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Abstract
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Chapter 1

Introduction

The notions of the genera of rational vertex operator algebras (VOAs) and the genera
of even lattices have been discussed in [H6h03]. There is a relation between the genera
of even lattices and VOAs such that a genus of even lattices is a subset of a genus of the
corresponding VOAs. It is also known that an even lattice can be constructed from a doubly
even binary code (cf. [Ebe02]). By giving a notion of the genera of doubly even binary codes,
we have that a genus of doubly even binary codes is a subset of a genus of the corresponding
even lattices. So there is an injection from the genera of doubly even codes into the genera
of even lattices and there is an injection from the genera of even lattices into the genera of
rational VOAs. In this thesis we would like to classify these genera of codes, lattices and
VOAs. First, we classify the genera of doubly even binary codes. Then, we classify the
genera of even lattices in such a way that they are of code type or not. A code type genus
of lattice is a lattice genus which contains only the lattices that can be constructed from a
doubly even code. Otherwise, a genus is called a non code type genus. Finally, we classify
the genera of the VOAs. We can classify only certain genera of the VOAs. By using the
fact that the category of the VOA modules has a structure of a modular tensor category
(MTC) [Hua08|, we can classify the VOA genera arising from the MTCs of small ranks.

We organize our results into two main chapters: the classification of the genera of code



type lattices and the classification of the genera of the rational vertex operator algebras
(VOASs) arising from the small modular tensor categories (MTCs).

We give a brief detail for codes and lattices in chapter 2. And we define the genera of
doubly even codes, even lattices, and rational VOAs in chapter 3. Let Lo be the integral
lattice constructed from the doubly even binary code C. Depending on the length and
the dimension of the code C', the genus containing Lo contains either only the lattices
constructed from the codes in the same genus as C' or there is at least one lattice in the
genus that is not constructed from any code. We would like to classify the genera of both
types: code type and non code type genera. By computation, using the computer algebra
software such as Magma, we can classify the lattice genera of both types up to the codes of
length 23 with at least the largest dimensions. Using the results from the computation and
applying some lemmas in chapter 4 and the complete classification of the even unimodular
lattices of dimension 24, we can conclude that all the genera associated with the codes of
length from 17 with any dimension are non code type. And the code type lattice genera are
listed in Proposition 4.2.7. The method of computation and the main results are explained
in chapter 4 and Appendix A.

In chapter 5, we classify the genera of the VOAs arising from the small MTCs. The
family of the characters of the VOA modules forms a vector valued modular function of a
representation p of the modular group SLs(Z) (cf. [Zhu96]). So we have a space consisting
of these vector valued modular forms. We apply the idea of the fundamental matrix of
the representation of the modular group in [BGO7] to classify the space of vector valued
modular forms and hence the genera of the VOAs. With the fact that the category of the
VOA modules forms a MTC, a genus of the VOAs depend only on the corresponding MTC
and the central charge. We use the list of the MTCs classified in [RSW09] in our genera
classification. We only study the cases of unitary MTCs and there are a total of 35 of
them. This classification is done by computation mainly with Mathematica and Magma.

The method of computation and the results are in chapter 5 and in Appendix B.



Chapter 2

Codes, Lattices, Vertex Operator
Algebras, and Modular Tensor

Categories

2.1 Codes

In this section we introduce the definitions and some properties of binary codes as in [Ebe02]

Let [y be a finite field with ¢ = p” (p prime).

Definition 2.1.1. A code C of length n is a nonempty proper subset of Fy.

If |C] = 1 the code is called trivial. If ¢ = 2 the code is called a binary code. The
elements of C' are called codewords, and n is called the wordlength of C'.

Let x = (21, ...,7,) € F;. The weight w(x) of  is the number of nonzero z;. If v € F,
y € F, then the (Hamming) distance d(z,y) of x and y is defined by d(x,y) := w(r —y).

Let C' be a nontrivial code. The minimum of the distance d(z,y) for z,y € C, x # y, is
called the minimum distance of the code C'. An (n, M, d)-code is a code with wordlength n,

M codewords, and minimum distance d.



Definition 2.1.2. A linear code C'is a linear subspace of Fy.

If C'is a linear code, k is the dimension of C' as an Fj-vector space and d is its minimum
distance, then C' is called an [n, k, d]-code.

For a linear code C', the minimum distance is equal to the minimum weight, i.e., to the
minimum of the weights of non zero codewords.

Consider the vectors of Fy as column vectors. Then a linear code is defined by an exact
sequence

0—F L Bt 0

where A and B are linear mappings. The exactness of the sequence is equivalent to the
three conditions: rank A = k, BA = 0, and rank B = n — k. The code C defined by this
sequence can be obtained in two ways.

First C' = A(IF’;) C F}. The linear mapping A is given by an n x k matrix A. The
columns of A form a basis of C'. Usually one considers the transpose G = A’ of A; this is
k x n matrix for which the rows form a basis of C'. GG is called a generator matrix of C'.

On the other hand C' = ker B, i.e., x € C if and only if Bx = 0. The linear mapping
B is given by an (n — k) x n matrix B. The rows of B are the relations defining C. The
matrix B is called a parity check matrix of C. For every x € Fy, we call Bx € IFZ"“ the
syndrome of z. The codewords of C' are characterized by having syndrome 0.

Let C be a linear code defined by an exact sequence as above. From linear algebra we
know that a linear mapping ¢ : V' — W between vector spaces V and W induces a dual
mapping ¢* : W* — V* between the corresponding dual spaces W* and V*; if V and W
are finite dimensional, then we can identify the vector spaces with their corresponding dual

spaces after the choice of bases. Therefore the above sequence induces a dual sequence

_y B At
0> F " = Fr = F:—0.

The condition BA = 0 is equivalent to the condition A’B* = 0. This exact sequence



defines the dual code C'*, i.e., C+ := B!(F;~*). If C has dimension & then C'* has dimension
n — k.

For z,y € F; we define their scalar product z - y by

=1

Lemma 2.1.3 (cf. [Ebe02]). C* ={y € Fl | x-y =0 for all z € C}.

A linear code C is called self-dual if and only if C' = C*. Note that dim C' + dim C+
= n, so C' = C* implies that n is even, dim C' = g and C C C*.
A binary code C' is called doubly even, if the weights w(z) of all codewords = € C' are

divisible by 4. A doubly even code C satisfies C' C C*, since over Z
1
Ty = 5((x+y)2—x2—y2), where 2% = x - 2.

Now we will give some examples of doubly even codes which are constructed in [DFGT11].
For each N, there is a trivial doubly even code {0000} generated by an empty matrix which
we call ty. For each even N > 4, there is a doubly even code called dy of length N and

with % — 1 generators, with the generating set

[ 111100000 - - - 00000
001111000 - - - 00000
000011110 - - - 00000

| 000000000 - - - 01111

111100
For example, dy is generated by [1111], and dg is generated by

001111



When N is congruent to 7 or 8 modulo 8 there is an important doubly even code called
en, the generating set of which is that of dy (or t; @ dy_; when N = 7 (mod 8)) augmented

by an additional generator of the form 101010.... For example,

11110000
1111000
00111100
er: | 0011110 , €8 :
00001111
1010101
10101010

e7 is known as the Hamming code (7,3) and eg is the extended Hamming code (8,4).
For any N = 0 (mod 4) there is an (/V,1) doubly even code hy with the generating set
[1111] Note that hy = d4, but hy C dy for N = 8,12,16,... .

2.2 Lattices

In this section we introduce the definitions and some properties of integral lattices as in

[Ebe02].

Definition 2.2.1. A lattice in R™ is a subset I' C R" with the property that there exists
a basis (e, ...,e,) of R" such that ' = Ze; & ... ® Ze,, i.e., ' consists of all integral linear

combinations of the vectors ey, ..., €,.

Let T" be a lattice in R™. A basis (e, ...,e,) of R" with I' = Ze; @ ... @ Ze,, is called a
basis of I". The quotient R™/T" is an n-dimensional torus. It is obtained by identifying the

faces of the fundamental parallelotope



The volume of a lattice is
vol(R"/T") = vol(P) = |det((eq, ..., €,))]

where ((eq, ..., €,)) is the matrix whose rows are the vectors ey, ..., €,.
More generally, let IV C R” be a lattice with IV C I'. Then clearly the index |I'/T”| is
finite and

vol(R"/T") = vol(R"/T)|T/I"|.

We denote the Euclidean scalar product of two vectors z,y € R" by x - y. So

-y = szyz
i=1

The Euclidean scalar product is a non-degenerate, positive definite, symmetric bilinear
form. Put a;; = e; - ¢; and let A be the matrix ((a;;)). Let C' be the matrix ((ey, ...e,)).
Then A = C'C*. Therefore,

vol(P) = |detC| = vV/detA.

Let V = R". We identify V' with the dual vector space V* = Hom(V,R) by means of
the mapping V' — V* & — f,, with f.(y) = x-y. Let I" be a lattice in R". We denote the
dual lattice of T by I'*. It is

I'"=Hom(I',Z) ={z e R"|x -y € Z for all y € T'}.

Let (eq,...,e,) be a basis of I', and let (e7,...,e) be the dual basis , i.e., ef - ¢; = J;;.
Then e} = Zn: bije; and B = ((b;;)) = A, The e} form a basis of I'*.

A latticia:f € R" is called integral, it x -y € Z for all x,y € I.

A lattice I' € R™ is called unimodular if I'* =T

Now let I be an integral lattice with basis (e, ...,e,), and let A be the matrix A =



((e;-€j)). Then A is an integral matrix and the determinant detA of A is an integer, and it

is called the discriminant of the lattice I', written disc(I'). And so

dise(T") = |T™/T|.

Let I' be an integral lattice in R”. A Z-submodule A of I' is called a sublattice of I'. It
is a lattice in some subspace W C R™ which is isomorphic to R¥ for some k. In particular,

the dual lattice A* is defined to be

N ={zeW|z-yeZforalyeA}.

A sublattice A of T is call primitive if I'/A is a free Z-module. If K is a subset of I" we
call the Z-submodule K+ = {y € T'|z -y = 0 for all x € K} the sublattice orthogonal to K.

Let Ay, ..., A,, be sublattices of I'. The lattice I' is called the orthogonal direct sum of the
sublattices Ay, ..., A,, denoted by I' = A1 @ ... d A,,, if I' is the direct sum of the submodules
A, .. Apandz-y=0forall z € A,y € Aj, and 7 # j.

Definition 2.2.2. An integral lattice I is called even if 2% = z-x = 0(mod 2) for all z € T..

In matrix terms, this means that the diagonal elements e; - ¢; of the matrix A are all
even.
Let L be an even lattice in R™. Then we have a canonical embedding L < L* into the

dual lattice of L. The quotient group

A:=L"/L

is a finite abelian group of order disc(L). We define a mapping bs : A x A — Q/Z by

ba(x+ L,y+ L) =x-y+7Z, where x,y € L*,



and a mapping g4 : A — Q/2Z, by

qa(r + L) = 2* + 27, where z € L*.

Then by is a finite symmetric bilinear form, and ¢4 is a finite quadratic form. By this we
mean a mapping ¢ : G — Q/2Z defined on a finite abelian group G satisfying the following
conditions:

(i) q(rz) = r?*q(z) for all r € Z and z € A,

(i) q(z +y) — q(z) — q(y) = 2b(z, y)( mod 2Z),

where b : G x G — Q/Z is a finite symmetric bilinear form, which we call the bilinear
form corresponding to g. The form g4 is called the discriminant quadratic form of L.

Next we will introduce the definition of the root lattices.

Let L C R" be an even lattice, i.e., 2? € 27Z for all x € L. Let

R:={z € L|lz* =2}.

An element x € R is called a root.
Definition 2.2.3. An even lattice L C R" is called a root lattice, if R generates L.

A lattice L is called reducible, if L is the orthogonal direct sum L = L; & Ly of two

lattices Ly C R™, Ly C R™ with nq,ny > 1; otherwise it is called irreducible.

Theorem 2.2.4 (cf. [Ebe02]). Every root lattice is the orthogonal direct sum of irreducible

root lattices.

There are five types of irreducible root lattices: Types A,,, D, (n > 3), Es, F7, and Eg
(cf. Section 1.4 in [Ebe02]).

Let L C R™ be a lattice. We associate to L a function which is defined on the upper half

plane

H = {r € C|Im7 > 0} C C.

9



For 7 € H let g = ™7

Definition 2.2.5. The theta function of the lattice L is the function

Or(r) == Z q%x'x

zeLl

for € H.

2.3 Vertex Operator Algebras (VOAs)

In this section we introduce the definitions and some properties of vertex operator algebras

as in [FBZ04].

2.3.1 Formal distribution

Let R be a C-algebra.

Definition 2.3.1. An R-valued formal power series (or formal distribution) in variables

21, 72, ..., Zn 18 an arbitrary (finite or infinite) series

A(z1, 22, 0oy 2n) = Z e Z Agy a2t 2t (2.3.1)

NEZ in €L

where each A;, ;. € R. These series form a vector space, which is denoted by

Rz, ..., 2.

n

n

In general, a product of two elements of R[[2{!, ..., 2*!]] does not make sense, since
individual coefficients of the product are infinite sums of coefficients of the factors. However,
the product of a formal power series by a Laurent polynomial (i.e., a series (2.3.1) such that

A;, i, =0 for all but finitely many n-tuples (i1, ..., i,) is always well-defined.

10



Definition 2.3.2. Given a formal power series in one variable, f(2) = >___, a;z*, we define

2€7

its residue (at 0) as

Resf(z)dz = Res,—of(2)dz = a_;.

Note that if R = C and f(z) is the Laurent series of a meromorphic function defined on

a disc around 0, having poles only at 0, then

where the integral is taken over a closed curve winding once around 0.
Any formal power series f(z) =Y., foz" in C[[z*']] defines a linear functional on the

space of Laurent polynomials C[z, 27!] whose value on g € C|z, 2] equals

Res,—of(2)g(z)dz.

Definition 2.3.3. The formal delta-function 6(z — w) is a formal power series in two vari-

ables z, w defined by

0z —w)= Z PAR T (2.3.2)

mEZ

Its coefficients @, = 0, —n—1 are supported on the diagonal m 4+ n = —1, and hence it
can be multiplied by an arbitrary formal power series in one variable (i.e., depending only

on z or only on w). Indeed, for such a series A(w), we obtain

A(w)o(z —w) = Z Ak Z 2T = Z Apmini12mw",

kEZ meZ m,n€”

so each coefficient is well-defined. Furthermore, the formula above shows that as formal

11



power series in z,w,
A(2)0(z —w) = A(w)o(z — w), (2.3.3)

which motivates the terminology “delta-function”.

We obtain from formula (2.3.3) that
(z—w)d(z—w)=0 (2.3.4)
and, by induction,
(z —w)"™9"6(z — w) = 0. (2.3.5)

Lemma 2.3.4 (cf. [FBZ04]). Let f(z,w) be a formal power series in R[[z%, w*!]] satisfying
(z —w)N f(z,w) = 0 for a positive integer N. Then f(z,w) can be written uniquely as a

Z gi(w)d5(z — w), gi(w) € R[[w*™]]. (2.3.6)

2.3.2 Fields

Definition 2.3.5. [Fields] Let V' be a vector space over C. Denote by EndV the algebra of

linear operators on V. A formal power series
A(z) =) _Ajz7 € EndV|[z*"]] (2.3.7)
JEL
is called a field on V if for any v € V' we have A; - v = 0 for large enough j.

In other words, A(z) - v is an element of V((z)), the space of formal Laurent series with

coefficients in V' (i.e., it has only finitely many terms with negative powers of z). Fields on

12



V' form a vector space denoted by F(V).

For any C-algebra R, we denote by R[[z]] the space of R-valued formal Taylor series in
z. The space R((z)) of R-valued formal Laurent series in z is by definition the space of
series ) |, a,2", where a,, € R for all n, and there exists N € Z such that a, = 0,Vn < N.
Note that R((z)) is an algebra.

Denoted by C((z))((w)) the space R((w)), where R = C((z)). In other words, this is
the space of Laurent series in w whose coefficients are Laurent series in z.

For any vector v € V and any linear functional ¢ : V' — C, the matrix element (p, A(z)v)
of a field A(z) is a Laurent power series.

Given another field, B(w), we consider the composition A(z)B(w) as an EndV-valued
formal power series in z,w. Given v € V and ¢ € V* (where V* denotes the vector space

of all linear functionals on V'), consider the matrix element

(¢, A(2)B(w)v) € C[[*, w™]].

From the definition of a field , we see that this formal power series actually belongs to

C((2)((w))-

Definition 2.3.6. Two fields A(z) and B(w) acting on a vector space V are said to be local

with respect to each other if for every v € V and ¢ € V*, the matrix elements

(0, A(z) B(w)v) and (¢, B(w)A(z)v)

are expansions of one and the same element

fop € Cllz w7 w™ (2 —w) 7]

in C((2))((w)) and C((w))((2)), respectively, and the order of pole of f,, in (2 — w) is

uniformly bounded for all v, ¢.

13



The last condition above may be reformulated as saying that there exists N € Z, such

that

(2 —w)" foe € Cllz,w]][z™" w™]

for all v, . But then the expansions of (z — w)" f,, in C((z))((w)) and C((w))((2)) are

equal to each other. Therefore if A(z) and B(w) are local with respect to each other, then

(2 —w)VA(2) B(w) = (2 — w)" B(w)A(2),

or equivalently, (z — w)V[A(2), B(w)] = 0, where [A, B] := AB — BA. The following

proposition shows that the converse is also true.

Proposition 2.3.7 (cf. [FBZ04)). Two fields A(z), B(w) are local if and only if there exists
N € Z, such that

(z —w)V[A(2), B(w)] = 0 (2.3.8)

as a formal power series in EndV [[z%, w*!]].

2.3.3 Definition of a Vertex Algebra

Definition 2.3.8. A vertex algebra is a collection of data:

e (space of states) a vector space V;
e (vacuum vector) a vector |0) € V;
e (translation operator) a linear operator 7': V' — V;

e (vertex operators) a linear operation

Y(-,2): V — EndV[[z*]

14



taking each A € V to a field acting on V/,

Y(A, Z) = Z A(n)zfnfl.

nel

These data are subject to the following axioms:

e (vacuum axiom) Y(|0), z) = Idy. Furthermore, for any A € V' we have
Y (4,2)|0) € V][2]].
so that Y'(A, 2)|0) has a well-defined value at z = 0, and
Y(4,2)[0)]:=0 = A.

In other words, A¢,)|0) = 0,n > 0, and A_1|0) = A.

e (translation axiom) For any A € V,
T,Y (A, z)] =0,Y(A,z)

and 7T'|0) = 0.
e (locality axiom) All fields Y (A, z) are local with respect to each other.

A vertex algebra is called Z-graded if V' is a Z-graded vector space, |0) is a vector of
degree 0, T'is a linear operator of degree 1, and for A € V,,, the field Y (A, z) has conformal

dimension m (i.e., degA(,) = —n+m —1).

Definition 2.3.9. A vertex algebra homomorphism p between vertex algebras
(V.10)),7.Y) — (V',]0)", T",Y")
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is a linear map V — V' mapping |0) to |0), intertwining the translation operators, and
satisfying
p(Y (A, 2)B) =Y (p(A), 2)p(B).

A wvertex subalgebra V' C V is a T-invariant subspace containing the vacuum vector, and
satisfying Y (A, 2)B € V'((2)) for all A, B € V' (with the induced vertex algebra structure).
A wertex algebra ideal I C V is a T-invariant subspace satisfying Y (A, z)B € I((z)) for
all A€ I and B € V. And by the skew-symmetry property, we have Y (B, z)A € I((z)) as
well. Tt follows that for any proper ideal I, V/I inherits a natural quotient vertex algebra

structure.

Lemma 2.3.10 (cf. [FBZ04]). For two vertex algebras (V4,[0),,T1,Y1) and (V3,|0),, 15, Ys),
the data (Vi ®c V2, [0); ®10),, T1 ® 1 +1® T5,Y), where

Y(A; ® Ag, 2) = Y1(A1,2) ® Ya(As, 2)

defines a vertex algebra called the tensor product of Vi and V5.

2.3.4 Examples of Vertex Algebras

There are some examples of vertex algebras in [FBZ04] such as the vertex algebra associ-
ated to the Heisenberg Lie algebra which define the vertex algebra structure via the Fock
representation 7, the vertex algebra associated to the Affine Kac-Moody algebras, and the
Virasoro vertex algebra.

We will give brief details of the affine Kac-Moody algebras and their vertex algebras and
the Virasoro vertex algebra below (see [FBZ04] for the full details).

An affine Kac-Moody algebra is defined as a central extension of the formal loop
algebra. Let g be a finite-dimensional simple Lie algebra g over C. We define the formal

loop algebra of g,
Lg=g((t)) = g ® C((2)),
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as the Lie algebra with the commutator
[A® f(t), B@g(t)] = [A, Bl @ f(t)g(t).
We now define the affine Kac-Moody algebra g as a central extension
0—>CK —g— Lg—0.

As a vector space, g ~ Lg @ CK, with the commutation relation [K,-] = 0 (so K is central)
and

[A® f(t), Bog(t)] = [A B]f(t)g(t) — (Resi—ofdg)(A, B)K.

The Kac-Moody cocycle is non-trivial, i.e., g cannot be split as a Lie algebra into a direct
sum Lg @ CK. Thus the Kac-Moody extension is a universal central extension of Lg, i.e.,
any other central extension g of g admits a Lie algebra homomorphism g — g.

The vacuum representation. Inside the loop algebra Lg = g((¢)) there is a “positive”
Lie subalgebra g[[t]] = g ® C[[t]]. If f,g € C[[t]], then Res;—ofdg = 0. Hence the central
extension becomes trivial when restricted to this subspace, and so g[[t]] and g & CK are Lie
subalgebra of g.

Now consider the one-dimensional representation Cy, of g[[t]] & CK on which g[[t]] acts
by 0 and K acts as multiplication by a scalar k € C. We define the vacuum representation
of level k of g as the representation induced from Cy:

Vi(g) = Indﬁ[[t}]@CK(CK = U(9) Qugeck) Cr,

where U(g) denotes the universal enveloping algebra of g. More generally, we will say that
a module M over g has level k € C, if K acts on M as multiplication by k.
Vertex algebra structure. We now can define a vertex algebra structure on the

vacuum representation. Let {J%},—1 . 4im ¢ be an ordered basis of g. Split the extension g

-----
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as a vector space. For any A € g and n € Z, we denote

A, ¥ Awtm e Ly

Then the elements J% n € Z, and K form a (topological) basis for g, while the elements
J% n >0, and K form a basis for the “positive” subalgebra from which we induced Vj(g)

has a PBW basis of monomials of the form
Jsi...Jn":vk,

where n; <ns, < ... <n, <0, and if n; = n;41, then a; = a;4;.
Definition 2.3.11. The normally ordered product of the fields

A(z) =3z Amz " Blw) =3, cp Bamyw™™ !
is defined as the formal power series

PA(Z)Bw) 0 =3 (o A Bz ™+ 2 0 By Az ™) wn !
— A(s), Buw) + Bu)A()

where for a formal power series f(z) = ), ., [n2", we write

f@)e =250 fn2", f(2)- = Yo fn2™
We define a Z-graded vertex algebra structure on Vi (g) as follows:
e Vacuum vector : |0) = .
e Translation operator : Tv, =0, [T, J¢] = —nJ?_,.

e Vertex operators : Y (v, 2) = Id,

Y (J% vk, 2) = Jz) = Z Jez
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and in general,

1
(—ny — Do(=np, — 1)

Y (Jt Ty, 2) =

e 7. -gradation :

m
deg Ji!...J vy = — E n;.
i=1

. a9—ni—1 yap —nm—1 Jam .
! 20, J(z)...0, JU(z) :.

Next we will define the Virasoro vertex algebra. Let K = C((¢)) and O = C|[[t]].

Consider the Lie algebra DerK = C((t))0; of derivation of K. The Virasoro algebra is by

definition the central extension of DerK:
0 — CC — Vir — DerK — 0,
defined by the commutation relations

[f(t)0, g(t)0] = (fgl - flg)at (Restzofg’"dt)C.

1
12
It is known that this extension is universal. It has generators C', and

L,=—t""9,, neZ,

satisfying the relations that C' is central and

TLB—TL

Ly, L) = (n—m)Lpym + T5n,—m0-

We will say that a module M over the Virasoro algebra has central charge ¢ € C, if C

acts on M by multiplication by c.

Now we are ready to define the Virasoro vertex algebra. Note that DerO = C[[t]]0;. We

can pick the induced representation in which the generating vector |0) = 0 for all n > —1.
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More precisely, let U(Vir) be the universal enveloping algebra of Vir. For each ¢ € C we

define the induced representation
Virc — Indgé:o@(cc@c — U(V’”n) ®U(Der0@(cc) CC7

where C' acts as multiplication by ¢ and DerO acts by zero on the one-dimensional module
Ce. Note that Virg has central charge ¢ as a module over the Virasoro algebra.

By the Poincaré-Birkhoff-Witt theorem, Vir. has a PBW basis consisting of monomials
of the form

L ..Lj v, j1 <Jj2 < ... < g < =2, (2.3.9)

Here v¢ is the image of 1 ® 1 € U(Vir) ® C¢ in the induced representation, and we take
it to be the vacuum vector of the vertex algebra. We define a Z-gradation on Virg by the
formulas degl,, = —n, degvc = 0.

As the translation operator we take 7" = L_; and set

Y(Logve,2) & T(2) =Y Lz

nez

This is the generating field of Virg. It has conformal dimension 2. Next we define the vertex

operators Y (A4, z) for the PBW monomial of the form 2.3.9 :

1 1
(=i =2 (=jm — 2)

Y (Lj,...Lj, ve, 2) = ; O, 2T (2)...0 72T (2) - .

The Virasoro vertex algebra Vir. is reducible as a module over the Virasoro algebra if
and only if

@t . 6(p—q)°
c:c(p’q)zl_u
pq

Let Lepq be the irreducible quotient of Virey g (cf. [FBZ04]). Then Lpq) is a vertex

,p,a>1, (p,q) =1
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algebra which is a simple quotient of Vir., ).

2.3.5 Further Definitions and Theorems

Definition 2.3.12. [Vertex operator algebra] A Zs(-graded vertex algebra V is called a
vertez operator algebra (VOA), of central charge ¢ € C, if we are given a non-zero conformal

vector w € V, such that the Fourier coefficients LY of the corresponding vertex operator

Y(w,2) = Z LYz 2

nez

satisfy the definition relations of the Virasoro algebra with central charge ¢, and in addition

we have LV, =T, LY |y, = nld.

The Virasoro vertex algebra Vire is clearly a VOA, with central charge ¢ and conformal

vector w = L_yv,.

Definition 2.3.13. [Modules over vertex algebras| Let (V,]0),7,Y) be a vertex algebra.
A vector space M is called a V' — module if it is equipped with an operation Yy, : V —

EndM [[z*!]] which assigns to each A € V a field

V(A z) =) Allz!

ne”

on M subject to the following axioms:
o Y (]0),2) =1dyy ;

e forall A,B €V, C € M the three expressions
Yu(A, 2)Yu(B,w)C € M((2))((w)),

Yu(B,w)Yu(A, z)C € M((w))((2)), and

21



Yu(Y(4, 2 —w)B,w)C € M((w))((2))

are the expressions, in their respective domains, of the same element of

Mz, w]][z 71w, (z —w) Y.

If V is Z-graded, then a V-module M is called graded if M is a C-graded vector space
and for A € V,, the field Yj/(A, z) has conformal dimension m, i.e., the operator A% is
homogeneous of degree —n +m — 1.

These axioms imply that V' is a module over itself. And we also have the notions of a
submodule and quotient module. A module M whose only submodules are 0 and itself is
called stmple or irreducible.

Now we will define a lattice vertex algebra as follows: Let H be the Weyl algebra (cf.
Section 2.1.2 in [FBZ04]). For A € C, let my be the H module generated by a vector |\)
such that

bu|A) =0, n >0, by|\) = A|N).

Let L be a lattice of finite rank equipped with a symmetric bilinear form (-,-) : LXL — Z
such that (A, A\) > 0 for all A € L\ {0}.
Set h = L ®z C. The bilinear form on L indicates a bilinear form on b, for which we use

the same notation. Let b be the central extension of h((%)),
05 Cl—>h— h((t)) — 0,
with the commutation relations
[A® f(t), B®g(t)] = —(A, B)(Resf(t)g'(t)di)1.

Define the Weyl algebra H; as the enveloping algebra of H module the relation 1 = 1.
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It has generators h,,h € h,n € Z, and relation

[hn’ gm] = n(h> g>6n,fm-

For A € b, define the Fock representation 7 of ﬁL, generated by the vector |\), such
that
hnlA) =0, n>0; ho|A) = (A h)|N).

The Fock representation 7, carries a vertex algebra structure, define in the same way as

in the case when dimh = 1.

Definition 2.3.14. [Rational vertex algebras| A vertex operator algebra V' is called rational
if every Zs(-graded V-module is completely reducible (i.e., isomorphic to a direct sum of

simple V-modules).
This condition implies that
1. V has finitely many inequivalent simple Zxo-graded modules;
2. the graded components of each simple Zxo-graded V-module are finite dimensional.

If M is a simple Zsg-graded V-module, then the Virasoro operator L) on M is auto-
matically semi-simple and hence defines a gradation on M. Any other Z,-gradation on M
will necessarily coincide with it up to a shift by a complex number. The above properties

allow us to attach to a Zsp-graded simple V-module M its character
ch M = TquLéM*C/24 = Z dimMaq“*C/M,

where M, is the subspace of M on which L) acts by multiplication by «, c is the central
charge of V, and q = ™.

Now let Cy(V') be the subspace of V' spanned by all elements of the form A_, - B for all
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A, B € V. Then a rational vertex algebra V is said to satisfy the Cy cofiniteness condition

if
1. dimV/Cy (V) < o0;

2. every vector in V can be written as a linear combination of vectors of the form

L,,..L, A n; <0, where A satisfies L, A = 0 for all n > 0.

Theorem 2.3.15 (cf.Y.Zhu [Zhu96]). Let V' be a rational vertex algebra satisfying the Coy
cofiniteness condition, and let {M?', ..., M"™} be the set of all inequivalent simple Z-graded
V-modules (up to an isomorphism). Then the vector space spanned by ch M* i=1,...,n, is

invariant under the action of SLs(Z).

The lattice vertex algebra is one of the examples of rational vertex algebras (cf.[Don93]).
Let L be an even positive definite lattice in a real vector space W. We can attached to it a
vertex algebra V. Its inequivalent simple modules are parameterized by L*/L, where L* is
the dual lattice. The characters of these modules are the theta-functions corresponding to
L. The vertex algebra V, is the chiral symmetry algebra of the free bosonic conformal field

theory compactified on the torus W/L.

Definition 2.3.16. (cf. [H6h03]) A VOA V is called unitary if V' can be defined over the

real numbers and the natural invariant symmetric form on it is positive definite.

The irreducible quotient of Vire(, ¢y, Le(p,q) is a rational VOA which is called the “minimal
model” of conformal field theory. If L, is unitary, ie., c(p,q) < 1 or ¢ = p+ 1, then
6
c(p,q) =1-— m for p=2,3,4,.... We call L.(0) the Virasoro minimal model VOA.
p\p

2.4 Modular Tensor Categories (MTCs)

In this section we introduce the definitions and some properties of modular tensor categories

as in [Tur94].
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2.4.1 Ribbon Categories

Definition 2.4.1. [Monoidal categories| A strict monoidal category is a category C equipped
with a tensor product and an object 1 = 1¢, called the unit object, such that the following
conditions hold.

For any object V of C

Vel=V, 10V =V (2.4.1)

and for any triple U, V, W of objects of C, we have

(U V) W=Ux (Ve W). (2.4.2)

For any morphism f in C,

and for any triple f, g, h of morphisms in C,

(fRg)@h=f®(gxh). (2.4.4)

More general monoidal categories are defined similarly to strict monoidal categories
though instead of (2.4.1), (2.4.2) one assumes that the right-hand sides and left-hand sides
of these equalities are related by fixed isomorphisms. These fixed isomorphisms should
satisfy two compatibility conditions called the pentagon and triangle identities. These iso-
morphisms should also appear in (2.4.3) and (2.4.4) in the obvious way. And we can consider
mainly with strict monoidal categories because of MacLane’s coherence theorem which es-
tablishes equivalence of any monoidal category to a certain strict monoidal category.

The tensor multiplication of modules over a commutative ring is commutative in the
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sense that for any modules V', W, there is a canonical isomorphism V@ W — W ® V. This
isomorphism transforms any vector v ® w into w ® v and extends to V' @ W by linearity.
It is called the flip and denoted by Py . The system of flips is compatible with the tensor

product in the obvious way: for any three modules U, V', W, we have

Pyvew = (idy ® Puw)(Puyv ®idw), Prgvw = (Puw ®idy)(idy ® Prw).

Definition 2.4.2. [Braiding in monoidal categories| A braiding in a monoidal category C

consists of a natural family of isomorphisms

c={evw: VW WV}, (2.4.5)

where V', W run over all abjects of C, such that for any three objects U, V', W, we have

cuvew = (idy ® cuw)(cov @ idw), (2.4.6)

Cugv,w = (CU,W X idv)(idU ® CV,W)- (2.4.7)

Definition 2.4.3. [Twist in monoidal categories] A twist in a monoidal category C with a

braiding ¢ consists of a natural family of isomorphisms

0=1{6y:V -V} (2.4.8)
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where V' runs over all objects of C, such that for any two objects V', W of C, we have

Ovew = cwyevw(Oy @ Ow). (2.4.9)

Let C be a monoidal category. Assume that to each object V' of C there are associated

an object V* of C and two morphisms

Definition 2.4.4. [Duality in monoidal categories] The rule V' — (V* by, dy) is called a

duality in C if the following identities are satisfied:

(idy ® dy)(by ® idy) = idy, (2.4.11)

Note that we do not require that (V*)* = V.
We say that the duality in C is compatible with the braiding ¢ and the twist 6 in C if for

any object V of C, we have

(By ® idy-)by = (idy ® Oy )by (2.4.13)

Definition 2.4.5. [Ribbon categories| A ribbon category is a monoidal category C equipped
with a braiding ¢, a twist 6, and a compatible duality (*,b,d). A ribbon category is called

strict if its underlying monoidal category is strict.

Let C be a ribbon category. Denote K = K the semigroup End(1) with the multiplica-

tion induced by the composition of morphisms and the unit element id;.
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Definition 2.4.6. [Traces and dimensions| For an endomorphism f : V' — V of an object

V', we define its trace tr(f) € K to be the following composition:

tr(f) = dyeyy-((0y f) @ idy<)by : 1 — 1. (2.4.14)

For an object V in C , we define its dimension dim(V') by the formula

dlm(V) = tr(idv) = dVCV,V* (QV X idv*)bv e K. (2415)

2.4.2 Definition of Modular Tensor Categories

Definition 2.4.7. [Ab-categories| A category C is said to be an Ab-category if for any pair
of its objects V', W, the set Hom(V, W) of C-morphisms V' — W is an additive abelian

group and the composition of morphisms is bilinear.

Let C be an monoidal Ab-category. The composition of morphisms, considered as multi-
plication in End(1) = Hom(1, 1), renders this abelian group a ring with unit id;. This ring
is commutative. It is called the ground ring of C and denoted by K¢ or by K.

Combining the definition of Ab-category with the definitions of section 2.4.1 we come to
the notion of a ribbon Ab-category. This is a monoidal Ab-category equipped with braiding,
twist, and compatible duality.

Let C be a ribbon Ab-category. For any k£ € K and any object V' of C, the morphism
k ®idy : V — V is called multiplication by k£ in V.

Definition 2.4.8. [Simple objects] An object V of C is said to be simple if the formula
k — k ®idy defines a bijection K — End (V).

For example, the unit object 1 is simple.
Here is a convenient characterization of simple objects: an object V' of C is simple if and

only if End(V) is a free K-module of rank 1. Indeed, if V' is simple then End(V) ~ K with

28



the generator idy. Conversely, if End(V) ~ K with a free generator x then idy = kz and
2% = k'x with k, k' € K Hence x = idyz = ka? = kk'z. Therefore k is invertible in K and
idy is a free generator of End(V).

Let {V;}icr be a family of objects of a ribbon Ab-category C.

Definition 2.4.9. [Domination] An object V of C is dominated by the family {V;};c; if
there exist a finite set {Vj,y}, of objects of this family (possibly with repetitions which
means that the same object may appear several times) and a family of morphisms {f, :

Viey = Vo gr : V= Viy }, such that
idy =Y fog, (2.4.16)

Here i(r) € I for all r.

The definition of domination may be reformulated as follows: V' dominated by {V;}cs

if the images of the pairings
{(g, f) — fg:Hom(V,V;) ® x Hom(V;, V') — End(V) }ses

additively generate End(V).

For 7,5 € I, set
dim(i) = dim(V;) € K and S;; = tr(cy, v, ocyy;) € K

where K is the ground ring of C. Note that S;; = 5;,. Thus, S = [S;;]; jer is a symmetric

square matrix over K and
S(m = 0,0 — tI‘(idVi> = dlm(l)

Definition 2.4.10. [Modular tensor categories] A modular category is a pair consisting
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of a ribbon Ab-category C and a finite family {V;};c; of simple objects of C satisfying the

following four axioms.

1. (Normalization aziom) There exists 0 € [ such that V; = 1.

2. (Duality aziom) For any i € I, there exists ¢* € I such that the object V;» is isomorphic
to (Vi)*.

3. (Aziom of domination) All objects of C are dominated by the family {V;}ie;.

4. (Non-degeneracy aziom) The square matrix S = [S; j]; jes is invertible over K.

Remarks:(cf. [Row06]) In a semisimple ribbon Ab-category C with finitely many simple
classes the set of simple classes generates a semiring over K under ® and é¢. This ring is
called the Grothendieck semiring and denoted by Gr(C). If {Vo =1,V4,...,V,,_1} is the set

of representatives of the simple objects in C, the rank of C is n. We have
VieV; =Y NLV (2.4.17)
k

for some ij € N. These structure coefficients of Gr(C) are called the fusion coefficients
of C and (2.4.17) is sometimes called a fusion rule. If we fixed the order of the simple
objects as above, the fusion coefficients give us a representation of Gr(C) via V; — N; where
N; = (Ni)i; = (N};) is called the fusion matrix associated to V;. If i* is the index of the
simple object V;*, the braiding and associativity constraints give us:

k _ Atk _ arJ*  _ aTkx
Niyj - N]}i - N@k* =N,

IENES

0 _
NZ,] — 51;7]'*.

The first column (and row) of the matrix S consists of the categorical dimensions of the
simple objects, i.e., S;o = dim(V;). We denote these dimensions by d;. We also have that
Si; = Sji = Sixjx. Since the twist 6y € End(V') for any object V, 0y is a scalar map. We
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denote this scalar by ;. And we get a useful formula

1 k
Sij = 75 2 > N diby. (2.4.18)

Provided C is modular the matrix S determines the fusion rules via the Verlinde formula

S
zt Rt j iRkt kx,t

2.4.19
=2 s, (2:4.19)

where D? = >~ d?. This formula corresponds to the following fact: the columns of the matrix
S are simultaneous eigenvectors for the fusion matrices N;, and the categorical dimensions
are eigenvalues.

If we set T = (6; ;0;);; then the map:

0 -1 11
— S, — T

defines a projective representation of the modular group SLs(Z). In fact, by renormalizing

S and T one gets the representation of SLy(Z).
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Chapter 3

Genera of Codes, Lattices, and VOAs

3.1 Code genus

Recall That C* = {y € F} : x-y = 0 for all z € C' } is a dual code of a code C. For a
doubly even binary code C, we know that C' C C*. For a code word ¢ in C, we denote w(c)
the weight of c.

We define the weight signature of C* to be the set

W = {w(c) : w(c) mod 4 , ¢ is a codeword in C*}.

Definition 3.1.1. Two doubly even codes with the same lengths are said to be in the same
genus if and only if they have the same dimensions and their dual codes have the same

weight signatures.

Note that there are three possible genera for the doubly even codes of a given length n

and dimension k: odd genus with {0, 1,3}, even genus with {0, 2}, and even genus with {0}.

3.2 Lattice genus

Let L be an integral lattice and the vector space V = L ®z R with the induced symmetric

bilinear form. By Sylvester’s law of inertia, this form can be diagonalized, i.e., there exists
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a basis {ej,...e,} of V such that the inner product of vectors v =) ve; and w = ) . wse;
is given by ). €v;w; where ¢; € {—1,0,1}. The multiplicity of —1,0, and 1 among the ¢;s
is invariant under the choice of diagonalizing basis.

We can say that the lattice L has a signature (l,1_) where [ is the number of positive
¢; and [_ is the number of negative ¢;.

Let L be an even lattice in R”. The quotient group A := L*/L is a finite abelian group.

We define the mapping
qa:A— Q/2Z, by qa(x + L) = 2* + 27, where z € L*.
Then ¢4 is called a quadratic form on A, i.e., the discriminant form of L*/L.

Definition 3.2.1. [Nik79] (cf. [H6h03]) Two even lattices belong to the same genus if and

only if their signatures and discriminant forms are the same.

Note that the number of isometry classes contained in the genus is called the class

number.

3.3 VOA genus

Recall that Cy(V') is the subspace of V spanned by all elements of the form A_, - B for all
A BeV

Theorem 3.3.1. (cf. theorem 4.6 in [Hua08]) Let V be a simple vertex operator algebra.

Assume that
1. V, =0 forn <0, Vo =C1 and V' is isomorphic to V as a V-module.
2. Every N-graded weak V-module is completely reducible.
3. 'V satisfy the Cy cofiniteness condition.

Then the category of V-modules has a natural structure of modular tensor category.
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The VOAs we consider here are assumed to be unitary an satisfy the conditions in above
theorem.
Definition 3.3.2. [H6h03] Two VOAs are said to be in the same genus if and only if their
associated modular tensor categories (MTCs) and central charges are the same. We denote
the genus by G(C, ¢), where C is the corresponding MTC and c is the central charge of the
VOAs.

Note that the MTC C determines the central charge ¢ only modulo 8.

Then we have the following commutative diagram:

Doubly even binary codes (L—C> Even lattices <V—L> VOAs
\J 3 3
Code genus — Lattice genus < VOA genus

Lc is the lattice constructed from a code C' and V; is the VOA associated with the
lattice L¢.

Note that C*+/C ~ L*/L = A and ¢4 = w/4 (mod Q/2Z) and (A, q4) defines the MTC
of Vr.
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Chapter 4

Codes Type Genera of Lattices

4.1 Constructing Lattices from Binary Codes

From binary codes we can construct lattices. Take the standard lattice Z™ C R™ and consider

the reduction mod 2:

p: 2" — (Z)27)" = F}.

This is a group homomorphism. Let C be an [n, k, d-code. Since Fy/C = Fy~* (C'is a
subgroup of index

[F3/Cl=2""*

of F%. Therefore p~1(C), the preimage of C' in Z", is a subgroup of index 2"~* of Z". In
particular p~*(C) is a free abelian group of rank n. Therefore p~!(C') is a lattice in R™. One

has

vol(R"/p™(C)) = |Z"/p (C)vol(R"/Z) = 2.

Definition 4.1.1. We denote L¢ a lattice constructed from a binary code C' and

Lo = %p‘l(C).
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The set L¢ is a lattice in R™. Let x,y € Lo. Then x and y can be written

1 1
r=—(c+22),y=—=(c +22)

V2 V2

for some ¢, € {0,1}" representing codewords in C' and some z,2’ € Z". By abuse of
notation we shall identify in the sequel F} with the subset {0,1}" of Z™ and write briefly

c,d eC.

Proposition 4.1.2 (cf. [Ebe02]). Let C' be a linear code.
(i) C C C* if and only if Lo is an integral lattice.
(ii) C is doubly even if and only if Lo is an even lattice.

(1ii) C is self-dual if and only if Lc is unimodular.

4.2 Classification of the Lattice Genera

We begin with the structure of the genera of lattices which are constructed from codes. Here

we establish the following result.

Theorem 4.2.1. [Genera of lattice arising from codes] Let C' be a doubly even code of length
n and dimension k. If n is not divisible by 4, then the genus of C depends just on n and
k. If n is divisible by 4, then there are two possible genera for fived n and k depending on

whether the dual code C*+ of C' contains vectors of odd weight or not.

Proof: The discriminant group of L /Lc can be identified with C*/C which is iso-
morphic to the abelian group (Z/27)"~ % and so the genus of Lo depends on n (the rank of
L¢) and k by the above characterization theorem for genera (cf. Section 3.2 and [H6h03]).
The quadratic form g4 for L is given by ga(z) = w(z)/4 (depending on the normalization
of q4) for z a codeword in a coset of C+/C. It remains to show that if n is not divisible by

4 only one genus can occur and if n is divisible by 4 two cases are possible. If n is odd, then
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the dual code C* of a code C of length n always contains a vector of weight n, i.e. an odd
weight. So there is only one genus which is of odd type. If n is even and not divisible by 4,
then any codeword of a code C' of length n has at least two coordinates 0s. So there exists
a codeword of C' that has the last two coordinates Os and its dual code contains a vector
(codeword) such that all coordinates are Os except the last coordinate 1. So this vector has
an odd weight, and hence this gives a genus of odd type. If n is divisible by 4, then there
are two possible cases here. First, C' contains a vector of weight n. In this case, C* contains
only even-weight vectors, and hence we have a genus of even type. Otherwise, C' contains
no vector of weight n. Then there exists a codeword which has last four coordinates 0s, and
hence its dual code contains the vector which all coordinates Os except the last coordinate
1. So the dual code contains at least one odd-weight vector, and therefore this gives a genus
of odd type. q.e.d.

We denote a genus of codes C of type [n, k] by G(n, k, t) where ¢ is the type of the genus
which is odd or even depending on whether the dual code C*+ of C' contains vectors of odd
weight or not. Note that for n not divisible by 4 the type is always odd since C* always

contains odd weight vectors by the argument in the proof of the above theorem.

Lemma 4.2.2 (Which genera actually can occur from codes). For k = 0 and n = 0
(mod 4), the only realized genus is odd. Depending on n (mod 4) and n (mod 8) the maxi-

mal k for which a code exists is given in the following table:

n(mod4)/n(m0d8)‘0/0(o) 0/0(e) 0/4(o) 0/4(e) 1/1 1/5 2/2  2/6 3/3  3/7

k -1 5 3-2 5-1 [5] B]-1 -1 -1 [5]-1 [§]
where [5] means the largest integer that is less than or equal to %, (o) for odd genus and

(e) for even genus.

Proof: Note that the maximal possible k is g since C C C* and dim C*+ = n— k. For
n<4,k=0. For n=0 (mod 4) and k = 0, C* always contains vectors of odd weight.

We will prove this lemma by dividing the proof into 3 cases depending on n (mod 4)
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and n (mod 8).

Case 1 n=0 (mod 4) and n =4 (mod 8). n = 4,12, 20, ...

In this case the code C of length n contains vectors which either have all coordinates
1s (called type A) or have a multiple of 4 of coordinates Os (called type B). If n = 4, then
there are only two vectors ; (1,1,1,1)-type A and (0,0,0,0)-type B. So for the odd case, the
dimension is 0 and for the even case, the dimension is 1.

For an odd case, C' contains only vectors of type B. Without loss of generality, suppose
that each vector in C has the last four components 0s. Then C* contains at least four more
linearly independent vectors including (O, ...,0,1,0,0,0), (0,...,0,0,1,0,0),(0,...,0,0,1,0),
and (0, ...,0,0,0,0,1). Hence dim C* is at least k +4 , i.e. dim C is at most k = g — 2.

For an even case, C' contains a vector of type A. Without loss of generality, suppose that
the rest of the vectors in C' have the last four components 0s. Since C* contains only even
weight vectors, C*+ must contain the vectors (0, ...,0,1,1,0,0) and (0, ...,0,0,0,1,1). Thus
dim C* is at least k + 2, i.e. dim C' is at most k = g —1.

Case 2 n=0 (mod 4) and n =0 (mod 8). n = 8,16, ...

Note that for n > 4 we have n = m + 4 where m =0 (mod 4) and m =4 (mod 8). A
code C of length n can be constructed by adding four more coordinates to each vector in
the code C,, of length m. So C' = C,, ® (z,x,z,z) ( using @ here means we expand the
vector of length m to be of length n by adding four more coordinates at the end of each
vector in Cp,). Then ¢; = ¢* @ (0,0,0,0),c; = 5 @ (0,0,0,0), ..., ¢k, = it @ (0,0,0,0),
where cf", ..., ¢f! ~are basis vectors in Cy,, and hence cy, ..., ¢, are k,, basis vectors in C.

We know that any doubly even binary code C,, of length m is always a subset of its dual
code C:- and hence dim C,, < dim C:. Then when we add four more coordinates to each
vectors in C,, there are at least one more basis vectors for a code C' other than those we get
from the vectors in C,,. Then these vectors are also contained in C*.

For an odd case, we can construct a code C' from a code C,, which can be either odd or

even. If C), is of odd type, then there are at least four Os in each vector and we have four
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more coordinates added. Hence we will have at most three more basis vectors in C(other

than the basis vectors from C,,). Thus dim C' = dim C,, + 3 = m_ 243 = m +1=

2 2
—4
n 5 +1= g —24+1= g — 1. If ¢}, is of even type, then there are only two more basis
vectors can be added to make C' contains no vector of type A. Hence dim C' = dim C,, + 2
m m n—4 n n n
= 142=—41= l=-—-24+1=-—1 Thusk=- — 1.
5 + 5 + 5 + 5 + 5 us k 5

Similarly for an even case, since C' can contains a vector of type A , we will get four

more basis vectors if C,, is of odd type and three more basis vectors if (), is of even type.
So dim € = =
2

Case 3 n=1 (mod 4) where [ =1,2, or 3. n=5,6,7,9,10,11,13, ...

Note that we only have odd cases here. Then n —1 =0 (mod 4).

Subcase 3.1 n —1 =4 (mod 8)

We can construct a code C' of length n by adding [ more coordinates to each vector in
the code C” of length n — [. For a code C” of odd type, since each basis vector in C” is of
type B, i.e. it has at least four coordinates Os. After adding [ more coordinates to each of
its vectors, there is at most one more basis vector to be added in C. For a code C” of even

type, we will have zero, two and two more basis vectors in C' after adding one, two , and

three coordinates to each vector in C’ respectively. So we will have k as the following;

Forl:l,dimC:dimC’:n_l—lzngl—lz[g]—l.
9 —9

For [ = 2, dim C' = dim ¢’ + 2 = " —1+2:"2 :%-1.
23 ‘1

Forl:S,dimC:dimC’+2:nT—l—l—Qzn2 :[g].

Subcase 3.2 n—1 =0 (mod 8)
Similarly, to have vector in C' of type B after adding [ coordinates to each vector in C’,
we will have no more basis vector in C, if C” if of even type and we will have one more basis

vector in C' if C" is of odd type. So we will have k as the following;

-1 —1
Forlzl,dimC:dimC’:n22:n22:[g].
Forle,dimC:dimC’:n;?):n;1:g_l'
Forl:3,dimC:dimC’:n; :”; _1:[3]_1.



Table 4.1: The maximal dimension k for n from 4 to 16

4(0) 4(e) 5 6 7 8(0) 8(e) 9 10 11 12(0) 12(¢) 13 14 15 16(0) 16(e)
123 3 4 4 4 4 4 5 5 6 7 17 8

Definition 4.2.3. A lattice genus is called code type genus if every lattice L in this genus

is of the form Lo for some code C'. Otherwise we call it non code type genus.

Our aim in this section is to classify all code type genera. Clearly, only the genera as in
Proposition 4.2.7 below can be code type and have to investigated further.

We start with some easy observations.

Lemma 4.2.4. If G(n,k,t) is a non code type genus then G(n+ 8,k +4,t) is also non code

type.

Proof: Since G(n, k,t) is a non code type, there exist a lattice L in the genus which is
not realizable. We claim that the lattice L & Eg which belongs to the genus G(n+8, k+4,t)
is also not realizable. Indeed, if otherwise L & Eg = K¢ for a code C of type [n + 8,k + 4]
then there exists a code D of type [n, k| such that C' = D @ es, where eg is a code of type
8,4]. Since eg is self-dual, L., = Ejg is unimodular, i.e. disc (Fg) = 1. Then K¢ = Lp & Fy
and thus L = Lp, a contradiction. q.e.d.

The Lemma shows that if we have found an ng such that all G(n, k,t) for n = ny, ...,
ng + 7 are non code type so are all G(n, k,t) for n > ny and we have reduced the problem

to check of finitely many cases.

Lemma 4.2.5. If G(n, k,t) is a non code type genus then G(n,l,t) for | < k is also non

code type.

Lemma 4.2.6. Every genus G(n,k,t) for n > 32 is non code type.
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Proof: By computation, G(n, k, t) for n = 17 to n = 23 and for any k are non code type.
The genera of the even unimodular lattices of dimension 24 are non code type (cf. [Ebe02]).

Then by Lemma 4.2.2) Lemma 4.2.4, and Lemma 4.2.5, G(n, k,t) for n > 32 is non code

type. q.e.d.

Proposition 4.2.7. The following genera are code type:

n || G(n, k,t)

1 || G(1,0,0dd)

2 || G(2,0,0dd)

8 || G(3,0,0dd)

4 || G(4,0,0dd), G(4,1,even)

5 || 6(5,0,0dd), G(5,1,0dd)

6 | G(6,0,0dd), G(6,1,0dd), G(6,2,0dd)

7 1| G(7,0,0dd), G(7,1,0dd), G(7,2,0dd), G(7,3,0dd)

), G(8,1,0dd), G(8,1,even), G(8,2,0dd),

G(8,2,even),G(8,3,0dd), G(8,3,even), G(8,4, even)

9 |1 G(9,1,0dd), G(9,2,0dd), G(9,3,0dd), G(9,4,0dd)

10 || 6(10,2,0dd), G(10,3,0dd), G(10,4, odd)

11| 6(11,3,0dd),

g
G(11,4, 0dd)
g

12 || 6(12,4,0dd),

)
)
), G(12,4,even), G(12,5,0dd)
)
)
)

13 G
14\ 9
15 || G(15,7,0dd

16 || G(16,8,even)

The complete information of the code type genera is in Table 4.5 below.

Proof: In order to prove this proposition, we have to compare the number of the

permutation equivalence classes of doubly even binary codes with the number of lattices in
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the corresponding genus. To do this, we use the data base from http://www.rlmiller.
org/de_codes and it is also stated in [DFG*11] as in Table 4.2 below. Then we compute the
number of lattices in each genus corresponding to each code by using the computer algebra
Magma. First, we construct each code C' of length n and dimension k£ and then we construct
the corresponding lattice Lo from the code C. Next, we use the command Genus(L); to
construct the genus G(n, k,t). Finally, we can find the number of lattices in each genus and
then we can compare these numbers with the numbers of codes. But when n is larger than
17, Magma cannot compute these numbers. So we need to find each lattice in each genus
directly. To do this, we have to find the lattices in the largest dimension only (in some cases
the two largest dimensions are computed) and we stop when we find a large enough number
of lattices in the genus to show that it is a non code type genus. The results are in Table 4.3
below. By comparing the numbers in Tables 4.2 and 4.3 and applying Lemma 4.2.5, we get
the result as in Table 4.4. The complete information about this computation is explained
in Appendix A and the Magma source codes in the computation is in Appendix C. q.e.d.
Note that Magma cannot compute the exact number of lattices in some genera that
have n too large. In this case, we use another method to find different lattices in the genera
for the largest k for each n. So we only find the least possible number of lattices in those
particular genera which proved that the numbers of lattices in those genera are more than
the number of the corresponding codes and apply Lemma 4.2.5 to get the result in Table 4.4.
Remark: For the genera corresponding to the codes of length 24, the genus
G(24,12,even) consists of the even unimodular lattices of dimension 24. By Corollary 3.7
in [Ebe02], there are 24 such lattices and there are only 9 of them coming from the doubly

even self-dual codes. Hence this genus is non code type.
Theorem 4.2.8. The genera listed in Proposition 4.2.7 are the only code type genera.

Proof: By computation with Magma and Lemma 4.2.2, Lemma 4.2.4, Lemma 4.2.5,
Lemma 4.2.6 and the remark above, now that all G(n, k,t) for n > 17 are non code type

genera. So the code type genera are listed in Proposition 4.2.7. q.e.d.
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Table 4.2: The number of distinct permutation classes of doubly even (n, k) codes
| n\k JOJ1][2[3][ 4] 5 [ 6 | 7 [ 8 [9]10]11]

1 J1
E
3 |1
4(0) |1
4(e) |01
5 11
6 [[1]1]1
7 1111
8(o) [[1[1]1]1] 0
8(e) JOJT] T [1] 1
9 [1[2]2]2]1
10 [1]2[3 ]3] 2
11 [1]2[3 4] 3
1200) [1]2]4[5] 5] 0
12() JOJI[ T [2] 2] 2
13 [1]3[5[8] 8 [ 4
14 J1]3[7[12][14] 9 [ 4
15 [1]3[7]15]20 [ 15 [ 8 2
16(0) 114102338 ] 36 [ 23 [ 4 | 0
16(e)' || 0 5 2
17 [1]4[10]25] 45 50 [ 34 | 14 | 3
18 [1]4[13[34][ 72 94 [ 79 [ 35 | 9
19 [1]4[13]40] 94 [ 146 [ 141 | 75 | 19
2000)" [ 151757158 | 295 | 353 [ 231 | 84 [ 0
20(e)" || 0 10
21 [[1[5]17[63]194] 439 | 629 | 494 [ 198 [ 38
22 [[1]5]21[83]298] 812 | 1481 [ 1465 [ 740 [187 | 25
23 [ 1]5]21[95]387 1287|2970 | 3811 [ 2362 [ 714 [ 119 | 11
| n/k JJOoJ1] 23] 4] 5 [ 6 [ 7 | 8 ]9 [10]11]

I known number of codes but cannot classify the exact numbers of either odd or even type codes.
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Table 4.3: The number of distinct lattices in the genus G(n, k,t)
| n\k [JO]1]2][3]4]5]6]7] 8] 9 |10]11
1

W

oo lo| || e[ e v
S~—

W
SN—

~—

ool Co
~—

—_
S

—_
—

12(0)
12(e)
13 -
14 -
15
16(o)
16(e)
17 e e e I R B B R
18 - -1 - -]-1]-110°
19 [ -]-]-|-|-|-1]-]-]20
2000) || - | -|-|-]-1]-1]-1-]167] 0
20(e) 12
21 |- - -] -] -1-]1-] - 139
2 - -1-1-1-1-1-1-1-1- 27
B - -1-1-1-1-1-1-1<-1-<-1- 12

| n/k JJO]1]2][3]4]5]6]7] 8] 9 |10]11

0
1
1
1
1
0
1
1
1
1
0
2
2
2
3
0

N W WIN R R R R RO
NO| O | W[ DO = = = =
WD | W DN ==

O T WO

1

1
—_
oo
—
[a]
1N

1

1

1

1

1
Ne)

S Oy !

1

1

1

1

1

1
Sy O N
N O

2 There are at least the indicated number of lattices in the genus.

3 There are 84 codes of type (20,8) but we do not know the exact numbers of codes of either odd or even
types.By computation,we found 53 odd type codes and 19 even type codes and there are at least 67 lattices
in the odd type genus. After adding this number with the number of even type codes, we have the total of
86 which is exceed the number of the code (20,8). So the odd genus is non code type.
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Table 4.4: Types of distinct lattice genus G(n, k,t), C: code type lattice genus, NC: non
code type lattice genus by computation, NC*: non code type lattice by Lemma 4.2.4, X: no
lattice genus

(2\k ] o | 1 ] 2] 3[4 ] 5] 6] 7 ][ 8] 91 ]11]
1 C

2 C

3 C

4(o) C

4(e) X C

5 cC [ C

6 c | CcC]C

7 c|] c]cC]C

8o) [ C [ C [ C ] C X

8e) [ X [ C [ C [ C]C

9 [NC|] C [ C [ C]C

10 [NC|NC| C | C | C

11 [ NC|NC|NC]| C | C
120) | NC | NC [ NC | NC | C | X
12e)] X [ NC|NC|NC| C | C

13 [ NC* [NC*¥ [NC* [NC*[ NC | C
14 || NC* | NC* [ NC* [NC* [NC* | NC | C
15 | NC | NC | NC* | NC* | NC*¥ [NC*| NC | C
16(0) | NC | NC* | NC* | NC* [ NC* [ NC* [NC* [ NC | X
16(c) [ X [NC* [ NC* | NC* [ NC*¥ [NC* [NC*[ NC | C
17 [ NC* | NC* | NC* | NC* | NC¥ | NC* | NC* | NC* | NC
18 [ NC* | NC* | NC* | NC* | NC¥ | NC* | NC* | NC* | NC
19 [ NC* | NC* | NC* | NC* | NC* | NC* | NC* | NC* | NC
20(0) | NC* [ NC* | NC* | NC* | NC* | NC* | NC* |[NC*| NC | X
20(e) [ X [NC* [ NC* [ NC* [ NC* [ NC* | NC* | NC* | NC* | NC
21 | NC* | NC* | NC* | NC* | NC* | NC* | NC* | NC* | NC* | NC
22 | NC* | NC* [ NC* [ NC* [ NC* [ NC* [ NC* | NC* | NC* | NC* | NC
23 | NC* | NC* [ NC* | NC* | NC* [ NC* | NC* | NC* | NC*¥ | NC* | NC* [ NC
n/k ] O ] 1 [ 2] 3[4 ] 5 ] 67| 8] 9] 10]11]
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The following table consists of the complete information of the code type lattice genera.

Table 4.5: Code type lattice genera G(n, k, t)

n | k| t Codes(C) Lattices (L¢) |L*/L|
1 |0 odd t1 Ay 1
2 10| odd to 24, 2
3 10| odd i3 34, 3
4 | 0| odd 14 4A, 4
4 |1 | even dy Dy 2
5 | 0] odd t5 54 5)
5|11 odd t1 ®dy A1 @ Dy 3
6 | 0| odd t6 641 6
6 | 1] odd to @ dy 2A1 ® Dy 4
6 | 2| odd dg Dg 2
7 10| odd t7 TA; 7
7 | 1] odd t3 @ day 3A1 @ Dy 5
7 12| odd t1 @ dg A1 @ Dg 3
7 | 3| odd er by 1
8 | 0| odd ts 8A; 8
8 | 1] odd ty ®dy 4A; @ Dy 6
8 | 1] even hg (or dy * d4)* L(hg) (or D4 * Dy) 6
8 | 2| odd to @ dg 241 @ Dg 4
8 | 2 | even ds D dy 2Dy 4
8 | 3| odd t1 @ ey A1 @ By 2
8 | 3| even dg Dg 2

Continued on next page
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Table 4.5 — Continued from previous page

n t Codes(C) Lattices (L¢) |L*/L]|
8 even es Eg 0
9 odd ts B dy 541 ® Dy 7
t1 @ hg Ay @ L(hg)
9 odd ts @ dg 3A1 & Dg 5
t1 ®dy D dy A1 ® 2Dy
9 odd to @ ey 2A1 ® Er 3
t1 @ dg A1 @© Dg
9 odd t1 Des A & Eg 1
10 odd ty @ dg 4A1 & Dg 6
to D dy P dy 241 © 2Dy
1111000000
Cro2 = L(Co2)
0011111111
10 odd ts @ ey 3A, @ Er 4
dy @ dg Dy @ Dg
to @ dg 241 @ Dg
10 odd to P eg 2A1 ® Eg 2
dio Dy
11 odd ty Ber 4A,1 & E7 )
t3 @ dg 3A; @ Dy
t1 & dy ® dg A1 ® Dy ® Dg
11111111000
Criz = | 00111111110 L(Cns)
10100000101
11 odd t3 D eg 3A; & Eg 3
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Table 4.5 — Continued from previous page

n t Codes(C) Lattices (L¢) |L*/L]|
dy @ er Dy® Er
t1 @ dio A1 @ Do
12 odd ty D eg 4A1 & Eg 4
ds @ dg 9Dq
to @ dio 241 @ D1o
tL®ds P ey A1 ® Dy ® Er
[ 100011101111 ]
010011010000
Craa = L(C124)
001010111111
| 000101110000 |
12 even dy O dg Dy & Dg 4
[ 100011111110 ]
010011000001
Cr24e1 = L(C124e1)
001010111111
i 000101111111 ]
12 even dy D eg Dy @ Eg 2
di2 Dis
13 odd t1 B dyPes A1 D Dy D Eg 5
de © e D¢ ® E7
t1 ®di2 Ay @ Dy2
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Table 4.5 — Continued from previous page

n | k| t Codes(C) Lattices (L¢) |L*/L]|
| 1000011110111 ]
0100010001001
Ci3s = | 0010011111110 L(Chs5)
0001000001101
0000100001011
14 | 6 | odd de D es Dg @ Eg 2
e7 P ey 2F;
di4 Dy
[ 10000011111110 ]
01000010000101
00100011111011
Cra = L(Ch46)
00010001000101
00001000100101
| 00000100000111 |
15| 7 | odd er Deg Er ® Eg 1
e1s Df4
16 | 8 | even es @ eg 2Fg 0
e16 D

* The code hg is a subcode of dy & dy generated by the codeword of length 8. We can
construct the code hg by gluing two of the code d4 together. And the result will be dy * dy4
(the symbol here represents the gluing of the two codewords) in the notation of the basic

code of type d4. So the corresponding lattice is Dy *x Dy.
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Chapter 5

Genera of Vertex Operator Algebras
arising from the Small Modular

Tensor Categories

In this chapter we will classify the genera of vertex operator algebras (VOAs) arising from
small modular tensor categories (MTCs). By small modular tensor categories we mean the
MTCs of rank less than or equal to 4. Note that the VOAs that we consider here have to
satisfy the conditions in the Theorem 3.3.1 and they are assumed to be unitary.

Recall that the VOA has a finite number of simple modules V' = M"Y, M?,...M". Each

has a g-graded character

ch M7 = Trpq™" =2 = 37 dimMiq =</ = ¢~ N " dimM], ¢, (5.0.1)

where M7 is the subspace of M7 on which L}’ acts by multiplication by n, ¢ is the central
charge of V', h; is the conformal weight of M?, and ¢ = €*™7. And these VOA modules have
the structure of the modular tensor categories. So we can classify the genera of the VOAs

using their associated MTCs. Proposition 3.1 in [DM04] states that for each state u € V
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which is homogeneous of weight k with respect to the operator Ly, the r-tuple Z(u,7) =
(Zyi(uy )y ooy Zpgr (w0, 7)) s a wvector-valued modular form of weight k with respect to the
representation p. Note that Z, (u,7) = Trj\/[jo(u)qLéW_C/24 = qhi=e/2 3 dimMZJrhjo(u)q”,
where o(u) is the zero mode of the homogeneous components of u (see detail in [DMO04]).

For any VOA V| recall that G(C(V),c) is the genus of V| where C(V') is the MTC
associated with the VOA V and c is the central charge of V.

The family {ch M'},_; , is a vector valued modular function of a representation p of
SLy(Z) determined by C(V'). Note that h; (mod 1) is given by C(V') and for a unitary VOA
V,h; >0and c> 0.

Let M (p, ¢) be the space consisting of vector valued modular forms for the representation
p with pole orders at most ¢/24 at infinity. Then ch M* is an element of M (p, c) and M (p, c)
depends only on the genus of V. Our objective is to describe the space of vector valued
modular forms M(p, ¢).

We apply the idea of the fundamental matrix of the representation of the modular group
in [BGO7] to determine the spaces M (p, ¢) arising from the genera of the VOAs. As a result,
the first column of a fundamental matrix consists of characters of the corresponding MTC,
i.e., characters of a VOA V and its modules. Moreover, the first entry of a fundamental
matrix contains a dimension of some Lie algebras in its second term. Then we apply this
fact to classify the possible Kac-Moody subVOAs V; and then we can classify the genera of
the VOAs arising from each MTC.

5.1 Small MTCs

The following table consists of the list of MTCs of rank 1, 2, 3, and 4 which we call small
MTCs. We use the classification of the MTCs from [RSW09] which also gives all the S-
matrices of the MTCs (see Table B.1).
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Table 5.1: The small MTCs

No. | C n | ¢ (mod 8) h; No. | C n | ¢ (mod 8) h;
1 | tm 110 0 18 | gs4 41 0,1/8,1/8,1/2
2 | gso 2|1 0,1/4 19 | 5 47 0,7/8,7/8,1/2
3 | g5 2|7 0,3/4 20 | qng 415 0,1/2,5/8,5/8
4 | Lee—Yang | 2 | 14/5 0,2/5 21 | g 413 0,3/8,3/8,1/2
5 | Lee—Yang | 2 | 26/5 0,3/5 22 | qugy 48 0,0,0,1/2
6 | gss 312 0,1/3,1/3 || 23 | quo 4 | 4 0,1/2,1/2,1/2
7 | 353 3]6 0,2/3,2/3 || 24 | gsa®@qsy | 4|2 0,1/4,1/4,1/2
8 | Isingl 3] 1/2 0,1/2,1/16 || 25 | G52 @G5z | 4 | 6 0,3/4, 3/4,1/2
9 | Isingl 3| 15/2 0,1/2,15/16 || 26 | qso®qs | 4 | 8 0,3/4,1/4,1
10 | Ising2 31 3/2 0,1/2,3/16 || 27 | gso @ LY | 4 | 19/5 0,2/5,1/4,13/20
11 | Tsing2 3] 13/2 0,1/2,13/16 | 28 | Gz @ LY | 4 | 49/5 0,2/5,3/4, 3/20
12 | Ising3 31]5/2 0,1/2,5/16 || 29 | gso @ LY | 4 | 31/5 0,3/5,1/4, 17/20
13 | Ising3 3| 11/2 0,1/2,11/16 | 30 | gsa®@ LY | 4 | 61/5 0, 3/5, 3/4, 7/20
14 | Ising4 3| 7/2 0,1/2,7/16 || 31 | LY ®LY | 4 | 28/5 0,2/5,2/5, 4/5
15 | Tsing4 319/2 0,1/2,9/16 || 32 | LY®LY | 4 |8 0, 3/5,2/5, 1
16 | 3fieldsx 3| 8/7 0,2/7,6/7 || 33 | LY®LY | 4 | 52/5 0,3/5,3/5,1/5
17 | 3fieldsx 3| 48/7 0,5/7,1/7 34 | 4fieldsx | 4 | 10/3 0,2/3,2/9,1/3
35 | 4fieldsz | 4 | 14/3 0,1/3,7/9,2/3

From the table, column 2 (C) consists of the names of the MTCs which we follow the
notation from the database [Dat]. The rank and the central charge (mod 8) of each MTC
is shown in column 3 (n) and 4 (c) respectively. And the last column (h;) consists of the
conformal weights of each MTC.

Recall that there exists a representation p : SLy(Z) <— GL,(C) of the modular group
11

SLy(7Z) sending its generating elements, (0 _1) and (
1 0 0 1

MTC.

), to the matrices S and T of a
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The representation p could be either irreducible or reducible. For an reducible repre-
sentation p, we have to decompose it into a direct sum p = p; & - - - & p;, of its irreducible
components p; for our method.

We use Magma to decompose the representation p into a direct sum of its irreducible
components (see Appendix C for the source codes), and we also get the corresponding
canonical basis vectors for each irreducible representation p;. Note that the idea of the
decomposition is also mentioned in the appendix in [BGO7]. The result of the decomposition
of the representation of each MTC is in Table B.1. Column 6 in Table B.1 describes the
decomposition into irreducible components and the number m represents a dimension of

each component.

5.2 Characters of MTCs

5.2.1 Scalar and Vector Valued Modular Forms

In this section we give details about scalar valued modular form (see any text book of the
related title or Section 2.2 in [Ebe02]) and vector valued modular form.

The group
SLy(Z)={g= | a,b,¢c,d € Z,ad — bc = 1}
acts on the complex upper half-plane H by fractional linear transformations

ar +b
THg(T)ZCT—l—d'

The center {1} of SLy(Z) acts trivially. The quotient G := SLy(Z)/{%1} is called the

modular group.
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Let S and T be the elements of G represented by the matrices

0 -1 1 1
S = and T =
1 0 01

The elements S and T act on H as follows:
1

St —T:7>717+1.
T

G is generated by these elements.
Let k be an even positive integer. A holomorphic function f : H — C is called a modular

form of weight k, if the following conditions are satisfied :

(1) f(&E) = (er + d)F f(7) for all ( “ 0 ) € SLy(Z),

c d

2miT

(ii) f has a power series expansion in ¢ = ¢*™7 i.e., f is holomorphic at infinity 7 = ioco.

Next we will define a vector-valued modular form (c.f. [KM*04]) as follows:
Let p : I' = GL4(C) denote a d-dimensional representation of I' = SLy(Z), k € R an

arbitrary real number. A function

F(r)= : ,where 7 € H

fa(T)

from the complex upper half-plane H to C? is a vector-valued modular form of weight k if

the following conditions are satisfied:

b
1. Forall V = € I we have
F(1) | V(7) = p(V)F(7)
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2. Each component function F}(7) has a convergent g-expansion meromorphic at infinity

with IV, a positive integer, h; an integer (maybe negative) and ¢ = exp(2mit).

The operator |, V' is defined by

FleV(r)=F [y V(r)=v(V ) (er +d) " F(V;)

with a multiplier system v with respect to I'.

5.2.2 The Fundamental Matrix

We define the fundamental matrix of the representation as in [BGO7].

-1 0
Consider a matrix representation p : I' — G'L4(C) whose kernel contains :
0 -1
11
and for which T = p is a diagonal matrix of finite order. We associate to p the
01

set M(p) of all those maps X : H — C? which are holomorphic in the upper half plane H,

transform according to p, that is

b a b
X (‘” +d) = X(r) (5.2.1)
cT + c d
a b
for all € SLy(Z) and 7 € H, and have only finite order poles at the cusps. So X
c d
11
is a vector-valued modular form. Since p is diagonal of finite order, there exists
0 1



a diagonal matrix A (the exponent matriz) such that

p = exp(2mil), (5.2.2)

the diagonal elements of A being rational numbers.

The space M(p) is an infinite-dimensional linear space over C, a basis being provided
by the maps X&) € M(p) which have a pole of order n > 0 at the &th position. We call
these X&) the canonical basis vectors.

Let

o0

=q '+ Z e(n)g" = ¢~ +196884¢ + .. (5.2.3)

denote the Hauptmodul of SLy(Z), i.e., the generator of the field of modular functions for
SLy(Z). Multiplication by J takes the space M(p) to itself, in other words M(p) is a

C|J]-module of finite rank and the canonical basis vectors satisfy the recursion relations

m—1
XEmH) — J(r)xXEm Z c(n)XE&m—n) ZX &m)XnL) (5.2.4)
n=1
where
XEm = XEm0], = }15% (lg2XE™ (@)],, — ¢ ™0, (5.2.5)

denotes the “constant part” of X&) These recursion relations allow us to express each
canonical basis vector X(&™ in terms of the X&Us. Note that the X&) are linearly inde-
pendent over the field C(J) of modular functions, and thus the C[J]-module M(p) has rank
d.

There is a second set of relations, “the differential relations”, between the canonical
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basis vectors. They follow from the fact that the differential operator

E(r) d
= — 5.2.6
2mi dt ( )
maps M (p) to itself, where
Elo(T) > 1
= = "= — 240 — 141444q — ... 2.
&(7) A(T) > &gt =g 0 q (5.2.7)

n=-—1

is the quotient of the Eisenstein series of weight 10 by the discriminant form A(7) =
qIee (1 — ¢q™)** of weight 12. The action of V on the canonical basis vectors gives the

differential relations

m—1
vxEm — (Aee —m) Z £, XEm=n) Z AnnXéE;m)X(ml)' (5.2.8)
n=-—1 n

The compatibility of the recursion and differential relations requires that

VXED = (J = 240)(Age — DXED +) (1 + Ay — Age) XEVXOD), (5.2.9)

n

which is a first-order ordinary differential equation - the compatibility equation - for the
X(é;l)s‘

From equation (5.2.9), we define the fundamental matriz as follow
E(1)en = XUV (7)]e, (5.2.10)

whose columns span over C[J] the module M(p). Then equation (5.2.9) takes the form

1 d=(7)
2wt dt

= =2(1)9(7), (5.2.11)
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where
D(1) = —{(J(7) —240)(A — 1) + X + [A, X}, (5.2.12)

Xy = Xéml) is the characteristic matriz and [X,A] = XA — AX.

Taking the boundary condition
¢ 2(q)ey = Oen + O(q) as ¢ — 0, (5.2.13)

one can solve equation (5.2.11), provided one knows the exponent matrix A and the charac-
teristic matrix X', determining then from equation (5.2.4) the canonical basis vectors X(m),

Note that the exponent matrix has to satisfy the following condition:

= —+-Tr Lee‘”i/Gr
Tr(A) = — + =Tr(5) + 3\/§R ( Tr(U)) (5.2.14)

where d is the dimension of p and we use the notations

0 —1 0 —1
S=p and U = p
1 0 1 -1

The structure of the C[J]-module M(p) is completely determined by the fundamental
matrix =(7) (cf. [BGOT7]), once an exponent matrix A has been chosen. The fundamental
matrix is itself completely determined by the pair (A, X') of exponent and characteristic ma-
trices, namely as the solution of the compatibility equation (5.2.11) satisfying the boundary
condition equation (5.2.13). We consider the pair (A, X) as the basis data characterizing
the representation p.

Remark : The fundamental matrix = allows us to determine the space M(p,c) C M(p)

for ¢ < 24.
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5.2.3 Method of finding the Fundamental Matrix

We use the method in [BG07] to find the fundamental matrices corresponding to the con-
formal weights of the MTCs.

Consider the function

_984—J(7)

j(7) T (5.2.15)

which maps the upper half-plane H onto the complex plane C. It is modular invariant and

satisfies the differential equation
Vi = 1728j(i — 1). (5.2.16)

Let us consider the fundamental matrix as a function of j. Then, by applying the chain

rule and equation (5.2.16), one gets the following form of the compatibility equation;

d=G) _ (A, B
. —_<2j+3(j_1)>, (5.2.17)

with

31 1

A=D1 8) — (X A X)), (5.2.18)
B— ;l—iu A+ %(;H A, &), (5.2.19)

As a function of j the fundamental matrix is not single valued - its multivaluedness,
i.e., the monodromy (that is the behavior of an object as it winding around a singularity)

of equation (5.2.17), is described by the representation p. In particular, the monodromies
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around j =0, ) =1, j = oo are given by

S=p U=p T =p

respectively. Because the residues of equation (5.2.17) at these points are A/2,B/3 and
A — 1, the matrices S and U are conjugate to exp(miA) and exp(mil3/3), respectively, and
one has SU = T7! = exp(—2miA). We find that the monodromy group of the abstract
hypergeometric equation (5.2.17) is precisely the image of p.

There are some restrictions for the matrices A and B as follow:

Spectral condition: The possible eigenvalues of A are 0 or 1, while those of B are
either 0, 1 or 2.

In particular, this condition implies that the characteristic polynomials of A and B read

det(z — A) = 27 %(z — 1)*, (5.2.20)

det(z — B) = 272 (5 — 1)P1(2 — 2)72, (5.2.21)

where d denotes their dimensions, while the multiplicities «, 8; and [, are given by

a=Tr(A), (5.2.22)
By = 2Tx(B) — Tr(B?), (5.2.23)
5o = 3 (TR(B) ~ Th(B)). (5.2.24)
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The quadruple (d, «, 51, B2) of non-negative integers is a very important discrete invariant
of the representation p, which we will call its signature.

It follows from equations (5.2.20) and (5.2.21) that the minimal polynomials of 4 and
B divide z(z — 1), respectively, z(z — 1)(z — 2). Since any matrix is a root of its minimal

polynomial, the spectral condition may be expressed as
AA—-1)=B(B—-1)(B-2)=0. (5.2.25)

Of the four matrices A, X, A and B, any two determine the other two, e.g., equa-
tions (5.2.18) and (5.2.19) imply that B = 3(1 — A — A/2). Inserting this expression into

equation (5.2.11), one gets the following system of algebraic equations:

A® = A,

AN — —%A (A% + AAA + A2A) + 3(AA + AA) — 4A° +8A2 — %A + g (5.2.26)

That is , for a given exponent matrix A, the matrix .4 has to satisfy equations (5.2.26).
Once a solution to equations (5.2.26) is known, the corresponding characteristic matrix X
may be determined from equation (5.2.18).

To find the fundamental matrix Z(7),we do as the following:

e Begin from a given exponent matrix A and then solve the equations (5.2.26) to get

the matrix A.
e Use the matrix A to find the characteristic matrix X’ by solving equation (5.2.18).

e Use the exponent matrix A and the characteristic matrix X to get the fundamental

matrix =(7) by solving equation (5.2.11).

Recall that the matrices S and T of any MTC correspond to some representation of the

modular group SLy(Z). In particular, they are the images of the representation p of the
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generators of the modular group. Note that from [Hua08], the twist 6y : V' — V' is given by
the operator e*7ilo,
For a given MTC C of rank n with the central charge ¢ and conformal weights hq, ho, ..h;,.

We define \; = h; — i and set

A0 00
Ao 0 X .. O
0 ... 0 X\,

Then A is the exponent matrix corresponding to the MTC C.

Note that we may have to modify some of the A;s to be \; mod 1 in order that A satisfies
equation (5.2.14).

Follow the method above, one gets the corresponding fundamental matrix = of the

representation of the MTC C. In this thesis, we explore only the small MTCs up to n = 4.

5.2.4 Results

Now we will give some examples of how to compute the fundamental matrices and the

corresponding characters of the given MTCs.

Example 5.2.1. The fundamental matrix of the representation corresponding to

the VOA genus G(gssz, 1).

The MTC g¢ss is of rank 2 with central charge 1 and conformal weights 0, 1/4. We have
A =0—-1/24=—1/24 and \y = 1/4 — 1/24 = 5/24 and the exponent matrix is

A:ﬁo
0 =
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Note that A has to satisfy equation (5.2.14) so we have to modify \; to A; mod 1.
Next we solve the equations (5.2.26) to get the matrix A (we use Mathematica in this

computation and the source codes are explained in the Appendix C). We get

7

2_16 f(172)

1463 209
46656f(1,2) 216

Note that f(1,2) is a parameter since there are infinitely many possible solutions for the
equations (5.2.26).

Next we solve the equation (5.2.18) to get the characteristic matrix with the parameter;

4
3 ~050,2)
7
X —
2926
- —247
277(1,2)

Finally, we solve the equation (5.2.11) and get the fundamental matrix with the param-
eter as follow

3456 2464128

¢ 3T = f(12) (1, 2)q -

2026 2026q
27f(1,2) 27f(1,2)

g1 — 247 — 86241q — - - -

To find the value of the parameter f(1,2), we compare the first column of the fundamen-
tal matrix with the known characters of the Wess-Zumino-Novikov-Witten (WZW) model
of level 1 based on the corresponding Lie algebra (cf. [BGO07]). In this case, gss corresponds
to the affine Kac-Moody Lie algebra A;; (the WZW model A; level 1). By comparing the
first column of = with the corresponding characters of A;; we get the following result.

The characteristic matrix is

3 26752
2 =247
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and the fundamental matrix is

g +34+49+7¢*+ -+ 26752+ 1734016q + 460912644 + - - -

2+ 2q+6¢*+ - q ' — 247 — 86241q — 4182736¢% — - - -

Note that the first entry in the characteristic matrix represents the dimension of the
corresponding Lie algebra and this number also appears in the second term of the first entry
of the fundamental matrix.

For the MTCs of rank larger than 2, there are more than one parameter in the resulting
matrix A. But we can also compare the first column of the fundamental matrix with the
characters of the corresponding known affine Kac-Moody Lie algebra(WZW model) to get
the values of the parameters.

The representation p of ¢ss is irreducible so there is only one component. The matrices

S and T of ¢sy with central charge 1 are

e 1 1 1 4T e 12 0
Vel o) . 0 €%

The canonical basis vectors are v, = [ 1 0 }, and vy = [ 0 1 1 Note that these
vectors are the canonical basis vectors corresponding to X(&bYs which determine the order
and position of the pole of the representation (see Section 5.2.2).

Recall that the entries in the first column of the fundamental matrix are the characters

of the VOA V and its modules, i.e., the characters of the MTC g¢ss. So we have the following

theorem.

Theorem 5.2.2. The characters of the VOAs and their modules in G(gsq, 1) have the fol-

lowing forms:

ch Ml=q23/24(q’1—|—3+4q+7q2+13q3+"')

ch M? = ¢>** (2 +2¢ + 6¢> +8¢° + - --) .
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Example 5.2.3. The characters of the MTC corresponding to the VOA genus
g(qs2 & qgsa2, 10)

The MTC ¢sy ® gss is of rank 4 with conformal weights hy = 0, hg = 1/4, hy = 1/4, and
hy =1/2.

We have b} = —5/12, hl, = —1/6, hl; = —1/6, and h), = 1/12.

After decomposing the representation p of the MTC ¢s,®qss, we have p = p; @ po, where
p1 is a one dimensional irreducible representation with h!, forming its exponent matrix A;
and po is a three dimensional irreducible representation with A), h}, and h) forming its

exponent matrix A,. The S; and T; matrices are

1
S;=(—1)and Sy = 5 2 0 —2 | and

1 -1 1
e 0 0
Ty = (e’5) and Tp = 0 es 0
0 e

The canonical basis vectors are v; = [1 00 0 }, Vg = {() 1 =1 0 ], vz =

{0 11 0},andv4—{0 00 11-

The linear combination of the v;s is
avy + bvy + dus + evy. (5.2.27)

Since the canonical basis vectors determine the order and the position of the pole of the
representation, the resulting basis vectors determine the coefficients of the direct sum of the
vectors (columns) in the fundamental matrix.

Note that v, is the canonical basis vector for p;. vy, vs, and v, are the canonical basis

vectors for ps.
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We have the following matrices of the representations p; and ps:

e The exponent matrices
Ay = (-1/6)

A2 = Dlag(%? %7 %)

e The characteristic matrices
X =(4)
190 32 4928
Xo=1] 512 —4 —22528
20 -8 66

e The fundamental matrices

[1]

L =gM ( g ' +4—196870q — 437750164 — 2767606261¢> — ... >

¢ V190 + 5245¢ + ... 324 192¢ + 800¢2 + ... 4928 + 896896 + ...

2=¢" | 5124 10240¢ + ... ¢l —4+6¢— .. —22528 — 2547712q — ...

(1]

20 + 1160q + ... 8- 80g — 408¢2 — ... ¢ '+ 66+ 86647 + ...
Recall that a character of a VOA module is of the form

Ch M] — thfc/24 ano dlmMTJL+h] C]n == th ZnZO dimMgL‘i’h]’ qn

So h; = hj — ¢/24 determines whether ch M7 (as a vector valued modular form) has a pole
or not, i.e., if ; <0, then ch M7 has a pole at infinity.

Remarks :

- ch M! always has a pole at infinity since hy = 0. The coefficient of the first term of

ch M' has to be 1 since it is the dimension of the subspace V, ~ C1.

- If ;< 0, j # 0, then the corresponding basis vector v; contributes to the pole of
ch M. So there is a combination of the first column of the fundamental matrix and
the other columns which correspond to h;(< 0)s, i.e., the columns generated by v;s.

So the coefficient of v; in equation (5.2.27) has to be nonnegative.
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In this case, hy = —1/6 with the basis vector v3 contributes to the pole of ch M?. Since v3
generates the second column of the fundamental matrix of py, there is a combination of the
first and second columns of the fundamental matrix of ps.

Note that the entry of the fundamental matrix of p; (which corresponds to hf) does not
contribute to any pole. Since 5/6 = h, (mod 1) # h} (mod 1) = 7/12. So this entry cannot
contribute to the pole of ch M. It also cannot contribute to the pole of ch M?, since it will

give a pole of order larger than one. That is the g-expansion in the fundamental matrix of

pris ¢°/° ( g2+ 4g™1 — 196870 — 43775016¢ — 2767606261¢2 — - - - ) So the values of the

coefficients in equation (5.2.27) are a = 1, b =0, d > 0, and e = 0. Hence the characters of
a VOA and its modules in this genus is the combination of the first and second columns in

the fundamental matrix of py and we have the following theorem.

Theorem 5.2.4. The characters of the VOAs and their modules in G(qss ® qsq,10) have

the following forms:
ch M' = ¢"/"2(g7' 4 (190 + 32d) + (5245 + 192d)q + (62150 + 800d)g> + - - -)
ch M? = ¢°/%(dg™" + (512 — 4d) + (10240 + 6d)q + (107520 — 8d)g> + - - - )
ch M? = ¢/%(dg™ + (512 — 4d) + (10240 + 6d)q + (107520 — 8d)g*> + - - )
ch M* = ¢*/'2((20 — 8d) + (1160 — 80d)q + (19324 — 408d)q* + - - -)
where d is a suitable nonnegative integer.
Remarks :

- d has to be a nonnegative integer since it appears as the dimension of the submodule

in ch M.

- ch M! contains the dimension of the corresponding reductive Lie algebra V; as the

second term. So 190 + 32d is the dimension of a reductive Lie algebra V.

- Vi generates an affine Kac-Moody subVOA V.
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Theorem 5.2.5. Table B.2 consists of the exponent matrices (A) and the characteristic
matrices (X ) of the representations of the MTCs corresponding to the VOA genera G(C, c)
and Table B.3 consists of the characters of the MTCs corresponding to the VOA genera
g(C,c).

Table B.2 contains the exponent matrix A; and the characteristic matrix &) of each
irreducible component which contributes to the pole of the character ch M?. Note that we
omit the exponent matrix and the characteristic matrix of the representation which does
not contribute to the pole of ch M?.

Remark We use Table 5.3 in [H6h07] as the reference for some of the characters of
the affine Kac-Moody Lie algebras. In some cases, there is no explicit reference for the

characters of the corresponding Lie algebras but we can do as the following:
1. Compute the fundamental matrix =; of a MTC with central charge c.

2. Then take a tensor product of Z; and the fundamental matrix corresponding to Eg; ®

FEs 1 (the fundamental matrix of the trivial MTC with central charge 16).

3. Compute the fundamental matrix =5 of the same MTC as in step 1 but with central

charge ¢ + 16.

4. Compare the first column of the resulting matrix from step 2 with the first column of

the fundamental matrix =s.

5.3 Genera of VOAs arising from small MTCs with

central charge at most 16

We use the characters of the MTCs that we get from the computation in Section 5.2 to
classify the genera of the VOAs arising from the small MTCs. The component V; of the

VOA V has a structure of a reductive Lie algebra and the coefficient of the second term in
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the g-expansion of ch M" represents the dimension of the Lie algebra V;. So we can use this
fact to determine for possible Kac-Moody subVOAs V; and then we can classify the VOA

genera.

5.3.1 The reductive Lie algebras and the affine Kac-Moody Lie
algebras and theirs associated VOAs

We need some detail of a reductive Lie algebra and an affine Kac-Moody Lie algebra in
order to classify the dimension of the corresponding Kac-Moody subVOAs.

We first give a brief detail of a Lie algebra. A Lie algebra g is a vector space equipped
with an antisymmetric binary operation [, -], called a commutator, mapping g X g into g,

and further constrained to satisfy the Jacobi identity
X[V, Z]] + [Z,[X, Y]] + [V, [Z,X]] = 0 for X,V, Z € g.

A simple Lie algebra over C is a non-abelian Lie algebra whose only ideals are 0 and
itself. A direct sum of simple Lie algebras is called a semisimple Lie algebra. There are
nine types of simple Lie algebras over C, four infinite series of classical algebras and five

exceptional algebras. The following notation is commonly used:
classical algebras : A, (n > 1), B,(n > 3),C,(n > 2),D,(n > 4)
exceptional algebras : G,, Fy, Eg, Er, Es.

The subscript on the designation A, B, ..., E' is the rank of the algebra. We give the dimen-
sions of the simple Lie algebras with their corresponding formulas in Tables 5.2 and 5.3.
Moreover, the direct sum among these simple Lie algebras has the sum of theirs dimensions

as the dimension of the direct sum.
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Table 5.2: The dimensions of the classical simple Lie algebras

Types n 112 |34 ]|5 |6 7 8 9 10 | 11 12 | 13 | 14 | 15 16
An nn+2) |38 | 15|24 |35(48| 63 | 80 | 99 | 120 | 143 | 168 | 195 | 224 | 255 | 288
B, n(2n+1) | - | - [ 21|36 |55| 78| 105 | 136 | 171 | 210 | 253 | 300 | 351 | 406 | 465 | 528
Ch n(2n+1) | - |10 |21 | 36 | 55 | 78 | 105 | 136 | 171 | 210 | 253 | 300 | 351 | 406 | 465 | 528
D, ni2n—1) | - | - - | 28|45 |66 | 91 | 120 | 153 | 190 | 231 | 276 | 325 | 378 | 435 | 496

Table 5.3: The dimensions of the exceptional Lie algebras
Types GQ F4 E6 E7 ES
Dimensions | 14 | 52 | 78 | 133 | 248

The algebras A, D,,, and E, have symmetric Cartan matrices (cf. [KMPS90]). And they
have the property that all nonzero roots are of equal length, so the root and coroot lattices

are identical (cf. [MS97]), i.e., they correspond to the root lattices described in Section 2.2

A reductive Lie algebra is a direct sum of a semisimple Lie algebra and an abelian Lie
algebra. The Heisenberg Lie algebra H; (see detail in [FBZ04]) is an abelian Lie algebra
with dimension 1. The direct sum of any semisimple Lie algebra with dimension m and H;
is a reductive Lie algebra with dimension m 4 1. Note that the Heisenberg Lie algebra has

its associated VOA Vy, with central charge 1 (cf. [FBZ04]).

We define the affine Kac-Moody Lie algebra as a central extension of the formal loop
algebra in Section 2.3.4. Let g be the simple Lie algebra and g be the corresponding affine

Kac-Moody Lie algebra.

Definition 5.3.1 (cf. [FBZ04]). We say that a vertex operator algebra V' has a g-structure
of level k denoted by Vj(g) if there is an injection o : g — V such that the Fourier coefficients

of the vertex operators Y («a(A), z), A € g, generate an action of g on V' of level k.

The VOA Vi(g) has a natural conformal vector, called the Segal-Sugawara vector
(cf. [FBZ04]), where k # —h", where h" denotes the dual Coxeter number of g. We have an

isomorphism of vector spaces
Vi(g) = U(g @ t'C[t™1])vg.
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Table 5.4: The dual Cozeter numbers of the simple Lie algebras

Types An Bn C’n Dn Gg F4 E6 E7 Eg

Dual Coxeter number | n+1 | 2n—1 | n+1 | 2n—-2 | 4 9 12 | 18 | 30

Pick a basis {J*}.—1

----------

respect to the invariant bilinear form (-, -) (cf. [FBZ04]).

We write

JN2) = ez Joz7m T (2) = I Jomz 7L

Set

1
S = 5 Zizl Ja7,1JE1Uk.

Then for k # hY, S/(k+ h") is a conformal vector in Vj(g), of central charge

)=

From (5.3.1), we have the formula in term of the dimension of g

c(k)(k + 1Y)

dim g = ?

4 be its dual basis with

(5.3.1)

Recall that the component V; of the VOA V has a structure of a reductive Lie algebra.

By this fact and since the VOAs here are unitary, we can classify the possible Kac-Moody

subVOAs V; of the VOAs arising from some small MTCs.

Example 5.3.2. The VOA genus G(gssz, 1).

We have from Example 5.2.1 that the dimension of the corresponding reductive Lie

algebra Vi of ¢sy is 3. By computation, A;; is the only possible affine Kac-Moody Lie

algebra corresponding to dimension 3 and central charge 1.

Theorem 5.3.3. The possible Kac-Moody subVOA Vi of the VOA V in G(gsa, 1) is Ay.
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Example 5.3.4. The VOA genus G(gsz ® gsz, 10).

We have from Example 5.2.3 that the dimension of the corresponding reductive Lie
algebra V) of ¢ss ® gss is 190 + 32d where d is a nonnegative integer. In this case, we need
to find the value of the parameter d and hence we will have the dimension.

Recall that the central charge of the Kac-Moody VOA of a simple Lie algebra g at level

: k - dim(g)

k is C(l{?) = W
highest possible dimension of the Lie algebras using the central charge ¢ as the rank of the

, where h" is the dual Coxeter nubmer of g. We can estimate the

(semi)simple Lie algebras of level 1.

In this case, the highest possible dimension arises as the dimension of the simple Lie
algebra Fg and another simple Lie algebra of rank 2. Cy has the highest dimension among
the rank 2 Lie algebras. So the highest dimension could be 258. Hence d could be 0, 1, 2,
or 3 and the possible dimensions are 190, 222, 254, and 286.

By computation, we get the possible affine Kac-Moody subVOAs as in the following
table:

Dimension | Affine Kac-Moody subVOAs

190 | Do,

222 None

254 A1 ®A 1 ® Egy

286 None

Theorem 5.3.5. The possible Kac-Moody subVOA Vi of the VOAs V in G(qsa ® ¢ss, 10)
are DlO,l and Al,l X Al,l X ES,l-

Example 5.3.6. The VOA genus G(Isingl,17/2).

The MTC Isingl is of rank 3 with conformal weights hy = 0, hy = 1/2, and hz = 1/16.
From Table B.3, the dimension of corresponding reductive Lie algebra Vi is 1364 112d where

d is a nonnegative integer.
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By computation, we get the possible Kac-Moody subVOAs as in the following table:

Dimension | Kac-Moody subVOAs

136 Bsi, A11® E71(1/2), A1 ® Ery

248 Es1(1/2)

360 None

Note that sometime the central charges of a Kac-Moody subVOA in the resulting tensor
product do not add up to ¢ but the sum of the dimensions already added up. We use the

notation (1/2) as the remainder component with the remainder central charge.

Theorem 5.3.7. The possible Kac-Moody subVOA Vi of the VOA 'V in G(Isingl,17/2)
are Bg1, A1 @ Ery @ L12(0), A12 ® Er1, and Eg; ® Ly2(0).

Note that there is no Kac-Moody subVOA in the genus G(3fieldsx,8/7), since the
character ch M* of the MTC 3fieldsx has a pole order larger than 1. So ch M* cannot be
a character of a VOA.

By similar computation for each small MTC, we have the following theorem.

Theorem 5.3.8. Table B.J consists of the possible Kac-Moody subVOAs Vi of the VOA V

in each genus G(C,c).

Note that in Table B.4, the number in the parenthesis represents the remainder of the
central charge in the resulting tensor product.

Remark: Our method does not work with the cases which the remainder of the central
charge larger than 1, since the information of these cases are unknown. So we only give a

couple examples of the possible subVOAs V; and the number of the rest of the subVOAs.
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5.3.2 The genera G(C,¢)

Table B.4 contains all of the possible Kac-Moody subVOAs V; of the VOA V in each genus
G(C, ). We can classify the VOAs V in the genus by determining the corresponding rank and
the corresponding conformal weights of the possible Kac-Moody subVOAs V; in Table B.4.

Example 5.3.9. The VOA genus G(gss, 1).

From Theorem 5.3.3, the only possible Kac-Moody subVOAs V; in the genus G (gss, 1)

is A; 1. Hence we have the following theorem.
Theorem 5.3.10. The VOA Ay, is up to isomorphism the only VOA in G(gs2,1).

Proof : The MTC of the VOA ‘71 = A, is already ¢s; and A;; has central charge 1.

q.e.d.

Example 5.3.11. The VOA genus G(gss ® ¢s2, 10).

From Theorem 5.3.5, the possible Kac-Moody subVOAs V; in the genus G(gss ® ¢ss, 10)

are Dy and Ay ; ® A1 ® Eg; and hence we have the following theorem.

Theorem 5.3.12. The two VOAs Dipy and A1y @ A1 @ Egq are up to isomorphism all
the VOAs in G(gsa ® qsa, 10).

Proof : The MTCs of the VOAs V; & Dy, and V; A1q ® A1q ® Eg, are already

qs2 ® sy and in each case ‘71 has central charge 10. q.e.d.

Remarks:

- We denote the method we use in the above examples “method 17. This method is
used in the cases that the MTC of the possible Kac-Moody subVOAs V; in a genus
G(C,c) are already C.
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- We use the information such as conformal weights, central charge, the corresponding
MTC etc. of each Kac-Moody subVOA V; from the database [Dat] to determine our

results.

Y

7)
G(LY,14/5), G(LY,54/5), G(LY,26/5), G(gss,2), G(gss,10), G(G53,6), G(753,14),
G(Isingl,15/2), G(Ising3,5/2), G(Ising3,21/2), G(Ising3,11/2), G(Ising4,7/2)
G(Ising4,23/2), G(Ising4,9/2), G(@51,7), Glqn,5), G(qns,3), G(qna,11), G(qus,8),
(
(

The following genera are classified by applying method 1: G(t,,,8), G(¢s2,9), G(gS2,

Y

G(qua,4), G(que,12), G(gs2 ® ¢s2,2), G(752 ® 52,6), G(gs2 ® @52,8), G(gse ® LY, 19/5), and
G(LY ® LY,28/5).

Before we can give the next example, we need the following notions. For a VOA V with
an Ising vector e of V', we define the commutant subalgebra Comy (e) := {A €V | )4 =
0}. Let W be a unitary commutant subVOA V; of V, ie., W = Comy(V;). We have
(W) =c(V) — (Vi) , where ¢(W), ¢(V), and ¢(V}) are the central charges of W,V , and V;
respectively and V; is a subVOA of V.

Theorem 5.3.13. Let W be a unitary VOA of central charge ¢ < 1. Then W is isomorphic
for

to an extension of the Virasoro minimal model VOA L.(0), where ¢ = 1 — TS
pp

p=234,...

The central charge ¢ in the above theorem belongs to the minimal series which the first

few elements are 0, 1/2, 7/10, 4/5, 6/7, ....

Remark: The genus G(Isingl,1/2) contains only the minimal model (the Ising model)
L1/5(0). So it is the only VOA in this genus.

Theorem 5.3.14. The only VOA up to isomorphism in G(Isingl,1/2) is Li/5(0).

Example 5.3.15. The VOA genus G(Isingl,17/2).

5



From Theorem 5.3.7, the possible subVOAs Vi @ W in the genus G(Isingl,17/2) are
Bg, A1 ® Erp @ Lyj(0), Ao ® E7y, and Egy ® Lyj(0).

The MTCs of Bg; and Es; ® L1/2(0) have the ranks and conformal weights of the MTC
of this genus. The MTCs of Ay ® E7; ® L1/2(0) and A, » ® E7; have ranks larger than 4.
But these can be the VOA-extensions.

We apply the idea of the simple current extension (cf. [H6h03]) to determine our result.
Let V' be a rational VOAs. We call a VOA (W, Yy ) an extension of V if it contains a
subVOA isomorphic to V' and has the same vacuum and Virasoro element as V. The
VOA-extensions W of a rational VOA V' satisfying some certain conditions such as the
conditions in Theorem 3.3.1 can be determined completely in terms of the associated MTC
(cf. Theorem 4.2 in [H6h03]).

A simple module M, is called a simple current if for each simple module M, there is

another simple module M such that M; x M; = Mj holds in the fusion algebra.

Theorem 5.3.16. [cf. [Hih03]] Let V be a rational VOA which has an abelian intertwining
operator algebra structure on the direct sum of the simple current. Let C be a subgroup of
the abelian group A C I of labels of the simple currents for which the modules M., ¢ € C,

have integral conformal weight. Then there exists a unique simple VOA-extension (W, Yy )

of the form W = @CEC neM., n. >0, and one has n. = 1.

By the notion of the VOA extension and simple current, if a module has integral confor-
mal weight, then it can be an extension of the VOA. So we can use this fact to determine
our results by looking at the sum of the appropriate corresponding conformal weights. So
we have to consider the rank and conformal weights of the extended VOA whether it is in

the genus or not.

Consider A1 ® E7; ® Ly1/2(0), the corresponding conformal weights of A, E7;, and
Ly/5(0) are {0, 1/4}, {0, 3/4}, and {0,1/2,1/16} respectively. (By combining 1/4 and 3/4
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together, the result is equal to 1.) (1/4,3/4,0) is the only conformal weight of the MTC
of Aj; ® E7y ® Ly/5(0) which is integral. So (1/4,3/4,0) represents a module with integral
conformal weights and it is a simple current. The extension by ((1/4,3/4),0) is isomorphic
to Eg1 ® Ly/2(0) which we already have in this genus.

Consider Ay 5 ® E7;, Ay has conformal weights {0, 1/2, 3/16}. There is no integral
value for the sum between the elements in {0, 1/2, 3/16} and the elements of {0, 3/4} which
are the conformal weights of E7 ;. So there is no VOA-extension and hence no extension of

the VOA belong to this genus.

Theorem 5.3.17. The VOAs up to isomorphism in G(Isingl,17/2) are Bs; and Eg; ®
L1 /5(0).

Remarks:

- We call the method we use in the above example “method 2”. This method is to
determine whether a VOA V; ® W has a VOA extension or not by applying the notion

of simple current.

- Since W is a minimal model, we need to determine only the case that the central

charge ¢ of L.(0) is in the minimal series.

Method 2 is applied to all cases which the only simple objects of the MTC of V; @ W of
conformal weight 0 (mod 1) are simple currents.

This method can be applied to the following genera G(t,,,16), G(Isingl,17/2),
G(Ising2,3/2), G(Ising2,19/2), G(Ising2,13/2), G(Ising4,25/2), G(3fieldsx,64/7),
G(@s2® LY,9/5), G(qsa ® LY, 49/5), G(qsa @ LY ,31/5), G(q5; @ LY ,21/5), G(LY ® LY, 8),
G(LY ® LY ,12/5), G(LY ® LY ,52/5), G(4fieldsx,10/3), and G(4fieldsx,14/3).

The following table shows the results from the computation regarding of a simple current

and a VOA extension.
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Note that we also give the information regarding of a module with integral conformal

weight and a simple current corresponding to the following genera in the table; G(LY, 66/5),
G(gs2 ® LY, 59/5), G(3fieldsz,48/7), G(qsa ® LY, 71/5), and G(qs2 ® LY ,61/5). Method 2

is not applied to these cases directly.

Table 5.5: Simple current testing results

V1®W

>2 ‘ Vi @ W)+

G(C,c) conformal weights integral s.C.
G(tm, 16) D161 Di6,1: 0,24,1/2,2 (24) yes | yes yes
(2p) yes | yes yes
G(LY,66/5)* Bi121® L7/10(0) Bi2,1: 0,1/2,25/16 (1/2, 3/2) yes | yes no
L7/10(0): 0, 7/16, 3/2, 3/80, (25/16, 7/16) no yes -
3/5,1/10
G(Isingl,17/2) A11®E71® Lyyo Ay1:0,1/4 (1/4, 3/4, 0) yes | no -
Erq: 0,3/4
Ly/2(0): 0,1/2, 1/16
A12® By A9 0,1/2,3/16 - - . .
E71:0,3/4
G(Ising2,3/2) A1,1 ® Ly /5(0) A11: 0, 1/4 - - -
Ly/5(0): 0,1/2, 1/16
G(Ising2,19/2) A11 ® Eg;1 ® Ly /2(0) same as in G(Ising2,3/2) - - - -
G(Ising2,13/2) Es,1 ® Lq/2(0) FEsn1: 0,2/3,2/3 - - - -
Ly/5(0): 0,1/2, 1/16
G(Ising4,25/2) D12,1 ® Ly /5(0) Di21: 0,1/24,3/2,3/2¢ (1/24,1/2) yes | mno -
Ly/2(0): 0, 1/2, 1/16 (3/2p,1/2) yes | yes yes
(3/2¢,1/2) yes | yes yes
G(3fieldsz,64/7) A5 Q@ E7 1 A15: 0,5/4,6/7,3/28,2/7,15/28 (5/4, 3/4) yes | yes yes
E71:0,3/4
G(3fieldsx,48/7)* Es,1 ® Lg/7(0) Es1: 0,2/34,2/3p (2/34,4/3) no | yes
Lg,7(0): 0, 3/8, 4/3, 23/8, 5, (2/3p,4/3) no | yes
1/56, 10/21,85/56, 22/7, 1/21, (0,5) yes | yes
33/56,12/7, 5/56, 5/7, 1/7
G(gs2 ® LY,59/5)* A1,1 ® D101 @ L4/5(0) A11: 0,1/4 (0,0,3) yes | yes no
Dio.a: 0, 5/4,1/2,5/4
L4/5(0): 0, 2/5, 7/5, 3, 1/40,
21/40, 13/8,1/15, 2/3,1/8
A1,3® D1o,1 A1,3: 0, 3/4, 2/5,3/20 (3/4,5/44) yes | yes yes
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Table 5.5 — Continued from previous page

G(C,c) View conformal weights integral ‘ s.c. ‘ >2 ‘ (Vi @ W)+
Dio,1: 0,5/44,1/2,5/4p (3/4,5/4p) yes | yes yes
G(gs2 ® LY,9/5) A1,1 ® Lyy5(0) A11:0,1/4 (0, 3) yes | yes no
Ly/5(0): 0, 2/5,7/5, 3, 1/40, but no
21/40, 13/8, 1/15, 2/3,1/8 extension
G(gs2 ® LY,49/5) A11 ® Eg;1 ® Lyys(0) same as in G(gsz ® LY,9/5) (0,0, 3) yes | yes no
but no
extension
G(gs2 ® LY, 31/5) Bs,1 ® L7/10(0) Bs,1: 0,1/2,11/16 (1/2, 3/2) yes | yes no
Lz /10(0): 0, 7/16, 3/2, 3/80, but no
3/5,1/10 extension
G(gs2 ® LY, 71/5)* | B3 ® D101 ® L7/10(0) | B31: 0,1/24,7/16 (1/24,0,3/2) yes | yes
D1o,1: 0,5/4,1/2,5/4 (0,1/24,3/2) yes | yes
Lz/10(0): 0, 7/16, 3/2, 3/80, (1/24,1/25,0) | yes | no
3/5,1/10
Bs,1 ® E7,1 ® L7/10(0) | Bes,a1: 0,1/2,13/16 (1/2, 0, 3/2) yes | yes
E71:0,3/4 (13/16, 3/4, 7/16) | no | yes
Lz/10(0): 0, 7/16, 3/2, 3/80,
3/5,1/10
C3,1 ® D1o,1 C31: 0, 3/4, 3/5,7/20 (3/4,5/44) yes | yes
D1o,1: 0,5/44,1/2,5/44 (3/4,5/4p) yes | yes
A11® B11,1 A1,1:0,1/4 not
®VH, ® L7/10(0) Bi11: 0,1/24,7/16 applicable
Hy: -
Ly/10(0): 0, 7/16, 3/2, 3/80,
3/5,1/10
A11 ® Bi2,1 ® L7/10(0) | A11: 0, 1/4 (0, 1/2, 3/2) yes | yes
Bi2,1: 0,1/2,25/16 (0, 25/16, 7/16) no | yes
Lz /10(0): 0, 7/16, 3/2, 3/80,
3/5,1/10
Bs1® Eg1 ® L7/10(0) | same as in G(gs2 ® LY,31/5) (1/2, 3/2, 0) yes | yes
G(g8z ® LY ,21/5) Bs,1 ® L7/10(0) Bs1: 0,1/2,7/16 (1/2, 3/2) yes | yes no
L7,10(0): 0, 7/16, 3/2, 3/80, but no
3/5,1/10 extension
G(gsz ® LY ,61/5)* | A11 ® B1o1 ® L7;19(0) | A1,1: 0, 1/4 (0, 1/2, 3/2) yes | yes
Bioa: 0,1/2, 21/16 (1/4, 21/16, 7/16) | no | yes
L7/10(0): 0, 7/16, 3/2, 3/80,

79

Continued on next page




Table 5.5 — Continued from previous page

G(C,c) VioWw conformal weights integral ‘ s.C. ‘ >2 ‘ (Vi @ W)*
3/5,1/10
B31® Fg1 ® Ly7/10(0) | same as in G(gsz ® LY, 21/5) (1/2, 3/2, 0) yes | yes
G(LY ® LY, 8) A1 ® A7 A1,1:0,1/4 (1/4,3/44) yes | mno
A71:0,7/16,3/44,15/16, (1/4,3/4s) yes | no

1,15/16,3/4,7/16

G(LY ® LY, 12/5) Ayg Ay 0,2, 3/40, 63/40, 1/5, (2) yes | yes yes
6/5, 3/8, 7/8, 3/5

G(LY ® LY, 52/5) A13® Esg1 same as in G(LY ® LY, 12/5) (2,0) yes | yes yes

G(4fieldsxz,10/3) A1 ® A7 A11:0,1/4 (1/4,7/4) yes | yes yes
Aiq7: 0,7/4,4/3,1/12, 2/9,
35/36, 2/3, 5/12

Note that the fifth column in the table above contains the simple objects of the MTC of
Vi @ W which have integral conformal weights. The sixth column shows whether the simple
objects in column fifth are simple currents or not. The seventh column shows whether the
conformal weights of the simple objects in column fifth are larger than 1 or not. And the
last column shows whether the MTC of the extension (V; ® W)* is C or not. We use the
computer algebra software Kac to compute the simple current extensions. The source codes
are in appendix C.

Remarks:

1. Each of the possible subVOA in the genus G(4fieldsxz,14/3) contains no minimal
model L.(0), i.e., the central charge ¢ of L.(0) is not in the minimal series. So there

is no subVOA V; of the VOA in this genus to be considered.

2. In G(t,,, 16), there are two simple currents but they are isomorphic to the lattice VOA
Dj;. Since Vi is isomorphic to a lattice VOA, any extension of V; is again a lattice

VOA. Hence the VOA is D ;.

3. If the conformal weight of a module of V; ® W is 1, then the Lie algebra of an extension
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would be larger than Vj. So this can be ignored. This applies to the cases with “no”

in the sixth column.

4. For the cases with “no” in the fifth column and “yes” in the sixth column, we cannot

determine these cases. We mark these cases with G(C, ¢)*.

5. In the cases with “no” in the last column, there are two possibilities. First, the MTC
of (Vi ® W)* is not C and the family of the conformal weights of the MTC does
not contain all of the conformal weights of C. So there is no other extension which
corresponds to the MTC C. Second, the MTC of (V; @ W)* is not C but its family of
the conformal weights contains all of the conformal weights of C. So there might be

other extensions in this case and we cannot determine this case. We again mark this

case with G(C, ¢)*.

The rest of the genera can be determined by the methods above and some further
information which we will describe them case by case. We apply the idea of the lattice VOA
(cf. 2.3.5) to determine the case below. We call this method regarding the lattice VOA
“method 3”.

Method 3 is applied to the genus G(gs3, 15). The possible subVOAs V, in this genus are
E;1®Eg; and Ay 1 ® D14;. The lattices E; @ Eg and A; @ Dy, belong to the correct lattice

genus. Hence their associated VOAs belong to this genus.

Theorem 5.3.18. The VOAs up to isomorphism in G(qsz,15) are E;1 @ Eg 1, A11 ® DIZM.

Example 5.3.19. The VOA genus G(gsy4, 1).

From Table B.4, the possible subVOAs V; in G(gsy, 1) is Vi,. This implies that an

extension of V; is a lattice VOA. The only lattice in the corresponding genus is D.

Theorem 5.3.20. The VOA up to isomorphism in G(qsy, 1) is Dy ;.
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We will call this method “method 3*”, since it also apply the idea of a lattice VOA. The
method is applied to the genera G(gs4,9), G(qn4, 13), and G(gsz ® s, 14).

The possible subVOAs V; of a VOA in G (gs4,9) are VHI ® Es;1 and Dg ;. The MTC of
Dy is already g¢ss. Moreover, the subVOA VHl ® Eg gives the VOA Dy, ® Eg;.

Theorem 5.3.21. The VOAs up to isomorphism in G(qss,9) are D11 @ Egy and Dy .

The possible subVOAs ‘71 of a VOA in g(qn4, 13) are ‘N/Hl ®D12’1, Al,l ®D1271, D5’1 ®E8,17
and Di3;1. The MTCs of D5 ® Eg; and D3 are already gny, so the VOAs D5 ; ® Eg; and
D3 are in this genus. Hence a VOA V has again to be a lattice VOA. The lattices for the

genus G(qng, 13) are D5 & Eg, and Dy3.
Theorem 5.3.22. The VOAs up to isomorphism in G(qny, 13) are D51 @ Egy and Di3 ;.

Now consider the genus G (757 ® 75z, 14). The possible subVOAs V; of a VOA in G(75; ®
753, 14) are B}, HY? ® Diay, AY; @ Diay, Dg1 ® Es1, Dy, and Hy ® Dyzy. The MTC
of B2}, Dsy ® Fs1, and Dyy; are already 7s; ® gs5. So the VOAs EF}, Dg1 @ Eg 1, and
D74 are in this genus. Again, a VOA V has to be a lattice VOA. The lattices for the genus
G (@52 ® @53, 14) are EY?, (AY? @ Dy1o)*t, D¢ @ Eg, DY? @ Dy, and Dyy.

Theorem 5.3.23. The VOAs up to isomorphism in G(q5;@7s3, 14) are B2}, (AYT®D1a1) ™,
D¢ ® Eg 1, Dy, and D%% ® Diay.

Finally, the genus G(3 fieldsx,8/7) contains no VOA, since there is no Kac-Moody sub-
VOA V; of the VOA in this genus.

So by applying the methods explained above to each small MTC, we have the following

theorem.
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Theorem 5.3.24. The genera of the VOAs arising from the small MTCs with central charge
at most 16 are classified in Table B.5.

Note that in Table B.5, (VOA)* represents a VOA extension. The number in the last

column represents the method for classifying the VOAs in each genus:

1 - method 1.
2 - method 2.
3 - method 3.

3* - method 3 with the extension of Vy,.
4 - special case for G(3feildsz,8/7).

Finally, we will classify which genera G(C, ¢) from Table B.5 are code type. We need the

following definition.

Definition 5.3.25. A VOA genus is said to be code type if each VOA in the genus is a

lattice VOA and each associated lattice belongs to the same code type lattice genus.

So the following VOA genera from Table B.5 are code type: G(tm,8), G(tm, 16),
G(gs2,1), G(g52,9), G(752,7), G(752,15), G(qua,8), G(qua,4), Glqua,12), G(gs2 ® gs2,2),
G(gs2 ® gs2,10), G(q52 ® 752, 6), and G(gs2 ® 753, 8).
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Appendix A

Code and Lattice Data

In order to prove Proposition 4.2.7 and Theorem 4.2.8, we have to compare the number
of the lattices in each genus with the number of the doubly even binary codes in each

corresponding genus. We can do it in two ways: direct and indirect computations.

A.1 Direct computation

We can compute the number of lattices in one particular genus directly by the command ’
# 7 followed by lattice genus name from Magma.
First, we begin by constructing a list of the basic doubly even binary codes starting from

length 1. And we get the basic codes as the following table:

Table A.1: The basic doubly even codes

Notation Generating vectors Description
tn [0,0,...,0] a zero dimensional code of length n
dy [1,1,1,1] a one dimensional code of length 4
dg [0,0,1,1,1,1],[1,1,1,1,0,0] a two dimensional code of length 6

Continued on next page
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Table A.1 — Continued from previous page

Notation Generating vectors Description
er [0,0,0,1,1,1,1],[0,1,1,1,1,0,0], a three dimensional code of length 7
[1,0,1,0,1,0,1]
hg [1,1,1,1,1,1,1,1] a one dimensional code of length 8
ds [0,0,0,0,1,1,1,1},[0,0,1,1,1,1,0,0], a three dimensional code of length 8
[1,1,1,1,0,0,0,0]
es [0,0,0,0,1,1,1,1},[0,0,1,1,1,1,0,0], a four dimensional code of length 8
[1,1,1,1,0,0,0,0},[0,1,0,1,0,1,0,1]
dig [0,0,0,0,0,0,1,1,1,1],]0,0,0,0,1,1,1,1,0,0], | a four dimensional code of length 10
0,0,1,1,1,1,0,0,0,0,[1,1,1,1,0,0,0,0,0,0]
hio 1,1,1,1,1,1,1,1,1,1,1,1] a one dimensional code of length 12
dio [0,0,0,0,0,0,0,0,1,1,1,1], a five dimensional code of length 12
0,0,0,0,0,0,1,1,1,1,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0],
[0,0,1,1,1,1,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0]
dyg [0,0,0,0,0,0,0,0,0,0,1,1,1,1], a six dimensional code of length 14
[0,0,0,0,0,0,0,0,1,1,1,1,0,0],
[0,0,0,0,0,0,1,1,1,1,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,0,0],
[0,0,1,1,1,1,0,0,0,0,0,0,0,0],
1,1,1,1,0,0,0,0,0,0,0,0,0,0]
els [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], a seven dimensional code of length 15

0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
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Table A.1 — Continued from previous page

Notation

Generating vectors

Description

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

dig

0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]

a seven dimensional code of length 16

€16

[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

an eight dimensional code of length 16

dog

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

a nine dimensional code of length 20

Next, we construct the representing codes for each genus (n,k,t) from the direct sum

of the basic codes. The list of the genera and the corresponding codes from length 1 to 16
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is in the following table.

Table A.2: The representing codes in each genus up to length 16

(n,k,t) Representing code (n, k,t) Representing code
(1,0,0dd) t (2,0,0dd) to
(3,0,0dd) t3 (4,0,0dd) ty
(4,1,even) dy (5,0,0dd) ts
(5,1,0dd) t1 @ dy (6,0,0dd) te
(6,1,0dd) to @ dy (6,2,0dd) dg
(7,0,0dd) tr (7,1,0dd) ts B dy
(7,2,0dd) t1 @ ds (7,3,0dd) e7
(8,0,0dd) tg (8,1,0dd) ty @ dy
(8,1,even) hs (8,2,0dd) to @ dg
(8,2,even) dy @ dy (8,3,0dd) t1 ® ey
(8,3,even) ds (8,4,even) es
(9,0,0dd) ty (9,1,0dd) ts @ dy
(9,2,0dd) ts @ dg (9,3,0dd) to B er
(9,4,0dd) t1 D eg (10,0,0dd) t1o
(10,1,0dd) te @ dy (10,2,0dd) ty @ dg
(10,3,0dd) ts @ er (10,4,0dd) to @ eg
(11,0,0dd) th (11,1,0dd) tr & dy
(11,2,0dd) ts @ dg (11,3,0dd) ty @ ey
(11,4,0dd) ts @ eg (12,0,0dd) t1o
(12,1,0dd) ts @ dy (12,1,even) his
(12,2,0dd) te © dg (12,2,even) dy @ hg
(12,3,0dd) ts @ er (12,3,even) dy @ dy O dy
(12,4,0dd) 14 @ eg (12,4,even) dy @ dg
(12,5,even) ds P eg (13,4,0dd) t5 @ eg

Continued on next page
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Table A.2 — Continued from previous page

(n,k,t) Representing code (n, k,t) Representing code

(13,5,0dd) t1 ® dy D eg (14,5,0dd) to @ dio

(14,6,0dd) dg D eg (16,8,even) e1e

Then we construct lattices from these codes. Each lattice will give us a lattice genus
G(n, k,t) which we can compute the number of lattices in the corresponding genus directly
using the command in Magma. And we get the result as in the table in table 4.3. However,
when n is getting larger Magma cannot compute the number any more so we need to do in

different way.

A.2 Indirect computation

We only need to compute the number of lattices in the highest dimension of the correspond-
ing codes (possibly two highest dimensions in some cases). Since we cannot compute the
number of lattices in each genus directly, we need to find different lattices in the genus one
by one until we reach the sufficient number of lattices to prove that it is larger than the

number of the corresponding codes. The process to find these lattices is as follow.

e First, we have to construct a list of as many lattices from the known codes as we can.
Note that we can construct these codes using the basic codes. Then we choose one

lattice from the list to begin with, say lattice L.

e Second, we have to find a suitable vector in L and use it to generate a non isometric
lattice which belongs to the same genus as L one by one (this method is to find the

neighboring lattice of L by using its vector).

— Step 1 : we ask Magma to randomly choose a vector in L and then we test

whether the vector is suitable or not to use the command "Neighbour’ in Magma.
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If not we choose a new vector. We ask Magma to do this until we get the suitable
one. Note that the suitable vector means its norm has to be divisible by the
square of a prime number p that we use in the command ’Neighbour’, i.e., if we

use p = 3, then the norm of the vector has to be divisible by 9.

— Step 2 : we ask Magma to generate a neighboring lattice, say L', of L from the

vector we got from step 1.

— Step 3 : we use the command ’Islsometric’ to test whether the lattice L' is
isometric to each lattice in our list or not. If it is isometric, then we need to do

from step 1 again until we get the non isometric lattice.

e Third, we add the non isomorphic lattice L’ to our list of lattices and we repeat all the
above steps again with possibly the same lattice L or we can choose another lattice
from the list. Finally, we stop when we get enough number of lattices which should

be at least one more than the number of the corresponding codes.
Therefore we need to compute all of the lattices in the following genera; G(18, 8, 0dd),

G(19,8,0dd), G(20,8,0dd), G(20,9,even) ,G(21,9,0dd), G(22,10, 0dd), and G(23, 11, odd)

A.2.1 Lists of doubly even codes and the corresponding lattices

Some codes can be written as the direct sum of the basic codes as in table A.1. Some codes

will be written explicitly with the generating vectors.

Table A.3: Lists of doubly even codes and the corresponding lattices

Genus Codes Corresponding lattices
(18,8,0dd) to @ el L18,
es @ dio L185
to D egs B eg L183

1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],

Continued on next page
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Genus

Codes

Corresponding lattices

[0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0],
[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0],
[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0]

L184

(19,8,0dd)

(1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0],
[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0],
[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0],

]
]
]
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],

]
]
]
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

(1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],
0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0],

]
]
]
[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0],
[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0],
[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0]

[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0],
[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0],
[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0],
[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0],

L19¢

L1959

L193

L194
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Genus

Codes

Corresponding lattices

[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0],
[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0]

(1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0],
[0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0],
[0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0],

]
]
]
[0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0]

(1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0],
0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0],
[0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0],

]
]
]
[0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

[1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0],
[0,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0],
[0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0],

]
]
]
[0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,0],
[0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,0],
[0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0]

dy @ ei1s

er @ di2

t1 @ es @ dio

dys @ er @ eg

L195

L19¢

L197

L19g
L19g
L1919
L191;

(20,8,0dd)

de @ dia
dio ® dio

L200,
L2002

93

Continued on next page




Table A.3 — Continued from previous page

Genus

Codes

Corresponding lattices

de ®e7 ® er

l2 @ es & dio

t1 ©ds D eis

t1 @ er @ di2
1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],
0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],
0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0]

170707070707070717171707070717171717070]7
0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,0],
0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0,0],
0,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,0],
070717070707070717070707070707071717070]7

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,0,0],
[0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,0,0],
[0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]
1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1],
0717070707070707171717171?1707170707070]7

0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1],
[

0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

L2003
L2004
L2005
L200¢

L2007

L200g

L200g

L2001
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[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0],
0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0],
071707070707070717171717171707170707070]7
0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],
0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0],
[0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0],
[0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0]

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0],
0707170707070707070717070?0707071717070]7

0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0],
[
[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0],
[

0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0],

L20011

L2002

L2003

L20014

95
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[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0]

1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1},
0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],
0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1],
070717070707070717071717070707070707070]7

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

170707070707070717171707070707071717171]7
0,1,0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,1,1],
0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,1,1,1,1],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],
0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[
[
[
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

L2005

L2006

L2007

L2003
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170707070707071717071707171707071717070]7
0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0],

[
[
[
[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,1,1,0,0,0],
[0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0],
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0],

0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1]

1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,1,0,0,1,1,0 0,0,0,0,0,0],
0,0,1,0,0,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0],

[
[
[
[0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0],
[0,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,1,1,0,0],
[0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1]

1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0 0],

0,0,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,0,0],

[
[
[
[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],
[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,1,0,0],
[0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1]

170707070707071717171717071707070717070]7
0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,0],

[
[
[
[0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0],
[0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0,1,0,0],
[0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]

L2009

L20029

L20021

L2002

97
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1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0],
071707070707071707071707070707070717070]7

0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0 0],
[0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1]

1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0],
[0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0],
[0,0,0,0 1,0,0,0,0,1,1,0,0,1,0,0,0,0,0 0],
[0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

1,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0],
0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],
070717070707070707171717070707070707070]7

[
[
[
[0,0,0,1,0,0,0,0,0,0,1,1,1,0,0 0,0,0,0,0],
[0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0],
071707070707070707070707170717170707070]7
0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

0,0,0,0,1,0 0,0,1,1,1,0,1,1,0,1,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0],
[
[070707070717071707070717070707070 07170]7
[

0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0],
[0,0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,0,1,0,1]

(1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0],

L20023

L20024

L20025

L2002¢
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[0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0],
[0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,0,1,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0],
[0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1]

1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0],
071707070707070707170717070717070707070]7
0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1]

1,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0},
0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0],
[0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0]

1,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,0,0],
0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0],
070717070707070707170707171707070707070]7

[
[
[
[0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0]

(1,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0],

[0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0],

L20027

L2002g

L20029

L2003¢

99
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Genus

Codes

Corresponding lattices

[0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,1 0,1,0,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0]

1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0],
070717070707071717171707070717171707070]7

[
[
[
[0,0 0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0],
[0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0]

1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0],

[
[
[
[0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0],
[0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,1,1,1,0,0],

[0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0]

1,0,0,0,0,0,0,1,1,1,1,0,1,0,1,0,0,1,0,0],
0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],
0,0,1,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0],

[
[
[
[0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1,1,1,1,0],
[0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,1,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0],
[0,0,0,0,0,0,1,1,0,0,1,1,1,0,0,1,0,1,1,0],

[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1]

(1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,0,1,1,0],
[0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0],

[0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0],

L20031

L20032

L20033

L20034

100
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Genus

Codes

Corresponding lattices

0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0],

[

[0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0],
[0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1]

1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0],
0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0],

[
[
[
[0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0],
[0,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0],
[0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0],
[0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,1,1]

1,0,0,0,0 0,0,0,0,0,0,1,1,0,1,0,0,0,0,0],
0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0],

0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,1,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,1,1,0,0],
[0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0]

170707070707071707071707071717171717070]7
0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0],

0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1]

[1,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,1,1,0,0],
[0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],
[0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],
[

0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0],

L20035

L20036

L20037

L2003g

L20039

101
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Genus

Codes

Corresponding lattices

[0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,0],
[0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1]

170707070707070707071717171717071717070]7
0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,1,1,1,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,1,0,1,1,0,1,1,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]

1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0],
0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0],
0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0],
[0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,0],
[0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0],

[0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0]

[1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,0,0],
[0,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,0],
[0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0],
[0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,0],
[0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0],
[0,0 0,0,0,1,0 0,1,1,0,1,1,1,0,0,1,1,0,0],
[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,0]

1707070707070707170707070?0707071717070]7
0,1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,0,0],

[
[
[0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],
[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],
[

0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],

L20049

L20041

L20042

L20043

102
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Genus
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Corresponding lattices

[0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],
[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1]

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],
071707070707070717071717071717170717070]7

0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],
[0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],
[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0 0,1,0],

[0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,1,0,1]

170707070707071717171717170717171717170]7
0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1,0],
0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,0,0,0,1,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0],
[0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,1,0,1,1,0],
[0,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0],

0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,1]

1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0],
0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0],
0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1 0,1,0},

[
[
[
[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],
[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1]
1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0],
07170707070707]'7071717170?0707170717170]7

0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0],

[
[
[
[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],
[

0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],

L20044

L20045

L2004¢

L200y47

103
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Genus

Codes

Corresponding lattices

[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],
[0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,0,1,0,1]

1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,0],
070717070707071717071717070717071717070]7

[
[
[
[0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,1,1,1,0],
[0,0,0,0,1,0,0,0,1,1,0,0,1,1,1,1,0,0,1,0],
[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0],

[0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,1,0,1,1]

1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0,0],
071707070707071707171717070707171717070]7
0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0],

[
[
[
[0,0,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,0],
[0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,1,1,0],

[0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,0,0,0,1]

1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],
0,1,0,0 0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],
0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0],
[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],
[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],
[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1]

1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],
0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],
07071707070707]'7170717170?0717171707070]7

0,0,0 0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0],
[
[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],
[

0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],

L20048

L20049

L200s50

L200351

104
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Genus

Codes

Corresponding lattices

[0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1,1,0,1,1]

1,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,0,1,0,0},
0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,1,0],
0,0,1,0,0,0,0,1,1,0,0,1,1,0,1,1,0,1,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,0],
[0,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,1,0,1,0],
[0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,1,1,0,0],
[0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1]

1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,0],
0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
070717070707070707070707171717070707070]7

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0],
[0,0 0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0],

[0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1]

L200s52

L200s53

(20,8,even)

dao
dy ® ds D es
ds @© di2
1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],
0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

[1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1],
[0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0],
[0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],
[

0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,0],

L20E;
L20E,
L20E5

L20Ey4

L20Es5
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[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0],
0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1],
0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1],
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1,1,1],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1],
071707070707070717170717070707070707070]7
0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,1,1],

[
[
[
[0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1],
[0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0]

1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0],

[
[
[
(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1],
[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0],
(1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1],

[070707071717171717171717171717170707070]

1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
0707070707070707170717071?0717070707070]7

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0],

[
[
[
(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1],
[
(1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0],
[

0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0],

L20Esg

L20E~

L20Esg

L20Eg
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(1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]

1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,1,1,0},
0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0],
0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0],
[0,0,0,0,1,0 0,0,1,1,1,0,1,1,0,1,1,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0],

[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]

1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0],
0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0],
070717070707070717070707071717070707070]7

[
[
[
[0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,1,1,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,1]

170707070707171717171707171707070707070]7
0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0],
[0,0,0,0,1,0,1,0,1,0 0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0],

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

1,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0],
0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0],
0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,1,0],

[
[
[
[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0],
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,0,1]

L20FE10

L20E11

L20E12

L20E3
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170707070707071717171717071707070717070]7
0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0],
0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],

[
[
[
[0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,0],
[0,0,0,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0],
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,1]

1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,1,0,0],
0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0],
0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0],

[
[
[
[0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0],
[0,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0],
[0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0],
[0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1]

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0],
071707070707070717071717071717170717070]7

0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0],
[0,0 0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0],
[0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1]

170707070707071707170707071717171707170]7
0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0],
0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0],

[
[
[
[0,0,0,1,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0],
[0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0],
[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0],

[0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1]

L20E14

L20E15

L20E16

L20En7
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1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0],
0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0],
0,0,1,0,0,0,0,1,1,0,1,1,1,0,0,0,0,1,1,0],

[
[
[
[0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0],
[0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,1,0],
[0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,0,1,0],
[0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0],

[0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1]

170707070707071717070707071717071717170]7
0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,1,0],
0,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,0],

[
[
[
[0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0],
[0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,0],
[0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,1,1,0,0],
[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0],

[0,0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1]

L20E1g

L20E19

(20,9,even)

dys @ es @ eg
ds @ e1s
dao

es @ di2

L209
L209
L20%
L2079

(21,9,0dd)

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

t1 ® es © di2

t1 ©ds Des D es
t1 & ds & e
er Der @ er
de @ e1s
de @ e7 D es

L21g

L21,
L21,
L213
L214
L215
L21g
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(22,10,0dd) er @ e1s L22¢
de @ e16 L22,

de © e D es L223

es @ dia L224

(23,11,0dd) er @ e1s L23g
es & e1s L23;

e7 P eg D eg L2392

A.2.2 Lists of vectors and corresponding lattices using command

Neighbour(L,v,3)

Table A.4: Lists of vectors and corresponding lattices using
command Neighbour(L,v,3)

Genus Vectors Corresponding lattices
(18,8,0dd) vs =(0-51100001000200000) from L18; L185
v6 =(0-30101100101000010) from L18 L18¢
v7=(000100010010011010) from L187 L187
vg=(10-3000120000001011)from L182 L18g
v9=(000110000102100100) from L182 L189
vip=(-511110000000000000) from L184 L1819
(19,8,0dd) vi2=(-1000000100100101001) from L1911 L1912
v13 =(-3000100201000010011) from L191; L1913
vi4=(0-500200001000100200) from L191; L1914
vi5 =(-3000001021000001011)from L1919 L1915
vig=(0001010111002000000) from L1919 L1916
v17=(-3010000010100000211) from L19s L1917
v18 =(-3200010001102000000) from L195 L1918
vig=(-6110001100100100100) from L195 L1919
v20=(0010000001000301010) from L194 L1929
(20,8,0dd) v54 =(0-1000010000001100021) from L2001¢ L200s4
v55 =(-30001120100000002010) from L20010 L200s5
v56 =(00000100101101001111) from L2000 L200s56

Continued on next page
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lattices
v57=(-10102000003001000000) from L20015 L20057
v58 = (-60100000021200001100) from L20015 L2005
v59 =(1-3000013000000100110) from L20016 L2005
v0 =(02000010000020010110) from L20012 L20060
v61=(00010010200001111000) from L20013 L20061
v62 = (0-6020000000120000210) from L20013 L2006
v63 =(-30000100100000002022) from L20013 L2003
v64=(00010010110100101010) from L2007 L20064
v65 =(0010040100000100000 1) from L2007 L2005
v66 = (-10010010100000130100) from L200g L2006
v67 =(1-601010100100001001 1) from L200g L200g7
(20,9,even) v5=(-30110001010000032100) from L209 L209
v%6=(-30000020211001101000) from L20? L203
v7=(00000201021000010110) from L209 L2092
vg =(2-3000020100101200100) from L203 L203
v9=(11000010000000011110) from L20J L209
v10=(-310000000101101001 22) from L20J L2039,
v11=(-6101010020202000010 2) from L20J L209,
v12=(-30001001001011000310) from L20 L209,
(21,9,0dd) v7=(-60010010000000211001 1) from L21g L217
v =(-600100200001011010001) from L21g L21g
v9g=(-300000020201010011100) from L21g L21g
vio=(602000111010010000010) from L21; L2119
v11=(00-3101010100002002000) from L21; L2111
v12=(00-310000040001001000 1) from L21; L2112
v13=(600001020010100011011)from L21; L2113
va=(600101010011001010101)from L21; L2114
v15=(001000000110101110101) from L21; L2135
v16=(00000000-2102000110010) from L21, L2146
v17=(-300001000010001014000) from L21, L2147
vig =(600001100020010010200) from L21, L2115
v19=(000010100101000002020) from L21, L2119
v0=(600001001011011110000) from L21, L2150
w21 =(001001100001010111000) from L21, L2121
v22 =(-600000100130001100100) from L21, L2129
v23 =(600110001211000001100) from L21, L2153
v24=(-300000102100110011010) from L21, L21ay

111
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lattices
vo5 =(00-3201000000110010112) from L21, L2125
v26 =(-310001200100121001000) from L215 L2196
ve7 =(-600200010101000001010) from L214 L2127
v2g =(000001110001100110000) from L214 L2128
v29=(-60001100102010001000 1) from L214 L2199
v30 =(-300000001101011011000) from L215 L2139
v31 =(-611010000100001101000) from L215 L2137
v32 =(000000110010101001010) from L215 L2139
v33 =(000020101000110000100) from L215 L2133
v34 =(000100101000010011100) from L215 L2134
v35 =(-301110000000110110001) from L215 L2135
v36 =(000000021001100110101) from L215 L2136
v37 =(101000000012000101001) from L215 L2137
v3g =(100010000101001100200) from L215 L2133
(22,10,0dd) v5s =(0001000011011000000101) from L224 L225
v6 =(-3000111100000000012001) from L224 L22¢
v7=(0010100102100110000010) from L224 L227
vg=(-6001101110012000001000) from L224 L22g
v9g=(6010000110020000000110) from L22¢ L22g
vi0=(-6001000010110010002000) from L22; L2219
v11 =(0000000100000111210100) from L22; L2214
v12=(1000100010004100000000) from L22; L2212
v1iz=(20-60000201000010101000) from L22; L2213
vi4=(-6000010100201001000110) from L22; L2214
vi5=(-6000001101110010010001) from L22; L2215
vi6=(01-30101010011000000200) from L22; L2216
vi7=(-3000010010101101101000) from L22; L2217
v1g =(1-600000010001001310000) from L22; L2248
vig=(-2001000000000001002101) from L229 L2219
v20=(0001000110100100001001) from L22 L2245
v21 =(-600001010000021001000 2) from L225 L2257
v22 =(-6010000010000200210100) from L229 L2259
ve23 =(0110010020000100000110) from L229 L2293
v24 =(0-500001001000100111100) from L229 L2294
v25 =(0200000000011000010111) from L229 L2255
v26 =(0000000001-600110200101) from L2253 L2256
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lattices
ve7 =(-3001040000000101000001) from L224 L2297

(23,11,0dd) v3 =(-61010000010011000002000) from L23¢ L233
va=(00000000101001101210000) from L23g L234
v5 =(-30010000020001020011000) from L23¢ L235
v6 =(-61000000100030000100200) from L23g L23¢
v7=(-30100110100100010001010) from L23g L237
vg =(-61000010000000122000100) from L23¢ L23g
v9=(-300020001101200001000 20) from L23; L239
v10=(2-3000012010000000201100) from L23; L2319
v11=(10004001100100100000110) from L23; L2311

A.2.3 Table comparing the number of lattices from code and lat-
tices from computation

The following table contains the numbers of codes, lattices constructed from known codes,

and lattices constructed by computation.

genus codes | lattices from known codes | lattices from computation | total lattices

G(18,8,0dd) 9 4 6 10
G(19,8,0dd) 19 11 9 20
G(20,8,0dd) 84 53 14 67"
G(20, 8, even) 19

G(20,9, even) 10 4 8 12
G(21,9,0dd) 38 7 32 39
G(22,10,0dd) 25 4 23 27
G(23,11,0dd) 11 3 9 12

From the table, we can see that the number in the last column is larger than the number
in the second column which means the least number of lattices in each genus is larger than

the number of codes. Hence these lattices genera are non code type.
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Note that (*) in the genera G(20,8,0dd) and G(20,8,even), we cannot find the exact
number of codes in each genus but we know that G(20, 8, even) is non code type because
the genus G(20,9, even) is non code type. We know only the total number of codes (20,8)
which is 84. And we found 53 codes of odd type and 19 codes of even type. Then we found
14 lattices of odd type by computation so we have 67 lattices of odd type. But when we
combine 67 odd type lattices with 19 even type lattices we have a total of 86 lattices which
exceeds the number of codes. So we have at least two lattices of odd type that cannot be

constructed from codes, and hence G(20,8,0dd) is non code type.
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Appendix B

Tables for the classification of genera
of VOAs for small MTCs with central

charges at most 16

Table B.1: The S-matrices, the components of the irreducible rep-
resentations, and the corresponding canonical basis vectors of the

representation corresponding to small MTCs

No. C n | ¢ (mod 8) S pLD ... ®ps Basis vectors
1 tm 1 8 (1) 1 [1]
1 o]
2 D) 2 1 L(% 31) 2
v | 0 1
1 0
3 752 2 7 (1 4) 2
v | 0 1]
/L\F V5 [ 1 0 ]
4 | Lee—Yang | 2 14/5 :’I/; v Z(Hf) 2
VaG+ve) V5B | 0 1]

Continued on next page
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No. C ¢ (mod 8) S p1L® ... ®ps Basis vectors
Z\F 1+V5 1 0
5 | Lee —Yang 26/5 ( s '2(5+\f)> 2
V206145 V5+VE 0 1
6 qss 2 5 (1 wpe?) 192 [o 1 —1},
100
where w = €27%/3
|01 1]
7 753 6 5 (1 wpe?) 162 [o 1 —1},
100
where w = €27%/3
|01 1]
100
11 V2
8 Isingl 1/2 5(1 1 ﬁ) 3 010
V2 V2 0
0 01
100
N 11 V2
9 Isingl 15/2 ;<1 1 —ﬁ) 3 01 0
V2 V2 0
0 01
1 00
11 V2
10 Ising2 3/2 ;<1 1 —ﬂ) 3 010
V2 —v2 0
0 01
1 00
- 11 V2
11 Ising?2 13/2 §<1 1 ﬁ) 3 010
V2 —v2 0
0 01
100
11 V2
12 Ising3 5/2 ;(1 1 \/§> 3 010
V2 -v2 0
0 01
100
R 11 V2
13 Ising3 11/2 §<1 1 —\/§> 3 010
V2 -v2 0
0 01
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No. C ¢ (mod 8) S p1L® ... ®ps Basis vectors
1 0 0
11 V2
14 Ising4 7/2 ;<1 1 ﬁ) 3 010
V2 -v2 0
0 0 1
1 0 0
_ 11 V2
15 Ising4 9/2 §<1 1 ﬁ) 3 010
V2 -v2 0
0 0 1
1 0 0
1 d d*>-1
16 3fieldsx 8/7 é( d —d?+1 1 ) 3 01 0
d*-1 1 —d
0 0 1
where d = 2cos(%), D = Wf@)
1 0 0
_ 1 d d*-1
17 3fieldsx 487 é( d —d41 1 ) 3 01 0
-1 1 —d
0 0 1
where d = 2cos(%), D = W\%
18 gs4 1 193 | [oo0 1 1]
1 0 0 0
1114
§<11“> 0100
1-1 4 —i
0 0 1 1
19 7 7 1e3 | oo 1 -1,
1 0 0 0
P
é(l—l—ii) 0 1 .00
1-1 4 —i
0 0 1 1
20 qna 5 193 | Joo 1 -1
1 0 0 O
1144
§<1_1_”> 0100
1-1 & —i
0 0 1 1
21 i 3 123 | Joo0 1 1]
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No. C ¢ (mod 8) S p1L® ... ®ps Basis vectors
1 0 0 O
11
§<1_1_“> 0100
1-1 4 —i
0 0 1 1
22 qus 8 101@2 1010l
1144 _
5(1_11 _1> 01 -1 0],
1-1-11
1 -1 -1 0
0 O 0 1
23 qvs 4 1e102 | [0 1 0 -1
R
é(l—ll —1> [0 0 1 —1}7
1-1-11 i i
1 0 0 0
_0 1 1 1 |
24 qs2 ® qSa 2 1®3 [0 1 -1 0]7
1 0 0 O
T
%(1 1 11> 01 1 0
1-1-11
0 0 0 1
25 qSs ® qS2 6 1®3 [O 1 -1 0|,
1 0 0 O
R
%(11_1_1> 0110
1-1-11
0 0 0 1
26 qs2 @ GS3 8 1d3 1 00 1},
1 0 0 1
R
§<1 1 _1_1> 010 0
1-1-11
00 1 0
1 0 0 O
(a5 0100
27 | qs2®LY 19/5 D(i_dl :3‘#) 4
where D = /5 + /5,d = 115 0010
0 0 0 1
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No. C ¢ (mod 8) S p1L® ... ®ps Basis vectors
1 0 0 O
PR
11)(1 1d> 01 0 0
28 752 ® LY 9/5 d—-1-d 1 4
WhereD:\/5—|—\/S,d=lJFQ\/g 00 10
0 0 0 1
1 0 00
i 4
_ 5(1 d_l_d> 100
29 qs2 @ LY 31/5 d—-1-d 1 4
Where.DZ\/5—1—\/57(121Jr2\/g 0 L0
0 0 1
1 0 0 O
a4
_ é(1d1d> 0100
30 qs52 Q@ LY 21/5 d-1-d 1 4
WhereD:\/E)~|>\/5,d:H_Q\/5 00 10
0 0 0 1
31 | LY®Ly 28/5 1e3 | Jo1 -1 0]
1 d d d? I |
(1>2<d21d2d> 1 0 00
V2+d d d® —1 —d
- d? —d—d 1 0 1.1 0
Whered:H_T\/g 0 0 0 1
32 | LY®LY 12/5 133 [o 1 -1 0],
1 d d d? I |
(1>2<d21d2d> 1 000
V2+d d d® -1 —d
B U R 01 10
WhGI"(BClZl‘FT\/g 0 0 O 1
33 LY®LY 8 1®3 -1 0 0 1},
1 d d d?
(1>2<d_3d2_d> 1 00 -1
V2+d d d® —1 —d
HNe LT 010 0
Whel”edzl-i_T\/g 0 0 1 0
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No. C n | ¢ (mod 8) S p1L® ... ®ps Basis vectors
) 10 0 0
1Lod o d-1 dil
1 d —d—1 d®>-1 -1
D > 2 2 01 0 0
34 | Afieldsz | 4| 10/3 b (;il A ‘dd“) 4
) 0 010
where D = ﬁ(z), d = 2cos()
9
0 0 01
) 10 0 0
1Lod &1 dl
1 d —d-1 d®>-1 -1
5] 2 2 2 1 00
35 | dficldsz | 4| 14/3 P <d‘i1 T Aa dd“> 4
1
where D = ﬁ(l),dz%os(g) 0 0
9
0 0 01
Table B.2: The exponent matrices and the characteristic matrices
of the contributing irreducible representations of the small MTCs
No. C n c A; X;
1 tm 1 8 A= (3) X, = (248)
16 A = (%) X = (496)
) s s 3 26752
2 qs2 2 1 Ay = Diag(57, 53) X1 =
2 =247
s 1 251 26752
9 Al Dlag(g g) Xl =
2 1
) 133 1248
3 (e 2| 7 Ay = Diag($%, 24 X, =
56 =377
381 1248
15 Ay = Diag(2, %) X =
56 —129
14 12857
4 | Lee—Yang | 2 | 14/5 Ay = Diag( ) X =
—258
262 12857
54/5 Ay = Diag(3t, — %) X, =

120
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No. C C Az Xz
- 52 3774
5 | Lee —Yang 26/5 Ay = Diag(3, 22) X =
26 —296
e 300 3774
66/5 Ay = Diag(55, 35) X = ” "
8 78732
6 qs3 2 As = Diag(1, 1) Xy =
1 —252
o 256 78732
10 A2 = Dlag(ﬁ7 7ﬁ) XQ = ) A
78 91854
7 qs3 6 A; = Diag(3, 3) Xy =
1 —322
o 326 91854
14 A2 = Dlag(ﬁ, ﬁ) XQ = ) -1
0 2325 94208
8 Isingl 1/2 Ay = Diag(3Z, 22, ) Xi=1| 1 275 —4096
1 —25 23
136 5125 112
17/2 Ay = Diag(H, 2. 3) Xi=| 17 123 16
256 —10496 —7
105 5083 288
9 Isingl 15/2 Ay = Diag(1%, 2, 2) Xi=| 15 156 —32
128 —4992 -9
248 7 512
31/2 Ay = Diag(i% 4L 1) Xi=] 3875 21 —8704
248 -8 17
3 2871 43008
10 Ising2 3/2 Ay = Diag(32, £, %) Xi=| 3 270 —2048
2 54 21
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No. C c A; X;
171 5031 40
19/2 Ay = Diag(2, 2 19) Xi=1] 19 86 -8
512 —22016 —5
78 4921 704
11 Tsing2 13/2 Ay = Diag(23, 11 13) Xi=| 13 185 —64
64 —2368 —11
261 5 1024
29/2 Ay = Diag(33, Ta» 51) Xi=1| 3393 10 —19456
116 -4 —19
10 3893 19456
12 Ising3 5/2 Ay = Diag($2, 13, 2) Xi=| 5 261 —1024
4 —116  —19
210 4785 12
21/2 Ay = Diag(, &, I) =] 21 45 —4
1024 —46080 —3
55 4655 1664
13 Tsing3 11/2 A; = Diag( oxd) Xi=1] 11 210 -128
32 —1120 13
270 3 2048
27/2 Ay = Diag(%, 12 1) Xi =] 2871 3 —43008
54 -2 —21
21 3875 8704
14 Ising4 7/2 Ay = Diag($, 35, 2%) Xi=| 7 248 512
8 —248 17
253 4371 2
23/2 Ay = Diag(2, L 23) = 23 0 -2

2048 —96256 -1
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No. C n c A; X;
36 4301 3840
15 | TIsingd | 3| 9/2 Ay = Diag($, 35, 2) Xi=| 9 231 —256
16 —258 —15
275 1 4096
25/2 Ay = Diag(2, 41 L) Xi=| 2325 0 —94208
25 -1 —23
14 5 11
16 | 3fieldsx 8/7 Ay = Diag(—, 37, 2) Xi=| 50922 —37 4797
782 17 =217
136 627 22990
64/7 Ay = Diag(33, 10 —2) Xi=| 117 -374 3510
32 -2
78 45954 1702
17 | 3fieldsx 48/7 Ay = Diag(2, -1, 3) X=1| 1 3 1
55 2925 —321
188 138 1564
104/7 Ay = Diag(£, 11, 2) Xi=| 725 -344 1972
4 11 -84
1 2600 90112
18 gs4 1 Ay = Diag(33, 31, 75) Xo=| 2 273 —4096
1 —26 —22
153 5096 96
9 A, = Diag(3,4.3) Xo=] 18 105 —16
256 —10752 —6
91 5016 640
19 751 7 Ay = Diag(3%, 2, %) Xo=| 14 111 64

64 —2432 -10
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No. C c A; X;
255 6 1024
15 Az = Diag(, §, ) Xo=| 3640 15 —18432
120 —4 18
45 4488 3584
20 qna 5 Ay = Diag(3}, 37, 1) Xo=| 10 221 —256
16 —544 —14
4096
13 As = Diag(3}, 28 1) 2600 1 —90112
—22
15 3640 18432
21 T 3 Ay = Diag(§, 3. 1) ~1024
~120 -18
4600 8
11 As = Diag(33, 31, 13) —4
1024 —47104 —2
22 qu 8 A = (3) (248)
Ay = Ding(2, ) v —136 5120
48 140
16 A= (1) Xy = (496)
—272 32
As = Diag(3, 2) 3=
3072 28
23 qus 4 As = Diag(3,1) Xy = 28 12288
8 —212
b Ay = Ding(1.0) _ 276 12288
8 -2
6 40960 3136
24 | g5y ®qsy 2 A; = Diag(13, ¢, 35) Xo=| 2 —20 —56
4 —2048 266
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No. C c A; X;
190 32 4928
10 Ay = Diag(75, 2, 75) Xo=| 512 —4 —22528
20 -8 66
66 1536 4800
25 | B0 6 Ay = Diag(%, 3, §) Xo=| 32 —12 —1152
12 —-128 198
266 2048 4
14 Ay = Diag(3, 5, 13) Xy = 56 -20 -2
3136 —40960 6
26 | qsa®qsa 8 A= (3) ) = (248)
24 40960 2048
Ay = Diag(3, — 15, ) Xo=| 2 -2 4
56 3136 —262
16 A =(3) X = (496)
16 1536 128
Ay = Diag(}, 35, 35) Xo=| 32 —62 12
1152 4800 —194
17 9945 16560 1456
27 | ¢s2 @ LY 19/5 | Ay = Diag(19%, 20 1L 59 |y, — T e
2 52  —51 —26
14 —884 —2990 185
193 8073 36 2302
50/5 | Ay — Diag(&h,— b ot 10y |y [ 2 L2
502 47840 —33 —11063
40 208 —13 95
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No. C c A, p
3 8073 208 47840
28 | 752@LY 9/5 Ay = Diag(37,18 21 3 X = 3 —189 40  —592
4 2392 -91 -—11063
2 -36 -13 37
147 9945 884 52
49/5 | Ay = Diag({, — 1k, ik, 89y | x4y = 7 —-13 14 )
56 1456 —181 —26
392 —16560 —2990 55
95 2990 16560 392
29 | ¢s2®@LY 31/5 | Ay = Diag(£2, 4L L 7Ly |y — 26 —181 1456 —56
2 14 —-13 -7
52 —884 —9945 147
211 2346 46 714
71/5 | Ay = Diag(4, L 10 3Ly | x, — 4 17 6 14
792 14280 —95 —3366
120 —-408 —-34 157
21 2346 408 14280
30 | :eLY 21/5 Ay = Diag(3 11 28 1 X, — 14 —207 120 —792
14 714 —153 —3366
6 —46 —34 99
185 2990 884 14
61/5 | Ay = Diag(£y, AL 20 101y |y, — 26 51 52 -2
56 392 —143 -7
1456 —16560 —9945 17
28 16250 676
31 LY @ LY 28/5 Ay = Diag(Q—g, %, éi) X, = - 0 96
49 —5000 104
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C n c A; X
136 20 1196
68/5 A, = Diag($2,2, %) Xy=| 1700 24 7475
119 —10 92
LY®LY |4 8 A= (3) Xy = (248)
—~116 2500 8125
Ay = Diag(2,- &, L) Xo=| 52 100 676
14 49 -2
16 Ay =(3) X = (496)
218 1275 25
Ay = Diag(3, — 1=, 1) Xo = 10 1 3
4590 42483 23
3 2550 42483
IYQLY | 4| 12/5 Ay = Diag(-%,1, %) Xo=1| 5 222 -2295
3 =50 27
104 5000 49
52/5 Ay = Diag(iI, 1 23) Xo=1| 26 120 -7
676 —16250 28
6 10880 91125 1250
4fieldsz 4| 10/3 Ay = Diag(3L, £, 5, 13) X1 = oo e o
117 -2 -8
13 —884 —11664 198
54 50 18225 2500
313 Ay = Dieg(12, 81 1) v 703 78 215784 —5624
-1 1 3 1
65 —13 —729 121
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No. C c A; X;
14 1045 4860 17732
35 | 4ficldss 14/3 A, = Diag(2, 11, T 5 P I
3 57 =5  —465
7 —19 243 93
108 1463 10206 22
38/3 Ay = Ding(i1, 3.1 2) X 28 —132 729 2
10 38 0 -1
1610 —6118 —67068 32
Table B.3: The characters ch M* of the irreducible VOA modules
in the genus G(C, ¢)
No. C c Characters ch M?
1 tm 8 ch M = ¢?/3 (g7 + 248 + 4124q + 34752¢> + 213126¢° + - - - )
16 ch M*' = ¢/ (g~ 4 496 + 69752q + 2115008¢> + 34670620¢° + - - - )
) s . ch M' = ¢®/2* (7" +3+4q+7¢° +13¢° + - --)
ch M? :q5/24 (2+2q+6q2+8q3+-~-)
0 ch M' = ¢°/® (g + 251 + 4872q + 48123¢> + 335627¢° + - - - )
ch M? = q=1/8 (2 + 498q + 8750¢° + 79248¢> + - - -)
; - : ch M*' = ¢*7/%* (g7 4 133 + 1673¢ + 119144¢> + 63252¢° + - - -)
ch M? = ¢'1/24 (56 + 968¢ + 7504¢> + 42616¢° + - - - )
s ch M* = ¢3/8 (g7 + 381 + 38781¢g + 1010062¢° + 14752518¢° + - - - )
ch M? = ¢/ (56 + 14856 + 478512¢° + 7841752¢% + - - -)
4 | Lee - Yang 14/5 ch M*' = ¢°3/60 (g=1 + 14 + 42q + 140> + 350¢° + - - -)
ch M? = ¢7/60 (7 4 34¢ + 119¢> + 322¢® + - - -
54/5 ch M = q'1/20 (g=1 + 262 + 7638¢ + 103044¢> + 907932¢° + - - - )

ch M? = q=1/20 (7 4+ 1770¢ + 37419¢> + 413314¢> + - - -)

Continued on next page
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No. C c Characters ch M?
s | Te—vamg 2%/5 ch M = g*7/%0 (g=1 + 52 + 377q + 19764> + 7852¢° + ...)
ch M? = ¢%3/50 (26 4 299¢ + 17022 + 7475¢° + - - -)
66/5 ch M*' = %20 (¢=! + 300 + 17397q + 344672¢° + 4072878¢° + - - -)
ch M? = ¢'/20 (26 4 6747¢ + 183078¢> + 2566199¢° + - - - )
ch M' = ¢''/12 (7' 4+ 8+ 17¢ + 464 + 98¢° + - - - )
6 qs3 2 ch M? = ¢"/*(1+3q+9¢> + 19¢° + - - -)
ch M3 = g'/* (1 + 3¢+ 9¢ + 19¢° + - - - )
ch M*' = ¢"/12 (¢=! + 256 + 6125q + 72006¢° + 572756¢° + - - - )
10 ch M? = ¢~'/12 (1 + 251q + 4877¢% + 49375¢° + - - )
ch M3 = ¢=1/12 (14 251q + 4877¢> + 49375¢> + - - - )
ch M = ¢3/% (¢7' + 78 4+ 729¢ + 4382¢° + 19917¢® + - - -
7 7s3 6 ch M? = ¢°/'2 (1 + 14q + 92¢* + 456¢° + - - -)
ch M? = ¢°/12 (1 + 14¢ + 92¢° + 456¢° + - - )
ch M*' = ¢%/12 (g7 + 326 + 24197¢ + 541598¢ + 7036831¢° + - - - )
14 ch M? = ¢/'2 (1 + 262q + 7688¢> + 115760¢> + - - -)
ch M3 = ¢"/12 (1 + 262¢ + 7688¢* + 115760¢° + - - - )
ch Mt = ¢47/48 (q_ +q+q2+2q3+--')
8 Isingl 1/2 ch M? =¢®/® (1+q+¢*+¢+-)
ch M3 = ¢1/24 (1—|—q+q2+2q3+~--)
ch M1 = ¢31/48 (=1 4 (136 + 112d) + (2669 + 1456d)q + (24361 + 10640d)q> + - - -)
17/2 ch M? = ¢7/8 (17 — 16d) + (697 — 448d)q + (8517 — 4144d)g® + - - )
ch M3 = ¢'7/24 (dg=" + (256 — 7d) + (4352 + 21d)q + (39168 — 42d)g> + - - -)
where d is a non negative integer
ch M* = ¢M/16 (=1 4 105 4 1590¢ + 12160¢° + 69780¢> + - - - )
9 Isingl 15/2 | ch M? = ¢%/16 (15 + 470q + 4593¢> + 30075¢° + - - -)
ch M? = ¢°/® (128 + 1920q + 15360¢° + 88960¢° + - - - )
ch M1 = ¢17/48 (q=1 + (248 4 7d) + (31124 + 42d)q + (871627 + 175d)q? + - - - )
31/2

ch M2 = ¢g*1/%8 (dg—1 + (3875 + 21d) + (181753 + 84d)q + (3623869 + 322d)q® + - - -)
ch M3 = ¢7/24 ((248 8d) + (34504 — 56d)q + (1022752 — 224d)q? + - - - )

Continued on next page
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No. C n c Characters ch M?
where d is a non negative integer
ch M = ¢*%/1% (g7 + 3+ 9g + 15¢° + 30¢° + - - -
10 Ising2 31 3/2 | ch M?2=q"1%(3+4¢+12¢> +21¢° +--)
ch M? = ¢/® (2+ 6q + 12¢> + 26¢° + - - -)
ch Mt = ¢?%/48 (=1 4 (171 + 40d) + (4237 + 320d)q + (46075 + 1648d)g> + - - - )
19/2 | ch M? = ¢°/*8 ((19 — 8d) + (988¢ — 120d)q + (14896 — 760d)g> + - - - )
ch M3 = ¢19/24 (dg=' + (512 — 5d) + (9728¢ + 10d)q + (97280¢> — 15d)q* + - - -)
where d is a non negative integer
ch M*' = ¢%/48 (=1 4 78 + 884q + 5681¢> + 28158¢° + - - -)
11 Ising2 31 13/2 | ch M? = ¢'¥/*8 (13 + 299¢ + 2314¢> + 13052¢° + - - -)
ch M3 = ¢*3/24 (64 + 832¢ + 5824¢> + 29952¢° + - - - )
ch M' = ¢'9/48 (¢=1 + (261 + 5d) + (24157 + 15d)q + (580609 + 56d)g? + - - - )
29/2 ch M2 = ¢*3/48 (dg=' + (3393 + 10d) + (129688 + 30d)q + (2270671 + 85d)q> + - - -)
ch M3 = ¢%/2* ((116 — 4d) + (16964 — 20d)q + (476876 — 60d)q> + - - - )
where d is a non negative integer
ch M*' = ¢*3/48 (g7 4 10 + 30q + 85¢> + 205¢° + - - -)
12 Ising3 3| 5/2 ch M? = ¢19/48 (5 + 15¢ + 56¢° + 130¢> + - - -
ch M3 = ¢°/?* (4 + 20q + 60¢* 4+ 160¢> + - - -)
ch M*' = %16 (¢=! + (210 + 12d) + (6426 + 52d)q + (82845 + 168d)g> + - - - )
21/2 | ch M? = ¢/1% ((21 — 4d) + (1351q — 24d)q + (24780 — 96d)g> + - - - )
ch M3 = ¢"/® (dg=! + (1024 — 3d) + (21504¢ + 3d)q + (236544¢> — 4d)g*> + - - -)
where d is a non negative integer
ch M' = ¢/ (g=1 4+ 55 + 451q + 2453¢> + 10329¢> + - - -)
13 Isingd | 3| 11/2 | ch M? = ¢'3/%8 (11 4+ 176 + 1078¢2 + 5181¢% + - - - )
ch M3 = ¢'1/24 (32 + 352¢ + 2112¢> + 9504¢° + - - )
ch M' = ¢"/16 (¢71 + (270 + 3d) + (18171 + 4d)q + (375741 + 12d)g> + - - -)
27/2 | ch M? = ¢"5/16 (dg! + (2871 + 3d) + (89991 + 9d)q + (1380456 + 15d)g> + - - -)
ch M3 = ¢'/8 ((54 — 2d) + (8354 — 6d)q + (221508 — 12d)q* + - - -)
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No. C c Characters ch M?
where d is a non negative integer
ch M* = ¢41/48 (=1 4 21 + 84q + 322¢® + 931¢°> + - - - )
14 Ising4 7/2 | ch M? =g/ (74 42q + 175¢% + 547¢° + - - )
ch M? = q"/?* (8 + 56q + 224¢° + 728¢° + - - -)
ch M = ¢?%/48 (=1 + (253 + 2d) + (9384 + 4d)q + (142462 + 6d)g> + - - -)
23/2 | ch M? = ¢'/48 ((23 — 2d) + (1794 — 2d)q + (39491 — 4d)g> + - - -)
ch M3 = ¢?/24 (dg~' + (2048 — d) + 47104q + (565248 — d)¢*> + - - -)
where d is a non negative integer
ch M*' = ¢*3/16 (g=1 + 36 + 207q + 957¢ + 3357¢° + - - )
15 Ising4 9/2 | ch M2 = ¢%/16 (9 + 93¢ + 459¢> + 1827¢% + - - -)
ch M3 = ¢%/® (16 + 144q + 720¢> + 2784¢> + - - )
ch Mt = ¢®/48 (g7 4 (275 + d) + (13250 + d)q + (235500 + d)g* + - - -)
25/2 | ch M? = ¢*7/48 (dg=' + 2325 + (60630 + d)q + (811950 + d)g> + - - - )
ch M3 = ¢*/?* ((25 — d) + (4121 — d)q + (102425 — d)g® + - - - )
where d is a non negative integer
ch M' = ¢=1/21 (=1 4 14 + 66512¢ + 8878186¢> + 405729320¢> + - - - )
16 3fieldsx 8/7 ch M? = ¢*7/2! (50922 + 8656740q + 441429616¢> + 12203476160¢° + - - - )
ch M3 = ¢/ (782 + 718267q + 64206178¢> + 2419951472¢° + - - -)
ch M*' = ¢'3/2! (=1 4+ 136 + 2417¢ + 24520¢° + 173412¢% + - - -)
64/7 | ch M? = ¢'%/2! (117 + 2952q + 322204° + 239680¢> + - - - )
ch M3 = ¢=2/2! (3 + 632¢ + 10787¢> + 98104¢° + - - -)
ch M' = ¢/7 (g~ + 78 + 784¢ + 5271¢* + 26558¢° + - - - )
17 | 3fieldsz 48/7 | ch M? = ¢ /7 (1+133¢ + 1618¢> + 11024¢% + - - )
ch M3 = ¢3/7 (55 + 890q + 6720¢> + 37344¢> + - - -)
ch M1 = ¢8/2% (¢=1 + (188 + 138d) + (17260 + 6992d)q + (442300 + 113827d)g> + - - -)
104/7 | ch M2 = ¢11/21 (dg=1 + (725 — 344d) + (52316 — 13590d)q + (1197468 — 201936d)q> + - - )

ch M3 = ¢?/21 ((44 + 11d) + (13002 + 1528d)q + (424040 + 30220d)g> + - - - )

where d is a non negative integer
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ch MY = ¢®/? (g1 + 1+ 4g+5¢* +9¢° + - --)
ch M? = ¢"/%* (24 2¢ +4¢* + 6¢> + -+ )
18 qS4 1
ch M3 = ¢*/'2 (1+2¢+3¢*> +6¢>+ - - )
Ch ]\4’4 :q1/12 (1+2q+3q2+6q3+)
ch M*' = ¢*® (g + (153 + 96d) + (3384 + 992d)q + (33729 + 6144d)g> + - - )
0 ch M? = ¢'/8 ((18 — 16d) + (834 — 336d)q + (11340 — 2592d)q? + - - -)
ch M3 = ¢3/* (dg! + (256 — 6d) + (4608 + 15d)q + (43776 — 26d)q> + - - -)
ch M* = ¢3/* (dg~' + (256 — 6d) + (4608 + 15d)q + (43776 — 26d)q> + - - - )
where d is a non negative integer
ch M* = ¢'"/?% (g7! + 91 + 1197¢ + 8386¢> + 44800¢> + - - - )
ch M? = ¢%/?* (14 + 378¢ + 3290¢> + 20008¢> + - - - )
19 754 7
ch M3 = ¢"/12 (64 + 8964 + 6720¢> + 36736¢> + - - -)
ch M* = ¢"/'2 (64 + 8964 + 6720¢> + 367364° + - - -)
ch M1 = ¢%/8 (g7 + (255 + 6d) + (27525 + 26d)q + (713850 + 102d)q> + - - -)
15 ch M2 =47/8 (dq’l + (3640 + 15d) + (154056 + 51d)q + (2878920 + 172d)g? + - - )
ch M3 = /% ((120 — 4d) + (17104 — 24d)q + (494040 — 84d)q> + - - -)
ch M* = ¢%/4 ((120 — 4d) + (17104 — 24d)q + (494040 — 84d)g® + - - -)
where d is a non negative integer
ch M*' = ¢'9/24 (g=1 + 45 + 310q + 1555¢> + 5990¢°> + - - - )
ch M? = q7/2* (10 + 130q + 712¢* + 3130¢° + - - )
20 qngy 5
ch M3 = ¢°/12 (16 + 160q + 880¢> + 3680¢° + - - - )
ch M* = ¢°/12 (16 + 160g + 880¢> + 3680¢> + - - - )
ch M = ¢/ (cf1 + (273 + 2d) + (15574 + 2d)q + (298727 + 4d)g® + - - )
3 ch M? = ¢*/?* (d (2600 + d) + (74152 + 4d)q + (1063296 + 5d)g* + - - - )

ch M3 = ¢*/12 ((26 d) + (4148 — 2d)q + (106574 — 3d)g® + - - - )
ch M* = ¢'/12 ((26 — d) + (4148 — 2d)q + (106574 — 3d)q* + - --)

where d is a non negative integer
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ch MY = q"/3 (¢7' + 15+ 51q + 172¢> + 453¢° + - - )
- s ch M = ¢3/8 (6 4 26¢ + 102> + 276¢° + - - -)
ch M? = ¢1/* (4 4 24q + 84¢> +248¢> + - - -)
ch M3 = g"/* (4 4 24q + 84> + 248¢° + - - -)
ch M = ¢'3/24 (g71 + (231 + 8d) + (7799 + 24d)q + (109208 + 56d)g> + - - -)
" ch M? = ¢'/4 ((22 — 4d) + (1562 — 12d)q + (31438 — 36d)g* + - -)
ch M3 = ¢"/12 (dg~! + (1024 — 2d) + (22528 + d)q + (259072 — 2d)g*> + - - -)
ch M* = ¢'/12 (dg=* + (1024 — 2d) + (22528 + d)q + (259072 — 2d)g* + - - -)
where d is a non negative integer
ch M*' = ¢*?3 (g~ + 120 + 2076q + 17344¢> + 106630¢> + - - - )
- s ch M? = ¢2/3 (128 4 2048¢ + 17408¢° + 106496¢° + - - - )
ch M? = ¢*/* (128 4 2048¢ + 17408¢* + 106496¢° + - - -)
ch M* = ¢'/6 (16 + 576q + 6304¢® + 44416¢° + - - )
ch M1 = ¢'/3 (g7 + (240 + 32d) + (34936 + 256d)q + (1057216 + 1152d)g> + - -+ )
16 ch M2 = ¢'/3 ((256 + 32d) + (34816 + 256d)q + (1057792 + 1152d)g? + - - -)
ch M3 = ¢'/3 ((256 + 32d) + (34816 + 256d)q + (1057792 + 1152d)q> + - - -)
ch M* = ¢%/6 (dg=' + (1024 + 28d) + (53248 + 134d)q + (1132544 + 568d)q> + - - - )
where d is a non negative integer
ch M = ¢/ (71 + 28 + 134¢ + 568¢° + 1809¢> + - - - )
. e ch M? = ¢'/3 (8 4 64¢ + 288¢> + 1024¢° + - - -)
ch M3 = ¢'/3 (8 + 64q + 288¢> + 1024¢° + - --)
ch M* = ¢'/3 (8 4 64¢ + 288¢* + 1024¢> + - - -)
ch M' = ¢'/2 (=1 + 276 + 11202q + 184024¢> + 1881471¢% + - - -)
o | b M? = q (8 + 2048¢ + 49152¢> + 614400¢> + - - -)
ch M? = q (8 +2048q + 49152 4 614400¢> + - - - )
ch M* = g (8 + 2048¢ + 49152¢2 + 614400¢° + - - - )
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ch Mt = ¢11/12 (q—1 4+ 6+ 17q + 38¢2 + 84¢® + - )
2 | a5y g5, ) ch M? = ¢'/6 (24 8¢+ 20¢* + 48¢° + - - )
ch M3 = q'/% (2 + 8¢ + 20¢> + 48¢° + - - )
ch M* = ¢%/12 (4 + 8¢ + 28¢% + 56¢° + - - -)
ch M' = ¢"/*2 (¢! + (190 + 32d) + (5245 + 192d)q + (62150 + 800d)g> + - - - )
" ch M? = ¢°/® (dg=' + (512 — 4d) + (10240 + 6d)q + (107520 — 8d)q> + - - -)
ch M3 = %/ (dg=! + (512 — 4d) + (10240 + 6d)q + (107520 — 8d)q> + - - -)
ch M* = ¢1/12 ((20 — 8d) + (1160 — 80d)q + (19324 — 408d)g> + - - - )
where d is a non negative integer
ch M*' = ¢34 (g7 + 66 + 639g + 3774¢* + 17283¢° + - - - )
25 | 55 ; ch M? = ¢'/2 (32 + 384q + 2496¢° + 12032¢° + - - -)
ch M3 = ¢'/2 (32 + 384q + 2496¢° + 12032¢° + - - - )
ch M* = ¢/* (12 + 232q + 1596¢° + 8328¢° + - - - )
ch M*' = ¢%/12 (g7 + 266 + 21035 + 4688464 + 6094557¢> + - - - )
y ch M? = ¢/ (56 + 84164 + 2299364 + 3327296¢° + - - -)
ch M3 = ¢/ (56 + 84164 + 2299364> + 3327296¢° + - - -)
ch M* = ¢*/12 (3136 + 108416¢ + 1777472¢* + 19300736¢> + - - -)
ch M*' = ¢*?3 (¢~ + 136 + 2076q + 17472¢> + 106630¢> + - - - )
W . ch M? = ¢='/12 (2 + 268¢ + 3618¢> + 27980¢° + - - )
ch M3 = ¢°/12 (56 4 1136¢ + 10632¢° + 69392¢> + - - -)
ch M* = ¢?/3 (112 + 2048¢ + 17280¢> + 106496¢° + - - )
ch M1 = ¢'/3 (g7 + (256 + 64d) + (34808 + 2560d)q + (1057792 + 35072d)q? + - - - )
16 ch M2 = ¢'/12 ((32 + 12d) + (12608 + 1208d)q + (484960 + 19172d)g* + - - -)

ch M3 = ¢"/12 (dg~' + (1152 — 194d) + (88832 — 5251d)q + (2224256 — 62138d)g> + - - -)
ch M* = ¢'/3 ((240 + 64d) + (34944 + 2560d)q + (1057216 + 35072d)g> + - - - )

where d is a non negative integer
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ch M1 = ¢101/120 (q—1 + 17 + 88¢ + 329¢2 + 1049¢3 + - - )
. Iy 19/ ch M? = ¢*/120 (7 4 55¢ + 249¢* + 864¢° + - - - )
qss @
ch M3 = '¥/120 (2 4 30 4 118¢> + 4564° + - - - )
ch M* = ¢°9/120 (14 + 82q + 348¢° + 1142¢° + - - )
ch M1 = ¢%1/120 (g=1 + (193 + 36d) + (7872 + 278d)q + (123649 + 1682d)g> + - - -)
59/5 ch M2 = g=11/120 ((3 4 2d) + (1603 + 94d)q + (41017 + 870d)g* + - - -)
ch M3 = ¢%1/120 (dg=1 4 (592 — 33d) + 16536q — 365dg + 227464¢% — 2260dg> + - - -)
ch M* = ¢'9/120 ((40 — 13d) + (3976 — 211d)q + (81296 — 1438d)¢> + - - -)
where d is a non negative integer
ch M* = ¢7/40 (g7 4+ 3 + 9g + 22¢% + 42¢> + - - )
2 | oLy o/s ch M? = ¢'2/1% (3 + 9 + 20¢° + 45¢° + - - -)
2
ch M3 = ¢?"/40 (4 + 6q + 18¢% + 34¢> + - +)
ch M* = ¢*/% (2 + 6q + 18¢% + 36¢° + - - )
ch Mt = ¢"/120 (=1 4 147 + 3577q + 41062¢> + 319284¢° + - - )
19/5 ch M? = ¢ /120 (7 + 965¢ + 16352¢> + 156429¢° + - - - )
ch M3 = ¢*1/120 (56 + 1752q + 23408¢> + 196168¢> + - - - )
ch M* = ¢89/120 (392 4 8680q + 92104¢> + 686672¢° + - - - )
ch M = ¢3/120 (=1 4 55 + 537¢ + 3322¢° + 15665¢° + - - - )
% o IT 31/5 ch M? = ¢*/120 (26 + 377q + 2703¢> + 13959¢° + - - -)
qs2
ch M? = ¢~1/120 (2 4 106q + 864¢> + 5026¢° + - - -)
ch M* = /120 (52 + 650 + 4158¢° + 20356¢° + - - - )
ch M1 = ¢#9/120 (g=1 + (211 + 46d) + (16529 + 886d)q + (380042 + 9014d)q? + - - - )
75 ch M2 = ¢'/120 ((14 + 6d) + (5837 + 494d)q + (191143 + 6140d)g> + - - -)
ch M3 = ¢79/120 (dg=' + (792 — 95d) + (38792 — 1696d)q + (755648 — 14851d)g? + - -+ )
ch M* = ¢31/120 ((120 34d) + (15528 — 991d)q + (400984 — 10589d)q> + - - - )

where d is a non negative integer
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30

G5 LY

21

ch M' = ¢33/40 (g=1 421 4 126 + 511¢> + 1743¢> + - -
ch M? = ¢'7/40 (14 4 105q + 483¢% + 1764¢> + - - -)
ch M3 = ¢?%/40 (14 4 78¢ + 378¢* + 1288¢° + - - -)

ch M* = ¢7/4% (6 + 70q + 336¢° + 1302¢° + - - - )

61/5

ch M1 = ¢%9/120 (g=1 + (185 + 14d) + (8966 + 82d)q + (151027 + 348d)g>® + - - )

ch M? = ¢'1/120 ((26 — 2d) + (3757 — 30d)q + (84967 — 118d)q® + -+ )

ch M3 = ¢29/120 ((56 — 7d) + (3880 — 55d)q + (78952 — 249d)q® + - - )

ch M* = ¢t01/120 (dg=1 4 (1456 + 17d) + (41912 + 88d)q + (579848 + 329d)¢> + - - )

where d is a non negative integer

31

LY @ LY

28/5

ch M = ¢?%/30 (g=! + 28 + 280q + 14564> + 6384¢° + - - -)
ch M? = ¢'/6 (7 + 132q + 889¢° + 4396¢° + - - - )

ch M? = ¢"/¢ (7 4 132q + 889¢> + 4396¢° + - - )

ch M* = ¢'7/30 (49 + 476¢ + 2822¢> + 12600¢° + - - - )

68/5

ch M1 = ¢'3/30 (=1 4 (136 + 20d) + (10438 + 130d)q + (216920 + 600d)q> + - - )
ch M2 = ¢%/6 (dg=' + (1700 + 24d) + (61625 + 124d)q + (1009000 + 500d)g> + - - - )
ch M3 = ¢%/6 (dg~* + (1700 + 24d) + (61625 + 124d)q + (1009000 + 500d)g> + - - - )
ch M4 = ¢7/3% ((119 — 10d) + (13328 — 100d)q + (326026 — 440d)q> + - - - )

where d is a non negative integer

32

LY®LY

ch M*' = ¢*?3 (g~ + 66 + 1147¢ + 9578¢> + 58980¢° + - - - )
ch M? = ¢*/' (52 + 1326q + 13960¢> + 95002¢> + - - - )

ch M? = ¢'/*® (14 + 796q + 9052¢* + 66320¢° + - - - )

ch M* = ¢?/3 (182 + 2977q + 25174¢> + 154146¢° + - - )

16

ch M1 = ¢'/3 (g7 + (139 + 25d) + (19364 + 325d)q + (584345 + 2375d)q> + - - )

ch M2 = g=V/15 ((5 + 3d) + (5795 + 188d)q + (266350 + 1754d)q> + - - )

ch M3 = g'V/15 (dg=1 + (2295 — 23d) + (135150 — 436d)q + (3059880 — 2808d)g> + - - - )
ch M* = ¢'/3 ((357 + 25d) + (50388 + 325d)q + (1530663 + 2375d)q> + - - -)

where d is a non negative integer
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33

LY ® LY

12/5

ch M = ¢/1% (71 + 3 + 18¢ + 38¢> + 99¢° + - - )
ch M? = ¢*/2 (54 15q + 45¢> + 110¢° + - - - )
ch M? = ¢'/2 (5 + 15 + 45¢* 4+ 110¢> + - - -)
ch M* = ¢*/1% (3 + 16 + 48¢> + 129¢° + - - )

52/5

ch M = ¢'7/30 (¢=1 + (104 + 49d) + (3458 + 476d)q + (43160 + 2822d)q> + - -

ch M2 = ¢'/6 ((26 — 7d) + (1651 — 132d)q + (27052 — 889d)q> + - - -)
ch M3 = ¢'/6 ((26 — 7d) + (1651 — 132d)q + (27052 — 889d)g> + - - -)

ch M* = ¢?3/30 (dg=1 + (676 + 28d) + (15548 + 280d)q + (177905 + 1456d)¢>

where d is a non negative integer

+..

)

)

34

4 fieldsx

10/3

ch M' = ¢31/36 (71 + 6 + 38¢ + 112¢% + 347¢> + - - -)
ch M? = q7/36 (4 + 23¢ + 102¢% + 319¢° + - - -)

ch M3 = ¢'/12 (3 +30q + 114¢ + 384¢° + - - -)
chM4:¢W%us+Mq+%w2+w%3+~J

34/3

ch M1 = ¢'9/36 (=1 4 (54 4 50d) + (3630 + 505d)q + (56308 + 3181d)g> + - -
ch M2 = ¢31/36 (dg=1 + (703 + 78d) + (19018 + 821d)q + (240019 + 4864d)q¢>

ch M3 = q=V/* (=1 +d) + (714 + 15d)q + (19602 + 81d)g® + - - )
ch M* = ¢7/36 ((65 — 13d) + (4278 — 248d)q + (76142 — 1731d)g> + - - )

where d is a non negative integer

)

+..

)

35

4 fieldsx

14/3

ch M = ¢?/3% (=1 + 14 + 119¢ + 497¢> + 1890¢> + - - -)
ch M? = ¢'7/3% (14 + 119 + 588¢> + 2331¢° + - - -)

ch M3 = q"/12 (3 + 21¢ + 105¢% + 399¢° + - - -)

ch M* = ¢°/36 (7 + 98¢ + 547¢ + 2310¢° + - - - )

38/3

ch M1 = ¢'7/36 (=1 4 (108 + 22d) + (6469 + 178d)q + (116092 + 915d)q? + - -

ch M2 = ¢%/36 ((28 — 2d) + (3850 — 37d)q + (89110 — 182d)q> + - - - )
ch M3 = g™/ ((10 — d) + (849 — 12d)q + (18126 — 63d)g> + - --)

ch M* = ¢29/36 (dg—' + (1610 + 32d) + (52256 + 209d)q + (778690 + 956d)q>

where d is a non negative integer

+"

)

)
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Table B.4: The possible subVOAs V; in the genus G(C, c)

No. C c subVOAs V;
1 tm 8 Eg 1
16 Eg1® Eg 1, Dig 1
2 qsa 1 A
9 A1 ® Eg
3 qS2 7 E7q
15 Er1®FEgq, A1 @ Dy
4 | Lee —Yang 14/5 Ga1
54/5 Gy ® Es
5 | Lee — Yang 26/5 Fyq
66/5 Fy1 ® Eg 1, B12,1(7/10)
6 qs3 2 As
10 A21® Eg 1
7 qS3 6 Eg1
14 Ee1® Eg 1
8 Isingl 1/2 (1/2)
17/2 Bs1, A1q ® E7,1(1/2), A12® Er 1, Es1(1/2)
9 | Tsingl 15/2 B
31/2 D121(7/2), D13,1(5/2), and 33 more
10 Ising2 3/2 A1, A11(1/2)
19/2 By 1, A12® Eg1, A11 ® Eg1(1/2)
11| Tsing2 13/2 Be.1, Esa(1/2)
29/2 D121(5/2), B13,1(1) and 8 more
12 Ising3 5/2 By 4
21/2 Bio,1, B21 ® Eg
13 | Tsings 11/2 Bs.a
27/2 D12,1(3/2), Bi2,1(1), A12 ® D121, Bs1 ® Eg 1, A1 @ Di21(1/2),
B3, A1 ® Bian
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14 Ising4 7/2 Bs 1
23/2 Bi1,1, B31 ® Eg 1
15 Ising4 9/2 By
25/2 D121(1/2), B41 ® Eg 1, Bi21
16 3fieldsx 8/7 None
64/7 Bs1(9/14), A12 ® E71(9/14),
A1z ® E71(12/35), A14 ® E71(1/7), A15 ® Era
17 | 3fieldsz 48/7 Es1(6/7), Bs1(5/14)
104/7 Bs1® E71(33/14), Bs1 ® F41(81/70) and 32 more
18 gs4 1 Vi,
9 Do, Vir, ® Eg 1
19 51 7 D7y
15 B13,1(3/2), A1,3 ® D121(6/5), and 37 more
20 qna 5 Ds 1
13 Hy ® D121, A11 ® D121, D51 ® Eg 1, D131
21 qna 3 Az
11 Dy, Az @ Eg s
22 qus 8 Dg 1
16 A1 ®DB121® VHl (3/2), A%? ® A12 ® D11,1(3/2), and 47 more
23 qU2 4 Dyq
12 Dy1® Eg 1, D12
24 qs2 Q qSa 2 A%?
10 Dio,1, AT ® Ex
25 752 Q G52 6 D¢ 1
14 E%g,?v ‘71?12 ® D121, A?ﬁ ® Dia1, Dg1 @ Fs 1, Diaa, Vir, ® D3
26 qs2 ® Gsz 8 A1 ® Ery
16 A1 @ B11,1(7/2), A1,4 ® B11,1(5/2), and 17 more
27 qsa @ LY 19/5 A1 ®Ga
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59/5 | A11® D101(4/5), A1,2 ® D10,1(3/10), A13® D11, A11 ® G21 ® Es1
28 | :meLY 9/5 Ayz, A11(4/5)
49/5 E71 ®Gay, A13® Eg1, A1y @ Eg1(4/5)
29 | ¢so®@LY 31/5 A11® Fyq, Bs1(7/10)
71/5 | Byy ® Dio1(7/10), Bo @ Er(7/10), Car @ Dot Art ® Faq © By,
A1 ® Bii1 @ Vi, (7/10), Ay q ® Bi2,1(7/10), A2 ® Bia1(1/5),
Bs.1 ® Es1(7/10)
30 | g8eLY 21/5 C3,1, B3,1(7/10)
61/5 Fi1®Eq7,, C31 @ Eg 1, A11 ® B1o,1(7/10), A1 2 ® B1o,1(1/5),
Bs1 ® Es1(7/10)
31 | LY®LY 28/5 GS1
68/5 Bs 1(51/10), D121(8/5), and 96 more
32 LY ® LY 8 Go1® Fy1, A11 ® A7
16 A1, ® Bg1(13/2), A11 ® Cs1(7/5), and 953 more
33 | LY®LY 12/5 A1,2(9/10), A15(3/5), A1,4(2/5), A1,5(9/35), A1,6(3/20),
A17(1/15), A1s
52/5 FPF, Ao ® B 1(9/10), Ay @ Ex1(3/5),
A4 ® Eg1(2/5), A15 ® Eg1(9/35), A16 ® Eg1(3/20),
A17® Es1(1/15), A1 s ® Eg1
34 Afieldsx 10/3 A1 @ A7, ALl ® A12(5/6), A @ Ay 3(8/15), Ay ® A 4a(1/3),
A1 ® A15(4/21), A1 ® A1 6(1/12), A1 2 ® A1 2(1/3),
Aq2 ® Aq,3(1/30)
34/3 APT® Ag1(10/3), A1y ® Ay 2 ® Ag1(17/6), and 384 more
35 Afieldsz 14/3 Ga,2, AT ® A1 5(2/3), A1 ® A5 ® A 1(1/6)
A1 ® By @ Vi, (1/6)
38/3 A1 ® By 1(13/6), A11 ® B7,1(25/6), and 84 more
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Table B.5: The VOAs in the genus G(C, ¢)

No. C c VOAs Method
1 tm 8 Eg 1
16 Eg1 ® Eg 1, (Dis1)* 2
2 qso 1 A1 1
9 A1 ® Eg 1
3 752 7 E7q 1
15 Er1® Eg 1, (A1 @ D))" 3
4 | Lee — Yang 14/5 G2, 1
54/5 G21® Es 1
5 | Lee — Yang 26/5 Fyq 1
6 qs3 2 Az 1
10 Arq @ Eg 1
7 753 6 Eg 1 1
14 E¢,1 ® Eg1 1
8 Isingl 1/2 Ly5(0) 2
17/2 Bs 1, Eg1 @ Ly/5(0) 2
9 Tsingl 15/2 Bz 1
10 Ising2 3/2 Aqp 2
19/2 By 1, A12 ® Eg1 2
11 Tsing2 13/2 Bs 1 2
12 Ising3 5/2 By 1
21/2 Bio,1, B21 ® Ega 1
13 Ising3 11/2 Bs1 1
14 Ising4 7/2 Bs 1
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Table B.5 — Continued from previous page

No. C c VOAs Method
23/2 Bi11, B31 ® Eg 1
15 Tsing4 9/2 Bia 1
25/2 (D121 ® Ly5(0))", By ® Eg 1, Biaa 2
16 3fieldsx 8/7 None 4
64/7 Ars® Ery 2

17 3fieldsx 487 cannot determine

18 Q54 1 D11 3*
9 Dy 1, D11 ® Eg1 3
19 751 7 Drs 1
20 qny 5 Ds 4 1
13 D51 ® Eg 1, D13 3"
21 a1 3 Az 1
11 D11, A3 ® Eg 1
22 qus 8 Dy 1
23 quo 4 Dy, 1
12 D41 ® Eg 1, D121 1
24 qs2 ® qsa 2 A?ﬁ 1
10 Dio, AT ® Esy 1
% | o 6 Do 1
14 E%’f, (A%% ® Di21)%, Ds1 ® Eg1, Diag, D%% ® D121 3
26 | gso QG52 8 A1 ® Eq;y 1
27 | g¢s2®LY 19/5 A1 ®Gay 1
28 | 7:m®LY 9/5 Ars 2
49/5 E71®Gaq, A13® Eg 2

Continued on next page
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Table B.5 — Continued from previous page

No. C c VOAs Method

29 | gs2®@LY 31/5 A1 ® Fy 2

30 | g5 QLY 21/5 Cs1 2

31 | LY®LY 28/5 G33 1

32 | LY®LY 8 Go,1 @ Fy 1 2

33 | LY®LY 12/5 (A18)" 2
52/5 FE, (A1g)T ® Eg) 2

34 | 4fieldsx 10/3 (A1g @ A7)t 2

35 | Afieldsx 14/3 Gaa 2
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Appendix C

Source codes in the computations

We use the computer algebra software such as Magma and Mathematica in most of our

computation.

C.1 Code and Lattice genera computation

We use the following source codes of Magma for computing the class number in each lattice
genus. The idea is we construct the basic codes and apply the function NumberGenus(C)
to get the class number in the genus of the lattices constructed from the code C. If Magma
cannot compute the class number directly, we have to apply function Lran(L,n) to generate
new isometric lattices in the genus until we get the result. The method is explained in
chapter 4 and in Appendix A.
K := FiniteField (2);
Q := RationalField ();
I1 := LinearCode<K,1 [[0] >;
function I(n)

if n le 1 then

return 1;

else
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return ExtendCode(Il1, n—1);
end if;
end function;
function Code(C,D)
return DirectSum (C,D);

end function;

function CodeToLattice (C)
L:=Lattice (C, "A”);
@M :=(1/2)*GramMatrix(L);
return LatticeWithGram (GM);
end function;
function CodeLattice (C,D)
L := DirectSum (C,D);
return CodeToLattice(L);
end function;
function GenCompare (L ,M)
Gl:=Genus(L);
G2:=Genus (M) ;
return Gl eq G2;
end function;
function NumberGenus(C)
L := CodeToLattice(C);
G := Genus(L);
return #G;
end function;
d4 := LinearCode<K,4 [[1,1,1,1]>;
d6 := LinearCode<K,6 [[0,0,1,1,1,1],[1,1,1,1,0,0]>;
h8 := LinearCode<K,8 |[1,1,1,1,1,1,1,1]>;
e7 := LinearCode<K,7 |[0,0,0,1,1,1,1],[0,1,1,1,1,0,0],[1,0,1,0,1,0,1]>;
e8 := LinearCode<K,8 |[0,0,0,0,1,1,1,1],[0,0,1,1,1,1,0,0],
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[1,1,1,1,0,0,0,0],[0,1,0,1,0,1,0,1]>;
d8 := LinearCode<X,8 |[0,0,0,0,1,1,1,1],[0,0,1,1,1,1,0,0],
[1,1,1,1,0,0,0,0]>;
d10 := LinearCode<X¥,10 |[0,0,0,0,0,0,1,1,1,1},[0,0,0,0,1,1,1,1,0,0],
[(0,0,1,1,1,1,0,0,0,0],(1,1,1,1,0,0,0,0,0,0]>;
el5 := LinearCode<K,15 |[[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
(0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
[0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
(0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
(0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
(0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]>;
d16 := LinearCode<K,16 |[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
(0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
(0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]>;
function Bran(B,n)
for i in [1..n] do B[i] := Random(B);
end for;
v := B[1];
for j in [2..n] do v +:= B[j];
end for;
return v;
end function;
function Lran(LO,n)
B := Basis(L0);
v := Bran(B,n);

while Norm(v) mod 3 ne 0 do v:= Bran(B,n);

146



end while;

if Norm(v) mod 9 eq 0 then

vl = v;
else
Bl := [b : b in Basis(L0) | (v,b) mod 3 ne 0];
v —= (Norm(v)*Modinv (2x(v,B1[1]),3) mod 9 )*B1[1];
vl = v;
end if;

L100:= Neighbour (L0, vl1, 3);
G := Genus(L);

bool := IsIsometric(L100, L);
booll := Islsometric(L100, L1
bool2 := Islsometric (L100, L2
bool3 := Islsometric (L100, L3
bool4 := Islsometric(L100, L4

( );
( )
( )
( )
bool5 := IsIsometric(L100, L5);
( )
( )
( )
( L9);

bool6 := Islsometric(L100, L6);
bool7 := Islsometric(L100, L7);
bool8 := Islsometric(L100, L8);
bool9 := Islsometric(L100, ;
//booll0 := Islsometric(L100, L10);
//boolll := IsIsometric(L100, L11);
//booll2 := Islsometric(L100, L12);
//booll3 := Islsometric(L100, L13);
//booll4d := Islsometric(L100, L14);
//boolls := IsIsometric(L100, L15);
if bool or booll or bool2 or bool3 or bool4

or bool5 or bool6 or bool7 or bool8 or bool9
then
print ”"No”;

else
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G100 := Genus(L100);
if G100 eq G then

print ”_in_Genus._.1";
else
print ”_.in.Genus.2”;
end if;
print ” Yes i
print 7"norm” |, Norm(vl);
print "v.:=", vl;
print 7 Kissing .number.=" | KissingNumber (L100);

end if;
return L100;

end function;

C.2 Fundamental matrix and VOA genus computa-

tions

To compute the fundamental matrix of the representation in chapter 5 we mainly use Math-
ematica in the computation. We also use Magma to compute the decomposition into irre-
ducible representations.

Beginning with the set of conformal weights T} of the given MTC. We compute the
exponent matrix L that is the matrix A. Next we compute the matrix A and characteristic
matrix X'. Finally, we apply the function Fm to get the resulting fundamental matrix.

T1 = {0, h2, h3}
LN = DiagonalMatrix [Outer [Plus, Tl]— ¢/24 // Flatten]
L = Mod[LN, 1]

A = Table[f[i, j], {i, 1, Length[L]}, {j, 1, Length[L]}]
list = Variables[A];
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Reduce[{A.L.A — —17/18«A — 2x(A.L.L + L.A.L + (L.L).A) +
3x(A.L + L.A) — 4«xL.L.L + 8 L.L — 44/9«L +
8/9«IdentityMatrix [Length[L]], A.A = A}, list , Backsubstitution —> True]

chi = Table[b[i, j], {i, 1, Length[L]}, {j, 1, Length[L]}]
list = Variables[chi|;
Reduce[{31/36 (IdentityMatrix |[Length[L]] — L) —

1/864 (chi + L.chi — chi.L) = A}, list , Backsubstitution —> True]

Fm[L_, LD_, chil_] := (ID = IdentityMatrix[Length[L]];

NN = 10;

del = gxProduct[(1 — q"i1)"24, {i, 1, NN}|;

E4 = 1 4+ 240%Sum|[DivisorSigma[3, n]*xq'n, {n, 1, NN}] + O[q] " "NN;

E6 = 1 — 504«Sum|DivisorSigma[5, n]*q n, {n, 1, NN}] + O[q] "NN;

JT = (E4°3)/del — 744;

E10 = E4xE6;

Ep = E10/del;

DT = (1/Ep) ((JT — 240) (L — ID) + chil + L.chil — chil.L);

FFx = Table[Sum|[b[i, j, k]*xq"k, {k, —1, NN}], {i, 1, Length[L]}, {j, 1,Length[L]}];
Do[If [Not[i = j], bli, j, —1] = 0, b[i, j,—1] = 1], {i, 1,Length[L]},
{i, 1. Length[L]}]:

FF = o LD%FFx:

diff3 = (q"(-LD)*(q+«D[FF, q] — FF.DT)) // ExpandAll // Flatten // Normal;
list = CoefficientList [diff3, q];

erg = Solve[# =— 0 & /@ list , Variables[list |];

(FF /. erg[[1]]) + O[q] (NN — 2);

q (=LD)*(FF /. erg[[1]]) + O[q] (NN — 2))

Note that the parameter LD is the set of the diagonal entries of the exponent matrix.
We apply the following source codes to generate the possible affine Kac-Moody Lie

algebras corresponding to the dimension and the central charge.

w = {Table[{n*x(n + 2), n + 1}, {n, 1, 24}],
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Join[{{10000, 0}}, Table[{nx(2+n + 1), 2sn — 1}, {n, 2, 24}]].

Join[{{10000, 0}, {10000, 0}}, Table[{nx(2+n + 1), n + 1}, {n, 3, 24}]],

Join[{{1, 0}, {10000, 0}, {10000, 0}}, Table[{n*(2+n — 1), 2«n — 2}, {n, 4, 24}]],
Join[{{10000, 0}, {14, 4}, {100000, 0}, {52, 9}, {1000000, 0}, {78,12}, {133, 18},
{248, 30}}, Table[{10000000, 0}, {i, 9, 24}]]}:

start [dim_, c_] := {{{}, {dim, c}}}

find [k_] := Module[{c, erg}, erg = {};
dim = k[[2, 1]];
c =k[[2, 2]];
Do[If[(w[[i, j, 2]] + 1 >= dim/c) && (dim — w[[i, j, 1]] >= 0),
Dol If[(w[[i, j, 2]] + 1 >= dim/cx1) && (dim — w[[i, j, 1]] >= 0),
AppendTo[erg, {Join[k[[1]], {{i, j, 1}}],
{dim — w[[i, j, 1]],c —w[[i, j, 1]]*«1/(w[[i, j., 2]] + 1)}}]],
{r, 1, Iff{i, j} = {4, 1}, 1, 12]}]], {i, 1, 5}, {j, 1, c}]; ergl;

Kandidat[1_-] := Module[{s}, a = Select[l, #[[2, 1]] = 0 &]; b = Complement|[]l, a];
Union [{Sort [#[[1]]], #I[[2]]} & /@ Join[a, Flatten[find /@ b, 1]]]];
make[x_, y_.] := Kandidat[Kandidat[Kandidat [Kandidat [Kandidat [ Kandidat

[ Kandidat [ Kandidat [ Kandidat [start [x, y]]]]]1]]1]];

Remark: The result of the function make[dim,c| is of the form {{{{a,b,c}}, {d, e}}}
where a is the “letter” type of the affine Kac-Moody Lie algebras (1 is for type “A”, 2 is
for type “B” etc.), b is the “rank” of the Lie algebras, c is the level, d is the remainder of
the dimension, and e is the remainder of the central charge. For examples, {{{{1,1,1}}, {0,
0}}} is the Lie algebra A ; and {{{{1,1,1},{5,7,1}}, {0, 1/2}}} is the Lie algebra (with its
extension) A;; ® Fr;(1/2).

The following Magma source codes is used to decompose the representation into irre-
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ducible representations. The inputs are the S and T" matrix of a given MTC and the results
represent the irreducible components and the corresponding basis vectors. The following
source codes correspond to the MTC ¢s,. By changing S and T and using the appropriate
cyclotomic filed, we will get the result for other MTCs.

F<zeta>:=CyclotomicField (24);

a = Sqrt(F!2);

S:=[1/a, 1/a, 1/a, —1/a]l;

T:=[zeta"(—1),0, 0,zeta"5];

G:=MatrixGroup< 2, F | S,T>;

M :=GModule (G);

fact:=DirectSumDecomposition (M);

[+ [GModuleAction (x)(S),GModuleAction(x)(T)] : x in fact *];

[* [Morphism(x,M)]: x in fact *];
We use the following source codes from Kac to compute the simple current extensions.

Tensor
GA1S5
GE 71
current a b
display

Remarks: In tensor mode, we can find the tensor product of Kac-moody Lie algebras
by using the code: G [type] [rank] [level]. In the example above, it is the tensor product of
A5 ® E71. The command “current a b” computes a simple current where a and b are the
numbers representing simple modules in the combination (a, b). Then we will get the result

by using the command “display”.
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