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Abstract 

The Green Revolution is credited with saving billions of lives by effectively harnessing 

new genetic resources and breeding strategies to create high-yielding varieties for countries 

lacking adequate food security. To keep the next billion people in a state of food security, plant 

breeders will need to rapidly incorporate novel approaches and technologies into their breeding 

programs. The work presented here describes new genomic and phenomic strategies and tools 

aimed at accelerating genetic gain in plant breeding. 

Plant breeders have long relied on regional testing networks to evaluate new breeding 

lines across many locations. These are an attractive resource for both retrospective and 

contemporary analysis due to the vast amount of data available. To characterize genetic progress 

of plant breeding programs in the Central Plains, entries from the Southern Regional 

Performance Nursery dating back to 1992 were evaluated in field trials. The trend for annual 

improvement was 1.1% yr-1, matching similar reports for genetic gain. During the same time 

period, growth of on-farm yields stagnated. 

Genomic selection, a promising method to increase genetic gain, was tested using 

historical data from the SRPN. A temporal-based model showed that, on average, yield 

predictions outperformed a year-to-year phenotypic correlation. A program-based model found 

that the predictability of a breeding program was similar when using either data from a single 

program or from the entire regional collection. 

Modern DNA marker platforms either characterize a small number of loci or profile an 

entire genome. Spiked genotyping-by-sequencing (sGBS) was developed to address the need in 

breeding programs for both targeted loci and whole-genome selection. sGBS uses a low-cost, 

integrated approach that combines targeted amplicons with reduced representation genotyping-



  

by-sequencing. This approach was validated using converted and newly-designed markers 

targeting known polymorphisms in the leaf rust resistance gene Lr34. 

Plant breeding programs generate vast quantities of data during evaluation and selection 

of superior genotypes. Many programs still rely on manual, error-prone methods to collect data. 

To make this process more robust, we have developed several open-source phenotyping apps 

with simple, intuitive interfaces. 

A contemporary Green Revolution will rely on integrating many of these innovative 

technologies into modern breeding programs. 
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by-sequencing. This approach was validated using converted and newly-designed markers 

targeting known polymorphisms in the leaf rust resistance gene Lr34. 

Plant breeding programs generate vast quantities of data during evaluation and selection 
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Chapter 1 - Advancing Plant Breeding 

 Measuring progress 

The benchmark of progress in plant breeding programs is the creation of lines with novel 

allele combinations that perform better than their parents. This year-on-year progress is known as 

genetic gain and is a function of genetic diversity, selection accuracy, selection intensity, and 

selection cycle time. While most reports of genetic gain in wheat have estimated gain to be ~1% 

yr-1, some reports have supported the idea that contemporary varieties are approaching a yield 

plateau (Schmidt, 1984; Graybosch and Peterson, 2010). To evaluate the status of wheat yield 

gains in the US Central Plains, entries from a regional nursery dating back to 1992 were 

evaluated for yield and other agronomic traits in a common nursery for three years. Gain within 

this collection was found to match the common estimate of ~1% yr-1. However, on-farm wheat 

yields in Kansas during the same time period did not show the same amount of growth, 

indicating that there is yield gap, due to either a lag in varietal adoption or other confounding 

factors that are impacting on-farm yield growth in the state. 

 Improving selection 

Genomic selection (GS) is a relatively new technology that makes use of whole-genome 

markers to predict performance of uncharacterized lines (Meuwissen et al., 2001). GS has the 

potential to dramatically shorten the plant breeding cycle and increase selection intensity. One 

major interest in breeding is utilizing historical data for modern genomic selection (Rutkoski et 

al., 2015). In Chapter 3, the possibility of using historical data in the US Central Plains is 

evaluated using genotypic and phenotypic data from 1992 forward to create several different GS 

scenarios and compare predicted values to a phenotypic correlation calculated from lines 

submitted twice. GS outperformed across-year phenotypic correlation in 13 of 23 years 
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predicted. In addition, program-by-program predictions were performed using either the entire 

collection of lines or lines from a single breeding program. Results showed similar predictability 

using either approach. 

 Improving genotyping 

Rapid advances in next-generation sequencing data output have provided the technology 

to greatly transform the way we think about plant genomics and breeding. To harness this data 

for plant breeding and genetics, new approaches that simultaneously discover and type 

polymorphisms have been developed using reduced representation sequencing (Elshire et al., 

2011; Poland and Rife, 2012). These whole-genome profiling approaches have given plant 

breeders an inexpensive tool that can be used for genetic mapping (Poland et al., 2012a), 

association studies, and genomic selection (Poland et al., 2012b; Jarquín et al., 2014). Plant 

breeders, however, also rely on single marker genotyping to select for known loci of importance. 

Since significant resources and time have been invested in identifying important selection 

targets, it will be highly valuable to develop a new approach that combines the benefits of whole-

genome profiling with the targeted nature of single-marker systems. Chapter 4 describes such an 

approach and its application to genotype a diverse set of wheat varieties for Lr34. 

 Mobile phenotyping 

Significant efforts are being made to improve the collection of data in the field by 

implementing high-throughput phenotyping technologies. While the attraction of these new 

technologies is high, the learning curve and barriers to implementation have led to slow adoption 

by more-traditional breeders. In addition, much of the technology utilized by these systems is 

only available at great cost and therefore not as available to breeders in developing countries. As 

a necessary improvement to more-traditional phenotyping approaches, we have developed 
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several free mobile apps that promote proper data collection, management, and ontology 

integration. These apps have been widely adopted in both developed and developing countries, 

indicating that there is still a large desire for more-traditional tools. Chapter 5 describes Field 

Book, a note-taking app with more than 1500 users around the world. Appendix C describes 

additional apps that have been developed to streamline collection, management, and analysis of 

data being used by plant breeders. 

 References 
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Chapter 2 - A field-based analysis of genetic improvement in winter 

wheat yields in the US Central Plains from 1992 to 2014 

 Abbreviations 

SRPN, Southern Regional Performance Nursery; BLUE, best linear unbiased estimate 

 Abstract 

Progress in plant breeding programs is the result of creating and selecting new lines with 

novel allele combinations that perform better than their parents. This year-on-year improvement 

is known as genetic gain and is a function of genetic diversity, selection accuracy, selection 

intensity, and selection cycle time. In order to estimate the gain in wheat breeding in the US 

Central Plains, lines that were submitted to the collaborative Southern Regional Performance 

Nursery (SRPN) between 1992 and 2014 were grown in a common nursery for three years at two 

locations in a single replicate augmented block design. Moderate to high heritability was 

observed for height (H2 = 0.88), heading date (H2 = 0.79), and yield (H2 = 0.41). From the 

common growout, genetic gain for yield across the time period was estimated at 1.1% yr-1 while 

individual program genetic gain varied between 0.3% and 2.4% yr-1. Increases in Kansas state 

on-farm yields during the same time period showed a non-significant trend of 0.13% yr-1 and 

large year-to-year variation. These results suggest that while progress is being made in US 

Central Plains breeding programs, a yield-gap remains and the same relative progress is not 

being transferred to on-farm production. 

 Introduction 

Genetic gain, or the year-on-year progress observed in plant breeding, is the benchmark 

by which plant breeding programs advance and is a function of genetic diversity, selection 
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accuracy, selection intensity, and selection cycle time. An assessment of the rate of genetic gain 

within and across breeding programs gives a benchmark for plant breeding as one of the most 

important tools we have to address food security for a growing world population. 

Plant breeding programs must evaluate new breeding lines across many locations to 

identify the best candidates for release as new varieties. To aid with this evaluation in wheat, 

collaborative regional testing networks across the US are utilized to characterize line 

performance. The Hard Winter Wheat Regional Nursery Program was established in 1931 by the 

US Department of Agriculture (USDA) – Agricultural Research Service (ARS) to measure 

performance, quality, disease resistance, and other agronomic traits of near-release wheat 

varieties from breeding programs in the US Midwest. Entries submitted by breeders in the region 

are evaluated at more than 30 locations along with multiple, common, long-term check cultivars. 

This nursery has been regularly used to estimate genetic gain over time relative to Kharkof, a tall 

check variety (Schmidt and Worrall, 1983; Graybosch and Peterson, 2010, 2012). 

Previous estimates for genetic gain across the same region have reported varying 

improvement. Battenfield et al. (2013) provided a good review of global studies measuring 

genetic gain and also measured modern gain in the Great Plains at 0.40% yr-1 relative to the 

performance of TAM 101, a common check variety. Cox et al. (1988), using 30 varieties that 

were released throughout the 20th century, found a 1% yr-1 increase. Graybosch and Peterson 

(2010) examined genetic gain for a broad time period (1959-2008) as well as a more narrow 

period (1984-2008). Gain was reported as 1.1% yr-1 increase over Kharkof, the common check 

variety for the entire time period but this trend was non-significant for the more recent years 

(Graybosch and Peterson, 2010). Investigating the idea that specific adaptation from individual 

breeding programs may have led to the modern loss of genetic gain, Graybosch and Peterson 
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(2012) examined yield gains in predetermined growing regions, again finding a lack of gain in 

the SRPN, except for where the check variety was poorly adapted. Understandably, this gives 

some credence to the ideas originally presented by Schmidt (1984) of a slowdown or plateau for 

genetic gain in recent decades. 

However, many of these previous studies have been retrospective and relative, insofar 

that they use the unbalanced regional nursery data across years and rely on the transformation of 

the mean entry yield into a relative percent of the yield of a long-term check. This approach 

assumes minimal genotype-by-environment interaction is present particularly for the long-term 

check. This assumption is likely not satisfied for the RPN since Kharkof is a tall variety in 

contrast to all contemporary wheat varieties being semi-dwarf. Kharkof is also better-adapted to 

cooler environments but is still used for comparison in warm and dry environments of the 

Southern Plains (Graybosch and Peterson, 2012). Further complicating historical measures of 

genetic gain, in previous years of this nursery, each participating location maintained their own 

source of Kharkof, presenting an opportunity for genetic drift and selection, resulting in 

subsequent phenology and morphological differences (Cox and Worrall, 1987). Other studies 

have examined genetic gain in wheat in the US using a common nursery experiment, but have 

evaluated a relatively small number of cultivars (12-35) representing a large number of years 

(average 3.8 years/entry) (Cox et al., 1988; Donmez et al., 2001; Khalil et al., 2002; Fufa et al., 

2005; Battenfield et al., 2013). 

To reduce the confounding issues detailed above in assessing the genetic gain of wheat 

breeding in the U.S. Central Plains, 711 entries that were submitted to the SRPN from 1992-2014 

were grown in a common garden for a total of four site-years. Height, heading date, and yield 

measurements were collected and used to calculate trait heritabilities. Genetic gain from 1992 to 
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2014 was estimated across the entire collection of entries as well as on a program basis. To 

determine if this genetic gain was realized in growers’ fields, the rate of gain in on-farm yields 

over the same time period was determined. Increases in Kansas state on-farm yields during the 

same time period showed a non-significant, slowing trend and large year-to-year variation. Our 

results suggest that progress in on-farm yields does not match the progress being measured solely 

from breeding nurseries or that genetic ‘gain’ in wheat breeding for this region has only been 

maintenance breeding or the prevention of yield loss due to increasing pathogen pressure and 

less favorable environments. There are stark implications of reduced gain and this observed 

yield-gap and the effect it will have on future productivity and food security. 

 Materials and Methods 

 Plant material 

Seed was acquired from original samples distributed by the SRPN for entries dating back 

to 1992. Entries were grown in a greenhouse in fall of 2012 to increase the amount of seed and 

then grown in single rows in the summer of 2013 at Ashland, KS to further increase the amount 

of seed and allow for replicated testing. For subsequent field trials, 711 entries were chosen on 

the basis of seed availability and limiting line redundancy (Table 2-1). 

 Field design and data collection 

An augmented block design with two regional check varieties (Everest and TAM 112) 

was created using the agricolae package in R with ranges corresponding to blocks (de 

Mendiburu, 2016). Experimental entries were randomly assigned to a block for each 

environment (location-year). Entries were tested for three years (2014, 2015, and 2016) at two 

locations (Ashland Bottoms Research Farm near Manhattan, KS and Hays, KS) giving six 
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location-years of evaluation. In this study, location-years are referenced by the last two digits of 

the year and first letter of the location (e.g. 14A, 15H). 

Entries were evaluated in either 0.75m x 1.22m three row plots (14A, 14H, 15A) or 1.5m 

x 2.44m six row plots (15H, 16A, 16H). Yield was collected from 14A, 15A, 15H, and 16H with 

the other two trials being lost due to extreme drought (14H) and flooding (16A). The Android 

app Field Book was used to collect the following traits: height from 15A and 16H; heading date 

from 14A and 15A (Rife and Poland, 2014). 

 Data analysis 

Twenty entries that were originally submitted to the SRPN as hybrids were removed from 

subsequent analysis. Plots that had seed loss or mixing due to harvesting errors were removed 

from additional analysis (11 in 14A; 10 in 15A). No data was collected or used for analysis from 

the two trials that were lost (14H and 16A). 

Plot-level yields from 14A and 15A were corrected for plot size. Entry yield in each 

environment was adjusted using the checks within each block. The grand mean of the check 

varieties in each environment was used to calculate a block adjustment factor, which was used to 

modify the yield for each entry in the block. 

To estimate variance effects, a linear mixed model was created for each trait using the 

lmer command from the lme4 package in R (Bates et al., 2015). Variance effects were used to 

calculate heritability with 

H2 =
σg

2

σg
2+

σge
2

e
+

σerr
2

e

      [1] 

and where σg
2 is the genotypic variance, σge

2  is the genotype by environment interaction, σerr
2  is 

the residual error variance, and e is the number of environments (Holland et al., 2003). 
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 Genetic gain 

A linear mixed model was fit using the lme4 package in R (Bates et al., 2015) for 

adjusted yield with 

yijk = μ + gi + mj + rk + (gm)ij + (gr)ik + eijk   [2] 

where yijk is the adjusted yield, μ is the overall mean, gi is the fixed genotype effect for each 

genotype, mj is the random effect for each jth year with independent and identically distributed 

(i.i.d.) mj~N(0, σj
2), rk is the random effect for each kth location with i.i.d. rk~N(0, σk

2), (gm)ij 

is the random interaction effect of the ith genotype and jth
 year with i.i.d. (gm)ij~N(0, σij

2), (gr)ik 

is the random interaction effect of the ith genotype with the kth location with i.i.d. 

(gr)ik~N(0, σik
2 ), and eijk as the random error assumed i.i.d. eijk~N(0, Iσe

2). Best linear unbiased 

estimates (BLUEs) were extracted from the model using the coef function in R (R Core Team, 

2014). The BLUE for each entry was grouped into the year the entry was first evaluated in the 

SRPN and a linear model was fit with BLUEs as a function of the evaluation year. 

Genetic gain within each breeding program was calculated by subsetting the BLUEs by 

program, and refitting the linear model above. Programs for which fewer than 20 entries were 

evaluated in this study were excluded from this process. 

Genetic gain was also calculated for each location-year by fitting a linear mixed model 

with adjusted yield as a response, entry as a fixed effect, and submitted year as a random effect. 

Entry BLUEs were grouped by their evaluation year and a linear model was fit with BLUEs as a 

function of the evaluation year. 

 Kansas yield data 

Kansas state-wide yield data from 1903 to 2015 was obtained from the USDA National 

Agricultural Statistics Service (USDA NASS, 2016). Genetic gain over time was measured by 
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fitting independent linear models with yield (in bushels per acre) for the following time periods: 

1903-1960 (pre-Green Revolution; tall wheat), 1961-1980 (Green Revolution; semi-dwarf 

transition period), 1981-2015 (post-Green Revolution; semi-dwarf wheat), 1992-2014 (years 

used in this study), and 1960-2014 (modern era semi-dwarf wheat). 

 Results and Discussion 

 Phenotypic data 

Of the four nurseries that were harvested (14A, 15A, 15H, and 16H), 3,092 plots were 

planted and 2,991 plots were used in this analysis with a total of 10,911 phenotypic 

measurements were collected for yield, height, and heading date. Heritability is the ratio of 

genetically caused variation to the total variation for a given trait (Acquaah, 2007). Across this 

set of nurseries, moderate to high heritability was observed for height (H2 = 0.78), heading date 

(H2 = 0.79), and yield (H2 = 0.45). These estimates are in line with similar studies in the same 

region (Häberle et al., 2007; Zhang et al., 2015). 

A barrier to progress in breeding programs is inaccurate and incomplete data collection. 

Even in this limited experiment, 1/3 of the planted locations were lost, demonstrating how 

difficult plant breeding can be in a region with large environmental variance. 

 Genetic gain 

Measuring genetic gain is useful to understand the amount of progress that has been made 

in plant breeding programs. Genetic gain from this collection of entries was an estimated 1.1% 

yr-1 (95% CI 0.9 – 1.29%) (Figure 2-1). Comparatively, this figure is higher than other measures 

of genetic gain in studies that have examined similar time periods (Graybosch and Peterson, 

2010, 2012). Substantial variability was observed for yield within each grouping year. 
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While the calculated gain was higher than other studies, it’s difficult to determine if this 

gain was due to improved genetics or depressed yields for older varieties. So-called 

‘maintenance breeding’ that keeps the most recent variety yield at a certain threshold in response 

to recent biotic and abiotic stresses could potentially be responsible for the observed gain. 

Supporting this idea, 2016, the evaluation year that showed the largest genetic gain among the 

lines evaluated also experienced increased biotic pressure from stripe rust and leaf rust 

contributing to yield loss in older varieties. 

To evaluate the progress that has been made within each program, entries were subsetted 

based on program and gain was recalculated. There was substantial variation of gain across 

different breeding programs with gain within individual programs ranging from 0.37 to 1.92% 

yr-1 (Figure 2-4, Table 2-2). Due to the relatively few number of lines to represent each program, 

there was large error around percent gain estimates were observed in nearly every program. 

Multiple breeding targets may also be responsible for some of the variation observed 

between breeding programs. For instance, Oklahoma State University selects wheat varieties for 

high grain yield but also focuses on developing wheat varieties that produce substantial winter 

forage, often with a yield tradeoff. The combination of breeding lines from the same program but 

with contrasting breeding targets creates the possibility of limiting genetic gain for the breeding 

program as a whole in the yield target environments evaluated for this study. 

 On-farm yields 

Although the ultimate goal for a breeder is to create lines that perform significantly better 

than his or her own experimental lines, the success of a new variety and the plant breeding 

enterprise as a whole, is the transfer of these genetic gains to increased farm yield. To evaluate to 

what extent genetic gain has been transferred from breeding programs to farmers, data from 
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Kansas state-wide yields from 1903 through 2015 was used to determine the average yield 

increase per year over several different time periods. Time periods were chosen based on years 

with similar agronomic practices. The five different time periods for which yield gain was 

calculated included 1903-1960, corresponding to tall wheat varieties with less-intense wheat 

breeding and agronomic management; 1961-1980, corresponding to the introduction of semi-

dwarf wheat varieties and increased nitrogen application; 1981-2015, corresponding to 

contemporary breeding and complete adoption of semi-dwarf varieties; 1960-2015, 

corresponding to modern breeding and semi-dwarf varieties; and 1992-2014, corresponding to 

the same years used in this study. A linear model was used to estimate the amount of gain in each 

time period (Figure 2-2). 

There were substantially different yield gains during these time periods, roughly 

corresponding to the implementation and exploitation of different agronomic and genetic 

technologies. The period relating to increasing adoption of semi-dwarf varieties and more 

applied nitrogen had substantially more gain than any other evaluated time period. Dividing the 

time period since the introduction of semi-dwarf varieties into several intervals indicated that 

yield gains on-farm are decelerating. This could be due to a number of factors including disease 

pressure, environmental stresses (Lobell et al., 2011), implementation of agricultural practices 

such as no-till, agricultural intensification, or factors related to a changing climate. 

Of interest is the fact that when evaluating modern wheat varieties as a single time period 

(i.e. 1960-2015), the rate of gain matches the generally accepted 1% yr-1 (Tester and Langridge, 

2010; Battenfield et al., 2013). However, this estimate is innately due to the inclusion of the 

extreme growth of on-farm yields from 1960-1980 and is therefore misleading. 
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The time period corresponding to the years used in this study had the least amount of 

yield gain at only 0.13%. 

 Conclusions 

Much work has been done to quantify the current rate of genetic gain as well as the 

required rate to sustain current trends in population growth and meet projected food demand 

(Tester and Langridge, 2010). The current accepted perspective is that we must significantly 

increase progress relative to the historical rate of gain, and in many situations need to double the 

rate of gain (Tester and Langridge, 2010; Ray et al., 2013). However, this conclusion is based on 

the idea that the current rate of genetic gain is a continuation of the significant increases that 

were seen during the Green Revolution, which is clearly not the case. While we found gain to be 

positive in both experimental and on-farm environments, the proportion increase seen in the on-

farm yields during the time period of interest highlights the fact that gains in breeding 

productivity may not be making their way back to the most important stakeholders. In contrast to 

the Green Revolution when the gains were substantial, the nominal gains experienced during 

contemporary breeding have been slower to move back to farmers. New genetic or technological 

enhancements will be necessary to improve this current trend. 
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Figure 2-1. Entry BLUEs plotted against the year they were evaluated in the SRPN. Black 

line indicates linear regression of Entry BLUE on Year of Release (slope = 17.25). Red and 

blue lines indicate 95% confidence interval around the regression line. 

  



17 

 
Figure 2-2. On-farm yield trends and genetic gain in percent gain per year for 1903-1960 

(red), 1961-1980 (green), 1981-2015 (orange), 1961-2015 (purple), and 1992-2014 (blue). 
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Table 2-1. The number of entries used in this study grouped by their original year they 

were evaluated. In total, 711 entries were evaluated. 

Year Count 

1992 14 

1993 15 

1994 12 

1995 24 

1996 24 

1997 31 

1998 35 

1999 18 

2000 31 

2001 32 

2002 29 

2003 38 

2004 37 

2005 41 

2006 42 

2007 29 

2008 36 

2009 33 

2010 33 

2011 33 

2012 44 

2013 40 

2014 40 
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Table 2-2. Genetic gain for each program that submitted more than twenty lines to the 

SRPN between 1992 and 2014. 

Program Year Lines Percent  

Gain 

Lower Upper 

AgriPro 1992 65 1.66 0.99 2.43 

Colorado State University 1994 75 0.90 0.37 1.51 

Kansas State University 1992 66 1.02 0.66 1.41 

Kansas State University - Hays 1992 36 1.36 0.72 2.12 

Monsanto 1996 61 1.38 0.85 1.97 

Oklahoma State University 1992 94 0.81 0.45 1.20 

Texas A&M University - Amarillo 1992 43 0.37 -0.31 1.24 

Texas A&M University - Vernon 1993 42 1.39 0.62 2.29 

Trio Research Inc. 1992 50 1.64 0.82 2.60 

University of Nebraska 1992 65 1.92 1.30 2.64 
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Figure 2-3. Entry BLUEs plotted against the year they were evaluated in the SRPN. Each 

panel represents a different breeding program. In each panel, the black line indicates the 

linear regression of the Entry BLUEs for the given breeding program on the Year of 

Release. The red and blue lines indicate 95% confidence interval around each regression 

line. 
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Figure 2-4. Percent gain by program with 95% confidence intervals. 
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Chapter 3 - Genomic analysis and prediction within a US public 

collaborative winter wheat regional testing nursery 

This chapter is to be submitted to The Plant Genome as the following article: 

Rife, T.W., R.A. Graybosch, J.A. Poland. 2016. Genomic analysis and prediction within a US 

public collaborative winter wheat regional testing nursery. 

 Abbreviations 

SRPN, Southern Regional Performance Nursery; GS, genomic selection; TP, training population; 

BP, breeding population; BLUP, best linear unbiased predictor 

 Abstract 

The development of inexpensive, whole-genome profiles enables transition to allele-

based breeding using genomic prediction models which take into account alleles shared between 

lines to predict phenotypes and select new lines based on estimated breeding values. This 

approach can leverage highly-unbalanced datasets common to breeding programs.  The Southern 

Regional Performance Nursery (SRPN) is a public nursery established by the USDA-ARS in 

1931 to characterize performance and quality of near-release wheat varieties from breeding 

programs in the US Central Plains. New entries are submitted annually and can be reentered only 

once. The trial is grown at more than 30 locations each year and lines are evaluated for grain 

yield, disease resistance, and agronomic traits. Overall genetic gain is measured across years by 

including common check cultivars for comparison. We have generated whole-genome profiles 

via genotyping-by-sequencing for 939 SPRN entries dating back to 1992. We measured the 

diversity within the nursery and have explored its potential use as a GS training population. GS 

prediction models for yield across years (average r= 0.33) outperformed observed phenotypic 
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correlation across years (r=0.27) for a majority of the years evaluated, suggesting that genomic 

selection has the potential to outperform low heritability selection on yield in these highly 

variable environments. We also examined the predictability of programs using both program-

specific and whole-set training populations. Generally, the predictability of a program was 

similar with both approaches. These results suggest that wheat breeding programs can 

collaboratively leverage shared data and provide breeders a means to employ the immense 

datasets that are generated from regional testing networks.  

 Introduction 

Plant breeding programs exert considerable effort evaluating new breeding lines across 

many locations to identify superior-performing candidates for release as new varieties. For this 

evaluation in wheat, collaborative regional testing networks have been developed in the U.S. to 

provide additional information to breeders on the broad performance of their lines. 

The cooperative regional performance testing program was established in 1931 by the 

USDA-ARS in partnership with university agricultural experiment stations to characterize 

performance, quality, disease resistance, and other agronomic traits of near-release wheat 

varieties from breeding programs in the US Central Plains. In this network, the Southern- and 

Northern Regional Performance Nurseries (SRPN and NRPN) were established where breeders 

submit entries that are distributed for evaluation at more than 30 locations along with multiple, 

common, long-term check cultivars (Figure 3-1). Phenotypic data collected from the nurseries 

includes grain yield, test weight, plant height, lodging, and resistance to a variety of diseases. 

The regional performance nurseries have been used to regularly measure genetic gain over time 

(Schmidt and Worrall, 1984; Graybosch and Peterson, 2010, 2012), evaluate long-term wheat 
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diversity (Cox and Worrall, 1987), and cluster experimental locations into production zones 

based on performance data (Peterson, 1992). 

Previous investigation of broad genotypic characteristics of the RPNs has been limited 

due to the overall number of lines that have been tested, difficulty in obtaining a complete set of 

evaluated entries, and an inherent challenge in generating a sufficient amount of genotypic data 

for each entry. With the recent development of inexpensive, high-density genetic markers, 

whole-genome marker profiles can now be obtained for every experimental line, making possible 

new analyses that rely on large amounts of genomic data including diversity studies and genomic 

selection (Poland and Rife, 2012). 

Genomic selection (GS) is a statistical approach that is used to predict phenotypes and 

select new lines in breeding programs based on favorable allelic combinations (Meuwissen et al., 

2001). Breeding programs are investigating and utilizing GS as a tool to shorten the breeding 

cycle (Heffner et al., 2009, 2010) and increase the selection intensity (Cros et al., 2015; 

Battenfield et al., 2016). GS has two fundamental components: 1) a population that has been both 

phenotyped and genotyped which is used to train the prediction model and 2) a population that 

has been only genotyped to which the model is then applied. Previous literature has assigned 

each of these two populations various designations (Rincent et al., 2012; Isidro et al., 2014; 

Rutkoski et al., 2015). Here we will refer to the two populations as the training population (TP) 

and the breeding population (BP), respectively. 

Optimal design of the TP is a research topic of high interest to the breeding community as 

the phenotypic evaluation of the training population remains a time-consuming and expensive 

endeavor (Isidro et al., 2014; Akdemir et al., 2015; Spindel et al., 2015). The characteristics that 

make up an ideal training population are still relatively poorly understood. However, two 
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features have been promoted as compelling factors: size and degree of relatedness. A correlation 

exists between the number of lines used in the training population and the accuracy of the 

predictions (Zhong et al., 2009). However, there are diminishing returns (Asoro et al., 2011). It is 

not possible to estimate allele effects if there are no common alleles and lack of relationship 

between the TP and BP. A TP that is more closely related to the BP often results in better 

prediction accuracy (Hayes et al., 2009; Long et al., 2011; Pszczola et al., 2012; Rutkoski et al., 

2015). 

The broad scope and design of the RPN makes it an ideal collection to investigate both of 

these factors since thousands of lines have been evaluated in this nursery. The simultaneous 

interrelation and stratification of alleles between the regional breeding programs makes it 

possible to examine how relatedness factors into accuracy both across and within the program. 

A successful implementation of GS using the lines that have been evaluated in the RPN 

would allow plant breeders in the region to leverage this data to transition to allele-based 

breeding and for predicting stable broad adaptation. Prediction models that take into account 

alleles shared between lines would make it possible to utilize the vast quantities of phenotypic 

data available from this nursery. To this end, we have generated whole-genome profiles via 

genotyping-by-sequencing for SRPN entries dating back to 1992. This genetic data was used to 

examine SRPN diversity, characterize the potential for this collection to serve as a TP for GS, 

and evaluate prediction differences between breeding programs.  

 Materials and Methods 

 Plant material 

A collection of 939 entries (691 unique lines) that were submitted to the Southern 

Regional Performance Nursery (SRPN) between 1992-2012 was assembled and DNA was 
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extracted from seedling leaf tissue using a BioSprint 96 DNA Plant Kit (Qiagen). DNA was 

quantified in plates using PicoGreen and normalized to 20µg/µL (Figure 3-2). 

 Library construction and data processing 

Fourteen GBS libraries were prepared following the protocol detailed by Poland et al. 

(2012). Briefly, DNA was digested with PstI and MspI and barcoded adapters were ligated to the 

ends of the fragments. Samples were then pooled at 192-plex, amplified, and sequenced on an 

Illumina HiSeq 2000. SNPs were called using the approach of Poland et al. (2012b) using a 

population-based filter. SNPs were filtered to have at least a 5% minor allele frequency and at 

least 20% data present. For subsequent genomic prediction, entries for which genotypic data was 

unavailable but had been evaluated in the SRPN in a different year (and as a different entry) 

were “imputed” if genotypic data was available from a different entry.  

 Diversity analysis 

Check entries that are unrepresentative of current wheat cultivars as well as hybrid 

varieties for which original seed was not available were removed from subsequent analysis. The 

SNP calls from the remaining 889 entries (665 unique lines) were used to measure diversity 

using Nei’s genetic distance (Nei, 1973) across the entire collection and on an individual 

breeding program level with a custom script in R (R Core Team, 2014). For lines that were 

submitted to the SRPN more than once, only the first entry was used when computing genetic 

distance. Programs contributing fewer than ten entries (ARS-Manhattan, South Dakota State 

University, Trigen, and Bayer CropScience) were excluded from the analysis to ensure a less-

biased estimate. 
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 Phenotypic data 

Historical phenotypic data from 82,546 plots was compiled and a mixed linear model was 

used to calculate best linear unbiased predictors (BLUPs) for lines with random effects for entry, 

a random effect for location, year, location by year, and replication within location by year using 

the lmer command from the lme4 package in R (Bates et al., 2015). The SRPN allows lines to be 

submitted to the nursery twice, generally for two consecutive years. As a comparison for the 

genomic prediction accuracies, a phenotypic correlation for yield across years was calculated 

using 207 entries that were submitted to the nursery for two consecutive years. 

 Genomic selection 

A realized additive relationship matrix (A) was constructed using the A.mat function in 

the rrBLUP package in R (Endelman, 2011). Markers were imputed using the EM algorithm and 

a maximum missing threshold of 0.8 was used. The kin.blup function in the rrBLUP package 

was then used to perform genomic prediction with K set to A (Endelman, 2011). Two separate 

TP schemes were evaluated. The first was a temporal-based TP constructed such that all lines 

tested in previous years were used as the TP for a given year resulting in a TP that increased in 

size for each subsequent cycle. After running the predictions for all years, one significant outlier 

year (2001) was excluded from the training population and predictions were performed again. 

The second approach examined the prediction accuracy of lines from a given breeding 

program using a TP consisting of either a) all lines from all of the programs or b) other lines 

from the same program. The former method was performed using a “leave one out” prediction 

across all entries, subsetting the predicted values by breeding program, and then calculating a 

correlation between the predicted values and generated BLUPs. The latter method used a “leave 

one out” approach within the entries from each breeding program. 
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 Results and Discussion 

 Genotyping 

To move from line-based breeding to allele-based breeding methods, a whole-genome 

profile is needed to calculate a realized relationship matrix. In this study, we utilized genotyping-

by-sequencing to produce our genetic data. Using an internal alignment-based pipeline, 53,672 

SNPs were discovered and typed with 2,463 of these SNPs having more than 80% data present. 

 Diversity analysis 

Genetic diversity is an important factor for maintaining long term gain in plant breeding 

programs. To assess the genetic diversity within and across programs, we calculated Nei’s 

genetic distance. Nei’s genetic distance for the entire collection of lines was 0.264 with the level 

of diversity within individual programs ranging from 0.198 to 0.25 (Table 3-1).  There was 

considerable variation in the diversity estimates between breeding programs. As might be 

expected, there was a linear relationship between the number of lines submitted by a program 

and its measured level of diversity (r2 = 0.485, p=0.05). However, there were several exceptions 

where programs with large numbers of submitted lines had a relatively low measured diversity, 

potentially due to a narrow breeding program either in target region or germplasm base. 

 Phenotypic data analysis 

Yield data from 82,546 plots, representing 670 unique location-year nurseries, was used 

in a mixed linear model to calculate a BLUP for each entry. The majority of entries submitted to 

the SRPN are only tested for a single year, making absolute yield comparisons across all years 

impossible. However, since 207 of the lines submitted to the SRPN were evaluated in the nursery 

twice, it was possible to use the performances (i.e. BLUP) of these lines from their first year and 

second year in the nursery to estimate the phenotypic correlation expected in the nursery. The 
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correlation for plot yield across years in these lines was moderately low at 0.27 (p<0.01). This is 

to be expected due to the wide range of environments from which data is being generated and the 

high year-to-year variation common to the Central Plains. 

 Genomic prediction across years 

A temporal-based training population was created that used data from all previous years 

to make predictions on the next year. Genomic prediction using this approach resulted in an 

average correlation between the calculated BLUPs and predicted values of 0.33 (Figure 3-3). The 

correlations for eleven of the predicted years were significant at p<0.05. 

This approach created a training population that increased in size with each subsequent 

prediction cycle. However, there was not an observed positive trend in prediction accuracy with 

the increased training population size. The likely cause is the large influence that the year of 

evaluation has on the yield of entries within the nursery (Dawson et al., 2013; Lado et al., 2016). 

For GS to be implemented into breeding programs, it needs to have similar accuracy to or 

surpass the selection methods being used by breeders, namely, phenotypic selection. To put our 

GS predictions into a phenotypic context, we compared them to the phenotypic correlation of 

lines that were evaluated multiple times in the SRPN. Predictions were superior to the 

phenotypic correlation in 12 of the 23 years predicted and within the 95% confidence interval of 

the phenotypic correlation in all except two years (Figure 3-3). One potential explanation for the 

drastic decrease in predictive accuracy in 2001 is an epidemic of stripe rust (Line, 2002). 

 Genomic prediction across breeding programs 

To determine if data from other breeding programs can be used for genomic prediction 

within a given breeding program, separate training populations consisting of all experimental 

lines (excluding the line being predicted) and lines specific to a given breeding program 
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(excluding the line being predicted) were used to predict lines one at a time within a breeding 

program (Figure 3-4). 

There is a trend in prediction accuracy that is independent of the approach utilized. 

Breeding programs that are relatively ‘predictable’ with one method are also relatively 

‘predictable’ with the other. This implies that the potential for a breeding program to implement 

genomic selection is likely to be founded on characteristics intrinsic to a given program and that, 

as tested here, genomic selection may not be a suitable selection approach for all breeding 

programs. 

 Conclusions 

Maintaining long-term, regional testing networks, as well as their seed stocks, can 

provide additional information for genetic improvement and ensure future crop production and 

food security. The potential to use existing datasets for new breeding approaches, like genomic 

selection, is attractive since generating new phenotypes is both cost- and time-prohibitive and the 

sampling of many past years of environments is invaluable. In this study, we examined the 

diversity of the Southern Regional Performance Nursery and considered multiple approaches to 

implement genomic selection using historical data. Genomic predictions across the entire 

collection outperformed a year-to-year phenotypic correlation (i.e. phenotypic selection 

accuracy).  However, these results were not consistent across breeding programs with several 

programs showing reduced or no predictive ability. Our results indicate that there may be 

inherent characteristics of breeding programs such as germplasm base or target region that 

prohibit or constrain the use of information from other breeding programs and regional testing 

networks for genomic prediction as a tool for selection. With the increasing need to maximize 

genetic gain and accelerate delivery of improved high-yielding varieties, the use of historical 
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data from coordinated testing networks can be a valuable addition to the genomic prediction 

models used by plant breeders. 
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Figure 3-1. A map of SRPN locations from 1992-2015. The size of each circle indicates how 

many years the location was included in the nursery, with a minimum of 1 and a maximum 

of 23. 
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Figure 3-2. A visual representation of entries in the SRPN from 1992-2015. Each box 

represents an entry that was submitted to the SRPN. Red boxes indicate entries for which 

genotypic data was utilized in this experiment. 
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Figure 3-3. The prediction accuracy when using all prior years to predict a given year. The 

dashed line indicates the calculated phenotypic correlation (r=0.27) of lines that were tested 

across multiple years. The shaded area indicates the 95% confidence interval of the 

phenotypic correlation. The dotted line indicates the average genomic prediction 

correlation (r=0.331). Filled circles indicate years that were included in the training 

population; open circles indicate years that were excluded from the training population. 
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Figure 3-4. The prediction accuracies for individual breeding programs. Each row contains 

the name of the breeding program, the number of lines used in the analysis, the correlation 

when using a training program comprised of all lines (Left), and the correlation when using 

only lines originating from the same breeding program (Right). 

  



38 

Table 3-1. Number of lines tested and Nei’s genetic distance for breeding programs 

submitting more than ten entries to the Southern Regional Performance Nursery from 

1992 – 2015.  The diversity estimate across the entire collection was 0.264. 

Diversity Program Lines 

0.197 Kansas State University - Hays 41 

0.198 Trio Research Inc. 64 

0.200 Texas A&M University - Dallas 18 

0.212 ARS-Lincoln 19 

0.217 Texas A&M University 15 

0.220 Colorado State University 83 

0.220 University of Nebraska 65 

0.222 Texas A&M University - 
Amarillo 

43 

0.226 Texas A&M University - 
Vernon 

54 

0.226 Limagrain Cereal Seeds 20 

0.242 Kansas State University 71 

0.244 AgriPro 71 

0.245 Oklahoma State University 99 

0.250 Monsanto 65 
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Chapter 4 - Spiked GBS: A unified, open platform for single marker 

genotyping and whole-genome profiling 

This chapter was adapted from the following peer-reviewed journal article: 

Rife, T.W., S. Wu, R. Bowden, and J.A. Poland. 2015. Spiked GBS: a unified, open platform for 

single marker genotyping and whole-genome profiling. BMC Genomics 16(1): 1–7. 

 Abbreviations 

MAS: marker-assisted selection; GS: genomic selection; KASP: Kompetitive Allele Specific 

PCR; TAS: Targeted amplicon sequencing; GBS: genotyping-by-sequencing 

 Abstract 

 Background 

In plant breeding, there are two primary applications for DNA markers in selection: 1) 

selection of known genes using a single marker assay (marker assisted selection; MAS); and 2) 

whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms 

have addressed only one of these objectives. 

 Results 

We have developed spiked genotyping-by-sequencing (sGBS), which combines targeted 

amplicon sequencing with reduced representation genotyping-by-sequencing. To minimize the 

cost of targeted assays, we utilize a small percent of available sequencing capacity available in 

runs of GBS libraries to “spike” amplified targets of a priori alleles tagged with a different set of 

unique barcodes. This open platform allows multiple, single-target loci to be assayed while 

simultaneously generating a whole-genome profile. This dual-genotyping approach allows 

different sets of samples to be evaluated. Here, we report the application of sGBS on a winter 
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wheat panel that was screened for converted KASP markers and newly-designed markers 

targeting known polymorphisms in the leaf rust resistance gene Lr34. 

 Conclusions 

The flexibility and low-cost of sGBS will enable a range of applications across genetics 

research. Specifically, in breeding applications, the sGBS approach will allow breeders to obtain 

a whole-genome profile of important individuals while simultaneously targeting specific genes 

for a range of selection strategies across the breeding program. 

 Background 

Progress in plant breeding focuses on the rapid development of new cultivars with 

improved attributes. Molecular markers allow breeders to characterize specific lines without the 

need for laborious and time-consuming phenotyping. Marker-assisted selection (MAS) is used in 

plant breeding to identify the allele present at a specific locus, allowing the breeder to select 

based on genotype (Collard et al., 2005). MAS has been used for plant breeding in many crops to 

identify specific individuals with known genes of interest (Buerstmayr et al., 2009; Suh et al., 

2011; Zhao et al., 2012), primarily to target large-effect, single targets (Xu and Crouch, 2008; 

Collard and Mackill, 2008). Since each locus is generally genotyped independently, breeders 

tend to consider per data point costs when utilizing MAS within breeding programs. 

Contemporary marker technologies for assaying single targets that are often used with 

MAS include KASP, targeted amplicon sequencing, and SNP arrays. KASP (Kompetitive Allele 

Specific PCR) is a uniplex, fluorescence-based single nucleotide genotyping technology that 

utilizes allele-specific oligo extension (Semagn et al., 2013). KASP markers have been used for 

breeding, QTL mapping, and are the main genotyping platform for the Generation Challenge 

Program at CIMMYT (Semagn et al., 2013). The arrival of inexpensive sequencing has led to the 
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development of economical sequence-based genotyping approaches. Targeted amplicon 

sequencing (TAS) amplifies known gene targets and attaches a barcode in a second PCR reaction 

for multiplexing (Bybee et al., 2011). Samples are pooled, sequenced, and analyzed by parsing 

the sample-specific barcode and then identifying sequence known or unknown variants 

(Durstewitz et al., 2010; Bybee et al., 2011). Using a targeted amplicon approach, Bybee et al. 

(Bybee et al., 2011) specifically looked at genes useful for phylogenetic analysis. TAS was 

further extended to a single PCR reaction that utilized linker sequences which allowed common 

target primers and a single set of barcoded primers to be utilized across distinct samples and loci 

(Clarke et al., 2014).  

Complementary to assaying single loci for MAS, whole-genome profiling can be utilized 

for genomic section, QTL mapping, and diversity analysis (Jannink et al., 2010). Whole-genome 

profiling approaches focus on assaying large numbers of markers while reducing the per sample 

cost (Davey et al., 2011). Two common whole-genome profiling methods are SNP arrays and 

genotyping-by-sequencing (GBS). SNP arrays are comprised of a large number of known 

polymorphisms that allow an individual to be genotyped at all sites simultaneously which 

reduces the overall cost per data point (Ganal et al., 2012). SNP arrays have been used across a 

range of species to characterize diversity (Hyten et al., 2010b; Akhunov et al., 2010) and 

association mapping (Cockram et al., 2010). SNP arrays tend to be robust marker platforms but 

can have limitations, including the inability to target loci that were not included during the array 

development (i.e. ascertainment bias) and a relatively high per-sample cost. 

GBS is a reduced representation whole-genome profiling strategy that leverages rapidly 

dropping sequencing cost and increasing output. Multiplexing samples with DNA barcodes 

greatly reduces the per sample cost (Elshire et al., 2011; Wetterstrand, 2014). GBS is one of 
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several reduced representation marker platforms to take advantage of second-generation 

sequencing platforms which produce enormous amounts of sequence (Davey et al., 2011; Poland 

and Rife, 2012). However, since many samples are sequenced together to minimize cost, the 

reduced sequencing coverage per sample often results in higher levels of missing data. Since 

sequencing is only targeted to regions flanking restriction sites, GBS is unable to directly 

ascertain specific loci, leading to considerable informatics challenges when used in MAS.   

Spiked genotyping-by-sequencing (sGBS) takes advantage of abundant sequencing 

output by combining reduced representation GBS libraries with multiple, targeted amplicons. 

sGBS assesses known alleles via targeted amplicon sequencing and individual genotypes are 

determined by allele frequency counts. Multiple loci can be assayed concurrently since 

genotyping relies on the independent, raw sequence output. A similar approach to sGBS was 

developed by Wells et al. (Wells et al., 2013) that utilizes sequencing-based variant detection by 

barcoding amplicons. sGBS is distinguished that it is more economical since it uses only a small 

fraction of available sequencing capacity, the majority of which is simultaneously being used to 

generate independent, whole-genome profiles. By combining both approaches, breeders and 

geneticists are able to employ multi-faceted selection strategies and marker assays with a small 

increase in resource expenditure. 

To evaluate this approach, we performed sGBS on a winter wheat panel that was 

screened for six converted KASP markers, four known polymorphisms in the leaf rust resistance 

gene Lr34, and one newly-designed marker targeting a known deletion in Lr34. 
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 Methods 

 Plant Material 

A panel of 153 diverse, advanced wheat lines (Table S1) was assembled and DNA was 

extracted from seedling leaf tissue using a BioSprint 96 DNA Plant Kit (Qiagen). DNA was 

quantified in plates using PicoGreen and concentrations were normalized to 20ng/µL. 

 Markers 

Eleven single nucleotide markers were tested for the sGBS approach. Six of the markers 

were converted from a randomly chosen set of the KASP core markers: BS00023148, 

BS00083385, BS00150192, BS00067189, BS00088726, and BS00089969 (Wilkinson et al., 

2012). Four of the markers were developed from previously designed Lr34 KASP markers: 

Lr34exon11kasp, Lr34exon12kasp, Lr34intron4kasp, and Lr34exon22kasp (Lagudah et al., 

2009). The ‘Lr34exon11’ marker from Lagudah et al. (Lagudah et al., 2009) was also adapted for 

sGBS, which targets a 3 bp insertion in exon 11, indicative of a non-functional allele (Lr34 

minus). All primer and allele sequences are provided in Table S2. Two of the markers from the 

KASP core collection did not amplify (BS00067189 and BS00088726) and were not included in 

the subsequent analysis.  

 Primer Design 

Primers were designed to amplify the full sequencing construct in a single PCR reaction 

(Figure 4-1). A set of 384 unique barcoded primers was developed for multiplexing and to 

differentiate spiked amplicons from GBS reads (Table S3). Each barcode primer contains the 

sequencer forward priming site, a unique 10-base barcode, and a M13 tail sequence (Figure 4-1). 

These were combined with locus-specific primers that also included the M13 tail sequence on the 

forward primer (Gholami et al., 2012). The locus-specific reverse primer includes both the 
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flanking sequence reverse primer and the sequencer-specific reverse priming site. Incorporating 

the M13 tail design on both the barcoded primer and allele-specific primer enables the utilization 

of the same set of barcode oligos for any target sequence, amortizing the cost of oligo synthesis 

across many samples. The alternative of making barcoded locus-specific primers for each target 

locus would be cost-prohibitive.  

 KASP markers were converted to primers for sGBS by removing the selective base on 

the end of each forward primer, effectively creating a single, common forward primer for each 

locus rather than the two allele specific primers used for KASP genotyping. Integrating the 

respective M13 and reverse Ion Torrent sequences on the primer pair made the KASP primer 

sequences compatible with sGBS.  

 Locus-Specific Amplification 

In a 96 well plate, 150ng of DNA was combined with 3 pmol of M13 barcode primer 

(4µL at 0.75 µM). A master mix consisting of buffer (1X final), 0.75 µL MgCl2 at 50 mM (2.5 

mM final concentration), 1.2 µL dNTP mix at 2.5 mM for each nucleotide (200 µM final 

concentration for each), 0.3 pmol forward-tailed primer (0.03 µL at 10 µM: 20nM final 

concentration), 3 pmol  reverse primer (0.3µL at 10 µM: 200nM final concentration), 0.33 U Taq 

polymerase, and 3.62µL H2O were combined with the DNA for a total volume of 15µL for each 

reaction. Plates were PCR-amplified for 36 cycles consisting of 95C (1 min), 57C (20s), and 72C 

(40s). All samples in the plates were pooled and added to the quantified GBS libraries. 

 Library Construction and Sequencing 

Two GBS libraries were prepared for Ion TorrentTM (Life Technologies, Carlsbad, CA) 

sequencing following the protocol from Mascher et al. (Mascher et al., 2013). Libraries were 

size-selected on a 2% agarose gel between 200 and 250bp, quantified using Quant-iTTM 
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PicoGreen® (Molecular Probes / Invitrogen Eugene, OR 97402), and normalized to 11nM. After 

pooling, the amplicon libraries were quantified using PicoGreen and normalized to 1.1nM. Five 

µL of the pooled amplicons were added to 50 µL of each GBS library for a final concentration of 

1% (Figure 4-2). The libraries were prepared using the Ion PI™ Template OT2 200 Kit (v2 and 

v3) and then sequenced on an Ion Proton™ System using the Ion PI™ Chip Kit v1. The full 

protocol for library preparation is provided in Appendix C. 

 Data Processing 

A TASSEL pipeline designed for Illumina sequence data was modified to identify SNPs 

from the GBS tags (Mascher et al., 2013; Glaubitz et al., 2014). Specifically, TASSEL was 

modified to process Ion Torrent sequencing sites and work with variable length sequence reads. 

SNP genotypes were called according to the approach of Poland et al. (Poland et al., 2012b) 

using a population-based filter. A TASSEL-based custom pipeline was written to determine the 

allele counts at each amplified locus by identifying the presence of both the M13 sequence and 

the target SNP alleles. Reads with the M13 tail sequence were parsed by barcode and the number 

of reads at each allele for a given locus was counted by exact matching to one of the target 

sequences.  

 Genotype calling for locus-specific amplicons 

Lines with less than 10x read coverage were not included when clustering and calling 

genotypes. Genotypes were called using k-means clustering and DBSCAN clustering, both 

performed in R (Ester et al., 1996; Hennig, 2014; R Core Team, 2014). For k-means, the relative 

proportion of reads for each allele were plotted to determine the appropriate number of clusters 

to use for this input parameter. DBSCAN relies on reachability distance to determine the 

appropriate number of clusters (Ester et al., 1996; Hennig, 2014). Varying reachability distances 
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were empirically tested to ascertain an appropriate value. Observationally, a reachability distance 

of 0.1 ideally grouped all but one locus. For BS00150192, the optimal reachability distance was 

0.06. 

 Results and Discussion 

To test the approach of spiked GBS, we assayed a panel of diverse wheat lines using 

GBS to create a whole-genome profile and sGBS to target 11 known polymorphic sites. DNA 

was extracted and normalized and GBS libraries were constructed for the Ion Proton sequencing 

platform. The two sequenced GBS libraries contained 73M and 81M reads with a respective 

mean read length of 145bp and 183bp. Consistent with previous experience with unspiked GBS 

libraries, 83.6% and 81.3% of reads contained a good GBS barcode and a barcode plus enzyme 

cut site, respectively. Internal alignment-based discovery resulted in the identification of 13,617 

SNPs with less than 20% missing data, also consistent with previous unspiked GBS libraries 

(Poland et al., 2012a; Mascher et al., 2013). 

As a proportion of total sequencing output, the spiked amplicons constituted 1.8% and 

3.1% of each library as determined by a count of M13 sequences. Amplicon libraries were 

individually analyzed to avoid bias due to read number differences. For each locus, the allelic 

state of each line was determined by counting the number of reads containing both the sample-

specific barcode and a given allele. Genotypes were called using k-means clustering in R and 

DBSCAN clustering using the fpc package in R (Ester et al., 1996; Hennig, 2014). Relative read 

frequency was used to group individuals into one of three classes: A, B, or Heterozygous. K-

means requires a parameter specifying the number of expected clusters while DBSCAN requires 

the reachability distance (Ester et al., 1996). Both of these values require individual curation for 

loci to ensure two (A/H or A/B) or three (A/B/H) clusters are correctly called. 
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Generally, there were few differences in the results from either method. For single-copy 

loci, both methods performed equally well and homozygotes and heterozygotes were easily 

identifiable (Figure 4-3a). Loci with non-zero axis clusters were also easily identified with both 

methods. Clusters arising from multi-copy loci were often distinct enough to confidently 

postulate the genotype allelic state (Figure 4-3c). Overall, the level of concordance between the 

two clustering algorithms was high with 97.2% of the genotype calls the same between the two 

methods (Figure 4-3b,d). The majority of discordance was due to k-means requiring that all 

genotypes be classified whereas DBSCAN did not classify individuals outside of the main 

clusters. The DBSCAN algorithm is therefore likely of more use in polyploid species where a 

heterozygote may not be as readily identified (Figure 4-3d). Ignoring the individuals that 

DBSCAN did not classify, there was 100% agreement between the two methods. 

Robust conversion of SNP markers between different platforms is important for future 

genotyping applications, but success can vary considerably (Ragoussis, 2006; Hyten et al., 

2010a; Uitdewilligen et al., 2013). In this study, we observed a good level of conversion from the 

KASP markers. Two attempted primer sets did not result in amplifying the target sequence and 

further efforts to optimize conditions for these primer sets were not attempted. For markers that 

successfully amplified, the average call rate was 94.8%. Several markers from the KASP core set 

resulted in non-zero axis read count clusters, likely due to the existence of homologous copies of 

the target locus. The percentage of alleles called for each locus and average coverage are 

reported in Table 4-1. 

 Conclusions 

With sGBS, we have developed a low-cost, flexible platform for whole-genome profiling 

and targeted, single-locus genotyping. The open architecture of primer design for the spiked 
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amplicons enables simple inclusion of new or different target loci. Utilizing a unique set of 

barcodes combined with locus-specific M13 tail primers enabled sequencing of amplified targets 

in parallel with GBS libraries. While GBS provides a very low-cost approach for whole-genome 

profiling, it relies on reproducibly sequencing between restriction sites and cannot target a priori 

selected loci. Targeted amplicons fill this gap by allowing specific loci to be characterized. 

However, with the enormous sequencing output from current sequencing platforms, generating a 

sufficient number of amplicons across an appropriate number of samples to avoid unreasonable 

sequencing depth and cost is prohibitive. To minimize cost, we utilize a small fraction of the 

sequencing run (1-3%) while generating more than sufficient coverage across all target loci. Any 

reasonable number of amplicons could likely be combined with a GBS run.  As with any 

sequencing approach, increasing the number of samples (or targets) decreases coverage.  As 

sequencing output continues to increase, further ‘excess’ capacity can be leveraged in this way. 

However, as noted, targeted amplicon numbers beyond 10-20 are likely to be impractical relative 

to a fully designed array or whole-genome characterization (i.e. GBS). 

Routine implementation of genotyping approaches in large genetic and breeding 

applications requires simple and robust laboratory pipelines. In concert with GBS library 

development, sGBS target amplification is a streamlined procedure affording routine, high-

throughput implementation. The amplicon libraries are generated through a single PCR reaction, 

collectively normalized, and pooled with a GBS library. Though not attempted here, multiplex 

PCR reactions for the locus-specific amplification would further simplify the overall protocol.  

sGBS was designed for MAS and GS in breeding but is also broadly applicable for a 

large number of other molecular genetics purposes. Many approaches ranging from diversity 

studies (Lu et al., 2013) to genetic and association mapping (Liu et al., 2014) and genomic 
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selection (Poland et al., 2012b) have successfully applied GBS, but the number of genetic 

markers generated by GBS often exceeds what is needed for genetic studies, such as fine 

mapping or TILLING. Fine mapping for map-based cloning generally requires screening a very 

large population with two flanking markers for the gene of interest. While GBS is not a suitable 

marker platform for fine mapping, utilizing the spiked portion of sGBS for these studies would 

be ideal. Likewise, the targeted amplicons of sGBS could also be used to screen for novel 

mutations in TILLING or ECO-TILLING populations. Though a priori SNPs were targeted in 

the present study, the direct sequencing of targets also enables de novo discovery of novel 

mutations as in a TILLING study.  

For plant breeding, sGBS will enable breeders to genotype large collections of 

germplasm for specific markers by taking advantage of the massive data output of current 

sequencing platforms. Large numbers of markers are required for genomic selection, but plant 

breeders are also interested in characterizing important disease or physiological loci in breeding 

populations. sGBS provides a low-cost, scalable approach for both requirements and will serve 

as an important tool as plant breeding continues its use of molecular markers. 

Since sGBS amplicons are independent of GBS libraries, breeders can generate a whole-

genome profile for advanced breeding material while also applying marker-assisted selection to 

earlier generations. Importantly, the only realized cost for target genotyping using sGBS is a 

single PCR reaction. The ability to quickly identify lines containing specific alleles will enhance 

the capacity and speed of superior cultivar generation in breeding programs. 

 Plant breeding is inherently an exercise in producing and analyzing large amounts of data 

to discover improved rare and novel variants. Future advancements in plant breeding will 

fundamentally rely on new technologies being implemented that allow breeders to progress 
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through this process with the most efficient utilization of resources and least disruption to current 

workflow. Plant breeding programs have historically depended on single-marker germplasm 

characterization and are beginning to take advantage of whole-genome profiles for genomic 

selection. sGBS combines both approaches, eliminating the current necessity of two distinct 

platforms while leveraging continual advancements in sequencing technology. This efficient 

strategy will allow breeders to increase the amount of germplasm and number of loci that are 

assayed with few changes to workflow and limited expenditure of resources. Developments like 

sGBS that will enable genomics-assisted breeding are crucial to ensuring progress in developing 

improved plant varieties in the effort to eliminate hunger and poverty across the world. 

 Supporting Data 

1. Sequence files archived at NCBI SRA under accession number SRP052305. 

2. Supplemental Table S1. Wheat varieties used in this analysis. 

3. Supplemental Table S2. Loci, target alleles, and primer sequences used for sGBS. 

4. Supplemental Table S3. Barcode sequences and forward oligo sequences. 
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Figure 4-1. Primer and amplicon construction. The first round of PCR uses a forward 

primer containing the M13 sequence to amplify the target region. The second round of 

PCR extends from the M13 tail and incorporates a unique barcode, leading to a final 

product containing the sequencer primers, barcode, M13 sequence, and polymorphic 

target. 
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Figure 4-2. Library construction flow chart. GBS libraries are created following standard 

protocols. Each spiked library amplifies a single target locus. Spiked libraries are pooled, 

combined with GBS libraries, and sequenced. Sequence data for the amplicon library is 

parsed using the M13 and unique barcode sequence. 
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Figure 4-3. k-means clustering and DBSCAN clustering for Lr34exon11 and BS00083385. 

k-means clustering and DBSCAN clustering were used to cluster genotypes for each 

individual on relative read frequency of the two SNP alleles. Genotypes called within the 

same group are denoted by color.  Unfilled symbols indicate samples that were not 

classified by the algorithms. (A) k-means and (B) DBSCAN clustering of LR34exon11. 

LR34exon11 locus is a single-copy locus and the two genotypes are easily distinguished by 

either clustering algorithm. Heterozygotes are characterized by an equal proportion of 

both alleles. (C) k-means and (D) DBSCAN clustering of BS00083385. This primer set 

presumably amplifies multiple loci in the polyploid wheat genome that can still be 

distinguished based on relative read frequency. The three genotypic classes for individual 

lines are likely AAAAAA, AABBBB, and AAAABB. The BBBBBB group does not appear 

to be present as a null A genotype should fall on the vertical axis. (Zero reads counts of 

allele A.) DBSCAN did not classify the unfilled individual, which is potentially a 

heterozygous genotype at one of the loci (AAABBB). 
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Table 4-1. Marker name, total call rate, and average read depth. 

Marker Call Rate Avg. Depth 

LR34exon11 94.5% 336 

Lr34intron4kasp 96.4% 114 

Lr34exon12kasp 99.3% 923 

LR34exon11kasp 98.7% 1573 

Lr34exon22kasp 99.2% 117 

BS00150192 92.8% 863 

BS00089969 92.7% 564 

BS00023148 98.2% 1577 

BS00083385 81.0% 1118 
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Chapter 5 - An Open-Source Application for Field Data Collection 

on Android 

This chapter has been published as the following peer-reviewed journal article: 

Rife, T.W., and J.A. Poland. 2014. Field Book: An Open-Source Application for Field Data 

Collection on Android. Crop Sci. 54(4): 1624–1627. 

 Abstract 

Plant breeding and genetics research is an inherently data-driven enterprise. Typical 

experiments and breeding nurseries can contain thousands of unique entries and programs will 

often evaluate tens of thousands of plots each year. To function efficiently on this scale, 

electronic data management becomes essential. Many research programs, however, continue to 

operate by scribing and transcribing massive amounts of data on paper field books. While 

effective, this form of data management places heavy burdens on human resources, decreases 

data integrity, and greatly limits future utilization of data and the ability to expand the breeding 

program. To help address these constraints, we have developed an open-source application for 

electronic data capture that runs on consumer-grade Android tablets. By focusing on a simple, 

stand-alone application with an intuitive and customized interface, we attempt to decrease both 

the technological and cost barriers that hinder adoption of electronic data management in 

breeding programs. The simplicity of Field Book allows adoption of the technology without a 

steep learning curve. With low-cost, accessible solutions, the vision of one handheld per breeder 

can become a reality for breeding programs around the world. Transformational capacity in 

electronic data collection and management will be essential to realize a contemporary green 

revolution. 
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 Introduction 

Accurate data collection is a fundamental requirement for plant science research and 

plant breeding where large populations are required for dissecting quantitative traits and 

selecting improved varieties (Falconer and Mackay, 1996). In accordance with quantitative 

genetic theory, it has been demonstrated that power for QTL and association mapping is a 

function of population size (Vales et al., 2005; Yu et al., 2008; Myles et al., 2009; Buckler et al., 

2009). Further, genomic selection and applications of marker-assisted selection are no exception 

to the rule of larger populations. Larger population sizes lead to larger gain and better probability 

to identify superior candidate varieties (Jannink et al., 2010). The evaluation of large populations 

is often limited from a functional perspective by the ability to evaluate a large amount of genetic 

material. 

While the generation of genetic data has undergone a high-throughput revolution, 

phenotypic evaluation of genetic populations and experimental lines remains time consuming 

and expensive. Tools that can be applied to increase the speed and efficiency of phenotypic 

evaluation will help generate high-value data from field trials. A typical field season requires 

considerable preparation since field data must be organized specifically for data collection. Once 

collected, thousands of data points must be transcribed, often by a dedicated employee, creating 

an enormous bottleneck in the workflow of the project, introducing transcription errors that can 

subsequently affect analysis, and requiring considerable investment of human resources (Easton 

et al., 2000). 

Current electronic systems for data collection in field trials are often associated with 

proprietary, expensive hardware and software. This can prevent adoption and lock researchers 

into a single platform. Other platforms rely on the user to manually assemble specific hardware 
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(Berke and Baenziger, 1992). Adoption of new tools requires a significant investment, 

decreasing the likelihood that researchers will assess and investigate different platforms. Since 

proprietary hardware is often based on older technology, these platforms lag behind what is 

currently available to consumers. This leaves researchers with less flexible and less functional 

hardware. 

 Form and Function 

We have designed and programmed Field Book, an open-source application that runs on 

Android. This application addresses many problems inherent to other field data collection 

software and paper field books. Field Book, including all source code, is freely available and 

developers can further customize the application to meet specific data collection requirements. 

The application and all associated documentation is available at the Poland Lab website 

(http://www.wheatgenetics.org/field-book) and the Google Play Store 

(http://play.google.com/store/apps/details?id=com.fieldbook.tracker&hl=en). Field Book runs on 

consumer-grade hardware (~$200) as well as more expensive, rugged tablets (~$1200). With 

inexpensive hardware, it becomes feasible to purchase a device for each person collecting data in 

the field. 

Field Book was designed to display data at an individual entry level with the capacity to 

navigate independently between traits and entries. The interface is designed to facilitate easy and 

rapid data entry for one or multiple traits on each plot. “InfoBars” at the top of the screen can 

display additional imported data, allowing the user to have much more information available in 

the field than paper field books. Users can easily display entry names, pedigrees, seed sources, 

entry codes, or any additional records of interest for each field record (Figure 5-1). 
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Field Book employs multiple data input formats depending on the nature of the trait data 

being collected (Figure 5-2). Trait formats include numeric, categorical, Boolean, percent, date, 

text, and audio. At any time, the user can define new traits to be collected. Traits can be created, 

reordered, and removed from within Field Book. During data collection, the traits of interest can 

be selected and all others hidden so that the main screen will only display the traits needed at that 

specific time. During data entry, users can scroll at a plot level or a trait level. In this way, users 

can sequentially move through plots on a single trait entry, or move through multiple traits on a 

given plot before advancing to the next plot.  

Data can be exported in either a database or table format. Database format exports each 

observation independently and can be immediately uploaded to and stored in a central database. 

This format includes all metadata for a given phenotypic measurement, such as the name of the 

person recording the data and the timestamp. Table export uses the traditional spreadsheet format 

with a list of entries in rows and columns corresponding to each trait. Database format is 

preferable for direct import to a relational database while the table format can quickly be 

imported into statistical software for analysis. Field Book allows both formats to be exported 

simultaneously. 

There are a number of applications in managing plant breeding programs that can benefit 

from barcodes. Barcodes further increase speed in reading input data while reducing input errors. 

Field Book supports both wireless (via Bluetooth®) and wired (via USB On-The-Go) barcode 

scanners that can be used for data collection. In practice, traits have been successfully collected 

by scanning barcodes that correspond to a phenotypic value (e.g. plant height using a measuring 

stick with barcoded numbers) (Figure 5-3). 
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With an established framework for Field Book, additional features that appeal to a wider 

range of researchers are being added. Users are now able to visualize the state of data collection 

in the field with a field map. The map indicates which entries have and have not been collected 

for a specific trait and allows the user to perform a quick visual analysis on the data to identify 

outliers. Since the structure and flexibility of the software means that many devices will often be 

in the field at once, future updates will allow multiple devices to upload collected data to a 

central device, removing the need to manually combine or interact with multiple files from 

multiple devices. 

 Perspective 

Field data collection is fundamental to plant breeding and genetics research. To 

strengthen field research in these programs, Field Book has been developed as an open-source 

tool that can be used to collect data on all kinds of experiments. The potential to increase the 

speed of collection and analysis will enable increases in the size of field experiments and, 

subsequently, the rate of genetic gain. The ability to keep data organized in digital form allows 

technicians and breeders to focus on other tasks, leading to further innovation and growth of 

plant breeding programs. The prospect of a contemporary green revolution is predicated on the 

development and production of improved, high-yielding varieties. To develop these improved 

varieties, a transformative implementation of electronic data capture and management in 

breeding programs will be critical. Field Book moves toward the vision of one handheld device 

per breeder, giving every breeder access to robust data collection and management that will 

facilitate the development of improved varieties to enable needed gains in agriculture 

productivity. 



64 

 Acknowledgements 

The development of Field Book was supported through The McKnight Foundation 

Collaborative Crop Research Program and USDA-ARS. Contracted support for programming 

Field Book was through Technology Projects (technologyprojects@gmail.com). Mention of 

trade names or commercial products in this publication is solely for the purpose of providing 

specific information and does not imply recommendation or endorsement by the U.S. 

Department of Agriculture. USDA is an equal opportunity provider and employer. 

 References 

Berke, T., and P. Baenziger. 1992. Portable and desktop computer integrated field book and data 

collection system for agronomists. Agron. J. 84: 119–121. 

Buckler, E.S., J.B. Holland, P.J. Bradbury, C.B. Acharya, P.J. Brown, C. Browne, E. Ersoz, S. 

Flint-Garcia, A. Garcia, J.C. Glaubitz, M.M. Goodman, C. Harjes, K. Guill, D.E. Kroon, S. 

Larsson, N.K. Lepak, H. Li, S.E. Mitchell, G. Pressoir, J. a Peiffer, M.O. Rosas, T.R. 

Rocheford, M.C. Romay, S. Romero, S. Salvo, H. Sanchez Villeda, H.S. da Silva, Q. Sun, 

F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, and M.D. 

McMullen. 2009. The genetic architecture of maize flowering time. Science (80-. ). 

325(5941): 714–718. 

Easton, K.L., J.F. McComish, and R. Greenberg. 2000. Avoiding Common Pitfalls in Qualitative 

Data Collection and Transcription. Qual. Health Res. 10(5): 703–707. 

Falconer, D.S., and T.F. Mackay. 1996. Introduction to Quantitative Genetics (4th edn). London, 

UK. 

Jannink, J.-L., A.J. Lorenz, and H. Iwata. 2010. Genomic selection in plant breeding: from 

theory to practice. Brief. Funct. Genomics 9(2): 166–177. 

Myles, S., J. Peiffer, P.J. Brown, E.S. Ersoz, Z. Zhang, D.E. Costich, and E.S. Buckler. 2009. 

Association mapping: critical considerations shift from genotyping to experimental design. 

Plant Cell 21(8): 2194–2202. 

Vales, M.I., C.C. Schön, F. Capettini, X.M. Chen,  a E. Corey, D.E. Mather, C.C. Mundt, K.L. 

Richardson, J.S. Sandoval-Islas, H.F. Utz, and P.M. Hayes. 2005. Effect of population size 

on the estimation of QTL: a test using resistance to barley stripe rust. Theor. Appl. Genet. 

111(7): 1260–1270. 

Yu, J., J.B. Holland, M.D. McMullen, and E.S. Buckler. 2008. Genetic design and statistical 

power of nested association mapping in maize. Genetics 178(1): 539–551. 



65 

 

Figure 5-1. Main layout of Field Book application on an Android tablet. Three InfoBars 

(labeled seed_name, seed_id, and pedigree in this example) display additional information 

that was imported with the field file. The small, blue trait arrows allow the user to scroll 

through the different traits to be collected. The large, black arrows change the focus to the 

next or previous entry. The current value is displayed in the middle of the screen, and the 

bottom portion of the screen is reserved for data input. “Search” gives the user pseudo-

query search capacity. “Resources” allows quick access to rating keys or field maps. 
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Figure 5-2. Examples of the custom input designed for categorical (left) and date (right) 

trait formats. For categorical traits, up to twelve categories can be defined for collection. 

Date format displays the current date with the option to increase or decrease that value by 

one day increments. 
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Figure 5-3. Collecting data by scanning the barcode corresponding to the height of the plot. 
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Appendix A - Copyright Permission 

This appendix includes the copyright permissions and licenses required to republish the content 

in this dissertation. 

 

The content in Chapter 4 is distributed under the terms of the Creative Commons Attribution 

License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original work is properly credited. 

 

The content in Chapter 5 is distributed under the ACSESSS-Alliance of Crop, Soil, and 

Environmental Science Societies limited license (below). 
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Appendix B - Supplementary Materials Chapter 3 

This appendix includes the supplementary figures and tables for the Chapter 3. 

 

Figure 5-4. A plot of the first and second Eigen vectors derived from the A matrix using the 

eigen function in R (R Core Team, 2014). 
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Figure 5-5. A dendrogram of the wheat lines used in this study created using the 

gbs.dendro function in the gbs-r package in R (unpublished). Color is used to group lines 

based on breeding program. 
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Appendix C - Supplementary Materials Chapter 4 

Table C-1. Wheat varieties used in this analysis. 

2180 

Above 

Akron 

Alice 

Anton 

Arlin 

Arrow 

Avalanche 

Baker's White 

Bill Brown 

Bison 

Burchett 

Caprock 

Carson 

Cheney 

Clara CL (w) 

CO04025 

CO04393 

CO04499 

CO04W320 

Comanche 

Crest 

Darrell 

Doans 

Dodge 

Duke 

Eagle 

Expedition 

Genou 

Hail 

Halt 

Hatcher 

HG-9 

Hitch 

Ike 

JackPot 

Jagalene 

Jagger 
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Jerry 

Jules 

KARL_92 

Kaw 61 

Kiowa 

Kirwin 

Lakin 

Lamar 

Lancer 

Larned 

Lockett 

Longhorn 

Mace 

McGill 

Mit 

MT0495 

MT06103 

MT9513 

MT9904 

MT9982 

MTS0531 

NE05496 

Newton 

NI08708 

Norkan 

OK06319 

OK07209 

OK07214 

OK07S117 

OK1068026 

Parker 

Parker 76 

Prairie Red 

Prowers 

Ripper 

Robidoux 

Rosebud 

Ruby Lee 

Sage 

Sandy 

Scout 66 
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SD00111-9 

SD01058 

SD01237 

SD05118 

SD05210 

SD05W018 

Settler CL 

Shawnee 

Snowmass (w) 

Stanton 

Stout 

Sturdy 

Sturdy 2K 

Sy Exp 1029 

Sy Exp 38-45 

Sy-Gold 

Sy-Wolf 

T-153 

T-154 

T-158 

TAM 105 

TAM 107 

TAM 107-R7 

TAM 109 

TAM 110 

TAM 111 

TAM 112 

TAM 113 

TAM 200 

TAM 202 

TAM 203 

TAM 302 

TAM 303 

TAM 304 

TAM 401 

TAM W-101 

TAM400 

Tascosa 

Tiger 

Trego 

Trison 
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TX00V1131 

TX01A5936 

TX01V5134RC-3 

TX02A0252 

TX03A0148 

TX04A001246 

TX04M410164 

TX04V075080 

TX86A5606 

TX86A6880 

TX86A8072 

TX99A0153-1 

TX99U8618 

Wendy 

Wesley 

Wichita 

Windstar 

Yellowstone 

Yuma 

Yumar 

Aspen (W) 

CO03064 

Guymon 

Judith 

MT85200 

NE05430 

NE06545 

Norris 

NuSky 

TX01M5009-28 

TX03A0563 

TX04M410211 

TX96D1073 
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Table C-2. Loci, target alleles, and primer sequences used for sGBS. 

locus_name allele_a allele_b forward_primer reverse_primer 

BS00023148 CTCAAGGC
TTTT 

CTCAAGACTTTT TGTAAAACGACGGCCAGTCCTC
ACTACAATGCAGCTCAAG 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCTTTAGCCATCAAGATCCAGCACCAA 

BS00067189 GCATGAAT
TAG 

GCATGAATTAC TGTAAAACGACGGCCAGTCTTA
TACAGGTAGACGCATGAATTA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCGCTTGCACAACTGCTTGTTCATGTA 

BS00083385 GCGGTCTT
CAGATGG
T 

GCGGTCTTCACATG
GT 

TGTAAAACGACGGCCAGTCAG
CAGGTGGCGGTCTTCA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATGGAGAAGTGCAGTGTCATCACCAT 

BS00088726 ATACGAA
GTATCATG
GCGTATAT
GTAT 

ATACGAAGTATCAT
GGCGTATATGTAC 

TGTAAAACGACGGCCAGTATAC
GAAGTATCATGGCGTATATGTA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCGATGAATATTAGGTCTTACACATGTTCTT 

BS00089969 TCTAGCTC
CCTG 

CTAGCCCCCTG TGTAAAACGACGGCCAGTATA
GCCGAAGCAGCTCTAGC 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATGTGCCGATAAGGAGAGCCCGTT 

BS00150192 TAGATCAA
TTCATTCA
G 

TAGATCAACTCATT
CAG 

TGTAAAACGACGGCCAGTGAG
AAGGGATGGAGATAGATCAA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCTCCCTCGGGTCTGGATTCTGAA 

LR34exon11 TTCCATCA
TGATTATG
TTAA 

TTCCATCTTCATGAT
TATGTTAA 

TGTAAAACGACGGCCAGTTTGC
CATTATTGCACTCGTAAC 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCCATGATGAATAGAAATAGTAGCTC  

LR34exon11kasp CTGGTATG
CCATTTAA
CATAATCA
TGAA 

CTGGTATGCCATTT
AACATAATCATGAT 

TGTAAAACGACGGCCAGTCTG
GTATGCCATTTAACATAATCAT
GA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATCGCATGACAATAAGTTTCACTCATGCAAA 

Lr34exon12kasp CGCAGTAT
CGA 

CGCAGCATCGA TGTAAAACGACGGCCAGTCATC
ATTCAGTCACCTCGCAG 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATGTGTTTGGAAGTATGAAGCAATAAATCGAT 

Lr34exon22kasp GAGATTT
GCAGGAA
TG 

GAGATTTGCATGAA
TG 

TGTAAAACGACGGCCAGTTGTA
ATGTATCGTGAGAGATTTGCA 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATGATCATTATCTGACCTGTGCGAATGAATA 

Lr34intron4kasp TCCTCCGT
CTTCTG 

CCTCCGACTTCTG TGTAAAACGACGGCCAGTACTC
TTGCACAACCTCCTCCG 

CCACTACGCCTCCGCTTTCCTCTCTCTATGGGCAGTCGGT
GATTTGTGTCACCGGTGGCGCGTTT 
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Table C-3. Barcode sequences and forward oligo sequences. 

set well_
A01 

well_
01A 

well barcode oligo_sequence adapter_name 

spike_96A A01 01A 1A CGCGTGAACA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCGTGAACATGTAAAACGACGGCCAGT 

ION_M13-384A_CGCGTGAACA_A01 

spike_96A B01 01B 1B GCTTAGCGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTTAGCGGTTGTAAAACGACGGCCAGT 

ION_M13-384A_GCTTAGCGGT_B01 

spike_96A C01 01C 1C AGGATGCTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGATGCTCTTGTAAAACGACGGCCAGT 

ION_M13-384A_AGGATGCTCT_C01 

spike_96A D01 01D 1D ATAACTGCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TAACTGCTTTGTAAAACGACGGCCAGT 

ION_M13-384A_ATAACTGCTT_D01 

spike_96A E01 01E 1E TTGGCTACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGGCTACGTTGTAAAACGACGGCCAGT 

ION_M13-384A_TTGGCTACGT_E01 

spike_96A F01 01F 1F GTCAACTTAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCAACTTATTGTAAAACGACGGCCAGT 

ION_M13-384A_GTCAACTTAT_F01 

spike_96A G01 01G 1G GGCTCGAATG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCTCGAATGTGTAAAACGACGGCCAGT 

ION_M13-384A_GGCTCGAATG_G01 

spike_96A H01 01H 1H TGCCTAATCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCCTAATCTTGTAAAACGACGGCCAGT 

ION_M13-384A_TGCCTAATCT_H01 

spike_96A A02 02A 2A GTTGCCTTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TTGCCTTCATGTAAAACGACGGCCAGT 

ION_M13-384A_GTTGCCTTCA_A02 

spike_96A B02 02B 2B TGTTGCGTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTTGCGTGCTGTAAAACGACGGCCAGT 

ION_M13-384A_TGTTGCGTGC_B02 

spike_96A C02 02C 2C TCGAGACCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CGAGACCTTTGTAAAACGACGGCCAGT 

ION_M13-384A_TCGAGACCTT_C02 

spike_96A D02 02D 2D ACAAGAATCG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CAAGAATCGTGTAAAACGACGGCCAGT 

ION_M13-384A_ACAAGAATCG_D02 

spike_96A E02 02E 2E TGCACGGCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCACGGCATTGTAAAACGACGGCCAGT 

ION_M13-384A_TGCACGGCAT_E02 

spike_96A F02 02F 2F GGCGTCTCCT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCGTCTCCTTGTAAAACGACGGCCAGT 

ION_M13-384A_GGCGTCTCCT_F02 

spike_96A G02 02G 2G TGAGTTAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GAGTTAGGCTGTAAAACGACGGCCAGT 

ION_M13-384A_TGAGTTAGGC_G02 
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spike_96A H02 02H 2H CTCAGACAAG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TCAGACAAGTGTAAAACGACGGCCAGT 

ION_M13-384A_CTCAGACAAG_H02 

spike_96A A03 03A 3A AGGTCAATTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGTCAATTCTGTAAAACGACGGCCAGT 

ION_M13-384A_AGGTCAATTC_A03 

spike_96A B03 03B 3B AGCTTAGGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCTTAGGATTGTAAAACGACGGCCAGT 

ION_M13-384A_AGCTTAGGAT_B03 

spike_96A C03 03C 3C CGCGAGTGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCGAGTGCCTGTAAAACGACGGCCAGT 

ION_M13-384A_CGCGAGTGCC_C03 

spike_96A D03 03D 3D TTGTCGCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGTCGCATTTGTAAAACGACGGCCAGT 

ION_M13-384A_TTGTCGCATT_D03 

spike_96A E03 03E 3E CAATGGTAAC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AATGGTAACTGTAAAACGACGGCCAGT 

ION_M13-384A_CAATGGTAAC_E03 

spike_96A F03 03F 3F ATCACTCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TCACTCATTTGTAAAACGACGGCCAGT 

ION_M13-384A_ATCACTCATT_F03 

spike_96A G03 03G 3G CGGCTAACTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GGCTAACTTTGTAAAACGACGGCCAGT 

ION_M13-384A_CGGCTAACTT_G03 

spike_96A H03 03H 3H CCAGTGGATC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CAGTGGATCTGTAAAACGACGGCCAGT 

ION_M13-384A_CCAGTGGATC_H03 

spike_96A A04 04A 4A TATTATCTAA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATTATCTAATGTAAAACGACGGCCAGT 

ION_M13-384A_TATTATCTAA_A04 

spike_96A B04 04B 4B GGCTAGGTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCTAGGTGTTGTAAAACGACGGCCAGT 

ION_M13-384A_GGCTAGGTGT_B04 

spike_96A C04 04C 4C TGCTGCCACA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCTGCCACATGTAAAACGACGGCCAGT 

ION_M13-384A_TGCTGCCACA_C04 

spike_96A D04 04D 4D TTGCCGTCCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGCCGTCCTTGTAAAACGACGGCCAGT 

ION_M13-384A_TTGCCGTCCT_D04 

spike_96A E04 04E 4E AAGTACCTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
AGTACCTTATGTAAAACGACGGCCAGT 

ION_M13-384A_AAGTACCTTA_E04 

spike_96A F04 04F 4F TGGCCGCCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GGCCGCCTTTGTAAAACGACGGCCAGT 

ION_M13-384A_TGGCCGCCTT_F04 

spike_96A G04 04G 4G GCCGGAAGTA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCGGAAGTATGTAAAACGACGGCCAGT 

ION_M13-384A_GCCGGAAGTA_G04 

spike_96A H04 04H 4H CCTTGACGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTTGACGTTTGTAAAACGACGGCCAGT 

ION_M13-384A_CCTTGACGTT_H04 
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spike_96A A05 05A 5A ACTCCTAGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTCCTAGATTGTAAAACGACGGCCAGT 

ION_M13-384A_ACTCCTAGAT_A05 

spike_96A B05 05B 5B CTTGACAGCG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTGACAGCGTGTAAAACGACGGCCAGT 

ION_M13-384A_CTTGACAGCG_B05 

spike_96A C05 05C 5C CAGAGCTGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AGAGCTGCCTGTAAAACGACGGCCAGT 

ION_M13-384A_CAGAGCTGCC_C05 

spike_96A D05 05D 5D ATGCTTGAAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TGCTTGAATTGTAAAACGACGGCCAGT 

ION_M13-384A_ATGCTTGAAT_D05 

spike_96A E05 05E 5E CGCGCTAGAA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCGCTAGAATGTAAAACGACGGCCAGT 

ION_M13-384A_CGCGCTAGAA_E05 

spike_96A F05 05F 5F CGCACGTCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCACGTCGTTGTAAAACGACGGCCAGT 

ION_M13-384A_CGCACGTCGT_F05 

spike_96A G05 05G 5G ATGCCACGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TGCCACGATTGTAAAACGACGGCCAGT 

ION_M13-384A_ATGCCACGAT_G05 

spike_96A H05 05H 5H GAATCCGAAC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AATCCGAACTGTAAAACGACGGCCAGT 

ION_M13-384A_GAATCCGAAC_H05 

spike_96A A06 06A 6A AACGCGGAAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACGCGGAAGTGTAAAACGACGGCCAGT 

ION_M13-384A_AACGCGGAAG_A06 

spike_96A B06 06B 6B GTATCGAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TATCGAGGCTGTAAAACGACGGCCAGT 

ION_M13-384A_GTATCGAGGC_B06 

spike_96A C06 06C 6C CTTACATAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTACATAGTTGTAAAACGACGGCCAGT 

ION_M13-384A_CTTACATAGT_C06 

spike_96A D06 06D 6D TGATGATCGA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GATGATCGATGTAAAACGACGGCCAGT 

ION_M13-384A_TGATGATCGA_D06 

spike_96A E06 06E 6E ACACATCCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CACATCCGTTGTAAAACGACGGCCAGT 

ION_M13-384A_ACACATCCGT_E06 

spike_96A F06 06F 6F ACTTCATACC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTTCATACCTGTAAAACGACGGCCAGT 

ION_M13-384A_ACTTCATACC_F06 

spike_96A G06 06G 6G CAATCTGACA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AATCTGACATGTAAAACGACGGCCAGT 

ION_M13-384A_CAATCTGACA_G06 

spike_96A H06 06H 6H GGATATAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GATATAGGCTGTAAAACGACGGCCAGT 

ION_M13-384A_GGATATAGGC_H06 

spike_96A A07 07A 7A ACAATGCTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CAATGCTGATGTAAAACGACGGCCAGT 

ION_M13-384A_ACAATGCTGA_A07 
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spike_96A B07 07B 7B GTCGGTAGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCGGTAGGTTGTAAAACGACGGCCAGT 

ION_M13-384A_GTCGGTAGGT_B07 

spike_96A C07 07C 7C TACGATTACT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACGATTACTTGTAAAACGACGGCCAGT 

ION_M13-384A_TACGATTACT_C07 

spike_96A D07 07D 7D CGTCGATTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTCGATTGCTGTAAAACGACGGCCAGT 

ION_M13-384A_CGTCGATTGC_D07 

spike_96A E07 07E 7E TAGCGCCAAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGCGCCAAGTGTAAAACGACGGCCAGT 

ION_M13-384A_TAGCGCCAAG_E07 

spike_96A F07 07F 7F TACGCATTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACGCATTGTTGTAAAACGACGGCCAGT 

ION_M13-384A_TACGCATTGT_F07 

spike_96A G07 07G 7G CAAGACATCG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AAGACATCGTGTAAAACGACGGCCAGT 

ION_M13-384A_CAAGACATCG_G07 

spike_96A H07 07H 7H GAGTTAGAAC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGTTAGAACTGTAAAACGACGGCCAGT 

ION_M13-384A_GAGTTAGAAC_H07 

spike_96A A08 08A 8A GCCTGCGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCTGCGATTTGTAAAACGACGGCCAGT 

ION_M13-384A_GCCTGCGATT_A08 

spike_96A B08 08B 8B TTGAGCTACC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGAGCTACCTGTAAAACGACGGCCAGT 

ION_M13-384A_TTGAGCTACC_B08 

spike_96A C08 08C 8C TGCCTGCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCCTGCATTTGTAAAACGACGGCCAGT 

ION_M13-384A_TGCCTGCATT_C08 

spike_96A D08 08D 8D CGCATAGTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCATAGTAGTGTAAAACGACGGCCAGT 

ION_M13-384A_CGCATAGTAG_D08 

spike_96A E08 08E 8E CTTCTCACTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTCTCACTTTGTAAAACGACGGCCAGT 

ION_M13-384A_CTTCTCACTT_E08 

spike_96A F08 08F 8F GCTCCAGGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTCCAGGATTGTAAAACGACGGCCAGT 

ION_M13-384A_GCTCCAGGAT_F08 

spike_96A G08 08G 8G TACACGTGCG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACACGTGCGTGTAAAACGACGGCCAGT 

ION_M13-384A_TACACGTGCG_G08 

spike_96A H08 08H 8H CAACGGCCAC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AACGGCCACTGTAAAACGACGGCCAGT 

ION_M13-384A_CAACGGCCAC_H08 

spike_96A A09 09A 9A ACGTGTCCTG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGTGTCCTGTGTAAAACGACGGCCAGT 

ION_M13-384A_ACGTGTCCTG_A09 

spike_96A B09 09B 9B TGGCGCACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GGCGCACGTTGTAAAACGACGGCCAGT 

ION_M13-384A_TGGCGCACGT_B09 
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spike_96A C09 09C 9C TTACTGCGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TACTGCGGCTGTAAAACGACGGCCAGT 

ION_M13-384A_TTACTGCGGC_C09 

spike_96A D09 09D 9D GTCCTCTCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCCTCTCGTTGTAAAACGACGGCCAGT 

ION_M13-384A_GTCCTCTCGT_D09 

spike_96A E09 09E 9E ATATGGCGTG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TATGGCGTGTGTAAAACGACGGCCAGT 

ION_M13-384A_ATATGGCGTG_E09 

spike_96A F09 09F 9F AAGAATTAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
AGAATTAGTTGTAAAACGACGGCCAGT 

ION_M13-384A_AAGAATTAGT_F09 

spike_96A G09 09G 9G ACGCAGAAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGCAGAAGTTGTAAAACGACGGCCAGT 

ION_M13-384A_ACGCAGAAGT_G09 

spike_96A H09 09H 9H ACACGGCAGG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CACGGCAGGTGTAAAACGACGGCCAGT 

ION_M13-384A_ACACGGCAGG_H09 

spike_96A A10 10A 10A GGACTATAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GACTATAGTTGTAAAACGACGGCCAGT 

ION_M13-384A_GGACTATAGT_A10 

spike_96A B10 10B 10B TCCTACGTAC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCTACGTACTGTAAAACGACGGCCAGT 

ION_M13-384A_TCCTACGTAC_B10 

spike_96A C10 10C 10C AGGAGGAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGAGGAGCTTGTAAAACGACGGCCAGT 

ION_M13-384A_AGGAGGAGCT_C10 

spike_96A D10 10D 10D TAGGAAGTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGGAAGTAGTGTAAAACGACGGCCAGT 

ION_M13-384A_TAGGAAGTAG_D10 

spike_96A E10 10E 10E AACTGATTCC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACTGATTCCTGTAAAACGACGGCCAGT 

ION_M13-384A_AACTGATTCC_E10 

spike_96A F10 10F 10F GTAGGCTCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TAGGCTCTTTGTAAAACGACGGCCAGT 

ION_M13-384A_GTAGGCTCTT_F10 

spike_96A G10 10G 10G CTAGACCGTC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TAGACCGTCTGTAAAACGACGGCCAGT 

ION_M13-384A_CTAGACCGTC_G10 

spike_96A H10 10H 10H CACGGCTTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACGGCTTCTTGTAAAACGACGGCCAGT 

ION_M13-384A_CACGGCTTCT_H10 

spike_96A A11 11A 11A TACACAAGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACACAAGCCTGTAAAACGACGGCCAGT 

ION_M13-384A_TACACAAGCC_A11 

spike_96A B11 11B 11B AAGTTCATAA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
AGTTCATAATGTAAAACGACGGCCAGT 

ION_M13-384A_AAGTTCATAA_B11 

spike_96A C11 11C 11C TCTTACTCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTTACTCGCTGTAAAACGACGGCCAGT 

ION_M13-384A_TCTTACTCGC_C11 
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spike_96A D11 11D 11D TCTACATCCG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTACATCCGTGTAAAACGACGGCCAGT 

ION_M13-384A_TCTACATCCG_D11 

spike_96A E11 11E 11E GCCTCGTGGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCTCGTGGATGTAAAACGACGGCCAGT 

ION_M13-384A_GCCTCGTGGA_E11 

spike_96A F11 11F 11F CGTGTGCCGA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTGTGCCGATGTAAAACGACGGCCAGT 

ION_M13-384A_CGTGTGCCGA_F11 

spike_96A G11 11G 11G TTGCATCGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGCATCGCCTGTAAAACGACGGCCAGT 

ION_M13-384A_TTGCATCGCC_G11 

spike_96A H11 11H 11H AACTACAACT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACTACAACTTGTAAAACGACGGCCAGT 

ION_M13-384A_AACTACAACT_H11 

spike_96A A12 12A 12A TGCTACTTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCTACTTGATGTAAAACGACGGCCAGT 

ION_M13-384A_TGCTACTTGA_A12 

spike_96A B12 12B 12B CTCATTGACG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TCATTGACGTGTAAAACGACGGCCAGT 

ION_M13-384A_CTCATTGACG_B12 

spike_96A C12 12C 12C GGTGTACCGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTGTACCGATGTAAAACGACGGCCAGT 

ION_M13-384A_GGTGTACCGA_C12 

spike_96A D12 12D 12D CGTACTCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTACTCGATTGTAAAACGACGGCCAGT 

ION_M13-384A_CGTACTCGAT_D12 

spike_96A E12 12E 12E GTGTACTAAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGTACTAATTGTAAAACGACGGCCAGT 

ION_M13-384A_GTGTACTAAT_E12 

spike_96A F12 12F 12F GGCTACACGG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCTACACGGTGTAAAACGACGGCCAGT 

ION_M13-384A_GGCTACACGG_F12 

spike_96A G12 12G 12G TGCTCAGTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCTCAGTTATGTAAAACGACGGCCAGT 

ION_M13-384A_TGCTCAGTTA_G12 

spike_96A H12 12H 12H ACATTCTAAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CATTCTAAGTGTAAAACGACGGCCAGT 

ION_M13-384A_ACATTCTAAG_H12 

spike_96B A01 01A 1A TCAGCGTCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CAGCGTCGTTGTAAAACGACGGCCAGT 

ION_M13-384B_TCAGCGTCGT_A01 

spike_96B B01 01B 1B CTTGGCGTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTGGCGTTATGTAAAACGACGGCCAGT 

ION_M13-384B_CTTGGCGTTA_B01 

spike_96B C01 01C 1C AGACCATTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GACCATTAGTGTAAAACGACGGCCAGT 

ION_M13-384B_AGACCATTAG_C01 

spike_96B D01 01D 1D ACAGTAATCG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CAGTAATCGTGTAAAACGACGGCCAGT 

ION_M13-384B_ACAGTAATCG_D01 
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spike_96B E01 01E 1E ACTCAATTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTCAATTGATGTAAAACGACGGCCAGT 

ION_M13-384B_ACTCAATTGA_E01 

spike_96B F01 01F 1F AGCCACAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCCACAGCTTGTAAAACGACGGCCAGT 

ION_M13-384B_AGCCACAGCT_F01 

spike_96B G01 01G 1G GCATTAGCAC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CATTAGCACTGTAAAACGACGGCCAGT 

ION_M13-384B_GCATTAGCAC_G01 

spike_96B H01 01H 1H AGGTGGTTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGTGGTTGATGTAAAACGACGGCCAGT 

ION_M13-384B_AGGTGGTTGA_H01 

spike_96B A02 02A 2A AATCGTATCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATCGTATCTTGTAAAACGACGGCCAGT 

ION_M13-384B_AATCGTATCT_A02 

spike_96B B02 02B 2B GTTCCACTGG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TTCCACTGGTGTAAAACGACGGCCAGT 

ION_M13-384B_GTTCCACTGG_B02 

spike_96B C02 02C 2C CGCCAGAGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCCAGAGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_CGCCAGAGTT_C02 

spike_96B D02 02D 2D CTTGTGGTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTGTGGTCTTGTAAAACGACGGCCAGT 

ION_M13-384B_CTTGTGGTCT_D02 

spike_96B E02 02E 2E GTCCGTCTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCCGTCTGCTGTAAAACGACGGCCAGT 

ION_M13-384B_GTCCGTCTGC_E02 

spike_96B F02 02F 2F GTATTATAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TATTATAGTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTATTATAGT_F02 

spike_96B G02 02G 2G TCCTTATGAA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCTTATGAATGTAAAACGACGGCCAGT 

ION_M13-384B_TCCTTATGAA_G02 

spike_96B H02 02H 2H AGTAACGCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTAACGCATTGTAAAACGACGGCCAGT 

ION_M13-384B_AGTAACGCAT_H02 

spike_96B A03 03A 3A CACTCGAGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACTCGAGGTTGTAAAACGACGGCCAGT 

ION_M13-384B_CACTCGAGGT_A03 

spike_96B B03 03B 3B CCTAGAGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTAGAGATTTGTAAAACGACGGCCAGT 

ION_M13-384B_CCTAGAGATT_B03 

spike_96B C03 03C 3C GCGCTGCTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CGCTGCTGATGTAAAACGACGGCCAGT 

ION_M13-384B_GCGCTGCTGA_C03 

spike_96B D03 03D 3D TTCTATTCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TCTATTCGCTGTAAAACGACGGCCAGT 

ION_M13-384B_TTCTATTCGC_D03 

spike_96B E03 03E 3E AGCACAGCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCACAGCGCTGTAAAACGACGGCCAGT 

ION_M13-384B_AGCACAGCGC_E03 
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spike_96B F03 03F 3F TTAGTTCATA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TAGTTCATATGTAAAACGACGGCCAGT 

ION_M13-384B_TTAGTTCATA_F03 

spike_96B G03 03G 3G TCCACCGCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCACCGCTCTGTAAAACGACGGCCAGT 

ION_M13-384B_TCCACCGCTC_G03 

spike_96B H03 03H 3H CCATATGCGG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CATATGCGGTGTAAAACGACGGCCAGT 

ION_M13-384B_CCATATGCGG_H03 

spike_96B A04 04A 4A GACTAAGACT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACTAAGACTTGTAAAACGACGGCCAGT 

ION_M13-384B_GACTAAGACT_A04 

spike_96B B04 04B 4B CTCGTTATGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TCGTTATGCTGTAAAACGACGGCCAGT 

ION_M13-384B_CTCGTTATGC_B04 

spike_96B C04 04C 4C CTTCTATAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTCTATAGTTGTAAAACGACGGCCAGT 

ION_M13-384B_CTTCTATAGT_C04 

spike_96B D04 04D 4D CGTGGTCAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTGGTCAGTTGTAAAACGACGGCCAGT 

ION_M13-384B_CGTGGTCAGT_D04 

spike_96B E04 04E 4E TAGGTGAATG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGGTGAATGTGTAAAACGACGGCCAGT 

ION_M13-384B_TAGGTGAATG_E04 

spike_96B F04 04F 4F AGTATAAGTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTATAAGTCTGTAAAACGACGGCCAGT 

ION_M13-384B_AGTATAAGTC_F04 

spike_96B G04 04G 4G GCCACGCTAA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCACGCTAATGTAAAACGACGGCCAGT 

ION_M13-384B_GCCACGCTAA_G04 

spike_96B H04 04H 4H TCCTCCAGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCTCCAGGTTGTAAAACGACGGCCAGT 

ION_M13-384B_TCCTCCAGGT_H04 

spike_96B A05 05A 5A TGATTCATCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GATTCATCCTGTAAAACGACGGCCAGT 

ION_M13-384B_TGATTCATCC_A05 

spike_96B B05 05B 5B GACGAGACGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACGAGACGATGTAAAACGACGGCCAGT 

ION_M13-384B_GACGAGACGA_B05 

spike_96B C05 05C 5C CACTACTTAA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACTACTTAATGTAAAACGACGGCCAGT 

ION_M13-384B_CACTACTTAA_C05 

spike_96B D05 05D 5D AGAGTGTAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GAGTGTAGTTGTAAAACGACGGCCAGT 

ION_M13-384B_AGAGTGTAGT_D05 

spike_96B E05 05E 5E CTGCGGAGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGCGGAGGTTGTAAAACGACGGCCAGT 

ION_M13-384B_CTGCGGAGGT_E05 

spike_96B F05 05F 5F GGTCCTCAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTCCTCAGTTGTAAAACGACGGCCAGT 

ION_M13-384B_GGTCCTCAGT_F05 
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spike_96B G05 05G 5G GGTGTCAGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTGTCAGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_GGTGTCAGTT_G05 

spike_96B H05 05H 5H GTTCGATCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TTCGATCATTGTAAAACGACGGCCAGT 

ION_M13-384B_GTTCGATCAT_H05 

spike_96B A06 06A 6A TTCAACGCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TCAACGCTTTGTAAAACGACGGCCAGT 

ION_M13-384B_TTCAACGCTT_A06 

spike_96B B06 06B 6B GATGGTAGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATGGTAGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_GATGGTAGTT_B06 

spike_96B C06 06C 6C TACCGAACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACCGAACGTTGTAAAACGACGGCCAGT 

ION_M13-384B_TACCGAACGT_C06 

spike_96B D06 06D 6D AGGCGACCAC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGCGACCACTGTAAAACGACGGCCAGT 

ION_M13-384B_AGGCGACCAC_D06 

spike_96B E06 06E 6E TCGCACTTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CGCACTTGTTGTAAAACGACGGCCAGT 

ION_M13-384B_TCGCACTTGT_E06 

spike_96B F06 06F 6F ATCATACCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TCATACCTCTGTAAAACGACGGCCAGT 

ION_M13-384B_ATCATACCTC_F06 

spike_96B G06 06G 6G CAACTAACAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AACTAACATTGTAAAACGACGGCCAGT 

ION_M13-384B_CAACTAACAT_G06 

spike_96B H06 06H 6H GACCAGCCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACCAGCCATTGTAAAACGACGGCCAGT 

ION_M13-384B_GACCAGCCAT_H06 

spike_96B A07 07A 7A GCATTGTGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CATTGTGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_GCATTGTGTT_A07 

spike_96B B07 07B 7B GCGTGCACTG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CGTGCACTGTGTAAAACGACGGCCAGT 

ION_M13-384B_GCGTGCACTG_B07 

spike_96B C07 07C 7C TGATCCTACC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GATCCTACCTGTAAAACGACGGCCAGT 

ION_M13-384B_TGATCCTACC_C07 

spike_96B D07 07D 7D ACTTAACAAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTTAACAATTGTAAAACGACGGCCAGT 

ION_M13-384B_ACTTAACAAT_D07 

spike_96B E07 07E 7E TGTGAGCTCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTGAGCTCCTGTAAAACGACGGCCAGT 

ION_M13-384B_TGTGAGCTCC_E07 

spike_96B F07 07F 7F AACAGCGAAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACAGCGAAGTGTAAAACGACGGCCAGT 

ION_M13-384B_AACAGCGAAG_F07 

spike_96B G07 07G 7G GTTATCCGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TTATCCGCTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTTATCCGCT_G07 
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spike_96B H07 07H 7H CGATCATGAA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GATCATGAATGTAAAACGACGGCCAGT 

ION_M13-384B_CGATCATGAA_H07 

spike_96B A08 08A 8A CGCAGGCTAA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCAGGCTAATGTAAAACGACGGCCAGT 

ION_M13-384B_CGCAGGCTAA_A08 

spike_96B B08 08B 8B CATCAGAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATCAGAGCTTGTAAAACGACGGCCAGT 

ION_M13-384B_CATCAGAGCT_B08 

spike_96B C08 08C 8C GAGTGATGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGTGATGGCTGTAAAACGACGGCCAGT 

ION_M13-384B_GAGTGATGGC_C08 

spike_96B D08 08D 8D CGAGTTGCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GAGTTGCGCTGTAAAACGACGGCCAGT 

ION_M13-384B_CGAGTTGCGC_D08 

spike_96B E08 08E 8E GGTAGCTACC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTAGCTACCTGTAAAACGACGGCCAGT 

ION_M13-384B_GGTAGCTACC_E08 

spike_96B F08 08F 8F GTTGGAGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TTGGAGATTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTTGGAGATT_F08 

spike_96B G08 08G 8G AGTGGAGGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTGGAGGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_AGTGGAGGTT_G08 

spike_96B H08 08H 8H GTGGTGGTAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGGTGGTATTGTAAAACGACGGCCAGT 

ION_M13-384B_GTGGTGGTAT_H08 

spike_96B A09 09A 9A GTGATAGCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGATAGCGTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTGATAGCGT_A09 

spike_96B B09 09B 9B GTCTCTACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCTCTACGTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTCTCTACGT_B09 

spike_96B C09 09C 9C AGCCTTGGTA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCCTTGGTATGTAAAACGACGGCCAGT 

ION_M13-384B_AGCCTTGGTA_C09 

spike_96B D09 09D 9D CGACCGTCGG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GACCGTCGGTGTAAAACGACGGCCAGT 

ION_M13-384B_CGACCGTCGG_D09 

spike_96B E09 09E 9E GGCTGTGTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCTGTGTAGTGTAAAACGACGGCCAGT 

ION_M13-384B_GGCTGTGTAG_E09 

spike_96B F09 09F 9F AGGAACTCCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GGAACTCCATGTAAAACGACGGCCAGT 

ION_M13-384B_AGGAACTCCA_F09 

spike_96B G09 09G 9G CCGTCGTCTG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGTCGTCTGTGTAAAACGACGGCCAGT 

ION_M13-384B_CCGTCGTCTG_G09 

spike_96B H09 09H 9H AATCCACGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATCCACGCCTGTAAAACGACGGCCAGT 

ION_M13-384B_AATCCACGCC_H09 
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spike_96B A10 10A 10A ATTCGTTCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TTCGTTCTTTGTAAAACGACGGCCAGT 

ION_M13-384B_ATTCGTTCTT_A10 

spike_96B B10 10B 10B GTAGGACAGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TAGGACAGATGTAAAACGACGGCCAGT 

ION_M13-384B_GTAGGACAGA_B10 

spike_96B C10 10C 10C TGCTCGCTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCTCGCTCTTGTAAAACGACGGCCAGT 

ION_M13-384B_TGCTCGCTCT_C10 

spike_96B D10 10D 10D CCGGAAGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGGAAGATTTGTAAAACGACGGCCAGT 

ION_M13-384B_CCGGAAGATT_D10 

spike_96B E10 10E 10E TTCGAGGATC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TCGAGGATCTGTAAAACGACGGCCAGT 

ION_M13-384B_TTCGAGGATC_E10 

spike_96B F10 10F 10F GACACGGTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACACGGTTATGTAAAACGACGGCCAGT 

ION_M13-384B_GACACGGTTA_F10 

spike_96B G10 10G 10G ATATAGAACC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TATAGAACCTGTAAAACGACGGCCAGT 

ION_M13-384B_ATATAGAACC_G10 

spike_96B H10 10H 10H AGCTAGTGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCTAGTGCATGTAAAACGACGGCCAGT 

ION_M13-384B_AGCTAGTGCA_H10 

spike_96B A11 11A 11A GTGGCGCTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGGCGCTGTTGTAAAACGACGGCCAGT 

ION_M13-384B_GTGGCGCTGT_A11 

spike_96B B11 11B 11B TGTACCTGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTACCTGAGTGTAAAACGACGGCCAGT 

ION_M13-384B_TGTACCTGAG_B11 

spike_96B C11 11C 11C GTCGTCGTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCGTCGTCATGTAAAACGACGGCCAGT 

ION_M13-384B_GTCGTCGTCA_C11 

spike_96B D11 11D 11D ACGAAGCTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGAAGCTTATGTAAAACGACGGCCAGT 

ION_M13-384B_ACGAAGCTTA_D11 

spike_96B E11 11E 11E CCTCAAGAAC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTCAAGAACTGTAAAACGACGGCCAGT 

ION_M13-384B_CCTCAAGAAC_E11 

spike_96B F11 11F 11F TGTGACTTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTGACTTAGTGTAAAACGACGGCCAGT 

ION_M13-384B_TGTGACTTAG_F11 

spike_96B G11 11G 11G GATTCAATAG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATTCAATAGTGTAAAACGACGGCCAGT 

ION_M13-384B_GATTCAATAG_G11 

spike_96B H11 11H 11H GTGGACGATA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGGACGATATGTAAAACGACGGCCAGT 

ION_M13-384B_GTGGACGATA_H11 

spike_96B A12 12A 12A ACGTGAAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGTGAAGGCTGTAAAACGACGGCCAGT 

ION_M13-384B_ACGTGAAGGC_A12 
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spike_96B B12 12B 12B CTAGCGCTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TAGCGCTCTTGTAAAACGACGGCCAGT 

ION_M13-384B_CTAGCGCTCT_B12 

spike_96B C12 12C 12C CCGCGATGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGCGATGTTTGTAAAACGACGGCCAGT 

ION_M13-384B_CCGCGATGTT_C12 

spike_96B D12 12D 12D CACTATGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACTATGATTTGTAAAACGACGGCCAGT 

ION_M13-384B_CACTATGATT_D12 

spike_96B E12 12E 12E ATAGGCGAGG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TAGGCGAGGTGTAAAACGACGGCCAGT 

ION_M13-384B_ATAGGCGAGG_E12 

spike_96B F12 12F 12F ATAATAGTAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TAATAGTATTGTAAAACGACGGCCAGT 

ION_M13-384B_ATAATAGTAT_F12 

spike_96B G12 12G 12G TGGTAAGCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GGTAAGCGCTGTAAAACGACGGCCAGT 

ION_M13-384B_TGGTAAGCGC_G12 

spike_96B H12 12H 12H AGAGCAGGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GAGCAGGCTTGTAAAACGACGGCCAGT 

ION_M13-384B_AGAGCAGGCT_H12 

spike_96C A01 01A 1A CCAACTTAGA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CAACTTAGATGTAAAACGACGGCCAGT 

ION_M13-384C_CCAACTTAGA_A01 

spike_96C B01 01B 1B TCGAATCCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CGAATCCTCTGTAAAACGACGGCCAGT 

ION_M13-384C_TCGAATCCTC_B01 

spike_96C C01 01C 1C TAATAGTGAC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AATAGTGACTGTAAAACGACGGCCAGT 

ION_M13-384C_TAATAGTGAC_C01 

spike_96C D01 01D 1D CAAGCTCGTC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AAGCTCGTCTGTAAAACGACGGCCAGT 

ION_M13-384C_CAAGCTCGTC_D01 

spike_96C E01 01E 1E CTGGCTGTCG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGGCTGTCGTGTAAAACGACGGCCAGT 

ION_M13-384C_CTGGCTGTCG_E01 

spike_96C F01 01F 1F GCCGCTCGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCGCTCGGTTGTAAAACGACGGCCAGT 

ION_M13-384C_GCCGCTCGGT_F01 

spike_96C G01 01G 1G CACGTGCACT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACGTGCACTTGTAAAACGACGGCCAGT 

ION_M13-384C_CACGTGCACT_G01 

spike_96C H01 01H 1H GAGATGCAAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGATGCAATTGTAAAACGACGGCCAGT 

ION_M13-384C_GAGATGCAAT_H01 

spike_96C A02 02A 2A CGGACGAGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GGACGAGCATGTAAAACGACGGCCAGT 

ION_M13-384C_CGGACGAGCA_A02 

spike_96C B02 02B 2B CTGAGATGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGAGATGATTGTAAAACGACGGCCAGT 

ION_M13-384C_CTGAGATGAT_B02 
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spike_96C C02 02C 2C ACAACCGCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CAACCGCGTTGTAAAACGACGGCCAGT 

ION_M13-384C_ACAACCGCGT_C02 

spike_96C D02 02D 2D CGGCTCTCGG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GGCTCTCGGTGTAAAACGACGGCCAGT 

ION_M13-384C_CGGCTCTCGG_D02 

spike_96C E02 02E 2E GTCAGAGTAC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCAGAGTACTGTAAAACGACGGCCAGT 

ION_M13-384C_GTCAGAGTAC_E02 

spike_96C F02 02F 2F GGAGTCGATA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GAGTCGATATGTAAAACGACGGCCAGT 

ION_M13-384C_GGAGTCGATA_F02 

spike_96C G02 02G 2G GGAGGTGTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GAGGTGTTATGTAAAACGACGGCCAGT 

ION_M13-384C_GGAGGTGTTA_G02 

spike_96C H02 02H 2H TAGCATTGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGCATTGCTTGTAAAACGACGGCCAGT 

ION_M13-384C_TAGCATTGCT_H02 

spike_96C A03 03A 3A TCGAAGGATC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CGAAGGATCTGTAAAACGACGGCCAGT 

ION_M13-384C_TCGAAGGATC_A03 

spike_96C B03 03B 3B GAACGTAGGA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AACGTAGGATGTAAAACGACGGCCAGT 

ION_M13-384C_GAACGTAGGA_B03 

spike_96C C03 03C 3C CTGGATAAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGGATAAGTTGTAAAACGACGGCCAGT 

ION_M13-384C_CTGGATAAGT_C03 

spike_96C D03 03D 3D TATACACCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATACACCATTGTAAAACGACGGCCAGT 

ION_M13-384C_TATACACCAT_D03 

spike_96C E03 03E 3E ATAAGTTCTG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TAAGTTCTGTGTAAAACGACGGCCAGT 

ION_M13-384C_ATAAGTTCTG_E03 

spike_96C F03 03F 3F CGTGGCTTCG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTGGCTTCGTGTAAAACGACGGCCAGT 

ION_M13-384C_CGTGGCTTCG_F03 

spike_96C G03 03G 3G CATCGGTGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATCGGTGATTGTAAAACGACGGCCAGT 

ION_M13-384C_CATCGGTGAT_G03 

spike_96C H03 03H 3H GCTTGATCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTTGATCATTGTAAAACGACGGCCAGT 

ION_M13-384C_GCTTGATCAT_H03 

spike_96C A04 04A 4A TGACGAACTA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GACGAACTATGTAAAACGACGGCCAGT 

ION_M13-384C_TGACGAACTA_A04 

spike_96C B04 04B 4B GCTGGCGGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTGGCGGTTTGTAAAACGACGGCCAGT 

ION_M13-384C_GCTGGCGGTT_B04 

spike_96C C04 04C 4C GTGATTAGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGATTAGATTGTAAAACGACGGCCAGT 

ION_M13-384C_GTGATTAGAT_C04 
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spike_96C D04 04D 4D TTAACAGCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TAACAGCGTTGTAAAACGACGGCCAGT 

ION_M13-384C_TTAACAGCGT_D04 

spike_96C E04 04E 4E GAGAGTACGG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGAGTACGGTGTAAAACGACGGCCAGT 

ION_M13-384C_GAGAGTACGG_E04 

spike_96C F04 04F 4F TTACTAGCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TACTAGCTTTGTAAAACGACGGCCAGT 

ION_M13-384C_TTACTAGCTT_F04 

spike_96C G04 04G 4G GCACGTTGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CACGTTGATTGTAAAACGACGGCCAGT 

ION_M13-384C_GCACGTTGAT_G04 

spike_96C H04 04H 4H AGCCTACCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCCTACCTCTGTAAAACGACGGCCAGT 

ION_M13-384C_AGCCTACCTC_H04 

spike_96C A05 05A 5A ATGAGAATCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TGAGAATCATGTAAAACGACGGCCAGT 

ION_M13-384C_ATGAGAATCA_A05 

spike_96C B05 05B 5B AGAGAGCCAA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GAGAGCCAATGTAAAACGACGGCCAGT 

ION_M13-384C_AGAGAGCCAA_B05 

spike_96C C05 05C 5C AATATATGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATATATGCATGTAAAACGACGGCCAGT 

ION_M13-384C_AATATATGCA_C05 

spike_96C D05 05D 5D CCTTCCAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTTCCAGGCTGTAAAACGACGGCCAGT 

ION_M13-384C_CCTTCCAGGC_D05 

spike_96C E05 05E 5E CAAGGAGCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AAGGAGCGCTGTAAAACGACGGCCAGT 

ION_M13-384C_CAAGGAGCGC_E05 

spike_96C F05 05F 5F TCCATGCCAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCATGCCAGTGTAAAACGACGGCCAGT 

ION_M13-384C_TCCATGCCAG_F05 

spike_96C G05 05G 5G AGTCATCCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTCATCCGTTGTAAAACGACGGCCAGT 

ION_M13-384C_AGTCATCCGT_G05 

spike_96C H05 05H 5H TCAGGTCTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CAGGTCTGCTGTAAAACGACGGCCAGT 

ION_M13-384C_TCAGGTCTGC_H05 

spike_96C A06 06A 6A AGTACGCTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTACGCTGTTGTAAAACGACGGCCAGT 

ION_M13-384C_AGTACGCTGT_A06 

spike_96C B06 06B 6B GATGATTCCT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATGATTCCTTGTAAAACGACGGCCAGT 

ION_M13-384C_GATGATTCCT_B06 

spike_96C C06 06C 6C GGCGATGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GCGATGATTTGTAAAACGACGGCCAGT 

ION_M13-384C_GGCGATGATT_C06 

spike_96C D06 06D 6D AGTCGCTGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTCGCTGCATGTAAAACGACGGCCAGT 

ION_M13-384C_AGTCGCTGCA_D06 
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spike_96C E06 06E 6E TGTGCCGCCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTGCCGCCTTGTAAAACGACGGCCAGT 

ION_M13-384C_TGTGCCGCCT_E06 

spike_96C F06 06F 6F TCTTGCAGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTTGCAGCCTGTAAAACGACGGCCAGT 

ION_M13-384C_TCTTGCAGCC_F06 

spike_96C G06 06G 6G ACGATAGATA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGATAGATATGTAAAACGACGGCCAGT 

ION_M13-384C_ACGATAGATA_G06 

spike_96C H06 06H 6H GGTTGACGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTTGACGATTGTAAAACGACGGCCAGT 

ION_M13-384C_GGTTGACGAT_H06 

spike_96C A07 07A 7A CCGTACGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGTACGATTTGTAAAACGACGGCCAGT 

ION_M13-384C_CCGTACGATT_A07 

spike_96C B07 07B 7B GTGGTCAAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGGTCAAGTTGTAAAACGACGGCCAGT 

ION_M13-384C_GTGGTCAAGT_B07 

spike_96C C07 07C 7C TCGCAAGTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CGCAAGTTATGTAAAACGACGGCCAGT 

ION_M13-384C_TCGCAAGTTA_C07 

spike_96C D07 07D 7D CAGCGTCCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AGCGTCCGTTGTAAAACGACGGCCAGT 

ION_M13-384C_CAGCGTCCGT_D07 

spike_96C E07 07E 7E TATCCGTAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATCCGTAGTTGTAAAACGACGGCCAGT 

ION_M13-384C_TATCCGTAGT_E07 

spike_96C F07 07F 7F CAACCAGAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AACCAGAGTTGTAAAACGACGGCCAGT 

ION_M13-384C_CAACCAGAGT_F07 

spike_96C G07 07G 7G CAAGAATCAC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AAGAATCACTGTAAAACGACGGCCAGT 

ION_M13-384C_CAAGAATCAC_G07 

spike_96C H07 07H 7H CGAGCCGAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GAGCCGAGTTGTAAAACGACGGCCAGT 

ION_M13-384C_CGAGCCGAGT_H07 

spike_96C A08 08A 8A AACCTAAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACCTAAGCTTGTAAAACGACGGCCAGT 

ION_M13-384C_AACCTAAGCT_A08 

spike_96C B08 08B 8B AATGGCCATC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATGGCCATCTGTAAAACGACGGCCAGT 

ION_M13-384C_AATGGCCATC_B08 

spike_96C C08 08C 8C TACATCACGG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACATCACGGTGTAAAACGACGGCCAGT 

ION_M13-384C_TACATCACGG_C08 

spike_96C D08 08D 8D AACACACCAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACACACCAGTGTAAAACGACGGCCAGT 

ION_M13-384C_AACACACCAG_D08 

spike_96C E08 08E 8E GACTGCTTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACTGCTTGTTGTAAAACGACGGCCAGT 

ION_M13-384C_GACTGCTTGT_E08 
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spike_96C F08 08F 8F GGATACGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GATACGATTTGTAAAACGACGGCCAGT 

ION_M13-384C_GGATACGATT_F08 

spike_96C G08 08G 8G CATCGAAGTA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATCGAAGTATGTAAAACGACGGCCAGT 

ION_M13-384C_CATCGAAGTA_G08 

spike_96C H08 08H 8H CGTCGTAATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTCGTAATTTGTAAAACGACGGCCAGT 

ION_M13-384C_CGTCGTAATT_H08 

spike_96C A09 09A 9A GGTGATCGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTGATCGAGTGTAAAACGACGGCCAGT 

ION_M13-384C_GGTGATCGAG_A09 

spike_96C B09 09B 9B CTCAACAGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TCAACAGCCTGTAAAACGACGGCCAGT 

ION_M13-384C_CTCAACAGCC_B09 

spike_96C C09 09C 9C GATTCTGCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATTCTGCTTTGTAAAACGACGGCCAGT 

ION_M13-384C_GATTCTGCTT_C09 

spike_96C D09 09D 9D CACCGCGACC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACCGCGACCTGTAAAACGACGGCCAGT 

ION_M13-384C_CACCGCGACC_D09 

spike_96C E09 09E 9E CACCTTCAGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACCTTCAGCTGTAAAACGACGGCCAGT 

ION_M13-384C_CACCTTCAGC_E09 

spike_96C F09 09F 9F GCAGCACGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CAGCACGCTTGTAAAACGACGGCCAGT 

ION_M13-384C_GCAGCACGCT_F09 

spike_96C G09 09G 9G TATCGATGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATCGATGGTTGTAAAACGACGGCCAGT 

ION_M13-384C_TATCGATGGT_G09 

spike_96C H09 09H 9H GAGAATCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGAATCATTTGTAAAACGACGGCCAGT 

ION_M13-384C_GAGAATCATT_H09 

spike_96C A10 10A 10A AACCTCCGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACCTCCGAGTGTAAAACGACGGCCAGT 

ION_M13-384C_AACCTCCGAG_A10 

spike_96C B10 10B 10B TAACGGAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AACGGAGCTTGTAAAACGACGGCCAGT 

ION_M13-384C_TAACGGAGCT_B10 

spike_96C C10 10C 10C CATTGTTCTA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATTGTTCTATGTAAAACGACGGCCAGT 

ION_M13-384C_CATTGTTCTA_C10 

spike_96C D10 10D 10D GCAAGCCGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CAAGCCGTTTGTAAAACGACGGCCAGT 

ION_M13-384C_GCAAGCCGTT_D10 

spike_96C E10 10E 10E CTCTATCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TCTATCGATTGTAAAACGACGGCCAGT 

ION_M13-384C_CTCTATCGAT_E10 

spike_96C F10 10F 10F GCAACTATCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CAACTATCATGTAAAACGACGGCCAGT 

ION_M13-384C_GCAACTATCA_F10 
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spike_96C G10 10G 10G CGTGCTTGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GTGCTTGATTGTAAAACGACGGCCAGT 

ION_M13-384C_CGTGCTTGAT_G10 

spike_96C H10 10H 10H GAAGCGAACT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AAGCGAACTTGTAAAACGACGGCCAGT 

ION_M13-384C_GAAGCGAACT_H10 

spike_96C A11 11A 11A GTATGTATAA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TATGTATAATGTAAAACGACGGCCAGT 

ION_M13-384C_GTATGTATAA_A11 

spike_96C B11 11B 11B GTCTCAGCTA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCTCAGCTATGTAAAACGACGGCCAGT 

ION_M13-384C_GTCTCAGCTA_B11 

spike_96C C11 11C 11C GAGTAGCGTC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGTAGCGTCTGTAAAACGACGGCCAGT 

ION_M13-384C_GAGTAGCGTC_C11 

spike_96C D11 11D 11D CACAAGCTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACAAGCTCTTGTAAAACGACGGCCAGT 

ION_M13-384C_CACAAGCTCT_D11 

spike_96C E11 11E 11E CTGTTAGGAC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGTTAGGACTGTAAAACGACGGCCAGT 

ION_M13-384C_CTGTTAGGAC_E11 

spike_96C F11 11F 11F TGCAGATGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCAGATGTTTGTAAAACGACGGCCAGT 

ION_M13-384C_TGCAGATGTT_F11 

spike_96C G11 11G 11G CACGAAGATA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACGAAGATATGTAAAACGACGGCCAGT 

ION_M13-384C_CACGAAGATA_G11 

spike_96C H11 11H 11H CCTATTGAGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTATTGAGCTGTAAAACGACGGCCAGT 

ION_M13-384C_CCTATTGAGC_H11 

spike_96C A12 12A 12A ACCATTCTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CCATTCTGCTGTAAAACGACGGCCAGT 

ION_M13-384C_ACCATTCTGC_A12 

spike_96C B12 12B 12B GAAGACTGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AAGACTGCCTGTAAAACGACGGCCAGT 

ION_M13-384C_GAAGACTGCC_B12 

spike_96C C12 12C 12C TCCGGCGCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CCGGCGCATTGTAAAACGACGGCCAGT 

ION_M13-384C_TCCGGCGCAT_C12 

spike_96C D12 12D 12D TTCTGGACAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TCTGGACAGTGTAAAACGACGGCCAGT 

ION_M13-384C_TTCTGGACAG_D12 

spike_96C E12 12E 12E GCGGTTCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CGGTTCGATTGTAAAACGACGGCCAGT 

ION_M13-384C_GCGGTTCGAT_E12 

spike_96C F12 12F 12F GTAGTCCGGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TAGTCCGGTTGTAAAACGACGGCCAGT 

ION_M13-384C_GTAGTCCGGT_F12 

spike_96C G12 12G 12G GCCTCACGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCTCACGCCTGTAAAACGACGGCCAGT 

ION_M13-384C_GCCTCACGCC_G12 



96 

spike_96C H12 12H 12H GTCATCATGC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TCATCATGCTGTAAAACGACGGCCAGT 

ION_M13-384C_GTCATCATGC_H12 

spike_96D A01 01A 1A AATCTAGGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATCTAGGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_AATCTAGGTT_A01 

spike_96D B01 01B 1B TGTTGTCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTTGTCGATTGTAAAACGACGGCCAGT 

ION_M13-384D_TGTTGTCGAT_B01 

spike_96D C01 01C 1C GTAGTGTTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TAGTGTTCATGTAAAACGACGGCCAGT 

ION_M13-384D_GTAGTGTTCA_C01 

spike_96D D01 01D 1D ACTCCGTCCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTCCGTCCTTGTAAAACGACGGCCAGT 

ION_M13-384D_ACTCCGTCCT_D01 

spike_96D E01 01E 1E CGCGTATACT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GCGTATACTTGTAAAACGACGGCCAGT 

ION_M13-384D_CGCGTATACT_E01 

spike_96D F01 01F 1F GCTGCCAGCG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTGCCAGCGTGTAAAACGACGGCCAGT 

ION_M13-384D_GCTGCCAGCG_F01 

spike_96D G01 01G 1G GCCAGTCCAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCAGTCCATTGTAAAACGACGGCCAGT 

ION_M13-384D_GCCAGTCCAT_G01 

spike_96D H01 01H 1H AACCGCACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACCGCACGTTGTAAAACGACGGCCAGT 

ION_M13-384D_AACCGCACGT_H01 

spike_96D A02 02A 2A GTGCTCCGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGCTCCGAGTGTAAAACGACGGCCAGT 

ION_M13-384D_GTGCTCCGAG_A02 

spike_96D B02 02B 2B TATCTCGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATCTCGATTTGTAAAACGACGGCCAGT 

ION_M13-384D_TATCTCGATT_B02 

spike_96D C02 02C 2C ACGACATTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGACATTCTTGTAAAACGACGGCCAGT 

ION_M13-384D_ACGACATTCT_C02 

spike_96D D02 02D 2D TCTGCTTGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTGCTTGCCTGTAAAACGACGGCCAGT 

ION_M13-384D_TCTGCTTGCC_D02 

spike_96D E02 02E 2E CTAATACTTA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TAATACTTATGTAAAACGACGGCCAGT 

ION_M13-384D_CTAATACTTA_E02 

spike_96D F02 02F 2F TAACGTTATC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AACGTTATCTGTAAAACGACGGCCAGT 

ION_M13-384D_TAACGTTATC_F02 

spike_96D G02 02G 2G AGTGTCGGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTGTCGGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_AGTGTCGGTT_G02 

spike_96D H02 02H 2H TTACACCGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TACACCGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_TTACACCGTT_H02 
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spike_96D A03 03A 3A CAGCGAGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AGCGAGATTTGTAAAACGACGGCCAGT 

ION_M13-384D_CAGCGAGATT_A03 

spike_96D B03 03B 3B GATATTCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATATTCGATTGTAAAACGACGGCCAGT 

ION_M13-384D_GATATTCGAT_B03 

spike_96D C03 03C 3C TCTGTGCAAC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTGTGCAACTGTAAAACGACGGCCAGT 

ION_M13-384D_TCTGTGCAAC_C03 

spike_96D D03 03D 3D GCTGATATCC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTGATATCCTGTAAAACGACGGCCAGT 

ION_M13-384D_GCTGATATCC_D03 

spike_96D E03 03E 3E TTCACATTAG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TCACATTAGTGTAAAACGACGGCCAGT 

ION_M13-384D_TTCACATTAG_E03 

spike_96D F03 03F 3F TGGAATGTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GGAATGTCATGTAAAACGACGGCCAGT 

ION_M13-384D_TGGAATGTCA_F03 

spike_96D G03 03G 3G GAGCCTAGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AGCCTAGCATGTAAAACGACGGCCAGT 

ION_M13-384D_GAGCCTAGCA_G03 

spike_96D H03 03H 3H TAATGAATAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AATGAATATTGTAAAACGACGGCCAGT 

ION_M13-384D_TAATGAATAT_H03 

spike_96D A04 04A 4A GCTCTCTCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CTCTCTCGTTGTAAAACGACGGCCAGT 

ION_M13-384D_GCTCTCTCGT_A04 

spike_96D B04 04B 4B GCGTGTTACA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CGTGTTACATGTAAAACGACGGCCAGT 

ION_M13-384D_GCGTGTTACA_B04 

spike_96D C04 04C 4C CCGAATTATG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGAATTATGTGTAAAACGACGGCCAGT 

ION_M13-384D_CCGAATTATG_C04 

spike_96D D04 04D 4D CCTAATCGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CTAATCGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_CCTAATCGTT_D04 

spike_96D E04 04E 4E CTTAACCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTAACCATTTGTAAAACGACGGCCAGT 

ION_M13-384D_CTTAACCATT_E04 

spike_96D F04 04F 4F TTGGAACAGG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGGAACAGGTGTAAAACGACGGCCAGT 

ION_M13-384D_TTGGAACAGG_F04 

spike_96D G04 04G 4G ACAGCCAGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CAGCCAGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_ACAGCCAGTT_G04 

spike_96D H04 04H 4H ATGTCGGCAA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TGTCGGCAATGTAAAACGACGGCCAGT 

ION_M13-384D_ATGTCGGCAA_H04 

spike_96D A05 05A 5A TCTGTAGTAC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTGTAGTACTGTAAAACGACGGCCAGT 

ION_M13-384D_TCTGTAGTAC_A05 
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spike_96D B05 05B 5B CAGCCATTCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AGCCATTCTTGTAAAACGACGGCCAGT 

ION_M13-384D_CAGCCATTCT_B05 

spike_96D C05 05C 5C ACGGCACTAA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGGCACTAATGTAAAACGACGGCCAGT 

ION_M13-384D_ACGGCACTAA_C05 

spike_96D D05 05D 5D AGACACGTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GACACGTGATGTAAAACGACGGCCAGT 

ION_M13-384D_AGACACGTGA_D05 

spike_96D E05 05E 5E CATATCTACG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATATCTACGTGTAAAACGACGGCCAGT 

ION_M13-384D_CATATCTACG_E05 

spike_96D F05 05F 5F CACGACCATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ACGACCATTTGTAAAACGACGGCCAGT 

ION_M13-384D_CACGACCATT_F05 

spike_96D G05 05G 5G ATCCGAGCGC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TCCGAGCGCTGTAAAACGACGGCCAGT 

ION_M13-384D_ATCCGAGCGC_G05 

spike_96D H05 05H 5H AGACTCTGCC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GACTCTGCCTGTAAAACGACGGCCAGT 

ION_M13-384D_AGACTCTGCC_H05 

spike_96D A06 06A 6A TGTGATAGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GTGATAGCATGTAAAACGACGGCCAGT 

ION_M13-384D_TGTGATAGCA_A06 

spike_96D B06 06B 6B TAGGCCACGT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGGCCACGTTGTAAAACGACGGCCAGT 

ION_M13-384D_TAGGCCACGT_B06 

spike_96D C06 06C 6C ACTGGACTAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTGGACTATTGTAAAACGACGGCCAGT 

ION_M13-384D_ACTGGACTAT_C06 

spike_96D D06 06D 6D TATCACCGTG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ATCACCGTGTGTAAAACGACGGCCAGT 

ION_M13-384D_TATCACCGTG_D06 

spike_96D E06 06E 6E CCAATGATCC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CAATGATCCTGTAAAACGACGGCCAGT 

ION_M13-384D_CCAATGATCC_E06 

spike_96D F06 06F 6F ACGAATATGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGAATATGATGTAAAACGACGGCCAGT 

ION_M13-384D_ACGAATATGA_F06 

spike_96D G06 06G 6G GACGTTCGAA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACGTTCGAATGTAAAACGACGGCCAGT 

ION_M13-384D_GACGTTCGAA_G06 

spike_96D H06 06H 6H ACCGGCAAGG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CCGGCAAGGTGTAAAACGACGGCCAGT 

ION_M13-384D_ACCGGCAAGG_H06 

spike_96D A07 07A 7A GATGCACTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATGCACTCATGTAAAACGACGGCCAGT 

ION_M13-384D_GATGCACTCA_A07 

spike_96D B07 07B 7B ATTCGCGAGC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TTCGCGAGCTGTAAAACGACGGCCAGT 

ION_M13-384D_ATTCGCGAGC_B07 
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spike_96D C07 07C 7C TTAGCAACGG CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TAGCAACGGTGTAAAACGACGGCCAGT 

ION_M13-384D_TTAGCAACGG_C07 

spike_96D D07 07D 7D TAGTCGAGCT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGTCGAGCTTGTAAAACGACGGCCAGT 

ION_M13-384D_TAGTCGAGCT_D07 

spike_96D E07 07E 7E ATCTCTTCGG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TCTCTTCGGTGTAAAACGACGGCCAGT 

ION_M13-384D_ATCTCTTCGG_E07 

spike_96D F07 07F 7F AGCCGCGTGT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GCCGCGTGTTGTAAAACGACGGCCAGT 

ION_M13-384D_AGCCGCGTGT_F07 

spike_96D G07 07G 7G TGCAATTACC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GCAATTACCTGTAAAACGACGGCCAGT 

ION_M13-384D_TGCAATTACC_G07 

spike_96D H07 07H 7H GAACTACATT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
AACTACATTTGTAAAACGACGGCCAGT 

ION_M13-384D_GAACTACATT_H07 

spike_96D A08 08A 8A CCGATTAATT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGATTAATTTGTAAAACGACGGCCAGT 

ION_M13-384D_CCGATTAATT_A08 

spike_96D B08 08B 8B CTAGCCAAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TAGCCAAGTTGTAAAACGACGGCCAGT 

ION_M13-384D_CTAGCCAAGT_B08 

spike_96D C08 08C 8C AACGATGTGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACGATGTGATGTAAAACGACGGCCAGT 

ION_M13-384D_AACGATGTGA_C08 

spike_96D D08 08D 8D TCTTATGATT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CTTATGATTTGTAAAACGACGGCCAGT 

ION_M13-384D_TCTTATGATT_D08 

spike_96D E08 08E 8E TTGTGCCACC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
TGTGCCACCTGTAAAACGACGGCCAGT 

ION_M13-384D_TTGTGCCACC_E08 

spike_96D F08 08F 8F GTATACAAGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TATACAAGTTGTAAAACGACGGCCAGT 

ION_M13-384D_GTATACAAGT_F08 

spike_96D G08 08G 8G GTGTCATGAA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGTCATGAATGTAAAACGACGGCCAGT 

ION_M13-384D_GTGTCATGAA_G08 

spike_96D H08 08H 8H CTAATGTCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TAATGTCTTTGTAAAACGACGGCCAGT 

ION_M13-384D_CTAATGTCTT_H08 

spike_96D A09 09A 9A GTACTTGCCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TACTTGCCATGTAAAACGACGGCCAGT 

ION_M13-384D_GTACTTGCCA_A09 

spike_96D B09 09B 9B ACCACGTGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CCACGTGAGTGTAAAACGACGGCCAGT 

ION_M13-384D_ACCACGTGAG_B09 

spike_96D C09 09C 9C TAGTTGGTCC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AGTTGGTCCTGTAAAACGACGGCCAGT 

ION_M13-384D_TAGTTGGTCC_C09 
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spike_96D D09 09D 9D CGACGGATCT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GACGGATCTTGTAAAACGACGGCCAGT 

ION_M13-384D_CGACGGATCT_D09 

spike_96D E09 09E 9E ATAGAACGCG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TAGAACGCGTGTAAAACGACGGCCAGT 

ION_M13-384D_ATAGAACGCG_E09 

spike_96D F09 09F 9F AATCTGATTG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ATCTGATTGTGTAAAACGACGGCCAGT 

ION_M13-384D_AATCTGATTG_F09 

spike_96D G09 09G 9G CTTGTAATTG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TTGTAATTGTGTAAAACGACGGCCAGT 

ION_M13-384D_CTTGTAATTG_G09 

spike_96D H09 09H 9H AGACCTGTTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GACCTGTTCTGTAAAACGACGGCCAGT 

ION_M13-384D_AGACCTGTTC_H09 

spike_96D A10 10A 10A CGAGCGAAGC CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GAGCGAAGCTGTAAAACGACGGCCAGT 

ION_M13-384D_CGAGCGAAGC_A10 

spike_96D B10 10B 10B CGACAAGACT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
GACAAGACTTGTAAAACGACGGCCAGT 

ION_M13-384D_CGACAAGACT_B10 

spike_96D C10 10C 10C AACGGTTGAG CCATCTCATCCCTGCGTGTCTCCGACTCAGA
ACGGTTGAGTGTAAAACGACGGCCAGT 

ION_M13-384D_AACGGTTGAG_C10 

spike_96D D10 10D 10D GCCAAGGCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
CCAAGGCTCTGTAAAACGACGGCCAGT 

ION_M13-384D_GCCAAGGCTC_D10 

spike_96D E10 10E 10E GATCACACCT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATCACACCTTGTAAAACGACGGCCAGT 

ION_M13-384D_GATCACACCT_E10 

spike_96D F10 10F 10F GACGCCGAAT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ACGCCGAATTGTAAAACGACGGCCAGT 

ION_M13-384D_GACGCCGAAT_F10 

spike_96D G10 10G 10G CAATACCTAT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AATACCTATTGTAAAACGACGGCCAGT 

ION_M13-384D_CAATACCTAT_G10 

spike_96D H10 10H 10H AGATCCGCTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GATCCGCTCTGTAAAACGACGGCCAGT 

ION_M13-384D_AGATCCGCTC_H10 

spike_96D A11 11A 11A CCGGCCTCTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGGCCTCTTTGTAAAACGACGGCCAGT 

ION_M13-384D_CCGGCCTCTT_A11 

spike_96D B11 11B 11B TACCTGAGGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACCTGAGGCTGTAAAACGACGGCCAGT 

ION_M13-384D_TACCTGAGGC_B11 

spike_96D C11 11C 11C GATGTCTTCA CCATCTCATCCCTGCGTGTCTCCGACTCAGG
ATGTCTTCATGTAAAACGACGGCCAGT 

ION_M13-384D_GATGTCTTCA_C11 

spike_96D D11 11D 11D GGTCACGGAC CCATCTCATCCCTGCGTGTCTCCGACTCAGG
GTCACGGACTGTAAAACGACGGCCAGT 

ION_M13-384D_GGTCACGGAC_D11 
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spike_96D E11 11E 11E GTGCAGCCGT CCATCTCATCCCTGCGTGTCTCCGACTCAGG
TGCAGCCGTTGTAAAACGACGGCCAGT 

ION_M13-384D_GTGCAGCCGT_E11 

spike_96D F11 11F 11F AGACAGAGCA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GACAGAGCATGTAAAACGACGGCCAGT 

ION_M13-384D_AGACAGAGCA_F11 

spike_96D G11 11G 11G ACGCTCATTA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CGCTCATTATGTAAAACGACGGCCAGT 

ION_M13-384D_ACGCTCATTA_G11 

spike_96D H11 11H 11H AGAGATAATT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GAGATAATTTGTAAAACGACGGCCAGT 

ION_M13-384D_AGAGATAATT_H11 

spike_96D A12 12A 12A TCACAGCGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGT
CACAGCGATTGTAAAACGACGGCCAGT 

ION_M13-384D_TCACAGCGAT_A12 

spike_96D B12 12B 12B ACTTGCGGAT CCATCTCATCCCTGCGTGTCTCCGACTCAGA
CTTGCGGATTGTAAAACGACGGCCAGT 

ION_M13-384D_ACTTGCGGAT_B12 

spike_96D C12 12C 12C AGTTAGATTC CCATCTCATCCCTGCGTGTCTCCGACTCAGA
GTTAGATTCTGTAAAACGACGGCCAGT 

ION_M13-384D_AGTTAGATTC_C12 

spike_96D D12 12D 12D CTGGTGCGGA CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGGTGCGGATGTAAAACGACGGCCAGT 

ION_M13-384D_CTGGTGCGGA_D12 

spike_96D E12 12E 12E TGACGCCTGC CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GACGCCTGCTGTAAAACGACGGCCAGT 

ION_M13-384D_TGACGCCTGC_E12 

spike_96D F12 12F 12F ATTACTAAGA CCATCTCATCCCTGCGTGTCTCCGACTCAGA
TTACTAAGATGTAAAACGACGGCCAGT 

ION_M13-384D_ATTACTAAGA_F12 

spike_96D G12 12G 12G CATAATGGTT CCATCTCATCCCTGCGTGTCTCCGACTCAGC
ATAATGGTTTGTAAAACGACGGCCAGT 

ION_M13-384D_CATAATGGTT_G12 

spike_96D H12 12H 12H CCGTCACGCG CCATCTCATCCCTGCGTGTCTCCGACTCAGC
CGTCACGCGTGTAAAACGACGGCCAGT 

ION_M13-384D_CCGTCACGCG_H12 
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PROTOCOL 

 

Allele Specific Amplification using “Spiked” Genotyping-by-Sequencing 

 

Overview 

 

Genotyping-by-sequencing (GBS) is an approach for reduced representation sequencing of large 

and complex genomes.  Using a restriction enzyme, a small portion of the genome can be 

reducibly captured and sequenced.   

 

Often genetics research and molecular marker assisted selection in plant breeding has need for 

single marker assays rather than whole genome profiling.   

 

Primer Design 

 

The assay is designed as a nested PCR reaction that can be completed in a single reaction well.  

Each sample will have a unique barcode primer with M13(-21) tail sequence.  A set of common 

primers for the target sequence are included that have the corresponding M13 tail on the forward 

primer and a tail for the reverse sequencing primer site on the reverse primer.  The nested PCR 

reaction will produce fragments that a ready for sequencing. The sequencing read will first read 

through the barcode followed by the M13 sequence.  The target SNP can be located directly after 

the forward target sequence primer or further down stream as long as it is within the read length 

of the sequencing platform.  
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Allele Specific Amplification 

 

1. Normalize 5ul of DNA at 20 – 40 ng/ul in a 96 well plate 

2. Add 4ul of M13 barcode primer (0.75 uM).   

Note: Each sample well will have a unique barcode primer.  

3. Make Master Mix for whole plate volume 

4. Add 8ul of PCR master mix to samples 

 

Regent (Stock Concentration) Reaction 

Volume (ul) 

Full Plate Volume 

(ul) (x120) 

Final Concentration 

Buffer Stock (10x) 1.5 180 1x 

MgCl2 (50 mM) 0.75 90 2.5 mM 

dNTP mix (2.5 mM) 1.2 1.2 200 uM (each) 

Forward Tailed Primer (10.00 uM) 0.03 3.6 20 nM 

Reverse Primer (10.00 uM) 0.3 36 200 nM 

Taq polymerase (5.00U/ul) 0.1 12 0.33 U 

H20 3.62 434.4   

Master Mix Total 8 960 
 

    

DNA (20 to 40ng/ul) 5 - 100 – 200 ng 

M13 Barcode Primer (0.75 uM) 4 - 200 nM 

    

PCR reaction total volume 15 -  

 

PCR CONDITIONS 

 

PCR Based pm Annealing temperature – short  

1 95oC - 5 min  

2 95oC - 1 min 

36 Cycles  3 57oC - 20 sec 

4 72oC - 40 sec 

6 72C, 10 min  

7 8C, forever  
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Spiking of Amplicon library to GBS library 

 

The target amplicon library should be added at a concentration of ~1% of the total GBS library.   

 

 

1. Quantify GBS library using PicoGreen 

2. Normalize GBS library to 50ul at 11 nM 

3. Quantify amplicon library using PicoGreen 

4. Normalize amplicon library to 1.1 nM 

5. Add 5 ul of amplicon library to 50 ul of GBS library 

 

Library Volume Conc. Final Conc. 

GBS 50 ul 11 nM 10 nM 

Amplicon 5 ul 1.1 nM 0.1 nM 

TOTAL 55 ul  10 nM 
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Appendix D - Supplementary Materials Chapter 5 

In addition to Field Book, we have developed several other phenotyping apps 

(PhenoApps) that can be used for collecting, managing, and analyzing data. 

 1KK 

1KK is an app designed to analyze seed lots. Its name comes from the one thousand (1K) 

kernel weight that is commonly used as a selection criterion in plant breeding programs. 1KK 

extracts seed morphology from images captured by phone and tablet cameras. A non-parametric 

algorithm is used to identify individual seeds for shape measurements (Figure D-1). Reference 

circles of known size are included on a background mat and translate the pixel measurements of 

seeds to actual size. Each individual seed length, width, and area is determined using the 

algorithm first implemented in SmartGrain (Tanabata et al., 2012). Data can be exported in a 

sample summary format or on a per-seed basis. For measurement of thousand kernel weight, the 

total number of seeds are counted and divided by the total weight. For weight measurements, the 

app is compatible with 1g resolution USB scales (Elane). With a properly-sized reference 

background, potato tubers and cassava roots can be imaged and measured (Figure D-2). 1KK is 

open source (https://github.com/trife/1KK) and available on the Google Play Store 

(https://play.google.com/store/apps/details?id=org.wheatgenetics.onekk). 

 Inventory 

To assist with rapid inventory and weighing of seed stocks, we've developed an 

application to inventory and weigh barcoded seed samples. Inventory uses a USB Scale (Elane) 

to quickly weigh and categorize samples. In addition to the Box and Sample ID, a timestamp and 

the name of the inventory person are also collected. Data is exported to a text file that can be 

directly uploaded to a central database. Inventory is open source 
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(https://github.com/trife/Inventory) and available on the Google Play Store 

(https://play.google.com/store/apps/details?id=org.wheatgenetics.inventory). 

 Coordinate 

Coordinate is a data collection app that is based on defining templates and then collecting 

data in grids created from those templates. Two templates included by default are for seed trays, 

used to organize planting samples, and DNA plates, used to associate a tissue ID with the well 

into which it is being collected. Templates can be created to include custom fields for grid 

metadata collection (e.g. Person, Date, etc.); the naming for rows and columns can be alphabetic 

or numeric; and rows, columns, or random cells can be excluded from data collection. All 

collected data is saved internally to the database and grids can be reloaded to continue collecting 

data or deleted if not needed. Coordinate is open source (https://github.com/trife/Coordinate) and 

available on the Google Play Store 

(https://play.google.com/store/apps/details?id=org.wheatgenetics.coordinate). 
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Figure D-1. A processed photo of a wheat seed lot. Seeds that are identified as being 

individual are outlined in red and morphological measurements are collected. Blue 

reference circles of known size are outlined in white and used to scale pixel measurements 

to empirical measurements. 
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Figure D-2. A processed sample of cassava roots. 

 


