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CHAPTER I

INTRODUCTION

Since the industrial revolution new and better ways of

manufacturing machined components have been continually and eagerly

sought after. Engineers in the past have made rapid progress in

machining technology and today it is possible to produce high quality

machined components in large quantities. The high volume of machined

components that must be produced by the manufacturing industry has

motivated engineers to seek better machining procedures so that

machined components of the required precision are produced at minimum

cost or at the maximum production rate.

During the machining of any component, it is first necessary to

set the quality specifications like surface finish, manufacturing

tolerance, accuracy, etc. While machining the component within these

specifications, the machinist has a wide range of speeds, feeds, tool

materials and other machining conditions that are under his control.

In order to meet the preset specifications, the machinist is usually

conservative in the selection of a set of machining parameters, since

meeting specifications takes precedence over reducing machining cost.

Unfortunately, the conventional practice followed in the manufacture

and design of machined components is to judge by experience and not by



mathematical reasoning. This is uneconomical in the long run. There is

also a lack of good data in this area to assist the machinist in

taking economical and safe decisions. Hence there is a strong need to

collect information about manufacturing and design practices, and to

organize this information so as to arrive at a set of machining

parameters which satisfy the given specifications and provide minimum

cost or minimum cutting time per piece. Also, little effort has been

made in the past to link the design of components with the

manufacturing cost. This is a very important concept and is one that

is very helpful in attaining the objective of efficient manufacture.

For example consider a single shaft supported by sleeve bearings at

the ends and carrying gears or pulleys as shown in Fig. 1.1. The loads

are specified but the placement of the loads is to be decided by the

designer. There are two possibilities :

(i) to place the loads according to set practices which may not

guarantee minimum deflection or shear stress

(ii) to find a position such that the maximum deflection and the

maximum bending moment on the shaft and the corresponding values of

shear stress are minimized so that the shaft can be made as small as

possible.

The second approach, if interlinked with the optimization of

manufacturing cost , leads to a more economical and safer solution .

The surface finish and manufacturing tolerance specified by the

designer have a direct bearing on the manufactured cost of a

component. A machine component turned to a better surface finish
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obviously costs more to produce than one with a coarse surface finish.

Similarly, the dimensions of the components have a direct effect on

the manufactured cost of the component. Also, if a part is to be

machined to a very low tolerance, the feed must be kept low and so the

machining time and the manufacturing cost are increased. Hence there

is also a need to check the design process to see that the tolerances

specified do not become too demanding while ensuring that they safely

satisfy the desired performance requirements.

The above discussion makes it clear that in order to minimize

manufacturing cost or machining time, it is necessary to relate the

manufacturing requirements like surface finish, manufacturing

tolerance, etc. to the cutting parameters. Furthermore, the design

requirements such as limits on maximum allowable shear stress,

maximum deflection, etc. must be related to the manufacturing

cost/time. If such relationships can be established, it will be

possible to simultaneously design the component and select the cutting

parameters for its manufacture in such a way that all design

requirements are satisfied and the manufacturing cost/time is

minimized.

Past efforts in this area have been largely aimed at arriving at

an overall expression relating tool life to cutting speed, feed and

other cutting parameters and calculating the optimum cutting speed

based on these relationships. Most of these models are incomplete in

that they do not account for all relevant factors. Further, none of

them accounts for the effect of the design on the manufactured cost.



Holmes [1] made a detailed study of machining practices and

produced a large number of tables, charts and other material based

upon his studies of the turning process. This work is a commendable

attempt to correlate the control of manufacturing tolerance with the

cutting parameters in machining practice. However, the work is

somewhat crude in several aspects, such as the suggested criteria for

deciding the values of constants and coefficients to be used in

empirical formulas. Nevertheless, the data given in these tables is of

great practical value and can be made more usable if it is entered

into a computer database .

The General Electric Data System [2] was developed to demonstrate

the use of empirical machinability parameters in a mathematical

computer model to determine optimum machining conditions for minimum

cost and maximum production. This system has been used on a commercial

basis with some success.

FAST (Feed And Speed Technology) [3] is a programming system that

was developed to relieve the programmer of lengthy , tedious selection

of feeds and speeds , and to allow the production cost to be decreased

by providing automatic selection of proper tools with correct cutting

tool geometries . FAST also ensures accuracy , flexibilty and quick

implementation of changes that result from the development of better

tools and manufacturing methods .

The approaches presented in [2] and [3] were reasonably

successful efforts to computerize machinability data; unfortunately

these methods do not consider the implementation of the design



requirements. Further, the models developed in these references use a

fairly large number of constants whose values are set somewhat

arbitrarily, based on past experience. Reasonable values for the

constants are not always available, especially at nonstandard

machining conditions.

Bhattacharya et. al. [4] first explored the idea of applying

constraints on the manufacturing cost function to ensure satisfaction

of surface finish specifications. The speeds, feeds and other cutting

parameters were specified with bounds to obtain the minimum cost per

piece. The satisfaction of prescribed tolerances was not considered in

this work.

Hati and Rao [5] applied mathematical programming techniques to

determine the cutting parameters based on three different objective

functions: the minimum cost of production, the maximum production rate

and the maximum total profit. Comparison of so called deterministic

and probabilistic approaches was carried out. The constraints used in

the model were the bounds on speed, feed and depth of cut as well as

the limits on the cutting force, power and temperature encountered in

the turning operation . Here again the number of constraints was very

low and tolerance requirements were overlooked.

It follows from this discussion of the literature that there are

two aspects that have been left largely unexplored:

(i)optimal selection of cutting parameters from a continuous

range of available values rather than selecting from a small number of

possibilities given in standard tables
;



(ii)optimal design of components such that the manufacturing

cost/time required for producing the component is minimized while

ensuring that the component meets all design specifications.

This thesis is an attempt to explore both these avenues with a

view to developing an integrated approach to the optimal design and

manufacture of a component. Ideally experimental work has to be done

in order to derive better relationships between surface finish
,

manufacturing tolerance , tool nose radius , depth of cut and other

machining parameters . Unfortunately suitable experimental facilities

were not available and so another approach was used which took

maximum advantage of published data. In this approach, approximating

functions are fitted to existing tables available in the literature

which relate the cutting parameters to the accuracy and surface finish

of the finished work piece. In addition, expressions drawn from the

literature are used to form estimates of cutting time, tool life, etc.

Using these functions, it is possible to construct a mathematical

model which can be used to select optimal values for the

manufacturing parameters to minimize the manufacturing cost while

satisfying requirements on part tolerances, surface roughness, etc.

An optimization model is developed, considering the manufacturing

cost as the cost function. The various manufacturing requirements like

the part tolerances, surface finish and the surface fit requirements

are enforced through constraints. A standard nonlinear optimization

problem can be considered in the following form :

Minimize F(B)



subject to the constraints

g.(B) <
, j - 1 , m

gk
(B) = , k = m+1, n 1.1

where n is the total number of constraints,

m is the number of inequality constraints, and

B is the design vector which contains the various independent

T
design variables [b. , b„ , b„ b ] with nv being the

number of design variables.

The problem of obtaining optimum machining parameters can be

converted into a standard nonlinear programming problem of the above

form.

The above optimization problem statement is broad enough to cover

design considerations as well. Since the optimization problem can have

any number of equality and inequality constraints , the performance

requirements of the component such as limits on shear stress, maximum

deflection, etc. can all be brought into this optimization problem by

the introduction of additional constraints. Furthermore, the design

parameters of the components ( lengths , inner and outer diameters,

etc.) can be added to the set of design variables for the optimization

problem. Thus, by solving a single optimization problem we can find an

optimal solution to the component design problem as well as the

component manufacture problem. Since the solution is done

simultaneously the component design that is arrived at and the cutting



parameters that are selected will be the ones associated with the

minimum manufactured cost.

The aim of this work is to develop a scheme for integrating

design and manufacture using the approach described above for the

specific case of shaft assemblies. A secondary goal is the

implementation of this scheme in a reliable optimal design code which

can be used for solving problems in the design and manufacture of

transmission shaft assemblies. In the first phase of this work, the

design of the shaft assembly was kept fixed and a nonlinear

optimization formulation was derived whereby the optimal machining

parameters were determined for minimum cost of manufacture while

satisfying all the manufacturing requirements. Some examples were run

and the results obtained were satisfactory. The optimization scheme

was then extended to integrate design and manufacture within a single

optimization problem. Again several examples were run and the approach

was found to work reliably and effectively. The program implementation

is designed to be flexible to give the user the capability to define

the design vector based upon the demands of the particular problem at

hand.

In chapter II , the details regarding the formulation of a

surface finish prediction model and a manufacturing tolerance

prediction model are discussed. A review of the tool life equation is

also presented. The cost function for manufacturing cost is developed

in chapter III. A detailed discussion of the formulation of

manufacturing constraints like surface finish, manufacturing tolerance



and mating fit requirements is also presented. Chapter IV outlines a

mathematical programming approach to the integration of component

design with component manufacture. A discussion of the additional

constraints needed to ensure satisfaction of design requirements is

also included. Chapter V gives the details of the optimization

algorithm that was used in this work. A detailed explanation of the

development of a computer code based on the methods described in other

chapters is also presented. Chapter VI discusses some numerical

examples that were solved using the proposed approach. The results

attest to the feasibility and effectiveness of the method. Finally, a

brief conclusion and some recommendations for future research are

presented in chapter VII .

10



CHAPTER II

MATHEMATICAL MODELS

In any mathematical programming solution to an engineering

problem, mathematical models play an important part and form the basis

for the prediction of system behavior. Hence, the formulation of

mathematical models in machinability problems needs serious

consideration. When machinability is analysed from the systems view

point, electrical power, human effort, raw material, machine tools and

perishable cutting tools may be considered as inputs to the system,

with machined products as the output. The main operating purpose of a

manufacturing business is to control the inputs in order to produce a

work piece at either the minimum cost or the maximum production rate.

There are definite operating conditions under which these two

manufacturing objectives may be achieved. It is the goal of the

engineer working with the economics of machining to predict the

operating conditions that meet these objectives.

The first step in using the computer to determine optimum

machining conditions is to prepare mathematical models that include

all the significant parameters. There are two possible approaches in

this regard. The first is to write one complete mathematical formula

11



to account for all machining parameters simultaneously. Gilbert [6] of

the General Electric Company developed the following formula for the

recommended cutting speed.

25CONST* COOLF*SURF*TMATF *PROFF*FLANK

'

K * *TLIFE *FEED
-

*DC

'

* (BHN
r
)/(BHN

w ))
1 ' 72* [MR] 2.1

where :

CONST= A constant dependent upon the basic tool material

COOLF = Coolant factor based upon coolant being used

SURF = Surface Factor describing whether surface is clean , sand

cast or heat treated .

TMATF = Tool material factor

PROFF = Profile factor - a function of nose radius , depth of cut ,

and cutting edge angle

FLANK = Flank Wear Factor

K = the Brinell hardness number for the base material, which is

usually AISI B1112 steel with has a BHN of 160

TLIFE = Tool life

n = Slope of the tool-life line

FEED = Feed

DC = Depth of cut

BHN - Brinell hardness number at which the machinability rating

was established

12



BHN = Brinell hardness number of the work piece

MR = Machinability rating of work piece material established at

the hardness indicated.

The various constants and parameters are to be

selected from combinations of single , double and triple variable

graphs

.

This method predicts the cutting speed by substituting all

the related parameter values. However the values of most of the

constants used in this model have to be chosen from graphs and tables

and some of the parameters are not sufficiently well understood to be

represented by continuous functions. Further, this equation does not

consider part tolerance. Hence the equation is unsuitable for use in a

mathematical model that is to serve as a basis for optimization .

Also, the use of multiple constraints rather than a single constraint

is a more reasonable way to direct the machining parameters towards an

optimum solution.

In the present work, the determination of optimum machining

parameters is carried out using iterative optimization techniques.

Several neccessary constraints representing various design and

manufacturing criteria are applied to the cost function. Among the

manufacturing criteria are the surface finish requirements and the

manufacturing tolerance requirements. Hence mathematical models for

these two quantities must be developed .

13



2.1 Surface Finish Model

The prediction of surface finish based upon the cutting

parameters is an essential component of any mathematical model for

manufacturing. The prediction must be accurate and complete, taking

into account as many of the relevant factors as possible. Such a model

allows the user to select the cutting parameters to be used in order

to arrive at a desired surface finish. In the context of mathematical

programming methods for the minimization of manufacturing cost or

maximization of production rate, the surface finish model may be used

to formulate constraints whose satisfaction will ensure that the

cutting parameters selected are consistent with the surface finish

required.

Among past efforts aimed at developing a surface finish

model, the work of Bhattacharya et. al. [4] and the research conducted

by the General Electric Company [2,3] are the most notable. The model

presented in [4] describes surface finish as a function of feed and

cutting speed. The functional dependency is of the form :

R =104 *(K,*F
2

) 2.2
a 1

where

R is the Center Line Average (CLA) value of surface

roughness in micro in.
,

F is the feed in in. per revolution
,

K, and K« are constants depending on cutting speed, tool

geometry, environment etc.

14



This model does not consider nose radius as one of the

parameters. Also the values of K, and K« are discontinuous and cannot

be used if the surface finish model is to be a continuous function

over all ranges of values of the parameters.

The research conducted by General Electric has resulted in

five diferent surface finish models :

(i)Gilbert's model [6] makes use of a parameter called the

surface factor (SURF in Eq. 2.1). This factor does not give a clear

picture of the surface finish ; rather, it is a very crude input to

the model (1.0 for a clean surface, .8 for a heat treated surface, and

.7 for a sand-cast surface) for obtaining an approximation of the

optimum cutting speed.

(ii) The General Electric Data System [2] uses the following

expression involving nose radius, theoretical surface finish and feed.

FEED = {(21.6 * RNOSE * RMS)/(f^. . , )
)' 5

* 1.0 E 03
' finish

2.3

where, RNOSE is the nose radius of the tool in inches
,

FEED is the cutting feed in ipr
,

RMS is the surface finish expressed in micro inches (root mean

square)

f^. . , is the finish factor which is an empirical value
finish r

that depends on the tool and job materials.

This expression indicates that surface finish is directly

proportional to the square of the feed and inversely proportional to

15



nose radius . This model does not account for the cutting speed which,

as discussed later, is closely related to the surface finish. Also

there is some difficulty in establishing the values of the finish

factor to be used in this model, as no information is available in the

literature regarding this parameter .

(iii) GE Data Systems [2] gives the dependency of surface

finish in the form of a graph as shown in Fig. 2.2 .This graph gives

the values of surface finish as a function of nose radius for various

feed values

.

(iv) The Carboloy Systems department of the General Electric

Company also gives a similar graph with the same general trend [6] but

gives slightly different results, as shown in Fig. 2.3 .

(v) Carboloy Systems [6] also suggest the following surface

roughness model :

where

A. A. = 2.*(R
2

- H*G)/F 2.4

R = Nose Radius in inches

A. A. = Surface Roughness (arithmetic average method)

F = Feed Rate

H = Distance from the center of the nose radius to the

mean line of the generated peak and valleys of the

work piece profile
,

G = Perpendicular distance to the mean line from the

normal center line of the radius to the intersection

16



Feed per revolution, F

Workpiece

Tangent point

of nose radius

and end cutting

edge angle

Mean line

Fig. 2.1 Elements used to calculate theoretical surface roughness

in single point turning and boring operations.

(Reproduced from General Electric Carboloy)
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of the generated profile

B - The angle between the normal center line and the

radial line which intersects the mean line at the

cutting point.

Fig. 2.1 shows the various parameters used in the above formula.

However this model indicates an inverse relationship with

feed and a direct proportionality with the square of nose radius, i.e.

as the nose radius of the tool increases the surface finish increases

and as the feed increases the surface finish decreases . According to

all the other models as nose radius increases the surface finish must

decrease and as the feed increases the surface finish must increase.

Thus model (v) contradicts all the other models and it becomes

neccessary to compare the models and select the most appropriate one .

The best way to compare the various models is to find

reliable existing machining data for the prediction of surface finish

based upon the cutting parameters , in the form of tables , charts or

graphs

.

Holmes [1] developed a table for predicting surface finish

values from given nose radius and feed rate values. General Electric

Data Systems [2] gives a graph expressing surface finish as a function

of nose radius for different feeds, as shown in Fig. 2.2 . Similarly

the graph presented by GE Carboloy Systems [6] shows the same general

trend but gives slightly different results, as shown in Fig. 2.3. The

data presented in the graph by GE Carboloy systems is more recent,

hence it is more consistent with the latest machining and measuring

18
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Figure 2.3 Theoretical Surface Finish as related to Nose radius

and feed. ( Reproduced from Ref. 6 )
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methods; it also provides a secondary graph that accounts for the

effect of cutting speed on surface finish. Hence this machining data

was chosen as the basis for the surface finish model.

Based upon the above discussions and as is evident from the

graphs, the most important parameters affecting the surface finish are

cutting feed rate and tool nose radius.

The nature of Fig. 2.2 and Fig. 2.3 and the other machining data

make it clear that the surface finish must increase as feed increases

and surface finish must decrease as nose radius decreases. Therefore

the available machining data strongly favors the following functional

dependency over that suggested by Eq . 2.4.

SF = K* F
2
/RNOSE 2.5

where, SF = surface finish value predicted,

F - cutting feed rate
,

RNOSE = tool nose radius , and

K = a constant of proportionality.

2
A plot between surface finish and F /RNOSE (feed squared divided

by nose radius) is drawn for various values of nose radius . This, as

shown in Fig. 2.5, turns out to be a very narrow bunch of almost

straight lines. This further confirms a linear relationship between

2
the surface finish and F /RNOSE .

Thus it is concluded that the model for surface finish is of

the form shown in Eq . 2.5. Great care must be taken in establishing a

value for the constant K. The model must be conservative because it is

21
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misleading to predict finer surface finish values which may be in

error, while it is acceptable to predict values which are slightly

pessimistic; in the latter case, the model is acceptable because it

ensures that the surface finish produced will be within

specifications, even though the machining parameters may be set a

little conservatively.

For the above reasons, the straight line at the extreme end

in Fig. 2.5, predicting the coarsest surface finish is to be used in

the model. The line is extended as shown and the slope is calculated.

The value of the slope was found to be 4.16666 * 1. E04 . Thus,

SF =4.16666 * 10
4

* F
2
/RNOSE 2.6

where

,

F - feed in in. per rev.

RNOSE = nose radius in in.

SF = predicted surface finish (RMS) micro in.

Now, to account for the effect of cutting speed, a speed correction

factor has to be determined. Once again, the recent experimental data

of [6] is considered. This reference gives graphs of the speed

correction factor as a function of cutting speed for various types of

materials such as ductile materials, cast iron and free cutting

alloys. Generally ductile materials are used in the design of

components; therefore a cubic polynomial was fit to the speed

correction factor curve for ductile materials using the least squares

method. The curve for the speed correction is reproduced in Fig. 2.4.

24



The resulting approximating function for the speed correction factor

was

where

Sp
f

= A
X
*(V

3
) + A

2
*(V

2
) + A

3
*(V) + A

4
2.7

Spf
= Speed correction factor

A
1

= 2.755400325

A
2

= -0.010906436

A
3

= 0.000026424

A. = -0.000000023
4

and V is cutting speed in sfpm.

Thus the complete surface finish model can be written as

SF = Sp
f
* K * F

2
/RNOSE 2.8

where, SF = predicted value of surface finish, micro in.

Sp,-= speed correction factor

K = a constant given in Eq. 2.6,

F = Cutting feed rate of the part surface being turned, ipr.

RNOSE = Tool nose radius, in.

2.2 Tolerance Model :

The next important task is to develop a mathematical model for

the prediction of manufacturing tolerance based upon the cutting

parameters so that the tolerances on a component can be maintained

within an acceptable range by suitable control of the machining

parameters. Unfortunately past research in machinability has not

25



satisfactorily addressed this issue which is of utmost concern,

particularly in the manufacture of components with accurate mating

requirements .

The size of a part from which all the dimensions are

determined is the basic size. There are two extreme permissible sizes

for a dimension. The largest permissible size for a dimension is

called the upper or higher limit whereas the smallest size is known

as the lower limit. The difference between the upper limit and the

lower limit of a dimension is called the tolerance. When the tolerance

is allowed on both sides of the nominal size, then the tolerance is

said to be a bilateral tolerance whereas a unilateral system allows

tolerances on one side of the nominal size only.

In the past there has not been much interest in including the

manufacturing tolerances as independent design variables in the

manufacturing design problems. Even though the tolerance of a part

does not appear in the equation for manufacturing cost , the

tolerances partly determine the cutting parameters, and therefore

affect the manufacturing cost. Hence it becomes neccessary to seek

relationships between part tolerances and cutting parameters.

After a search of existing machining data for predicting the

manufacturing tolerance as a function of cutting parameters, only the

data of Holmes [1] was found to be useful. This data is given in the

form of a table relating minimum manufacturing tolerances to the feed

factor and part diameter. This data is reproduced in Table 2.1.
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VARIATION OF MINIMUM PART TOLERANCE WITH FEED FACTOR AND PART DIAMETER

RANGE

PART DIA.

RANGE 1.0

FEED FACTOR

9 .8 .7 .5

upto .

5

.6 - 1.0

1.1 - 1.5

1.6 - 2.0

0010 .0009 .0008 .0007 .0006 .0005

0012 .0011 .0010 .0008 .0007 .0006

0014 .00013 .0011 .0010 .0009 .0007

0016 .0014 .0013 .0011 .0010 .0008

2.1

2.6

3.1

3.6

2.5

3.0

3.5

4.0

4.1 •- 4.5

4.6 • 5.0

5.1 • 6.0

6.1 - 7.0

0018 .0016 .0015 .0013 .0010 .0009

0020 .0018 .0016 .0014 .0012 .0010

0022 .0020 .0018 .0016 .0013 .0011

0024 .0022 .0019 .0017 .0014 .0012

0026 .0023 .0021 .0019 .0016 .0013

0028 .0025 .0022 .0020 .0017 .0014

0032 .0029 .0026 .0023 .0019 .0016

0036 .0032 .0029 .0025 .0022 .0018

7.1 8.0 0040 .0036 .0032 .0028 .0024 OO20

Table 2.1

(Reproduced from [1])
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8.1 - 9.0

9.1 -10.0

10.1-12.0

12.1-14.0

14.1-16.0

16.1-18.0

18.1-20.0

0044 .0040 .0035 .0031 .0026 .0022

0048 .0043 .0038 .0034 .0029 .0024

0052 .0047 .0042 .0036 .0031 .0026

0056 .0050 .0045 .0039 .0034 .0028

0060 .0054 .0048 .0042 .0036 .0030

0064 .0058 .0051 .0045 .0048 .0032

0068 .0061 .0054 .0048 .0041 .0034

Diameter in inches,

Minimum Tolerance in inches

.

Table 2.1 (CONTD.)

28



VARIATION OF MINIMUM PART TOLERANCE WITH FEED FACTOR AND PART DIAMETER

PART

DIAMETER 1.0

FEED FACTOR

9 .8 .7 .5

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

0010 .0009 .0008 .0007 .0006 .0005

0012 .0011 .0010 .0008 .0007 .0006

0014 .00013 .0011 .0010 .0009 .0007

0016 .0014 .0013 .0011 .0010 .0008

0018 .0016 .0015 .0013 .0010 .0009

0020 .0018 .0016 .0014 .0012 .0010

0022 .0020 .0018 .0016 .0013 .0011

0024 .0022 .0019 .0017 .0014 .0012

4.25

4.75

5.50

6.50

0026 .0023 .0021 .0019 .0016 .0013

0028 .0025 .0022 .0020 .0017 .0014

0032 .0029 .0026 .0023 .0019 .0016

0036 .0032 .0029 .0025 .0022 .0018

7.5

8.5

0040 .0036 .0032 .0028 .0024 .0020

0044 .0040 .0035 .0031 .0026 .0022

Table 2.2
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9.5

11.0

0048 .0043 .0038

0052 .0047 .0042

0034 .0029 .0024

0036 .0031 .0026

13.0

15.0

17.0

19.0

0056 .0050 .0045 .0039 .0034 .0028

0060 .0054 .0048 .0042 .0036 .0030

0064 .0058 .0051 .0045 .0048 .0032

0068 .0061 .0054 .0048 .0041 .0034

Diameter in inches,

Minimum Part Tolerance in inches

Table 2.2 (CONTD.)
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Feed factor is defined as the ratio of the actual cutting feed

rate to the nominal feed rate for the part material.

Feed,, = (feed /feed . , ) 2.9
f act 7 nominal

feed is the actual cutting feed rate of the surface being

machined

feed . , is the maximum possible feed rate for the tool and
nominal r

job materials being used and is selected based upon the past

experience of the user or machinability data such as Holmes [1].

For the tolerance model to be continuous, it should be able

to predict minimum tolerances at all diameter values. Hence the

diameter ranges were replaced by mean diameter values by substituting

the average of the range as the representative diameter for each plot.

Now the lines can be considered to represent the minimum tolerance

values based on feed factor, for various continuous diameter values.

The modified model is shown in Fig. 2.6 and 2.7 . Since the plots are

linear, the function for each curve should be of the form

TOL = m,*Feed
f

+ c
1

2.10

where, TOL is the predicted value of the minimum part tolerance,

m, is the slope which depends on the part diameter , and

c, is a constant taken to be zero based upon the fact that for

a feed of zero value , a non zero tolerance value is

meaningless ; further the trend of the plots in Fig. 2.6 and
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Fig. 2.7 justifies the zero value of c,

.

After it is known from the plots in Fig. 2. 6 and 2.7 that the

slope m, of Eq. 2.10 depends on the value of part diameter , the next

step is to find this relationship . For this purpose a plot is drawn

between the slope values m, and the corresponding part diameters, as

shown in Fig. 2. 8 . This plot, as is clear from the figure, is in the

form of a broken straight line which can be represented as :

m, = nu * DIA + c
?

2.11

with nu and c„ being represented as follows :

nu = .4 for 2.5 < DIA < 9 .

5

in

c
2

= 0.9 for 2.5 < DIA < 4.5 in

c
2

- 1.0 for 5.5 < DIA < 9 .

5

in

where DIA is part diameter in inches

.

Now, in order to approximate this curve by a single linear

function the more conservative of the values c, , c« should be

considered for the whole range of diameter values. Thus, we should use

Eq.2.11 with nu set to 0.4 and c„ set to 1.0 to obtain nu .

Substituting this expression for m, into Eq. 2 . 10 we obtain the

following equation for the prediction of minimum tolerance :

TOL =
[ 1.0 +.4*DIA] * 1.0 E-03 * feed

f
2.13

where , TOL is the predicted value of minimum tolerance
,
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DIA is the diameter of the part,

feed
f

is the feed factor given by Eq. 2.9

The maximum possible feed rate for various materials can be

selected either by the user based upon past experience or from

machinability data [1].

The tolerance model derived above is a reasonably accurate

fit of existing tables and graphs. Further, it is a continuous model

suitable for usage in mathematical programming formulations.

2.3 Tool Life Equation :

The machining time is known to decrease with increased speed

and feed ; however the tool wear increases as well and so tool life

shortens rapidly. It is thus evident that the tool life is an

important factor in any manufacturing model.

Taylor [7] ran extensive tests to determine the relationship

between cutting speed and tool life for turning operations and found

that when cutting speed is plotted against tool life on log- log axes a

straight line results in the region of normal cutting speeds, i.e. we

may expect a relationship of the form :

log V = - n * log T + log C 2.14

where, V is the cutting speed for turning of the part in sfpm
,

T is the tool life in minutes,

n is the slope of the straight line plot,

C is a constant for a given combination of cutting conditions,

expressing the speed for a tool life of 1 minute.

36



TYPICAL TOOL-LIFE CONSTANTS

Work Material coefficient C coefficient n

Brass(60 Cu-40 Zn) 299 .096

Bronze(90 Cu-lOSn) 232 .111

SAE-1112 225 .105

SAE-2340 143 .147

SAE-3140 299 .096

SAE-4140 232 .111

Cast Iron (160 Bhn) 225 .105

Cast Iron (205 Bhn) 143 .147

Monel Metal 299 .096

SAE-3240 (annealed) 232 .111

Cast Iron (200 Bhn) 225 .105

SAE-1060 (annealed) 143 .147

SAE-2340 (annealed) 299 .096

SAE-4147 H (230 Bhn) 232 .111

AISI-81B45 225 .105

Cast Iron 143 .147

Table 2.3 Typical Tool- life constants

(Reproduced from [7])
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Values of n and C for some cutting situations as given by J . P

Vidosic [7] are reproduced in Table 2.3 .

Now, Eq . 2.14 can be written as

V - T"
n* C 2.15

which can be rearranged to yield

V T
n

-= C 2.16

where the parameters are same as in Eq . 2.12.

Taylor's equation for tool life is a popular one and is the

basis of most of the important data and related calculations on tool

life. Other researchers have attempted to develop modified tool life

equations based on Taylor's equation. Gilbert and Truckenmiller [8]

advocate the use of the relationship

VT°- 125 -K K /f
' 61

d
' 36

2.17
tm mc '

where, K = constant for tool life depending upon tool material

K = constant for tool life, depending upon material cut

f = feed (inches per revolution)

d = depth of cut (in.)

T = tool life (min.)

V = speed in feet/min

Hati and Rao [5] used the following equation :

T = (a V
Ql

f°
2

d°
3

) 2.18

where, T is the tool life, min.

V is the cutting speed, m/min
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f is the feed, mm/rev

d is the depth of cut, mm.

a, al, a.7. , a3 are constants depending upon the tool piece

combination

Although these equations attempt to include the effects of

feed and depth of cut while estimating tool life and are more

elaborate, the present work only makes use of the standard Taylor's

equation for a variety of reasons. These reasons include the ready

availability of related coefficients and the fact that the depth of

cut is not a critical factor in our case since we are primariliy

interested in the finishing cut.

Thus the basic mathematical models for the prediction of surface

finish and manufacturing tolerance for the part surfaces being

machined have been developed. The tool life equation for the turning

operation has also been selected. These models will be extensively

used in later chapters for the determination of manufacturing cost and

the application of constraints to the optimization problem stated in

Eq. 1.1 .
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CHAPTER III

OPTIMIZATION OF THE MANUFACTURING PROCESS

A large number of engineering problems have been solved

successfully by the application of optimization techniques. These

techniques, after a series of iterative numerical calculations,

provide the user with design modifications which must otherwise be

based on the designer's intuition and experience. In order to

determine optimum machining parameters for the minimization of

manufacturing cost, the problem has to be reduced to a standard

nonlinear programming problem of the form expressed in Eq . (1.1) ,

which is repeated here for convenience.

Minimize : F(B)

Subject to : g.(B) < 0.0 ; j—l.m (inequality constraints)

g, (B) = 0.0 ; l-=m+l,n (equality constraints) 3.1

where B is the design vector containing the design variables

T
[b, ,b„ , b b ] with nv being the number of
L 1' 2 3' nv J °

design variables,

n is the total number of constraints.

40



In this chapter the process of converting the manufacturing

problem to an optimization problem is discussed. This process involves

(i) selection of design variables, (ii) the formulation of the cost

function, and (iii) the formulation of the constraint functions.

3.2 Design Variables :

Based upon past experience, it can be stated that the important

design variables in this class of manufacturing problems are the

cutting feed rate and the cutting speed. These variables are under the

control of the machinist; the machinist tries to obtain desired

characteristics of the manufactured components by selecting

appropriate values for these variables. However, some other parameters

in these manufacturing design problems, though important, are not

directly under the control of the machinist. These parameters include

part tolerances, surface finish, tool life, etc. After a thorough

consideration of these parameters, the design vector for the current

optimization problem of minimizing manufacturing cost was chosen to

include the following as design variables :

(i) cutting speeds
,

(ii) cutting feeds , and

(iii) manufacturing tolerances .

The present work considers the minimization of

manufacturing cost of machined components. The components are assumed

to be roughly turned to a reasonable size from the raw stock. Such

components have to be turned to the required final dimension
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accurately by a finishing cut. Hence the depth of cut is not critical

and does not appear in the list of design variables.

3.3 Cost Function :

In order to manufacture goods at either minimum cost or maximum

production rate, it is necessary to control all the essential

parameters of the manufacturing process. An important step in this

task is to arrive at a reasonable cost function. The total cost is the

sum of the loading/idling cost, the cutting cost, the tool changing

cost and the tool regrinding cost. For turned components [2] each of

these costs is determined as follows :

Idle cost/piece = K, * Idle time/piece 3.2

Cutting cost/piece = K, * Cutting time/piece

- K
x
*(L n D)/(12fV) 3.3

Tool change cost/piece - K, *(Tool failures/piece)*TCT

- K
X
*(L n D V

1/n " 1
)(TCT)/(12f C ) 3.4

Tool regrinding cost = K~*(tool failures/piece)

= K
2
*(L 7T D V

1/n " 1
)/(12 f C ) 3.5

where

,

K, = direct labor rate plus overhead rate in $/min, including

operator and helper labor, maintainance
,
power,

depreciation, and insurance;

K« = Tool cost per grinding, including original and regrinding
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costs in dollars per tool

L = Length of part in inches

D = Diameter of part in inches

V = Cutting Speed in sfpm

f - Feed in inches per revolution

C = Cutting speed for one minute tool life

TCT = Tool -change time in minutes

The total cost will be equal to the sum of the

individual costs of all the parts being manufactured for any machine

assembly. For example if the shaft assembly shown in Fig. 3.1 is to be

produced, then the final cost function equals the sum of the cost

functions for (i) the shaft, (ii) the two bearings, and (iii) the

housing. The manufacture of shaft assemblies of this type is chosen as

the class of problems on which the proposed optimization techniques

will be tested.

The cost function for the machining of a single shaft can be

expressed as the sum of the costs in equations 3.2, 3.3, 3.4 and 3.5

for the case of the shaft, as indicated below :

f = K,[ idle time ] + K,[L * D]/(12f V) + K^L ir D/(12f)]

*(V/C)
1/n

(l/V)(TCT) + K
2

[ L jt D /(12f ) ]*(V/C)
1/n

(l/V) 3.6

Since the idle time does not have any cutting parameter or

design parameters involved, the constant contribution of the first

term can be neglected. Thus, the modified expression for the cost

function becomes :
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f - K, [(L it D)/(12fV)]( 1 +(V/C)
1/n

(TCT + K
2
/K

1
) ] 3.7

Thus for the shaft alone , we have

f
shaft

=
[
n/12 * ^/^ * (K

i
+ (K

1
*TCT+K

2
)*(V/C)

1/n
) 3.8

Similar terms for other related components must be added to get the

total cost function. Thus, for the assembly shown in Fig. 3.1 , we

obtain
,

F=f w +2f, . +2f, . 3.9
shaft bearing housing

If there are more shafts in the assembly, then the total cost becomes

FF =
Y.

F. , where i - 1, number of shafts 3.10

In the numerical examples, manufacture of shaft assemblies of this

type are considered in detail. These shaft assemblies are commonly

used for the transmission of power at various torques and speeds. Each

shaft is supported in bearings at the ends and power loads are

encountered on the shafts due to the presence of pulleys and gears.

3.4 Formulation of Constraint Functions

The problem of determining the optimum cutting parameters has

been tackled by several researchers. Unfortunately, most efforts in

this area do not treat manufacturing constraints satisfactorily.

Ermer[16] solved the constrained machining economics problem by using

geometric programming, but did not include the constraints necessary

to ensure tolerance and surface finish requirements. Hati and Rao [5]

also applied constraints to the machining economics problem but most

of the constraints were simply bounds on parameters like feed, speed

and depth of cut. Bhattacharya [4] presented the first successful
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application of constraints to guarantee satisfaction of surface finish

requirements. This model also included constraints to impose bounds on

speeds and feeds. However constraints relating to tolerances were not

included.

In the present work, a very large number of constraints can be

imposed to force the design vector of machining parameters to an

optimal value which satisfies all surface conditions and tolerance

requirements. The tolerance requirements may include conditions on

fits between mating parts in addition to limits on individual

tolerances. The standard set of constraints used in the optimization

of the manufacturing process are the following :

First of all, the bounds on all design variables are user input

values constraining the range of design variables. These are referred

to as the bound constraints on the design variables.

The next set of constraints consists of those that impose

tolerance requirements on each diameter. The conditions that must be

met here are that the minimum tolerance predicted by the model in

chapter II on each diameter must be within the tolerance specified on

that diameter. Since the tolerance model gives a conservative

prediction, this will ensure that the cutting parameters chosen will

satisfy the required tolerances.

There are two ways of expressing the tolerance on a part

diameter. The first one is to give the nominal diameter and the part

tolerance ; the actual part dimensions in this case may vary as

expressed below.
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Maximum limit - Nominal diameter + Tolerance

Minimum limit = Nominal diameter - Tolerance 3.11

In the second approach , the upper tolerance and the lower

tolerance are explicitly stated along with the basic size. The actual

part dimension in this case may vary as follows :

Maximum limit = Basic size + upper tolerance

Minimum limit - Basic size + lower tolerance 3.12

The minimum tolerance prediction model was developed using the

first approach as the data available for the prediction of

manufacturing tolerance [1] uses this method. Also the mathematical

modeling of the tolerance prediction is convenient by this method as

only one tolerance value is to be stated besides the nominal diameter.

In the second approach for every basic diameter, both upper and lower

tolerance values are to be given. At the same time , from the

manufacturer's point of view it is more precise to mention the upper

and lower tolerance values, hence manufacturing specifications follow

the second approach. For the same reasons the manufacturing tolerance

constraints should be expected to be in the second form and hence the

constraint functions use this approach. Fortunately the two ways of

expressing the tolerance can be made compatible by setting the

tolerance value in the first approach to be equal to the mean of the

upper and lower tolerances in the second approach. This comparison

becomes necessary when using both types of tolerance specifications in

the same constraint equation as in the case of the tolerance

constraints described in the next section.
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3.4 Formulation of Tolerance Constraints

The tolerance constraint is of the following form :

TOL < Part Tol 3.13
act

where TOL is the value of minimum part tolerance predicted by the

tolerance model developed in the previous

chapter, based upon the machining parameters being used

in the turning of the part,

Part Tol is the actual part tolerance depending upon the

values of the tolerance design variables; it is

expressed as

Part Tol = (UT0L-LT0L)/2 3.14

where UTOL,LTOL represent the upper and lower

tolerances of the part diameter.

Thus the tolerance constraint can now be stated in standard form as :

TOL - Part Tol < 0. 3.15
act

Using the tolerance model developed in the previous chapter, the above

constraint equation for the outer surface of the shaft becomes

(1.0 + 0.4(DIAOS) )(FDOS/(1000.(NFDOS))

- (ABS( UTOLOS -LT0L0S))/2. < 0.0 3.16

where , UTOLOS represents the upper tolerance on shaft outer surface

,

LTOLOS represents the lower tolerance on shaft outer surface

,

NFDOS is the maximum recommended cutting feed for the shaft

material as explained in the tolerance model in

chapter II
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DIAOS is the outside diameter of the shaft,

FDOS is the cutting feed for turning the shaft outer surface.

Similar equations exist for the inner surface of the bearing,

the outer surface of the bearing and the surface of the housing hole

for each shaft. The two bearings on any particular shaft are assumed

to have the same dimensions and need not be considered individually.

The same is true of any two holes in the housing that correspond to

the same shaft.

The third set of constraints are those forcing the tolerance

design variables to be distributed in such a way so as to satisfy the

fit requirements between mating surfaces. The relationship between

fits and tolerances must be fully understood in order to formulate the

constraints, hence a discussion is presented below.

Tolerance specifications are considered to be either shaft based

or hole based. In the hole based system, tolerances are positive

values and are added to the basic diameter of the hole to give the

upper and lower limits.

TOLN = (UT0L-LT0L)/2 3.17

where, TOLN is the part diameter tolerance,

UTOL is the upper tolerance value on the part diameter, and

LTOL is the lower tolerance value .
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In the case of the shaft based systems, tolerance values are

considered to be negative values and thus are subs trac ted from the

basic size to get the limits.

TOLN = ( ABS(LTOL)-ABS(UTOL) )/2 3.18

Fig. 3.2 shows the the hole and shaft systems.

Based upon the fit between the mating parts there are

three kinds of fits.

1. Clearance fits :- For these types of fits the mating parts

are so toleranced that clearance between them always occurs. Examples

of clearance fits are slide fits, easy sliding fits, running fits,

slack running fits and loose running fits.

2

.

Interference fits : - In interference fits the mating parts

are so toleranced that interference between them always occurs.

Examples are shrink fits, heavy drive fits and light drive fits.

3. Transition fits :- In this type of fit, the selection of

tolerances on mating parts is such that either clearance or

interference may occur depending upon the actual size of the mating

parts. Transition fits are used for force fits, tight fits and push

fits.

The fit between two mating parts is described by the maximum

clearance and the minimum clearance. Also, the maximum possible gap

between the hole and the shaft will be the sum of the upper limit of

the hole and the lower limit of the shaft . In other words the

combination of the biggest hole and the smallest shaft diameter is

the case in which the maximum possible gap is observed. If this
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maximum gap is guaranteed to be less than the maximum clearance

specification of the fit then the tolerance distribution can be said

to satisfy the maximum clearance constraint. Similarly, the constraint

to force the least possible gap to be greater than the minimum

clearance of the fit can also be written in terms of the tolerances.

The case in which the hole is the smallest possible and the shaft

diameter is the largest is the case of minimum possible gap. These

constraints can be written as :

{UTOLIB +
|
LTOLOS

|
} - MXCSB < 3.19

where MXCSB is the maximum clearance between shaft and bearing.

MNCSB - (LTOLIB +
|
UTOLOS

|
} < 3.20

where MNCSB is the minimum clearance between shaft and bearing.

Similar sets of constraints are applied for fits between the

bearing outer surface and the inner surface of the housing.

In addition to these constraints, further constraints are needed

to maintain minimum separation between an upper tolerance and the

corresponding lower tolerance. This separation is specified by the

user, based on estimates of the most demanding tolerances that can be

permitted.

The constraint functions that impose these conditions on the

shaft outer surface are of the form :

ABS (UTOLOS- LTOLOS )/2 -T0L0S <

3.21

where, TOLOS is the desired tolerance separation and

UTOLOS, LTOLOS are the design variables which are directed to
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the feasible range through this constraint.

Similar equations are used for all other surfaces being machined

like the inside surface of the bearing, the outside surface of the

bearing and the inside surface of the housing.

The final set of constraints ensures the required surface

finish. These constraints make use of the surface finish model

described in chapter II and are of the form :

SF , - SF, < 3.22
pred des

where, SF , is the value of the surface finish predicted by
pred r J

the cutting parameters through the surface finish model of

chapter II
,

SF, is the value of the surface finish as desired by the user
des J

Substitution of the predicted surface finish from the model results

in :

2

BoSS--- SF. < (for shaft surface) 3.23
RMXOS des

where , RMXOS is the maximum allowable tool nose radius for turning the

shaft

,

K is the constant described in chapter 2

,

FDOS is the value of the feed for turning the shaft outer

surface

.

The predicted surface finish is the maximum possible roughness

of the surface being turned with the given machining parameters. Since

the nose radius of the tool does not occur in the cost function or in

any other constraint functions, it does not have to be treated as a
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design variable. Instead, the user is required to specify the maximum

allowable value (upper bound) for the nose radius and this is used in

the surface finish constraint of Eq. 3.22 . After the optimization

has been completed and all the constraints have been satisfied, the

actual nose radius to be used can be calculated by rewriting Eq. 3.22

as

NROS = K[FDOS
2
]/SF

dei
3.24

where, NROS is the value of the optimum nose radius of tool,

K, FDOS , SF, are as defined earlier.
' des

Since the constraint was satisfied using the largest allowable nose

radius, it follows that the nose radius calculated by this formula

will be smaller than the maximum allowable value, and will satisfy

the surface finish constraint exactly.

The preceding discussion makes it clear that a large number of

constraints must be imposed to ensure that the cutting parameters

chosen satisfy manufacturing requirements like surface finish, mating

requirements, tolerance requirements, etc. Without these constraints

being satisfied the optimization is not meaningful and may lead to the

selection of a set of cutting parameters which will not be acceptable.

In cases where the user does not wish to impose certain constraints,

the input values can be set such that the influence of those

constraints is greatly reduced. For example if a very coarse surface

finish value is specified for a component surface, the corresponding
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constraint can be very easily satisfied and so it will not affect the

optimization beyond a few iterations.
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CHAPTER IV

COMPUTER INTEGRATED OPTIMIZATION OF DESIGN AND MANUFACTURE

4.1 Introduction :

Computers are now extensively used for problem solving in all

disciplines of engineering because of their enormous capacity to store

and manipulate large volumes of data in a very efficient manner.

Manufacturing and design are among the fields of engineering that have

been radically transformed by the advent of these machines. In fact,

the emerging field of Computer Integrated Manufacture (CIM) is a

direct result of the computerization of design and manufacture. CIM

links the design and manufacturing aspects of engineering into a

single unit. Engineers working in this area have now reached a stage

where machining data and design considerations are stored in computers

which can directly control manufacturing facilities like NC machine

tools and robots to machine a part to high accuracy in relatively low

manufacturing time. In addition, these machines have the capacity to

repeat the process any number of times. However, CIM is currently at a

stage where it lacks the ability to take manufacturing considerations

into account at the design stage itself. Also, the set of cutting

parameters that is used is seldom optimized.
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In this chapter, a method for simultaneous optimization of

design and manufacture is presented.

As already stated in chapter I the design of the component has a

direct effect on the manufacturing cost and the design of a component

should be influenced at least partially by manufacturing

considerations. The diameters of shafts, the distribution of loads

(gears/pulleys) on a shaft, the dimensions of bearings etc. are to be

selected in such a way that the manufacturing cost is minimized. It

was mentioned in chapter I that the distribution of the loads should

not be fixed arbitrarily by hit and trial methods ; rather,

mathematical constraints should be applied to enforce all design

requirements and these constraints should be incorporated in the

optimization problem for cost minimization. This is achieved by

considering (i) the machining parameters, and (ii) the component

design parameters as design variables for the optimization problem and

applying both manufacturing and design constraints simultaneously.

For shaft assembly of the type shown in Fig. 1.1, the set of

variables that describe the design of the system are the following :

(i) outer diameter of the shaft ,

(ii) outer diameter of the bearing
,

(iii)bearing length ,

(iv)the load distribution (distances of horizontal, vertical

loads, i.e. the distance of each load from a fixed end of the shaft).

For design calculations, it is clear from Fig. 1.1 that the

inside diameter of the bearing can be considered equal to the outside
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diameter of the shaft; similarly the inside diameter of the housing

can be considered equal to the outside diameter of the bearing, and

the housing length can be set equal to the bearing length.

The length of the shaft is an important parameter in the

assembly design and enters into the manufacturing cost as well as the

stress and deflection constraints. In either case, the length of the

shaft is forced to be the least possible. The cost consideration

dictates that the length of the shaft be as low as possible, since a

shorter shaft is cheaper to manufacture. Similarly the stress and

deflection constraints are better satisfied for a shorter length. If

the shaft length is considered as a design variable, the bounds on

this variable have to be supplied (the upper bound and the lower

bound) . Thus it is logical to expect that the optimization process

will force the shaft length to the lower bound. Thus it is

advantageous to eliminate the length of the shaft from the vector of

design variables and allow the user to input the lowest acceptable

value as the actual shaft length.

Of the numerous parameters related to the optimization problem

of manufacturing and design, some are more important than others. The

user may need to use different sets of design variables for different

problems. Similarly, the user might be interested in considering one

or more parameters to be constant or in specifying relationships

between parameters. The mathematical programming formulation developed

in this work is capable of providing this flexibility in the selection

and specification of design variables and other parameters. It gives
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the user the freedom to define a design vector that includes only a

subset of the large number of relevant parameters. The user can also

impose any relationships that are required between any of the

parameters. This aspect will be presented in detail in the next

chapter.

4.2 Design of Sblies :

In order to write a computer code which can handle machine

design and manufacturing considerations it is necessary to develop a

programmable procedure for analysing a given design. The computer code

should be capable of performing all conventional machine design

calculations considering the safety factors, the cost factors and the

manufacturing considerations. This is achieved by writing subroutines

to perform the design calculations and to evaluate related constraint

functions

.

The American Society of Mechanical Engineers is the sponsor of a

code for the Design of Transmission Shafting approved by the American

Engineering Standards Committee. This code is based upon the

assumption that the shaft is made of a ductile material whose ultimate

tensile strength is twice the ultimate shear strength. For this case,

the shaft diameter is controlled by the maximum- shear theory

regardless of the ratio of the twisting moment to the bending moment.

The A.S.M.E. code equation [14] for a hollow shaft subjected to

torsion, bending and axial loads is :

,3 16
d =

"*s
K M+ a F drt (l+K

2
)/8m a '

2 2
+ (K

t
T)

Z
1/2

x ^ :k
4 4.1
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where, d~ =- shaft diameter, in.

F~ = axial tension or compression, lb.

K = ratio of inner to outer diameter (=0 for hollow shafts )

K = combined shock and fatigue factor to be applied to

computed bending moment

K = combined shock and fatigue factor to be applied to

computed torsional moment

M = maximum bending moment , lb -in.

T = maximum torsional moment, lb -in.

s = maximum stress permissible in shear, psi

a « ratio of the maximum intensity of stress resulting from

the axial load to the average axial stress.

The value of a is obtained by considering the axial load, or thrust,

as a load on a column of diameter d and having a length equal to the

distance between the bearings. A straight- line formula commonly used

for columns having a slenderness ratio less than 115 gives

a = 1/(1-0. 0044(L/k)) 4.2

where L = length between supporting bearings, in.

k = radius of gyration of the shaft, in.

Table 4.1 gives the values of working stresses for shafts while Table

4.2 provides the combined shock and fatigue factors.
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MAXIMUM PERMISSIBLE WORKING STRESSES FOR SHAFTS

Grade of shafting Combined bending and torsion(psi)

"Commercial steel" shafting

without allowance for keyways . .

.

8000.00

"Commercial steel" shafting with

allowance for keyways 6000.00

Steel purchased under definite

specifications 30% of the elastic limit

but not over 18% of the

ultimate in tension

Table 4.1 Maximum Permissible working stresses for shafts

(Reproduced from [14])
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Type of loading K K

Gradually applied and steady loads 1.5 1.0

Suddenly applied loads with minor

shock only 1.5-2.0 1.0-1.5

Suddenly applied loads with

heavy shock 2.0-3.0 1.5-3.0

K = combined shock and fatigue factor to be applied to the computed

bending moment

K = combined shock and fatigue factor to be applied to the computed

torsional moment

Table 4.2 Combined Shock and fatigue factors

(Reproduced from [14])
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In order to use the shaft design equation, the following

information is needed :

(i)M, the maximum bending moment lb -in.

(ii)T, the maximum torsional moment lb -in.

(iii)F, the axial force, lb.

(iv) constants K , K,_, s , a , k as defined in Eq . 4.1
m t s ^

For the calculation of bending moment, an analysis of the loading and

end conditions of the shaft has to be performed and the value of the

maximum bending moment has to be calculated.

There is also a strong need to limit the deflection of the shaft

to be less than a specified value because of the following reasons :

(i) The shaft deflection is to be limited to very small values to

avoid the whirling of shafts. Whirling of shafts occurs at critical

speeds , which correspond to the speeds at which the number of natural

vibrations, or natural frequency, equals the number of revolutions per

minute. This usually occurs because of the ''difference in the location

of the center of mass of the rotating disk from the axis of rotation

of the shaft. As the deflection increases the eccentricity between the

center of mass and axis of rotation increases because of the

centrifugal force being developed which tries to throw the load away

from the rotating axis. This will be discussed in more detail in the

latter half of this chapter.

(ii)The deflection of the shaft at various points disturbs the fits

and clearances between the mating parts mounted on the shaft.
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(iii)More deflection of the shaft means more deviation of the shaft

center line from the mean position; this interferes with the accurate

alignment of the shaft together with its loads and may cause problems

in the proper functioning of the machinery served by transmission.

Hence, it is necessary to calculate the total maximum deflection

of the shaft in addition to the maximum bending moment caused by all

of the loads on the shaft.

In order to calculate these values , bending moment and

deflection are calculated at a number of points on the shaft and the

maximum values are found by comparison. The gravity weight of the

loads (gears, pulleys, etc.) and the shaft are neglected because these

values are small when compared to the transmission forces (gear

forces, tension in the belts and the reaction forces at the bearings).

Nevertheless, if the user so wishes, he can add these weights to the

vertical components of forces in the input data. The shafts are

designed assuming fixed end conditions at the bearings. For this

assumption to be valid the length of the bearing should be long enough

to ensure near zero slope at the ends. These concerns relating to

bearing dimensions will be discussed later in the section on bearing

design constraints.

4.3 Calculation of Bending Moment and Deflection (Point Load Analyis):

Consider a shaft supported at the ends in sufficiently long

bearings to warrant the assumption of fixed end conditions and an

intermediate load P acting on the shaft.
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The total length between the bearings is L. This can be

considered equivalent to the following beam problem as shown in Fig.

4.1(a).

The above fixed- fixed problem can be converted into a simply

supported beam problem. A fixed end means that the slope at the end is

zero. Because the load P is acting on the shaft it will tend to deform

as shown in Fig. 4.1 (b) if no moments are applied at the ends.

The load P tends to deflect the beam downwards at every point

including the points near the ends. To make the beam have zero slope

at the ends, restraining end moments have to be applied as shown in

Fig. 4. 1(c).

These moments should be in the direction that opposes the

expected deflection. In the above case the moments should act in the

directions shown. Thus the fixed end beam problem can be reduced to a

simply supported beam problem with restraining moments M, and M
?

acting at the ends as shown in Fig. 4. 1(c).

The standard values of M, ,M„ [9] are as follows :

M, = P a b
2
/L

2 4.3

M
2

= P a
2
b/L

2 4.4

The positive X-axis is assumed to be directed to the right and the

positive Y-axis is directed downwards.

From Shigley [9] we obtain the following results for the case of

both ends fixed and an intermediate load acting on the shaft as shown

in Fig. 4.1 :
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The reactions R, , R~ are :

R-- Pb
2
(3a+b)/L

3
4.5

R
2
= Pa

2
(3b-a)/L

3
4.6

The end moments M, , M„ are:

M,- Pab
2
/L

2
4.7

M
2
= Pa

2
b/L

2
4.8

Bending Moment from A to X :

M = -Pab
2
/L

2
+ R,x 4.9

Deflection from A to X :

y = (Pb
2
x
2
/6EIL

3
)(3ax+bx-3aL) 4.10

Bending Moment from X to B :

M = -Pab
2
/L

2
+R

]
x-P(x-a) 4.11

Deflection from X to B :

y = (Pa
2
(L-x)

2
/6EIL

3
){ (3b+a) (L-x) -3bL} 4.12

The equations 4.9-4.12 are equivalent to Eqs. 4.13-4.16 .

Bending Moment from A to X :

M = -Mj+RjX 4.13

Deflection from A to X :

y = (Pb
2
x
2
/6EIL

3
)(3ax+bx-3aL) 4.14

Bending Moment from X to B :
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M = -M,+R x-P(x-a) 4.15

Deflection from X to B :

y = (P a
2
(L-x)

2
/6EIL

3
){ (3b+a) (L-x) -3bL} 4.16

If a number of loads P, .P^.P- ... are acting on the

shaft, the total bending moment or the total deflection at any section

is equal to the sum of the individual bending moments or deflections

caused by each load acting alone. This is called the Superposition

Principle. Thus we see that the final bending moment and deflection of

the shaft can be computed by the above formulas and the superposition

principle as follows :

BM(i)= BM
1
(i)+ BM

2
(i)+ BM

3
(i) + BM

4
(i) 4.17

where BM(i) refers to the net bending moment at the section i,

BM, ,BM^,etc refer to the bending moment due to each load

DEF(i)= DEF^i) + DEF
2
(i)+ DEF

3
(i)+ 4.18

where DEF(i) is the net deflection of the shaft at section i,

DEF,(i) ,DEF
2
(i) , etc. are the deflections due to loadl

,

load2 , etc.

Once all the values of the bending moment and deflection are computed,

the values of the maximum bending moment and maximum deflection of the

shaft can be calculated by comparing all the values . The maximum value

of the bending moment is used as an input to the shear stress

constraint (Eq. 4.1). The maximum deflection constraint forces the
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maximum deflection value to be within the desired limit as shown

below:

Max Def - Max Def ,, < 0.0 4.19
act all

where, Max Def is the actual maximum deflection of the
act

shaft,

Max Def , , is maximum allowable deflection of the shaft
all

The other important design consideration in the design of

transmission systems is the range of deviation of the centerline of

the shaft. Often it is desired to maintain the centerline of the

transmission shaft close to its mean position i.e. the maximum

deviation of the shaft should be as small as possible. To limit the

value of the maximum deviation of the shaft another constraint is

necessary.

The actual deviation of the shaft centerline from the mean

position is a function of the tolerances used in the fits between the

mating parts . The maximum deviation of the shaft occurs if the shaft

diameter is the smallest possible within the given tolerance, the

inner diameter of the bearing is the largest possible , the outer

diameter of the bearing is the smallest allowable and the housing hole

diameter is the largest allowable. This extreme case can be used to

formulate the constraint equation for restricting the shaft deviation

from the mean position as follows :

Max Dev - Max Dev nn < 0.0 4.20
act allow
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where Max Dev is the actual maximum possible deviation of theact r

shaft centerline,

Max Dev , , is the maximum allowable deviation and is userallow

defined.

For the worst case situation explained earlier, the actual deviation

of the shaft centerline is given by :

Max Dev = ABS(LTOLOS) + UTOLIB + ABS(LTOLOB) + UTOLIH 4.21

where, LTOLOS - Lower tolerance on the outside diameter of the shaft

UTOLIB = Upper tolerance on the inside diameter of the bearing

LTOLOB = Lower tolerance on the outside diameter of the bearing

UTOLIH - Upper tolerance on the hole diameter of the housing

Substituting Eq. 4.21 into Eq. 4.20 we get the required constraint as

follows :

ABS(LTOLOS) + UT0LIB+ ABS(LT0L0B)+ UTOLIH - Max Dev ,,v
' allow

< 0.0 4.22

where the various parameters are as shown in Eq. 4.20-4.21 .

4.4 Constraint to maintain distance between loads :

The loads that act on the shaft affect the bending moment and

deflection. The effect of the loads depends not only on the magnitude

of the forces but on their distribution along the shaft as well. Thus

the distribution of the loads on the shafts should not be decided

arbitrarily; rather, the distances of the loads from a fixed reference

end of each shaft should be considered as variables included in the

design vector. Then the values of these variables will be set by the

optimization process. The constraint can be applied to have a minimum
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fixed proportion of the length of the shaft (say 1/5 of shaft length)

between any two loads. The constraint will be of the form :

DISLOAD - SHLEN/5 < 0.0 4.23

where, DISLOAD is the distance between any two loads or a load and the

shaft end
,

SHLEN is the length of the shaft

4.5 Constraint for design of bearings:

The design of bearings is done in accordance with the

conventional methods used in engineering practice. Any particular

shaft may be supported by two bearings , one at each end. The inside

diameter of bearings on the same shaft are the same. Further, the

length of the bearing is also considered proportional to the length of

the shaft. Hence the design variables of both bearings on a shaft are

essentially the same. Thus, during design analysis only one bearing is

considered for each shaft.

As per established engineering practice for the fixed end

condition of the shaft, the length of the bearing should be at least

one tenth of the length of the shaft and the thickness of the bearing

is usually taken to be one eighth of the internal diameter of the

bearing. Thus two new constraints are to be included for the bearing

design considerations. They are of the form :

BLEN - .10 * SHLEN < 0. 4.24

where BLEN is the bearing length,

SHLEN is the shaft length.

(DIA0B-DIAIB)/2 - DIAIB/8 < 0. 4.25
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where DIAOB is the outer diameter of the bearing,

DIAIB is the inner diameter of the bearing.

4.6 Extension to Multiple Shaft Problems :

The methods developed for solving the single shaft problem can

be easily extended to handle the multiple shaft problem with N shafts

by repeating the above process N times.

The design vector now contains not only the variables of the

first shaft assembly, but also the manufacturing and design variables

of the other shafts and their components in the assembly. Thus the

variables such as the upper and lower tolerances on the diameter of

the shaft (UTOLOS , LTOLOS) , the inner diameter of the bearing (DIAIB),

the cutting speed for turning the outer surface of the shaft (SPOS)

,

the feed rate for turning the outer surface of the shaft (FDOS)

,

cutting speed for turning inner surface of the bearing (SPIB), etc.

have to be treated as arrays to account for multiple shaft analysis.

For example, FDOB(i) will now correspond to the cutting feed for the

turning operation on the outer surface of the bearings on shaft i.

Similarly BLEN(i) denotes the length of the bearing on shaft i. As

stated in the preceding section, all bearings on a shaft are assumed

to have the same dimensions; similarly the hole diameter of the

housing is assumed to be the same for both supporting ends on the

shaft. However for obtaining the cost function the number of all

similar components have to be taken into consideration since the total

cost of manufacture equals the cost of manufacture of all the

components in the assembly.
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Regarding the application of the constraints, all of the

constraints that have been discussed for the single shaft problem have

to be applied for every shaft individually in the multiple shaft

problem. For every iteration the loads on the corresponding shaft are

considered and the corresponding shear stress constraint, maximum

deflection constraint, maximum deviation constraint, the bearing

design constraints, the load distribution constraints, etc. are

applied. These constraints force the corrresponding component design

variables to values which satisfy all the constraints besides reducing

the cost of manufacture. However some additional constraints have to

be applied for the multiple shaft problem. One such type of

constraint is applied to maintain the distance between the pairs of

shafts as discussed below.

In addition to limiting the centerline deviation of individual

shafts , the engineer often faces the problem of ensuring that the

distances between different transmission shafts in an assembly are

accurately maintained. Errors in these distances occur because of the

manufacturing tolerances associated with the various components. The

maintainance of accuracy in the distance between the shafts is

important because a fluctuation away from the desired mean distance

might have an adverse effect on the performance of the system,

particularly if meshing gears are mounted on the shafts. Thus the

following type of constraint is required :

Max Dev (i,j) , - Max Dev (i,i) ,, < 0.0 4.27J actual v
' J allow

where, Max Dev (i,j) , is the maximum possible deviation from
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the mean distance between the pair of shafts (i,j)

Max Dev (i,i) ,, is the maximum allowed deviation from theJ allow

mean distance between the pair of shafts (i,j)

with i taking values from 1 to N, the number of shafts

j taking values from i+1 to N, the number of shafts.

The term ' Max Dev (i,i) .,, ' is a function of the tolerances onN ' J 'possible

the mating components holding the shaft and is given by the following:

Max Dev(i, j ) ., , -
,J possible

[ ABS(LTOLOS(i)) + UTOLIB(i)+ ABS(LTOLOB(i) )+ UTOLIH(i)] +

[ ABS(LTOLOS(i))+ UTOLIB(j)+ ABS(LTOLOB(j ) )+ UTOLIH(j)] 4.28

where the terms LTOLOS , UTOLOS , etc. are same as in Eq. 4.16 and i,j

refer to the index numbers of the shafts as described in 4.27 . The

maximum deviation allowed is a value that is set by the designer.

Another set of constraints that is necessary to achieve the

extension of the single shaft problem to the N- shaft problem is the

set of constraints needed to maintain the position of the loads on

different shafts. For example if two gears mounted on two different

shafts are in mesh, then it is necessary that the distance of these

two gears be exactly the same from the fixed reference.

The best way to implement the multiple shaft analysis is to

apply the constraints as general equations, with the variables now

being arrays and the indices of the arrays corresponding to the index

number of the different shafts. The process of application of

constraints is looped through N times.
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4.7 The extended design vector :

In view of the preceding discussion on the integration of shaft

design and manufacture within a single optimization problem, the

following set of variables are added to the design vector described in

chapter III :

DIAOS(I) Diameter of shaft i

DIAIB(I) Inner diameter of bearing on shaft i

DIAOB(I) Outer diameter of bearing on shaft i

BLEN(I) Length of bearing on shaft i

AHDIS(I.J) Distance of horizontal load j on shaft i

AVDIS(I.J) Distance of vertical load j on shaft i

(The last two distances above are measured from a

fixed reference end of the shaft)

The manufacturing design variables as already discussed in

chapter III are :

FDOS(I) Feed rate for the shaft i outer surface

FDIB(I) Feed rate for the inner surface of bearing i

FDOB(I) Feed rate for the outer surface of bearing i

FDIH(I) Feed rate for the inner surface of housing i

SPOS(I) Cutting Speed for shaft i outer surface

SPIB(I) Cutting Speed for inner surface of bearing i

SPOB(I) Cutting Speed for outer surface of bearing i

SPIH(I) Cutting Speed for inner surface of housing i

UTOLOS(I) Upper tolerance for shaft i outer surface

LTOLOS(I) Lower tolerance for shaft i outer surface
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UTOLIB(I) Upper tolerance for inner surface of bearing i

LTOLIB(I) Lower tolerance for inner surface of bearing i

UTOLOB(I) Upper tolerance for outer surface of bearing i

LTOLOB(I) Lower tolerance for outer surface of bearing i

UTOLIH(I) Upper tolerance for hole in housing i

LTOLIH(I) Lower tolerance for hole in housing i

In the above definitions i takes the values from 1 to

N (the number of shafts) , and

j takes the values from 1 to the number of loads.

The manufacturing parameters that are involved in the optimization

problem indirectly are :

(i) Surface finish of all component inner and outer surfaces
,

(ii) Nose radius of tool for turning the various surfaces of

components

.

These parameters affect the design through constraint functions as

shown in chapter II.

In the next chapter the implementation of these concepts in a

computer code is discussed and the optimization techniques used are

described in detail.
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CHAPTER V

OPTIMIZATION TECHNIQUES AND IMPLEMENTATION

5.1 Introduction

Optimization techniques are of great value in engineering

design. The traditional design process makes extensive use of

empirical charts, tables, formulas and procedures developed through

many years of experience. Optimization methods, on the other hand,

are based on the idea of applying established numerical techniques to

reasonable mathematical models of the system to be designed. A

computer code which implements such an optimization method will be

capable of analyzing the proposed design and forcing the various

parameters towards an optimal solution in order to satisfy the desired

requirements.

In general, the design problem is reduced to the following form:

Minimize F(B) 5.1

subject to g.(B) < j«l,m 5.2

gk
(B) - k=m+l,n 5.3

T
where, B is the vector of design variables [b, , b« , b~, b, ...b ]

m is the number of inequality constraints and

n is the total number of constraints.
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For the minimization of the function F(B) there are a

number of optimization techniques that are readily applicable. These

techniques are usually iterative in nature and produce an improved

design at each iteration until the process converges to the optimum. A

proper direction is selected at every iteration, in order to move

towards the optimum. The value of the function is calculated and the

design point is updated at every iteration. The use of optimization

techniques yields a result that is the best design in some particular

sense whereas conventional design merely provides an acceptable

design. Further, this approach requires a lower level of skill on the

part of the designer. Hence the optimal design approach is well suited

for design automation and design-manufacture integration. The

disadvantages of this approach include large computing requirements

and the difficulty associated with the translation from an engineering

design problem to an optimal design problem.

This chapter covers the basic optimization techniques related to

the work presented in this thesis, along with a discussion of the

optimization routine actually used in the computer code. A detailed

explanation of the code and its usage is also given.

5.2 Optimization Techniques

For problems involving cost and constraint functions whose

derivative evaluations are complicated, as in the case of this work,

it is advisable to use a non- derivative optimization technique. These

techniques are based upon function evaluations only at each iteration

and, unlike derivative based methods, there is no need for derivative
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evaluations in order to establish a suitable direction of descent.

Some of the optimization techniques that are most popular among

derivative -free methods are grid search [8], random search[8] and

Hooke Jeeves [8] methods. A routine called MINA, which is based upon

the grid search method, was developed by Sandia Laboratories as part

of the Sandia Mathematical Subroutine Library. This routine is

reliable, fairly efficient and easy to use; hence, it is suitable for

complicated problems with many variables and constraints.

MINA finds an approximate minimum of a real -valued function of

NV variables, given an initial estimate of the position of the minimum

and the ranges for each of the variables . This routine uses a

selective directed search of a surrounding NV- dimensional grid of

points to find a direction in which the function decreases. It then

proceeds in this direction as far as the function decreases, then

determines a new search direction. When no such direction is found

the step size is decreased and the process is repeated.

To ensure complete satisfaction of design requirements, a number

of constraints have to be imposed on the optimization problem. The

routine MINA is basically an unconstrained optimization routine. To

account for the constraints an exterior penalty function method [8] is

used, as explained below.

Referring to Eq. 5.1 through 5.3, the function F(B) is to be

minimized subject to the given set of constraints. At every function

evaluation the constraint violation for all design and manufacture

requirements is checked. If any constraints are violated, the design
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is not totally feasible. In such cases the exterior penalty function

method that is employed adds a penalty factor to the true value of the

cost function to generate a pseudo- objective function which is given

by the following equation :

POF = FF + PP 5.4

where, POF is the pseudo -objective function,

FF is the true value of the cost function and

PP is the penalty factor defined by :

PP R * GG 5.5
P

where R is a constant parameter defined by user , and

GG is the summation of all the constraint violations.

The optimization routine manipulates the values of the design

variables within their respective ranges (the range on each design

variable is defined by the user) so as to reduce the value of the

pseudo -objective function. The more the constraint violation, the

greater is the value of the pseudo -objective function. Hence,

unconstrained minimization of the pseudo objective function takes the

design vector closer to the feasible region (i.e. the constraint

violation is decreased) at each iteration. Within the feasible region,

the penalty is zero and the true cost function and the pseudo

-

objective function are identical. Thus, minimizing the pseudo

-

objective function also minimizes the true cost function. The process

is considered to have converged if all the constraints are satisfied

and no significant cost reduction is observed for a full iteration.
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Otherwise the process is repeated with all parameters being updated

after every iteration.

5.3 Development of the Computer Code

The concept of integration of design and manufacture into a

single optimization problem which can be solved using the grid search

optimization technique was implemented in an efficient computer code.

The structure of the code is as shown in Fig. 5.1 . In the following

paragraphs the description of the various routines used in the code is

provided.

Subroutine MINA:-

As discussed in section 5.2 MINA is a grid search based

optimizing routine. The following are the details regarding the input

and output parameters of the routine.

Input to subroutine MINA :

FN . . . Name of the function of NV variables to be minimized. This

name must appear in an external statement. The form of the

calling sequence must be FUNCTION FN(B) , where B is an array

of NV variables . The function name used in the current

implementation is SUBM.

NV. . . . Number of variables

NDIV. . Number of refinements of the search increments to use. At each

refinement, the increment in each dimension is divided by 10.

(Generally NDIV is taken as 3 or 4)

.
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DEL. . . Fraction of variable range (in each dimension) to use as the

initial increment (in that dimension).

A. . . . Array of search bounds, dimensioned NV x 2

A(I,1) should be the lower bound of the i-th variable

A (I, 2) should be the upper bound of the i-th variable

GUESS.. Array of NV initial values. GUESS (I) should be the initial

value for the i-th variable.

The output returned by subroutine MINA :

X. . . . Array (dimensioned NV) giving the values of the variables at

the minimum. X(I) will be the value of the i-th variable.

FOFX. . . Function value at the minimum

IERR. . . A status code

Normal Code

=1 Means the search for a minimum proceeded for the

specified number of refinements.

Abnormal Code

=2 Means NV is greater than 60

=3 Means a range minimum is greater than the

corresponding maximum.

Function Subprogram SUBM:

SUBM is a function subprogram which is repeatedly called by the

routine MINA. This subprogram calls a subroutine FUNB which returns

the true cost function. Within SUBM all the constraint functions are

evaluated. The cost and constraint function values are then combined

into the pseudo- objective function which is then returned to MINA.
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Subroutine ASSIGN :

This is the routine that the user is required to provide to the

program to define the set of design variables. This routine

establishes the correspondence between the various design variables

and the manufacturing and design parameters. Through this subroutine,

the user has direct control over the design vector and can designate

as design variables only those parameters which are significant for

the particular problem at hand. Hence, for problems of a particular

class, the parameters not seriously affecting the design can be set to

constant values instead of treating them as design variables. This

results in a smaller optimization problem that can be solved more

efficiently. The user can also use this subroutine to enforce

constraints between the various parameters.

For instance, considering the example shown in Fig. 3.1, for the

design and manufacture of a single shaft subjected to point loads and

supported by fixed bearings at the ends, the following is the set of

statements needed to define the design vector and set the values of

other parameters. It may be noted that some of the parameters are

equated to constant values as per the discussion in chapter IV.

SP0S(1) = B(l) ... Cutting speed for shaft

SPIB(l) = B(2) . . . Cutting speed for turning inner surface of

bearing

SP0B(1) - B(3) ... Cutting speed for turning outer surface of

bearing

SPIH(l) - B(4) . . . Cutting speed for the housing hole
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FDOS(l) - B(5)

FDIB(l) - B(6)

FDOB(l) - B(7)

FDIH(l) - B(8)

UTOLOS(l) - B(9) .

LTOLOS(l) = B(10)

.

UTOLIB(l) = B(ll)

LTOLIB(l) - B(12)

UTOLIH(l) - B(13)

LTOLIH(l) = B(14)

SLEN(l) - 50.0

BLEN(l) = B(15)

HLEN(l) = BLEN(l)

DIAOS(l) = B(17)

DIAIB(l)=DIAOS(l)

DIAOB(l) = B(18)

DIAIH(l)-DIAOB(l)

AHDIS(l.l) = B(19)

. Cutting feed rate for shaft surface

. Cutting feed rate for inner side of bearing

. Cutting feed rate for outer side of bearing

. Cutting feed rate for housing hole surface

. Upper tolerance for shaft diameter

. Lower tolerance for shaft diameter

. Upper tolerance for inner diameter of

bearing

. Lower tolerance for inner diameter of

bearing

. Upper tolerance for hole diameter of

hous ing

. Lower tolerance for hole diameter of

housing

. Shaft length being considered as constant

. Bearing length

. Housing length set equal to bearing length

. Outer Diameter of shaft

. Inner diameter of bearing set equal to

outer diameter of shaft

. Outer diameter of shaft

. Diameter of housing hole set equal to outer

diameter of bearing

. . Distance of first horizontal load on

shaft from reference end
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AHDIS(1,2) - B(20) .. Distance of second horizontal load on

shaft from fixed reference end

AHDIS(1,3) - B(21) .. Distance of third horizontal load on

shaft from fixed reference end

Similar input is required for all the components if the number of

shafts is greater than one. The only difference is that the subscript

in each of the variables is set to the index number of the shaft being

described.

Subroutine INITIAL-GUESS :

This subroutine reads input data from an input file. The input

file contains the initial guess values for all the design variables

besides the lower and upper bounds on each of these variables. The

file also contains values of other necessary constants like moduli of

elasticity of the materials, the shear stress limits of the materials,

the desired values of surface finish, tolerances on dimensions,

maximum allowable deflections of shaft(s) , maximum allowable

deviationsof the shafts, etc. The loading of the various shafts is

also read from this input file. In order to change some of the input,

only the data file needs to be changed. If an entirely different

problem is to be solved then the ASSIGN routine needs to be changed in

addition to modifying the input file.

This routine also echoes all the input values to an output file

,

so that the user can check that the values being read by the code are

correct.

86



The optimal design code developed is easy to use, efficient and

reliable. For a given problem, it yields a set of design and machining

parameters that satisfy all design and manufacturing criteria besides

ensuring minimum possible cost for a feasible design. Further the user

has complete freedom to try any choice of variables, constraints and

material properties to arrive at a design that best meets the

particular needs of the problem at hand.
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CHAPTER VI

NUMERICAL EXAMPLES

This chapter discusses the use of optimal design methodology and

the computer code described in this thesis for solving actual design

and manufacturing problems. Several numerical examples are presented

along with the results that were obtained. These numerical examples

were formulated considering various machine design problems from

different sources [9,13,14]. In the first two examples the design of

the assembly is fixed and only the manufacture is optimized. The next

three examples demonstrate how the design and manufacture can be

simultaneously optimized using the proposed method.

6.1 Single shaft transmission assembly manufacture :

(a) A single shaft is to be manufactured along with two

bearings , each one supporting the shaft at one end and embedded in a

housing hole. The various parts of the transmission assembly as shown

in Fig. 6.1 are to be manufactured by the turning process. The optimal

set of machining parameters needs to be found for the case of minimum

cost of manufacture. The following are the part specifications :

Surface Finish on the shaft surface : 250 micro in. (rms)

Surface Finish on the bearing hole surface : 200 micro in. (rms)

Surface Finish on the bearing outer surface: 325 micro in. (rms)
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Surface Finish on the housing hole : 300 micro in. (rms)

Minimum tolerance gap between the upper and lower

tolerance : 0.00155 in.

Maximum clearance between the shaft outer surface and

the inner surface of bearing : 0.010 in.

Minimum clearance between the shaft outer surface and

the inner surface of bearing : 0.0057 in.

Maximum clearance between the bearing outer surface and

housing hole : 0.0057 in.

Minimum clearance between the bearing outer surface and

housing hole

Nominal cutting feed

Maximum tool nose radius

Diameter of the shaft

Length of the shaft

The results obtained are recorded in Table 6.1

0.002 in.

0.04 ipr

0.6 in.

3.0 in.

50.0 in.
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RESULTS FOR EXAMPLE 6.1(a)

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

sposci;

spib(i;

spobci;

spih(i;

fdosci;

FDIB(l)

FD0B(1}

FDIH(l)

UTOLOS

(

1)

LTOLOS

(

1)

UTOLIB( 1)

LTOLIB( 1)

UTOLOB(:d

LTOLOB( 1)

UTOLIH(:d

LTOLIH(:d

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

-0.003 in

-0.0045 in

0.005 in

0.0035 in

-0.0035 in

-0.0045 in

0.005 in

0.003 in

150.94 sfpm

289.48 sfpm

289.48 sfpm

150.67 sfpm

0.0195 ipr

0.0195 ipr

0.0144 ipr

0.0400 ipr

-0.0026 in

-0.00475 in

0.00525 in

0.0031 in

-0.001 in

-0.0028 in

0.0028 in

0.0010 in

Initial value of Pseudo Objective Function - 117709.44

Final value of Pseudo Objective Function - 1.42

Table 6.1
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Initial value of true cost - 1.39 $

Final value of true cost - 1.42 $

Initial Constraint Violation - 11.770806

Final Constraint Violation - 1.250 E-9

Table 6.1 (CONTD.)
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(b) The same problem is now considered for more demanding

surface finish constraints. The following are the part requirements :

Surface Finish on shaft outer surface : 50.0 micro in. (rms)

Surface Finish on inner surface of bearing: 80.0 micro in. (rms)

Surface Finish on outer surface of bearing: 59.0 micro in. (rms)

Surface Finish on housing hole surface : 89.0 micro in. (rms)

Minimum tolerance gap : 0.00155 in

Maximum clearance between shaft outer surface

and bearing inner surface : 0.010 in

Minimum clearance between shaft outer surface

and bearing inner surface : 0.0057 in

Maximum clearance between bearing outer surface

and housing hole surface : 0.0057 in

Minimum clearance between bearing outer surface

and housing hole surface

Nominal feed

Maximum tool nose radius

Diameter of shaft

Length of shaft

0.002 in

0.04 ipr

0.6 in

3.0 in

50.0 in

The results obtained for this example are shown in Table 6.2
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RESULTS FOR EXAMPLE 6.1(b)

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

SPOS(l

SPIB(1

SPOB(l

SPIH(1

FDOS (

1

FDIB(1

FDOB(l

FDIH(1

UTOLOS

LTOLOS

UTOLIB

LTOLIB

UTOLOB

LTOLOB

UTOLIH

LTOLIH

1)

1)

1)

1)

1)

1)

1)

1)

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

0.0045 in

0.005 in

0.0035 in

•0.0035 in

0.0045 in

0.005 in

0.003 in

150.94 sfpm

289.48 sfpm

289.48 sfpm

151.09 sfpm

0.0168 ipr

0.0209 ipr

0.0126 ipr

0.0280 ipr

-0.00255 in

-0.00440 in

0.00555 in

0.00325 in

-0.0014 in

-0.0031 in

0.00257 in

0.0010 in

Initial value of Pseudo Objective Function = 3837619.09

Final value of Pseudo Objective Function = 1.65

Table 6.2
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Initial value of true cost - 1.39 $

Final value of true cost = 1.65 $

Sum of initial constraint violations = 383.761770

Sum of final constraint violations - 1.87512 E -09

Table 6.2 (CONTD.)

95



I
1

LD
z.
*—

t

CO
ID

r

LD
r

2 I

CO
3
X

l_

LD

•—

i

a:

Ldm

<:
x
CO

LD
Z
i—

i

u

I ~\

LD

or
<:u

<X
CO

rH
1

LD

•—

i

<u
CQLL«

1

E
oi
i/)

o
co
co

co

QJ

JO

Oo
4-
O
CO
+->

E
CD
c
o
CL
E
o

CM

CO

CO
S-

CT>

I I

96



6.2 Double shaft transmission assembly manufacture :

A transmission shaft assembly with two shafts as shown in Fig.

6.2 needs to be manufactured. The various surfaces of the assembly

(shaft outer surface, bearing inner surface, bearing outer surface,

surface of housing hole) are to be turned to the required dimensions

through finish cuts. The optimal set of machining parameters needs to

be found for the case of minimum cost of manufacture. The following

are the required specifications :

50.0 mi. in. (rms)

80.0 mi. in. (rms)

59 .0 mi . in. (rms)

89 .0 mi. in. (rms)

Surface finish of outer surface of shafts

Surface finish of inner surface of bearing

Surface finish of outer surface of bearings

Surface finish of inner surface of housing

Maximum clearance between shaft outer surface and

inner surface of bearing : 0.010 in.

Minimum clearance between shaft outer surface and

inner surface of bearing : 0.0057 in.

Maximum clearance between bearing outer surface and

housing hole : 0.0057 in.

Minimum clearance between bearing outer surface and

housing hole

Minimum gap between tolerance values

Nominal feeds for the turning of components

Maximum tool nose radius

0.002 in.

0.00155 in.

0.04 in.

0.6 in
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Shaft length : 50.0 in

Diameter of shaft : 3 . 5 in

The results obtained for this problem are shown in Table 6 .

3
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RESULTS FOR EXAMPLE 6.2

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

SPOS(l

SPIB(1

SPOB(l

SPIH(1

FDOS(l

FDIB(1

FDOB(l

FDIH(1

UTOLOS

LTOLOS

UTOLIB

LTOLIB

UTOLOB

LTOLOB

UTOLIH

LTOLIH

SPOS(2

SPIB(2

SPOB(2

1)

1)

1)

1)

1)

1)

1)

1)

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

•0.0045 in

0.005 in

0.0035 in

•0.0035 in

0.0045 in

0.005 in

0.003 in

100.0 sfpm

100.0 sfpm

100.0 sfpm

150.94 sfpm

289.48 sfpm

289.48 sfpm

151.10 sfpm

0.0168 ipr

0.0209 ipr

0.0124 ipr

0.0280 ipr

-0.00255 in

-0.00440 in

0.00555 in

0.00325 in

-0.00140 in

-0.00310 in

0.00255 in

0.00100 in

150.94 sfpm

291.04 sfpm

291.04 sfpm

Table 6.3
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SPIH(l)

FD0S(2)

FDIB(2)

FD0B(2)

FDIH(2)

UT0L0S(2)

LT0L0S(2)

UT0LIB(2)

LT0LIB(2)

UT0L0B(2)

LT0L0B(2)

UT0LIH(2)

LT0LIH(2)

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

-0.003 in

-0.0045 in

0.005 in

0.0035 in

-0.0035 in

-0.0045 in

0.005 in

0.003 in

151.10 sfpm

0.0187 ipr

0.0171 ipr

0.0113 ipr

0.0280 ipr

-0.00265 in

-0.00490 in

0.00510 in

0.00305 in

-0.00140 in

-0.00310 in

0.00255 in

0.00100 in

Initial value of Pseudo Objective Function

Final value of Pseudo Objective Function

Initial value of true cost

Final value of true cost

Sum of Initial Constraint Violations

Sum of Final Constraint Violations

7675246.93

3.50

3.00 $

3.50 $

767.524393

0.699 E-8

Table 6.3 (CONTD.)
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6.3 Single shaft assembly design and manufacture :

A single transmission shaft assembly need to be designed as

shown in Fig. 6.3 . The various components of the assembly ( the

shaft, bearings and the housing ) are to be manufactured by the

turning process. The optimal set of design variables (machining

parameters and component design parameters) needs to be found for the

case of minimum cost of manufacture using the optimal design code

developed in the earlier chapters. The following information gives the

requirements and the specifications. Figures 6.3 and 6.4 show the

details of this problem.

Pulley B (24 in. diameter) receives 30 hp at 360 rpm from below

at an angle of 45 degrees as shown in Fig. 6.4 . The 8 inch gear C

delivers 40% of the power horizontally to the right. The 12 in. gear E

delivers the remaining power upward towards the right at an angle of

30 degrees above the horizontal . Both gears have 20 degrees involute

teeth. The following are the shaft design specifications :

Max shaft deflection : 6.2 E- 3 in.

Max shaft deviation : 2.75 E-2 in.

2Max shear stress : 29.0 E 6 lb/in

The equation to calculate the torque being transmitted [13] is

Torque - 63000 . 0*(Horse Power)/(RPM)

Using the above equation, the torque on the shaft between B and C is

T
b
=5250 in- lb
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Similarly torques at C and E can be calculated as follows

T = 2100 in-lb
c

T = 3150 in-lb
e

The maximum torque moment MXTRQ acting on the shaft is the input

torque T, ; thus

MXTRQ - T
b

- 5250 in-lb

The bending force produced by the belt is given by the equation

F = 2(F
1
_ F

2
)

= 2(T
b
)/(r

b )

where T, is the torque and r, is the pitch radius as shown in

Fig. 6.4 . Thus bending forces at B, E and C are as follows :

F
b

= 875 lb.

F = 525 lb.
e

F = 233 lb.
c

The total force on the gear tooth (ignoring the frictional force) is

normal to the tooth surface, with the result that there is a

separating force N (as in Fig. 6.5 ), given by

N = Ftan<£,

where F is the computed driving force.

For 4> = 20°
, the separating forces for C and E are :

N = F tan 20° - (233)(0.364) - 84.8 lb.
C C \ / \ /
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N - F tan 20° - 191 lb.
e e

If C delivers power to the right, the force F on C is directed to the

left, as shown in the end view of Fig. 6.4 . Similarly with E

delivering power as stated, the force F is upward toward the right.

By analytic mechanics, those forces acting at some distance from the

center of the shaft are replaced by a force through the shaft axis and

a couple . Thus , we can add and subtract forces F through the shaft

axis as indicated. Now there will be a counter clockwise torsional

couple F *r , where r is the pitch radius of the gear E , and

F is a bending force acting at the center of the shaft parallel to

the original F . This is the basis for the free bodies to be used& e

later.

Now, resolving forces into two perpendicular coplanar systems,

the horizontal forces at B, C and E are :

B = F * cos45 =(875)*(0.707) - 619 lb.
x b \ / \

C = F =233 lb.
X c

E = F * cos30 - N *cos60 - 359.1 lb.
x e e

Thus the horizontal components are as shown in Fig. 6.6(a).

The forces in the vertical plane can be obtained as :

B = F, *cos45 = 619 lb.
y b

C = N = 84.8 lb.
y c

104



CO

o

JO
E
cu
GO
I/)

ro

-t->

4-
ra
JC
to

CD

cn
c

CD

o
<+-

S-
cn

CD
u
s_
o

«3-

CD
S-
CJ

105



"O
o
o
-J

"O
CT> o "D
c o O

• —

—

_J O
D o^

_J

D c
*—

•

"o
Q_ > -+-»

CD o
CO Q f—

II
II

II

\ o
o

\ +J

\ re
O)

\
en

E
\

O
1

to
CD

1 U

/

s-

o

/ ID

/ UD

•i* CD

3

U_

x:
o

jf-»

CL

106



E = F * sin30 + N *cos30 - 427.9 lb.ye e

Therefore as per the notations discussed in chapter 5 the loading can

be described as follows :

HPLOD(l.l) = 619 lb.

HPL0D(1,2) - 233 lb.

HPL0D(1,3) = 359.1 lb.

whereas the vertical loading is as follows :

VPLOD(l.l) = 619 lb.

VPL0D(1,2) = 84.8 lb.

VPL0D(1,3) = 427.9 lb

The vertical loads on the shaft are shown in Fig. 6.6(b) .

These values are substituted into the equations developed in

chapter II to obtain the necessary set of design constraints for this

problem. The tolerance and surface finish constraints imposed are

similar to those in Example 1.

The design variables for this problem will be as follows :

(i) The cutting speeds for the turning of the surfaces of the

components

,

(ii) The cutting feed rates for the turning of component surfaces

(iii) The manufacturing tolerances on the components.

In addition to the above set of design variables the following

shaft design parameters are also included in the design vector :

(i)The diameter of the shaft

(ii)The outer diameter of the bearing

(iii) The length of the bearing
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(iv)The distances of horizontal loads and vertical loads on the shaft

from a fixed reference.

The above selection of design variables can be specified in the

program through the ASSIGN routine using the statements given below.

SP0S(1)=B(1) ...cutting speed for turning shaft surface

SPIB(1)=B(2) ...cutting speed for turning bearing inner surface

SP0B(1)=B(3) ...cutting speed for turning bearing outer surface

SPIH(1)=B(4) ...cutting speed for turning housing hole

FD0S(1)=B(5) ...cutting feed rate for shaft surface

FDIB(1)=B(6) ...cutting feed rate for bearing inner surface

FD0B(1)=B(7) . . .cutting feed rate for bearing outer surface

FDIH(1)=B(8) ...cutting feed rate for housing hole

UT0L0S(1)=B(9) . . .Upper tolerance on shaft outer diameter

LTOL0S(l)=B(10) ...Lower tolerance on shaft outer diameter

UT0LIB(1)=B(11) . . .Upper tolerance on bearing inner diameter

LT0LIB(1)=B(12) . . .Lower tolerance on bearing inner diameter

UT0L0B(1)=B(13) . . .Upper tolerance on bearing outer diameter

LT0L0B(1)=B(14) ...Lower tolerance on bearing outer diameter

UT0LIH(1)=B(15) . . .Upper tolerance on housing hole diameter

LT0LIH(1)=B(16) ...Lower tolerance on housing hole diameter

SLEN(l) - 50. ...Length of shaft ( constant )

BLEN(l) = B(17) . . .Length of bearing considered as a design variable

HLEN(l) = BLEN(l) . . . Housing length being turned is made equal to

bearing length being turned

DIA0S(1)=B(18) ... Diameter of shaft surface
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DIAIB(1)=DAI0S(1)

DIA0B(1)-B(19)

Inner diameter of bearing set equal to

the diameter of shaft surface

Outer diameter of bearing

DIAIH(1)=DIA0B(1) . . Diameter of housing hole set equal to outer

diameter of bearing

Distance of horizontal loadl from the fixed

reference end

Distance of H load2 from the fixed reference end

Distance of H load3 from the fixed reference end

. . Distance of V loadl should be the same as

distance of H loadl from the fixed end

. . Distance of V load2 should be same as

distance of H load2 from the fixed end

. . Distance of V load3 should be the same as

distance of H load3 from the fixed end

The initial guess and the optimal values of the design vector

are as shown in Table 6.4 .

AHDIS(1,1)-B(20) ...

AHDIS(1,2)=B(21) ...

AHDIS(1,3)-B(22) ...

AVDIS(1,1)=AHDIS(1,1)

AVDIS(1,2)=AHDIS(1,2)

AVDIS(1,3)=AHDIS(1,3)

110



RESULTS FOR EXAMPLE 6.3

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

spos(i;

spib(i;

spob(i;

spih(i;

FDOS(l]

FDIB(1]

FDOB(l}

FDIH(i:

UTOLOS

(

1)

LTOLOS

(

1)

UTOLIB( 1)

LTOLIB( 1)

UTOLOB( 1)

LTOLOB< 1)

UTOLIH( 1)

LTOLIH( 1)

BLEN(l)

DIAOS(l)

DIAOB(l)

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

-0.003 in

-0.0045 in

0.005 in

0.0035 in

-0.0035 in

-0.0045 in

0.005 in

0.003 in

5.00 in

2.5 in

3.25 in

150.94 sfpm

291.04 sfpm

291.04 sfpm

150.94 sfpm

0.0272 ipr

0.0153 ipr

0.0136 ipr

0.0290 ipr

-0.00220 in

-0.00495 in

0.00505 in

0.00350 in

-0.00100 in

-0.00255 in

0.00315 in

0.00160 in

5.00 in

2.5591 in

3.1989 in

Table 6.4
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AHDIS(l.l) 12.00 in 10.05 in

AHDIS(1,2) 30.00 in 31.95 in

AVDIS(1,3) 42.00 in 43.95 in

Initial value of Pseudo Objective Function - 86.7623

Final value of Pseudo Objective Function - 1.045

Initial value of true cost - 3.76 $

Final value of true cost - 1.045 $

Sum of Initial Constraint Violations - 0.83002 E-2

Sum of Final Constraint Violations = 0.4166 E-8

Table 6.4 (CONTD.)
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6.4 Design and manufacture of two shaft transmission assembly :

A transmission shaft assembly with two shafts needs to be

designed as shown in Fig. 6.7 . The various components of the assembly

(the shaft, bearings and the housing) are to be manufactured by the

turning process. The optimal set of design variables (machining

parameters and component design parameters) needs to be found for the

case of minimum cost of manufacture using the optimal design code

described in earlier chapters. The following information gives the

requirements and the specifications. The figures 6.7 and 6.8 show the

details of this problem.

Pulley B (24 in. diameter) receives 40 hp at 360 rpm from below

at an angle of 45 degrees as shown in Fig. 6.8 . The 8 inch gear D and

a 12 inch gear C are fixed on the first shaft. Two gears E (12" dia.)

and F(18" dia.) are mounted on the second shaft and a dog clutch

engages one of the two gears to the shaft based upon the speed desired

and the other one just rotates freely without being engaged to the

shaft (i.e. without delivering any torque). It is required to find

the optimal design of the shaft assembly by calculating the set of

variables like the diameters of the components being used, the

optimal loading distribution on the shaft and the bearing design

parameters. Also, the optimal machining parameters are to be

determined in order to obtain the design corresponding to the least

possible manufacturing cost. The following are the manufacturing

requirements desired :

Surface finish on outer surface of shafts : 50.0 mi. in. (rms)
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50 . mi . in. (rms)

50.0 mi. in. (rms)

50.0 mi. in. (rms)

Surface finish on inner surface of bearings

Surface finish on outer surface of bearings

Surface finish on inner surface of housing

Maximum clearance between shaft outer surface and

inner surface of bearing : 0.010 in.

Minimum clearance between shaft outer surface and

inner surface of bearing : 0.0057 in.

Maximum clearance between bearing outer surface and

housing hole : 0.0057 in.

Minimum clearance between bearing outer surface and

housing hole : 0.002 in.

Minimum gap between tolerance values : 0.00155 in.

Nominal feeds for the turning of components : . 04 ipr

Maximum tool nose radius : 0.6 in

Using the analysis methods discussed in the previous example, the

torques at the various loads can be obtained from the free body

diagrams as shown in Fig. 6.8 . The values of these torques are :

Torque at B - 63000(40)/360 = 7000.0 lb. -in.

If F is engaged to the shaft and E is moving freely,

T * w = T^ * u>c (for losses = )
c c f f '

If N and N-- are the RPMs of the two shafts, this can be written as
c f '

(T
c
* 2n N

c
)/60 = (T

f
* 211 N

f
)/60
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i.e., T
f
=T

c
(N

c
/N

f )

The ratio N /N-. is called the speed ratio and is given by the

following relations :

Speed ratio = N /N^ - w /u^ - D.VD - T../Tr c' f c' f f c f c

where w's represent the angular speeds,

D's represent the pitch diameters

and T's represent the number of gear teeth.

Therefore the speed ratio becomes 18/12 - 3/2

and

T
f
=T

c
(3/2)=7000(3/2)=10500 lb- in

If gear E is engaged with gear D
,

T *u> = T *u>,
e e d d

and

T =T *(speed ratio)
e d v r '

where speed ratio is given by D /D , = 12/18 =2/3

Similarly,

T
c
=T

d
*(2/3)

=7000(2/3) = 4666.666 lb. in

The torque being experienced by the upper shaft is the input

torque. The second shaft will experience a torque that is 2/3 or 3/2

times the value of input torque based upon the gear (E or F) being

engaged to the shaft. For the design of the shaft the worst case had
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to be considered. Hence the design is made for the case of the higher

torque load i.e. T
f
-(10500in. -lb)

.

Thus the maximum torques for the two shafts are

^=7000 lb- in and T 2-10500 lb- in

The bending force produced by the belt around pulley is given by

F
b
-2(F 1 -F 2 )=2(Tb

)/r
b
-2(7000)/12 - 1166.66 lb

For the gears , the driving forces are computed as though the contact

is always on the pitch circle :

F =T /r -7000/6 =1166.66 lb (r being the pitch circle radius )

As shown in Fig. 6.5 , F acts tangential to the pitch circle and

normal to the tooth. A separating force N comes into play because of

F, and depends on the pressure angle
<t> ; thus, the separating force N

is given by

N = F tan^
c c r

Similarly, for the gear F which is in mesh with gear C

F
f
-7000/6-1166.66 lb

N =N -424.632 (the direction is opposite to that of N
c )

The gear E is not simultaneously engaged to the shaft hence no

power or torque transmission takes place at E.

Now the forces are resolved into two planes H and V according to

Fig. 6 . 8 as follows :

F -1166.66 lb
c

F, -1166.66 lb
D
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Resolving the forces on shaft 1, the horizontal components are

C -F =1166.66 lb
x c

B =F,cos45 = 1166.66 cos45 - 824.953 lb
x b

Taking moments about M,

C
x
(22) + B

x
(32) - N

x
(50) -

N =-s-1041 (positive sign indicates that the sense of N is
x r ° x

correct)

Now considering the second shaft as shown in Fig. 6.8

F = F =1166.66 lb
x c

Similarly for the vertical direction

C =N =424.632 lb
y c

B =Fucos45=824.953 lb (shaft 1)
y b '

For the load F on second shaft

F =N, =424.632 lb (shaft 2)
y f

The diagrams for the shaft loads are as shown in Fig. 6. 9 . Thus the

horizontal and vertical loads for this case are :

HPLOD(l.l)- 1166.66 lbs

HPL0D(1,2)= 824.953 lbs

HPLOD(2,l)=-1166.66 lbs

VPL0D(1,1)= 424.632 lbs

VPL0D(2,1)= 424.632 lbs

The results of this problem are shown in Table 6.5 .
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RESULTS FOR EXAMPLE 6.4

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

spos(i;

spibci;

spob(i;

spih(i;

fdos(i;

FDIB(i;

fdob(i;

FDIH(1]

UTOLOS

(

1)

LTOLOS

(

1)

UTOLIB( 1)

LTOLIB( 1)

UTOLOB( 1)

LTOLOB( 1)

UTOLIH( 1)

LTOLIH( 1)

SPOS(2)

SPIB(2)

SPOB(2)

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

•0.0045 in

0.005 in

0.0035 in

•0.0035 in

0.0045 in

0.005 in

0.003 in

100.0 sfpm

100.0 sfpm

100.0 sfpm

239.80 sfpm

291.04 sfpm

291.04 sfpm

254.75 sfpm

0.0232 ipr

0.0162 ipr

0.0140 ipr

0.0234 ipr

-0.00210 in

-0.00481 in

0.00519 in

0.00359 in

-0.00100 in

-0.00255 in

0.00310 in

0.00100 in

254.75 sfpm

291.04 sfpm

291.04 sfpm

Table 6.5
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SPIH(2)

FD0S(2)

FDIB(2)

FD0B(2)

FDIH(2)

UT0L0S(2)

LT0L0S(2)

UT0LIB(2)

LT0LIB(2)

UT0L0B(2)

LT0L0B(2)

UT0LIH(2)

LT0LIH(2)

BLEN(l)

DIAOS(l)

DIAOB(l)

BLEN(2)

DIAOS(2)

DIAOB(2)

AHDIS(l.l)

AHDIS(2,1)

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

-0.003 in

0.0045 in

0.005 in

0.0035 in

-0.0035 in

0.0045 in

0.005 in

0.003 in

5.25 in

2.5

3.25

in

in

4.25 in

2.00 in

2.75 in

12.00 in

33.00 in

254.75 sfpm

0.0234 ipr

0.0168 ipr

0.0150 ipr

0.0234 ipr

-0.00220 in

-0.00490 in

0.00505 in

0.0035 in

-0.00100 in

-0.00255 in

0.00310 in

0.00100 in

5.00000 in

2.435 in

3 . 044 in

5.00000 in

2.127 in

2.659 in

7.000 in

42.200 in

Table 6.5 (CONTD.)
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Initial value of Pseudo Objective Function - 36459421.67

Final value of Pseudo Objective Function = 11.091

Initial value of true cost - 2.088 $

Final value of true cost - 11.091 $

Sum of initial constraint violations - 3645.941958

Sum of final constraint violations - 0.1042E-8

Table 6.5 (CONTD.)
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6.5 Design and Manufacture of Three shaft Assembly :

A transmission shaft assembly with three shafts needs to be

designed as shown in the Fig. 6.10 . The various components of the

assembly ( the shafts, bearings and the housing ) are to be

manufactured by the turning process. The optimal set of design

variables (machining parameters and component design parameters) needs

to be found for the case of minimum cost of manufacture using the

optimal design code described in the earlier chapters. The following

information gives the requirements and the specifications. Fig. 6.10

shows the details of this problem.

Pulley B (24 in. diameter) receives 30 hp at 360 rpm from above

at an angle of 45 degrees as in the previous problem. The 12 inch gear

C delivers the power to 18 inch gear D. There are two more gears E

(12" dia.) and G(18" dia.) mounted on the second shaft. On shaft 3

gears F and H rotate freely and one of the two can be engaged to the

shaft by a moveable dog clutch, thus allowing two possible speeds for

the shaft. It is required to find the optimal design of the shaft

assembly, i.e. optimal values must be found for the diameters of the

components being used, the loading distribution on the shaft and the

bearing design parameters. Also the optimal machining parameters are

to be determined in order to obtain the component design for the least

possible manufacturing cost. The following are the manufacturing

requirements desired :

Surface finish on outer surface of shafts : 50.0 mi. in. (rms)

Surface finish on inner surface of bearing : 80.0 mi. in. (rms)
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Surface finish on outer surface of bearing : 59.0 mi. in. (rms)

Surface finish on inner surface of housing

holes : 89.0 mi. in. (rms)

Maximum clearance between shaft outer surface and

inner surface of bearing : 0.010 in.

Minimum clearance between shaft outer surface and

inner surface of bearing : 0.0057 in.

Maximum clearance between bearing outer surface and

housing hole : 0.0057 in.

Minimum clearance between bearing outer surface and

housing hole : 0.002 in.

Minimum gap between upper & lower tolerances : 0.00155 in.

Nominal feeds for the turning of components : 0.04 ipr

Maximum tool nose radius : . 6 in

Maximum Deflection of any shaft : 0.0062 in

Maximum Deviation of any shaft : 0.0275 in

Maximum Deviation of shaftl & shaft2 from

mean position : 0.05 in

Using the same procedure as illustrated in Examples 6.3 and 6.4,

the loading can be resolved into the following horizontal and vertical

systems as shown in Figs. 6.11 and 6.12 respectively .

HPL0D(1,1)-B -618.7184 lb.
x

HPL0D(1,2)=C -875 lb.

HPL0D(2,1)=E =-1312.5 lb.
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HPLOD(2,2)-D --875 lb.

HPL0D(3,1)-F -1312.51 lb.

VPL0D(1,1)=B =618.7184 lb.

VPL0D(1,2)-C -318.474 lb.

VPL0D(2,1)-E -477.71 lb.

VPLOD(2,2)-D —318.474 lb.

VPL0D(3,1)-F —477.71 lb.
y

Regarding the load distribution the loads on the first shaft can be

placed first for convenience. However, the loads on the other shafts

are dependent on the load distribution on the first shaft since the

loads are meshing gears; hence the following relationships have to be

incorporated into the ASSIGN routine.

AHDIS(l.l) design variable

AHDIS(1,2) design variable

AHDIS(2,2)=D =AHDIS(1,2) ... Hload2 on shaftl and Hload2 on

shaft2 act at the same distance

from fixed reference end.

AHDIS(2,1) this is also a design variable as

it is not dependent on the loads on

shaftl

AHDIS(3,1)=AHDIS(2,1) loadl on shaft3 is at the same

location as loadl on shaft2.

Also the horizontal loads and the vertical loads act at the same point
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as they are derived from the same loads. Thus the following statements

are needed in ASSIGN routine :

AVDIS(l.l) = AHDIS(l.l)

AVDIS(1,2) = AHDIS(1,2)

AVDIS(2,2) = AHDIS(2,2)

AVDIS(2,1) = AHDIS(2,1)

AVDIS(3,1) = AHDIS(2,1)

The results obtained in this example are presented in Table 6.6 .
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RESULTS FOR EXAMPLE 6.5

DESIGN VARIABLE INITIAL GUESS FINAL VALUE

spos(i;

spib(i;

spob(i;

spih(i:

FDOS(l)

FDIB(l)

FDOB(l)

FDIH(l)

UTOLOS

(

1)

LTOLOS

(

1)

UTOLIB( 1)

LTOLIB( 1)

UTOLOB( 1)

LTOLOB( 1)

UTOLIH( 1)

LTOLIH( 1)

SPOS(2)

SPIB(2)

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

0.0045 in

0.005 in

0.0035 in

•0.0035 in

•0.0045 in

0.005 in

0.003 in

100.0 sfpm

100.0 sfpm

239.81 sfpm

291.04 sfpm

291.04 sfpm

254.75 sfpm

0.0232 ipr

0.0160 ipr

0.0130 ipr

0.0234 ipr

-0.00260 in

-0.00510 in

0.00485 in

0.00315 in

-0.00120 in

-0.00285 in

0.00255 in

0.00100 in

224.73 sfpm

291.04 sfpm

Table 6.6
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SP0B(2

SPIH(2,

FD0S(2;

FDIB(2;

FD0B(2;

FDIH(2;

UTOLOS :2)

LTOLOS [2)

UTOLIB :2)

LTOLIB :2)

UTOLOB [2)

LTOLOB [2)

UTOLIH [2)

LTOLIH [2)

SPOS(3;

SPIB(3;

SPOB(3;

SPIH(3;

FDOS(3;

FDIB(3;

FDOB(3;

FDIH(3;

UTOLOS

I

:3)

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

0.0045 in

0.005 in

0.0035 in

0.0035 in

0.0045 in

0.005 in

0.003 in

100.0 sfpm

100.0 sfpm

100.0 sfpm

100.0 sfpm

0.03 ipr

0.04 ipr

0.04 ipr

0.03 ipr

0.003 in

291.03 sfpm

254.75 sfpm

0.0229 ipr

0.0157 ipr

0.0126 ipr

0.0234 ipr

-0.00270 in

-0.00520 in

0.00475 in

0.00305 in

-0.00120 in

-0.00285 in

0.00255 in

0.00100 in

254.75 sfpm

291.04 sfpm

291.04 sfpm

254.75 sfpm

0.0234 ipr

0.0185 ipr

0.0138 ipr

0.0234 ipr

-0.00265 in

Table 6.6 (CONTD.)
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LT0L0S(3)

UT0LIB(3)

LT0LIB(3)

UT0L0B(3)

LT0L0B(3)

UT0LIH(3)

LT0LIH(3)

BLEN(l)

DIAOS(l)

DIAOB(l)

BLEN(2)

DIAOS(2)

DIAOB(2)

BLEN(3)

DIAOS(3)

DIAOB(3)

AHDIS(l.l)

AHDIS(1,2)

AHDIS(1,3)

-0 .0045 in

.005 in

.0035 in

-0 .0035 in

-0 .0045 in

.005 in

.003 in

5 .25 in

3,.2 in

3..7 in

4,,25 in

3. 25 in

3, 90 in

4, 25 in

3, 10 in

3, 50 in

14. 00 in

28. 00 in

37. 00 in

-0..00515 in

.00485 in

.00305 in

-0 .00120 in

-0 .00285 in

.00255 in

.00100 in

5 .000 in

2 .763 in

3 .454 in

5 .000 in

2 .940 in

3 .675 in

5 .000 in

2 .364 in

3 .100 in

8..540 in

31 .00 in

39 .52 in

Initial value of Pseudo Objective Function - 13872074.489

Final value of Pseudo Objective Function = 17.233

Table 6.6 (CONTD.)
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Initial value of true cost — 4.206 $

Final value of true cost - 17.233 $

Sum of initial constraint violations - 1387.2070283

Sum of final constraint violations - 0.000000000

Table 6.6(CONTD.)
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Thus the results show consistent satisfaction of the constraints

after optimization. It is evident from the results that the value of

the pseudo-objective function decreases considerably during the

process of optimization. The optimized true value is attained after

the satisfaction of all constraints; the initial true cost may

sometimes be lower than the final cost but this is because the initial

design is infeasible whereas the final design is not. Hence these

numerical examples makes it clear that the set of machining parameters

and the design parameters corresponding to the minimum cost of

manufacture can be found while ensuring the satisfaction of all the

design and manufacturing constraints.
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CHAPTER VII

CONCLUSION

The primary aim of the research work presented in this thesis

was to explore means to select optimal machining parameters for the

manufacture of transmission shaft assembly components at the least

possible cost while ensuring that all manufacturing requirements are

met. This method was then extended to include the selection of optimum

design parameters in addition to the manufacturing parameters for

simultaneously satisfying design and manufacture specifications.

A nonlinear mathematical programming approach was used to

achieve the objective of minimum manufacturing cost. Approximating

functions were fitted to existing tables relating the cutting

parameters to the tolerance and surface finish of the finished work

piece. Using these functions a generalised constrained optimization

problem for minimizing the manufacturing cost was formulated. The key

manufacturing parameters of feed, speed and upper and lower

manufacturing tolerances on part diameters were included in the design

vector. Various manufacturing specifications like surface finish, fit

requirements of mating parts and tolerance requirements were ensured

through the application of constraints. The integration of design and

manufacture was achieved by extending the formulation of the
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generalised constrained optimization problem to include design and

manufacturing considerations within a single optimization problem.

Design parameters like the dimensions of components and the locations

of loads on the shaft were were also included as design variables. The

design constraints which were added included the limits on shear

stress, maximum deflection, maximum deviation, etc. Further, the

approach was enhanced to be capable of handling single and multiple

shaft problems. The optimization procedure adopted for the solution of

the optimization problem was an exterior penalty function method using

a directed grid search for unconstrained minimization. The above

solution method was implemented in a computer aided design code that

can be used in two ways : firstly it can be used for the determination

of optimum machining parameters for a fixed design ; secondly, it can

also be used for the simultaneous optimization of design and

manufacturing parameters. The user has complete control over the

selection of design variables and can assign any set of parameters to

desired fixed values. The code thus gives the user the flexibility to

experiment with many different combinations of variables and parameter

values. Two classes of problems were solved using the developed code.

First, manufacturing problems with fixed design specifications were

solved to determine optimal machining parameters for minimum cost of

manufacture. In the second class of problems design parameters were

also included in the design vector. Additional examples were solved

after integrating the design constraints into the optimization

problem. Also multiple shaft problems were successfully solved for
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both classes of problems. The results obtained attest to the

feasibility and efficacy of the technique developed in this thesis.

7.2 Suggestions for future work :

There is a strong need to pursue extensive experimental work in

order to derive more accurate relationships between surface finish,

manufacturing tolerance, tool life, and the independent machining

parameters like cutting speed, feed, depth of cut, tool nose radius,

etc. If such relationships are used in the mathematical programming

models, the accuracy of the results can be further improved. Also some

more constraints can be added to the optimization model developed in

this thesis in order to include the influence of tool geometry on the

manufacturing cost.

More recent design theories for shaft design may be used instead

of the ASME shaft design code. Also, in order to obtain greater

computational efficiency, a derivative based optimization technique

can be used to minimize the cost of manufacture. There is also

potential for the use of multiobjective optimization techniques for

maximizing production rate and minimizing manufacturing cost at the

same time. The effect of the temperatures encountered during machining

operations and the effects of coolants on the surface conditions of

the work piece should also be considered in the optimization model.

Also the computer integrated optimization technique used in this work

may be extended to consider design and manufacture of other assemblies

and components as well as other machining processes like boring,
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milling, broaching, grinding, etc. Finally, a very general artificial

intelligence based CIM model can be developed after collecting

substantial knowledge about the various machining and design processes

and using this as a basis for building knowledge based systems which

could help the machinist in taking faster and better decisions.
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ABSTRACT

The conventional practice followed in the manufacture and design

of machined components is to select machining parameters based upon

experience. The selection is often conservative and thereby

uneconomical. Furthermore, manufacturing conditions are seldom taken

into account at the design stage. This work is an attempt to develop

an integrated approach to the optimal design and manufacture of turned

assemblies in order to obtain simultaneous optimization of design and

machining parameters. First, approximating functions were fitted to

existing tables relating the cutting parameters to the tolerance and

surface finish of the finished work piece. Using these functions, a

generalised constrained optimization problem for minimizing the

manufacturing cost was formulated. The design variables for this

problem include the cutting speeds, feed rates and upper and lower

manufacturing tolerances on the part diameters. The manufacturing

requirements like surface finish, tolerances and fit requirements

(clearance/interference) of mating parts are imposed through

constraint functions. The formulation of the generalised constrained

optimization problem was then extended to integrate design and

manufacture into a single optimization problem. Design parameters like

the dimensions of components, and the locations of loads on the shaft

were also included as design variables. The design constraints which

were added included the limits on shear stress, maximum deflection,



maximum deviation, etc. The formulation is capable of handling single

and multiple shaft problems. An exterior penalty function with a

directed grid search for unconstrained minimization was used to solve

the manufacturing optimization problem as well as the integrated

design-manufacture optimization problem. A reliable computer program

for the automatic formulation and solution of these problems was also

developed. Several example problems were solved using this program.

The results demonstrate the feasibility and efficacy of the methods

developed in this thesis.






