fourier Number can be found elsewhere (Incropera et al., 2007). The calculation resulted in a 

critical time step of 5 min. A total of 7 hrs (84 time steps) was simulated. Material properties for 

the simulation were obtained from data in the literature. Specifically, density was from de Cindio 

et al. (1985), thermal conductivity was from Cogne et al. (2003), and specific heat capacity was 

from Cordell and Webb (1972). Table 2.1 shows the values that were used for these properties. 

Note that the thermal conductivity and specific heat capacity are directly related to the ice 

content. As the liquid to solid water (ice) phase change occurs, the specific heat capacity spikes 

to account for the latent heat of fusion. This is how the single phase material was used to 

accurately model the complex ice cream mix. 

 

 2.2.2 Model 3.2: Single Phase Cubical and Model 3.3: Multiphase Cubical 

Model 3.1 was useful for validating the single phase (ice cream) properties with actual 

experimental data. The modeling approach was then refined by explicitly considering the ice 

phase changes that take place during the ice cream hardening process. This was achieved by 

modeling certain parameters of the experimental study presented by Russell et al. (1999). Their 
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focus was primarily on the crystallization kinetics within an SSHE, but hardening was also 

considered. The study consisted of a 0.5 L (1.06 pt), cubical ice cream volume hardened in a 

conventional blast freezer. This volume corresponds to cube side lengths of 7.937 cm. One-

eighth of the cube was modeled to utilize symmetry, thus side lengths of 3.969 cm were used for 

the symmetric (reduced) model. Figure 3.2 shows parameters for the cubical models. The 

temperature distribution is also shown for Model 3.2 at 20 min of dwell time in the freezer. 

Certain characteristics of the ice cream mixture and experimentation varied from the Tracey and 

McCown (1934) study, but conditions were similar enough that the same computational setup 

could be used for comparison. These details have been presented in Section 2.1. For Models 3.2 

and 3.3, the ice cream initial temperature was -4.1°C. A 5 min time step was used again, but this 

time only 1 hr (12 time steps) was required to achieve a warmest point temperature of -18°C. 

This is a result of the fact that the cubical ice cream volume was much smaller than the 

cylindrical configuration. 

After the single phase baseline was established using Model 3.2, PBE calculations were 

performed using Model 3.3. Fluent’s Eulerian Multiphase Model (Fluent 6.3, 2006) was used to 

simulate the composition changes in the mixture. Mass transfer from the primary to the 

secondary phase was handled by the discrete population balance model, as described in Section 

2.1.2. PBE proceeded using power laws of ice volume fraction within UDFs. Equation 3.5, 

below, was used to calculate the “freezing temperature” (Tf) of a given cell. Note that Tf given by 

Equation 3.5 is an empirical parameter rather than the actual freezing point depression value 

(Lian et al., 2006).   Equation 3.6, also below, was used to calculate the equilibrium ice content 

(θe) for temperatures below Tf. This was determined for initial sucrose concentrations (c0) of 0.25 

and 0.15, as explained in the following sections. 
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Equations 3.5 and 3.6 correspond to an empirically-determined relationship from Lian et 

al. (2006). The material of that study was different, but the general crystallization kinetics proved 

to be similar enough to capture the ice cream hardening behavior. Model parameters were fit to 

the experimental ice cream hardening data (Russell et al., 1999). 

Equilibrium ice content was calculated using an initial sucrose concentration (c0) of 0.25 

by weight, which corresponds to Tf of -2.1°C. These parameters were used to determine the 

nucleation and growth constants; kb and kg, as well as the power indices; nb and ng. The value for 

kb was set at 8.0e5 #·m-3·s-1, and nb was 100. A value of 6.0e-9 m·s-1 was used for kg, and ng was 

1.0e-6. Equations 3.7 and 3.8 below show how the nucleation ( 0n& ) and growth (GL) terms were 

calculated. Note that GL refers to crystal growth based on length, and θí is the ice fraction at a 

given time step. 
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Together these equations enabled the multiphase model to calculate the ice cream CSD 

throughout the hardening process. Heat transfer and PBE were solved in a continuously 

alternating iterative approach. 

 

 3. Results and Discussion 

For conciseness, the dimensionless temperature θ is defined as: 

 

∞

∞

−
−

=
TT
TT

i

tθ      (3.9)  

 

where tT  is the ice cream temperature at a given time, ∞T  is the bulk ambient temperature, and 

iT  is the initial ice cream temperature. 

 

 3.1 Model 3.1: Single Phase Cylindrical 

The homogeneous single phase material was shown to capture the thermal response of 

the ice cream quite well. Figure 3.1 shows the temperature contours of the cylinder at 6 hrs and 

50 min. At that point, all of the ice cream had dropped below the required -18°C. The 

experimental study of Tracey and McCown (1934) took approximately 4 hrs for the center 

temperature to begin changing noticeably and 6.2 hrs for the center temperature to reach -18°C 

(θ = 0.48). The numerical model presented here had slightly different curves. For an HTC of 30 

W·m-2·K-1, approximately 3.6 hrs were required for the center to begin changing, and about 6.7 

hrs were necessary for the center temperature to reach -18°C (θ = 0.48). Figure 3.3 shows a 
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direct comparison of the experimental and numerical results. Simulated curves for HTC of 30 

and 40 W·m-2·K-1 are included to show how the latter captures the physical results more closely. 

Experimental data are represented with square markers. Overall, simulation results with an HTC 

of 40 W·m-2·K-1 agreed better with the experimental data. 

Discrepancy from the Tracey and McCown (1934) study was roughly 9% for 30 W·m-

2·K-1 and 2% for 40 W·m-2·K-1. The agreement is quite satisfactory when considering the various 

sources of uncertainty. The experimental data contained instrumentation and potential human 

error. The composition of the homogeneous material and the comparison ice cream were likely 

different. The boundary conditions were idealized, and there was also the inherent nature of 

approximation for the simulation. 

 

 3.2 Model 3.2: Single Phase Cubical and Model 3.3: Multiphase Cubical 

Model 3.1 provided a convenient method for validating the ice cream heat transfer 

approach. The validated model was then used to bridge to the ice phase change results of Russell 

et al. (1999). For parametric study, the simulation was repeated varying only the geometry and 

draw temperature from Model 3.1. The single phase cubical study (Model 3.2) took 64 min to 

achieve a warmest point temperature of -18°C (θ = 0.56). Note that the dimensionless 

temperature of Models 3.2 and 3.3 had a different normalization basis than that of Model 3.1 

since the cube ambient temperature was -35°C. For Model 3.1, the ambient temperature was -

30°C. The multiphase model (Model 3.3) had nearly the same response as the single phase 

(Model 3.2). Figure 3.4 shows a comparison of the temperature histories of the two models along 

with the two experimental data points provided in the comparison study (Russell et al., 1999). 

The experimental specimen hardened (attained warmest temperature of -18°C) in about an hour. 
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Models 3.2 and 3.3 each hardened in 64 min for an HTC of 30 W·m-2·K-1. This duration is close 

to the approximate time of 60 min reported by Russell et al. (1999). Figure 3.5 shows the 

temperature contours of Model 3.2 at 64 min, which resemble the results of Model 3.1 closely. 

They are also nearly identical to the temperature contours of Model 3.3 at the same hardening 

time, shown in Figure 3.6.  

With the accurate temperature characteristics of Model 3.2, Model 3.3 was equipped to 

simulate the ice crystal morphology of the hardening process. The phase change results mirror 

the temperature distribution displayed by Model 3.2. Figure 3.7 extends the results of Figure 3.6 

to show the corresponding ice distribution at 64 min. The maximum occurs along the edges and 

exterior corners of the cube, while the minimum occurs in the ice cream center. The evolution of 

the ice volume fraction is compared with the previously published experimental results in Figure 

3.8. The numerical results silhouette the overall empirical behavior, but ultimately fall slightly 

below the final mean crystal length of the experimental results. This is probably due to the fact 

that aggregation and other crystallization kinetics have not been modeled in this study. When 

greater numerical data is available for recrystallization, the current model can be improved. 

The population balance results also provide detailed information on the ice crystal size of 

the frozen product. Figure 3.9 shows the CSD at the completion of the hardening process (64 

min). The average crystal length is approximately 35 µm, which falls short of the 

experimentally-obtained 40 to 55 µm range reported by Russell et al. (1999). These CSD results 

show that the population balance model is becoming a viable design tool for the ice cream 

manufacturer. 
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 4. Conclusions 

The hardening process is an important and intriguing step in ice cream manufacturing. 

Accurately modeling its heat transfer and ice phase changes is inherently challenging. The 

process has been simulated here through the following three-part model progression: (1) a single-

phase cylinder with temperature-dependent material properties was validated with previous 

experimental data, (2) the single-phase material was then reconfigured into a cube, and (3) the 

cubical model was advanced to a multiphase PBM approach. The single phase results showed 

that the homogeneous ice cream material was very accurate in capturing the heat transfer 

characteristics of the actual ice cream mix. The crystalline microstructure was then constructed 

through a combination of commercial heat transfer and population balance software with user 

subroutines for crystal nucleation and growth kinetics. The final crystallization results were 

verified with previous experimental research. The predicted average crystal length of 35 µm is 

smaller than the 40-55 µm range reported in the literature (Russell et al., 1999), though the value 

is reasonably close. The work shows that population balance equations are becoming 

increasingly useful ice cream manufacturing. The current approach is flexible and efficient for 

predicting the CSD throughout the ice cream hardening process. The computational method is 

applicable for myriad food-freezing processes, alloy solidification, and other multiphase systems. 
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Figure 3.1 Dimensions and boundary conditions for Model 3.1.  
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Figure 3.2 Cubical setup with Model 3.2 temperature contours at 20 min.
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Figure 3.3 Temperature history plot for center point of Model 3.1.  
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Figure 3.4 Temperature history comparison for Models 3.2 and 3.3.  
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Figure 3.5 Model 3.2 temperature contours at hardening completion (64 min).  

 

 

 

 

Figure 3.6 Model 3.3 temperature contours at 64 min.  

 

 



59 

 

 

Figure 3.7 Model 3.3 ice volume fraction at 64 min.  
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Figure 3.8 Comparison of Russell et al. (1999) and PBM calculated mean crystal length 

versus ice phase content. 
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Figure 3.9 Volume-averaged crystal size distribution (CSD) after 64 min of residence time. 
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Chapter 4 - Combined Computational Fluid Dynamics and 

Population Balance Freezing 

 Abstract 

Freezing is the single most influential step of ice cream manufacturing. During freezing, 

multiphase flow, ice crystal nucleation and growth, phase change, and viscous shearing all play 

roles in ice cream crystallization. In this work, ice crystallization of a sucrose solution is 

investigated using a coupled computational fluid dynamics and population balance method. The 

dynamic freezing process that takes place in a scraped surface heat exchanger (SSHE) is 

simulated using a sucrose solution as a model material. Ice crystal nucleation and growth kinetics 

are described by population balance equations. Effects of multiphase, phase change, and shearing 

from scraping in a continuous freezer on ice cream formation are investigated, and the fluid flow, 

temperature distribution and ice crystal size are predicted. The method predicts trends similar to 

experimental observations, and provides insight into how processing conditions affect ice cream 

manufacturing. 

 1. Introduction 

The objective of this work is to simulate the dynamic freezing process that takes place in 

a scraped surface heat exchanger (SSHE) and gain insight of the freezing process. Energy 

consumption by the dairy food industry in the United States constitutes 10% of all energy 

consumed by the U.S. food industry. The knowledge from this research will be helpful in the 

investigation of energy consumption in cooling and refrigeration of foods. 
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A sucrose solution was used as a simplified model to simulate the more complex ice 

cream mix, and the crystallization dynamics are described using population balance equations 

(PBE). The challenge with the freezing processes is to undergo crystallization quickly enough to 

produce an acceptable final product. For ice cream, the critical size at which coarseness becomes 

apparent is around 55 µm, but the value also depends on crystal shape and distribution (Marshall 

et al., 2003). Most studies on SSHE ice crystallization have focused on the mechanisms of 

crystallization through experimentation as reviewed by Adapa et al. (2000), and demonstrated by 

Flores and Goff (1999); Russell et al. (1999). 

Examples of crystallization simulations include those by Hey and MacFarlane (1998); 

Shirai et al. (1986). Those models were based on the population balance equations (PBE) 

introduced by Hulburt and Katz (1964), and applied to crystallization by Randolph and Larson 

(1988). Randolph and Larson tailored PBE to crystallization using mixed suspension mixed 

product removal (MSMPR). PBE have also been applied to lactose crystallization by Griffiths et 

al. (1982); Shi et al. (1990). Engineering Aspects of Milk and Dairy Products provides a wealth 

of information on dairy crystallization topics (dos Reis Coimbra and Teixeira, 2010). Recent 

studies have integrated PBE within computational fluid dynamics (CFD). This was done by Woo 

et al. (2006); Lian et al. (2006). Those studies assumed transient two- and one-dimensional 

geometries, respectively. 

The contribution of the present work is to apply the coupled CFD-PBE method to a 

process scale SSHE using a commercially available PBE package (Fluent 6.3, 2006). Previous 

SSHE crystallization studies required user subroutines for mass transfer between phases (Woo et 

al., 2006; Lian et al., 2006). This work utilizes the Population Balance Model (PBM) available 

for Fluent 6.3, and it also investigates the effects of varying initial sucrose concentration.  
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The paper is organized as follows. The model is described in Section 2, and results are 

discussed in Section 3. Conclusions are then presented in Section 4, and future work is discussed 

in Section 5. 

 

 2. Materials and Methods 

The geometry for this analysis was obtained from the SSHE currently being used at the 

Dairy Processing Plant of Kansas State University (KSU), located in Call Hall on campus. The 

continuous freezer has a throughput of approximately 390 L/hr (100 gal/hr). It rotates at roughly 

250 rpm, and its freezing temperature at the barrel wall is estimated to be -15°C. The dasher and 

other internal components of the Cherry-Burrell Freezer are shown in Figure 4.1. The 3D domain 

of simulation and the center-most section, which was actually modeled for the analysis, are 

indicated in Figure 4.1. 

Several assumptions were made to simplify the simulation, including the following: 

 

1. Throughput flow and freezing are steady. 

2. Sucrose solution viscosity is constant. This allows for modeling a 2D cross section of 

the freezer. 

3. Backmixing is negligible. 

4. Heat due to blade-barrel contact is negligible. 

5. Crystals are spherical; crystal size refers to diameter. 

6. Only crystal nucleation and growth kinetics are modeled. 

7. Energy and PBE calculations are implicitly coupled; this is explained in greater detail 

in the subsequent paragraphs. 
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The simplified 2D geometry is shown in Figure 4.2 along with the unstructured mesh. 

About 17000 cells were used to model the geometry. For reference the barrel diameter is 0.1016 

m (4 in). The flow problem was solved using a rotating reference frame; the direction of rotation 

is indicated in Figure 4.2. Most of the zones were stationary relative to the rotating frame; the 

zones and their corresponding boundary conditions are given in Table 4.1. 

Fluid flow was modeled using the Eulerian multiphase model, which allows for multiple 

separate yet interacting phases (Fluent 6.3, 2006). The primary phase was sucrose solution, while 

the secondary phase was ice. Material properties were obtained from previous literature (Woo et 

al., 2006; Lian et al., 2006). The sucrose solution properties were: density of 1100 kg·m-3, 

specific heat capacity of 3564 J·kg-1·K-1, thermal conductivity of 0.489 W·m-1·K-1, and viscosity 

of 0.01 kg·m-1·s-1. 

As with other CFD software, Fluent solves Conservation of Mass and Momentum (Fluent 

6.3, 2006). Their multiphase representations are shown in Equations 4.1 and 4.2. The subscripts 

q and p refer to the qth and pth phases, respectively. Mass transfer from p to q is denoted by pqm& . 

Initially all mass was contained in the sucrose phase (p). When conditions were appropriate for 

crystallization (T<Tf and θ<θe, as explained in the following section), ice mass was nucleated and 

proceeded to grow. This mass was transferred directly from phase p to q; that is pqm&  was used to 

model the freezing process. Freezing point depression was simulated implicitly through the use 

of power laws, which are detailed in Equations 4.3-4.6. Using this method precluded the need to 

model species transport. The last term of Equation 4.1, Sq, is a mass source term; in this 

simulation it is zero. qτ  is the qth strain tensor. It is defined for each individual phase. 
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PBE proceeded using power laws of ice volume fraction within user subroutines. The 

method is similar to that presented by Lian et al. (2006) which employed ice mass fraction. 

Equation 4.3 was used to calculate freezing temperature (Tf), and Equation 4.4 was used to 

calculate equilibrium ice content (θe) for temperatures below Tf. The equilibrium ice content was 

calculated using initial sucrose concentrations (c0) of 0.25 and 0.15 by weight, which correspond 

to freezing temperatures of -2.1 and -1.1°C respectively. These values were paired with the 

equilibrium ice content, and were fitted to empirical crystallization data (Lian et al., 2006). That 

information was used to determine growth constants kb and kg, as well as power indices nb and 

ng. Kb was set at 4.0e13 #·m-3·s-1, and nb was 1. A value of 6.0e-6 m·s-1 was used for kg, and ng 

was 2. Equations 4.5 and 4.6 show how the nucleation ( 0n& ) and growth (GL) terms were 

calculated. Note that GL refers to crystal growth based on length. θi is the ice fraction at a 

specific time step based on the given cell temperature (T). 
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Three population balance techniques are available using the PBM of Fluent 6.3: Discrete, 

Standard Moment, and Quadrature Moment. Crystallization in this simulation was carried out 

using the Discrete Method of PBE developed by Hounslow et al. (1988), Litster et al. (1995), and 

Ramkrishna (2000). Fourteen discrete bin sizes were created using a geometric ratio definition 

from the PBM interface. Crystal size distribution ranged from Fluent PBE can be expressed by 

Equation 4.7. Here n(V,t) refers to crystal density (#·m-3) as a function of crystal volume (V) and 

time (t). 
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In this model the right-hand side of 4.7 is zero, since only nucleation and growth are 

taken into account; aggregation and breakage terms are excluded. Equation 4.7 is subject to the 

boundary and initial conditions of Equations 4.8 and 4.9. 

 

( ) VntVn == 0,      (4.8) 

( ) 0,0 ntVnGV &==      (4.9) 

 

Two separate cases were modeled here: (1) an initial sucrose concentration of 0.25 was 

simulated for comparison with the results of Lian et al. (2006) and (2) an initial sucrose 

concentration of 0.15 was modeled to investigate the effect of varying sucrose content. Both of 
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the simulations were performed in three stages. First the steady state background flow field was 

calculated, and then the transient calculations were performed. The software yielded more 

meaningful results by separating the transient heat transfer and crystallization studies, so the 

energy field was calculated prior to the crystal distribution. Fluent solves the Energy Equation in 

the form given by Equation 4.10 (Fluent 6.3, 2006): 
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Here the first three terms of the right-hand side of Equation 4.10 represent energy transfer 

associated with conduction, species diffusion, and viscous dissipation. Sh refers to the heat of 

chemical reaction and any other volumetric heat sources modeled (zero in this simulation). 

Transient calculations were performed for 20 sec of energy transfer followed by 20 sec of 

crystallization. This effectively simulated a total calculation time of 20 sec, which roughly 

corresponds to the time required to freeze 1.89 L of ice cream using the KSU continuous freezer. 

Material properties are different between the two fluids, but the comparison provides a baseline 

for simulation. 

 

 3. Results and Discussion 

The first output from the simulation was the initial sucrose solution flow field. Flow 

results in the form of relative velocity vectors are shown in Figure 4.3. The greatest disturbance 

can be seen in the wake of the rotator or beater (zone 4 of Figure 4.2). Small vortices are 

developed in these four regions as well as in the wakes of the dasher tube sections. Another 
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distinct feature of the flow field is the swirling effect around the center bar, which is a result of 

the relative translational velocity imposed there. The translational velocity was modeled to 

capture disturbance caused by the difference in rotation between the center bar and fluid. The 

background flow field impacts all of the subsequent calculations. 

The next stage of simulation was achieved by deactivating the flow equations and 

activating the energy equations. Fluent has a convenient control interface for this purpose. The 

simulation type was also changed from steady to unsteady. Transient calculations were 

performed for 20 sec using the boundary conditions outlined in Table 4.1. The coldest region 

developed directly along the barrel wall, as shown in Figure 4.4. The warmest portion was 

contained between the rotator and center bar zones. The temperature there was above the 

freezing temperature calculated by Equation 4.3, so the corresponding ice content was zero there. 

Once the energy field was calculated, the energy equation was deactivated, and volume 

fraction and phase-2 bin equations were activated. Volume fraction handles phase change, and 

phase-2 bin models PBE nucleation and growth. The simulation ran for an ‘additional’ 20 sec; in 

actuality the previous 20 sec were simulated again to incorporate mass transfer between the 

phases. Ice volume fraction is shown in Figures 4.5 and 4.6 for the different initial sucrose 

concentrations. 

These figures reveal that the PBM calculated the greatest ice fraction along the barrel 

walls; the same locations as the coldest temperatures of sucrose solution. The results show the 

scraping action of the blades. The ice fraction reaches a maximum of 1.0 before it is deflected 

back into the cooled mix. The volume fraction contours also reflect the background flow field by 

indicating the small vortices in the wakes of the dasher tube sections. Portions of ice can even be 

seen being agitated by the rotator sections. The figures show more ice was formed for the 15% 
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initial sucrose solution, which is attributed to its warmer freezing temperature. Other general 

characteristics are similar to the previous computations. 

The real usefulness of PBE is the ability to predict crystal size distribution (CSD). Charts 

of number density versus crystal diameter are shown in Figures 4.7 and 4.8. For the given phase 

properties and operating conditions, the average crystal size was roughly 9 µm. The CSD is 

comparable to previously reported sucrose crystallization data (Lian et al., 2006). The figures 

indicate that more crystals are present in the 0.15 initial sucrose solution mix, but the overall 

CSD is similar. 

 

 4. Conclusions 

PBE have been shown to be flexible and accurate through previous research (Woo et al., 

2006; Lian et al., 2006). The add-on module (PBM) offered by Fluent captures the versatility of 

the method in a reasonably straightforward package. Operating conditions can be varied 

conveniently to produce physically satisfactory results. The model presented in this study shows 

that the PBM can be used to predict ice crystal fraction and distribution. Having this information 

enables parametric study of the freezing process for the purpose of quality control and energy 

reduction. This study also serves as a benchmark for varying phase properties, which will in turn 

provide a bridge for modeling the complex material properties of ice cream mix. Energy 

efficiency in ice cream production is an important topic given the prolific usage requirements of 

the dairy industry. 
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  Nomenclature for Chapter 4 

Letters  
B Crystal birth 
c0 Initial concentration 
D Crystal death 
E Energy 

qliftF ,

r  Lift force 
qF
r  External body force 

qvmF ,

r  Virtual mass force 
g
r  Gravitational acceleration 
GL Growth Rate based on length, m·s-1 
GV Growth Rate based on volume, m3·s-1 
hj Sensible enthalphy of species j 
Jj Diffusion flux 
kb Nucleation constant, #·m-3·s-1 
keff Effective thermal conductivity, W·m-1·K-1 
kg Growth constant, m·s-1 

pqm&  Mass transfer from phase p to q. 
n Population density, #·m-3 

0n&  Initial nucleation rate, #·m-3·s-1 
nb Nucleation index 
ng Growth index 
nV Initial population density, #·m-3 
p Pressure shared by all phases 

pqR
r  Interaction force between phases 
Sq Mass source, kg·s-1 
Sh Volumetric heat source, W·m-3 
t Time, sec 
Tf Freezing Temperature, °C 
u
r

 Crystal velocity, m·s-1 
V Volume, m3 

pqv
r  Phase velocity, m·s-1 
Symbols  
α Mass and thermal diffusivities 
ρ Density, kg·m-3 

effτ  Stress-strain tensor of phase q 
θi Volume fraction of ice 
θe Equilibrium ice content 
Subscripts  
ag Aggregation 
br Breakage 
p Subscript for phase p 
q Subscript for phase q 
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Figure 4.1 Components of the KSU Freezer 
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Figure 4.2 CFD-PBE Model Conditions 
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Figure 4.3 Relative Velocity Vectors Colored by Relative Velocity Magnitude in m/s 

 

 

 

Figure 4.4 Temperature Distribution (in °C) after 20 sec of Dwell Time in the Freezer 
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Figure 4.5 Ice Fraction for 0.25 Sucrose Soln. after 20 sec of Dwell Time in the Freezer 

 

 

 

 

Figure 4.6 Ice Fraction for 0.15 Sucrose Soln. after 20 sec of Dwell Time in the Freezer 
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Figure 4.7 Discrete Crystal Number Density Based on Volume-Average for 0.25 Sucrose 

Soln. after 20 sec of Dwell Time 
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Figure 4.8 Discrete Crystal Number Density Based on Volume-Average for 0.15 Sucrose 

Soln. after 20 sec of Dwell Time 
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Table 4.1 Zones and Boundary Conditions 

Number Description Momentum BC Thermal BC (°C)

1 Barrel
Stationary, Absolute 

Frame
Constant: -15

2 Blade
Stationary, Relative to 

Fluid
Constant: -5

3 Dasher Tube
Stationary, Relative to 

Fluid
Constant: -5

4 Rotator (Beater)
Stationary, Absolute 

Frame
Constant: -5

5 Fluid
Rotating 250 rpm 

(counterclockwise)
Initial: 5

6 Center Bar
0.5 m/s (i + j) Relative 

to Fluid
Constant: -3
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Chapter 5 - Conclusions and Future Work 

 1. Thesis Discussion 

Ice cream manufacturing has been described and modeled in this work. Reducing total 

energy consumption in the process is a key industrial issue. Several models have been presented 

to simulate the freezing and hardening steps. As with any computational studies, these 

simulations have been built on simplifying assumptions. Higher levels of physical accuracy can 

be obtained through more rigorous treatment of the multiphase phenomenon in ice cream 

manufacturing. 

For a more precise continuous freezing model, a non-Newtonian ice cream material must 

be included in the simulation. Currently, a constant viscosity sucrose solution has been utilized. 

Furthermore, for complete end-to-end energy savings, the freezing and hardening studies must be 

interconnected. It would also be beneficial to include the storage process. Nevertheless, the 

current work provides a valuable baseline for future research. 

The models presented here yield several important insights for ice cream simulation. 

Specifically, single and multiphase approaches have been reported. Energy saving configurations 

have been outlined and quantified for the ice cream hardening process. Moreover, complex ice 

crystal morphology has been modeled through the use of discrete population balance equations. 

Given the applications and fundamental knowledge discussed in this work, energy savings in ice 

cream manufacturing has been shown to be both relevant and intriguing. 
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 2. Thesis Conclusions 

 2.1. FEA Hardening 

Ice cream manufacturing is comprised of several important processes to create a product 

with desirable qualities. The hardening process has a significant impact on the quality of the final 

product. In Chapter 2, finite element models were used to investigate the hardening process. 

Temperature dependent properties were retrieved from previous empirical studies. Simulation 

results were compared with previously published experimental data (Tracy and McCown 1934). 

The results were shown to be accurate within 2% for a heat transfer coefficient (HTC) of 40 

W·m-2·K-1. 

The study elucidates optimal conditions for energy efficiency in the ice cream hardening 

step. The coefficient for convection-conduction control transition, CCCTh , is characterized by a 

Biot number in the range of 1.5 to 5. For a gallon of typical ice cream, CCCTh  is 23 to 77 W·m-

2·K-1. Increasing the convective coefficient up to CCCTh  by increasing air flow or decreasing air 

temperature shortens the residence time significantly. Values beyond CCCTh  do not have a 

significant impact on the residence time.  

It was also shown that draw temperature has a significant impact on hardening time and 

can reduce residence time by 40% for each decrease of 4oC. Moreover, hardening a given 

volume with a central hole can lead to significant energy savings as it can reduce residence time 

by 50%. Furthermore, slicing a volume into thinner sections is an even more effective method to 

decrease hardening time. 
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 2.2. PBM Hardening 

Further study of the hardening process was performed through the application of 

population balance equations (PBE). Accurately modeling ice cream heat transfer and phase 

change is a challenging endeavor. The process has been simulated in Chapter 4 through a three-

part model progression. Each step of the development has been validated through comparison 

with previously published experimental results. The crystalline microstructure has been predicted 

through a combination of commercial heat transfer and population balance software with user-

defined functions for crystal nucleation and growth. The final simulated average crystal length of 

35 µm is smaller than the 40-55 µm range reported in the literature (Russell et al., 1999), though 

the value is reasonably accurate. The work shows that PBE are becoming a viable design tool for 

the ice cream manufacturer. The method presented is flexible and efficient for determining the 

crystal size distribution (CSD) throughout the hardening process. The computational approach is 

applicable for numerous food-freezing processes, alloy solidification, and other multiphase 

systems. 

 2.3. CFD-PBE Freezing 

Chapter 4 presented an efficient and flexible approach for combining computational fluid 

dynamics (CFD) with PBE. The add-on module available through Fluent captures the versatility 

of PBE in a straightforward manner. Model conditions can be varied quickly to yield satisfactory 

results. The model presented in Chapter 4 shows that PBE can be used to predict the CSD of a 

dynamic fluid in a scraped surface heat exchanger (SSHE). This information allows for crystal 

size and quality to be determined. The study serves as a baseline for varying phase properties, 

which will in turn provide a bridge for modeling the complex material properties of the ice cream 

mix. 
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 3. Future Work 

Any numerical simulation of a real-world process must be based upon certain 

idealizations or assumptions. The important aspect is the usefulness of the model being studied. 

The models presented in this thesis are useful for parametric study of energy efficiency in the 

hardening process and product quality (crystal size) in both the freezing and hardening processes. 

To obtain end-to-end energy efficiency analysis, it would be beneficial to model each process 

step in conjunction with one another. Moreover, greater information can be obtained by also 

including the storage process step. Additionally, further experimental study of ice cream 

crystallization kinetics is required to produce a more accurate CSD. Each of these advancements 

takes time to develop, and significant progress has been made through previous studies as well as 

in the current work. 
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Appendix B - Calculation of Convective Heat Transfer Coefficient 

The average convective heat transfer coefficient for a typical conveyor blast freezer is 

estimated here. Fluid properties and correlation equations were retrieved from published data 

(Incropera et al., 2007), and the freezer dimensions were taken from an actual field unit (Food 

Processing Equipment, 2009). The following assumptions were made: 

1. Steady state flow conditions. 

2. Constant properties. 

3. Channel flow between and above ice cream packages; see diagram below. 

 

Figure B.1 

 

The above figure is a schematic of the ice cream conveyer belt.  

The average surface temperature is determined using the initial and final temperatures. 
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The hydraulic diameter, DH, is first calculated for subsequent equations. 

( ) ( ) ( ) ( )[ ]
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The Reynolds number is next calculated to determine the flow type. 
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Since 
DeR  is larger than 410 , the flow is turbulent. 

Note that the flow is not fully developed, that is 7.4≅
HD

L
. Fully developed flow is 

typically observed at length-to-diameter ratios greater than 10, but the correlation shown below 

will still provide a reasonable value for the conditions used in this study. For short ‘tubes’ such 

as the one considered here, the average Nusselt number DNu  will actually be larger than fdDNu , . 

Now an appropriate Nusselt Number correlation can be chosen, such as the Dittus-Boelter 

Equation. 

( ) ( )n
eD D

RNu Pr023.0 8.0 ⋅=  

Where n = 0.3 for cooling ( )∞> TTs . Substituting in values yields: 3.131=DNu  

Since 
f

H
D k

Dh
Nu

⋅
≡ , rearranging for h and substituting in proper values gives: 23≅h  

W/(m2·K). This value compares well with that given by Fellows (2000) of 25~30 W/(m2·K). 
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