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Abstract
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number of the code type genera is finite. The genera of the lattices of rank larger than or

equal to 17 are non code type. We apply the idea of a vector valued modular form and the

representation of the modular group SL2(Z) in [BG07] to classify the genera of the VOAs

arising from the MTCs of ranks up to 4 and central charges up to 16.
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Chapter 1

Introduction

The notions of the genera of rational vertex operator algebras (VOAs) and the genera

of even lattices have been discussed in [Höh03]. There is a relation between the genera

of even lattices and VOAs such that a genus of even lattices is a subset of a genus of the

corresponding VOAs. It is also known that an even lattice can be constructed from a doubly

even binary code (cf. [Ebe02]). By giving a notion of the genera of doubly even binary codes,

we have that a genus of doubly even binary codes is a subset of a genus of the corresponding

even lattices. So there is an injection from the genera of doubly even codes into the genera

of even lattices and there is an injection from the genera of even lattices into the genera of

rational VOAs. In this thesis we would like to classify these genera of codes, lattices and

VOAs. First, we classify the genera of doubly even binary codes. Then, we classify the

genera of even lattices in such a way that they are of code type or not. A code type genus

of lattice is a lattice genus which contains only the lattices that can be constructed from a

doubly even code. Otherwise, a genus is called a non code type genus. Finally, we classify

the genera of the VOAs. We can classify only certain genera of the VOAs. By using the

fact that the category of the VOA modules has a structure of a modular tensor category

(MTC) [Hua08], we can classify the VOA genera arising from the MTCs of small ranks.

We organize our results into two main chapters: the classification of the genera of code
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type lattices and the classification of the genera of the rational vertex operator algebras

(VOAs) arising from the small modular tensor categories (MTCs).

We give a brief detail for codes and lattices in chapter 2. And we define the genera of

doubly even codes, even lattices, and rational VOAs in chapter 3. Let LC be the integral

lattice constructed from the doubly even binary code C. Depending on the length and

the dimension of the code C, the genus containing LC contains either only the lattices

constructed from the codes in the same genus as C or there is at least one lattice in the

genus that is not constructed from any code. We would like to classify the genera of both

types: code type and non code type genera. By computation, using the computer algebra

software such as Magma, we can classify the lattice genera of both types up to the codes of

length 23 with at least the largest dimensions. Using the results from the computation and

applying some lemmas in chapter 4 and the complete classification of the even unimodular

lattices of dimension 24, we can conclude that all the genera associated with the codes of

length from 17 with any dimension are non code type. And the code type lattice genera are

listed in Proposition 4.2.7. The method of computation and the main results are explained

in chapter 4 and Appendix A.

In chapter 5, we classify the genera of the VOAs arising from the small MTCs. The

family of the characters of the VOA modules forms a vector valued modular function of a

representation ρ of the modular group SL2(Z) (cf. [Zhu96]). So we have a space consisting

of these vector valued modular forms. We apply the idea of the fundamental matrix of

the representation of the modular group in [BG07] to classify the space of vector valued

modular forms and hence the genera of the VOAs. With the fact that the category of the

VOA modules forms a MTC, a genus of the VOAs depend only on the corresponding MTC

and the central charge. We use the list of the MTCs classified in [RSW09] in our genera

classification. We only study the cases of unitary MTCs and there are a total of 35 of

them. This classification is done by computation mainly with Mathematica and Magma.

The method of computation and the results are in chapter 5 and in Appendix B.
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Chapter 2

Codes, Lattices, Vertex Operator

Algebras, and Modular Tensor

Categories

2.1 Codes

In this section we introduce the definitions and some properties of binary codes as in [Ebe02]

Let Fnq be a finite field with q = pr (p prime).

Definition 2.1.1. A code C of length n is a nonempty proper subset of Fnq .

If |C| = 1 the code is called trivial. If q = 2 the code is called a binary code. The

elements of C are called codewords, and n is called the wordlength of C.

Let x = (x1, ..., xn) ∈ Fnq . The weight w(x) of x is the number of nonzero xi. If x ∈ Fnq ,

y ∈ Fnq , then the (Hamming) distance d(x, y) of x and y is defined by d(x, y) := w(x− y).

Let C be a nontrivial code. The minimum of the distance d(x, y) for x, y ∈ C, x 6= y, is

called the minimum distance of the code C. An (n,M, d)-code is a code with wordlength n,

M codewords, and minimum distance d.
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Definition 2.1.2. A linear code C is a linear subspace of Fnq .

If C is a linear code, k is the dimension of C as an Fnq -vector space and d is its minimum

distance, then C is called an [n, k, d]-code.

For a linear code C, the minimum distance is equal to the minimum weight, i.e., to the

minimum of the weights of non zero codewords.

Consider the vectors of Fnq as column vectors. Then a linear code is defined by an exact

sequence

0→ Fkq
A−→ Fnq

B−→ Fn−kq → 0

where A and B are linear mappings. The exactness of the sequence is equivalent to the

three conditions: rank A = k,BA = 0, and rank B = n − k. The code C defined by this

sequence can be obtained in two ways.

First C = A(Fkq) ⊂ Fnq . The linear mapping A is given by an n × k matrix A. The

columns of A form a basis of C. Usually one considers the transpose G = At of A; this is

k × n matrix for which the rows form a basis of C. G is called a generator matrix of C.

On the other hand C = ker B, i.e., x ∈ C if and only if Bx = 0. The linear mapping

B is given by an (n − k) × n matrix B. The rows of B are the relations defining C. The

matrix B is called a parity check matrix of C. For every x ∈ Fnq , we call Bx ∈ Fn−kq the

syndrome of x. The codewords of C are characterized by having syndrome 0.

Let C be a linear code defined by an exact sequence as above. From linear algebra we

know that a linear mapping φ : V → W between vector spaces V and W induces a dual

mapping φ∗ : W ∗ → V ∗ between the corresponding dual spaces W ∗ and V ∗; if V and W

are finite dimensional, then we can identify the vector spaces with their corresponding dual

spaces after the choice of bases. Therefore the above sequence induces a dual sequence

0→ Fn−kq
Bt−→ Fnq

At−→ Fkq → 0.

The condition BA = 0 is equivalent to the condition AtBt = 0. This exact sequence
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defines the dual code C⊥, i.e., C⊥ := Bt(Fn−kq ). If C has dimension k then C⊥ has dimension

n− k.

For x, y ∈ Fnq we define their scalar product x · y by

x · y :=
n∑
i=1

xiyi.

Lemma 2.1.3 (cf. [Ebe02]). C⊥ = {y ∈ Fnq | x · y = 0 for all x ∈ C}.

A linear code C is called self-dual if and only if C = C⊥. Note that dim C + dim C⊥

= n, so C = C⊥ implies that n is even, dim C =
n

2
and C ⊂ C⊥.

A binary code C is called doubly even, if the weights w(x) of all codewords x ∈ C are

divisible by 4. A doubly even code C satisfies C ⊂ C⊥, since over Z

x · y =
1

2
((x+ y)2 − x2 − y2), where x2 = x · x.

Now we will give some examples of doubly even codes which are constructed in [DFG+11].

For each N , there is a trivial doubly even code {0000} generated by an empty matrix which

we call tN . For each even N ≥ 4, there is a doubly even code called dN of length N and

with N
2
− 1 generators, with the generating set



111100000 · · · 00000

001111000 · · · 00000

000011110 · · · 00000

...

000000000 · · · 01111


.

For example, d4 is generated by [1111], and d6 is generated by

 111100

001111

.
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When N is congruent to 7 or 8 modulo 8 there is an important doubly even code called

eN , the generating set of which is that of dN (or t1⊕dN−1 when N ≡ 7 (mod 8)) augmented

by an additional generator of the form 101010.... For example,

e7 :


1111000

0011110

1010101

 , e8 :



11110000

00111100

00001111

10101010


.

e7 is known as the Hamming code (7,3) and e8 is the extended Hamming code (8,4).

For any N ≡ 0 (mod 4) there is an (N ,1) doubly even code hN with the generating set

[111...1]. Note that h4 = d4, but hN ⊂ dN for N = 8,12,16,... .

2.2 Lattices

In this section we introduce the definitions and some properties of integral lattices as in

[Ebe02].

Definition 2.2.1. A lattice in Rn is a subset Γ ⊂ Rn with the property that there exists

a basis (e1, ..., en) of Rn such that Γ = Ze1 ⊕ ... ⊕ Zen, i.e., Γ consists of all integral linear

combinations of the vectors e1, ..., en.

Let Γ be a lattice in Rn. A basis (e1, ..., en) of Rn with Γ = Ze1 ⊕ ... ⊕ Zen is called a

basis of Γ. The quotient Rn/Γ is an n-dimensional torus. It is obtained by identifying the

faces of the fundamental parallelotope

P = {λ1e1 + ...+ λnen|0 ≤ λi ≤ 1}.
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The volume of a lattice is

vol(Rn/Γ) = vol(P ) = |det((e1, ..., en))|

where ((e1, ..., en)) is the matrix whose rows are the vectors e1, ..., en.

More generally, let Γ′ ⊂ Rn be a lattice with Γ′ ⊂ Γ. Then clearly the index |Γ/Γ′| is

finite and

vol(Rn/Γ′) = vol(Rn/Γ)|Γ/Γ′|.

We denote the Euclidean scalar product of two vectors x, y ∈ Rn by x · y. So

x · y =
n∑
i=1

xiyi.

The Euclidean scalar product is a non-degenerate, positive definite, symmetric bilinear

form. Put aij = ei · ej and let A be the matrix ((aij)). Let C be the matrix ((e1, ...en)).

Then A = CCt. Therefore,

vol(P ) = |detC| =
√

detA.

Let V = Rn. We identify V with the dual vector space V ∗ = Hom(V,R) by means of

the mapping V → V ∗, x 7→ fx, with fx(y) = x · y. Let Γ be a lattice in Rn. We denote the

dual lattice of Γ by Γ∗. It is

Γ∗ = Hom(Γ,Z) = {x ∈ Rn|x · y ∈ Z for all y ∈ Γ}.

Let (e1, ..., en) be a basis of Γ, and let (e∗1, ..., e
∗
n) be the dual basis , i.e., e∗i · ej = δij.

Then e∗i =
n∑
j=1

bijej and B = ((bij)) = A−1. The e∗i form a basis of Γ∗.

A lattice Γ ∈ Rn is called integral, if x · y ∈ Z for all x, y ∈ Γ.

A lattice Γ ∈ Rn is called unimodular if Γ∗ = Γ.

Now let Γ be an integral lattice with basis (e1, ..., en), and let A be the matrix A =
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((ei · ej)). Then A is an integral matrix and the determinant detA of A is an integer, and it

is called the discriminant of the lattice Γ, written disc(Γ). And so

disc(Γ) = |Γ∗/Γ|.

Let Γ be an integral lattice in Rn. A Z-submodule Λ of Γ is called a sublattice of Γ. It

is a lattice in some subspace W ⊂ Rn which is isomorphic to Rk for some k. In particular,

the dual lattice Λ∗ is defined to be

Λ∗ = {x ∈ W |x · y ∈ Z for all y ∈ Λ}.

A sublattice Λ of Γ is call primitive if Γ/Λ is a free Z-module. If K is a subset of Γ we

call the Z-submodule K⊥ = {y ∈ Γ|x · y = 0 for all x ∈ K} the sublattice orthogonal to K.

Let Λ1, ...,Λm be sublattices of Γ. The lattice Γ is called the orthogonal direct sum of the

sublattices Λ1, ...,Λm denoted by Γ = Λ1⊕ ...⊕Λm, if Γ is the direct sum of the submodules

Λ1, ...,Λm and x · y = 0 for all x ∈ Λi, y ∈ Λj, and i 6= j.

Definition 2.2.2. An integral lattice Γ is called even if x2 = x ·x ≡ 0(mod 2) for all x ∈ Γ.

In matrix terms, this means that the diagonal elements ei · ej of the matrix A are all

even.

Let L be an even lattice in Rn. Then we have a canonical embedding L ↪→ L∗ into the

dual lattice of L. The quotient group

A := L∗/L

is a finite abelian group of order disc(L). We define a mapping bA : A× A→ Q/Z by

bA(x+ L, y + L) = x · y + Z, where x, y ∈ L∗,
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and a mapping qA : A→ Q/2Z, by

qA(x+ L) = x2 + 2Z, where x ∈ L∗.

Then bA is a finite symmetric bilinear form, and qA is a finite quadratic form. By this we

mean a mapping q : G→ Q/2Z defined on a finite abelian group G satisfying the following

conditions:

(i) q(rx) = r2q(x) for all r ∈ Z and x ∈ A,

(ii) q(x+ y)− q(x)− q(y) ≡ 2b(x, y)( mod 2Z),

where b : G × G → Q/Z is a finite symmetric bilinear form, which we call the bilinear

form corresponding to q. The form qA is called the discriminant quadratic form of L.

Next we will introduce the definition of the root lattices.

Let L ⊂ Rn be an even lattice, i.e., x2 ∈ 2Z for all x ∈ L. Let

R := {x ∈ L|x2 = 2}.

An element x ∈ R is called a root.

Definition 2.2.3. An even lattice L ⊂ Rn is called a root lattice, if R generates L.

A lattice L is called reducible, if L is the orthogonal direct sum L = L1 ⊕ L2 of two

lattices L1 ⊂ Rn1 , L2 ⊂ Rn2 with n1, n2 ≥ 1; otherwise it is called irreducible.

Theorem 2.2.4 (cf. [Ebe02]). Every root lattice is the orthogonal direct sum of irreducible

root lattices.

There are five types of irreducible root lattices: Types An, Dn (n ≥ 3), E6, E7, and E8

(cf. Section 1.4 in [Ebe02]).

Let L ⊂ Rn be a lattice. We associate to L a function which is defined on the upper half

plane

H = {τ ∈ C|Imτ > 0} ⊂ C.

9



For τ ∈ H let q = e2πiτ

Definition 2.2.5. The theta function of the lattice L is the function

θL(τ) :=
∑
x∈L

q
1
2
x·x

for τ ∈ H.

2.3 Vertex Operator Algebras (VOAs)

In this section we introduce the definitions and some properties of vertex operator algebras

as in [FBZ04].

2.3.1 Formal distribution

Let R be a C-algebra.

Definition 2.3.1. An R-valued formal power series (or formal distribution) in variables

z1, z2, ..., zn is an arbitrary (finite or infinite) series

A(z1, z2, ..., zn) =
∑
i1∈Z

· · ·
∑
in∈Z

Ai1,...,inz
i1
1 · · · zinn , (2.3.1)

where each Ai1,...,in ∈ R. These series form a vector space, which is denoted by

R[[z±1
1 , ..., z±1

n ]].

In general, a product of two elements of R[[z±1
1 , ..., z±1

n ]] does not make sense, since

individual coefficients of the product are infinite sums of coefficients of the factors. However,

the product of a formal power series by a Laurent polynomial (i.e., a series (2.3.1) such that

Ai1,...,in = 0 for all but finitely many n-tuples (i1, ..., in) is always well-defined.
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Definition 2.3.2. Given a formal power series in one variable, f(z) =
∑

z∈Z aiz
i, we define

its residue (at 0) as

Resf(z)dz = Resz=0f(z)dz = a−1.

Note that if R = C and f(z) is the Laurent series of a meromorphic function defined on

a disc around 0, having poles only at 0, then

Resz=0f(z)dz =
1

2πi

∮
f(z)dz,

where the integral is taken over a closed curve winding once around 0.

Any formal power series f(z) =
∑

n∈Z fnz
n in C[[z±1]] defines a linear functional on the

space of Laurent polynomials C[z, z−1] whose value on g ∈ C[z, z−1] equals

Resz=0f(z)g(z)dz.

Definition 2.3.3. The formal delta-function δ(z − w) is a formal power series in two vari-

ables z, w defined by

δ(z − w) =
∑
m∈Z

zmw−m−1. (2.3.2)

Its coefficients amn = δm,−n−1 are supported on the diagonal m + n = −1, and hence it

can be multiplied by an arbitrary formal power series in one variable (i.e., depending only

on z or only on w). Indeed, for such a series A(w), we obtain

A(w)δ(z − w) =
∑
k∈Z

Akw
k
∑
m∈Z

zmw−m−1 =
∑
m,n∈Z

Am+n+1z
mwn,

so each coefficient is well-defined. Furthermore, the formula above shows that as formal
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power series in z, w,

A(z)δ(z − w) = A(w)δ(z − w), (2.3.3)

which motivates the terminology “delta-function”.

We obtain from formula (2.3.3) that

(z − w)δ(z − w) = 0 (2.3.4)

and, by induction,

(z − w)n+1∂nwδ(z − w) = 0. (2.3.5)

Lemma 2.3.4 (cf. [FBZ04]). Let f(z, w) be a formal power series in R[[z±1, w±1]] satisfying

(z − w)Nf(z, w) = 0 for a positive integer N . Then f(z, w) can be written uniquely as a

sum

N−1∑
i=0

gi(w)∂iwδ(z − w), gi(w) ∈ R[[w±1]]. (2.3.6)

2.3.2 Fields

Definition 2.3.5. [Fields] Let V be a vector space over C. Denote by EndV the algebra of

linear operators on V . A formal power series

A(z) =
∑
j∈Z

Ajz
−j ∈ EndV [[z±1]] (2.3.7)

is called a field on V if for any v ∈ V we have Aj · v = 0 for large enough j.

In other words, A(z) · v is an element of V ((z)), the space of formal Laurent series with

coefficients in V (i.e., it has only finitely many terms with negative powers of z). Fields on
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V form a vector space denoted by F(V ).

For any C-algebra R, we denote by R[[z]] the space of R-valued formal Taylor series in

z. The space R((z)) of R-valued formal Laurent series in z is by definition the space of

series
∑

n∈Z anz
n, where an ∈ R for all n, and there exists N ∈ Z such that an = 0,∀n ≤ N .

Note that R((z)) is an algebra.

Denoted by C((z))((w)) the space R((w)), where R = C((z)). In other words, this is

the space of Laurent series in w whose coefficients are Laurent series in z.

For any vector v ∈ V and any linear functional ϕ : V → C, the matrix element 〈ϕ,A(z)v〉

of a field A(z) is a Laurent power series.

Given another field, B(w), we consider the composition A(z)B(w) as an EndV -valued

formal power series in z, w. Given v ∈ V and ϕ ∈ V ∗ (where V ∗ denotes the vector space

of all linear functionals on V ), consider the matrix element

〈ϕ,A(z)B(w)v〉 ∈ C[[z±1, w±1]].

From the definition of a field , we see that this formal power series actually belongs to

C((z))((w)).

Definition 2.3.6. Two fields A(z) and B(w) acting on a vector space V are said to be local

with respect to each other if for every v ∈ V and ϕ ∈ V ∗, the matrix elements

〈ϕ,A(z)B(w)v〉 and 〈ϕ,B(w)A(z)v〉

are expansions of one and the same element

fv,ϕ ∈ C[[z, w]][z−1, w−1, (z − w)−1]

in C((z))((w)) and C((w))((z)), respectively, and the order of pole of fv,ϕ in (z − w) is

uniformly bounded for all v, ϕ.
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The last condition above may be reformulated as saying that there exists N ∈ Z+ such

that

(z − w)Nfv,ϕ ∈ C[[z, w]][z−1, w−1]

for all v, ϕ. But then the expansions of (z − w)Nfv,ϕ in C((z))((w)) and C((w))((z)) are

equal to each other. Therefore if A(z) and B(w) are local with respect to each other, then

(z − w)NA(z)B(w) = (z − w)NB(w)A(z),

or equivalently, (z − w)N [A(z), B(w)] = 0, where [A,B] := AB − BA. The following

proposition shows that the converse is also true.

Proposition 2.3.7 (cf. [FBZ04]). Two fields A(z), B(w) are local if and only if there exists

N ∈ Z+ such that

(z − w)N [A(z), B(w)] = 0 (2.3.8)

as a formal power series in EndV [[z±1, w±1]].

2.3.3 Definition of a Vertex Algebra

Definition 2.3.8. A vertex algebra is a collection of data:

• (space of states) a vector space V ;

• (vacuum vector) a vector |0〉 ∈ V ;

• (translation operator) a linear operator T : V → V ;

• (vertex operators) a linear operation

Y (·, z) : V → EndV [[z±1]]

14



taking each A ∈ V to a field acting on V ,

Y (A, z) =
∑
n∈Z

A(n)z
−n−1.

These data are subject to the following axioms:

• (vacuum axiom) Y (|0〉, z) = IdV . Furthermore, for any A ∈ V we have

Y (A, z)|0〉 ∈ V [[z]].

so that Y (A, z)|0〉 has a well-defined value at z = 0, and

Y (A, z)|0〉|z=0 = A.

In other words, A(n)|0〉 = 0, n ≥ 0, and A(−1)|0〉 = A.

• (translation axiom) For any A ∈ V ,

[T, Y (A, z)] = ∂zY (A, z)

and T |0〉 = 0.

• (locality axiom) All fields Y (A, z) are local with respect to each other.

A vertex algebra is called Z-graded if V is a Z-graded vector space, |0〉 is a vector of

degree 0, T is a linear operator of degree 1, and for A ∈ Vm the field Y (A, z) has conformal

dimension m (i.e., degA(n) = −n+m− 1).

Definition 2.3.9. A vertex algebra homomorphism ρ between vertex algebras

(V, |0〉), T, Y )→ (V ′, |0〉′, T ′, Y ′)
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is a linear map V → V ′ mapping |0〉 to |0〉′, intertwining the translation operators, and

satisfying

ρ(Y (A, z)B) = Y (ρ(A), z)ρ(B).

A vertex subalgebra V ′ ⊂ V is a T -invariant subspace containing the vacuum vector, and

satisfying Y (A, z)B ∈ V ′((z)) for all A,B ∈ V ′ (with the induced vertex algebra structure).

A vertex algebra ideal I ⊂ V is a T -invariant subspace satisfying Y (A, z)B ∈ I((z)) for

all A ∈ I and B ∈ V . And by the skew-symmetry property, we have Y (B, z)A ∈ I((z)) as

well. It follows that for any proper ideal I, V/I inherits a natural quotient vertex algebra

structure.

Lemma 2.3.10 (cf. [FBZ04]). For two vertex algebras (V1, |0〉1, T1, Y1) and (V2, |0〉2, T2, Y2),

the data (V1 ⊗C V2, |0〉1 ⊗ |0〉2, T1 ⊗ 1 + 1⊗ T2, Y ), where

Y (A1 ⊗ A2, z) = Y1(A1, z)⊗ Y2(A2, z)

defines a vertex algebra called the tensor product of V1 and V2.

2.3.4 Examples of Vertex Algebras

There are some examples of vertex algebras in [FBZ04] such as the vertex algebra associ-

ated to the Heisenberg Lie algebra which define the vertex algebra structure via the Fock

representation π, the vertex algebra associated to the Affine Kac-Moody algebras, and the

Virasoro vertex algebra.

We will give brief details of the affine Kac-Moody algebras and their vertex algebras and

the Virasoro vertex algebra below (see [FBZ04] for the full details).

An affine Kac-Moody algebra is defined as a central extension of the formal loop

algebra. Let g be a finite-dimensional simple Lie algebra g over C. We define the formal

loop algebra of g,

Lg = g((t)) = g⊗ C((t)),
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as the Lie algebra with the commutator

[A⊗ f(t), B ⊗ g(t)] = [A,B]⊗ f(t)g(t).

We now define the affine Kac-Moody algebra ĝ as a central extension

0→ CK → ĝ→ Lg→ 0.

As a vector space, ĝ ' Lg⊕CK, with the commutation relation [K, ·] = 0 (so K is central)

and

[A⊗ f(t), B ⊗ g(t)] = [A,B]f(t)g(t)− (Rest=0fdg)(A,B)K.

The Kac-Moody cocycle is non-trivial, i.e., g cannot be split as a Lie algebra into a direct

sum Lg ⊕ CK. Thus the Kac-Moody extension is a universal central extension of Lg, i.e.,

any other central extension g̃ of g admits a Lie algebra homomorphism ĝ→ g̃.

The vacuum representation. Inside the loop algebra Lg = g((t)) there is a “positive”

Lie subalgebra g[[t]] = g ⊗ C[[t]]. If f, g ∈ C[[t]], then Rest=0fdg = 0. Hence the central

extension becomes trivial when restricted to this subspace, and so g[[t]] and g⊕CK are Lie

subalgebra of ĝ.

Now consider the one-dimensional representation Ck of g[[t]] ⊕ CK on which g[[t]] acts

by 0 and K acts as multiplication by a scalar k ∈ C. We define the vacuum representation

of level k of ĝ as the representation induced from Ck:

Vk(g) = Indĝ
g[[t]]⊕CKCK = U(ĝ)⊗U(g[[t]]⊕CK) Ck,

where U(ĝ) denotes the universal enveloping algebra of ĝ. More generally, we will say that

a module M over ĝ has level k ∈ C, if K acts on M as multiplication by k.

Vertex algebra structure. We now can define a vertex algebra structure on the

vacuum representation. Let {Ja}a=1,...,dim g be an ordered basis of g. Split the extension ĝ
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as a vector space. For any A ∈ g and n ∈ Z, we denote

An
def
= A⊗ tn ∈ Lg.

Then the elements Jan, n ∈ Z, and K form a (topological) basis for ĝ, while the elements

Jan, n ≥ 0, and K form a basis for the “positive” subalgebra from which we induced Vk(g)

has a PBW basis of monomials of the form

Ja1n1
...Jamnmvk,

where n1 ≤ n2 ≤ ... ≤ nm < 0, and if ni = ni+1, then ai = ai+1.

Definition 2.3.11. The normally ordered product of the fields

A(z) =
∑

n∈ZA(n)z
−n−1, B(w) =

∑
m∈ZB(m)w

−m−1

is defined as the formal power series

: A(z)B(w) : =
∑

n∈Z
(∑

m<0A(m)B(n)z
−m−1 +

∑
m≥0B(n)A(m)z

−m−1
)
w−n−1

= A(z)+B(w) +B(w)A(z)−,

where for a formal power series f(z) =
∑

n∈Z fnz
n, we write

f(z)+ =
∑

n≥0 fnz
n, f(z)− =

∑
n<0 fnz

n.

We define a Z+-graded vertex algebra structure on Vk(g) as follows:

• Vacuum vector : |0〉 = vk.

• Translation operator : Tvk = 0, [T, Jan] = −nJan−1.

• Vertex operators : Y (vk, z) = Id,

Y (Ja−1vk, z) = Ja(z) =
∑
n∈Z

Janz
−n−1,
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and in general,

Y (Ja1n1
...Jamnmvk, z) =

1

(−n1 − 1)!...(−nm − 1)!
: ∂−n1−1

z Ja1(z)...∂−nm−1
z Jam(z) : .

• Z+-gradation :

deg Ja1n1
...Jamnmvk = −

m∑
i=1

ni.

Next we will define the Virasoro vertex algebra. Let K = C((t)) and O = C[[t]].

Consider the Lie algebra DerK = C((t))∂t of derivation of K. The Virasoro algebra is by

definition the central extension of DerK:

0→ CC → V ir → DerK→ 0,

defined by the commutation relations

[f(t)∂t, g(t)∂t] = (fg′ − f ′g)∂t −
1

12
(Rest=0fg

′′′dt)C.

It is known that this extension is universal. It has generators C, and

Ln = −tn+1∂t, n ∈ Z,

satisfying the relations that C is central and

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mC.

We will say that a module M over the Virasoro algebra has central charge c ∈ C, if C

acts on M by multiplication by c.

Now we are ready to define the Virasoro vertex algebra. Note that DerO = C[[t]]∂t. We

can pick the induced representation in which the generating vector |0〉 = 0 for all n ≥ −1.
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More precisely, let U(V ir) be the universal enveloping algebra of V ir. For each c ∈ C we

define the induced representation

Virc = IndV irDerO⊕CCCC = U(V ir)⊗U(DerO⊕CC) Cc,

where C acts as multiplication by c and DerO acts by zero on the one-dimensional module

CC . Note that VirC has central charge c as a module over the Virasoro algebra.

By the Poincaré-Birkhoff-Witt theorem, Virc has a PBW basis consisting of monomials

of the form

Lj1 ...Ljmvc, j1 ≤ j2 ≤ ... ≤ jm ≤ −2. (2.3.9)

Here vC is the image of 1⊗ 1 ∈ U(V ir)⊗CC in the induced representation, and we take

it to be the vacuum vector of the vertex algebra. We define a Z+-gradation on VirC by the

formulas degLn = −n, degvC = 0.

As the translation operator we take T = L−1 and set

Y (L−2vC , z)
def
= T (z) =

∑
n∈Z

Lnz
−n−2.

This is the generating field of VirC . It has conformal dimension 2. Next we define the vertex

operators Y (A, z) for the PBW monomial of the form 2.3.9 :

Y (Lj1 ...LjmvC , z) =
1

(−j1 − 2)!
...

1

(−jm − 2)!
: ∂−j1−2

z T (z)...∂−jm−2
z T (z) : .

The Virasoro vertex algebra V irc is reducible as a module over the Virasoro algebra if

and only if

c = c(p, q)
def
= 1− 6(p− q)2

pq
, p, q > 1, (p, q) = 1.

Let Lc(p,q) be the irreducible quotient of V irc(p,q) (cf. [FBZ04]). Then Lc(p,q) is a vertex
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algebra which is a simple quotient of V irc(p,q).

2.3.5 Further Definitions and Theorems

Definition 2.3.12. [Vertex operator algebra] A Z≥0-graded vertex algebra V is called a

vertex operator algebra (VOA), of central charge c ∈ C, if we are given a non-zero conformal

vector ω ∈ V2 such that the Fourier coefficients LVn of the corresponding vertex operator

Y (ω, z) =
∑
n∈Z

LVn z
−n−2

satisfy the definition relations of the Virasoro algebra with central charge c, and in addition

we have LV−1 = T , LV0 |Vn = nId.

The Virasoro vertex algebra VirC is clearly a VOA, with central charge c and conformal

vector ω = L−2vc.

Definition 2.3.13. [Modules over vertex algebras] Let (V, |0〉, T, Y ) be a vertex algebra.

A vector space M is called a V − module if it is equipped with an operation YM : V →

EndM [[z±1]] which assigns to each A ∈ V a field

YM(A, z) =
∑
n∈Z

AM(n)z
−n−1

on M subject to the following axioms:

• YM(|0〉, z) = IdM ;

• for all A,B ∈ V , C ∈M the three expressions

YM(A, z)YM(B,w)C ∈M((Z))((w)),

YM(B,w)YM(A, z)C ∈M((w))((z)), and

21



YM(Y (A, z − w)B,w)C ∈M((w))((z))

are the expressions, in their respective domains, of the same element of

M [[z, w]][z−1, w−1, (z − w)−1].

If V is Z-graded, then a V -module M is called graded if M is a C-graded vector space

and for A ∈ Vm the field YM(A, z) has conformal dimension m, i.e., the operator AM(n) is

homogeneous of degree −n+m− 1.

These axioms imply that V is a module over itself. And we also have the notions of a

submodule and quotient module. A module M whose only submodules are 0 and itself is

called simple or irreducible.

Now we will define a lattice vertex algebra as follows: Let H̃ be the Weyl algebra (cf.

Section 2.1.2 in [FBZ04]). For λ ∈ C, let πλ be the H̃ module generated by a vector |λ〉

such that

bn|λ〉 = 0, n ≥ 0, b0|λ〉 = λ|λ〉.

Let L be a lattice of finite rank equipped with a symmetric bilinear form (·, ·) : L×L→ Z

such that (λ, λ) > 0 for all λ ∈ L \ {0}.

Set h = L⊗Z C. The bilinear form on L indicates a bilinear form on h, for which we use

the same notation. Let ĥ be the central extension of h((t)),

0→ C1→ ĥ→ h((t))→ 0,

with the commutation relations

[A⊗ f(t), B ⊗ g(t)] = −(A,B)(Resf(t)g′(t)dt)1.

Define the Weyl algebra H̃L as the enveloping algebra of ĥ module the relation 1 = 1.

22



It has generators hn, h ∈ h, n ∈ Z, and relation

[hn, gm] = n(h, g)δn,−m.

For λ ∈ h, define the Fock representation πλ of H̃L, generated by the vector |λ〉, such

that

hn|λ〉 = 0, n > 0; h0|λ〉 = (λ, h)|λ〉.

The Fock representation π0 carries a vertex algebra structure, define in the same way as

in the case when dimh = 1.

Definition 2.3.14. [Rational vertex algebras] A vertex operator algebra V is called rational

if every Z≥0-graded V -module is completely reducible (i.e., isomorphic to a direct sum of

simple V -modules).

This condition implies that

1. V has finitely many inequivalent simple Z≥0-graded modules;

2. the graded components of each simple Z≥0-graded V -module are finite dimensional.

If M is a simple Z≥0-graded V -module, then the Virasoro operator LM0 on M is auto-

matically semi-simple and hence defines a gradation on M . Any other Z≥0-gradation on M

will necessarily coincide with it up to a shift by a complex number. The above properties

allow us to attach to a Z≥0-graded simple V -module M its character

ch M = TrMq
LM0 −c/24 =

∑
α

dimMαq
α−c/24,

where Mα is the subspace of M on which LM0 acts by multiplication by α, c is the central

charge of V , and q = e2πiτ .

Now let C2(V ) be the subspace of V spanned by all elements of the form A−2 ·B for all
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A,B ∈ V . Then a rational vertex algebra V is said to satisfy the C2 cofiniteness condition

if

1. dimV/C2(V ) <∞;

2. every vector in V can be written as a linear combination of vectors of the form

Ln1 ...LnkA, ni < 0, where A satisfies LnA = 0 for all n > 0.

Theorem 2.3.15 (cf.Y.Zhu [Zhu96]). Let V be a rational vertex algebra satisfying the C2

cofiniteness condition, and let {M1, ...,Mn} be the set of all inequivalent simple Z-graded

V -modules (up to an isomorphism). Then the vector space spanned by ch M i, i = 1, ..., n, is

invariant under the action of SL2(Z).

The lattice vertex algebra is one of the examples of rational vertex algebras (cf.[Don93]).

Let L be an even positive definite lattice in a real vector space W . We can attached to it a

vertex algebra VL. Its inequivalent simple modules are parameterized by L∗/L, where L∗ is

the dual lattice. The characters of these modules are the theta-functions corresponding to

L. The vertex algebra VL is the chiral symmetry algebra of the free bosonic conformal field

theory compactified on the torus W/L.

Definition 2.3.16. (cf. [Höh03]) A VOA V is called unitary if V can be defined over the

real numbers and the natural invariant symmetric form on it is positive definite.

The irreducible quotient of V irc(p,q), Lc(p,q) is a rational VOA which is called the “minimal

model” of conformal field theory. If Lc(p,q) is unitary, i.e., c(p, q) < 1 or q = p + 1, then

c(p, q) = 1− 6

p(p+ 1)
for p = 2, 3, 4, .... We call Lc(0) the Virasoro minimal model VOA.

2.4 Modular Tensor Categories (MTCs)

In this section we introduce the definitions and some properties of modular tensor categories

as in [Tur94].
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2.4.1 Ribbon Categories

Definition 2.4.1. [Monoidal categories] A strict monoidal category is a category C equipped

with a tensor product and an object 1 = 1C, called the unit object, such that the following

conditions hold.

For any object V of C

V ⊗ 1 = V, 1⊗ V = V (2.4.1)

and for any triple U , V , W of objects of C, we have

(U⊗ V)⊗W = U⊗ (V⊗W). (2.4.2)

For any morphism f in C,

f ⊗ id1 = id1 ⊗ f = f (2.4.3)

and for any triple f , g, h of morphisms in C,

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h). (2.4.4)

More general monoidal categories are defined similarly to strict monoidal categories

though instead of (2.4.1), (2.4.2) one assumes that the right-hand sides and left-hand sides

of these equalities are related by fixed isomorphisms. These fixed isomorphisms should

satisfy two compatibility conditions called the pentagon and triangle identities. These iso-

morphisms should also appear in (2.4.3) and (2.4.4) in the obvious way. And we can consider

mainly with strict monoidal categories because of MacLane’s coherence theorem which es-

tablishes equivalence of any monoidal category to a certain strict monoidal category.

The tensor multiplication of modules over a commutative ring is commutative in the
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sense that for any modules V , W , there is a canonical isomorphism V ⊗W → W ⊗V . This

isomorphism transforms any vector v ⊗ w into w ⊗ v and extends to V ⊗W by linearity.

It is called the flip and denoted by PV,W . The system of flips is compatible with the tensor

product in the obvious way: for any three modules U , V , W , we have

PU,V⊗W = (idV ⊗ PU,W )(PU,V ⊗ idW ), PU⊗V,W = (PU,W ⊗ idV )(idU ⊗ PV,W ).

Definition 2.4.2. [Braiding in monoidal categories] A braiding in a monoidal category C

consists of a natural family of isomorphisms

c = {cV,W : V ⊗W → W ⊗ V }, (2.4.5)

where V , W run over all abjects of C, such that for any three objects U , V , W , we have

cU,V⊗W = (idV ⊗ cU,W )(cU,V ⊗ idW ), (2.4.6)

cU⊗V,W = (cU,W ⊗ idV )(idU ⊗ cV,W ). (2.4.7)

Definition 2.4.3. [Twist in monoidal categories] A twist in a monoidal category C with a

braiding c consists of a natural family of isomorphisms

θ = {θV : V → V }, (2.4.8)
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where V runs over all objects of C, such that for any two objects V , W of C, we have

θV⊗W = cW,V cV,W (θV ⊗ θW ). (2.4.9)

Let C be a monoidal category. Assume that to each object V of C there are associated

an object V ∗ of C and two morphisms

bV : 1→ V ⊗ V ∗, dV : V ∗ ⊗ V → 1. (2.4.10)

Definition 2.4.4. [Duality in monoidal categories] The rule V → (V ∗, bV , dV ) is called a

duality in C if the following identities are satisfied:

(idV ⊗ dV )(bV ⊗ idV ) = idV , (2.4.11)

(dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ . (2.4.12)

Note that we do not require that (V ∗)∗ = V .

We say that the duality in C is compatible with the braiding c and the twist θ in C if for

any object V of C, we have

(θV ⊗ idV ∗)bV = (idV ⊗ θV ∗)bV . (2.4.13)

Definition 2.4.5. [Ribbon categories] A ribbon category is a monoidal category C equipped

with a braiding c, a twist θ, and a compatible duality (∗, b, d). A ribbon category is called

strict if its underlying monoidal category is strict.

Let C be a ribbon category. Denote K = KC the semigroup End(1) with the multiplica-

tion induced by the composition of morphisms and the unit element id1.
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Definition 2.4.6. [Traces and dimensions] For an endomorphism f : V → V of an object

V , we define its trace tr(f) ∈ K to be the following composition:

tr(f) = dV cV,V ∗((θV f)⊗ idV ∗)bV : 1→ 1. (2.4.14)

For an object V in C , we define its dimension dim(V ) by the formula

dim(V ) = tr(idV ) = dV cV,V ∗(θV ⊗ idV ∗)bV ∈ K. (2.4.15)

2.4.2 Definition of Modular Tensor Categories

Definition 2.4.7. [Ab-categories] A category C is said to be an Ab-category if for any pair

of its objects V , W , the set Hom(V,W ) of C-morphisms V → W is an additive abelian

group and the composition of morphisms is bilinear.

Let C be an monoidal Ab-category. The composition of morphisms, considered as multi-

plication in End(1) = Hom(1,1), renders this abelian group a ring with unit id1. This ring

is commutative. It is called the ground ring of C and denoted by KC or by K.

Combining the definition of Ab-category with the definitions of section 2.4.1 we come to

the notion of a ribbon Ab-category. This is a monoidal Ab-category equipped with braiding,

twist, and compatible duality.

Let C be a ribbon Ab-category. For any k ∈ K and any object V of C, the morphism

k ⊗ idV : V → V is called multiplication by k in V .

Definition 2.4.8. [Simple objects] An object V of C is said to be simple if the formula

k 7→ k ⊗ idV defines a bijection K → End(V ).

For example, the unit object 1 is simple.

Here is a convenient characterization of simple objects: an object V of C is simple if and

only if End(V ) is a free K-module of rank 1. Indeed, if V is simple then End(V ) ' K with
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the generator idV . Conversely, if End(V ) ' K with a free generator x then idV = kx and

x2 = k′x with k, k′ ∈ K Hence x = idV x = kx2 = kk′x. Therefore k is invertible in K and

idV is a free generator of End(V ).

Let {Vi}i∈I be a family of objects of a ribbon Ab-category C.

Definition 2.4.9. [Domination] An object V of C is dominated by the family {Vi}i∈I if

there exist a finite set {Vi(r)}r of objects of this family (possibly with repetitions which

means that the same object may appear several times) and a family of morphisms {fr :

Vi(r) → V, gr : V → Vi(r)}r such that

idV =
∑
r

frgr. (2.4.16)

Here i(r) ∈ I for all r.

The definition of domination may be reformulated as follows: V dominated by {Vi}i∈I

if the images of the pairings

{(g, f) 7→ fg : Hom(V, Vi)⊗K Hom(Vi, V )→ End(V )}i∈I

additively generate End(V ).

For i, j ∈ I, set

dim(i) = dim(Vi) ∈ K and Si,j = tr(cVj ,Vi ◦ cVi,Vj) ∈ K

where K is the ground ring of C. Note that Si,j = Sj,i. Thus, S = [Si,j]i,j∈I is a symmetric

square matrix over K and

S0,i = Si,0 = tr(idVi) = dim(i).

Definition 2.4.10. [Modular tensor categories] A modular category is a pair consisting
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of a ribbon Ab-category C and a finite family {Vi}i∈I of simple objects of C satisfying the

following four axioms.

1. (Normalization axiom) There exists 0 ∈ I such that V0 = 1.

2. (Duality axiom) For any i ∈ I, there exists i∗ ∈ I such that the object Vi∗ is isomorphic

to (Vi)
∗.

3. (Axiom of domination) All objects of C are dominated by the family {Vi}i∈I .

4. (Non-degeneracy axiom) The square matrix S = [Si,j]i,j∈I is invertible over K.

Remarks:(cf. [Row06]) In a semisimple ribbon Ab-category C with finitely many simple

classes the set of simple classes generates a semiring over K under ⊗ and ⊕. This ring is

called the Grothendieck semiring and denoted by Gr(C). If {V0 = 1, V1, ..., Vn−1} is the set

of representatives of the simple objects in C, the rank of C is n. We have

Vi ⊗ Vj ∼=
∑
k

Nk
i,jVk (2.4.17)

for some Nk
i,j ∈ N. These structure coefficients of Gr(C) are called the fusion coefficients

of C and (2.4.17) is sometimes called a fusion rule. If we fixed the order of the simple

objects as above, the fusion coefficients give us a representation of Gr(C) via Vi → Ni where

Ni = (Ni)k,j = (Nk
i,j) is called the fusion matrix associated to Vi. If i∗ is the index of the

simple object V ∗i , the braiding and associativity constraints give us:

Nk
i,j = Nk

j,i = N j∗
i,k∗ = Nk∗

i∗,j∗, N
0
i,j = δi,j∗.

The first column (and row) of the matrix S consists of the categorical dimensions of the

simple objects, i.e., Si,0 = dim(Vi). We denote these dimensions by di. We also have that

Si,j = Sj,i = Si∗,j∗. Since the twist θV ∈ End(V ) for any object V , θV is a scalar map. We
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denote this scalar by θi. And we get a useful formula

Si,j =
1

θjθj

∑
k

Nk
i∗,jdkθk. (2.4.18)

Provided C is modular the matrix S determines the fusion rules via the Verlinde formula

Nk
i,j =

∑
t

Si,tSj,tSk∗,t
D2S0,t

(2.4.19)

whereD2 =
∑

i d
2
i . This formula corresponds to the following fact: the columns of the matrix

S are simultaneous eigenvectors for the fusion matrices Ni, and the categorical dimensions

are eigenvalues.

If we set T = (δi,jθi)ij then the map:

 0 −1

1 0

→ S,

 1 1

0 1

→ T

defines a projective representation of the modular group SL2(Z). In fact, by renormalizing

S and T one gets the representation of SL2(Z).
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Chapter 3

Genera of Codes, Lattices, and VOAs

3.1 Code genus

Recall That C⊥ = {y ∈ Fnq : x · y = 0 for all x ∈ C } is a dual code of a code C. For a

doubly even binary code C, we know that C ⊂ C⊥. For a code word c in C, we denote w(c)

the weight of c.

We define the weight signature of C⊥ to be the set

W = {w(c) : w(c) mod 4 , c is a codeword in C⊥}.

Definition 3.1.1. Two doubly even codes with the same lengths are said to be in the same

genus if and only if they have the same dimensions and their dual codes have the same

weight signatures.

Note that there are three possible genera for the doubly even codes of a given length n

and dimension k: odd genus with {0, 1, 3}, even genus with {0, 2}, and even genus with {0}.

3.2 Lattice genus

Let L be an integral lattice and the vector space V = L⊗Z R with the induced symmetric

bilinear form. By Sylvester’s law of inertia, this form can be diagonalized, i.e., there exists
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a basis {e1, ...en} of V such that the inner product of vectors v =
∑

i viei and w =
∑

iwiei

is given by
∑

i εiviwi where εi ∈ {−1, 0, 1}. The multiplicity of −1, 0, and 1 among the εis

is invariant under the choice of diagonalizing basis.

We can say that the lattice L has a signature (l+, l−) where l+ is the number of positive

εi and l− is the number of negative εi.

Let L be an even lattice in Rn. The quotient group A := L∗/L is a finite abelian group.

We define the mapping

qA : A→ Q/2Z, by qA(x+ L) = x2 + 2Z, where x ∈ L∗.

Then qA is called a quadratic form on A, i.e., the discriminant form of L∗/L.

Definition 3.2.1. [Nik79] (cf. [Höh03]) Two even lattices belong to the same genus if and

only if their signatures and discriminant forms are the same.

Note that the number of isometry classes contained in the genus is called the class

number.

3.3 VOA genus

Recall that C2(V ) is the subspace of V spanned by all elements of the form A−2 · B for all

A,B ∈ V

Theorem 3.3.1. (cf. theorem 4.6 in [Hua08]) Let V be a simple vertex operator algebra.

Assume that

1. Vn = 0 for n < 0, V0 = C1 and V ′ is isomorphic to V as a V -module.

2. Every N-graded weak V -module is completely reducible.

3. V satisfy the C2 cofiniteness condition.

Then the category of V -modules has a natural structure of modular tensor category.
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The VOAs we consider here are assumed to be unitary an satisfy the conditions in above

theorem.

Definition 3.3.2. [Höh03] Two VOAs are said to be in the same genus if and only if their

associated modular tensor categories (MTCs) and central charges are the same. We denote

the genus by G(C, c), where C is the corresponding MTC and c is the central charge of the

VOAs.

Note that the MTC C determines the central charge c only modulo 8.

Then we have the following commutative diagram:

Doubly even binary codes
LC
↪→ Even lattices

VL
↪→ VOAs

↓ ↓ ↓

Code genus ↪→ Lattice genus ↪→ VOA genus

LC is the lattice constructed from a code C and VL is the VOA associated with the

lattice LC .

Note that C⊥/C ' L∗/L = A and qA = w/4 (mod Q/2Z) and (A, qA) defines the MTC

of VL.
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Chapter 4

Codes Type Genera of Lattices

4.1 Constructing Lattices from Binary Codes

From binary codes we can construct lattices. Take the standard lattice Zn ⊂ Rn and consider

the reduction mod 2:

ρ : Zn → (Z/2Z)n = Fn2 .

This is a group homomorphism. Let C be an [n, k, d]-code. Since Fn2/C ∼= Fn−k2 , C is a

subgroup of index

|Fn2/C| = 2n−k

of Fn2 . Therefore ρ−1(C), the preimage of C in Zn, is a subgroup of index 2n−k of Zn. In

particular ρ−1(C) is a free abelian group of rank n. Therefore ρ−1(C) is a lattice in Rn. One

has

vol(Rn/ρ−1(C)) = |Zn/ρ−1(C)|vol(Rn/Zn) = 2n−k.

Definition 4.1.1. We denote LC a lattice constructed from a binary code C and

LC :=
1√
2
ρ−1(C).
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The set LC is a lattice in Rn. Let x, y ∈ LC . Then x and y can be written

x =
1√
2

(c+ 2z), y =
1√
2

(c′ + 2z′)

for some c, c′ ∈ {0, 1}n representing codewords in C and some z, z′ ∈ Zn. By abuse of

notation we shall identify in the sequel Fn2 with the subset {0, 1}n of Zn and write briefly

c, c′ ∈ C.

Proposition 4.1.2 (cf. [Ebe02]). Let C be a linear code.

(i) C ⊂ C⊥ if and only if LC is an integral lattice.

(ii) C is doubly even if and only if LC is an even lattice.

(iii) C is self-dual if and only if LC is unimodular.

4.2 Classification of the Lattice Genera

We begin with the structure of the genera of lattices which are constructed from codes. Here

we establish the following result.

Theorem 4.2.1. [Genera of lattice arising from codes] Let C be a doubly even code of length

n and dimension k. If n is not divisible by 4, then the genus of C depends just on n and

k. If n is divisible by 4, then there are two possible genera for fixed n and k depending on

whether the dual code C⊥ of C contains vectors of odd weight or not.

Proof: The discriminant group of L∗C/LC can be identified with C⊥/C which is iso-

morphic to the abelian group (Z/2Z)n−2k and so the genus of LC depends on n (the rank of

LC) and k by the above characterization theorem for genera (cf. Section 3.2 and [Höh03]).

The quadratic form qA for LC is given by qA(x) = w(x)/4 (depending on the normalization

of qA) for x a codeword in a coset of C⊥/C. It remains to show that if n is not divisible by

4 only one genus can occur and if n is divisible by 4 two cases are possible. If n is odd, then
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the dual code C⊥ of a code C of length n always contains a vector of weight n, i.e. an odd

weight. So there is only one genus which is of odd type. If n is even and not divisible by 4,

then any codeword of a code C of length n has at least two coordinates 0s. So there exists

a codeword of C that has the last two coordinates 0s and its dual code contains a vector

(codeword) such that all coordinates are 0s except the last coordinate 1. So this vector has

an odd weight, and hence this gives a genus of odd type. If n is divisible by 4, then there

are two possible cases here. First, C contains a vector of weight n. In this case, C⊥ contains

only even-weight vectors, and hence we have a genus of even type. Otherwise, C contains

no vector of weight n. Then there exists a codeword which has last four coordinates 0s, and

hence its dual code contains the vector which all coordinates 0s except the last coordinate

1. So the dual code contains at least one odd-weight vector, and therefore this gives a genus

of odd type. q.e.d.

We denote a genus of codes C of type [n, k] by G(n, k, t) where t is the type of the genus

which is odd or even depending on whether the dual code C⊥ of C contains vectors of odd

weight or not. Note that for n not divisible by 4 the type is always odd since C⊥ always

contains odd weight vectors by the argument in the proof of the above theorem.

Lemma 4.2.2 (Which genera actually can occur from codes). For k = 0 and n ≡ 0

(mod 4), the only realized genus is odd. Depending on n (mod 4) and n (mod 8) the maxi-

mal k for which a code exists is given in the following table:

n(mod4)/n(mod8) 0/0(o) 0/0(e) 0/4(o) 0/4(e) 1/1 1/5 2/2 2/6 3/3 3/7

k n
2 − 1 n

2
n
2 − 2 n

2 − 1 [n2 ] [n2 ]− 1 n
2 − 1 n

2 − 1 [n2 ]− 1 [n2 ]

where [n
2
] means the largest integer that is less than or equal to n

2
, (o) for odd genus and

(e) for even genus.

Proof: Note that the maximal possible k is
n

2
since C ⊂ C⊥ and dim C⊥ = n−k. For

n < 4, k = 0. For n ≡ 0 (mod 4) and k = 0, C⊥ always contains vectors of odd weight.

We will prove this lemma by dividing the proof into 3 cases depending on n (mod 4)
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and n (mod 8).

Case 1 n ≡ 0 (mod 4) and n ≡ 4 (mod 8). n = 4, 12, 20, ...

In this case the code C of length n contains vectors which either have all coordinates

1s (called type A) or have a multiple of 4 of coordinates 0s (called type B). If n = 4, then

there are only two vectors ; (1,1,1,1)-type A and (0,0,0,0)-type B. So for the odd case, the

dimension is 0 and for the even case, the dimension is 1.

For an odd case, C contains only vectors of type B. Without loss of generality, suppose

that each vector in C has the last four components 0s. Then C⊥ contains at least four more

linearly independent vectors including (0, ..., 0, 1, 0, 0, 0), (0, ..., 0, 0, 1, 0, 0), (0, ..., 0, 0, 1, 0),

and (0, ..., 0, 0, 0, 0, 1). Hence dim C⊥ is at least k + 4 , i.e. dim C is at most k =
n

2
− 2.

For an even case, C contains a vector of type A. Without loss of generality, suppose that

the rest of the vectors in C have the last four components 0s. Since C⊥ contains only even

weight vectors, C⊥ must contain the vectors (0, ..., 0, 1, 1, 0, 0) and (0, ..., 0, 0, 0, 1, 1). Thus

dim C⊥ is at least k + 2, i.e. dim C is at most k =
n

2
− 1.

Case 2 n ≡ 0 (mod 4) and n ≡ 0 (mod 8). n = 8, 16, ...

Note that for n > 4 we have n = m + 4 where m ≡ 0 (mod 4) and m ≡ 4 (mod 8). A

code C of length n can be constructed by adding four more coordinates to each vector in

the code Cm of length m. So C ∼= Cm ⊕ (x, x, x, x) ( using ⊕ here means we expand the

vector of length m to be of length n by adding four more coordinates at the end of each

vector in Cm). Then c1 = cm1 ⊕ (0, 0, 0, 0), c2 = cm2 ⊕ (0, 0, 0, 0), ..., ckm = cmkm ⊕ (0, 0, 0, 0),

where cm1 , ..., c
m
km

are basis vectors in Cm, and hence c1, ..., ckm are km basis vectors in C.

We know that any doubly even binary code Cm of length m is always a subset of its dual

code C⊥m and hence dim Cm ≤ dim C⊥m. Then when we add four more coordinates to each

vectors in Cm there are at least one more basis vectors for a code C other than those we get

from the vectors in Cm. Then these vectors are also contained in C⊥.

For an odd case, we can construct a code C from a code Cm which can be either odd or

even. If Cm is of odd type, then there are at least four 0s in each vector and we have four
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more coordinates added. Hence we will have at most three more basis vectors in C(other

than the basis vectors from Cm). Thus dim C = dim Cm + 3 =
m

2
− 2 + 3 =

m

2
+ 1 =

n− 4

2
+ 1 =

n

2
− 2 + 1 =

n

2
− 1. If Cm is of even type, then there are only two more basis

vectors can be added to make C contains no vector of type A. Hence dim C = dim Cm + 2

=
m

2
− 1 + 2 =

m

2
+ 1 =

n− 4

2
+ 1 =

n

2
− 2 + 1 =

n

2
− 1. Thus k =

n

2
− 1.

Similarly for an even case, since C can contains a vector of type A , we will get four

more basis vectors if Cm is of odd type and three more basis vectors if Cm is of even type.

So dim C =
n

2
.

Case 3 n ≡ l (mod 4) where l = 1, 2, or 3. n = 5, 6, 7, 9, 10, 11, 13, ...

Note that we only have odd cases here. Then n− l ≡ 0 (mod 4).

Subcase 3.1 n− l ≡ 4 (mod 8)

We can construct a code C of length n by adding l more coordinates to each vector in

the code C ′ of length n − l. For a code C ′ of odd type, since each basis vector in C ′ is of

type B, i.e. it has at least four coordinates 0s. After adding l more coordinates to each of

its vectors, there is at most one more basis vector to be added in C. For a code C ′ of even

type, we will have zero, two and two more basis vectors in C after adding one, two , and

three coordinates to each vector in C ′ respectively. So we will have k as the following;

For l = 1, dim C = dim C ′ =
n− 1

2
− 1 =

n− 1

2
− 1 = [

n

2
]− 1.

For l = 2, dim C = dim C ′ + 2 =
n− 2

2
− 1 + 2 =

n− 2

2
=
n

2
− 1.

For l = 3, dim C = dim C ′ + 2 =
n− 3

2
− 1 + 2 =

n− 1

2
= [

n

2
].

Subcase 3.2 n− l ≡ 0 (mod 8)

Similarly, to have vector in C of type B after adding l coordinates to each vector in C ′,

we will have no more basis vector in C, if C ′ if of even type and we will have one more basis

vector in C if C ′ is of odd type. So we will have k as the following;

For l = 1, dim C = dim C ′ =
n− 1

2
=
n− 1

2
= [

n

2
].

For l = 2, dim C = dim C ′ =
n− 2

2
=
n− 2

2
=
n

2
− 1.

For l = 3, dim C = dim C ′ =
n− 3

2
=
n− 1

2
− 1 = [

n

2
]− 1.
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Table 4.1: The maximal dimension k for n from 4 to 16

n 4(o) 4(e) 5 6 7 8(o) 8(e) 9 10 11 12(o) 12(e) 13 14 15 16(o) 16(e)
k 0 1 1 2 3 3 4 4 4 4 4 5 5 6 7 7 8

q.e.d.

Definition 4.2.3. A lattice genus is called code type genus if every lattice L in this genus

is of the form LC for some code C. Otherwise we call it non code type genus.

Our aim in this section is to classify all code type genera. Clearly, only the genera as in

Proposition 4.2.7 below can be code type and have to investigated further.

We start with some easy observations.

Lemma 4.2.4. If G(n, k, t) is a non code type genus then G(n+ 8, k+ 4, t) is also non code

type.

Proof: Since G(n, k, t) is a non code type, there exist a lattice L in the genus which is

not realizable. We claim that the lattice L⊕E8 which belongs to the genus G(n+8, k+4, t)

is also not realizable. Indeed, if otherwise L⊕ E8
∼= KC for a code C of type [n + 8, k + 4]

then there exists a code D of type [n, k] such that C ∼= D ⊕ e8, where e8 is a code of type

[8, 4]. Since e8 is self-dual, Le8 = E8 is unimodular, i.e. disc (E8) = 1. Then KC
∼= LD⊕E8

and thus L ∼= LD, a contradiction. q.e.d.

The Lemma shows that if we have found an n0 such that all G(n, k, t) for n = n0, . . .,

n0 + 7 are non code type so are all G(n, k, t) for n > n0 and we have reduced the problem

to check of finitely many cases.

Lemma 4.2.5. If G(n, k, t) is a non code type genus then G(n, l, t) for l < k is also non

code type.

Lemma 4.2.6. Every genus G(n, k, t) for n ≥ 32 is non code type.
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Proof: By computation, G(n, k, t) for n = 17 to n = 23 and for any k are non code type.

The genera of the even unimodular lattices of dimension 24 are non code type (cf. [Ebe02]).

Then by Lemma 4.2.2, Lemma 4.2.4, and Lemma 4.2.5, G(n, k, t) for n ≥ 32 is non code

type. q.e.d.

Proposition 4.2.7. The following genera are code type:

n G(n, k, t)

1 G(1, 0, odd)

2 G(2, 0, odd)

3 G(3, 0, odd)

4 G(4, 0, odd), G(4, 1, even)

5 G(5, 0, odd), G(5, 1, odd)

6 G(6, 0, odd), G(6, 1, odd), G(6, 2, odd)

7 G(7, 0, odd), G(7, 1, odd), G(7, 2, odd), G(7, 3, odd)

8 G(8, 0, odd), G(8, 1, odd), G(8, 1, even), G(8, 2, odd),

G(8, 2, even),G(8, 3, odd), G(8, 3, even), G(8, 4, even)

9 G(9, 1, odd), G(9, 2, odd), G(9, 3, odd), G(9, 4, odd)

10 G(10, 2, odd), G(10, 3, odd), G(10, 4, odd)

11 G(11, 3, odd), G(11, 4, odd)

12 G(12, 4, odd), G(12, 4, even), G(12, 5, odd)

13 G(13, 5, odd)

14 G(14, 6, odd)

15 G(15, 7, odd)

16 G(16, 8, even)

The complete information of the code type genera is in Table 4.5 below.

Proof: In order to prove this proposition, we have to compare the number of the

permutation equivalence classes of doubly even binary codes with the number of lattices in
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the corresponding genus. To do this, we use the data base from http://www.rlmiller.

org/de_codes and it is also stated in [DFG+11] as in Table 4.2 below. Then we compute the

number of lattices in each genus corresponding to each code by using the computer algebra

Magma. First, we construct each code C of length n and dimension k and then we construct

the corresponding lattice LC from the code C. Next, we use the command Genus(L); to

construct the genus G(n, k, t). Finally, we can find the number of lattices in each genus and

then we can compare these numbers with the numbers of codes. But when n is larger than

17, Magma cannot compute these numbers. So we need to find each lattice in each genus

directly. To do this, we have to find the lattices in the largest dimension only (in some cases

the two largest dimensions are computed) and we stop when we find a large enough number

of lattices in the genus to show that it is a non code type genus. The results are in Table 4.3

below. By comparing the numbers in Tables 4.2 and 4.3 and applying Lemma 4.2.5, we get

the result as in Table 4.4. The complete information about this computation is explained

in Appendix A and the Magma source codes in the computation is in Appendix C. q.e.d.

Note that Magma cannot compute the exact number of lattices in some genera that

have n too large. In this case, we use another method to find different lattices in the genera

for the largest k for each n. So we only find the least possible number of lattices in those

particular genera which proved that the numbers of lattices in those genera are more than

the number of the corresponding codes and apply Lemma 4.2.5 to get the result in Table 4.4.

Remark: For the genera corresponding to the codes of length 24, the genus

G(24, 12, even) consists of the even unimodular lattices of dimension 24. By Corollary 3.7

in [Ebe02], there are 24 such lattices and there are only 9 of them coming from the doubly

even self-dual codes. Hence this genus is non code type.

Theorem 4.2.8. The genera listed in Proposition 4.2.7 are the only code type genera.

Proof: By computation with Magma and Lemma 4.2.2, Lemma 4.2.4, Lemma 4.2.5,

Lemma 4.2.6 and the remark above, now that all G(n, k, t) for n ≥ 17 are non code type

genera. So the code type genera are listed in Proposition 4.2.7. q.e.d.
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Table 4.2: The number of distinct permutation classes of doubly even (n, k) codes
n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1
2 1
3 1

4(o) 1
4(e) 0 1

5 1 1
6 1 1 1
7 1 1 1 1

8(o) 1 1 1 1 0
8(e) 0 1 1 1 1

9 1 2 2 2 1
10 1 2 3 3 2
11 1 2 3 4 3

12(o) 1 2 4 5 5 0
12(e) 0 1 1 2 2 2

13 1 3 5 8 8 4
14 1 3 7 12 14 9 4
15 1 3 7 15 20 15 8 2

16(o)1 1 4 10 23 38 36 23 4 0
16(e)1 0 5 2

17 1 4 10 25 45 50 34 14 3
18 1 4 13 34 72 94 79 35 9
19 1 4 13 40 94 146 141 75 19

20(o)1 1 5 17 57 158 295 353 231 84 0
20(e)1 0 10

21 1 5 17 63 194 439 629 494 198 38
22 1 5 21 83 298 812 1481 1465 740 187 25
23 1 5 21 95 387 1287 2970 3811 2362 714 119 11

n/k 0 1 2 3 4 5 6 7 8 9 10 11

1 known number of codes but cannot classify the exact numbers of either odd or even type codes.
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Table 4.3: The number of distinct lattices in the genus G(n, k, t)
n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1
2 1
3 1

4(o) 1 0
4(e) 0 1

5 1 1
6 1 1 1
7 1 1 1 1

8(o) 1 1 1 1 0
8(e) 0 1 1 1 1

9 2 2 2 2 1
10 2 3 3 3 2
11 2 3 4 4 3

12(o) 3 4 6 6 5 0
12(e) 0 2 2 3 2 2

13 - - - - 9 4
14 - - - - 18 10 4
15 - - - - - - 9 2

16(o) 6 - - - - - - 5 0
16(e) 0 6 2

17 - - - - - - - - 4
18 - - - - - - - - 102

19 - - - - - - - - 202

20(o) - - - - - - - - 673 0
20(e) 122

21 - - - - - - - - - 392

22 - - - - - - - - - - 272

23 - - - - - - - - - - - 122

n/k 0 1 2 3 4 5 6 7 8 9 10 11

2 There are at least the indicated number of lattices in the genus.
3 There are 84 codes of type (20,8) but we do not know the exact numbers of codes of either odd or even

types.By computation,we found 53 odd type codes and 19 even type codes and there are at least 67 lattices

in the odd type genus. After adding this number with the number of even type codes, we have the total of

86 which is exceed the number of the code (20,8). So the odd genus is non code type.
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Table 4.4: Types of distinct lattice genus G(n, k, t), C: code type lattice genus, NC: non
code type lattice genus by computation, NC*: non code type lattice by Lemma 4.2.4, X: no
lattice genus
n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 C
2 C
3 C

4(o) C
4(e) X C

5 C C
6 C C C
7 C C C C

8(o) C C C C X
8(e) X C C C C

9 NC C C C C
10 NC NC C C C
11 NC NC NC C C

12(o) NC NC NC NC C X
12(e) X NC NC NC C C

13 NC* NC* NC* NC* NC C
14 NC* NC* NC* NC* NC* NC C
15 NC NC NC* NC* NC* NC* NC C

16(o) NC NC* NC* NC* NC* NC* NC* NC X
16(e) X NC* NC* NC* NC* NC* NC* NC C

17 NC* NC* NC* NC* NC* NC* NC* NC* NC
18 NC* NC* NC* NC* NC* NC* NC* NC* NC
19 NC* NC* NC* NC* NC* NC* NC* NC* NC

20(o) NC* NC* NC* NC* NC* NC* NC* NC* NC X
20(e) X NC* NC* NC* NC* NC* NC* NC* NC* NC

21 NC* NC* NC* NC* NC* NC* NC* NC* NC* NC
22 NC* NC* NC* NC* NC* NC* NC* NC* NC* NC* NC
23 NC* NC* NC* NC* NC* NC* NC* NC* NC* NC* NC* NC

n/k 0 1 2 3 4 5 6 7 8 9 10 11
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The following table consists of the complete information of the code type lattice genera.

Table 4.5: Code type lattice genera G(n, k, t)

n k t Codes(C) Lattices (LC) |L∗/L|

1 0 odd t1 A1 1

2 0 odd t2 2A1 2

3 0 odd t3 3A1 3

4 0 odd t4 4A1 4

4 1 even d4 D4 2

5 0 odd t5 5A1 5

5 1 odd t1 ⊕ d4 A1 ⊕D4 3

6 0 odd t6 6A1 6

6 1 odd t2 ⊕ d4 2A1 ⊕D4 4

6 2 odd d6 D6 2

7 0 odd t7 7A1 7

7 1 odd t3 ⊕ d4 3A1 ⊕D4 5

7 2 odd t1 ⊕ d6 A1 ⊕D6 3

7 3 odd e7 E7 1

8 0 odd t8 8A1 8

8 1 odd t4 ⊕ d4 4A1 ⊕D4 6

8 1 even h8 (or d4 ∗ d4)* L(h8) (or D4 ∗D4) 6

8 2 odd t2 ⊕ d6 2A1 ⊕D6 4

8 2 even d4 ⊕ d4 2D4 4

8 3 odd t1 ⊕ e7 A1 ⊕ E7 2

8 3 even d8 D8 2

Continued on next page
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Table 4.5 – Continued from previous page

n k t Codes(C) Lattices (LC) |L∗/L|

8 4 even e8 E8 0

9 1 odd t5 ⊕ d4 5A1 ⊕D4 7

t1 ⊕ h8 A1 ⊕ L(h8)

9 2 odd t3 ⊕ d6 3A1 ⊕D6 5

t1 ⊕ d4 ⊕ d4 A1 ⊕ 2D4

9 3 odd t2 ⊕ e7 2A1 ⊕ E7 3

t1 ⊕ d8 A1 ⊕D8

9 4 odd t1 ⊕ e8 A1 ⊕ E8 1

10 2 odd t4 ⊕ d6 4A1 ⊕D6 6

t2 ⊕ d4 ⊕ d4 2A1 ⊕ 2D4

C102 =

 1111000000

0011111111

 L(C102)

10 3 odd t3 ⊕ e7 3A1 ⊕ E7 4

d4 ⊕ d6 D4 ⊕D6

t2 ⊕ d8 2A1 ⊕D8

10 4 odd t2 ⊕ e8 2A1 ⊕ E8 2

d10 D10

11 3 odd t4 ⊕ e7 4A1 ⊕ E7 5

t3 ⊕ d8 3A1 ⊕D8

t1 ⊕ d4 ⊕ d6 A1 ⊕D4 ⊕D6

C113 =


11111111000

00111111110

10100000101

 L(C113)

11 4 odd t3 ⊕ e8 3A1 ⊕ E8 3

Continued on next page
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Table 4.5 – Continued from previous page

n k t Codes(C) Lattices (LC) |L∗/L|

d4 ⊕ e7 D4 ⊕ E7

t1 ⊕ d10 A1 ⊕D10

12 4 odd t4 ⊕ e8 4A1 ⊕ E8 4

d6 ⊕ d6 2D6

t2 ⊕ d10 2A1 ⊕D10

t1 ⊕ d4 ⊕ e7 A1 ⊕D4 ⊕ E7

C124 =



100011101111

010011010000

001010111111

000101110000


L(C124)

12 4 even d4 ⊕ d8 D4 ⊕D8 4

C124e1 =



100011111110

010011000001

001010111111

000101111111


L(C124e1)

12 5 even d4 ⊕ e8 D4 ⊕ E8 2

d12 D12

13 5 odd t1 ⊕ d4 ⊕ e8 A1 ⊕D4 ⊕ E8 5

d6 ⊕ e7 D6 ⊕ E7

t1 ⊕ d12 A1 ⊕D12

Continued on next page
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Table 4.5 – Continued from previous page

n k t Codes(C) Lattices (LC) |L∗/L|

C135 =



1000011110111

0100010001001

0010011111110

0001000001101

0000100001011


L(C135)

14 6 odd d6 ⊕ e8 D6 ⊕ E8 2

e7 ⊕ e7 2E7

d14 D14

C146 =



10000011111110

01000010000101

00100011111011

00010001000101

00001000100101

00000100000111


L(C146)

15 7 odd e7 ⊕ e8 E7 ⊕ E8 1

e15 D+
14

16 8 even e8 ⊕ e8 2E8 0

e16 D+
16

* The code h8 is a subcode of d4 ⊕ d4 generated by the codeword of length 8. We can

construct the code h8 by gluing two of the code d4 together. And the result will be d4 ∗ d4

(the symbol here represents the gluing of the two codewords) in the notation of the basic

code of type d4. So the corresponding lattice is D4 ∗D4.
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Chapter 5

Genera of Vertex Operator Algebras

arising from the Small Modular

Tensor Categories

In this chapter we will classify the genera of vertex operator algebras (VOAs) arising from

small modular tensor categories (MTCs). By small modular tensor categories we mean the

MTCs of rank less than or equal to 4. Note that the VOAs that we consider here have to

satisfy the conditions in the Theorem 3.3.1 and they are assumed to be unitary.

Recall that the VOA has a finite number of simple modules V = M1, M2, ...M r. Each

has a q-graded character

ch M j = TrMjqL
Mj

0 −c/24 =
∑
n

dimM j
nq

n−c/24 = qhj−c/24
∑
n

dimM j
n+hj

qn, (5.0.1)

where M j
n is the subspace of M j on which LM

j

0 acts by multiplication by n, c is the central

charge of V , hj is the conformal weight of M j, and q = e2πiτ . And these VOA modules have

the structure of the modular tensor categories. So we can classify the genera of the VOAs

using their associated MTCs. Proposition 3.1 in [DM04] states that for each state u ∈ V
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which is homogeneous of weight k with respect to the operator L0, the r-tuple Z(u, τ) =

(ZM1(u, τ), ..., ZMr(u, τ)) is a vector-valued modular form of weight k with respect to the

representation ρ. Note that ZMj(u, τ) = TrMjo(u)qL
Mj

0 −c/24 = qhj−c/24
∑

n dimM j
n+hj

o(u)qn,

where o(u) is the zero mode of the homogeneous components of u (see detail in [DM04]).

For any VOA V , recall that G(C(V ), c) is the genus of V , where C(V ) is the MTC

associated with the VOA V and c is the central charge of V .

The family {ch M i}i=1,..n is a vector valued modular function of a representation ρ of

SL2(Z) determined by C(V ). Note that hi (mod 1) is given by C(V ) and for a unitary VOA

V , hi ≥ 0 and c ≥ 0.

Let M(ρ, c) be the space consisting of vector valued modular forms for the representation

ρ with pole orders at most c/24 at infinity. Then ch M i is an element of M(ρ, c) and M(ρ, c)

depends only on the genus of V . Our objective is to describe the space of vector valued

modular forms M(ρ, c).

We apply the idea of the fundamental matrix of the representation of the modular group

in [BG07] to determine the spaces M(ρ, c) arising from the genera of the VOAs. As a result,

the first column of a fundamental matrix consists of characters of the corresponding MTC,

i.e., characters of a VOA V and its modules. Moreover, the first entry of a fundamental

matrix contains a dimension of some Lie algebras in its second term. Then we apply this

fact to classify the possible Kac-Moody subVOAs Ṽ1 and then we can classify the genera of

the VOAs arising from each MTC.

5.1 Small MTCs

The following table consists of the list of MTCs of rank 1, 2, 3, and 4 which we call small

MTCs. We use the classification of the MTCs from [RSW09] which also gives all the S-

matrices of the MTCs (see Table B.1).
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Table 5.1: The small MTCs

No. C n c (mod 8) hi No. C n c (mod 8) hi

1 tm 1 0 0 18 qs4 4 1 0, 1/8, 1/8, 1/2

2 qs2 2 1 0, 1/4 19 qs4 4 7 0, 7/8, 7/8, 1/2

3 qs2 2 7 0, 3/4 20 qn4 4 5 0, 1/2, 5/8, 5/8

4 Lee− Y ang 2 14/5 0, 2/5 21 qn4 4 3 0, 3/8, 3/8, 1/2

5 Lee− Y ang 2 26/5 0, 3/5 22 qu2 4 8 0, 0, 0, 1/2

6 qs3 3 2 0, 1/3, 1/3 23 qv2 4 4 0, 1/2, 1/2, 1/2

7 qs3 3 6 0, 2/3, 2/3 24 qs2 ⊗ qs2 4 2 0, 1/4, 1/4, 1/2

8 Ising1 3 1/2 0, 1/2, 1/16 25 qs2 ⊗ qs2 4 6 0, 3/4, 3/4, 1/2

9 Ising1 3 15/2 0, 1/2, 15/16 26 qs2 ⊗ qs2 4 8 0, 3/4, 1/4, 1

10 Ising2 3 3/2 0, 1/2, 3/16 27 qs2 ⊗ LY 4 19/5 0, 2/5, 1/4, 13/20

11 Ising2 3 13/2 0, 1/2, 13/16 28 qs2 ⊗ LY 4 49/5 0, 2/5, 3/4, 3/20

12 Ising3 3 5/2 0, 1/2, 5/16 29 qs2 ⊗ LY 4 31/5 0, 3/5, 1/4, 17/20

13 Ising3 3 11/2 0, 1/2, 11/16 30 qs2 ⊗ LY 4 61/5 0, 3/5, 3/4, 7/20

14 Ising4 3 7/2 0, 1/2, 7/16 31 LY ⊗ LY 4 28/5 0, 2/5, 2/5, 4/5

15 Ising4 3 9/2 0, 1/2, 9/16 32 LY ⊗ LY 4 8 0, 3/5, 2/5, 1

16 3fieldsx 3 8/7 0, 2/7, 6/7 33 LY ⊗ LY 4 52/5 0, 3/5, 3/5, 1/5

17 3fieldsx 3 48/7 0, 5/7, 1/7 34 4fieldsx 4 10/3 0, 2/3, 2/9, 1/3

35 4fieldsx 4 14/3 0, 1/3, 7/9, 2/3

From the table, column 2 (C) consists of the names of the MTCs which we follow the

notation from the database [Dat]. The rank and the central charge (mod 8) of each MTC

is shown in column 3 (n) and 4 (c) respectively. And the last column (hi) consists of the

conformal weights of each MTC.

Recall that there exists a representation ρ : SL2(Z)←→ GLn(C) of the modular group

SL2(Z) sending its generating elements,

0 −1

1 0

 and

1 1

0 1

, to the matrices S and T of a

MTC.
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The representation ρ could be either irreducible or reducible. For an reducible repre-

sentation ρ, we have to decompose it into a direct sum ρ = ρ1 ⊕ · · · ⊕ ρs of its irreducible

components ρi for our method.

We use Magma to decompose the representation ρ into a direct sum of its irreducible

components (see Appendix C for the source codes), and we also get the corresponding

canonical basis vectors for each irreducible representation ρi. Note that the idea of the

decomposition is also mentioned in the appendix in [BG07]. The result of the decomposition

of the representation of each MTC is in Table B.1. Column 6 in Table B.1 describes the

decomposition into irreducible components and the number m represents a dimension of

each component.

5.2 Characters of MTCs

5.2.1 Scalar and Vector Valued Modular Forms

In this section we give details about scalar valued modular form (see any text book of the

related title or Section 2.2 in [Ebe02]) and vector valued modular form.

The group

SL2(Z) = { g =

 a b

c d

 | a, b, c, d ∈ Z, ad− bc = 1}

acts on the complex upper half-plane H by fractional linear transformations

τ 7→ g(τ) =
aτ + b

cτ + d
.

The center {±1} of SL2(Z) acts trivially. The quotient G := SL2(Z)/{±1} is called the

modular group.
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Let S and T be the elements of G represented by the matrices

S =

 0 −1

1 0

 and T =

 1 1

0 1

.

The elements S and T act on H as follows:

S : τ 7→ −1

τ
, T : τ 7→ τ + 1.

G is generated by these elements.

Let k be an even positive integer. A holomorphic function f : H→ C is called a modular

form of weight k, if the following conditions are satisfied :

(i) f(aτ+b
cτ+d

) = (cτ + d)kf(τ) for all

(
a b

c d

)
∈ SL2(Z),

(ii) f has a power series expansion in q = e2πiτ , i.e., f is holomorphic at infinity τ = i∞.

Next we will define a vector-valued modular form (c.f. [KM+04]) as follows:

Let ρ : Γ → GLd(C) denote a d-dimensional representation of Γ = SL2(Z), k ∈ R an

arbitrary real number. A function

F (τ) =


f1(τ)

...

fd(τ)

 ,where τ ∈ H

from the complex upper half-plane H to Cd is a vector-valued modular form of weight k if

the following conditions are satisfied:

1. For all V =

 a b

c d

 ∈ Γ we have

F (τ) |k V (τ) = ρ(V )F (τ)
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2. Each component function Fj(τ) has a convergent q-expansion meromorphic at infinity

Fj(τ) =
∑
n>hj

an(j)q
n
Nj

with Nj a positive integer, hj an integer (maybe negative) and q = exp(2πiτ).

The operator |k V is defined by

F |k V (τ) = F |vk V (τ) = v(V −1)(cτ + d)−kF (Vτ )

with a multiplier system v with respect to Γ.

5.2.2 The Fundamental Matrix

We define the fundamental matrix of the representation as in [BG07].

Consider a matrix representation ρ : Γ→ GLd(C) whose kernel contains

 −1 0

0 −1

,

and for which T = ρ

 1 1

0 1

 is a diagonal matrix of finite order. We associate to ρ the

set M(ρ) of all those maps X : H → Cd which are holomorphic in the upper half plane H,

transform according to ρ, that is

X
(
aτ + b

cτ + d

)
= ρ

 a b

c d

X(τ) (5.2.1)

for all

 a b

c d

 ∈ SL2(Z) and τ ∈ H, and have only finite order poles at the cusps. So X

is a vector-valued modular form. Since ρ

 1 1

0 1

 is diagonal of finite order, there exists

55



a diagonal matrix Λ (the exponent matrix ) such that

ρ

 1 1

0 1

 = exp(2πiΛ), (5.2.2)

the diagonal elements of Λ being rational numbers.

The space M(ρ) is an infinite-dimensional linear space over C, a basis being provided

by the maps X(ξ,n) ∈ M(ρ) which have a pole of order n > 0 at the ξth position. We call

these X(ξ,n) the canonical basis vectors.

Let

J(τ) = q−1 +
∞∑
n=1

c(n)qn = q−1 + 196884q + ... (5.2.3)

denote the Hauptmodul of SL2(Z), i.e., the generator of the field of modular functions for

SL2(Z). Multiplication by J takes the space M(ρ) to itself, in other words M(ρ) is a

C[J ]-module of finite rank and the canonical basis vectors satisfy the recursion relations

X(ξ;m+1) = J(τ)X(ξ,m) −
m−1∑
n=1

c(n)X(ξ,m−n) −
∑
η

X (ξ;m)
η X(η;1), (5.2.4)

where

X (ξ;m)
η = X(ξ;m)[0]η = lim

q→0

(
[q−ΛX(ξ;m)(q)]η − q−mδξη

)
(5.2.5)

denotes the “constant part” of X(ξ;m). These recursion relations allow us to express each

canonical basis vector X(ξ;m) in terms of the X(ξ,1)s. Note that the X(ξ,1) are linearly inde-

pendent over the field C(J) of modular functions, and thus the C[J ]-moduleM(ρ) has rank

d.

There is a second set of relations, “the differential relations”, between the canonical
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basis vectors. They follow from the fact that the differential operator

∇ =
E(τ)

2πi

d

dτ
(5.2.6)

maps M(ρ) to itself, where

E(τ) =
E10(τ)

∆(τ)
=

∞∑
n=−1

Enqn = q−1 − 240− 141444q − ... (5.2.7)

is the quotient of the Eisenstein series of weight 10 by the discriminant form ∆(τ) =

qΠ∞n=1(1 − qn)24 of weight 12. The action of ∇ on the canonical basis vectors gives the

differential relations

∇X(ξ;m) = (Λξξ −m)
m−1∑
n=−1

EnX(ξ;m−n) +
∑
η

ΛηηX (ξ;m)
η X(η;1). (5.2.8)

The compatibility of the recursion and differential relations requires that

∇X(ξ;1) = (J − 240)(Λξξ − 1)X(ξ;1) +
∑
η

(1 + Ληη − Λξξ)X (ξ;1)
η X(η;1), (5.2.9)

which is a first-order ordinary differential equation - the compatibility equation - for the

X(ξ;1)s.

From equation (5.2.9), we define the fundamental matrix as follow

Ξ(τ)ξη = [X(η;1)(τ)]ξ, (5.2.10)

whose columns span over C[J ] the module M(ρ). Then equation (5.2.9) takes the form

1

2πi

dΞ(τ)

dτ
= Ξ(τ)D(τ), (5.2.11)
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where

D(τ) =
1

E(τ)
{(J(τ)− 240)(Λ− 1) + X + [Λ,X ]}, (5.2.12)

Xξη = X (η;1)
ξ is the characteristic matrix and [X ,Λ] = XΛ− ΛX .

Taking the boundary condition

q1−ΛξξΞ(q)ξη = δξη +O(q) as q → 0, (5.2.13)

one can solve equation (5.2.11), provided one knows the exponent matrix Λ and the charac-

teristic matrix X , determining then from equation (5.2.4) the canonical basis vectors X(ξ;m).

Note that the exponent matrix has to satisfy the following condition:

Tr(Λ) =
5d

12
+

1

4
Tr(S) +

2

3
√

3
Re(e−πi/6Tr(U)) (5.2.14)

where d is the dimension of ρ and we use the notations

S = ρ

 0 −1

1 0

 and U = ρ

 0 −1

1 −1


.

The structure of the C[J ]-module M(ρ) is completely determined by the fundamental

matrix Ξ(τ) (cf. [BG07]), once an exponent matrix Λ has been chosen. The fundamental

matrix is itself completely determined by the pair (Λ,X ) of exponent and characteristic ma-

trices, namely as the solution of the compatibility equation (5.2.11) satisfying the boundary

condition equation (5.2.13). We consider the pair (Λ,X ) as the basis data characterizing

the representation ρ.

Remark : The fundamental matrix Ξ allows us to determine the space M(ρ, c) ⊂M(ρ)

for c < 24.
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5.2.3 Method of finding the Fundamental Matrix

We use the method in [BG07] to find the fundamental matrices corresponding to the con-

formal weights of the MTCs.

Consider the function

j(τ) =
984− J(τ)

1728
, (5.2.15)

which maps the upper half-plane H onto the complex plane C. It is modular invariant and

satisfies the differential equation

∇j = 1728j(j− 1). (5.2.16)

Let us consider the fundamental matrix as a function of j. Then, by applying the chain

rule and equation (5.2.16), one gets the following form of the compatibility equation;

dΞ(j)

dj
= Ξ

(
A
2j

+
B

3(j− 1)

)
, (5.2.17)

with

A =
31

36
(1− Λ)− 1

864
(X + [Λ,X ]), (5.2.18)

B =
41

24
(1− Λ) +

1

576
(X + [Λ,X ]). (5.2.19)

As a function of j the fundamental matrix is not single valued - its multivaluedness,

i.e., the monodromy (that is the behavior of an object as it winding around a singularity)

of equation (5.2.17), is described by the representation ρ. In particular, the monodromies
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around j = 0, j = 1 , j =∞ are given by

S = ρ

 0 −1

1 0

 , U = ρ

 0 −1

1 −1

 , T = ρ

 1 1

0 1


respectively. Because the residues of equation (5.2.17) at these points are A/2,B/3 and

Λ − 1, the matrices S and U are conjugate to exp(πiA) and exp(πiB/3), respectively, and

one has SU = T−1 = exp(−2πiΛ). We find that the monodromy group of the abstract

hypergeometric equation (5.2.17) is precisely the image of ρ.

There are some restrictions for the matrices A and B as follow:

Spectral condition: The possible eigenvalues of A are 0 or 1, while those of B are

either 0, 1 or 2.

In particular, this condition implies that the characteristic polynomials of A and B read

det(z −A) = zd−α(z − 1)α, (5.2.20)

det(z − B) = zd−β1−β2(z − 1)β1(z − 2)β2 , (5.2.21)

where d denotes their dimensions, while the multiplicities α, β1 and β2 are given by

α = Tr(A), (5.2.22)

β1 = 2Tr(B)− Tr(B2), (5.2.23)

β2 =
1

2
(Tr(B2)− Tr(B)). (5.2.24)
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The quadruple (d, α, β1, β2) of non-negative integers is a very important discrete invariant

of the representation ρ, which we will call its signature.

It follows from equations (5.2.20) and (5.2.21) that the minimal polynomials of A and

B divide z(z − 1), respectively, z(z − 1)(z − 2). Since any matrix is a root of its minimal

polynomial, the spectral condition may be expressed as

A(A− 1) = B(B − 1)(B − 2) = 0. (5.2.25)

Of the four matrices Λ,X ,A and B, any two determine the other two, e.g., equa-

tions (5.2.18) and (5.2.19) imply that B = 3(1 − Λ − A/2). Inserting this expression into

equation (5.2.11), one gets the following system of algebraic equations:

A2 = A,

AΛA = −17

18
A− 2(AΛ2 + ΛAΛ + Λ2A) + 3(AΛ + ΛA)− 4Λ3 + 8Λ2 − 44

9
Λ +

8

9
(5.2.26)

That is , for a given exponent matrix Λ, the matrix A has to satisfy equations (5.2.26).

Once a solution to equations (5.2.26) is known, the corresponding characteristic matrix X

may be determined from equation (5.2.18).

To find the fundamental matrix Ξ(τ),we do as the following:

• Begin from a given exponent matrix Λ and then solve the equations (5.2.26) to get

the matrix A.

• Use the matrix A to find the characteristic matrix X by solving equation (5.2.18).

• Use the exponent matrix Λ and the characteristic matrix X to get the fundamental

matrix Ξ(τ) by solving equation (5.2.11).

Recall that the matrices S and T of any MTC correspond to some representation of the

modular group SL2(Z). In particular, they are the images of the representation ρ of the
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generators of the modular group. Note that from [Hua08], the twist θV : V → V is given by

the operator e2πiL0 .

For a given MTC C of rank n with the central charge c and conformal weights h1, h2, ..hn.

We define λi = hi −
c

24
and set

Λ =



λ1 0 ... 0

0 λ2 ... 0

. . .

0 ... 0 λn


.

Then Λ is the exponent matrix corresponding to the MTC C.

Note that we may have to modify some of the λis to be λi mod 1 in order that Λ satisfies

equation (5.2.14).

Follow the method above, one gets the corresponding fundamental matrix Ξ of the

representation of the MTC C. In this thesis, we explore only the small MTCs up to n = 4.

5.2.4 Results

Now we will give some examples of how to compute the fundamental matrices and the

corresponding characters of the given MTCs.

Example 5.2.1. The fundamental matrix of the representation corresponding to

the VOA genus G(qs2,1).

The MTC qs2 is of rank 2 with central charge 1 and conformal weights 0, 1/4. We have

λ1 = 0− 1/24 = −1/24 and λ2 = 1/4− 1/24 = 5/24 and the exponent matrix is

Λ =

 23
24

0

0 5
24

.
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Note that Λ has to satisfy equation (5.2.14) so we have to modify λ1 to λ1 mod 1.

Next we solve the equations (5.2.26) to get the matrix A (we use Mathematica in this

computation and the source codes are explained in the Appendix C). We get

A =


7

216
f(1, 2)

1463

46656f(1, 2)

209

216

.

Note that f(1, 2) is a parameter since there are infinitely many possible solutions for the

equations (5.2.26).

Next we solve the equation (5.2.18) to get the characteristic matrix with the parameter;

X =


3 −3456

7
f(1, 2)

− 2926

27f(1, 2)
−247

.

Finally, we solve the equation (5.2.11) and get the fundamental matrix with the param-

eter as follow

Ξ = qΛ


q−1 + 3 + 4q + 7q2 + · · · −3456

7
f(1, 2)− 2464128

77
f(1, 2)q − · · ·

− 2926

27f(1, 2)
− 2926q

27f(1, 2)
− · · · q−1 − 247− 86241q − · · ·

.

To find the value of the parameter f(1, 2), we compare the first column of the fundamen-

tal matrix with the known characters of the Wess-Zumino-Novikov-Witten (WZW) model

of level 1 based on the corresponding Lie algebra (cf. [BG07]). In this case, qs2 corresponds

to the affine Kac-Moody Lie algebra A1,1 (the WZW model A1 level 1). By comparing the

first column of Ξ with the corresponding characters of A1,1 we get the following result.

The characteristic matrix is

X =

 3 26752

2 −247


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and the fundamental matrix is

Ξ = qΛ


q−1 + 3 + 4q + 7q2 + · · · 26752 + 1734016q + 46091264q2 + · · ·

2 + 2q + 6q2 + · · · q−1 − 247− 86241q − 4182736q2 − · · ·

.

Note that the first entry in the characteristic matrix represents the dimension of the

corresponding Lie algebra and this number also appears in the second term of the first entry

of the fundamental matrix.

For the MTCs of rank larger than 2, there are more than one parameter in the resulting

matrix A. But we can also compare the first column of the fundamental matrix with the

characters of the corresponding known affine Kac-Moody Lie algebra(WZW model) to get

the values of the parameters.

The representation ρ of qs2 is irreducible so there is only one component. The matrices

S and T of qs2 with central charge 1 are

S =
1√
2

 1 1

1 −1

, and T =

 e
23iπ
12 0

0 e
5iπ
12

.

The canonical basis vectors are v1 =

[
1 0

]
, and v2 =

[
0 1

]
. Note that these

vectors are the canonical basis vectors corresponding to X(ξ,1)s which determine the order

and position of the pole of the representation (see Section 5.2.2).

Recall that the entries in the first column of the fundamental matrix are the characters

of the VOA V and its modules, i.e., the characters of the MTC qs2. So we have the following

theorem.

Theorem 5.2.2. The characters of the VOAs and their modules in G(qs2, 1) have the fol-

lowing forms:

ch M1 = q23/24 (q−1 + 3 + 4q + 7q2 + 13q3 + · · · )

ch M2 = q5/24 (2 + 2q + 6q2 + 8q3 + · · · ) .
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Example 5.2.3. The characters of the MTC corresponding to the VOA genus

G(qs2 ⊗ qs2,10).

The MTC qs2 ⊗ qs2 is of rank 4 with conformal weights h1 = 0, h2 = 1/4, h3 = 1/4, and

h4 = 1/2.

We have h′1 = −5/12, h′2 = −1/6, h′3 = −1/6, and h′4 = 1/12.

After decomposing the representation ρ of the MTC qs2⊗qs2, we have ρ = ρ1⊕ρ2, where

ρ1 is a one dimensional irreducible representation with h′2 forming its exponent matrix Λ1

and ρ2 is a three dimensional irreducible representation with h′1, h′3, and h′4 forming its

exponent matrix Λ2. The Si and Ti matrices are

S1 = (−1) and S2 =
1

2


1 1 1

2 0 −2

1 −1 1

 and

T1 = (e
5iπ
3 ) and T2 =


e

7iπ
6 0 0

0 e
5iπ
3 0

0 0 e
iπ
6


The canonical basis vectors are v1 =

[
1 0 0 0

]
, v2 =

[
0 1 −1 0

]
, v3 =[

0 1 1 0

]
, and v4 =

[
0 0 0 1

]
.

The linear combination of the vjs is

av1 + bv2 + dv3 + ev4. (5.2.27)

Since the canonical basis vectors determine the order and the position of the pole of the

representation, the resulting basis vectors determine the coefficients of the direct sum of the

vectors (columns) in the fundamental matrix.

Note that v2 is the canonical basis vector for ρ1. v1, v3, and v4 are the canonical basis

vectors for ρ2.
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We have the following matrices of the representations ρ1 and ρ2:

• The exponent matrices

Λ1 = (-1/6)

Λ2 = Diag( 7
12
, 5

6
, 1

12
)

• The characteristic matrices

X1 = (4)

X2 =


190 32 4928

512 −4 −22528

20 −8 66


• The fundamental matrices

Ξ1 = qΛ1

(
q−1 + 4− 196870q − 43775016q2 − 2767606261q3 − ...

)

Ξ2 = qΛ2


q−1 + 190 + 5245q + ... 32 + 192q + 800q2 + ... 4928 + 896896q + ...

512 + 10240q + ... q−1 − 4 + 6q − ... −22528− 2547712q − ...

20 + 1160q + ... −8− 80q − 408q2 − ... q−1 + 66 + 86647q + ...

.

Recall that a character of a VOA module is of the form

ch M j = qhj−c/24
∑

n≥0 dimM j
n+hj

qn = qh
′
j
∑

n≥0 dimM j
n+hj

qn.

So h′j = hj − c/24 determines whether ch M j (as a vector valued modular form) has a pole

or not, i.e., if h′j < 0, then ch M j has a pole at infinity.

Remarks :

- ch M1 always has a pole at infinity since h1 = 0. The coefficient of the first term of

ch M1 has to be 1 since it is the dimension of the subspace V0 ' C1.

- If h′j < 0, j 6= 0, then the corresponding basis vector vj contributes to the pole of

ch M j. So there is a combination of the first column of the fundamental matrix and

the other columns which correspond to h′j(< 0)s, i.e., the columns generated by vjs.

So the coefficient of vj in equation (5.2.27) has to be nonnegative.
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In this case, h′3 = −1/6 with the basis vector v3 contributes to the pole of ch M2. Since v3

generates the second column of the fundamental matrix of ρ2, there is a combination of the

first and second columns of the fundamental matrix of ρ2.

Note that the entry of the fundamental matrix of ρ1 (which corresponds to h′2) does not

contribute to any pole. Since 5/6 = h′2 (mod 1) 6= h′1 (mod 1) = 7/12. So this entry cannot

contribute to the pole of ch M1. It also cannot contribute to the pole of ch M2, since it will

give a pole of order larger than one. That is the q-expansion in the fundamental matrix of

ρ1 is q5/6

(
q−2 + 4q−1 − 196870− 43775016q − 2767606261q2 − · · ·

)
. So the values of the

coefficients in equation (5.2.27) are a = 1, b = 0, d ≥ 0, and e = 0. Hence the characters of

a VOA and its modules in this genus is the combination of the first and second columns in

the fundamental matrix of ρ2 and we have the following theorem.

Theorem 5.2.4. The characters of the VOAs and their modules in G(qs2 ⊗ qs2, 10) have

the following forms:

ch M1 = q7/12(q−1 + (190 + 32d) + (5245 + 192d)q + (62150 + 800d)q2 + · · · )

ch M2 = q5/6(dq−1 + (512− 4d) + (10240 + 6d)q + (107520− 8d)q2 + · · · )

ch M3 = q5/6(dq−1 + (512− 4d) + (10240 + 6d)q + (107520− 8d)q2 + · · · )

ch M4 = q1/12((20− 8d) + (1160− 80d)q + (19324− 408d)q2 + · · · )

where d is a suitable nonnegative integer.

Remarks :

- d has to be a nonnegative integer since it appears as the dimension of the submodule

in ch M i.

- ch M1 contains the dimension of the corresponding reductive Lie algebra V1 as the

second term. So 190 + 32d is the dimension of a reductive Lie algebra V1.

- V1 generates an affine Kac-Moody subVOA Ṽ1.
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Theorem 5.2.5. Table B.2 consists of the exponent matrices (Λ) and the characteristic

matrices (X ) of the representations of the MTCs corresponding to the VOA genera G(C, c)

and Table B.3 consists of the characters of the MTCs corresponding to the VOA genera

G(C, c).

Table B.2 contains the exponent matrix Λj and the characteristic matrix Xj of each

irreducible component which contributes to the pole of the character ch M i. Note that we

omit the exponent matrix and the characteristic matrix of the representation which does

not contribute to the pole of ch M i.

Remark We use Table 5.3 in [Höh07] as the reference for some of the characters of

the affine Kac-Moody Lie algebras. In some cases, there is no explicit reference for the

characters of the corresponding Lie algebras but we can do as the following:

1. Compute the fundamental matrix Ξ1 of a MTC with central charge c.

2. Then take a tensor product of Ξ1 and the fundamental matrix corresponding to E8,1⊗

E8,1 (the fundamental matrix of the trivial MTC with central charge 16).

3. Compute the fundamental matrix Ξ2 of the same MTC as in step 1 but with central

charge c + 16.

4. Compare the first column of the resulting matrix from step 2 with the first column of

the fundamental matrix Ξ2.

5.3 Genera of VOAs arising from small MTCs with

central charge at most 16

We use the characters of the MTCs that we get from the computation in Section 5.2 to

classify the genera of the VOAs arising from the small MTCs. The component V1 of the

VOA V has a structure of a reductive Lie algebra and the coefficient of the second term in

68



the q-expansion of ch M1 represents the dimension of the Lie algebra V1. So we can use this

fact to determine for possible Kac-Moody subVOAs Ṽ1 and then we can classify the VOA

genera.

5.3.1 The reductive Lie algebras and the affine Kac-Moody Lie

algebras and theirs associated VOAs

We need some detail of a reductive Lie algebra and an affine Kac-Moody Lie algebra in

order to classify the dimension of the corresponding Kac-Moody subVOAs.

We first give a brief detail of a Lie algebra. A Lie algebra g is a vector space equipped

with an antisymmetric binary operation [·, ·], called a commutator, mapping g × g into g,

and further constrained to satisfy the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 for X, Y, Z ∈ g.

A simple Lie algebra over C is a non-abelian Lie algebra whose only ideals are 0 and

itself. A direct sum of simple Lie algebras is called a semisimple Lie algebra. There are

nine types of simple Lie algebras over C, four infinite series of classical algebras and five

exceptional algebras. The following notation is commonly used:

classical algebras : An(n ≥ 1), Bn(n ≥ 3), Cn(n ≥ 2), Dn(n ≥ 4)

exceptional algebras : G2, F4, E6, E7, E8.

The subscript on the designation A,B, ..., E is the rank of the algebra. We give the dimen-

sions of the simple Lie algebras with their corresponding formulas in Tables 5.2 and 5.3.

Moreover, the direct sum among these simple Lie algebras has the sum of theirs dimensions

as the dimension of the direct sum.
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Table 5.2: The dimensions of the classical simple Lie algebras
Types n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
An n(n + 2) 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288
Bn n(2n + 1) - - 21 36 55 78 105 136 171 210 253 300 351 406 465 528
Cn n(2n + 1) - 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528
Dn n(2n− 1) - - - 28 45 66 91 120 153 190 231 276 325 378 435 496

Table 5.3: The dimensions of the exceptional Lie algebras
Types G2 F4 E6 E7 E8

Dimensions 14 52 78 133 248

The algebras An, Dn, and En have symmetric Cartan matrices (cf. [KMPS90]). And they

have the property that all nonzero roots are of equal length, so the root and coroot lattices

are identical (cf. [MS97]), i.e., they correspond to the root lattices described in Section 2.2

A reductive Lie algebra is a direct sum of a semisimple Lie algebra and an abelian Lie

algebra. The Heisenberg Lie algebra H1 (see detail in [FBZ04]) is an abelian Lie algebra

with dimension 1. The direct sum of any semisimple Lie algebra with dimension m and H1

is a reductive Lie algebra with dimension m+ 1. Note that the Heisenberg Lie algebra has

its associated VOA ˜VH1 with central charge 1 (cf. [FBZ04]).

We define the affine Kac-Moody Lie algebra as a central extension of the formal loop

algebra in Section 2.3.4. Let g be the simple Lie algebra and ĝ be the corresponding affine

Kac-Moody Lie algebra.

Definition 5.3.1 (cf. [FBZ04]). We say that a vertex operator algebra V has a ĝ-structure

of level k denoted by Vk(ĝ) if there is an injection α : g→ V such that the Fourier coefficients

of the vertex operators Y (α(A), z), A ∈ g, generate an action of ĝ on V of level k.

The VOA Vk(g) has a natural conformal vector, called the Segal-Sugawara vector

(cf. [FBZ04]), where k 6= −h∨, where h∨ denotes the dual Coxeter number of g. We have an

isomorphism of vector spaces

Vk(g) ' U(g⊗ t−1C[t−1])vk.
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Table 5.4: The dual Coxeter numbers of the simple Lie algebras
Types An Bn Cn Dn G2 F4 E6 E7 E8

Dual Coxeter number n + 1 2n− 1 n + 1 2n− 2 4 9 12 18 30

Pick a basis {Ja}a=1,...,d of g (where d = dim g), and let {Ja}a=1,...,d be its dual basis with

respect to the invariant bilinear form (·, ·) (cf. [FBZ04]).

We write

Ja(z) =
∑

n∈Z J
a
nz
−n−1, Ja(z) =

∑
n∈Z Ja,nz

−1−1.

Set

S =
1

2

∑d
a=1 Ja,−1J

a
−1vk.

Then for k 6= h∨, S/(k + h∨) is a conformal vector in Vk(g), of central charge

c(k) =
k · dim(g)

k + h∨
. (5.3.1)

From (5.3.1), we have the formula in term of the dimension of g

dim g =
c(k)(k + h∨)

k
.

Recall that the component V1 of the VOA V has a structure of a reductive Lie algebra.

By this fact and since the VOAs here are unitary, we can classify the possible Kac-Moody

subVOAs Ṽ1 of the VOAs arising from some small MTCs.

Example 5.3.2. The VOA genus G(qs2,1).

We have from Example 5.2.1 that the dimension of the corresponding reductive Lie

algebra V1 of qs2 is 3. By computation, A1,1 is the only possible affine Kac-Moody Lie

algebra corresponding to dimension 3 and central charge 1.

Theorem 5.3.3. The possible Kac-Moody subVOA Ṽ1 of the VOA V in G(qs2, 1) is A1,1.
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Example 5.3.4. The VOA genus G(qs2 ⊗ qs2,10).

We have from Example 5.2.3 that the dimension of the corresponding reductive Lie

algebra V1 of qs2 ⊗ qs2 is 190 + 32d where d is a nonnegative integer. In this case, we need

to find the value of the parameter d and hence we will have the dimension.

Recall that the central charge of the Kac-Moody VOA of a simple Lie algebra g at level

k is c(k) =
k · dim(g)

k + h∨
, where h∨ is the dual Coxeter nubmer of g. We can estimate the

highest possible dimension of the Lie algebras using the central charge c as the rank of the

(semi)simple Lie algebras of level 1.

In this case, the highest possible dimension arises as the dimension of the simple Lie

algebra E8 and another simple Lie algebra of rank 2. C2 has the highest dimension among

the rank 2 Lie algebras. So the highest dimension could be 258. Hence d could be 0, 1, 2,

or 3 and the possible dimensions are 190, 222, 254, and 286.

By computation, we get the possible affine Kac-Moody subVOAs as in the following

table:

Dimension Affine Kac-Moody subVOAs

190 D10,1

222 None

254 A1,1 ⊗ A1,1 ⊗ E8,1

286 None

Theorem 5.3.5. The possible Kac-Moody subVOA Ṽ1 of the VOAs V in G(qs2 ⊗ qs2, 10)

are D10,1 and A1,1 ⊗ A1,1 ⊗ E8,1.

Example 5.3.6. The VOA genus G(Ising1,17/2).

The MTC Ising1 is of rank 3 with conformal weights h1 = 0, h2 = 1/2, and h3 = 1/16.

From Table B.3, the dimension of corresponding reductive Lie algebra V1 is 136+112d where

d is a nonnegative integer.
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By computation, we get the possible Kac-Moody subVOAs as in the following table:

Dimension Kac-Moody subVOAs

136 B8,1, A1,1 ⊗ E7,1(1/2), A1,2 ⊗ E7,1

248 E8,1(1/2)

360 None

Note that sometime the central charges of a Kac-Moody subVOA in the resulting tensor

product do not add up to c but the sum of the dimensions already added up. We use the

notation (1/2) as the remainder component with the remainder central charge.

Theorem 5.3.7. The possible Kac-Moody subVOA Ṽ1 of the VOA V in G(Ising1, 17/2)

are B8,1, A1,1 ⊗ E7,1 ⊗ L1/2(0), A1,2 ⊗ E7,1, and E8,1 ⊗ L1/2(0).

Note that there is no Kac-Moody subVOA in the genus G(3fieldsx, 8/7), since the

character ch M1 of the MTC 3fieldsx has a pole order larger than 1. So ch M1 cannot be

a character of a VOA.

By similar computation for each small MTC, we have the following theorem.

Theorem 5.3.8. Table B.4 consists of the possible Kac-Moody subVOAs Ṽ1 of the VOA V

in each genus G(C, c).

Note that in Table B.4, the number in the parenthesis represents the remainder of the

central charge in the resulting tensor product.

Remark: Our method does not work with the cases which the remainder of the central

charge larger than 1, since the information of these cases are unknown. So we only give a

couple examples of the possible subVOAs Ṽ1 and the number of the rest of the subVOAs.
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5.3.2 The genera G(C, c)

Table B.4 contains all of the possible Kac-Moody subVOAs Ṽ1 of the VOA V in each genus

G(C, c). We can classify the VOAs V in the genus by determining the corresponding rank and

the corresponding conformal weights of the possible Kac-Moody subVOAs Ṽ1 in Table B.4.

Example 5.3.9. The VOA genus G(qs2, 1).

From Theorem 5.3.3, the only possible Kac-Moody subVOAs Ṽ1 in the genus G(qs2, 1)

is A1,1. Hence we have the following theorem.

Theorem 5.3.10. The VOA A1,1 is up to isomorphism the only VOA in G(qs2, 1).

Proof : The MTC of the VOA Ṽ1
∼= A1,1 is already qs2 and A1,1 has central charge 1.

q.e.d.

Example 5.3.11. The VOA genus G(qs2 ⊗ qs2, 10).

From Theorem 5.3.5, the possible Kac-Moody subVOAs Ṽ1 in the genus G(qs2⊗ qs2, 10)

are D10,1 and A1,1 ⊗ A1,1 ⊗ E8,1 and hence we have the following theorem.

Theorem 5.3.12. The two VOAs D10,1 and A1,1 ⊗ A1,1 ⊗ E8,1 are up to isomorphism all

the VOAs in G(qs2 ⊗ qs2, 10).

Proof : The MTCs of the VOAs Ṽ1
∼= D10,1, and Ṽ1

∼= A1,1 ⊗ A1,1 ⊗ E8,1 are already

qs2 ⊗ qs2 and in each case Ṽ1 has central charge 10. q.e.d.

Remarks:

- We denote the method we use in the above examples “method 1”. This method is

used in the cases that the MTC of the possible Kac-Moody subVOAs Ṽ1 in a genus

G(C, c) are already C.

74



- We use the information such as conformal weights, central charge, the corresponding

MTC etc. of each Kac-Moody subVOA Ṽ1 from the database [Dat] to determine our

results.

The following genera are classified by applying method 1: G(tm, 8), G(qs2, 9), G(qs2, 7),

G(LY, 14/5), G(LY, 54/5), G(LY , 26/5), G(qs3, 2), G(qs3, 10), G(qs3, 6), G(qs3, 14),

G(Ising1, 15/2), G(Ising3, 5/2), G(Ising3, 21/2), G(Ising3, 11/2), G(Ising4, 7/2),

G(Ising4, 23/2), G(Ising4, 9/2), G(qs4, 7), G(qn4, 5), G(qn4, 3), G(qn4, 11), G(qu2, 8),

G(qv2, 4), G(qv2, 12), G(qs2⊗ qs2, 2), G(qs2⊗ qs2, 6), G(qs2⊗ qs2, 8), G(qs2⊗LY, 19/5), and

G(LY ⊗ LY, 28/5).

Before we can give the next example, we need the following notions. For a VOA V with

an Ising vector e of V , we define the commutant subalgebra ComV (e) := {A ∈ V | e(0)A =

0}. Let W be a unitary commutant subVOA Ṽ1 of V , i.e., W = ComV (Ṽ1). We have

c(W ) = c(V )− c(Ṽ1) , where c(W ), c(V ), and c(Ṽ1) are the central charges of W,V , and Ṽ1

respectively and Ṽ1 is a subVOA of V .

Theorem 5.3.13. Let W be a unitary VOA of central charge c < 1. Then W is isomorphic

to an extension of the Virasoro minimal model VOA Lc(0), where c = 1 − 6

p(p+ 1)
for

p = 2, 3, 4, ....

The central charge c in the above theorem belongs to the minimal series which the first

few elements are 0, 1/2, 7/10, 4/5, 6/7, ....

Remark: The genus G(Ising1, 1/2) contains only the minimal model (the Ising model)

L1/2(0). So it is the only VOA in this genus.

Theorem 5.3.14. The only VOA up to isomorphism in G(Ising1, 1/2) is L1/2(0).

Example 5.3.15. The VOA genus G(Ising1, 17/2).
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From Theorem 5.3.7, the possible subVOAs Ṽ1 ⊗W in the genus G(Ising1, 17/2) are

B8,1, A1,1 ⊗ E7,1 ⊗ L1/2(0), A1,2 ⊗ E7,1, and E8,1 ⊗ L1/2(0).

The MTCs of B8,1 and E8,1⊗L1/2(0) have the ranks and conformal weights of the MTC

of this genus. The MTCs of A1,1 ⊗ E7,1 ⊗ L1/2(0) and A1,2 ⊗ E7,1 have ranks larger than 4.

But these can be the VOA-extensions.

We apply the idea of the simple current extension (cf. [Höh03]) to determine our result.

Let V be a rational VOAs. We call a VOA (W,YW ) an extension of V if it contains a

subVOA isomorphic to V and has the same vacuum and Virasoro element as V . The

VOA-extensions W of a rational VOA V satisfying some certain conditions such as the

conditions in Theorem 3.3.1 can be determined completely in terms of the associated MTC

(cf. Theorem 4.2 in [Höh03]).

A simple module Mi is called a simple current if for each simple module Mj there is

another simple module Mj′ such that Mi ×Mj = Mj′ holds in the fusion algebra.

Theorem 5.3.16. [cf. [Höh03]] Let V be a rational VOA which has an abelian intertwining

operator algebra structure on the direct sum of the simple current. Let C be a subgroup of

the abelian group A ⊂ I of labels of the simple currents for which the modules Mc, c ∈ C,

have integral conformal weight. Then there exists a unique simple VOA-extension (W,YW )

of the form W ∼=
⊕

c∈C ncMc, nc ≥ 0, and one has nc = 1.

By the notion of the VOA extension and simple current, if a module has integral confor-

mal weight, then it can be an extension of the VOA. So we can use this fact to determine

our results by looking at the sum of the appropriate corresponding conformal weights. So

we have to consider the rank and conformal weights of the extended VOA whether it is in

the genus or not.

Consider A1,1 ⊗ E7,1 ⊗ L1/2(0), the corresponding conformal weights of A1,1, E7,1, and

L1/2(0) are {0, 1/4}, {0, 3/4}, and {0, 1/2, 1/16} respectively. (By combining 1/4 and 3/4
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together, the result is equal to 1.) (1/4, 3/4, 0) is the only conformal weight of the MTC

of A1,1 ⊗E7,1 ⊗ L1/2(0) which is integral. So (1/4, 3/4, 0) represents a module with integral

conformal weights and it is a simple current. The extension by ((1/4, 3/4), 0) is isomorphic

to E8,1 ⊗ L1/2(0) which we already have in this genus.

Consider A1,2 ⊗ E7,1, A1,2 has conformal weights {0, 1/2, 3/16}. There is no integral

value for the sum between the elements in {0, 1/2, 3/16} and the elements of {0, 3/4} which

are the conformal weights of E7,1. So there is no VOA-extension and hence no extension of

the VOA belong to this genus.

Theorem 5.3.17. The VOAs up to isomorphism in G(Ising1, 17/2) are B8,1 and E8,1 ⊗

L1/2(0).

Remarks:

- We call the method we use in the above example “method 2”. This method is to

determine whether a VOA Ṽ1⊗W has a VOA extension or not by applying the notion

of simple current.

- Since W is a minimal model, we need to determine only the case that the central

charge c of Lc(0) is in the minimal series.

Method 2 is applied to all cases which the only simple objects of the MTC of Ṽ1⊗W of

conformal weight 0 (mod 1) are simple currents.

This method can be applied to the following genera G(tm, 16), G(Ising1, 17/2),

G(Ising2, 3/2), G(Ising2, 19/2), G(Ising2, 13/2), G(Ising4, 25/2), G(3fieldsx, 64/7),

G(qs2⊗LY, 9/5), G(qs2⊗LY, 49/5), G(qs2⊗LY , 31/5), G(qs2⊗LY , 21/5), G(LY ⊗LY , 8),

G(LY ⊗ LY , 12/5), G(LY ⊗ LY , 52/5), G(4fieldsx, 10/3), and G(4fieldsx, 14/3).

The following table shows the results from the computation regarding of a simple current

and a VOA extension.
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Note that we also give the information regarding of a module with integral conformal

weight and a simple current corresponding to the following genera in the table; G(LY , 66/5),

G(qs2⊗LY, 59/5), G(3fieldsx, 48/7), G(qs2⊗LY , 71/5), and G(qs2⊗LY , 61/5). Method 2

is not applied to these cases directly.

Table 5.5: Simple current testing results

G(C, c) Ṽ1 ⊗W conformal weights integral s.c. ≥ 2 (Ṽ1 ⊗W )+

G(tm, 16) D16,1 D16,1: 0, 2a, 1/2, 2b (2a) yes yes yes

(2b) yes yes yes

G(LY , 66/5)∗ B12,1 ⊗ L7/10(0) B12,1 : 0, 1/2, 25/16 (1/2, 3/2) yes yes no

L7/10(0): 0, 7/16, 3/2, 3/80, (25/16, 7/16) no yes -

3/5, 1/10

G(Ising1, 17/2) A1,1 ⊗ E7,1 ⊗ L1/2 A1,1: 0, 1/4 (1/4, 3/4, 0) yes no -

E7,1: 0, 3/4

L1/2(0): 0, 1/2, 1/16

A1,2 ⊗ E7,1 A1,2: 0, 1/2, 3/16 - - - -

E7,1: 0, 3/4

G(Ising2, 3/2) A1,1 ⊗ L1/2(0) A1,1: 0, 1/4 - - -

L1/2(0): 0, 1/2, 1/16

G(Ising2, 19/2) A1,1 ⊗ E8,1 ⊗ L1/2(0) same as in G(Ising2, 3/2) - - - -

G(Ising2, 13/2) E6,1 ⊗ L1/2(0) E6,1: 0, 2/3, 2/3 - - - -

L1/2(0): 0, 1/2, 1/16

G(Ising4, 25/2) D12,1 ⊗ L1/2(0) D12,1: 0, 1/2a, 3/2b, 3/2c (1/2a, 1/2) yes no -

L1/2(0): 0, 1/2, 1/16 (3/2b, 1/2) yes yes yes

(3/2c, 1/2) yes yes yes

G(3fieldsx, 64/7) A1,5 ⊗ E7,1 A1,5: 0, 5/4, 6/7, 3/28, 2/7, 15/28 (5/4, 3/4) yes yes yes

E7,1: 0, 3/4

G(3fieldsx, 48/7)∗ E6,1 ⊗ L6/7(0) E6,1: 0, 2/3a, 2/3b (2/3a, 4/3) no yes

L6/7(0): 0, 3/8, 4/3, 23/8, 5, (2/3b, 4/3) no yes

1/56, 10/21,85/56, 22/7, 1/21, (0,5) yes yes

33/56,12/7, 5/56, 5/7, 1/7

G(qs2 ⊗ LY, 59/5)∗ A1,1 ⊗D10,1 ⊗ L4/5(0) A1,1: 0, 1/4 (0,0,3) yes yes no

D10,1: 0, 5/4, 1/2, 5/4

L4/5(0): 0, 2/5, 7/5, 3, 1/40,

21/40, 13/8, 1/15, 2/3, 1/8

A1,3 ⊗D10,1 A1,3: 0, 3/4, 2/5, 3/20 (3/4, 5/4a) yes yes yes

Continued on next page
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Table 5.5 – Continued from previous page

G(C, c) Ṽ1 ⊗W conformal weights integral s.c. ≥ 2 (Ṽ1 ⊗W )+

D10,1: 0, 5/4a, 1/2, 5/4b (3/4, 5/4b) yes yes yes

G(qs2 ⊗ LY, 9/5) A1,1 ⊗ L4/5(0) A1,1: 0, 1/4 (0, 3) yes yes no

L4/5(0): 0, 2/5, 7/5, 3, 1/40, but no

21/40, 13/8, 1/15, 2/3, 1/8 extension

G(qs2 ⊗ LY, 49/5) A1,1 ⊗ E8,1 ⊗ L4/5(0) same as in G(qs2 ⊗ LY, 9/5) (0, 0, 3) yes yes no

but no

extension

G(qs2 ⊗ LY , 31/5) B5,1 ⊗ L7/10(0) B5,1: 0, 1/2, 11/16 (1/2, 3/2) yes yes no

L7/10(0): 0, 7/16, 3/2, 3/80, but no

3/5, 1/10 extension

G(qs2 ⊗ LY , 71/5)∗ B3,1 ⊗D10,1 ⊗ L7/10(0) B3,1: 0, 1/2a, 7/16 (1/2a, 0, 3/2) yes yes

D10,1: 0, 5/4, 1/2b, 5/4 (0, 1/2b, 3/2) yes yes

L7/10(0): 0, 7/16, 3/2, 3/80, (1/2a, 1/2b, 0) yes no

3/5, 1/10

B6,1 ⊗ E7,1 ⊗ L7/10(0) B6,1: 0, 1/2, 13/16 (1/2, 0, 3/2) yes yes

E7,1: 0, 3/4 (13/16, 3/4, 7/16) no yes

L7/10(0): 0, 7/16, 3/2, 3/80,

3/5, 1/10

C3,1 ⊗D10,1 C3,1: 0, 3/4, 3/5, 7/20 (3/4, 5/4a) yes yes

D10,1: 0, 5/4a, 1/2, 5/4b (3/4, 5/4b) yes yes

A1,1 ⊗B11,1 A1,1: 0, 1/4 not

⊗ṼH1
⊗ L7/10(0) B11,1: 0, 1/2a, 7/16 applicable

H1: -

L7/10(0): 0, 7/16, 3/2, 3/80,

3/5, 1/10

A1,1 ⊗B12,1 ⊗ L7/10(0) A1,1: 0, 1/4 (0, 1/2, 3/2) yes yes

B12,1: 0, 1/2, 25/16 (0, 25/16, 7/16) no yes

L7/10(0): 0, 7/16, 3/2, 3/80,

3/5, 1/10

B5,1 ⊗ E8,1 ⊗ L7/10(0) same as in G(qs2 ⊗ LY , 31/5) (1/2, 3/2, 0) yes yes

G(qs2 ⊗ LY , 21/5) B3,1 ⊗ L7/10(0) B3,1: 0, 1/2, 7/16 (1/2, 3/2) yes yes no

L7/10(0): 0, 7/16, 3/2, 3/80, but no

3/5, 1/10 extension

G(qs2 ⊗ LY , 61/5)∗ A1,1 ⊗B10,1 ⊗ L7/10(0) A1,1: 0, 1/4 (0, 1/2, 3/2) yes yes

B10,1: 0, 1/2, 21/16 (1/4, 21/16, 7/16) no yes

L7/10(0): 0, 7/16, 3/2, 3/80,

Continued on next page
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Table 5.5 – Continued from previous page

G(C, c) Ṽ1 ⊗W conformal weights integral s.c. ≥ 2 (Ṽ1 ⊗W )+

3/5, 1/10

B3,1 ⊗ E8,1 ⊗ L7/10(0) same as in G(qs2 ⊗ LY , 21/5) (1/2, 3/2, 0) yes yes

G(LY ⊗ LY , 8) A1,1 ⊗A7,1 A1,1: 0, 1/4 (1/4, 3/4a) yes no -

A7,1: 0, 7/16, 3/4a, 15/16, (1/4, 3/4b) yes no -

1, 15/16, 3/4b, 7/16

G(LY ⊗ LY , 12/5) A1,8 A1,8: 0, 2, 3/40, 63/40, 1/5, (2) yes yes yes

6/5, 3/8, 7/8, 3/5

G(LY ⊗ LY , 52/5) A1,8 ⊗ E8,1 same as in G(LY ⊗ LY , 12/5) (2, 0) yes yes yes

G(4fieldsx, 10/3) A1,1 ⊗A1,7 A1,1: 0, 1/4 (1/4, 7/4) yes yes yes

A1,7: 0, 7/4, 4/3, 1/12, 2/9,

35/36, 2/3, 5/12

Note that the fifth column in the table above contains the simple objects of the MTC of

Ṽ1⊗W which have integral conformal weights. The sixth column shows whether the simple

objects in column fifth are simple currents or not. The seventh column shows whether the

conformal weights of the simple objects in column fifth are larger than 1 or not. And the

last column shows whether the MTC of the extension (Ṽ1 ⊗W )+ is C or not. We use the

computer algebra software Kac to compute the simple current extensions. The source codes

are in appendix C.

Remarks:

1. Each of the possible subVOA in the genus G(4fieldsx, 14/3) contains no minimal

model Lc(0), i.e., the central charge c of Lc(0) is not in the minimal series. So there

is no subVOA Ṽ1 of the VOA in this genus to be considered.

2. In G(tm, 16), there are two simple currents but they are isomorphic to the lattice VOA

D+
16. Since Ṽ1 is isomorphic to a lattice VOA, any extension of Ṽ1 is again a lattice

VOA. Hence the VOA is D+
16,1.

3. If the conformal weight of a module of Ṽ1⊗W is 1, then the Lie algebra of an extension
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would be larger than V1. So this can be ignored. This applies to the cases with “no”

in the sixth column.

4. For the cases with “no” in the fifth column and “yes” in the sixth column, we cannot

determine these cases. We mark these cases with G(C, c)∗.

5. In the cases with “no” in the last column, there are two possibilities. First, the MTC

of (Ṽ1 ⊗ W )+ is not C and the family of the conformal weights of the MTC does

not contain all of the conformal weights of C. So there is no other extension which

corresponds to the MTC C. Second, the MTC of (Ṽ1 ⊗W )+ is not C but its family of

the conformal weights contains all of the conformal weights of C. So there might be

other extensions in this case and we cannot determine this case. We again mark this

case with G(C, c)∗.

The rest of the genera can be determined by the methods above and some further

information which we will describe them case by case. We apply the idea of the lattice VOA

(cf. 2.3.5) to determine the case below. We call this method regarding the lattice VOA

“method 3”.

Method 3 is applied to the genus G(qs2, 15). The possible subVOAs Ṽ1 in this genus are

E7,1⊗E8,1 and A1,1⊗D14,1. The lattices E7⊕E8 and A1⊕D+
14 belong to the correct lattice

genus. Hence their associated VOAs belong to this genus.

Theorem 5.3.18. The VOAs up to isomorphism in G(qs2, 15) are E7,1⊗E8,1, A1,1⊗D+
14,1.

Example 5.3.19. The VOA genus G(qs4, 1).

From Table B.4, the possible subVOAs Ṽ1 in G(qs4, 1) is ṼH1 . This implies that an

extension of Ṽ1 is a lattice VOA. The only lattice in the corresponding genus is D1.

Theorem 5.3.20. The VOA up to isomorphism in G(qs4, 1) is D1,1.
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We will call this method “method 3∗”, since it also apply the idea of a lattice VOA. The

method is applied to the genera G(qs4, 9), G(qn4, 13), and G(qs2 ⊗ qs2, 14).

The possible subVOAs Ṽ1 of a VOA in G(qs4, 9) are ṼH1 ⊗ E8,1 and D9,1. The MTC of

D9,1 is already qs4. Moreover, the subVOA ṼH1 ⊗ E8,1 gives the VOA D1,1 ⊗ E8,1.

Theorem 5.3.21. The VOAs up to isomorphism in G(qs4, 9) are D1,1 ⊗ E8,1 and D9,1.

The possible subVOAs Ṽ1 of a VOA in G(qn4, 13) are ṼH1⊗D12,1, A1,1⊗D12,1, D5,1⊗E8,1,

and D13,1. The MTCs of D5,1⊗E8,1 and D13,1 are already qn4, so the VOAs D5,1⊗E8,1 and

D13,1 are in this genus. Hence a VOA V has again to be a lattice VOA. The lattices for the

genus G(qn4, 13) are D5 ⊕ E8, and D13.

Theorem 5.3.22. The VOAs up to isomorphism in G(qn4, 13) are D5,1 ⊗ E8,1 and D13,1.

Now consider the genus G(qs2⊗ qs2, 14). The possible subVOAs Ṽ1 of a VOA in G(qs2⊗

qs2, 14) are E⊗2
7,1 , H⊗2

1 ⊗ D12,1, A⊗2
1,1 ⊗ D12,1, D6,1 ⊗ E8,1, D14,1, and H1 ⊗ D13,1. The MTC

of E⊗2
7,1 , D6,1 ⊗ E8,1, and D14,1 are already qs2 ⊗ qs2. So the VOAs E⊗2

7,1 , D6,1 ⊗ E8,1, and

D14,1 are in this genus. Again, a VOA V has to be a lattice VOA. The lattices for the genus

G(qs2 ⊗ qs2, 14) are E⊕2
7 , (A⊕2

1 ⊕D12)+, D6 ⊕ E8, D⊕2
1 ⊕D12, and D14.

Theorem 5.3.23. The VOAs up to isomorphism in G(qs2⊗qs2, 14) are E⊗2
7,1 , (A⊗2

1,1⊗D12,1)+,

D6,1 ⊗ E8,1, D14,1, and D⊗2
1,1 ⊗D12,1.

Finally, the genus G(3fieldsx, 8/7) contains no VOA, since there is no Kac-Moody sub-

VOA Ṽ1 of the VOA in this genus.

So by applying the methods explained above to each small MTC, we have the following

theorem.
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Theorem 5.3.24. The genera of the VOAs arising from the small MTCs with central charge

at most 16 are classified in Table B.5.

Note that in Table B.5, (V OA)+ represents a VOA extension. The number in the last

column represents the method for classifying the VOAs in each genus:

1 - method 1.

2 - method 2.

3 - method 3.

3∗ - method 3 with the extension of ṼH1 .

4 - special case for G(3feildsx, 8/7).

Finally, we will classify which genera G(C, c) from Table B.5 are code type. We need the

following definition.

Definition 5.3.25. A VOA genus is said to be code type if each VOA in the genus is a

lattice VOA and each associated lattice belongs to the same code type lattice genus.

So the following VOA genera from Table B.5 are code type: G(tm, 8), G(tm, 16),

G(qs2, 1), G(qs2, 9), G(qs2, 7), G(qs2, 15), G(qu2, 8), G(qv2, 4), G(qv2, 12), G(qs2 ⊗ qs2, 2),

G(qs2 ⊗ qs2, 10), G(qs2 ⊗ qs2, 6), and G(qs2 ⊗ qs2, 8).
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Appendix A

Code and Lattice Data

In order to prove Proposition 4.2.7 and Theorem 4.2.8, we have to compare the number

of the lattices in each genus with the number of the doubly even binary codes in each

corresponding genus. We can do it in two ways: direct and indirect computations.

A.1 Direct computation

We can compute the number of lattices in one particular genus directly by the command ’

] ’ followed by lattice genus name from Magma.

First, we begin by constructing a list of the basic doubly even binary codes starting from

length 1. And we get the basic codes as the following table:

Table A.1: The basic doubly even codes

Notation Generating vectors Description

tn [0,0,...,0] a zero dimensional code of length n

d4 [1,1,1,1] a one dimensional code of length 4

d6 [0,0,1,1,1,1],[1,1,1,1,0,0] a two dimensional code of length 6

Continued on next page
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Table A.1 – Continued from previous page

Notation Generating vectors Description

e7 [0,0,0,1,1,1,1],[0,1,1,1,1,0,0], a three dimensional code of length 7

[1,0,1,0,1,0,1]

h8 [1,1,1,1,1,1,1,1] a one dimensional code of length 8

d8 [0,0,0,0,1,1,1,1],[0,0,1,1,1,1,0,0], a three dimensional code of length 8

[1,1,1,1,0,0,0,0]

e8 [0,0,0,0,1,1,1,1],[0,0,1,1,1,1,0,0], a four dimensional code of length 8

[1,1,1,1,0,0,0,0],[0,1,0,1,0,1,0,1]

d10 [0,0,0,0,0,0,1,1,1,1],[0,0,0,0,1,1,1,1,0,0], a four dimensional code of length 10

[0,0,1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0,0,0]

h12 [1,1,1,1,1,1,1,1,1,1,1,1] a one dimensional code of length 12

d12 [0,0,0,0,0,0,0,0,1,1,1,1], a five dimensional code of length 12

[0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0]

d14 [0,0,0,0,0,0,0,0,0,0,1,1,1,1], a six dimensional code of length 14

[0,0,0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0,0,0]

e15 [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], a seven dimensional code of length 15

[0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],

[0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],

[0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],

Continued on next page
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Notation Generating vectors Description

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

d16 [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], a seven dimensional code of length 16

[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]

e16 [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], an eight dimensional code of length 16

[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

d20 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], a nine dimensional code of length 20

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Next, we construct the representing codes for each genus (n, k, t) from the direct sum

of the basic codes. The list of the genera and the corresponding codes from length 1 to 16
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is in the following table.

Table A.2: The representing codes in each genus up to length 16

(n, k, t) Representing code (n, k, t) Representing code

(1,0,odd) t1 (2,0,odd) t2

(3,0,odd) t3 (4,0,odd) t4

(4,1,even) d4 (5,0,odd) t5

(5,1,odd) t1 ⊕ d4 (6,0,odd) t6

(6,1,odd) t2 ⊕ d4 (6,2,odd) d6

(7,0,odd) t7 (7,1,odd) t3 ⊕ d4

(7,2,odd) t1 ⊕ d6 (7,3,odd) e7

(8,0,odd) t6 (8,1,odd) t4 ⊕ d4

(8,1,even) h8 (8,2,odd) t2 ⊕ d6

(8,2,even) d4 ⊕ d4 (8,3,odd) t1 ⊕ e7

(8,3,even) d8 (8,4,even) e8

(9,0,odd) t9 (9,1,odd) t5 ⊕ d4

(9,2,odd) t3 ⊕ d6 (9,3,odd) t2 ⊕ e7

(9,4,odd) t1 ⊕ e8 (10,0,odd) t10

(10,1,odd) t6 ⊕ d4 (10,2,odd) t4 ⊕ d6

(10,3,odd) t3 ⊕ e7 (10,4,odd) t2 ⊕ e8

(11,0,odd) t11 (11,1,odd) t7 ⊕ d4

(11,2,odd) t5 ⊕ d6 (11,3,odd) t4 ⊕ e7

(11,4,odd) t3 ⊕ e8 (12,0,odd) t12

(12,1,odd) t8 ⊕ d4 (12,1,even) h12

(12,2,odd) t6 ⊕ d6 (12,2,even) d4 ⊕ h8

(12,3,odd) t5 ⊕ e7 (12,3,even) d4 ⊕ d4 ⊕ d4

(12,4,odd) t4 ⊕ e8 (12,4,even) d4 ⊕ d8

(12,5,even) d4 ⊕ e8 (13,4,odd) t5 ⊕ e8

Continued on next page
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(n, k, t) Representing code (n, k, t) Representing code

(13,5,odd) t1 ⊕ d4 ⊕ e8 (14,5,odd) t2 ⊕ d12

(14,6,odd) d6 ⊕ e8 (16,8,even) e16

Then we construct lattices from these codes. Each lattice will give us a lattice genus

G(n, k, t) which we can compute the number of lattices in the corresponding genus directly

using the command in Magma. And we get the result as in the table in table 4.3. However,

when n is getting larger Magma cannot compute the number any more so we need to do in

different way.

A.2 Indirect computation

We only need to compute the number of lattices in the highest dimension of the correspond-

ing codes (possibly two highest dimensions in some cases). Since we cannot compute the

number of lattices in each genus directly, we need to find different lattices in the genus one

by one until we reach the sufficient number of lattices to prove that it is larger than the

number of the corresponding codes. The process to find these lattices is as follow.

• First, we have to construct a list of as many lattices from the known codes as we can.

Note that we can construct these codes using the basic codes. Then we choose one

lattice from the list to begin with, say lattice L.

• Second, we have to find a suitable vector in L and use it to generate a non isometric

lattice which belongs to the same genus as L one by one (this method is to find the

neighboring lattice of L by using its vector).

– Step 1 : we ask Magma to randomly choose a vector in L and then we test

whether the vector is suitable or not to use the command ’Neighbour’ in Magma.
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If not we choose a new vector. We ask Magma to do this until we get the suitable

one. Note that the suitable vector means its norm has to be divisible by the

square of a prime number p that we use in the command ’Neighbour’, i.e., if we

use p = 3, then the norm of the vector has to be divisible by 9.

– Step 2 : we ask Magma to generate a neighboring lattice, say L′, of L from the

vector we got from step 1.

– Step 3 : we use the command ’IsIsometric’ to test whether the lattice L′ is

isometric to each lattice in our list or not. If it is isometric, then we need to do

from step 1 again until we get the non isometric lattice.

• Third, we add the non isomorphic lattice L′ to our list of lattices and we repeat all the

above steps again with possibly the same lattice L or we can choose another lattice

from the list. Finally, we stop when we get enough number of lattices which should

be at least one more than the number of the corresponding codes.

Therefore we need to compute all of the lattices in the following genera; G(18, 8, odd),

G(19, 8, odd), G(20, 8, odd), G(20, 9, even) ,G(21, 9, odd), G(22, 10, odd), and G(23, 11, odd)

A.2.1 Lists of doubly even codes and the corresponding lattices

Some codes can be written as the direct sum of the basic codes as in table A.1. Some codes

will be written explicitly with the generating vectors.

Table A.3: Lists of doubly even codes and the corresponding lattices

Genus Codes Corresponding lattices

(18,8,odd) t2 ⊕ e16 L181

e8 ⊕ d10 L182

t2 ⊕ e8 ⊕ e8 L183

[1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],

Continued on next page
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Genus Codes Corresponding lattices

[0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0], L184

[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0],

[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0]

(19,8,odd) [1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0],

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0], L191

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0],

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0], L192

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

[1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0], L193

[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0],

[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0],

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0],

[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0], L194

Continued on next page
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Genus Codes Corresponding lattices

[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0],

[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0],

[0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0],

[0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0],

[0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0], L195

[0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0],

[0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0],

[0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,0], L196

[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

[1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,0], L197

[0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,0],

[0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

d4 ⊕ e15 L198

e7 ⊕ d12 L199

t1 ⊕ e8 ⊕ d10 L1910

d4 ⊕ e7 ⊕ e8 L1911

(20,8,odd) d6 ⊕ d14 L20O1

d10 ⊕ d10 L20O2

Continued on next page
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Genus Codes Corresponding lattices

d6 ⊕ e7 ⊕ e7 L20O3

t2 ⊕ e8 ⊕ d10 L20O4

t1 ⊕ d4 ⊕ e15 L20O5

t1 ⊕ e7 ⊕ d12 L20O6

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],

[0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0], L20O7

[0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,0],

[0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0], L20O8

[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,0,0], L20O9

[0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,0,0],

[0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0], L20O10

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

Continued on next page
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Genus Codes Corresponding lattices

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0], L20O11

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0], L20O12

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0], L20O13

[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0],

[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0],

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0],

[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0], L20O14

[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0],
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[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0], L20O15

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0], L20O16

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,1,1],

[0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1], L20O17

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,1,1,1,1],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0], L20O18

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]
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[1,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0],

[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,1,1,0,0,0], L20O19

[0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0],

[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,1,0 0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0],

[0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0], L20O20

[0,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,1,1,0,0],

[0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1]

[1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0 0],

[0,0,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,0,0],

[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0], L20O21

[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,1,0,0],

[0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1]

[1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,1,0,0],

[0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,0],

[0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0], L20O22

[0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0,1,0,0],

[0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]
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[1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0],

[0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],

[0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0], L20O23

[0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0 0],

[0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0],

[0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0], L20O24

[0,0,0,0 1,0,0,0,0,1,1,0,0,1,0,0,0,0,0 0],

[0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

[1,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,1,1,1,0,0 0,0,0,0,0], L20O25

[0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

[1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0], L20O26

[0,0,0,0,1,0 0,0,1,1,1,0,1,1,0,1,1,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0 0,1,0],

[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0],

[0,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,0,1,0,1]

[1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0],
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[0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,0,1,0,0], L20O27

[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0],

[0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0], L20O28

[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1]

[1,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0], L20O29

[0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0],

[0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0],

[0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0], L20O30

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0],
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[0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0], L20O31

[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],

[0,0,0,0,0,1 0,1,0,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0]

[1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0],

[0,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0],

[0,0 0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0], L20O32

[0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0],

[0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0]

[1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0],

[0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0], L20O33

[0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0],

[0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0]

[1,0,0,0,0,0,0,1,1,1,1,0,1,0,1,0,0,1,0,0],

[0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0],

[0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1,1,1,1,0], L20O34

[0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,1,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0],

[0,0,0,0,0,0,1,1,0,0,1,1,1,0,0,1,0,1,1,0],

[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,0,1,1,0],

[0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0],

[0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0],
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[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0], L20O35

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0],

[0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0],

[0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0],

[0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0], L20O36

[0,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0],

[0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,1,1]

[1,0,0,0,0 0,0,0,0,0,0,1,1,0,1,0,0,0,0,0],

[0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,1,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0], L20O37

[0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,1,1,0,0],

[0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0]

[1,0,0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0], L20O38

[0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,1,1,0,0],

[0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],

[0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0], L20O39
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[0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1]

[1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0],

[0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,1,1,1,0,0],

[0,0,0,1,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0], L20O40

[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0],

[0,0,0,0,0,0,1,0,1,1,0,1,1,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0],

[0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0], L20O41

[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],

[0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,0],

[0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0],

[0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0]

[1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0],

[0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,0], L20O42

[0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0],

[0,0 0,0,0,1,0 0,1,1,0,1,1,1,0,0,1,1,0,0],

[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,0,0],

[0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],

[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0], L20O43

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],
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[0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],

[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,0,0],

[0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],

[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0], L20O44

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],

[0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],

[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0 0,1,0],

[0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,1,0,1]

[1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,0],

[0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1,0],

[0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,0,0,0,1,0],

[0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0], L20O45

[0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,0,1,1,0],

[0,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0],

[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,1]

[1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0],

[0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1 0,1,0],

[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0], L20O46

[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0],

[0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0],

[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0], L20O47

[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],
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[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,0,1,0,1]

[1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,0],

[0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,1,1,1,0], L20O48

[0,0,0,0,1,0,0,0,1,1,0,0,1,1,1,1,0,0,1,0],

[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0],

[0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,1,0,1,1]

[1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0,0],

[0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0],

[0,0,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0], L20O49

[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0],

[0,0,0,0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,0],

[0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,1,1,0],

[0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,0,0,1]

[1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],

[0,1,0,0 0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,0],

[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0], L20O50

[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],

[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1]

[1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],

[0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,0],

[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0], L20O51

[0,0,0 0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],

[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],
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[0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1,1,0,1,1]

[1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,0,1,0,0],

[0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,1,0],

[0,0,1,0,0,0,0,1,1,0,0,1,1,0,1,1,0,1,0,0],

[0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,0], L20O52

[0,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,1,0,1,0],

[0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1]

[1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,0],

[0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0], L20O53

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0],

[0,0 0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1]

(20,8,even) d20 L20E1

d4 ⊕ d8 ⊕ e8 L20E2

d8 ⊕ d12 L20E3

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0], L20E4

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0], L20E5

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],
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[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1],

[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1], L20E6

[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1,1,1],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],

[0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,1,1],

[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0], L20E7

[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1],

[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0],

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1], L20E8

[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0],

[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],

[0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0]

[1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0],

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1], L20E9

[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0],

[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0],

[0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0],
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[1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,1,1,0],

[0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0], L20E10

[0,0,0,0,1,0 0,0,1,1,1,0,1,1,0,1,1,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]

[1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0],

[0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0],

[0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,0], L20E11

[0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,1,1,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,1]

[1,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0], L20E12

[0,0,0,0,1,0,1,0,1,0 0,0,0,0,1,0,0,0,0,0],

[0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

[1,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0],

[0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0],

[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0], L20E13

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,1]

Continued on next page

107



Table A.3 – Continued from previous page

Genus Codes Corresponding lattices

[1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,1,0,0],

[0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],

[0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,0], L20E14

[0,0,0,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],

[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0],

[0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,1]

[1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0],

[0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0],

[0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0], L20E15

[0,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0],

[0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],

[0,1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,0,0],

[0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],

[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0], L20E16

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],

[0,0 0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],

[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0],

[0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0],

[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0], L20E17

[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],

[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1]
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[1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0],

[0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,1,0,0,0,0,1,1,0],

[0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0], L20E18

[0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,1,0],

[0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,0,1,0],

[0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0],

[0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1]

[1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],

[0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],

[0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,0],

[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0], L20E19

[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],

[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],

[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1]

(20,9,even) d4 ⊕ e8 ⊕ e8 L2091

d4 ⊕ e16 L2092

d20 L2093

e8 ⊕ d12 L2094

(21,9,odd) [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0], L210

[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

t1 ⊕ e8 ⊕ d12 L211

t1 ⊕ d4 ⊕ e8 ⊕ e8 L212

t1 ⊕ d4 ⊕ e16 L213

e7 ⊕ e7 ⊕ e7 L214

d6 ⊕ e15 L215

d6 ⊕ e7 ⊕ e8 L216
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(22,10,odd) e7 ⊕ e15 L221

d6 ⊕ e16 L222

d6 ⊕ e8 ⊕ e8 L223

e8 ⊕ d14 L224

(23,11,odd) e7 ⊕ e16 L230

e8 ⊕ e15 L231

e7 ⊕ e8 ⊕ e8 L232

A.2.2 Lists of vectors and corresponding lattices using command

Neighbour(L,v,3)

Table A.4: Lists of vectors and corresponding lattices using

command Neighbour(L,v,3)

Genus Vectors Corresponding lattices

(18,8,odd) v5 = ( 0 -5 1 1 0 0 0 0 1 0 0 0 2 0 0 0 0 0) from L181 L185

v6 = ( 0 -3 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0) from L182 L186

v7 = (0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0) from L182 L187

v8 = ( 1 0 -3 0 0 0 1 2 0 0 0 0 0 0 1 0 1 1) from L182 L188

v9 = (0 0 0 1 1 0 0 0 0 1 0 2 1 0 0 1 0 0) from L182 L189

v10 = (-5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0) from L184 L1810

(19,8,odd) v12 = (-1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1) from L1911 L1912

v13 = (-3 0 0 0 1 0 0 2 0 1 0 0 0 0 1 0 0 1 1) from L1911 L1913

v14 = ( 0 -5 0 0 2 0 0 0 0 1 0 0 0 1 0 0 2 0 0) from L1911 L1914

v15 = (-3 0 0 0 0 0 1 0 2 1 0 0 0 0 0 1 0 1 1) from L1910 L1915

v16 = (0 0 0 1 0 1 0 1 1 1 0 0 2 0 0 0 0 0 0) from L1910 L1916

v17 = (-3 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 2 1 1) from L195 L1917

v18 = (-3 2 0 0 0 1 0 0 0 1 1 0 2 0 0 0 0 0 0) from L195 L1918

v19 = (-6 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0) from L195 L1919

v20 = (0 0 1 0 0 0 0 0 0 1 0 0 0 3 0 1 0 1 0) from L194 L1920

(20,8,odd) v54 = (0 -1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 2 1) from L20O10 L20O54

v55 = (-3 0 0 0 1 1 2 0 1 0 0 0 0 0 0 0 2 0 1 0) from L20O10 L20O55

v56 = (0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1) from L20O10 L20O56
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v57 = (-1 0 1 0 2 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0) from L20O15 L20O57

v58 = (-6 0 1 0 0 0 0 0 0 2 1 2 0 0 0 0 1 1 0 0) from L20O15 L20O58

v59 = (1 -3 0 0 0 0 1 3 0 0 0 0 0 0 1 0 0 1 1 0) from L20O16 L20O59

v60 = (0 2 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 1 1 0) from L20O12 L20O60

v61 = (0 0 0 1 0 0 1 0 2 0 0 0 0 1 1 1 1 0 0 0) from L20O13 L20O61

v62 = (0 -6 0 2 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0) from L20O13 L20O62

v63 = (-3 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0 2 2) from L20O13 L20O63

v64 = (0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0) from L20O7 L20O64

v65 = (0 0 1 0 0 4 0 1 0 0 0 0 0 1 0 0 0 0 0 1) from L20O7 L20O65

v66 = (-1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 3 0 1 0 0) from L20O9 L20O66

v67 = (1 -6 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1) from L20O9 L20O67

(20,9,even) v5 = (-3 0 1 1 0 0 0 1 0 1 0 0 0 0 0 3 2 1 0 0) from L2094 L2095

v6 = (-3 0 0 0 0 0 2 0 2 1 1 0 0 1 1 0 1 0 0 0) from L2091 L2096

v7 = (0 0 0 0 0 2 0 1 0 2 1 0 0 0 0 1 0 1 1 0) from L2091 L2097

v8 = (2 -3 0 0 0 0 2 0 1 0 0 1 0 1 2 0 0 1 0 0) from L2092 L2098

v9 = (1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0) from L2092 L2099

v10 = (-3 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 2 2) from L2092 L20910

v11 = (-6 1 0 1 0 1 0 0 2 0 2 0 2 0 0 0 0 1 0 2) from L2092 L20911

v12 = (-3 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 3 1 0) from L2094 L20912

(21,9,odd) v7 = (-6 0 0 1 0 0 1 0 0 0 0 0 0 0 2 1 1 0 0 1 1) from L210 L217

v8 = (-6 0 0 1 0 0 2 0 0 0 0 1 0 1 1 0 1 0 0 0 1) from L210 L218

v9 = (-3 0 0 0 0 0 0 2 0 2 0 1 0 1 0 0 1 1 1 0 0) from L210 L219

v10 = (-6 0 2 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0) from L211 L2110

v11 = ( 0 0 -3 1 0 1 0 1 0 1 0 0 0 0 2 0 0 2 0 0 0) from L211 L2111

v12 = ( 0 0 -3 1 0 0 0 0 0 4 0 0 0 1 0 0 1 0 0 0 1) from L211 L2112

v13 = (-6 0 0 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 1 1) from L211 L2113

v14 = (-6 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1) from L211 L2114

v15 = (0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1) from L211 L2115

v16 = ( 0 0 0 0 0 0 0 0 -2 1 0 2 0 0 0 1 1 0 0 1 0) from L212 L2116

v17 = (-3 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 4 0 0 0) from L212 L2117

v18 = (-6 0 0 0 0 1 1 0 0 0 2 0 0 1 0 0 1 0 2 0 0) from L212 L2118

v19 = (0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 2 0 2 0) from L212 L2119

v20 = (-6 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0) from L212 L2120

v21 = (0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0) from L212 L2121

v22 = (-6 0 0 0 0 0 1 0 0 1 3 0 0 0 1 1 0 0 1 0 0) from L212 L2122

v23 = (-6 0 0 1 1 0 0 0 1 2 1 1 0 0 0 0 0 1 1 0 0) from L212 L2123

v24 = (-3 0 0 0 0 0 1 0 2 1 0 0 1 1 0 0 1 1 0 1 0) from L212 L2124
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v25 = ( 0 0 -3 2 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 2) from L212 L2125

v26 = (-3 1 0 0 0 1 2 0 0 1 0 0 1 2 1 0 0 1 0 0 0) from L212 L2126

v27 = (-6 0 0 2 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0) from L214 L2127

v28 = (0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0) from L214 L2128

v29 = (-6 0 0 0 1 1 0 0 1 0 2 0 1 0 0 0 1 0 0 0 1) from L214 L2129

v30 = (-3 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0) from L215 L2130

v31 = (-6 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0) from L215 L2131

v32 = (0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0) from L215 L2132

v33 = (0 0 0 0 2 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0) from L215 L2133

v34 = (0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0) from L215 L2134

v35 = (-3 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1) from L215 L2135

v36 = (0 0 0 0 0 0 0 2 1 0 0 1 1 0 0 1 1 0 1 0 1) from L215 L2136

v37 = (1 0 1 0 0 0 0 0 0 0 1 2 0 0 0 1 0 1 0 0 1) from L215 L2137

v38 = (1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 2 0 0) from L215 L2138

(22,10,odd) v5 = (0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1) from L224 L225

v6 = (-3 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 2 0 0 1) from L224 L226

v7 = (0 0 1 0 1 0 0 1 0 2 1 0 0 1 1 0 0 0 0 0 1 0) from L224 L227

v8 = (-6 0 0 1 1 0 1 1 1 0 0 1 2 0 0 0 0 0 1 0 0 0) from L224 L228

v9 = (-6 0 1 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 1 1 0) from L221 L229

v10 = (-6 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 2 0 0 0) from L221 L2210

v11 = (0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 2 1 0 1 0 0) from L221 L2211

v12 = (1 0 0 0 1 0 0 0 1 0 0 0 4 1 0 0 0 0 0 0 0 0) from L221 L2212

v13 = (2 0 -6 0 0 0 0 2 0 1 0 0 0 0 1 0 1 0 1 0 0 0) from L221 L2213

v14 = (-6 0 0 0 0 1 0 1 0 0 2 0 1 0 0 1 0 0 0 1 1 0) from L221 L2214

v15 = (-6 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1) from L221 L2215

v16 = (0 1 -3 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 2 0 0) from L221 L2216

v17 = (-3 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0) from L221 L2217

v18 = (1 -6 0 0 0 0 0 0 1 0 0 0 1 0 0 1 3 1 0 0 0 0) from L221 L2218

v19 = (-2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 0 1) from L222 L2219

v20 = (0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1) from L222 L2220

v21 = (-6 0 0 0 0 1 0 1 0 0 0 0 0 2 1 0 0 1 0 0 0 2) from L222 L2221

v22 = (-6 0 1 0 0 0 0 0 1 0 0 0 0 2 0 0 2 1 0 1 0 0) from L222 L2222

v23 = (0 1 1 0 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0 1 1 0) from L222 L2223

v24 = (0 -5 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0) from L222 L2224

v25 = (0 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1) from L222 L2225

v26 = (0 0 0 0 0 0 0 0 0 1 -6 0 0 1 1 0 2 0 0 1 0 1) from L223 L2226

Continued on next page
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lattices

v27 = (-3 0 0 1 0 4 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1) from L224 L2227

(23,11,odd) v3 = (-6 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 2 0 0 0) from L230 L233

v4 = (0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 2 1 0 0 0 0) from L230 L234

v5 = (-3 0 0 1 0 0 0 0 0 2 0 0 0 1 0 2 0 0 1 1 0 0 0) from L230 L235

v6 = (-6 1 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 1 0 0 2 0 0) from L230 L236

v7 = (-3 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0) from L230 L237

v8 = (-6 1 0 0 0 0 1 0 0 0 0 0 0 0 1 2 2 0 0 0 1 0 0) from L230 L238

v9 = (-3 0 0 0 2 0 0 0 1 1 0 1 2 0 0 0 0 1 0 0 0 2 0) from L231 L239

v10 = ( 2 -3 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 2 0 1 1 0 0) from L231 L2310

v11 = (1 0 0 0 4 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0) from L231 L2311

A.2.3 Table comparing the number of lattices from code and lat-

tices from computation

The following table contains the numbers of codes, lattices constructed from known codes,

and lattices constructed by computation.

genus codes lattices from known codes lattices from computation total lattices

G(18, 8, odd) 9 4 6 10

G(19, 8, odd) 19 11 9 20

G(20, 8, odd) 84 53 14 67∗

G(20, 8, even) 19

G(20, 9, even) 10 4 8 12

G(21, 9, odd) 38 7 32 39

G(22, 10, odd) 25 4 23 27

G(23, 11, odd) 11 3 9 12

From the table, we can see that the number in the last column is larger than the number

in the second column which means the least number of lattices in each genus is larger than

the number of codes. Hence these lattices genera are non code type.
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Note that (*) in the genera G(20, 8, odd) and G(20, 8, even), we cannot find the exact

number of codes in each genus but we know that G(20, 8, even) is non code type because

the genus G(20, 9, even) is non code type. We know only the total number of codes (20,8)

which is 84. And we found 53 codes of odd type and 19 codes of even type. Then we found

14 lattices of odd type by computation so we have 67 lattices of odd type. But when we

combine 67 odd type lattices with 19 even type lattices we have a total of 86 lattices which

exceeds the number of codes. So we have at least two lattices of odd type that cannot be

constructed from codes, and hence G(20, 8, odd) is non code type.
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Appendix B

Tables for the classification of genera

of VOAs for small MTCs with central

charges at most 16

Table B.1: The S-matrices, the components of the irreducible rep-

resentations, and the corresponding canonical basis vectors of the

representation corresponding to small MTCs

No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

1 tm 1 8 (1) 1 [1]

2 qs2 2 1 1√
2

(
1 1
1 −1

)
2

 1 0

0 1


3 qs2 2 7 1√

2

(
1 1
1 −1

)
2

 1 0

0 1


4 Lee− Y ang 2 14/5

( √
2

5+
√

5

1+
√

5√
2(5+

√
5)

1+
√

5√
2(5+

√
5)
−
√

2
5+

√
5

)
2

 1 0

0 1


Continued on next page
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No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

5 Lee− Y ang 2 26/5

( √
2

5+
√

5

1+
√

5√
2(5+

√
5)

1+
√

5√
2(5+

√
5)
−
√

2
5+

√
5

)
2

 1 0

0 1


6 qs3 3 2 1√

3

(
1 1
1 ω+ω2

)
1⊕ 2

[
0 1 −1

]
,

where ω = e2πi/3

 1 0 0

0 1 1


7 qs3 3 6 1√

3

(
1 1
1 ω+ω2

)
1⊕ 2

[
0 1 −1

]
,

where ω = e2πi/3

 1 0 0

0 1 1



8 Ising1 3 1/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



9 Ising1 3 15/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



10 Ising2 3 3/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



11 Ising2 3 13/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



12 Ising3 3 5/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



13 Ising3 3 11/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1


Continued on next page
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No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

14 Ising4 3 7/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



15 Ising4 3 9/2 1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
3


1 0 0

0 1 0

0 0 1



16 3fieldsx 3 8/7 1
D

(
1 d d2−1
d −d2+1 1

d2−1 1 −d

)
3


1 0 0

0 1 0

0 0 1


where d = 2cos(π

7
), D =

√
7

2sin(π
7
)

17 3fieldsx 3 48/7 1
D

(
1 d d2−1
d −d2+1 1

d2−1 1 −d

)
3


1 0 0

0 1 0

0 0 1


where d = 2cos(π

7
), D =

√
7

2sin(π
7
)

18 qs4 4 1 1⊕ 3
[

0 0 1 −1

]
,

1
2

( 1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

) 
1 0 0 0

0 1 0 0

0 0 1 1


19 qs4 4 7 1⊕ 3

[
0 0 1 −1

]
,

1
2

( 1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

) 
1 0 0 0

0 1 0 0

0 0 1 1


20 qn4 4 5 1⊕ 3

[
0 0 1 −1

]
,

1
2

( 1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

) 
1 0 0 0

0 1 0 0

0 0 1 1


21 qn4 4 3 1⊕ 3

[
0 0 1 −1

]
,

Continued on next page
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No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

1
2

( 1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

) 
1 0 0 0

0 1 0 0

0 0 1 1


22 qu2 4 8 1⊕ 1⊕ 2

[
1 0 1 0

]
,

1
2

(
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

) [
0 1 −1 0

]
, 1 −1 −1 0

0 0 0 1


23 qv2 4 4 1⊕ 1⊕ 2

[
0 1 0 −1

]
,

1
2

(
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

) [
0 0 1 −1

]
, 1 0 0 0

0 1 1 1


24 qs2 ⊗ qs2 4 2 1⊕ 3

[
0 1 −1 0

]
,

1
2

(
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) 
1 0 0 0

0 1 1 0

0 0 0 1


25 qs2 ⊗ qs2 4 6 1⊕ 3

[
0 1 −1 0

]
,

1
2

(
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) 
1 0 0 0

0 1 1 0

0 0 0 1


26 qs2 ⊗ qs2 4 8 1⊕ 3

[
1 0 0 1

]
,

1
2

(
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) 
1 0 0 −1

0 1 0 0

0 0 1 0



27 qs2 ⊗ LY 4 19/5
1
D

(
1 d 1 d
d −1 d −1
1 d −1 −d
d −1 −d 1

)
where D =

√
5 +
√

5, d = 1+
√
5

2

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Continued on next page
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No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

28 qs2 ⊗ LY 4 9/5

1
D

( 1 d 1 d
d −1 d −1
1 d −1 −d
d −1 −d 1

)
where D =

√
5 +
√

5, d = 1+
√

5
2

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



29 qs2 ⊗ LY 4 31/5

1
D

( 1 d 1 d
d −1 d −1
1 d −1 −d
d −1 −d 1

)
where D =

√
5 +
√

5, d = 1+
√

5
2

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



30 qs2 ⊗ LY 4 21/5

1
D

( 1 d 1 d
d −1 d −1
1 d −1 −d
d −1 −d 1

)
where D =

√
5 +
√

5, d = 1+
√

5
2

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


31 LY ⊗ LY 4 28/5 1⊕ 3

[
0 1 −1 0

]
,

(
1√
2+d

)2
(

1 d d d2

d −1 d2 −d
d d2 −1 −d
d2 −d −d 1

)
where d = 1+

√
5

2


1 0 0 0

0 1 1 0

0 0 0 1


32 LY ⊗ LY 4 12/5 1⊕ 3

[
0 1 −1 0

]
,

(
1√
2+d

)2
(

1 d d d2

d −1 d2 −d
d d2 −1 −d
d2 −d −d 1

)
where d = 1+

√
5

2


1 0 0 0

0 1 1 0

0 0 0 1


33 LY ⊗ LY 4 8 1⊕ 3

[
1 0 0 1

]
,

(
1√
2+d

)2
(

1 d d d2

d −1 d2 −d
d d2 −1 −d
d2 −d −d 1

)
where d = 1+

√
5

2


1 0 0 −1

0 1 0 0

0 0 1 0


Continued on next page
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No. C n c (mod 8) S ρ1 ⊕ ...⊕ ρs Basis vectors

34 4fieldsx 4 10/3

1
D

(
1 d d2−1 d+1
d −d−1 d2−1 −1
d2 d2−1 0 −d2+1
d+1 −1 −d2+1 d

)
where D = 3

2sin( π
9 ) , d = 2cos(π9 )

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



35 4fieldsx 4 14/3

1
D

(
1 d d2−1 d+1
d −d−1 d2−1 −1
d2 d2−1 0 −d2+1
d+1 −1 −d2+1 d

)
where D = 3

2sin( π
9 ) , d = 2cos(π9 )

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Table B.2: The exponent matrices and the characteristic matrices

of the contributing irreducible representations of the small MTCs

No. C n c Λi Xi

1 tm 1 8 Λ1 = ( 2
3 ) X1 = (248)

16 Λ1 = ( 1
3 ) X1 = (496)

2 qs2 2 1 Λ1 = Diag( 23
24 ,

5
24 ) X1 =

 3 26752

2 −247


9 Λ1 = Diag( 5

8 ,−
1
8 ) X1 =

 251 26752

2 1


3 qs2 2 7 Λ1 = Diag( 17

24 ,
11
24 ) X1 =

 133 1248

56 −377


15 Λ1 = Diag( 3

8 ,
1
8 ) X1 =

 381 1248

56 −129


4 Lee− Y ang 2 14/5 Λ1 = Diag( 53

60 ,
17
60 ) X1 =

 14 12857

7 −258


54/5 Λ1 = Diag( 11

20 ,−
1
20 ) X1 =

 262 12857

7 −10


Continued on next page
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No. C n c Λi Xi

5 Lee− Y ang 2 26/5 Λ1 = Diag( 47
60 ,

23
60 ) X1 =

 52 3774

26 −296


66/5 Λ1 = Diag( 9

20 ,
1
20 ) X1 =

 300 3774

26 −48


6 qs3 3 2 Λ2 = Diag( 11

12 ,
1
4 ) X2 =

 8 78732

1 −252


10 Λ2 = Diag( 7

12 ,−
1
12 ) X2 =

 256 78732

1 −4


7 qs3 3 6 Λ2 = Diag( 3

4 ,
5
12 ) X2 =

 78 91854

1 −322


14 Λ2 = Diag( 5

12 ,
1
12 ) X2 =

 326 91854

1 −74



8 Ising1 3 1/2 Λ1 = Diag( 47
48 ,

23
48 ,

1
24 ) X1 =


0 2325 94208

1 275 −4096

1 −25 −23



17/2 Λ1 = Diag( 11
16 ,

3
16 ,

5
8 ) X1 =


136 5125 112

17 123 −16

256 −10496 −7



9 Ising1 3 15/2 Λ1 = Diag( 11
16 ,

3
16 ,

5
8 ) X1 =


105 5083 288

15 156 −32

128 −4992 −9



31/2 Λ1 = Diag( 17
48 ,

41
48 ,

7
24 ) X1 =


248 7 512

3875 21 −8704

248 −8 −17



10 Ising2 3 3/2 Λ1 = Diag( 15
16 ,

7
16 ,

1
8 ) X1 =


3 2871 43008

3 270 −2048

2 −54 −21


Continued on next page
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No. C n c Λi Xi

19/2 Λ1 = Diag( 29
48 ,

5
48 ,

19
24 ) X1 =


171 5031 40

19 86 −8

512 −22016 −5



11 Ising2 3 13/2 Λ1 = Diag( 35
48 ,

11
48 ,

13
24 ) X1 =


78 4921 704

13 185 −64

64 −2368 −11



29/2 Λ1 = Diag( 19
48 ,

43
48 ,

5
24 ) X1 =


261 5 1024

3393 10 −19456

116 −4 −19



12 Ising3 3 5/2 Λ1 = Diag( 43
48 ,

19
48 ,

5
24 ) X1 =


10 3893 19456

5 261 −1024

4 −116 −19



21/2 Λ1 = Diag( 9
16 ,

1
16 ,

7
8 ) X1 =


210 4785 12

21 45 −4

1024 −46080 −3



13 Ising3 3 11/2 Λ1 = Diag( 37
48 ,

13
48 ,

11
24 ) X1 =


55 4655 1664

11 210 −128

32 −1120 −13



27/2 Λ1 = Diag( 7
16 ,

15
16 ,

1
8 ) X1 =


270 3 2048

2871 3 −43008

54 −2 −21



14 Ising4 3 7/2 Λ1 = Diag( 41
48 ,

17
48 ,

7
24 ) X1 =


21 3875 8704

7 248 −512

8 −248 −17



23/2 Λ1 = Diag( 25
48 ,

1
48 ,

23
24 ) X1 =


253 4371 2

23 0 −2

2048 −96256 −1


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15 Ising4 3 9/2 Λ1 = Diag( 13
16 ,

5
16 ,

3
8 ) X1 =


36 4301 3840

9 231 −256

16 −258 −15



25/2 Λ1 = Diag( 23
48 ,

47
48 ,

1
24 ) X1 =


275 1 4096

2325 0 −94208

25 −1 −23



16 3fieldsx 3 8/7 Λ1 = Diag(− 1
21 ,

17
21 ,

5
21 ) X1 =


14 5 11

50922 −37 4797

782 17 −217



64/7 Λ1 = Diag( 13
21 ,

10
21 ,−

2
21 ) X1 =


136 627 22990

117 −374 3510

3 2 −2



17 3fieldsx 3 48/7 Λ1 = Diag( 5
7 ,−

1
7 ,

3
7 ) X1 =


78 45954 1702

1 3 1

55 2925 −321



104/7 Λ1 = Diag( 8
21 ,

11
21 ,

2
21 ) X1 =


188 138 1564

725 −344 1972

44 11 −84



18 qs4 4 1 Λ2 = Diag( 23
24 ,

11
24 ,

1
12 ) X2 =


1 2600 90112

2 273 −4096

1 −26 −22



9 Λ2 = Diag( 5
8 ,

1
8 ,

3
4 ) X2 =


153 5096 96

18 105 −16

256 −10752 −6



19 qs4 4 7 Λ2 = Diag( 17
24 ,

5
24 ,

7
12 ) X2 =


91 5016 640

14 171 −64

64 −2432 −10


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15 Λ2 = Diag( 3
8 ,

7
8 ,

1
4 ) X2 =


255 6 1024

3640 15 −18432

120 −4 −18



20 qn4 4 5 Λ2 = Diag( 19
24 ,

7
24 ,

5
12 ) X2 =


45 4488 3584

10 221 −256

16 −544 −14



13 Λ2 = Diag( 11
24 ,

23
24 ,

1
12 ) X2 =


273 2 4096

2600 1 −90112

26 −1 −22



21 qn4 4 3 Λ2 = Diag( 7
8 ,

3
8 ,

1
4 ) X2 =


15 3640 18432

6 255 −1024

4 −120 −18



11 Λ2 = Diag( 13
24 ,

1
24 ,

11
12 ) X2 =


231 4600 8

22 23 −4

1024 −47104 −2


22 qu2 4 8 Λ1 = ( 2

3 ) X1 = (248)

Λ3 = Diag( 2
3 ,

1
6 ) X3 =

 −136 5120

48 140


16 Λ1 = ( 1

3 ) X1 = (496)

Λ3 = Diag( 1
3 ,

5
6 ) X3 =

 −272 32

3072 28


23 qv2 4 4 Λ3 = Diag( 5

6 ,
1
3 ) X3 =

 28 12288

8 −272


12 Λ3 = Diag( 1

2 , 0) X3 =

 276 12288

8 −24



24 qs2 ⊗ qs2 4 2 Λ2 = Diag( 11
12 ,

1
6 ,

5
12 ) X2 =


6 40960 3136

2 −20 −56

4 −2048 266


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10 Λ2 = Diag( 7
12 ,

5
6 ,

1
12 ) X2 =


190 32 4928

512 −4 −22528

20 −8 66



25 qs2 ⊗ qs2 4 6 Λ2 = Diag( 3
4 ,

1
2 ,

1
4 ) X2 =


66 1536 4800

32 −12 −1152

12 −128 198



14 Λ2 = Diag( 5
12 ,

1
6 ,

11
12 ) X2 =


266 2048 4

56 −20 −2

3136 −40960 6


26 qs2 ⊗ qs2 4 8 Λ1 = ( 2

3 ) X1 = (248)

Λ2 = Diag( 2
3 ,−

1
12 ,

5
12 ) X2 =


24 40960 2048

2 −2 4

56 3136 −262


16 Λ1 = ( 1

3 ) X1 = (496)

Λ2 = Diag( 1
3 ,

1
12 ,

7
12 ) X2 =


16 1536 128

32 −62 12

1152 4800 −194



27 qs2 ⊗ LY 4 19/5 Λ1 = Diag( 101
120 ,

29
120 ,

11
120 ,

59
120 ) X1 =



17 9945 16560 1456

7 −143 392 −56

2 52 −51 −26

14 −884 −2990 185



59/5 Λ1 = Diag( 61
120 ,−

11
120 ,

91
120 ,

19
120 ) X1 =



193 8073 36 2392

3 1 2 −4

592 47840 −33 −11063

40 −208 −13 95


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28 qs2 ⊗ LY 4 9/5 Λ1 = Diag( 37
40 ,

13
40 ,

27
40 ,

3
40 ) X1 =



3 8073 208 47840

3 −189 40 −592

4 2392 −91 −11063

2 −36 −13 37



49/5 Λ1 = Diag( 71
120 ,−

1
120 ,

41
120 ,

89
120 ) X1 =



147 9945 884 52

7 −13 14 −2

56 1456 −181 −26

392 −16560 −2990 55



29 qs2 ⊗ LY 4 31/5 Λ1 = Diag( 89
120 ,

41
120 ,−

1
120 ,

71
120 ) X1 =



55 2990 16560 392

26 −181 1456 −56

2 14 −13 −7

52 −884 −9945 147



71/5 Λ1 = Diag( 49
120 ,

1
120 ,

79
120 ,

31
120 ) X1 =



211 2346 46 714

14 −17 6 −14

792 14280 −95 −3366

120 −408 −34 157



30 qs2 ⊗ LY 4 21/5 Λ1 = Diag( 33
40 ,

17
40 ,

23
40 ,

7
40 ) X1 =



21 2346 408 14280

14 −207 120 −792

14 714 −153 −3366

6 −46 −34 99



61/5 Λ1 = Diag( 59
120 ,

11
120 ,

29
120 ,

101
120 ) X1 =



185 2990 884 14

26 −51 52 −2

56 392 −143 −7

1456 −16560 −9945 17



31 LY ⊗ LY 4 28/5 Λ2 = Diag( 23
30 ,

1
6 ,

17
30 ) X2 =


28 16250 676

7 120 −26

49 −5000 104


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68/5 Λ2 = Diag( 13
30 ,

5
6 ,

7
30 ) X2 =


136 20 1196

1700 24 −7475

119 −10 92


32 LY ⊗ LY 4 8 Λ1 = ( 2

3 ) X1 = (248)

Λ2 = Diag( 2
3 ,−

4
15 ,

1
15 ) X2 =


−116 2500 8125

52 −100 676

14 49 −24


16 Λ1 = ( 1

3 ) X1 = (496)

Λ2 = Diag( 1
3 ,−

1
15 ,

11
15 ) X2 =


−218 1275 25

10 1 3

4590 42483 −23



33 LY ⊗ LY 4 12/5 Λ2 = Diag( 9
10 ,

1
2 ,

1
10 ) X2 =


3 2550 42483

5 222 −2295

3 −50 27



52/5 Λ2 = Diag( 17
30 ,

1
6 ,

23
30 ) X2 =


104 5000 49

26 120 −7

676 −16250 28



34 4fieldsx 4 10/3 Λ1 = Diag( 31
36 ,

7
36 ,

1
12 ,

19
36 ) X1 =



6 10880 91125 1250

4 −194 729 −25

1 17 −2 −8

13 −884 −11664 198



34/3 Λ1 = Diag( 19
36 ,

31
36 ,−

1
4 ,

7
36 ) X1 =



54 50 18225 2500

703 78 215784 −5624

−1 1 3 1

65 −13 −729 121


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35 4fieldsx 4 14/3 Λ1 = Diag( 29
36 ,

17
36 ,

7
12 ,

5
36 ) X1 =



14 1045 4860 17732

14 −342 1215 −806

3 57 −5 −465

7 −19 −243 93



38/3 Λ1 = Diag( 17
36 ,

5
36 ,

1
4 ,

29
36 ) X1 =



108 1463 10206 22

28 −132 729 −2

10 38 0 −1

1610 −6118 −67068 32



Table B.3: The characters ch M i of the irreducible VOA modules

in the genus G(C, c)

No. C n c Characters ch M i

1 tm 1 8 ch M1 = q2/3
(
q−1 + 248 + 4124q + 34752q2 + 213126q3 + · · ·

)
16 ch M1 = q1/3

(
q−1 + 496 + 69752q + 2115008q2 + 34670620q3 + · · ·

)
2 qs2 2 1

ch M1 = q23/24
(
q−1 + 3 + 4q + 7q2 + 13q3 + · · ·

)
ch M2 = q5/24

(
2 + 2q + 6q2 + 8q3 + · · ·

)
9

ch M1 = q5/8
(
q−1 + 251 + 4872q + 48123q2 + 335627q3 + · · ·

)
ch M2 = q−1/8

(
2 + 498q + 8750q2 + 79248q3 + · · ·

)
3 qs2 2 7

ch M1 = q17/24
(
q−1 + 133 + 1673q + 11914q2 + 63252q3 + · · ·

)
ch M2 = q11/24

(
56 + 968q + 7504q2 + 42616q3 + · · ·

)
15

ch M1 = q3/8
(
q−1 + 381 + 38781q + 1010062q2 + 14752518q3 + · · ·

)
ch M2 = q1/8

(
56 + 14856q + 478512q2 + 7841752q3 + · · ·

)
4 Lee− Y ang 2 14/5

ch M1 = q53/60
(
q−1 + 14 + 42q + 140q2 + 350q3 + · · ·

)
ch M2 = q17/60

(
7 + 34q + 119q2 + 322q3 + · · ·

)
54/5

ch M1 = q11/20
(
q−1 + 262 + 7638q + 103044q2 + 907932q3 + · · ·

)
ch M2 = q−1/20

(
7 + 1770q + 37419q2 + 413314q3 + · · ·

)
Continued on next page
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5 Lee− Y ang 2 26/5
ch M1 = q47/60

(
q−1 + 52 + 377q + 1976q2 + 7852q3 + ...

)
ch M2 = q23/60

(
26 + 299q + 1702q2 + 7475q3 + · · ·

)
66/5

ch M1 = q9/20
(
q−1 + 300 + 17397q + 344672q2 + 4072878q3 + · · ·

)
ch M2 = q1/20

(
26 + 6747q + 183078q2 + 2566199q3 + · · ·

)

6 qs3 3 2

ch M1 = q11/12
(
q−1 + 8 + 17q + 46q2 + 98q3 + · · ·

)
ch M2 = q1/4

(
1 + 3q + 9q2 + 19q3 + · · ·

)
ch M3 = q1/4

(
1 + 3q + 9q2 + 19q3 + · · ·

)

10

ch M1 = q7/12
(
q−1 + 256 + 6125q + 72006q2 + 572756q3 + · · ·

)
ch M2 = q−1/12

(
1 + 251q + 4877q2 + 49375q3 + · · ·

)
ch M3 = q−1/12

(
1 + 251q + 4877q2 + 49375q3 + · · ·

)

7 qs3 3 6

ch M1 = q3/4
(
q−1 + 78 + 729q + 4382q2 + 19917q3 + · · ·

)
ch M2 = q5/12

(
1 + 14q + 92q2 + 456q3 + · · ·

)
ch M3 = q5/12

(
1 + 14q + 92q2 + 456q3 + · · ·

)

14

ch M1 = q5/12
(
q−1 + 326 + 24197q + 541598q2 + 7036831q3 + · · ·

)
ch M2 = q1/12

(
1 + 262q + 7688q2 + 115760q3 + · · ·

)
ch M3 = q1/12

(
1 + 262q + 7688q2 + 115760q3 + · · ·

)

8 Ising1 3 1/2

ch M1 = q47/48
(
q−1 + q + q2 + 2q3 + · · ·

)
ch M2 = q23/48

(
1 + q + q2 + q3 + · · ·

)
ch M3 = q1/24

(
1 + q + q2 + 2q3 + · · ·

)
17/2

ch M1 = q31/48
(
q−1 + (136 + 112d) + (2669 + 1456d)q + (24361 + 10640d)q2 + · · ·

)
ch M2 = q7/48

(
(17− 16d) + (697− 448d)q + (8517− 4144d)q2 + · · ·

)
ch M3 = q17/24

(
dq−1 + (256− 7d) + (4352 + 21d)q + (39168− 42d)q2 + · · ·

)
where d is a non negative integer

9 Ising1 3 15/2

ch M1 = q11/16
(
q−1 + 105 + 1590q + 12160q2 + 69780q3 + · · ·

)
ch M2 = q3/16

(
15 + 470q + 4593q2 + 30075q3 + · · ·

)
ch M3 = q5/8

(
128 + 1920q + 15360q2 + 88960q3 + · · ·

)
31/2

ch M1 = q17/48
(
q−1 + (248 + 7d) + (31124 + 42d)q + (871627 + 175d)q2 + · · ·

)
ch M2 = q41/48

(
dq−1 + (3875 + 21d) + (181753 + 84d)q + (3623869 + 322d)q2 + · · ·

)
ch M3 = q7/24

(
(248− 8d) + (34504− 56d)q + (1022752− 224d)q2 + · · ·

)
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where d is a non negative integer

10 Ising2 3 3/2

ch M1 = q15/16
(
q−1 + 3 + 9q + 15q2 + 30q3 + · · ·

)
ch M2 = q7/16

(
3 + 4q + 12q2 + 21q3 + · · ·

)
ch M3 = q1/8

(
2 + 6q + 12q2 + 26q3 + · · ·

)

19/2

ch M1 = q29/48
(
q−1 + (171 + 40d) + (4237 + 320d)q + (46075 + 1648d)q2 + · · ·

)
ch M2 = q5/48

(
(19− 8d) + (988q − 120d)q + (14896− 760d)q2 + · · ·

)
ch M3 = q19/24

(
dq−1 + (512− 5d) + (9728q + 10d)q + (97280q2 − 15d)q2 + · · ·

)
where d is a non negative integer

11 Ising2 3 13/2

ch M1 = q35/48
(
q−1 + 78 + 884q + 5681q2 + 28158q3 + · · ·

)
ch M2 = q11/48

(
13 + 299q + 2314q2 + 13052q3 + · · ·

)
ch M3 = q13/24

(
64 + 832q + 5824q2 + 29952q3 + · · ·

)
29/2

ch M1 = q19/48
(
q−1 + (261 + 5d) + (24157 + 15d)q + (580609 + 56d)q2 + · · ·

)
ch M2 = q43/48

(
dq−1 + (3393 + 10d) + (129688 + 30d)q + (2270671 + 85d)q2 + · · ·

)
ch M3 = q5/24

(
(116− 4d) + (16964− 20d)q + (476876− 60d)q2 + · · ·

)
where d is a non negative integer

12 Ising3 3 5/2

ch M1 = q43/48
(
q−1 + 10 + 30q + 85q2 + 205q3 + · · ·

)
ch M2 = q19/48

(
5 + 15q + 56q2 + 130q3 + · · ·

)
ch M3 = q5/24

(
4 + 20q + 60q2 + 160q3 + · · ·

)

21/2

ch M1 = q9/16
(
q−1 + (210 + 12d) + (6426 + 52d)q + (82845 + 168d)q2 + · · ·

)
ch M2 = q1/16

(
(21− 4d) + (1351q − 24d)q + (24780− 96d)q2 + · · ·

)
ch M3 = q7/8

(
dq−1 + (1024− 3d) + (21504q + 3d)q + (236544q2 − 4d)q2 + · · ·

)
where d is a non negative integer

13 Ising3 3 11/2

ch M1 = q37/48
(
q−1 + 55 + 451q + 2453q2 + 10329q3 + · · ·

)
ch M2 = q13/48

(
11 + 176q + 1078q2 + 5181q3 + · · ·

)
ch M3 = q11/24

(
32 + 352q + 2112q2 + 9504q3 + · · ·

)

27/2

ch M1 = q7/16
(
q−1 + (270 + 3d) + (18171 + 4d)q + (375741 + 12d)q2 + · · ·

)
ch M2 = q15/16

(
dq−1 + (2871 + 3d) + (89991 + 9d)q + (1380456 + 15d)q2 + · · ·

)
ch M3 = q1/8

(
(54− 2d) + (8354− 6d)q + (221508− 12d)q2 + · · ·

)
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where d is a non negative integer

14 Ising4 3 7/2

ch M1 = q41/48
(
q−1 + 21 + 84q + 322q2 + 931q3 + · · ·

)
ch M2 = q17/48

(
7 + 42q + 175q2 + 547q3 + · · ·

)
ch M3 = q7/24

(
8 + 56q + 224q2 + 728q3 + · · ·

)

23/2

ch M1 = q25/48
(
q−1 + (253 + 2d) + (9384 + 4d)q + (142462 + 6d)q2 + · · ·

)
ch M2 = q1/48

(
(23− 2d) + (1794− 2d)q + (39491− 4d)q2 + · · ·

)
ch M3 = q23/24

(
dq−1 + (2048− d) + 47104q + (565248− d)q2 + · · ·

)
where d is a non negative integer

15 Ising4 3 9/2

ch M1 = q13/16
(
q−1 + 36 + 207q + 957q2 + 3357q3 + · · ·

)
ch M2 = q5/16

(
9 + 93q + 459q2 + 1827q3 + · · ·

)
ch M3 = q3/8

(
16 + 144q + 720q2 + 2784q3 + · · ·

)

25/2

ch M1 = q23/48
(
q−1 + (275 + d) + (13250 + d)q + (235500 + d)q2 + · · ·

)
ch M2 = q47/48

(
dq−1 + 2325 + (60630 + d)q + (811950 + d)q2 + · · ·

)
ch M3 = q1/24

(
(25− d) + (4121− d)q + (102425− d)q2 + · · ·

)
where d is a non negative integer

16 3fieldsx 3 8/7

ch M1 = q−1/21
(
q−1 + 14 + 66512q + 8878186q2 + 405729320q3 + · · ·

)
ch M2 = q17/21

(
50922 + 8656740q + 441429616q2 + 12203476160q3 + · · ·

)
ch M3 = q5/21

(
782 + 718267q + 64206178q2 + 2419951472q3 + · · ·

)

64/7

ch M1 = q13/21
(
q−1 + 136 + 2417q + 24520q2 + 173412q3 + · · ·

)
ch M2 = q10/21

(
117 + 2952q + 32220q2 + 239680q3 + · · ·

)
ch M3 = q−2/21

(
3 + 632q + 10787q2 + 98104q3 + · · ·

)

17 3fieldsx 3 48/7

ch M1 = q5/7
(
q−1 + 78 + 784q + 5271q2 + 26558q3 + · · ·

)
ch M2 = q−1/7

(
1 + 133q + 1618q2 + 11024q3 + · · ·

)
ch M3 = q3/7

(
55 + 890q + 6720q2 + 37344q3 + · · ·

)
104/7

ch M1 = q8/21
(
q−1 + (188 + 138d) + (17260 + 6992d)q + (442300 + 113827d)q2 + · · ·

)
ch M2 = q11/21

(
dq−1 + (725− 344d) + (52316− 13590d)q + (1197468− 201936d)q2 + · · ·

)
ch M3 = q2/21

(
(44 + 11d) + (13002 + 1528d)q + (424040 + 30220d)q2 + · · ·

)
where d is a non negative integer
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18 qs4 4 1

ch M1 = q23/24
(
q−1 + 1 + 4q + 5q2 + 9q3 + · · ·

)
ch M2 = q11/24

(
2 + 2q + 4q2 + 6q3 + · · ·

)
ch M3 = q1/12

(
1 + 2q + 3q2 + 6q3 + · · ·

)
ch M4 = q1/12

(
1 + 2q + 3q2 + 6q3 + · · ·

)

9

ch M1 = q5/8
(
q−1 + (153 + 96d) + (3384 + 992d)q + (33729 + 6144d)q2 + · · ·

)
ch M2 = q1/8

(
(18− 16d) + (834− 336d)q + (11340− 2592d)q2 + · · ·

)
ch M3 = q3/4

(
dq−1 + (256− 6d) + (4608 + 15d)q + (43776− 26d)q2 + · · ·

)
ch M4 = q3/4

(
dq−1 + (256− 6d) + (4608 + 15d)q + (43776− 26d)q2 + · · ·

)
where d is a non negative integer

19 qs4 4 7

ch M1 = q17/24
(
q−1 + 91 + 1197q + 8386q2 + 44800q3 + · · ·

)
ch M2 = q5/24

(
14 + 378q + 3290q2 + 20008q3 + · · ·

)
ch M3 = q7/12

(
64 + 896q + 6720q2 + 36736q3 + · · ·

)
ch M4 = q7/12

(
64 + 896q + 6720q2 + 36736q3 + · · ·

)

15

ch M1 = q3/8
(
q−1 + (255 + 6d) + (27525 + 26d)q + (713850 + 102d)q2 + · · ·

)
ch M2 = q7/8

(
dq−1 + (3640 + 15d) + (154056 + 51d)q + (2878920 + 172d)q2 + · · ·

)
ch M3 = q1/4

(
(120− 4d) + (17104− 24d)q + (494040− 84d)q2 + · · ·

)
ch M4 = q1/4

(
(120− 4d) + (17104− 24d)q + (494040− 84d)q2 + · · ·

)
where d is a non negative integer

20 qn4 4 5

ch M1 = q19/24
(
q−1 + 45 + 310q + 1555q2 + 5990q3 + · · ·

)
ch M2 = q7/24

(
10 + 130q + 712q2 + 3130q3 + · · ·

)
ch M3 = q5/12

(
16 + 160q + 880q2 + 3680q3 + · · ·

)
ch M4 = q5/12

(
16 + 160q + 880q2 + 3680q3 + · · ·

)

13

ch M1 = q11/24
(
q−1 + (273 + 2d) + (15574 + 2d)q + (298727 + 4d)q2 + · · ·

)
ch M2 = q23/24

(
dq−1 + (2600 + d) + (74152 + 4d)q + (1063296 + 5d)q2 + · · ·

)
ch M3 = q1/12

(
(26− d) + (4148− 2d)q + (106574− 3d)q2 + · · ·

)
ch M4 = q1/12

(
(26− d) + (4148− 2d)q + (106574− 3d)q2 + · · ·

)
where d is a non negative integer
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21 qn4 4 3

ch M1 = q7/8
(
q−1 + 15 + 51q + 172q2 + 453q3 + · · ·

)
ch M1 = q3/8

(
6 + 26q + 102q2 + 276q3 + · · ·

)
ch M2 = q1/4

(
4 + 24q + 84q2 + 248q3 + · · ·

)
ch M3 = q1/4

(
4 + 24q + 84q2 + 248q3 + · · ·

)

11

ch M1 = q13/24
(
q−1 + (231 + 8d) + (7799 + 24d)q + (109208 + 56d)q2 + · · ·

)
ch M2 = q1/24

(
(22− 4d) + (1562− 12d)q + (31438− 36d)q2 + · · ·

)
ch M3 = q11/12

(
dq−1 + (1024− 2d) + (22528 + d)q + (259072− 2d)q2 + · · ·

)
ch M4 = q11/12

(
dq−1 + (1024− 2d) + (22528 + d)q + (259072− 2d)q2 + · · ·

)
where d is a non negative integer

22 qu2 4 8

ch M1 = q2/3
(
q−1 + 120 + 2076q + 17344q2 + 106630q3 + · · ·

)
ch M2 = q2/3

(
128 + 2048q + 17408q2 + 106496q3 + · · ·

)
ch M3 = q2/3

(
128 + 2048q + 17408q2 + 106496q3 + · · ·

)
ch M4 = q1/6

(
16 + 576q + 6304q2 + 44416q3 + · · ·

)

16

ch M1 = q1/3
(
q−1 + (240 + 32d) + (34936 + 256d)q + (1057216 + 1152d)q2 + · · ·

)
ch M2 = q1/3

(
(256 + 32d) + (34816 + 256d)q + (1057792 + 1152d)q2 + · · ·

)
ch M3 = q1/3

(
(256 + 32d) + (34816 + 256d)q + (1057792 + 1152d)q2 + · · ·

)
ch M4 = q5/6

(
dq−1 + (1024 + 28d) + (53248 + 134d)q + (1132544 + 568d)q2 + · · ·

)
where d is a non negative integer

23 qv2 4 4

ch M1 = q5/6
(
q−1 + 28 + 134q + 568q2 + 1809q3 + · · ·

)
ch M2 = q1/3

(
8 + 64q + 288q2 + 1024q3 + · · ·

)
ch M3 = q1/3

(
8 + 64q + 288q2 + 1024q3 + · · ·

)
ch M4 = q1/3

(
8 + 64q + 288q2 + 1024q3 + · · ·

)

12

ch M1 = q1/2
(
q−1 + 276 + 11202q + 184024q2 + 1881471q3 + · · ·

)
ch M2 = q

(
8 + 2048q + 49152q2 + 614400q3 + · · ·

)
ch M3 = q

(
8 + 2048q + 49152q2 + 614400q3 + · · ·

)
ch M4 = q

(
8 + 2048q + 49152q2 + 614400q3 + · · ·

)
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24 qs2 ⊗ qs2 4 2

ch M1 = q11/12
(
q−1 + 6 + 17q + 38q2 + 84q3 + · · ·

)
ch M2 = q1/6

(
2 + 8q + 20q2 + 48q3 + · · ·

)
ch M3 = q1/6

(
2 + 8q + 20q2 + 48q3 + · · ·

)
ch M4 = q5/12

(
4 + 8q + 28q2 + 56q3 + · · ·

)

10

ch M1 = q7/12
(
q−1 + (190 + 32d) + (5245 + 192d)q + (62150 + 800d)q2 + · · ·

)
ch M2 = q5/6

(
dq−1 + (512− 4d) + (10240 + 6d)q + (107520− 8d)q2 + · · ·

)
ch M3 = q5/6

(
dq−1 + (512− 4d) + (10240 + 6d)q + (107520− 8d)q2 + · · ·

)
ch M4 = q1/12

(
(20− 8d) + (1160− 80d)q + (19324− 408d)q2 + · · ·

)
where d is a non negative integer

25 qs2 ⊗ qs2 4 6

ch M1 = q3/4
(
q−1 + 66 + 639q + 3774q2 + 17283q3 + · · ·

)
ch M2 = q1/2

(
32 + 384q + 2496q2 + 12032q3 + · · ·

)
ch M3 = q1/2

(
32 + 384q + 2496q2 + 12032q3 + · · ·

)
ch M4 = q1/4

(
12 + 232q + 1596q2 + 8328q3 + · · ·

)

14

ch M1 = q5/12
(
q−1 + 266 + 21035q + 468846q2 + 6094557q3 + · · ·

)
ch M2 = q1/6

(
56 + 8416q + 229936q2 + 3327296q3 + · · ·

)
ch M3 = q1/6

(
56 + 8416q + 229936q2 + 3327296q3 + · · ·

)
ch M4 = q11/12

(
3136 + 108416q + 1777472q2 + 19300736q3 + · · ·

)

26 qs2 ⊗ qs2 4 8

ch M1 = q2/3
(
q−1 + 136 + 2076q + 17472q2 + 106630q3 + · · ·

)
ch M2 = q−1/12

(
2 + 268q + 3618q2 + 27980q3 + · · ·

)
ch M3 = q5/12

(
56 + 1136q + 10632q2 + 69392q3 + · · ·

)
ch M4 = q2/3

(
112 + 2048q + 17280q2 + 106496q3 + · · ·

)

16

ch M1 = q1/3
(
q−1 + (256 + 64d) + (34808 + 2560d)q + (1057792 + 35072d)q2 + · · ·

)
ch M2 = q1/12

(
(32 + 12d) + (12608 + 1208d)q + (484960 + 19172d)q2 + · · ·

)
ch M3 = q7/12

(
dq−1 + (1152− 194d) + (88832− 5251d)q + (2224256− 62138d)q2 + · · ·

)
ch M4 = q1/3

(
(240 + 64d) + (34944 + 2560d)q + (1057216 + 35072d)q2 + · · ·

)
where d is a non negative integer
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27 qs2 ⊗ LY 4 19/5

ch M1 = q101/120
(
q−1 + 17 + 88q + 329q2 + 1049q3 + · · ·

)
ch M2 = q29/120

(
7 + 55q + 249q2 + 864q3 + · · ·

)
ch M3 = q11/120

(
2 + 30q + 118q2 + 456q3 + · · ·

)
ch M4 = q59/120

(
14 + 82q + 348q2 + 1142q3 + · · ·

)

59/5

ch M1 = q61/120
(
q−1 + (193 + 36d) + (7872 + 278d)q + (123649 + 1682d)q2 + · · ·

)
ch M2 = q−11/120

(
(3 + 2d) + (1603 + 94d)q + (41017 + 870d)q2 + · · ·

)
ch M3 = q91/120

(
dq−1 + (592− 33d) + 16536q − 365dq + 227464q2 − 2260dq2 + · · ·

)
ch M4 = q19/120

(
(40− 13d) + (3976− 211d)q + (81296− 1438d)q2 + · · ·

)
where d is a non negative integer

28 qs2 ⊗ LY 4 9/5

ch M1 = q37/40
(
q−1 + 3 + 9q + 22q2 + 42q3 + · · ·

)
ch M2 = q12/40

(
3 + 9q + 20q2 + 45q3 + · · ·

)
ch M3 = q27/40

(
4 + 6q + 18q2 + 34q3 + · · ·

)
ch M4 = q3/40

(
2 + 6q + 18q2 + 36q3 + · · ·

)

49/5

ch M1 = q71/120
(
q−1 + 147 + 3577q + 41062q2 + 319284q3 + · · ·

)
ch M2 = q−1/120

(
7 + 965q + 16352q2 + 156429q3 + · · ·

)
ch M3 = q41/120

(
56 + 1752q + 23408q2 + 196168q3 + · · ·

)
ch M4 = q89/120

(
392 + 8680q + 92104q2 + 686672q3 + · · ·

)

29 qs2 ⊗ LY 4 31/5

ch M1 = q89/120
(
q−1 + 55 + 537q + 3322q2 + 15665q3 + · · ·

)
ch M2 = q41/120

(
26 + 377q + 2703q2 + 13959q3 + · · ·

)
ch M3 = q−1/120

(
2 + 106q + 864q2 + 5026q3 + · · ·

)
ch M4 = q71/120

(
52 + 650q + 4158q2 + 20356q3 + · · ·

)

71/5

ch M1 = q49/120
(
q−1 + (211 + 46d) + (16529 + 886d)q + (380042 + 9014d)q2 + · · ·

)
ch M2 = q1/120

(
(14 + 6d) + (5837 + 494d)q + (191143 + 6140d)q2 + · · ·

)
ch M3 = q79/120

(
dq−1 + (792− 95d) + (38792− 1696d)q + (755648− 14851d)q2 + · · ·

)
ch M4 = q31/120

(
(120− 34d) + (15528− 991d)q + (400984− 10589d)q2 + · · ·

)
where d is a non negative integer

Continued on next page

135



Table B.3 – Continued from previous page

No. C n c Characters ch M i

30 qs2 ⊗ LY 4 21

ch M1 = q33/40
(
q−1 + 21 + 126q + 511q2 + 1743q3 + · · ·

)
ch M2 = q17/40

(
14 + 105q + 483q2 + 1764q3 + · · ·

)
ch M3 = q23/40

(
14 + 78q + 378q2 + 1288q3 + · · ·

)
ch M4 = q7/40

(
6 + 70q + 336q2 + 1302q3 + · · ·

)

61/5

ch M1 = q59/120
(
q−1 + (185 + 14d) + (8966 + 82d)q + (151027 + 348d)q2 + · · ·

)
ch M2 = q11/120

(
(26− 2d) + (3757− 30d)q + (84967− 118d)q2 + · · ·

)
ch M3 = q29/120

(
(56− 7d) + (3880− 55d)q + (78952− 249d)q2 + · · ·

)
ch M4 = q101/120

(
dq−1 + (1456 + 17d) + (41912 + 88d)q + (579848 + 329d)q2 + · · ·

)
where d is a non negative integer

31 LY ⊗ LY 4 28/5

ch M1 = q23/30
(
q−1 + 28 + 280q + 1456q2 + 6384q3 + · · ·

)
ch M2 = q1/6

(
7 + 132q + 889q2 + 4396q3 + · · ·

)
ch M3 = q1/6

(
7 + 132q + 889q2 + 4396q3 + · · ·

)
ch M4 = q17/30

(
49 + 476q + 2822q2 + 12600q3 + · · ·

)

68/5

ch M1 = q13/30
(
q−1 + (136 + 20d) + (10438 + 130d)q + (216920 + 600d)q2 + · · ·

)
ch M2 = q5/6

(
dq−1 + (1700 + 24d) + (61625 + 124d)q + (1009000 + 500d)q2 + · · ·

)
ch M3 = q5/6

(
dq−1 + (1700 + 24d) + (61625 + 124d)q + (1009000 + 500d)q2 + · · ·

)
ch M4 = q7/30

(
(119− 10d) + (13328− 100d)q + (326026− 440d)q2 + · · ·

)
where d is a non negative integer

32 LY ⊗ LY 4 8

ch M1 = q2/3
(
q−1 + 66 + 1147q + 9578q2 + 58980q3 + · · ·

)
ch M2 = q4/15

(
52 + 1326q + 13960q2 + 95002q3 + · · ·

)
ch M3 = q1/15

(
14 + 796q + 9052q2 + 66320q3 + · · ·

)
ch M4 = q2/3

(
182 + 2977q + 25174q2 + 154146q3 + · · ·

)

16

ch M1 = q1/3
(
q−1 + (139 + 25d) + (19364 + 325d)q + (584345 + 2375d)q2 + · · ·

)
ch M2 = q−1/15

(
(5 + 3d) + (5795 + 188d)q + (266350 + 1754d)q2 + · · ·

)
ch M3 = q11/15

(
dq−1 + (2295− 23d) + (135150− 436d)q + (3059880− 2808d)q2 + · · ·

)
ch M4 = q1/3

(
(357 + 25d) + (50388 + 325d)q + (1530663 + 2375d)q2 + · · ·

)
where d is a non negative integer
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33 LY ⊗ LY 4 12/5

ch M1 = q9/10
(
q−1 + 3 + 18q + 38q2 + 99q3 + · · ·

)
ch M2 = q1/2

(
5 + 15q + 45q2 + 110q3 + · · ·

)
ch M3 = q1/2

(
5 + 15q + 45q2 + 110q3 + · · ·

)
ch M4 = q1/10

(
3 + 16q + 48q2 + 129q3 + · · ·

)

52/5

ch M1 = q17/30
(
q−1 + (104 + 49d) + (3458 + 476d)q + (43160 + 2822d)q2 + · · ·

)
ch M2 = q1/6

(
(26− 7d) + (1651− 132d)q + (27052− 889d)q2 + · · ·

)
ch M3 = q1/6

(
(26− 7d) + (1651− 132d)q + (27052− 889d)q2 + · · ·

)
ch M4 = q23/30

(
dq−1 + (676 + 28d) + (15548 + 280d)q + (177905 + 1456d)q2 + · · ·

)
where d is a non negative integer

34 4fieldsx 4 10/3

ch M1 = q31/36
(
q−1 + 6 + 38q + 112q2 + 347q3 + · · ·

)
ch M2 = q7/36

(
4 + 23q + 102q2 + 319q3 + · · ·

)
ch M3 = q1/12

(
3 + 30q + 114q2 + 384q3 + · · ·

)
ch M4 = q19/36

(
13 + 62q + 230q2 + 692q3 + · · ·

)

34/3

ch M1 = q19/36
(
q−1 + (54 + 50d) + (3630 + 505d)q + (56308 + 3181d)q2 + · · ·

)
ch M2 = q31/36

(
dq−1 + (703 + 78d) + (19018 + 821d)q + (240019 + 4864d)q2 + · · ·

)
ch M3 = q−1/4

(
(−1 + d) + (714 + 15d)q + (19602 + 81d)q2 + · · ·

)
ch M4 = q7/36

(
(65− 13d) + (4278− 248d)q + (76142− 1731d)q2 + · · ·

)
where d is a non negative integer

35 4fieldsx 4 14/3

ch M1 = q29/36
(
q−1 + 14 + 119q + 497q2 + 1890q3 + · · ·

)
ch M2 = q17/36

(
14 + 119q + 588q2 + 2331q3 + · · ·

)
ch M3 = q7/12

(
3 + 21q + 105q2 + 399q3 + · · ·

)
ch M4 = q5/36

(
7 + 98q + 547q2 + 2310q3 + · · ·

)

38/3

ch M1 = q17/36
(
q−1 + (108 + 22d) + (6469 + 178d)q + (116092 + 915d)q2 + · · ·

)
ch M2 = q5/36

(
(28− 2d) + (3850− 37d)q + (89110− 182d)q2 + · · ·

)
ch M3 = q1/4

(
(10− d) + (849− 12d)q + (18126− 63d)q2 + · · ·

)
ch M4 = q29/36

(
dq−1 + (1610 + 32d) + (52256 + 209d)q + (778690 + 956d)q2 + · · ·

)
where d is a non negative integer
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Table B.4: The possible subVOAs Ṽ1 in the genus G(C, c)

No. C n c subVOAs Ṽ1

1 tm 1 8 E8,1

16 E8,1 ⊗ E8,1, D16,1

2 qs2 2 1 A1,1

9 A1,1 ⊗ E8,1

3 qs2 2 7 E7,1

15 E7,1 ⊗ E8,1, A1,1 ⊗D14,1

4 Lee− Y ang 2 14/5 G2,1

54/5 G2,1 ⊗ E8,1

5 Lee− Y ang 2 26/5 F4,1

66/5 F4,1 ⊗ E8,1, B12,1(7/10)

6 qs3 3 2 A2,1

10 A2,1 ⊗ E8,1

7 qs3 3 6 E6,1

14 E6,1 ⊗ E8,1

8 Ising1 3 1/2 (1/2)

17/2 B8,1, A1,1 ⊗ E7,1(1/2), A1,2 ⊗ E7,1, E8,1(1/2)

9 Ising1 3 15/2 B7,1

31/2 D12,1(7/2), D13,1(5/2), and 33 more

10 Ising2 3 3/2 A1,2, A1,1(1/2)

19/2 B9,1, A1,2 ⊗ E8,1, A1,1 ⊗ E8,1(1/2)

11 Ising2 3 13/2 B6,1, E6,1(1/2)

29/2 D12,1(5/2), B13,1(1) and 8 more

12 Ising3 3 5/2 B2,1

21/2 B10,1, B2,1 ⊗ E8,1

13 Ising3 3 11/2 B5,1

27/2 D12,1(3/2), B12,1(1), A1,2 ⊗D12,1, B5,1 ⊗ E8,1, A1,1 ⊗D12,1(1/2),

B13,1, A1,1 ⊗B12,1
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14 Ising4 3 7/2 B3,1

23/2 B11,1, B3,1 ⊗ E8,1

15 Ising4 3 9/2 B4,1

25/2 D12,1(1/2), B4,1 ⊗ E8,1, B12,1

16 3fieldsx 3 8/7 None

64/7 B8,1(9/14), A1,2 ⊗ E7,1(9/14),

A1,3 ⊗ E7,1(12/35), A1,4 ⊗ E7,1(1/7), A1,5 ⊗ E7,1

17 3fieldsx 3 48/7 E6,1(6/7), B6,1(5/14)

104/7 B5,1 ⊗ E7,1(33/14), B8,1 ⊗ F4,1(81/70) and 32 more

18 qs4 4 1 ṼH1

9 D9,1, ṼH1
⊗ E8,1

19 qs4 4 7 D7,1

15 B13,1(3/2), A1,3 ⊗D12,1(6/5), and 37 more

20 qn4 4 5 D5,1

13 H1 ⊗D12,1, A1,1 ⊗D12,1, D5,1 ⊗ E8,1, D13,1

21 qn4 4 3 A3,1

11 D11,1, A3,1 ⊗ E8,1

22 qu2 4 8 D8,1

16 A1,1 ⊗B12,1 ⊗ ṼH1
(3/2), A⊗2

1,1 ⊗A1,2 ⊗D11,1(3/2), and 47 more

23 qv2 4 4 D4,1

12 D4,1 ⊗ E8,1, D12,1

24 qs2 ⊗ qs2 4 2 A⊗2
1,1

10 D10,1, A⊗2
1,1 ⊗ E8,1

25 qs2 ⊗ qs2 4 6 D6,1

14 E⊗2
7,1 , Ṽ ⊗2

H1
⊗D12,1, A⊗2

1,1 ⊗D12,1, D6,1 ⊗ E8,1, D14,1, ṼH1 ⊗D13,1

26 qs2 ⊗ qs2 4 8 A1,1 ⊗ E7,1

16 A1,1 ⊗B11,1(7/2), A1,4 ⊗B11,1(5/2), and 17 more

27 qs2 ⊗ LY 4 19/5 A1,1 ⊗G2,1

Continued on next page
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Table B.4 – Continued from previous page

No. C n c subVOAs Ṽ1

59/5 A1,1 ⊗D10,1(4/5), A1,2 ⊗D10,1(3/10), A1,3 ⊗D10,1, A1,1 ⊗G2,1 ⊗ E8,1

28 qs2 ⊗ LY 4 9/5 A1,3, A1,1(4/5)

49/5 E7,1 ⊗G2,1, A1,3 ⊗ E8,1, A1,1 ⊗ E8,1(4/5)

29 qs2 ⊗ LY 4 31/5 A1,1 ⊗ F4,1, B5,1(7/10)

71/5 B3,1 ⊗D10,1(7/10), B6,1 ⊗ E7,1(7/10), C3,1 ⊗D10,1, A1,1 ⊗ F4,1 ⊗ E8,1,

A1,1 ⊗B11,1 ⊗ ṼH1
(7/10), A1,1 ⊗B12,1(7/10), A1,2 ⊗B12,1(1/5),

B5,1 ⊗ E8,1(7/10)

30 qs2 ⊗ LY 4 21/5 C3,1, B3,1(7/10)

61/5 F4,1 ⊗ E7,1, C3,1 ⊗ E8,1, A1,1 ⊗B10,1(7/10), A1,2 ⊗B10,1(1/5),

B3,1 ⊗ E8,1(7/10)

31 LY ⊗ LY 4 28/5 G⊗2
2,1

68/5 B8,1(51/10), D12,1(8/5), and 96 more

32 LY ⊗ LY 4 8 G2,1 ⊗ F4,1, A1,1 ⊗A7,1

16 A1,1, ⊗B8,1(13/2), A1,1 ⊗ C8,1(7/5), and 953 more

33 LY ⊗ LY 4 12/5 A1,2(9/10), A1,3(3/5), A1,4(2/5), A1,5(9/35), A1,6(3/20),

A1,7(1/15), A1,8

52/5 F⊗2
4,1 , A1,2 ⊗ E8,1(9/10), A1,3 ⊗ E8,1(3/5),

A1,4 ⊗ E8,1(2/5), A1,5 ⊗ E8,1(9/35), A1,6 ⊗ E8,1(3/20),

A1,7 ⊗ E8,1(1/15), A1,8 ⊗ E8,1

34 4fieldsx 4 10/3 A1,1 ⊗A1,7, A1,1 ⊗A1,2(5/6), A1,1 ⊗A1,3(8/15), A1,1 ⊗A1,4(1/3),

A1,1 ⊗A1,5(4/21), A1,1 ⊗A1,6(1/12), A1,2 ⊗A1,2(1/3),

A1,2 ⊗A1,3(1/30)

34/3 A⊗2
1,1 ⊗A6,1(10/3), A1,1 ⊗A1,2 ⊗A6,1(17/6), and 384 more

35 4fieldsx 4 14/3 G2,2, A⊗2
1,1 ⊗A1,2(2/3), A1,1 ⊗A1,2 ⊗A2,1(1/6)

A1,1 ⊗B2,1 ⊗ ṼH1
(1/6)

38/3 A1,1 ⊗B9,1(13/6), A1,1 ⊗B7,1(25/6), and 84 more
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Table B.5: The VOAs in the genus G(C, c)

No. C n c VOAs Method

1 tm 1 8 E8,1 1

16 E8,1 ⊗ E8,1, (D16,1)+ 2

2 qs2 2 1 A1,1 1

9 A1,1 ⊗ E8,1 1

3 qs2 2 7 E7,1 1

15 E7,1 ⊗ E8,1, (A1,1 ⊗D14,1)+ 3

4 Lee− Y ang 2 14/5 G2,1 1

54/5 G2,1 ⊗ E8,1 1

5 Lee− Y ang 2 26/5 F4,1 1

6 qs3 3 2 A2,1 1

10 A2,1 ⊗ E8,1 1

7 qs3 3 6 E6,1 1

14 E6,1 ⊗ E8,1 1

8 Ising1 3 1/2 L1/2(0) 2

17/2 B8,1, E8,1 ⊗ L1/2(0) 2

9 Ising1 3 15/2 B7,1 1

10 Ising2 3 3/2 A1,2 2

19/2 B9,1, A1,2 ⊗ E8,1 2

11 Ising2 3 13/2 B6,1 2

12 Ising3 3 5/2 B2,1 1

21/2 B10,1, B2,1 ⊗ E8,1 1

13 Ising3 3 11/2 B5,1 1

14 Ising4 3 7/2 B3,1 1

Continued on next page
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Table B.5 – Continued from previous page

No. C n c VOAs Method

23/2 B11,1, B3,1 ⊗ E8,1 1

15 Ising4 3 9/2 B4,1 1

25/2 (D12,1 ⊗ L1/2(0))+, B4,1 ⊗ E8,1, B12,1 2

16 3fieldsx 3 8/7 None 4

64/7 A1,5 ⊗ E7,1 2

17 3fieldsx 3 48/7 cannot determine

18 qs4 4 1 D1,1 3∗

9 D9,1, D1,1 ⊗ E8,1 3∗

19 qs4 4 7 D7,1 1

20 qn4 4 5 D5,1 1

13 D5,1 ⊗ E8,1, D13,1 3∗

21 qn4 4 3 A3,1 1

11 D11,1, A3,1 ⊗ E8,1 1

22 qu2 4 8 D8,1 1

23 qv2 4 4 D4,1 1

12 D4,1 ⊗ E8,1, D12,1 1

24 qs2 ⊗ qs2 4 2 A⊗2
1,1 1

10 D10,1, A⊗2
1,1 ⊗ E8,1 1

25 qs2 ⊗ qs2 4 6 D6,1 1

14 E⊗2
7,1 , (A⊗2

1,1 ⊗D12,1)+, D6,1 ⊗ E8,1, D14,1, D⊗2
1,1 ⊗D12,1 3∗

26 qs2 ⊗ qs2 4 8 A1,1 ⊗ E7,1 1

27 qs2 ⊗ LY 4 19/5 A1,1 ⊗G2,1 1

28 qs2 ⊗ LY 4 9/5 A1,3 2

49/5 E7,1 ⊗G2,1, A1,3 ⊗ E8,1 2

Continued on next page

142



Table B.5 – Continued from previous page

No. C n c VOAs Method

29 qs2 ⊗ LY 4 31/5 A1,1 ⊗ F4,1 2

30 qs2 ⊗ LY 4 21/5 C3,1 2

31 LY ⊗ LY 4 28/5 G⊗2
2,1 1

32 LY ⊗ LY 4 8 G2,1 ⊗ F4,1 2

33 LY ⊗ LY 4 12/5 (A1,8)+ 2

52/5 F⊗2
4,1 , (A1,8)+ ⊗ E8,1 2

34 4fieldsx 4 10/3 (A1,1 ⊗A1,7)+ 2

35 4fieldsx 4 14/3 G2,2 2
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Appendix C

Source codes in the computations

We use the computer algebra software such as Magma and Mathematica in most of our

computation.

C.1 Code and Lattice genera computation

We use the following source codes of Magma for computing the class number in each lattice

genus. The idea is we construct the basic codes and apply the function NumberGenus(C)

to get the class number in the genus of the lattices constructed from the code C. If Magma

cannot compute the class number directly, we have to apply function Lran(L,n) to generate

new isometric lattices in the genus until we get the result. The method is explained in

chapter 4 and in Appendix A.

K := F i n i t e F i e l d ( 2 ) ;

Q := Rat iona lF i e ld ( ) ;

I1 := LinearCode<K, 1 | [ 0 ] > ;

f unc t i on I (n)

i f n l e 1 then

return 1 ;

else
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return ExtendCode ( I1 , n−1);

end i f ;

end func t i on ;

func t i on Code (C,D)

return DirectSum (C,D) ;

end func t i on ;

func t i on CodeToLattice (C)

L:= L a t t i c e (C, ”A” ) ;

GM :=(1/2)∗GramMatrix (L ) ;

return LatticeWithGram (GM) ;

end func t i on ;

func t i on CodeLatt ice (C,D)

L := DirectSum (C,D) ;

return CodeToLattice (L ) ;

end func t i on ;

func t i on GenCompare (L ,M)

G1:=Genus (L ) ;

G2:=Genus (M) ;

return G1 eq G2 ;

end func t i on ;

func t i on NumberGenus (C)

L := CodeToLattice (C) ;

G := Genus (L ) ;

return #G;

end func t i on ;

d4 := LinearCode<K, 4 | [ 1 , 1 , 1 , 1 ] > ;

d6 := LinearCode<K, 6 | [ 0 , 0 , 1 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 , 0 , 0 ] > ;

h8 := LinearCode<K, 8 | [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] > ;

e7 := LinearCode<K, 7 | [ 0 , 0 , 0 , 1 , 1 , 1 , 1 ] , [ 0 , 1 , 1 , 1 , 1 , 0 , 0 ] , [ 1 , 0 , 1 , 0 , 1 , 0 , 1 ] > ;

e8 := LinearCode<K, 8 | [ 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] , [ 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 ] ,
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[ 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] > ;

d8 := LinearCode<K, 8 | [ 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] , [ 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 ] ,

[ 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] > ;

d10 := LinearCode<K,10 | [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] , [ 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 ] ,

[ 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] , [ 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] > ;

e15 := LinearCode<K,15 | [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] ,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] > ;

d16 := LinearCode<K,16 | [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] ,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

[ 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] > ;

f unc t i on Bran (B, n)

for i in [ 1 . . n ] do B[ i ] := Random(B) ;

end for ;

v := B [ 1 ] ;

for j in [ 2 . . n ] do v +:= B[ j ] ;

end for ;

return v ;

end func t i on ;

func t i on Lran (L0 , n)

B := Bas i s (L0 ) ;

v := Bran (B, n ) ;

while Norm( v ) mod 3 ne 0 do v:= Bran (B, n ) ;
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end while ;

i f Norm( v ) mod 9 eq 0 then

v1 := v ;

else

B1 := [ b : b in Bas i s (L0) | (v , b ) mod 3 ne 0 ] ;

v −:= (Norm( v )∗Modinv (2∗ ( v , B1 [ 1 ] ) , 3 ) mod 9 )∗B1 [ 1 ] ;

v1 := v ;

end i f ;

L100:= Neighbour (L0 , v1 , 3 ) ;

G := Genus (L ) ;

bool := I s I s o m e t r i c ( L100 , L ) ;

bool1 := I s I s o m e t r i c ( L100 , L1 ) ;

bool2 := I s I s o m e t r i c ( L100 , L2 ) ;

bool3 := I s I s o m e t r i c ( L100 , L3 ) ;

bool4 := I s I s o m e t r i c ( L100 , L4 ) ;

bool5 := I s I s o m e t r i c ( L100 , L5 ) ;

bool6 := I s I s o m e t r i c ( L100 , L6 ) ;

bool7 := I s I s o m e t r i c ( L100 , L7 ) ;

bool8 := I s I s o m e t r i c ( L100 , L8 ) ;

bool9 := I s I s o m e t r i c ( L100 , L9 ) ;

// bool10 := I s I s o m e t r i c ( L100 , L10 ) ;

// bool11 := I s I s o m e t r i c ( L100 , L11 ) ;

// bool12 := I s I s o m e t r i c ( L100 , L12 ) ;

// bool13 := I s I s o m e t r i c ( L100 , L13 ) ;

// bool14 := I s I s o m e t r i c ( L100 , L14 ) ;

// bool15 := I s I s o m e t r i c ( L100 , L15 ) ;

i f bool or bool1 or bool2 or bool3 or bool4

or bool5 or bool6 or bool7 or bool8 or bool9

then

print ”No” ;

else
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G100 := Genus ( L100 ) ;

i f G100 eq G then

print ” in Genus 1” ;

else

print ” in Genus 2” ;

end i f ;

print ”======Yes======” ;

print ”norm” , Norm( v1 ) ;

print ”v :=” , v1 ;

print ” Kis s ing number =” , KissingNumber ( L100 ) ;

end i f ;

return L100 ;

end func t i on ;

C.2 Fundamental matrix and VOA genus computa-

tions

To compute the fundamental matrix of the representation in chapter 5 we mainly use Math-

ematica in the computation. We also use Magma to compute the decomposition into irre-

ducible representations.

Beginning with the set of conformal weights T1 of the given MTC. We compute the

exponent matrix L that is the matrix Λ. Next we compute the matrix A and characteristic

matrix X . Finally, we apply the function Fm to get the resulting fundamental matrix.

T1 = {0 , h2 , h3}

LN = DiagonalMatrix [Outer [ Plus , T1]− c /24 // Flatten ]

L = Mod[LN, 1 ]

A = Table [ f [ i , j ] , { i , 1 , Length [ L ]} , { j , 1 , Length [ L ] } ]

l i s t = Variables [A ] ;
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Reduce [{A. L .A == −17/18∗A − 2∗(A. L . L + L .A. L + (L . L ) .A) +

3∗(A. L + L .A) − 4∗L . L . L + 8 L . L − 44/9∗L +

8/9∗ IdentityMatrix [Length [ L ] ] , A.A == A} , l i s t , Backsubstitution −> True ]

ch i = Table [ b [ i , j ] , { i , 1 , Length [ L ]} , { j , 1 , Length [ L ] } ]

l i s t = Variables [ ch i ] ;

Reduce [{31/36 ( IdentityMatrix [Length [ L ] ] − L) −

1/864 ( ch i + L . ch i − ch i . L) == A} , l i s t , Backsubstitution −> True ]

Fm[ L , LD , c h i 1 ] := ( ID = IdentityMatrix [Length [ L ] ] ;

NN = 10 ;

de l = q∗Product [ ( 1 − qˆ i )ˆ24 , { i , 1 , NN} ] ;

E4 = 1 + 240∗Sum[ DivisorSigma [ 3 , n ]∗ qˆn , {n , 1 , NN} ] + O[ q ] ˆNN;

E6 = 1 − 504∗Sum[ DivisorSigma [ 5 , n ]∗ qˆn , {n , 1 , NN} ] + O[ q ] ˆNN;

JT = (E4ˆ3)/ de l − 744 ;

E10 = E4∗E6 ;

Ep = E10/ de l ;

DT = (1/Ep) ( (JT − 240) (L − ID) + ch i1 + L . ch i1 − ch i1 . L ) ;

FFx = Table [Sum[ b [ i , j , k ]∗ qˆk , {k , −1, NN} ] , { i , 1 , Length [ L ]} , { j , 1 ,Length [ L ] } ] ;

Do[ I f [Not [ i == j ] , b [ i , j , −1] = 0 , b [ i , j ,−1] = 1 ] , { i , 1 ,Length [ L ]} ,

{ j , 1 , Length [ L ] } ] ;

FF = qˆLD∗FFx ;

d i f f 3 = ( qˆ(−LD)∗ ( q∗D[FF, q ] − FF.DT) ) // ExpandAll // Flatten // Normal ;

l i s t = CoefficientList [ d i f f 3 , q ] ;

e rg = Solve [# == 0 & /@ l i s t , Variables [ l i s t ] ] ;

(FF / . erg [ [ 1 ] ] ) + O[ q ] ˆ (NN − 2 ) ;

qˆ(−LD)∗ (FF / . erg [ [ 1 ] ] ) + O[ q ] ˆ (NN − 2) )

Note that the parameter LD is the set of the diagonal entries of the exponent matrix.

We apply the following source codes to generate the possible affine Kac-Moody Lie

algebras corresponding to the dimension and the central charge.

w = {Table [{n∗(n + 2) , n + 1} , {n , 1 , 24} ] ,
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Join [{{10000 , 0}} , Table [{n∗(2∗n + 1) , 2∗n − 1} , {n , 2 , 2 4 } ] ] ,

Join [{{10000 , 0} , {10000 , 0}} , Table [{n∗(2∗n + 1) , n + 1} , {n , 3 , 2 4 } ] ] ,

Join [{{1 , 0} , {10000 , 0} , {10000 , 0}} , Table [{n∗(2∗n − 1) , 2∗n − 2} , {n , 4 , 2 4 } ] ] ,

Join [{{10000 , 0} , {14 , 4} , {100000 , 0} , {52 , 9} , {1000000 , 0} , {78 ,12} , {133 , 18} ,

{248 , 30}} , Table [{10000000 , 0} , { i , 9 , 2 4 } ] ] } ;

s t a r t [ dim , c ] := {{{} , {dim , c }}}

f i n d [ k ] := Module [{ c , erg } , e rg = {} ;

dim = k [ [ 2 , 1 ] ] ;

c = k [ [ 2 , 2 ] ] ;

Do[ I f [ (w [ [ i , j , 2 ] ] + 1 >= dim/c ) && ( dim − w [ [ i , j , 1 ] ] >= 0) ,

Do[ I f [ (w [ [ i , j , 2 ] ] + l >= dim/c∗ l ) && ( dim − w [ [ i , j , 1 ] ] >= 0) ,

AppendTo [ erg , {Join [ k [ [ 1 ] ] , {{ i , j , l }} ] ,

{dim − w [ [ i , j , 1 ] ] , c − w [ [ i , j , 1 ] ] ∗ l /(w [ [ i , j , 2 ] ] + l ) } } ] ] ,

{ l , 1 , I f [{ i , j } == {4 , 1} , 1 , 1 2 ] } ] ] , { i , 1 , 5} , { j , 1 , c } ] ; e rg ] ;

Kandidat [ l ] := Module [{ s } , a = Select [ l , #[ [2 , 1 ] ] == 0 &] ; b = Complement [ l , a ] ;

Union [{ Sort [ # [ [ 1 ] ] ] , # [ [ 2 ] ] } & /@ Join [ a , Flatten [ f i n d /@ b , 1 ] ] ] ] ;

make [ x , y ] := Kandidat [ Kandidat [ Kandidat [ Kandidat [ Kandidat [ Kandidat

[ Kandidat [ Kandidat [ Kandidat [ s t a r t [ x , y ] ] ] ] ] ] ] ] ] ] ;

Remark: The result of the function make[dim,c] is of the form {{{{a,b,c}}, {d, e}}}

where a is the “letter” type of the affine Kac-Moody Lie algebras (1 is for type “A”, 2 is

for type “B” etc.), b is the “rank” of the Lie algebras, c is the level, d is the remainder of

the dimension, and e is the remainder of the central charge. For examples, {{{{1,1,1}}, {0,

0}}} is the Lie algebra A1,1 and {{{{1,1,1},{5,7,1}}, {0, 1/2}}} is the Lie algebra (with its

extension) A1,1 ⊗ E7,1(1/2).

The following Magma source codes is used to decompose the representation into irre-
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ducible representations. The inputs are the S and T matrix of a given MTC and the results

represent the irreducible components and the corresponding basis vectors. The following

source codes correspond to the MTC qs2. By changing S and T and using the appropriate

cyclotomic filed, we will get the result for other MTCs.

F<zeta >:=CyclotomicFie ld ( 2 4 ) ;

a := Sqrt (F ! 2 ) ;

S :=[1/ a , 1/a , 1/a , −1/a ] ;

T:=[ zeta ˆ(−1) ,0 , 0 , ze ta ˆ 5 ] ;

G:=MatrixGroup< 2 , F | S ,T>;

M :=GModule (G) ;

f a c t := DirectSumDecomposition (M) ;

[∗ [ GModuleAction ( x ) ( S ) , GModuleAction ( x ) (T) ] : x in f a c t ∗ ] ;

[∗ [ Morphism (x ,M) ] : x in f a c t ∗ ] ;

We use the following source codes from Kac to compute the simple current extensions.

Tensor

G A 1 5

G E 7 1

cur rent a b

d i s p l a y

Remarks: In tensor mode, we can find the tensor product of Kac-moody Lie algebras

by using the code: G [type] [rank] [level]. In the example above, it is the tensor product of

A1,5 ⊗ E7,1. The command “current a b” computes a simple current where a and b are the

numbers representing simple modules in the combination (a, b). Then we will get the result

by using the command “display”.
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