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INTRODUCTION

A participant in a game of poker will have a low performance

per dollar invested if he bets only on the one hand that is a

sure winner. The reason, of course, is that he rarely is dealt

an optimum hand. If he is more optimistic and decides to bet on

hands that have a high probability of winning, the performance

per dollar invested will undoubtedly increase.

Not concerned with poker, per se, this paper nevertheless is

interested in posing the question: "Can this approach be applied

to circuit and system design in the game of designing reliable

products?"

To continue the analogy, although the poker player will

never lose betting on sure hands, he cannot realize his full po-

tential for winning. Similarly, while an electrical circuit

theoretically will never be worse than the "worst case" combina-

tion of its components, its full performance capability is not

being realized. The content of tnis report postulates a "yes"

answer to the basic question concerning poker- -winning ratios

and circuit possibilities.

The performance of a circuit is defined by functions of the

components describing the various outputs. When the components

are distributed between two extremes, the output function of

interest can be any value betv/een some maximum and minimum value

determined by specific combinations of component values. If the

circuit designer must specify a certain value which the output

will never exceed, it is obvious that the minimum value cannot



be used. However, is it necessary to use the maximum value when

the probability that this value will ever be realized is approx-

imately zero? The performance may be greatly increased if a

"probable worst case" value, less than the maximum value, is

used. The reliability of the circuit will be negligibly de-

cre sed as long as the probability that the output is greater

than this probable worst case value is very small.

The same approach can be used with systems. An example is

the transition time of cascaded circuits when the individual

circuit transition times are known. The possibility that all

circuits would have maximum transition times is very remote.

The methods presented in this report give the circuit or

logic designer a conservative estimate of the distribution of an

output function, between the maximum and minimum values, caused

by the distributions of the components in the circuit.

There are several methods for estimating the distribution

of the output function of a circuit. Some require extensive

sampling of components and use Monte Carlo methods. The compo-

sition of distributions formula

8tn
cr2 (f) = Z

i=l
.

d x
i

cr(x
± )

also is used but this gives results which havt the greatest error

in the region of interest near the worst case value.

The methods presented in this paper allow the circuit de-

signer to choose a distribution that he knows, or believes, to be

Transition time is that time to shift from one mode of
operation to another, such as from full off to full on.



conservative for each component, and therefore will give results

which are highly useful and still remain generally conservative.

The methods are compatible with the present circuit evaluation

and are easy for the circuit designer to apply. They apply to

both alternating-current and direct-current functions.

There also are valuable byproducts of the methods which

villi be pointed out as they arise.

TKE EXACT AND APPROXIMATE MODELS OF A P0NCT3

Definition of the Problem

The problem is to obtain the disbribution of the output

function between its two extreme values. If the performance of

the circuit can be improved by moving one of the two extremes

closer to the other, let that extreme be known as the worst case

value. The other will be designated as the "best case value".

Quite often both extremes satisfy this condition. However, this

approach will consider only one at a time. The following defi-

nitions will be used.

f = output function of interest

f = worst case value of the function

x^ = one of the components in the function f

f = best case value of the function

x^ = value of x^ to cause f to be best case

x^ = value of Xj_ to cause f to be worst case

Each component will be distributed between two extreme



values. Initially, a component will be within a specified set

of limits. After a length of time, known as "end of life", these

limits will have changed. Since most component values can drift

in either direction, the widest set of limits, i.e., the end-of-

life values, will be used. These end-of-life values are nor-

mally known by the circuit designer and used to obtain f. It

should be noted that component values which drift in only one

direction will require a different treatment and may require use

of the initial extremes.

Circuit failures will be considered to be one of three types

for the purpose of this report. The first is a catastrophic

failure such as a component opening or short in, . The second is

a catastrophic drift failure and is defined to be a circuit

failure caused by a component value drifting outside of the end-

of-life extremes before end of life. The third type is a drift

failure caused by using the probable worst case value. The first

two are failures caused by faulty components. We are interested

only in failures of the third type as this is a direct measure

of what must be done to obtain the improved performance.

It is assumed there are no catastrophic drift failures v/hile

obtaining the distribution of the output function. This is not

the actual case but it does enable us to isolate the type of

failures in which we are interested. It is noted, however, that

use of the probable worst case value will slightly increase the

catastrophic drift failues.

It should now be obvious that all functions are not appli-

cable to this method of analysis as a unique combination of the



x^'s must give f. This implies the function must be strictly

monotonic over the range of the x* f s. This may seem to be a

severe restriction. However, most output functions of interest

will satisfy this condition.

A function with a dependent variable can quite often be

reduced to a function with all independent variables that gives

conservative results. An example would be a circuit with re-

sistors whose values change with temperature. The variable T

can be eliminated by changing the two extremes on all resistors

to be the maximum and minimum over the range of T. Note that

this also reduces a nonmonotonic function to a strictly monotonic

function.

The preceding statements can be clarified by considering

a simple voltage divider (see Fig. 1).

The voltage V is

V = S
Rl + R2

In terms of functional notation, f = V, x^ = R^, xg = Rg» and

X3 = E. Consider the resistors to have initial values of

Rq ±- 3- Per cent and values of Rq + 3 per cent at end of life.

The voltage E is specified as EQ + 2 per cent initially and

E £ 4 per cent at end of life. The end-of-life extremes would

be used for all variables with x^ the maximum extreme, and

•*-A strictly monotonic function of one variable is one whose
derivative is always greater than zero. A function of several
variables is strictly monotonic if, and only if, the same defi-
tion holds for all variables when the remaining variables are
considered constants. This must be true for any combination
over the range of the x^'s.



'ig. 1. Simple voltage divider



x-t the minimum one.

*1 = XlM

*2 * *2m

x3 " X3M

f = jj. x3
*1 + *2

If the resistances vary with temperature, the maximum value of

xi at any temperature and the minimum value of x2 at any tem-

perature would be used. This gives a worst case value that

could never happen if both resistances change the same way with

a change in temperature. It is, however, an upper bound on the

worst case value and is a strictly monotonic function.

Exact Model

The exact model for a function of three variables is shown

in Pig. 2. The discussion to follow is valid for a function of

n variables. Due to the difficulty in visualizing an n dimen-

sional space, however, it will be based on the three-dimensional

model.

The plot of f (x^, xg, X3) = f^, where i\ is a constant be-

between f and f, will be a surface in three dimensions. The rec-

tangular cube shown is the range of the three variables. There-

fore any point on the surface, inside or on the boundary of the

cube, is a possible combination of (x-j_, Xg, x^) over their ranges

to give fj£. Each time fk is changed, a different surface is de-

scribed. This new surface does not intersect the previous one
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V*- Xr)

I /

^ X1'^2'-3 J (x
1
,x2 ,x 3

r(x1 ,X2,x^)=i'I
-

Fig. 2. Exact model for three variables.
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within the cube because the function is strictly monotonic over

this range.

The combination of (x^, x2 , x3 ) which will give f represents

one of the 211 corners of the cube. The function determines the

corner for f and the limits on each component determine the

length of the sides. In Pig. 2, f is shown closest to the origin

and f the farthest away. This is an assumed combination to

clarify the discussion. Any two corners directly opposite from

each other could have been chosen.

It is assumed that the reader is familiar with basic prob-

ability theory. The terms and basic theory used to develop the

methods presented can be found in Feller (3), or any intro-

ductory text on probability theory.

Two different distributions of the individual components

v/ill be considered in detail. The first is that x^ is either

x^ or x^ with equal probability of having either value. The

second is a uniform distribution between x^ and x^. The first

distribution restricts the combinations of (x-j_, Xg, x3 ) to the

2n corners. The probability that f equals one of these 2n

values, P{f f]r\, is — , where n is the number of independent
V ) 2n

variables in the function. The second distribution restricts

the combinations of (x-^, x2 , x3 ) to the inside and boundary of

the cube. The probability that f equals one of the values de-

termined by the points in an infinitesimal volume located inside

the cube is

1

(x^ - x1 )(x2 - £2^ x3 - x3 )

dx-^dxrjdx^
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are interested In P-ff > f^), where fj^ is some value between

f and f

.

The first distribution requires counting the number of

corners in the portion of the cube cut off by the surface

f (xp x2 , x3 ) = fk , and dividing this number by 2n to obtain

P[f > fft]
. There is only one corner in the portion cut off in

Pig. 2. Therefore P{f>fk}= — =-.
1 } 23 8

In the second distribution, P ff > f-A is directly propor-

tional to the volume cut off by the surface f (x-,, x2 , x3 ) fk

divided by the total volume V of the cube. Notice that

r -) ° r ^
Y

P|f>ff = ~=OandPf>fJ = -= 1. This is not a proof of

the above statement. It does show consistency with the obvious

results at two points. The explanation is presented in

Appendix II.

We now have a method for determining Pjf > f^j which will

give exact results for the two distributions. However, a few

problems remain and may be stated as follows.

1. The hypersurface f(x^, xg, • ••, xn ) = f^ is quite

difficult to visualize and plot for n > 3.

2. The corners to count become very numerous as n in-

20
creases; for example, 2 = 1,048,576, and

240 = 1,099,511,627,776.

3. The volume of the rectangular hypercube cut off by

the hypersurface ffx^ x2 , •••, xn ) fk is extremely

difficult to evaluate.
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Due to the problems described and the possibility that the

function itself is not available In a numerical solution, the

function will be approximated. The approximate function repre-

sents an approximate model, a fact that will be enlarged upon

subsequently.

Approximation of the Function

The output function of interest is a function of the com-

ponents x-j_, x2 , •••, ^ where there are n components that affect

the function. Taylor series will be used to approximate the

function. The region of interest of the output function is

near the worst case value, and therefore the expansion is about f

.

The expansion about f is (Brand, 1, p. 185)

n
f = f + H

i=l

9t

2x±
Ui - Xi)

21

where

(Xi - Xi) (Xj - Xj)

2f . f - f

r n
H
i=l

n

3=1

& 2£

d x^ Xi

+ R~

2*1

XI

I
xi - 2Si

and fr . is the value of the output function with all components

x.j sb x.«, j ^ i, and x* = x., when j i. (A smaller variation of

x-j_ should be used when a small change in x^ causes a large change

in f . ) The truncation of the series and the approximation of

the partial derivatives render the above series an approximation.

If the function is slowly varying at f , however, the method of
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evaluating the partial derivatives does give a reasonable ap-

proximation due to the small magnitude of the higher order terms

in this region. Since the point of expansion is f,

9*±
will be negative when x^ > xi> anc^ positive when Xj > x_i

The evaluation of the partial derivatives is most time-

consuming. Fortunately there are two important byproducts that

2t
make the results more valuable. First, if

3*i
does not have

the proper sign, the circuit designer has chosen the wrong ex-

treme for x^. The second, and probably most important, is that

the magnitude of the partial derivatives indicates the compon-

ents that need closer tolerances and the ones that can have

wider tolerances, resulting in a possible reduction in the cost

of the components.

The first- order terms of the Taylor series will be used as

the approximating function. This will give the greatest accur-

acy in the region close to f which is the region of interest.

The approximate function is as follows.

n
f » f * z

i=l

dt

d*i

= A + xl + x2

(x1 - xA )

*n

= A + ^ A
i
x
i

where

n
AQ =

A, =

f - H. A4X.
1*1
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*I Ai*i

A cumulative density function, CDF, will be obtained using

the approximate function and the final step will be to fit the

CDF between f and fin a manner designed to give accurate re-

sults in a region about f. The method of fitting the CDF and

a discussion of the errors involved will follow in a later

section.

Approximate Model

The three-dimensional approximate model is shown in Fig. 3.

The discussion on ?-[f > f^l presented with the exact model still

holds. The rectangular parallelepiped with sides of length

(x% - Xj ) is now represented by a rectangular parallelepiped

with sides of length A^x^ - x^ ) . The surfaces f (x^, x2 , x3 )

= f^ are approximated by planes which represent constant values

of the approximate function*

An algorithm will be developed to count the number of corn-

ers in the portion of the volume cut off by a plane f(x-^> Xg, x^)

= fj£ for the first distribution. An extensive development of the

combination of n uniform distributions will be presented for the

second distribution, which amounts to calculating the volume cut

off by the plsne.



j— I Xj_, X2> X3 /

i lx-] j xp » X'zj— 1^»\

'ig. 3. Approximate model for three variables
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§* FUNCTION DISTRIBUTION OF COMPONENTS

The first distribution to be considered in detail is highly

conservative. The distribution of each individual component is

assumed to be one-half at x^ and one -half at x^ (DiMueci, 2,

p. 2). The probability density function, PDF, for each com-

ponent is as follows.

PDF of x
i gUi) = £ $(x±

- x± ) + $(*i - %)
This distribution of components was considered by DiMueci

(2). A PDF was obtained for a function by 2n substitutions to

cover all possible combinations of component values. The method

to follow gives a good approximation to this PDF. The calcula-
2n

tions required are /educed by a factor of nearly — which is a
2n

considerable reduction for large values of n. However, the

method in DiMueci (2) is quite satisfactory for small values

of n.

The PDF for f follows Immediately since n components Imply

2n possible values for f. It is represented by the following

equation v/ith f^ being one of the 2
n constant values of f at

the corners of the approximate model.

1 2n

PDF of f(x,, x2 , ..., xn ) = g(f) — Y.
2n i=l L

$(f - f± )

where f
-j_
= f

and fi+l - *1 U - £•

This represents 2n possible values for f(x^, Xg, •••, XrJ*

The probability of f taking on any one of these values is 1/211
.

The 211 values are, of course, the constant values in the equation
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f(x-^, X2, •••> Xft) = ffc* Th©y represent the surfaces passing

through the corners of the approximate model. There are 2n

corners and consequently 2n possible values.

The probability that f > f^, where f^ is one of these 2n

values, is as follows, f will be considered the maximum value

of the function.

k - 1
P{f >fk) =

2^
(1 ^ k •< 211 )

The approach is to obtain values of f between f and f and then

determine which f^ each value represents. The inequality sign

is reversed when T is the minimum value.

Taylor's theorem can be written as

Af = df + — d2f + ... + — dnf +
2i ni

+ higher order

terms (Brand, 1, p. 186)

The approximation used is Af * df. At f the total differential

is Af = df = 0. There are n points to be obtained besides f

and they will be found by taking various combinations of the

partial differentials. Let

Pi
=

0*1
(x

t
- x± ) :i " Si

be the magnitude of the i"1 partial differential (Brand, 1, p.

154). Arrange the n partial differentials in order of increasing

magnitude with p-, the smallest and pn the largest. The j po i

of the n points obtained will be f ? = f~ + ^_ p^. The minus sign

is used when f is the maximum value of the function.
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Observe that [£) is the number of unique formal sums of k

numbers that can be formed from n numbers where I . I =
XK/ kJ(n - k)i

are the binomial coefficients i Feller, 3, P. 32).

The n points obtained are exactly the values that would be

found by the corresponding solution of the approximate function

since Af = df. Because Af , = zL p* and is the smallest sum
J i=l

of j of the Pj^'s, all other unique Af's obtained by taking J

of the p^'s will be greater if J > j. If the number of

Af's ^ ^^1 i s known when J < j, the probability that

f> f - Af* is easily found. The problem then is to determine

how many Af's of the 211 possible are less than Af,. The 2n

possible values of Af, when subtracted from f, correspond to

the 2n possible values of f(x-,, x2 , ..., Xjq)*

The first step is to arrange the n partial differentials so

that Pj_+i > Pi* The smallest sum of j p* l s is then calculated

for J » 1, 2, ..., n. The following numbers are then found.

k a = number of p. ! s > P]_ + P2
+ • • « + P *+i ( 1 £ j )

kj* m number of p^ ' s > P2 + P3 + • •• + Pj+1 ^ — 3)

kj" = number of p^ 's > p3 -f p4 + ... + P1+1 ( 3 « 1)

" = number of p± 's > pm+1 + pm+2 + . . . + p j+1

(m + 1< j)

To clarify the above, consider the following set of p^'s

for n = 10.

Px 1, P2 2, p±
m i (1 1 i £ 10)

kx = 8, k2 = 5, k3 a 1, kj m (j > 3)



1 !

k2 ' = 6, k3
» = 2, kj« =0 (J > 3)

k3
" = 4, kj" =0 (j > 3)

V 2 * V = ° U > 4)

k*m = (3 < m)

The general formulae for the number of sums of (j - 1) and

v j - h) partial differentials greater than the smallest sum of j

are developed in detail in Appendix III. They will be stated

here but should not be applied without fully realizing their

limitations. The following definitions will be used.

-) - 1 j - o

-J-o ;>n

;)-o j<o

' = 1 = n =QI
A. Number of sums of (j - 1) partial differentials equal to

or greater than the smallest sum of j.

(?) • (r?;
8

)
* (?) • (r?;') * (?) • (r?;1

••••

:?".) (r-v
2

j * (?? • (r^i-y
+

B. Number of sums of (j - 2) partial differentials equal to

or greater than the smallest sum of j.
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(?) • ex) • (?) • (7?;") + . .

.

* *(?) (rri * »r) • c?r) * -

• V) (7^-> CI • C") * -

, iv'i . c-vi ./->.") . rv-») . ...

C. Number of sums of (j - h) partial differentials equal to

or greater than the smallest sum of j.

ra • (?) rasi * ft
1

) (?) • ran f ...

+ [

h+1
^ ^

^hfl'j
t

fn-kh+1 '-h-l^

+

(T) • Cr
1

') • rr^:T.)—
h+1

) l*h+2"\ p-kh+2 "-h-l^
2 / \ 1 / \ 3 - h - 3 J

* ft
1

)
• er? • (°j?f??) *

• (t) • vi (rV2rj • -

The last row will be for x = h + 1.

A single product term in any row is of the form
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(:) • c
/y\

x / { z

rows in the formula. The second and third factors determine the

The first factor ( J determines the number of

number of nonzero product terms in each row. The four numbers

u, v. w, and y are the same for all terms in a given row. Since

x starts at one and increases, the second factor will cause all

terms after the w term to be zero. This factor also can cause

all terms in a row to be zero when w is zero. The effect of the

third factor is not as definite as the first two. The number z

decreases one with each term in the row. This can nullify the

first few terms if z > y. It will be a nonzero number for

(y > z ~> 0), and will again be zero when z becomes negative.

The reason for each factor is fully explained in Appendix III.

Notice that v+x+z=j-h and u + w+y = nin each

term. This observation and the symmetry of the formulae suggest

writing the individual formulae in matrix form. The general

formula is represented by the one element in the product matrix

AD, where D = BC. The matrices and their elements are:

r; a a a;, -

IS =

:h^

3.1

riW
kh+2" ...
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C =

J-h-1 / \ j - h - 2

n-k^-h-l^ /n-k^^'-h-l'

j-h-2 / \J-h-3

'n-kh-h-l /n-kh+1-h-l

j-h-3

D =r

j - h - 4

n-kjj-h-1

J-h-1

• • • •

'n-kjj-h-r

J-h-2

+ .

.

[h+l f

n-kh+1 '-h-l\ /kh+i \
/h-k^i'-h-l^

+ .

.

j - h - 2 j-h-3

The matrix "A" is a row matrix of (h+2) elements where

/h+l\
alm

=
( i )

" Ma fcr ix "D" is a column matrix of (h+2) elements

formed from the main diagonal of the product matrix ,f BC" with

I
'il

BCu The elements of "B" and "0" are:

kn+je -i

b^m =
m



22

(m-1)
(n-k

;

n-kh+m-l
-h" 1

Both "B" and "C" are square matrices of dimension (h + 2).

The determination of the element values for A, B, and C

c be programmed on a digital computer. £ach element is a bi-

nomial coefficient of the form (_)• Once the numbers u and v

are found, the determination of the element values is reduced to

a table look-up problem. The products AD and BC are simply

matrix multiplication.

The preceding procedure is carried out for as many of the

n points as necessary. To clarify this statement consider the

variables arranged as -'1 Xo -
2 " £2 - x3 " ~3 < • • •

< ' x - x- xn £n

<

The first point obtained will be f (x-^, Xg, X3,

The second point will be f(x^, x^, X3, X4. ..., xn )

At each point this procedure will give the number of possible

solutions between that value and f. When f is f maximum, we

are interested in Pjf > f A.

If f j represents one of the points obtained and the pro-

cedure gives T as the total number of solutions greater than

f ,, the probability that f > f - is T/2n .

The plot of p/f > fj\ versus f 1 is a plot of the cumulative

density function obtained from the approximate function. This

plot is needed out to the point where p/f > f *\ = 1/2. This

point will be fitted to the mean value of the original function.

The curve fitting is discussed in detail in a later section.

This method will give the circuit and logic designer a
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conservative result on which to base the design of a system

without depending upon a worst case performance criterion.

It still is necessary to know how changes in each component

affect the performance of the circuit. Because this takes a

certain amount of computer time it is believed that this informa-

tion should be utilized to its fullest extent. Therefore while

the abo i sthod gives conservative and valuable results, a more

realistic distribution of components may be used and the results

can be improved. The next section of this report utilizes less

drastic distributions, and, as will be shown, the results are

more gratifying.

. jte that p{f <- 1 - px]
= l/2n . This will be compared with

the results obtained at trie same poi-^t in the next section.

UNIFORM DISTRIBUTION OF COMPONENTS

The two extremes for a component x^ are its end-of-life

minimum and maximum. At the time a circuit is built, component

values are guaranteed to be between the minimum and maximum

values specified by the initial tolerances. The end-of-life

values are obtained from various sources. Two of these sources

are (1) past history of the component, and (2) the rate of change

of component value with time under specified operating conditions.

The exact distribution of a component at or near end of life

is very difficult to obtain for many components. An example of

this is a transistor which would be obsolete by the time this

information is obtained to a high degree of accuracy.
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The best approach appears to be to utilize available in-

formation to determine a distribution that meets the following

three conditions.

1. It must be slightly conservative.

2. It must, for obvious reasons, give worthwhile results.

3. It must be easy to work with.

As time and the number of each component tend to infinity,

the distribution will approach a normal distribution. Since

both time and number are finite, a uniform distribution between

x. and x. appears to be a good assumption with which to meet the

first two conditions. The third condition is also a prime rea-

son for using the uniform distribution. A method for handling

skewed distribution is presented later.

The approximate function is rewritten as follows:

f(x-^, X2> •••> x^ = f(X^, Xg* •••* Xjj)

= Aq + X-j^ + x2 + ... + X^

where

n ?f
A = f - ZI A^ , A

±
- , and X^ = A^x^

f
i=l 0x±

The function is a sum of independent variables with the assump-

tion that the components change independently. It should be

pointed out that this is not always strictly true. The results

of Appendix II are valid for this function if this assumption is

valid. The PDF and CDF are represented by the following two

equations, considering f as the maximum value of f(X]_, Xg, ..., Xq)

The proof of these equations is given in Appendix II.
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PDF - g(f )

n
TT Ax^
i=l

1 2
n

x
(n-l)l j=l

,n-l
(fj-f)

31""-1 U(fj-f)(-l)yi

where

U(f j - f ) = 0, f > f

j

= 1, f < f
J

f * is one of the 2n constant values of f at the corners of

the approximate model, ?4+3> < £? when f = f maximum = f-^.

y^ is equal to the number of X. in the coordinates of the

corner represented by fy If f -? = Aq + X]_ + Xg + 2-3 + x4 + ^5»

then y* =3.

AX
X

= x
i " Si

The CDF can be considered two different ways. Under the
— 1

above FDF, the total area between f and f is unity. The CDF

can be considered the area under the PDF between fk and f as f^

goes from f to f . The CDF also can be considered as the volume

of the approximate model between the hyperplane f = f^ and f

,

divided by the total volume as f^ goes from f to f. The first

representation is valid for any distribution of components if the

PDF is known. The volume representation is valid only for uni-

formly distributed components unless a weighting factor is placed

on the differential volume which is a function of position.

This is true because f > f > f and exist nowhere else
under the stated conditions.
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(f
1

- fk )

n
(-l) y j

n
A

nl j=lL J ^
J

i=l

fk la one of the 2n values of f , and f

,

+ 1 < f j.

The entire equation represents the area under the PDF be-

_ n
tv/een f and fk , and "Jf Ax^ is the total volume of the aonroxi-

i=l

mate model. Therefore the remainder of the equation is the

volume cut off by the hyperplane f = fk .

The special case where all Ax^'s are equal reduces to the

following when fK = f • K A X. N is a number < N < n and

need not be an integer

•

1 1

(AxT
P

(

f "M =
Ta7p • ^f(o)

(NAx)n
" ffl [

(N
-

1)(H n

C)
[(N-2)(4X)]". .

.J

„;)«' Q »-«-*ffl »-)•

kZl(N - 3)
11 + . . .

Note that pff > f - AXf = — for this case. The S distribution
I

; nl

1 1

would give a value of l/2n . Since — <<— for expected values
nl 2n

of n, the results Are much better and should be conservative.

The equation for the CDF is undefined if any A X^^ is zero.

It is obvious that the denominator would be zero as



27

n
-ff AXi = 0. Although not as obviuus, the n <merator is also
i=l

zero which gives an indeterminant function. This possibility is

considered in Appendix II and the results prove this equation As

valid as any, or all but one, of the Ax^ ! s approach zero.

Two examples are worked out in detail In the following

section, which should demonstrate the application of the two

methods adequately.

THEORETICAL EXAMPLES

The 5 function and uniform distributions are compared in

the two following examples. The values of the partial differ-

entials obtained from an actual problem would tend to cloud the

application of the methods which can be presented much more

clearly if normalized magnitudes are used. The first example

considers equal A%'s and the second a large difference between

the smallest and largest. Both examples are for n equal to ten.

Consider a circuit represented by a black box with input

and output terminals where interest is concentrated on the time

it takes the output to reach a certain voltage level Vq after a

step function of voltage is applied at the input. It is pre-

sumed that the output voltage versus time is obtained by a numer-

ical solution of the defining differential equations of the cir-

cuit. i;ote that both distributions require evaluating AX^ for

each component.



Ax* = x
i "i a Pi =

0f

<?*i

(xA - x
± )

where

dt

d*i

si
i - f

is approximated by —

Therefore Ax., = f - f
il

re fx is the magnitude of f with

all components Zj > x<, j ^ i, and x« = x* for j =

The magnitude of A X^ is found from the output voltage so-

lutions shown in Pig. 4. The solid curve is a plot of output

voltage versus time for all components at their extreme value

which maximizes the time between application of the input voltage,

and output voltage reaching a value of Vq. The dotted curve is

f"Vi

the same solution with the i component at its opposite extreme.

The magnitude of AX^ can be read from the graph as it is the

difference in the time the two curves cross the line, output

voltage = Vq. Small differences should not be a problem as the

scale can be expanded and the solution read out at shorter in-

tervals about Vq.

The same worst case curve would be used for all AX^. This

implies one solution for each component plus the worst case so-

lution. The mean value and the best case solution also would

be required.

Example 1.

The following results arc assumed for the magnitudes of

the AX* »s as

AX-j_ = AX2 = ... = ^ xic = 10 microseconds
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Time after input step function is applied

Pig. 4. Curves to obtain AX^.
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The same distribution will be obtained for any value of f so

assume f = 100 microseconds.

§. Distribution * The first step is to calculate the K^'s.

Since all p^ * s are equal, the K^ ' s will all be zero. This means

all solutions with ( j - h) components at x^ will be greater

than the smallest solution with j components at x. for < h — j.

It also implies all solutions with j components at x^ are

equal for < j < 10.

There will be no solutions greater than 100 microseconds.

| " / solutions = 100 microseconds, ( ) solutions = 90 microsec-

onds, I solutions = 80 microseconds, ( / solutions 70

flO) (M
microseconds, I I solutions = 60 microseconds, and I / solu-

tions = 50 microseconds.

Referring to Table 1, the following values are obtained.

C°) = *. C°)
« io

> (2

10

)
- ^ (1°) = »>. G°) - 2i°'

'io
1

.5 j

252.

The next step is to determine T, the number of solutions

that are greater than each f j, as pff > f *} T/2n and n is

equal to 10 for this example. The results are listed in Table 2

and the CDF plotted in Fig. 5.

Uniform Distribution . Because all AX^'s are equal, it is

necessary to calculate only the value of fN for < H £ n/2.

These values are: fQ = 10C microseconds, f-^ 90 microseconds,
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Table 1. Value of o-

n \: o
:

•

•

1
• 2 :

•

•

•

•

4 :

•

s :
•

•

e :
•

7
:

•
8

:

•
•

9
I

10

1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1 c

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 I

9 1 9 36 84 126 126 84 39 9 I

10 1 10 45 120 210 252 210 120 45 10 1

Table 2. Data for CDF plot,

f. (/{sec) !: T P(f>f
j }

100

90 1 .000977

80 11 .0107

70 56 .0547

60 176 .1719

50 386 .3770

40 638 .6230



f1.5 * 85 ^c^oseconds, f2 80 microseconds, f2#5 = 75 micro-

seconds, f3 = 70 microseconds, 1*3.5 = 65 microseconds, f4 60

microseconds, £4.5 = 55 microseconds, and f5
= 50 microseconds.

The CDF is found by the following calculations.

P{f > f }
=

pff > f-,} = f(l)
10

/ = .000000275
1 J 101 L >

PJf > f1#5] = j (1.5) 10
- (10)(.5)

10
j
« .00000159

p(f > f2] = — [(2)
10

- (10)(1)
10

|
= .000279

P(f > f2#5 ) = f(2.5)
1<3

- (10)(1.5) 10 + (45)(.5) 10
]= .00247

^ ' 101 I ^

pff > f5
J

f:o)
10

- (10)(2)
10

+ (45)(l) 10

j
= .0128

P
f
f > f3.5] = - 0490

pff > f4 |
= .139

pff > f4 . 5j = .295

pff > f5| = .500

The two graphs in Pigs. 5 and 6 compare P f > f 1 for the

two assumed distributions. Figure 5 is for 50 < f j < 100 and

Pig. 6 is the region between 80 and 100 microseconds expanded

to give a better comparison of the two. This is the CDP that

will be fitted between f and the mean value.
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0.2 --

0.1 -

Uniform distribution

Lv^-

f „. in microseconds

Pig. 5. Comparison of the S and uniform
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s

v/ith n = 10.



Example 2.

The following results are assumed for the magnitudes of the

Ax1
? s. Ax^ = i microseconds. (i 1, 2, 3, 4, 5, 6, 7, 8,

9, 10. ) Also assume f = 100 microseconds.

S Distribution . The first step is the calculation of

the Kj_ ' s

.

Ax±
= Pi

p, + pg s 3 microseconds; therefore K^ = 8

p-, + pg + p^ = 6 d croseconds; therefore Kg 6

Pn+ Po + p* + P4 10 microseconds; therefore K3 = 1,

=0 (1 > 3)

p2 + P3 = 5 microseconds; therefore Kg ' = 6

^2 + p3 + p4 s 9 microseconds; therefore K3 '
a 2,

%* * (i > 3)

P3 + P4 = ^ microseconds; therefore K3" = 4,

K
i
" =0 (i > 3)

P4 + p§ 9 microseconds; therefore K4
'" = 2,

K." T = (i > 4)

All other K^'s are zero.

j = 1. Z^f-. 1 microsecond, f - Af-, m 99 microseconds

There is one solution for (j - 1). This is f and is

greater than f - Af-^, Therefore T - 1 at this point.

j = 2. A f2 = 3 microseconds, f = Afg = 97 microseconds

There are L
J

solutions for f with (j - 1) of the X
i
's =

X
±

and f j solutions for f with (j - 2) of the X
i

' s = Xj_. The

(j - 2) solution is f and is greater than 97 microseconds.



(j - 1) solutions greater than 97 microseconds are found by us-

ing the general equation with h = 1 as follows.

'2\ /a\ /lO-8-l-l^
= 1-0-1 = 8

0/ \1/ \ 2-1-1 /

All other terms are zero. Therefore 10 - 8 = 2 of the (j - 1)

solutions are greater than 97 microseconds and T = 3 at this

point.

j = 3. Af3 = 6 microseconds, f~ - ^^3 = 94 microseconds.

There are I ) = 45 solutions for f with (j - 1) of the

X
±
's = X

± , r 3
) = 10 solutions for f with (j - 2) of the X

i
«s

= X*, and f for (j - 3). The (j - 1) solutions greater than 94

microseconds are found by using the general equation with h - 1

as follows.

2\ /0

.0/ U/ ;ttr • t\ t:m— -

fZ\ /6\ /10-6-1-1"
+
(J- (l) *

( 3 .1-2 I

= 2
-

6 = 12

All other terms are zero. Therefore 45 - 40 = 5 of the (j - 1)

solut * .s are greater than 94 microseconds.

The (3 - 2) solutions greater than 94 microseconds are

found with h = 2 as folio-

• - ten -

*

All other terms are zero. Therefore 10 - 5 = 5 of the (j - 2)

solutions are greater than 94 microseconds, and T = 5 + 5 + 1
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= 11 for this point.

j = 4. Af. m 10 microseconds, f - Af^ = 90 microseconds.

There are [
) = 120 solutions for f with (j - 1) of the

Xi 's = Xi* (o )
= 45 s °3-utions r °r f with (j - 2) of the X

1
's

= X
±

, I a 10 solutions for f with ( j - 3) of the X
±
»s X. ,

and f for (j - 4). The (j - 1) solutions greater than 90 micro-

seconds are found with h = 1 as follows.

a o • e:tr; - * o • o • Ktr;
/2\ /6\ /l0-6-l-l\

* G) ntr) - •

Therefore 120 - 56 - 54 - 4 = 6 of the (
,-; - 1) solutions

are greater than 90 microseconds *

The (j - 2) solutions greater than 90 microseconds are

found with h = 2 as follows.

c) • • (t;rj * o o • ra
= 5 • 2 + 10 • 1 e 20

• • C) • csr)—

—

Therefore 45 - 20 - 6 = 19 of the (j - 2) solutions are greater

than 90 microseconds.

The (j - 3) solutions greater than 90 microseconds are
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found with h = o as follows.

'10-1-1-1
= 1

V 4-3-1

Therefore 10 - 1 = 9 of the (j - 3) solutions are greater than

90 microseconds and T = 6 + 19 + 9 + 1 = 35 for this point.

In this example the general equation was applied through

j = 7, illustrating the method adequately. Results for all j's

are listed in Table 3.

Table 3. General equation results.

AV
1 «

:
J

.General e

solut
quati
ion

on :

•
•

Total :

number :

of :

Af . « s :

(i < j):

T -
; T/2io

i

:h=l : h=2 : h=3:
•

h=4i
•
•

i I 99 1 1 .000977

2 3 97 8 11 3 .00195

3 6 94 40 5 56 11 .0107

4 10 90 114 26 176 35 .0352

5 15 85 204 68 5 386 109 .106

G 21 79 248 110 10 638 270 .264

7 28 72 208 111 10 848 519 .506

This example is a strict test for the algorithm upon which

the general equation is based because of the number of solu-

tions that fall on the same point, and the uniform difference

in the P^'s« The general equation results then may be compared

to the results obtained when the 210 solutions are calculated

with the approximate function.
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Table 4. Comparison of general equation
results and exact results obtained

from approximate function
solution.

f
j

•
•

•
•

:

:

9{t>tt}

General
equation

: p(f > f
i)

I .-xact
results

99 .000977 .000977

97 .00195 .00195

94 .0107 .00977

90 .0352 .0322

85 .106 .0967

79 .264 .246

72 .506 .500

Uniform Disstributi on. The first step to obtain

to determine the values for f * and the number y. which deter-

mines the sign of each term. Note that for y^ even, the sign is

positive, and for y^ odd, the sign is negative. Also v/hen

f^ = f .*, if y^ and y- are not Doth even or both odd, the terms

cancel each other. Table 5 lists the results necessary to find

the CDP. Using the information in this table the CDF is deter-

mined as follows.

10
Let C » 101 IT >^X4 a 13,163,189,440,000

i=l

Pff ^ 96? » - f(4) 10 - (3) 10 - (2) 10 } m . 000000075

PJf > 92 \m -
:

)

10
- (7)

10
- (6)

10 + (3) 10 + (1)
1Q(

( m .0000554



- )

Table 5. Exact uniform distribution results.

•
• Value of y3

- number of X^ j s : Total: Total : Effective
fl, • .

: total
: sign

and
•
• °2l :1X.i : 2X* i ! 3X, :4X, : 5X< tezLi17X^1 odd : even

100 1 1 1 +

99 1 1 1 -

98 1 1 1 -

97 i 1 1 1
96 1 1 1 1

95 1 2 1 2 1 +
94 1 2 1 2 2
93 I G i 2 3 1 +
92 1 3 2 3 3
91 1 4 S 4 4

90 1 4 4 1 5 5
89 G 5 1 5 6 1 +
83 4 7 2 7 6 1 -

87 4 8 3 8 7 1 -

86 G 9 5 9 8 1 -

85 3 10 G 1 11 9 2 _

84 2 10 9 1 11 11
83 2 10 10 2 12 12
82 1 10 13 3 13 14 1 +
31 1 9 14 G 14 15 1 +

80 8 16 7 15 16 1 4-

79 7 16 9 i 16 17 1 +
78 5 18 11 i 16 19 3 +
77 4 16 14 2 18 18
76 3 16 16 3 19 19

75 2 14 18 5 20 19 1 m

74 1 13 19 6 20 19 1 -

73 1 10 20 9 21 19 2 -

72 9 20 10 1 21 19 2 —



Pjf > 88] = - {(X2)
10

- (ID 10
- (10)

10
(7)

10
+ (5)

10

C

+ (l)
10

} = .001995

10?(f >
04J

= - ((1G) 10 - (15)
10

- (14) 10 + (ll) 10 + (9)

+ (5)1° _ (4) 10 m (3)
10 m (2) 10 m 2(1)10} = .0200

F jf > 80) = .0953

p|f > 78} = .1704

P ff > 76
j
a . 2732

p{f > 73} a .4658

Pff > 72} = .5343

Figures 7 and 8 compare P If > f *1 for the two distributions.

The CDF for the 5 distribution was obtained from the data in

Table 5 also. Figure 7 is for 72 < t * < 92 and Fig. 8 for

90-^ t* ^ 100 with the scale expanded to give a better compari-

son.

die it is obvious that the uniform distribution will give

the designer a better probable worst case than the S distribu-

tion, the reader should bear in mind that an optimistic distribu-

tion of components will only lead to grief. The importance of

using an exact or conservative distribution for each component

must be understood.

The two preceding examples were worked manually. Even for

ten components, the calculations became lengthy. The next step

will be to develop a method by which the uniform distribution

can be found easily using a digital computer. It should be

noted, however, that the equations do give reliable results and
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0.010
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calculations can be carried out by hand when a computer is not

available, and the number of variables in the function is not

excessive.

COMPUTER METHODS

Uniform Distributions

Given a function f = Xi + XV> + ••• + Xj^ where each X^ is

uniformly distributed between X, a^d X. , it is quite easy to

obtain the PDF of f with a digital computer.

Consider that the following PDF for f « X- Xg ...

+ X/^.2.) kas t>QQn obtained by the method presented below. The

PDF for f = X-l 4- Xg ... + Xk can be obtained by the following

procedure.

The PDF of f is the area under the point-by-point product

of the two PDF r s shown in Fig. 9 as f is varied from t to f.

The value of the PDF of f ' is known for each point g., ' and the

area under each curve is equal to one.

First multiply the value of each point g^ ' of the PDF of

1

f » by h =
xk ' ^k

to obtain a new value at each point

gi" «
gj.

1
• h.

The points at which the value of the PDF of f ' is known

A^. - X_k
j

are AF apart. Consider = m and let m be rounded to
AF

the closest integer. AF should be small enough to give the
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i

-
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f
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Pig. 9. Convolution of PDF of Xk upon PDF of f.
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desired accuracy. The combination should be started with the

two smallest Ax^s and then f 1 always combined with the small-

est AXj_ remaining. Each time m becomes large enough to cause

excessive calculations, A f will be multiplied by an integer,

I • AP, and only the points g1
l

, gd+i)
1

* 2(21+1)' » ••••

8(11+1)
§

' '•• , are needeci until I • /IP is once again increased,

The first point obtained for the PDF of f will be for f

and that value will be g-^ = 0. As long as i < m, the values

for g^ are as follows.

2

S3" S2 "
A

SS = 82 + " AP

„ 61' +6(1-1)" .

Si = S(i-l) + * A P
SB

The area under the product curve out to the point gH_n)"

gi s(i-l) a
is S(4_t) and • ZlF is the trapezoidal area under

the new product curve obtained as f is decreased by the value

AP to shift the PDF of Xk &F units to the left. The magnitude

of this new trapezoidal area should be saved each time as it

will be used later.

SU-m)" + 6(i-m-l)" A „When i > m the trapezoidal area • Zi *

2

must be subtracted from the preceding equation as follows.
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Si" su-D" Ap
Si = «U-D + — ^

• n>F (I > m)
2

Note that this holds for all i when gM„m )" = Tor m > I.

Each trapezoidal area subtracted has been calculated and saved.

This method, when carried out for all X^, will give a PDF

for f between f and f . The area under the PDF curve between

f and f . is equal to P [f > f ,1 .

Uniform and <£ Distributions

It may be desirable to use the S distribution for one or

more components if the uniform distribution is not considered

conservative for that component.

If g» is the PDF for f = X1 + X2 + ... + X(&-1) and the

4-v,
§(Xk - &) + <^< xk - Xk>

kth variable has a PDF gk m , then
2

the PDF of k variables will be as follows.

r + °°

g m
J

g'(f')gk (f - f«)df

= ill g'(f') £(f - f - X^df ' +
J

g f (f')£ (f - f ' - Ik )df)

(See Appendix I.

)

But
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g»(f')S(c - f»)df» = g«(o) S(c - f')df

where £ i3 n ver r small number and

5(c - f')df = 1 (Goldman, 4, p. 101). c f -
Xfe or

4-e „
f - xk

Therefore g = -ji[g'(f - Xk ) + g'(f - \)}

£ * £' + £k , ? = f ! + 2k

The first term i3 g'Cf) translated to the right a distance

equal to X& and the second term is g'(f') translated to the

right Xk » The f f and f axes are considered to be common. Both

terms are divided by two. Figure 10 is a pictorial representa-

tion of how g is obtained from g
1 when the value of X, and X,

r

are known.

The combination with the computer is as follows:

xzk " 2£k
= mAF

1

Si = Si + g(i-m) where gx" when

General Distribution

f'-f

'

+ 1 <X <
AF j

Any general distribution can be used for a component. How-

ever, more computations are required to form the product curve

by a point-by-point multiplication cf the two curves as g(X^)

is shifted through g'. The procedure is outlined as follows.
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>

wo at each point in (a)

(b)
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X. to obtain (c).

->
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->

e)

Pig. 10. Step-by- step formation of PDF of f,
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8l =

g2
' * S(Xk )i + gx

1
• g(Xk ) 2

S2 . Zip
2

S3 1

' 8< xk>l + 2g2
?

' g< Xk>2 + Si' * S(Xk ) 3 A .
g3 = . AP

Si =

Si' ' g< xk)l + 2 g(i-l)' • g(Xk ) 2 + •••

+ 2 g2
» • g(Xk ) (i . 1) + gl ' - g(Xk )i Ap

When g
f = g(Xk ) = at f », f », Xk , and Xk , the first and

last term will always be zero and the equation can be simpli-

fied as follows.

Si * LS^-l)' * s(Xk>2 + 8(1-2)
f

' S(Xk ) 3 • • •

* 83' • g( xk)(i-2) + 82' ' 6<*k>(i-l)l * ^ P

T< - f
g1

' » 1 > i >
Ap

+ 1

g(Xk ) i
=0 1 > i >

xk - £k|
+ 1

This equation can be solved on a digital computer and is

correct as written. The equation must be modified slightly if

either g' or g(Xk ) is not zero at its extremes.

EVALUATION OP RESULTS

Error Considerations

The exact values of errors due to assumptions and
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approximations cannot be determined. If they could, there v/ould

be no need to assume or approximate and the exact results could

be obtained. It is therefore necessary to point out the causes

of errors.

An error can be either conservative or optimistic, depend-

ing on the circuit function approximated. Since the methods are

applied to a function in general, the emphasis will be on de-

termining what causes a conservative or optimistic error.

The Resultant Cumulative Density Function

The final result of the methods presented in a CDP between

f and f. When the higher order terms, neglected in the approxi-

mating function, are negligible over the range of interest, the

CDP is obtained to a high degree of accuracy. This, of course,

assumes that exact component distributions were used. If the

higher order terms are not negligible, this CDP cannot be an

exact representation of the true CDP. When this is the case,

as it should be for most functions, the CDP obtained is cor-

rected to better represent the true CDP. The implication is

not that the CDP will be exact after the correction, but that

it will be more accurate.

Obviously the first problem is to determine when the higher

order terms are not negligible. This is indicated by f and f

of the approximate solution being different than the values

obtained from the original function. The value f = f (X^, X2 ,

, Xn) with X± = i|Xj
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The correction shifts ; and f on the CDF obtained from the

approximate function to the value of f and f obtained from the

original function. The remaining points on the approximate

function CDF between 3? and f are then shifted a corresponding

distance with the point at f remaining fixed. Mote that the

approximate f will be the point v.here PJf > £ A = 1/2-

A graphic representation of the shifting will help clarify

the above statements. Let the approximate function be f* and

the original function be f. Plot the points (f*», f ), (f-*, f ),

and (f», f ). Draw a curve with a constant change in slope pass-

ing through these three points. The value of f . corresponding

to f *« can be found as shown in Fig. 12, Since the rate of

change of slope is constant, the curve is an arc of the circle

passing through the three points.

Refer to Fig. 2 for the following discussion. The family

of surfaces f(x^, k^* x3' *k ^ s now approximated by a family

of planes. The surface passing through the point (X-,, Xg» x*)

is represented by a plane passing through that point because

Pjf > f
J
is now one-half. A plane passing through this point

must cut the volume Into two equal parts.

If the main diagonal between (x-j_, Xgj x^) and (x^, X2, X3)

n(f - f

)

is drawn, the surfaces f(x-i, x9 , x<z) = f - , (n = 1, 2,
N

..., N) are now approximated by planes. There is a direct re-

lationship between the constant rate of change of slope in

Fig. 12 and the rate of change of lengths on this diagonal cut

off by these planes. If the slope is constant, the lengths are



f
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Pig. 12. Pitting the CDP,
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all the same. IT the slope is increasing as in Fig. 12, the

shortest length is next to the point (Xp x2 , x^) and the long-

est at the point (x^, x^, x3 ) because there are more planes be-

tween f and f than f and f . A decreasing slope is opposite.

As stated previously, we now have a better approximation.

The question now becomes, "When will the approximation be within

of the exact value?", where is an arbitrarily small posi-

tion quantity. Consider a function with surfaces f (x^, x2 * x^)

n(f - f

)

-s f - ZZ~
9 (n = 1, 2, . .., N), passing through the exact

N

model. If these surfaces are good approximations to parallel

plane3 within the model and the distance betv/een surfaces along

the main diagonal is either constant or increasing (decreasing)

at a constant rate, then the CDF should be nearly exact after

fitting. When the surfaces do not behave this way throughout

the entire model, the region of high accuracy is reduced. \-e

are interested in the region near- f and hopefully the surfaces

v/ill be well-behaved in this region.

The two causes of error are then nonplanor surfaces and

nonuniformly changing distances between the surfaces. Consider

the nonplanor surfaces first. If zne volume of the exact model

cut off by the surface is less than the volume cut off by the

plane passing through the same point on the main diagonal, the

approximate CDF is conservative. If the volume cut off is

greater, the CDF is optimistic.

Now consider the surfaces as planes but failing in the

uniform increase in distance condition. The approximate CDF
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will bo exact at f, f, ana f when the true surfaces are planes.

If the true surface is farther from f than the approximate

surface between f and f, then the G s optimistic over this

region* if tho true surfaces arc closer, the CDF is conservative.

The method of fitting and evaluating the fit of the GDF has

beon discussed. it is left to the designer to inspect the func-

tion at the time of application for analysis of spec'-flc results.

."Errors Due to Assumptions and Approximations

The first and most definite error is due to the distribution

of components assumed. Two values of a component which will be

the two extremes after a fixed time are uti-.ized. These are the

end-of-life values used. Since no distribution is given, the

most practical distribution to assume and use is a uniform dis-

tribution between the two extremes. If a distribution of a com-

ponent is known to be concentrated nearer one extreme, the

method for general distributions should be used, providing that

extreme causes f. The uniform distribution will b* conservative

for all others.

The next error to be considered is the approximation of the

various partial derivatives. The function in question must be

strictly monotonic between t and f before a worst case value can

be considered. This means the sign of a partial derivative does

not change over the region of interest. The mean-value theorem

states the function will have a partial derivative of this

magnitude at soma point between f and the value of f obtained
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by changing the one component (Brand, 1, p. 113). This error

can be minimized by decreasing the change in the component. It

should be pointed out that this partial derivative is generally

a monotonic function and the error is conservative when the

partial derivative has its maximum magnitude at f. The conserva-

tive error is in reference to the distribution obtained with the

true values of the partial derivatives at f\ The small partial

derivatives obtained by the approximation shift the distribu-

tion of f towards 7.

SUMMARY

The methods presented all require the designer to choose a

distribution for each component. If the actual distribution is

known it should be used. The problem still remains as to how-

to utilize the results.

The final result of any of the methods is a plot of proba-

bility of failure versus output values for a circuit or system.

The designer then has to decide what probability of failure he

wants to accept to gain a better worst case value. It is felt

that the magnitude of this probability of failure should be left

to the designer. Many parameters, such as catastrophic failure

rate, enter into the decision. Therefore it seems best to make

this decision at the time of application of the method when

these parameters will be better defined.

It should be noted that n identical circuits with proba-

bility of failure P, cascaded in such a way that the output
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functions add independently, will have a combined probability of

failure < < < P. An example is five circuits with uniformly dis-

tributed outputs, a probable worst case transition time of 100

microseconds, and P\T > IOC) = 1/10. If these five circuits are

cascaded, the probable worst case transition time is 500 micro-

seconds. The probability of failure pfj > 50o) would be .000i36.

Suppose T is 110 microseconds for each circuit. Fifty micro-

seconds are gained from the true worst case casca ed transition

ith a probability of failure of 1/3850 before end of

life. This gain should be realized;

All methods are much easier to apply with the aid of a

digital computer than by hand when the circuit contains many

components. The "hand" procedure ana equations have been pre-

sented for interested readers who either do not have access to

a computer or who wish to obtain a probable worst case of a

circuit with a moderate number of components.

The methods can be applied to any output function that can

be approximated by a Taylor series. For this reason the methods

apply equally as well to direct-current and alternating- current

functions although the partial derivatives probably are easier

to evaluate for the steady-state than the transient function.
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APPENDIX I

COMBINATION OF GENERAL DISTRIBTCKQH8

The material in this Appendix is presented Tor the reader

with little or no background in basic probability theory. The

development is not intended to be completely general with th*

specific application of the end result as the motive.

Functions of Two Independent Variables

Let f(xp ^3) be a strictly monotonic function of the two

independent variables X^ and Xg with Fk a constant value of

£(Xls X2 ). We are interested in the probability that f Fk ,

?{f « Fk j. Now, if Fk = f (X1;/ X
2k

), then p{f = Fk ]
= p{x1 = Xlk}

• P|*Xg = X2 |
when there is only one unique combination of X^

and X2 to give Fk . This statement is based on the assumption

that if two events, A and 3, are statistically independent, the

probability of both events A and 3 occurring simultaneously is

pjABj = ?(i\l . p{bJ. This is consistent since one must have

X^ and X2 , to have Fk .

When there is more than one unique combination of X^ and X2

which gives Fk , the preceding must be changed. The following is

based on the probability theorem p{a-^ • B^ or A2 • B2 or

or k ±
. Bi . . .] = pfAj] • p{bxJ

+ P[A2 )
• p(b2

J
+ . . .

+ PfA^J • PfBj} + . . . . Therefore

P £ - pk} - I [*f*l = Xlk )
* P

f
X2 X2k)

c . .
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where the summation Indicates X^ and X2 ranging over all combi-

nations of values so that f(X^ , x2r^ = pk*

The following definitions will be used:

gx PDF of Xx

g2 = PDF of X2

g = PDF of f<Xlf X2 )

Consider Af» ^x
i> ond A^ to be small increments about

Fk, Xik , and X
2k

-

H* m Fk) - SA* - iTg^AJCi g2k
Ax2

I—
r Ax2

s I gik g2k XT AXl (1)

This expression for g must be interpreted as follows. The sum-

mation is over all possible combinations of X^ and X2 that give

Fjg. g-j and g2 are the values of g-^ and g2 at the various

values of X^ and X
2 that give Fk

-

The PDF's g^ and g2 are respective functions of X^ and X2

and define the distribution of these two variables for - c° <" X^,

X2 < + <?©. Suppose we solve f^X-^, X2 ) for X2 and X2 = $(£, X-^).

This can be done as f (X-^, Xg) is strictly monotonic by hypothe-

sis, and therefore F(XX , X2 ) m t{Z±9 X2 ) - Fk satisfies the

Existence theorem (Brand, 1, p. 165). If X>> is replaced by

In Eq. (1), then any value for X^ assigns a unique value to g^

and g2 for a given F^. The summation can be replaced by an in-

tegration with limits as shown and in the limit as A X^, Ax2 ,

and Af tend to zero, the approximation becomes an equality.
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g = I &X (X\ ] 82 J0(f, Xr

Restrictions must be placed on

tive; therefore
80

90

75

30

Bt

dX. (2)

must be used.

A PDF is always posi-

must be defined over
dt\ 3t

the range of X^ and X2- Since f is strictly monotonic,

d0 1 dt dt
(Brand, 1, p. 105). Also = -

3 t d t/a d 3*2

change sign and is not zero over the range of X^ and Xg.

Consider briefly the interpretation of Eq. (2). During

integration, f is treated as a constant and the final result

will be a function of f. For any value Fk , choosing a value of

X^ defines the corresponding value of Xg to give F^. The inte-

gration process selects all values of X^ and Xg. The two func-

tions g-^ and g2 are zero except where X^ and Xg can exist. This

expression, when interpreted exactly as written, gives the re-

sults we seek. It is of extreme importance that g^ be zero over

the range where X^ cannot exist.

The application to the following three elementary functions

is shown.

V0
1. f = x1 + x2 = f - X-

dt
= i

g = / gi(xx ) g2 (f
- xx )dxx

2. f = XnX1A2
f 30

dt

i
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g

OS dX-

AX,) gp(—•)

3. f *
X< f

/'
CX?

g =

_£0j

2f|

*l. (

xi

- oo
6l(Xi) ftCj-)

(xx 4 0)

I'll

dXx (f \ 0)

APPENDIX II

COMBINATION OF UNIFORM DISTRIBUTIONS

• • •

A function of n independent variables is considered in

this Appendix. The function is of the form f Xn Xg *

+ Xn . Each variable is uniformly distributed between its two

extremes X* and X-?. Notice that Ax* = Z\ X* when f = f

maximum as will be considered.

Integral Development of CDF

The following definitions will be used throughout thii

Appendix:

f }_
s= X]_ + Xg + • . . + X^

g± m PDF of X±

g(ft ) = PDF of f±

AXi = XX - Xi

Either of the following two equations is valid for g^
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«i "
Ax.

u(x
x

- x
± ) - u(x

1
- x

1 )

= ^VlX, -

Ax, L
U(Xi - X

± ) - U(Xi - Xi)

-o

;(fg) = gi(Xi) g2 (f2 -X1 )dX1 , X
2

= = fg-X.^
/.oc

^0

0f2
= 1

2

•rr AXi

dX-

Ax,
,

f2 "X2

^i
dX-

f2~x2

dX.

f2"2fe

2"'X
1
+X2 f2 <: Xl+X2

r&
dX-

^"^
f2 < X1+X2

1

f2 <xl+£2

(X^+Xg-fg) UCX-L+Xg-fg) - (X.l+X2-f2) U(X
l
+^2"f2 )

i=l
- (x-j+Xg-fg) uUi+Xg-fg) + (Xi+x2-f2) ^(Xi+x^-fg)

and U(a - fg) = 0, fg > a

= 1, f2 ^ a

This represents the area under the product curve g-^ • gg

for different values of fg when gg is turned around on a common

axis with g^ and then shifted through g-j_. The plot of g(fg)

is shown in Fig. 14.

f3 = X2 + Xg + X3 = fg + X3 X3 = = f3 - f

j

^0
1

0*0

g(f,) = I g(fg) g3 (f3 - f2 )df2



i'o -^ X]_ + Xo

Pig. 13. Convolution of gg upon g^.
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xx 1/AX- 1/A X
2

f2 -Z.o

xl f2"x2 Xl
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X
.l
+
2^2

_:r2

17~2 or' 2il
+ -^2

Ax1Ax2

x 2

X-j_+Xg and X-^+X? may be

interchanged depending
on magnitudes of Ax-,
and A X2 .

Ax2
> 4Xi above.

Fig. 14. Plot of terms of gd^)
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i=l

'x l+x2

(X +X2 -f2 )df2
^3-X.

'Xl+X2

(

/X1+X2 _
(X1+X2 -f2 )df2

f3< : a+x2+ x3 )

.1+x2

(X1+X2 -f2 )df2

f3<axi+x2+x3 )

^"fe
(X1+X2-f2 )df2

f3<(X1+X2+X3 ) f3<(X1+X2+X3 )

'2l
+x2

f3~&

/X1+X2

f3"~3

Xl+X2
(x1+x2-f2 )df2

f3<(Xl+}

(X1+X2-f2 )df2

*VX3

(X^-f^df^

f3<(Xi+X2+X3 )

'£i+%2

f3"~3
f
3
c(X

1
+X

2
+X

3 ) f3<( Xj+Xg+Xg

)

S<*3> -

2 tTAx,
i=l

(x1+x2+x3-f3 ) u(x
1
+x2+x3-f3 )

- (Xi+X2+X3~f3 )

2
U(X

1
+X2+Vf3 ) - <

Xl+X2+X3-f3>
2

U(X1+X2+X3-f3 ) + (Xi+2^2+x3~f3)
2 u ^ xi

+
2fe

+x3-f3 )

- < X1+X2+X3-*V
2
U(X1+X2+x3-f3^ + <&*Vir*3>

8

u ^ xl+x2+x3- f3^ +
( xl+x2+x3~f3)

2
ViX-L+Qz+Xs-f^

- (Xn+Xp+Xv-f,) U(Xn+XP+X,-f,)^1T^2^3 A 3 Tr^2^^5' J-5



The PDF has the general form for fn as follows.n

g(fn ) =
(n-l)l n

7TAx
i

i=i

2n

T
J-l L

(fr fn )
(n^ 1) U(fj-fn )(-l)^j

U(frfB ) -0. fn ^fj

= 1, fn < f
j

fn = X^ + TL% + > • + Xn and Is a varisJ

f.- in a constant equal to ono of the 2n possible combina-

tions of the Xi 's. f^ a f and f(4+i) < fj»

7. - number of X. ' s in f

.

1 —

1

j

This is correct for n = 1, 2, or 5, If it is true for n

variables, then a general term of g(tfa+^) will be as follows.

'f A

(-Dyj(-i)yk

n+1
(n-l)t If AX±

x »+l
1=1

~k

(f.-f )
1*1-1) ,;f

fn-fj+k

-1 ^i+3k>

n+1
ni rr ax,

i=l

<*V*-Wn
*<*j*k-W

This is exactly the same form because k is either Xn+1 or

Xn+ -j_. The exponent of (-1) is unchanged if k is Xn+^ as yk =

and is increased by one if k is Xn+1* T3ie ^-nte^P^e,tation °f
7j_

therefore remains unchanged. The constant (f _• + k) is one of

the 2n+ ^- possible combinations of the extremes of the X^'s.

Since the formula is true for n 1 and the truth of the formula

for n variables implies its truth for n+1 variables, the

formula is true for all positive integers (Brand, 1, p. 5).
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The probability that £ > fk , p(f > fk ], is the area under

g(f ) between fk and f. The subscript n is now dropped from fn

This is the cumulative density function, CDF, of f = X-j_ + X2 +

. . . + xn .

P(f > fk)
=

r* 11
e(f )df = - •

r
n (n-l)l n

i=l

k-i
(fj - fk )

n
(~i)

7
J

DShis is valid when fjj is one of the 2 values for f *• When

fk is ncc one of these values, the summation is from j = 1 to

the number ft so that f 1 > l'k ana f
^+ ^

<
^k* Ij"*) - W this is

not true for any j, 1 < j < 2n , then f > fk > f

.

Laplace Transform Development of CDF

The following is an alternate approach to obtain the pre-

ceding results using the Laplace transformation.

cv=>

g(fo) = <5l<
xl)£o (f2 ' Xl )dXl

Using g, =
Ax,

\J{X, - X,_) - V{X± - X
i ): the limits of (^

OS

can De reduced to the following since g^ = for X, > X^ > X*.

As long as £1 ^ °-
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g<*2>

*2

!
g1 (xi )g2 (f2-x1 )dx1 = I gl * g2

= /| gi] • / S2

-
Si

- Ax,

e
-xiS . -V

Therefore

g<*2>
1 1

a
-(X-j+X^s -(X.i+X2 )s

-(X-j+X^s -(r"
1+X2 )s

As long as f_
2
> 0,

g<*3>1 *

e

g(f2 )g3 (f3-f2 )df2 |

= /IgUg)' • /[J

3 s'

rr&H
1*1

G
-<Xl+22+2b> s

ft

~( X
l+X2+*3> s

3

- e
-(X1+X2+X3 )s -(X1+X2+X3 )s -(Xi+X2+X3 )s

e
-

( *l+Vx3> s + e
- (Xl+t;+I3 )s

. e
-< Xl+x2+X3> s

Each time a new distribution is combined, the following

changes will occur in the equation for

k-1 k
rr Ax

i
—> rr Axt

e<W

i=l

1

i=3

1

Gk-1 .k
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The number of terras of the form (_) e~ as goes from 2 lc" 1

to 2^-. The (*) is determined by (-1) J where y. is the number

of X^ ' s making up the constant a,-. Therefore

g( fn ) 4 g(s) 1 = —— f (V^)
(n" 1]

L J n (n-l)l J=l L
J

77" Ax« Y
i=l U(fn-a 1

)(-l)
J
J

f + f~n n
This is a symmetric function about between f_ and

2

f„. Also g(f„) is zero for f_ > f__ 3> f . Therefore the samen <-> II -—

n

n n

function with the same area will be given if written as follows

with y, the number of X^ s making up 8j.

Urtn )

ia'Mt
U(arfn)(-1)^

1 1 2- (n-i) w . * w ,*y
g (fn )

= "Z
n (n-l)l j=l
7TZ\x,
i=i

This is exactly the same PDF obtained in the previous sec-

tion. Since p(f > f^ j- is desired, this form requires integra-

tion of considerably fewer terms in the region close to f be-

cause 7 is considered f maximum. If T had been f minimum, the

first form would be more desirable.

Justification for Very Small Ax^s

Consider the extreme case where X^>>]>^>Xi for 2 <. i £ n.

Let all Ax^'s except AX^ be equal to AXq. In the limit as

AXq goes to zero, A X-^ will be equal to [\f and f should have



the same distribution as X-^ since all other X^'s are constants

If the general equation Tor Pjf > fk ) gives the seme distribu-

tion for f as X-^, it can be stated that the equation is valid

for all values of AX
i

.

pff>fk)
=-

Ax^Axq)^- 1 ) _

n-ll ^

(«k)
B

-
(

n^)(f-Ax -fk )

n

(f-2Ax -fk )

n
. .

The limit as A Xq goes to zero is of the form — and is in-

determinate. Application of L'Hospital's rule (n - 1) times

and taking the limit as AXq goes to zero, gives the following.

1

pff > rk } - -
niAx

1 (n-l)I
^(nDlM.K-D^-^

n-1
(nt)(?-fk)(-2)

n-1
+ (nl)(f-fk )^ n

J(n-l)
h-

1'
1

>n-l

f-fk

Ax-, (n-i): '

'n-1
l

n-3^
(n-3)

^(n-l)^

(n-1)

n-2

n-1) , _<n-l)(n-2)

The order in the last bracket has been reversed. This ex-

pression is equal to (n - 1)! and the proof is complete (Feller,

3, p. 63).



73

Volume Model Representation

The equation for P jf > f^ j
is rewritten below.

The denominator of the first bracket on the right is the volume

of an n dimensional rectangular hypercube with sides of length

AX^. Consider this hypercube located in an n dimensional co-

ordinate system with (X,, X , . .., X,) the coordinates of the

closest corner to the origin and (X-j_, X2 , . . . * Xn ) the furthest

corner from the origin. A hyperplane passing through this cube

perpendicularly to the diagonal between the two corners will cut

off a portion of the volume between the plane and f. The volume

of the portion cut off is represented by the second bracket on

the right when the equation for the hyperplane is X, + X^> + X, +

... + Xjj as f # This representation is easily seen in three di-

mensions but is difficult to visualize in more than three

dimensions.

APPENDIX III

ALGORITHM FOR ORDERING SUMS

Given a set of n numbers, (p^, p2 , ..., Pn )> there are 2n

possible numbers that can be formed by taking all possible unique

formal sums of 0, 1, 2, 3, ..., n numbers of the set. When n is
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three, the eight possible unique formal sums are as follows:

0, p1# p2 » ?3» Pi + P2 » P2 + P3> Pi + P3» Pi + P2 + P3* The

problem is to order these sums starting with the smallest and

ending with the largest. This is quite simple for small values

of n. However, when n = 40, 2n = 1,099,511,627,776, and the

ordering is time-consuming. The algorithm here presented will

give nearly exact results of the number of sums less than a

certain sum for n points between the smallest and largest of

the 2n sums.

The first step is to arrange the n numbers so that

P(i+1) — ^i* ^~e sroall63 * sum °? k numbers is then calculated

for k = 1, 2, 3, ..., n. The following numbers are then found.

K sb number of p^ ' s > p-^ + p2 + ... + p^ j+i) (1 ^ «))

K*' = number of p^'s > p2 + p3 + ... + P(4+d (2 < j)

K^" number of p^'a > P3 + P4 + • •• + P( i+1) (3 ^ j

)

*

Kjm = number of Pi »s > P(m+ i)
+P( m+2) * ••• P(J+1) (m+1 - ^

Once the above numbers have been found, the following posi-

tive statements can be made.

1. The number of sums of (j-1) numbers > the smallest sum

of j numbers.

a. Any sum containing at least one p^ in the K-^ set

that is not in the smallest sum of j p i
s and neither p-^

or p2 . If Pk ^ Pi + ?2» tnen P3 + p4
+ pk ~ pl

+ P2

+ P3 + P4 -

b. Any sum containing at least one pi in the Kg' set
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that is not in the smallest sura of j P^'s and not p3
-

Each sum will contain either p-, or p2 - If pk > p2 + p3 ,

then $! + p4 + pk > Pi + pg + P3 + P4- Also if pk >

p2 + p4 , then px + p3 + pk > px + p2 + P3 + p4 - This is

quite likely; therefore p3 is not excluded. This will

help to balance out the sums with no p^ in Kn' that nwy

also satisfy the above conditions. Note that K2 ' includes
1

many p^'s in 1^ 's where X > 3 and this implies

pk — p2 + p3 + p4' Also the ( J " 1) sums with more than

one p^ in the K^ ' set need not exclude p3 -

c. Any sum containing at least one p^ in the Kg" set

that is not in the smallest sum of j numbers and not p3

or p4 . Each sum will contain both p^ and p2 . If pk

> P3 + P4, then pq^ + p2 + pk > px + p2 + p3 p4 . Also

P x
+ P2 + P5 Pk > Px + p2 + p3 + p4 + p5 , and if pk >

P4 + ?5> then Px + P2
+ P3 + Pk - Pi + p2 + ^3 + ^4 + p 5 #

This will be true for most p. in K3
"

. For the same rea-

sons as above, p 3 and p4 are not excluded.

a, b, and c are formulated as follows.

« -©(Frt* »•©(??;} **-ffira •

-

•»W(r?r)--W(r?r)--«(r^*-

* > • (Y) p;i •-(?") (7.'i-Vi-i?) (:*;-%..
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>te that a product term of any row divides the set of

numbers into three subsets. The middle tern (^Mof the first

row is the basic building block. In the number of sums of

( j-h) numbers greater than the smallest sum of j numbers, the

first K^ that can be used is K^. This is because a sum of (j-h)

numbers must have one number greater than the (h+1) smallest

numbers of the smallest sum of j numbers. When j = 6 and h = 3,

if
Pfc 2. Pi + V2 + p3 + p4 , then P5 + P6 + Pk > Pi + P2

+ P3 +

P4 + P 5 + P6 .

9 first row represents taking the subset of the K^ num-

bers one at a time, two at a time, out to all at a time. ie

subset of the smallest (h + 1} numbers is isolated from the

sums in the first row as ( 1=1. The right factor represents

the remainder of the (n-K^-h-l) numbers, taken j - (h + number

of K. numbers in that term) at a time to complete a sum of (j-h)

numbers.

The second row allows the inclusion of one of the (h+1)

subset numbers in each term, . I. This necessitates having

at least one K/ n+ ij
f number in each (j-h) sum. To be com-

pletely positive the remaining numbers should be chosen from

the (n - K/^+n

)

f - h - 1 - 1) numbers remaining but as men-

tioned previously, this number is not excluded.

A product term in any row is of the form
( J ( (

The number w is equal to Kh in the first row for the sums of

(j-h) numbers greater than the smallest sum of j numbers.

The number u + w + y is always equal to n for any term. The

number v + x + z is always equal to (j - h) . The equation for
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the number of sums of (j - h) numbers greater than the smallest

sum of j numbers is as follows. otice hov; the equation is

built upon the number h.

)

2. Number of sums of (j - h) > smallest sum of j.

+ . . .

+ **) MS) (»-*&H +
X / \ 1 / V j-h-X-1 /

The last row is for X = h + 1. To have a completely

n - K^l - h - 1
positive statement the

(

/ factor should be
j - h - X - I,

(X)
- Ah+x - h - 1 -

3 - h - X • l
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A digital computer is a complex combination of circuits.

The performance of each circuit must be well defined and a

given set of rules for each circuit must be followed in order

for the entire system to function properly. If the set of

rules is strict enough, the system will be extremely reliable.

This is the case when "worst case ?l circuit analysis is applied

to the individual circuits.

If the tolerances of the components are taken into account

and a probable worst case value for a circuit output function

considered, the strictness of the set of rules can be reduced

with very little effect on the reliability. A strictly mono-

tonic output function will have a worst case value which is

found by choosing a unique combination of one or the other ex-

treme values of the circuit components entering into that out-

put function. The values of each component in a specific type

of circuit are distributed in some manner between two extremes.

The probability is very small that a circuit will ever be built

that has this worst case value for an output function.

When the output function is expanded in a Taylor series

about the worst case value, a linear combination of variables

is obtained if only the constant and first order terms are re-

tained. The distribution of this type of function is readily

found for two kinds of component value distributions. The first

distribution considers the component value to be either its max-

imum or minimum value. The second is a uniform distribution

betv/een the two extremes.



Once the distribution is found for the approximate func-

tion for either component distribution, a systematic curve fit-

ting can be applied using values obtained from the exact out-

put function. Using an n dimensional model of the function, the

distribution obtained after the curve fitting process can be

evaluated as to the region of near exactness.

As long as conservative component value distributions are

used, the output function distribution can be safely used. A

probable worst case value for the output function can then be

found once the acceptable probability of failure is decided

upon.

This method will enable development of a set of rules for

the circuit design which will increase the performance capa-

bility of the circuit and have a negligible effect on the re-

liability of the entire system.
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