
GRAPHS ADMITTING (1,≤ 2)-IDENTIFYING CODES

by

Julie Lang

B.S., Morehead State University, 2012

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mathematics
Kansas State University

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Sarah Reznikoff

Copyright

Julie Lang

2014

Abstract

A (1,≤ 2)-identifying code is a subset of the vertex set C of a graph such that each

pair of vertices intersects C in a distinct way. This has useful applications in locating

errors in multiprocessor networks and threat monitoring. At the time of writing, there

is no simply-stated rule that will indicate if a graph is (1,≤ 2)-identifiable. As such, we

discuss properties that must be satisfied by a valid (1,≤ 2)-identifying code, characteristics

of a graph which preclude the existence of a (1,≤ 2)-identifying code, and relationships

between the maximum degree and order of (1,≤ 2)-identifiable graphs. Additionally, we

show that (1,≤ 2)-identifiable graphs have no forbidden induced subgraphs and provide a

list of (1,≤ 2)-identifiable graphs with minimum (1,≤ 2)-identifying codes indicated.

Table of Contents

Table of Contents iv

List of Figures v

List of Tables vi

Acknowledgements vi

Preface vii

1 Introduction 1

2 Some known results for (1,≤ l)-identifying codes of a general graph 5

3 Additional results for graphs admitting (1,≤ 2)-identifying codes 8

4 Conclusion 23

Bibliography 24

A Maple code 25

B Maple Code Output 28

iv

List of Figures

2.1 A graph for which its vertex set separates all sets of cardinality 2 but does

not separate a set of cardinality 1 from a set of cardinality 2 (specifically the

vertex of degree 3 and the set consisting of the vertex of degree 3 and the

vertex of degree 1). 6

3.1 There is a set of two disjoint (1,≤ 1)-identifying codes for C6 (the set of red

vertices and the set of blue vertices), but the union of these sets does not

form a (1,≤ 2)-identifying code. 10

3.2 An example of a (1,≤ 2)-identifiable graph. Even though the set of blue

vertices in 3.2a is a subset of the blue vertices in 3.2b, the induced graph on

the former is (1,≤ 2)-identifiable whereas the induced graph on the latter is

not. 11

3.3 A (1,≤ 2)-identifiable graph containing K6 as an induced subgraph. 12

3.4 An example of a graph satisfying 3∆ + 1 = n 14

3.5 A flow chart for determining i and j given S = N [i]∪N [j] in the construction

from the proof of Proposition 8 where U = {uk|k = 1, ...,∆}, W = {wk|k =

1, ...,∆}, and X = {xk|k = 1, ...,∆}. 19

3.6 A flow chart for how to determine i and j given S = N [i] ∪ N [j] in the

construction from the proof of Proposition 10 20

3.7 An example for Proposition 10 . 21

3.8 A flow chart for how to determine i and j given S = N [i] ∪ N [j] in the

construction from the proof of Proposition 11 22

v

List of Tables

vi

Acknowledgments

I’d like to thank Dr. R. Duane Skaggs for first introducing me to the ideas of dominating

sets and identifying codes, my adviser, Dr. Sarah Reznikoff, for taking the leap to discuss

my doodles with me and for her helpful and inspiring discussions, my thesis committee for

keeping me honest, and my family for their love, their support, and their smiles as I parade

around in an “I’m into domination” t-shirt.

vii

Preface

A fascinating facet of many topics in graph theory is the nature of the problems it

poses. Many of the problems can be stated so simply that a person who has never even

heard of a graph can have a thorough understanding of the question in a matter of a few

minutes. Yet finding solutions for these same problems gets very difficult very quickly and

can require some sophisticated mathematics! Identifying codes offer an exquisite example of

such a problem. The idea is so accessible that it can be easily explained to young children,

but upon delving into the idea ever so slightly, one finds a wealth of nuance and intriguing

perplexities. Perhaps this is due to the juxtaposition of the very rudimentary nature of a

graph as the bare connections in a set of elements, combined with how incredibly varied and

complicated these networks can be. Nevertheless, this paper presents new insights into one

such problem: identifying pairs of vertices in graphs.

viii

Chapter 1

Introduction

It can be quite satisfying to work in domination. Dominating sets are diversely applicable

and can be used to detect the existence of errors in networks, surveillance, and even in

structural analysis of RNA1. Taking it one step further, identifying codes are capable of

indicating the location of an error in various types of systems and were originally developed

with multiprocessor networks in mind. One may think of a vertex in an identifying code

as a processor which contains an error-checking code that will return “1” if it and all

adjacent machines are functional or “0” if an error occurs in at least one of them. In this

way, one can detect an error in the system and (by the specific combination of processors

which are returning “0”), determine which node is malfunctioning. In a similar fashion,

identifying codes may be utilized to monitor facilities for threats2. Yet one of the most

wonderful properties of identifying codes is that one may disregard the ample applications

to consider identifying codes as purely mathematical entities, and still be left with enticing

and interesting puzzles.

To explore the subject more, we begin with some definitions. Let G = (V (G), E(G))

be a simple, undirected, connected graph. Given a vertex v ∈ V (G), we denote the set

of vertices adjacent to v by N(v) and refer to this set as the open neighborhood of v

in G. Related to the open neighborhood, we may define N [v] = N(v) ∪ {v} and we refer

1

to this as the closed neighborhood of v in G. A dominating set of a graph G is a

set S ⊆ V (G) such that each vertex of G is either in S or is adjacent to a vertex in S.

That is, ∀v ∈ V (G), N [v] ∩ S 6= ∅. For every graph, one can find a dominating set. A

specific type of dominating set, known as an identifying code C of G (or more generally, a

(1,≤ 1)-identifying code, as we will see) is a subset of the vertex set such that N [v]∩C

is distinct and nonempty for each v ∈ V (G). Two vertices u and v are said to be twins

if and only if N [u] = N [v]. A quick result is that that a graph admits an identifying code

if and only if it contains no pair of twins. Graphs for which no identifying code exists are

called unidentifiable.

When initially defining the idea of an identifying code, Karpovsky, Chakrabarty, and

Levitin considered varying two parameters: a covering radius and the cardinality of sets to

be identified3. To account for these, we may generalize our definition using I-sets:

Ir(G,C;X) = C ∩
⋃
x∈X

Br(x), where X ⊆ V (G).

The arguments G or C are omitted when understood. The set Br(x) is the set of all vertices

a distance less than or equal to r from x where the distance between two vertices is the length

of a shortest path between them. If the sets Ir(X) are distinct, we say that C separates

the sets X. If the sets Ir(X) are all nonempty for every nonempty set X ∈ V (G), C is

said to cover or dominate the graph G. If C both separates and dominates all sets X

where |X| ≤ l, then C is said to be an (r,≤ l)-identifying code. These are useful in

detecting up to l many errors in a network, when a single node can find an error in a node

a distance ≤ r away. If r = 1, such a code is occasionally referred to as an l-set-ID code,

as exemplified in the paper by Laihonen and Moncel4. When r or l are not specified, they

are assumed to be 1.

Thus far, over 150 papers have been published discussing identifying codes and related

ideas (such as locating-dominating sets, watching systems, and discriminating codes). An

2

up-to-date bibliography of papers pertaining to the subject is kept by Lobstein on his

webpage5. Those papers which investigate identifying codes generally focus on (1,≤ 1)-

identifying codes or (r,≤ 1)-identifying codes. Only a few dozen have concerned themselves

with varying l from 1. In these cases, the papers are usually concerned with constructing

graphs with particular properties or proving theorems that only apply to particular graphs

(the most common of which are binary Hamming spaces and regular 2-dimensional lattices

such as the king grid). So many papers have restricted themselves to these very structured,

regular graphs that one has difficulty finding information for a general graph!

Here, we will shed some light on (1,≤ 2)-identifying codes in a general graph. Although

this itself is a specific case of (r,≤ l)-identifying codes, any (1,≤ l)-identifying code with

l 6= 1 must also be a (1,≤ 2)-identifying code. So it makes sense to look at this case in

particular and to explore its properties. The only other assumption we will consider is

that each graph be connected. However, this restriction will not impede any application of

theorems, since results can simply be applied to each component of a disconnected graph.

For ease of use in proofs, note that from the definition given by I-sets, we find that G is

(1,≤ 2)-identifiable if and only if for all distinct sets {u, v}, {w, x} ⊂ V (G) (where u and v

may be equal, as may w and v) we have (N [u] ∪N [v]) ∩ C 6= (N [w] ∪N [x]) ∩ C. A graph

which does not admit a (1,≤ 2)-identifying code is called (1,≤ 2)-indistinguishable, or

simply not (1,≤ 2)-identifiable. Clearly, for any (1,≤ 2)-identifiable graph, the entire

vertex set V (G) is a viable (1,≤ 2)-identifying code. Hence to prove that a particular

graph is (1,≤ 2)-identifiable, one need only show that N [u] ∪ N [v] 6= N [w] ∪ N [x] for any

{u, v} 6= {w, x}. Observe that this is analogous to demonstrating that a graph is (1,≤ 1)-

identifiable by showing it contains no set of twins. The more interesting case attempts to

minimize the cardinality of such a code. The cardinality of a minimum identifying code has

conventionally been denoted γID and therefore, we will denote the cardinality of a minimum

(1,≤ 2)-identifying code as γID1,≤2 and refer to it as the (1,≤ 2)-identification number.

However, it will soon be noted that determining whether a graph is even (1,≤ 2)-identifiable

3

in the first place can be challenging, so finding minimal codes will only constitute a small

part of our discussion.

4

Chapter 2

Some known results for

(1,≤ l)-identifying codes of a general

graph

An initial look at (1,≤ l)-identifying codes might raise the question of why we have the “≤”?

For a code that identifies l many errors at a time, is it obligatory that it must separate sets

of any cardinality up to l as well? It turns out that this is not true. A code which separates

sets of cardinality exactly l must separate any two sets of cardinality less than l provided

that the sets have equal cardinality. Suppose that C separates distinct sets of cardinality l.

Now for sets A,B, each of cardinality l − 1, choose v ∈ V (G)− (A ∪ B). The sets A ∪ {v}

and B ∪ {v} are each of cardinality l. Therefore N [A ∪ {v}] ∩ C 6= N [B ∪ {v}] ∩ C, which

implies that N [A]∩C 6= N [B]∩C. Thus C also separates sets of cardinality l−1. Repeating

this argument l − 1 many times will show that A and B can be separated by a code which

separates sets of cardinality l if |A| = |B| ≤ l. Yet if A happens to be a proper subset of B,

this proof fails. Indeed, in Figure 2.1 below, there is an example of a graph whose vertex set

separates any two sets of cardinality 2, any two sets of cardinality 1, but does not separate a

set of 2 vertices from a set of a single vertex. Thus, it makes sense (and is in fact essential)

5

to use “≤” notation.

Figure 2.1: A graph for which its vertex set separates all sets of cardinality 2 but does not
separate a set of cardinality 1 from a set of cardinality 2 (specifically the vertex of degree 3
and the set consisting of the vertex of degree 3 and the vertex of degree 1).

All (1,≤ 2)-identifying codes on a graph must also be (1,≤ 1)-identifying codes. In

the same way, any (1,≤ l)-identifying code with l 6= 1 must therefore also be a (1,≤ 2)-

identifying code and satisfy any mandatory conditions and properties therein. In this sense,

one should note that the existence of twins excludes the existence of a (1,≤ 2)-identifying

code.

In the first paper on the subject, Karpovsky, Chakrabarty, and Levitin proved a tight

lower bound for γID1,≤l given n, the order of a graph. That is, γID1,≤l ≥ dlog2

∑l
i=0

(
n
i

)
e. This

proof comes from a straightforward counting argument, stemming from the fact that there

are 2n many distinct subsets of a set of n vertices. Additionally presented was a method for

constructing graphs which achieve equality in the previous statement3.

Laihonen and Moncel discuss a similar idea, describing how quickly the order of a (1,≤ l)-

identifiable graph must grow with respect to l. Let (Gl)l∈N be a family of graphs such

that ∀l ∈ N, Gl admits a (1,≤ l)-identifying code. Let nl = |V (Gl)|. Then nl = Ω(l2)

asymptotically4. Their paper does explore (1,≤ l)-identifying codes for a general graph,

focusing mostly on asymptotic bounds. In doing so, several interesting lemmas and theorems

are proven, such as the following.

Lemma (Laihonen-Moncel, Lemma 14) If G is (1,≤ l)-identifiable, then ∃S ⊆ V (G) an

6

independent set such that |S| = l.

Theorem (Laihonen-Moncel, Theorem 14) If G1 is (1,≤ l1)-identifiable and G2 is (1,≤ l2)-

identifiable, then the Cartesian product G12G2 is (1,≤ max{l1, l2})-identifiable.

It should be noted that the converse of the above theorem is not true, since G = P42P4

is (1,≤ 2)-identifiable, but P4 is not.

Laihonen and Ranto briefly discuss general graphs admitting (1,≤ l)-identifying codes

and prove that if G is (1,≤ l)-identifiable and |V (G)| ≥ 3, then the minimum degree of a

vertex in G, δ(G), satisfies l ≤ δ(G)6. This result is quite useful in general, but trivial in

the case of the (1,≤ 2)-identifying code, since it simply prohibits any leaves in a (1,≤ 2)-

identifiable graph. However, in the case of a (1,≤ 1)-identifying code, there are relationships

and bounds between the identification number γID and degree parameters (as investigated

by Foucaud and Perarnau7), so we will explore a similar relationship for the more general

case of l = 2.

7

Chapter 3

Additional results for graphs

admitting (1,≤ 2)-identifying codes

Since there is relatively little known about (1,≤ 2)-identifying codes, this section will reveal

some properties and structure of graphs admitting such codes. First, we will consider a

few different classes of graphs, then we will focus on propositions concerning features of a

general graph. Additionally, we have included several constructions that result in graphs

which are (1,≤ 2)-identifiable.

Proposition 1. If G has distinct vertices v, w with N [v] ⊆ N [w], then G is (1,≤ 2)-

indistinguishable.

Proof. Since N [v] ⊆ N [w], then N [w] = N [{v, w}]. Thus G is (1,≤ 2)-indistinguishable.

A corollary to this is that any graph which contains a universal vertex (i.e., a vertex

adjacent to all other vertices) is (1,≤ 2)-indistinguishable. Therefore, all complete graphs

and star graphs are not (1,≤ 2)-identifiable. Star graphs can also be described as K1,n, and

it turns out that we can generalize to k-partite graphs.

Proposition 2. All complete k-partite graphs are (1,≤ 2)-indistinguishable when k > 1.

8

Proof. Let G be a k-partite graph. If each part of the graph contains only one vertex, then

G is Kk, which is (1,≤ 2)-indistinguishable when nontrivial. So suppose there exists a part

of G with more than one vertex. Say u and v are distinct vertices in the same part of G.

Note that since G is a complete k-partite graph, the open neighborhood of any vertex is

V (G)− {part of G containing x}. Hence N(u) = N(v) and for any vertex w in a part of G

which does not contain u or v, it follows that N [u]∪N [w] = N [v]∪N [w] = V (G). Since G

has at least two parts, this shows that G is (1,≤ 2)-indistinguishable.

Proposition 3. A cycle Cn is (1,≤ 2)-identifiable if and only if n ≥ 7.

Proof. It is easy to check that C3, C4, C5, and C6 are (1,≤ 2)-indistinguishable. Now con-

sider Cn where n > 6. Enumerate the vertices a0, a1, a2, ..., an−1 such that vertex i is

adjacent to vertex ai+1 mod n. Hence for any vertex ai, N [ai] = {ai−1, ai, ai+1 mod n} and

thus N [ai] ∪ N [aj] = {ai−1, ai, ai+1, aj−1, aj, aj+1 mod n}. We may confirm that this dis-

tinct from any other such union of up to two closed neighborhoods by observing that the

order of Cn is greater than 6, so there must be at least one vertex am which is not in a

given N [X], when |X| ≤ 2. Let k be the smallest number such that am+k mod n ∈ N [X]

and let l be the smallest number such that am−l mod n ∈ N [X]. Then it follows that

X = {am+k+1 mod n, am−l−1 mod n}. Hence Cn is (1,≤ 2)-identifiable.

It should be noted that checking whether or not a set C is a (1,≤ 2)-identifying code is

tedious work; one must compare the I-set for each set of cardinality less than or equal to 2.

Thus finding a valid (1,≤ 2)-identifying code for a given arbitrary graph is generally quite

labor-intensive, let alone finding a minimal such code. It does not help that the union of

two disjoint (1,≤ 1)-identifying codes does not necessarily form a valid (1,≤ 2)-identifying

code. Although this may seem counterintuitive, information is lost when the two sets are

joined into one. The most obvious example of this is the C6 (see Figure 3.1), which is not

(1,≤ 2)-identifiable, but does indeed contain two disjoint (1,≤ 1)-identifying codes.

One issue that comes up when studying (1,≤ 2)-identifying codes is that it is incredibly

tedious to check n+ n(n−1)
2

many closed neighborhoods intersected with a set C in order to

9

Figure 3.1: There is a set of two disjoint (1,≤ 1)-identifying codes for C6 (the set of red
vertices and the set of blue vertices), but the union of these sets does not form a (1,≤ 2)-
identifying code.

decided if C is a valid (1,≤ 2)-identifying code. However, there are some cases in which

if C has a particular property, one may quickly rule out the possibility that it could be a

(1,≤ 2)-identifying code. One of these ways is by looking at the induced subgraph. Given a

graph G = (V (G), E(G)) and a set V ′ ⊂ V (G), an induced subgraph on V ′ is the graph

G′ = (V ′, E ′) where E ′ = {(u, v)|u, v ∈ V ′and(u, v) ∈ E(G)}. We will write G[V ′] to denote

the subgraph induced by V ′ in G.

Theorem 4. If C is a (1,≤ 2)-identifying code on some graph G, then C is also a (1,≤ 2)-

identifying code on G[C].

Proof. Let C be a (1,≤ 2)-identifying code of a graph G. Then for each pair of distinct

subsets {u, v} 6= {w, x} ⊆ C where we permit the possibility that u = v or w = x, we have

that (NG[u]∪NG[v])∩C 6= (NG[w]∪NG[x])∩C. It follows that (NG[u]∩C)∪ (NG[v]∩C) 6=

(NG[w] ∩ C) ∪ (NG[x] ∩ C). Observe that for any vertex c ∈ C, NG[c] ∩ C = NG[C][c].

Thus, NG[C][u] ∪ NG[C][v] 6= NG[C][w] ∪ NG[C][x]. Therefore, (NG[C][u] ∪ NG[C][v]) ∩ C 6=

(NG[C][w] ∪NG[C][x]) ∩ C and C is a (1,≤ 2)-identifying code of G[C].

The converse of Theorem 4 is not true, which is easy to see because attaching a leaf to

any (1,≤ 2)-identifiable graph results in a graph which is (1,≤ 2)-indistinguishable. From

this proposition, it easily follows that γID1,≤2 is bounded below by 7, since a cycle on 7 vertices

is the smallest (1,≤ 2)-identifiable graph. In addition, it should be noted that it’s possible

10

and indeed quite common for there to exist (1,≤ 2)-identifying codes A ⊆ B ⊆ C ⊆ V (G)

such that the induced graphs G[A] and G[C] are (1,≤ 2)-identifiable, but G[B] is not. See

Figure 3.2 for an example.

(a) (b)

Figure 3.2: An example of a (1,≤ 2)-identifiable graph. Even though the set of blue vertices
in 3.2a is a subset of the blue vertices in 3.2b, the induced graph on the former is (1,≤ 2)-
identifiable whereas the induced graph on the latter is not.

Corollary 5. Any cycle Cn≥7 has a (1,≤ 2)-identification number of n.

Proof. Removing any vertex from the (1,≤ 2)-identifying code C of a graph cycle Cn makes

the subgraph induced by C a tree. By Theorem 4, we are done.

Since Theorem 4 looks at induced subgraphs of (1,≤ 2)-identifiable graphs, one might ask

what kinds of induced subgraphs exist inside of (1,≤ 2)-identifiable graphs. Determining if a

particular graph is (1,≤ 2)-indistinguishable would be quicker if such graphs had forbidden

subgraphs. It turns out, however, that there are none.

Proposition 6. Every graph is an induced subgraph of a (1,≤ 2)-identifiable graph.

Proof. Given any graphG, for each vertex v0 ∈ V (G), create a copy of P6, denoted P6,v0 , with

vertices v1, v2, v3, v4, v5, v6. Add edges between v0 and the leaves of P6,v0 . This essentially

makes each vertex of G part of a unique 7-cycle. Now we will show that this graph is

(1,≤ 2)-identifiable. Observe that for any set X = {a, b} ⊆ V (G), there are 3 distinct cases:

11

First, a, b ∈ V (G), in which case N [{a, b}] contains a, a1, a6, b, b1, b6 and no other vertices

in P6,a ∪ {a} or P6,b ∪ {b}

Second, a ∈ V (G), b ∈ P6,v for some v ∈ V (G), in which case N [{a, b}] = N [{a, vi}]

and contains a, a1, a6, vi−1, vi, vi+1 (where subscripts are modulo 6) and no other vertices in

P6,a ∪ {a} or P6,b ∪ {b}. The same argument applies when b ∈ V (G), a ∈ P6,v for some

v ∈ V (G).

Third, a = vi ∈ P6,v and b = wj ∈ P6,w for some v, w ∈ V (G). Then N [{a, b}] contains

vi−1, vi, vi+1, wj−1, wj, and wj+1 (where subscripts are modulo 6) and no other vertices in

P6,a ∪ {a} or P6,b ∪ {b}. Even if v = w, these sets of vertices are separated because the

7-cycle is (1,≤ 2)-identifiable.

Since each of these cases have a unique intersection with the P6,v’s, this implies that the

constructed graph is identifiable.

Figure 3.3: A (1,≤ 2)-identifiable graph containing K6 as an induced subgraph.

12

Since the above result holds for any graph, including Kn, this shows that the maximum

degree ∆ and the clique number ω are both may be arbitrarily large. However, the maximum

degree cannot be arbitarily large when compared to the order n of the graph.

Proposition 7. If the order of a (1,≤ 2)-identifiable graph G is n and the maximum degree

of G is ∆, then ∆ + 1 + log2(∆) ≤ n,

Proof. Let v ∈ V (G) have degree ∆. Then by Proposition 1, for each vertex u ∈ N [v],

N [u] * N [v]. That is, each u must be adjacent to at least one vertex w which is not in

N [v]. Yet in order for G to be (1,≤ 2)-identifiable, each u must be adjacent to a distinct

subset of V (G) − N [v]. Let S be such a subset with N [ui] ∩ S 6= N [uj] ∩ S for ui 6= uj

where ui, uj ∈ N(v). Since |N(v)| = ∆, we must have 2|S| ≥ ∆ and thus |S| ≥ log2(∆).

Furthermore, since |N [v]| = ∆ + 1, it follows that ∆ + 1 + |S| ≤ n, so ∆ + 1 + log2(∆) ≤ n.

It is likely that the bound in Proposition 7 can be improved by finding a formula for

calculating a number c such that ∆ + 1 + c ≤ n for all (1,≤ 2)-identifiable graphs. From

the simple counting argument in the proof of Proposition 7, this c must be greater than or

equal to log2(∆), but there is a limit of how high the lower bound may go; such a c cannot

exceed 2∆.

Proposition 8. There exist infinitely many (1,≤ 2)-identifiable graphs with 3∆ + 1 ≤ n.

Proof. Fix ∆ ≥ 3. Create one vertex v of degree ∆, where no two vertices adjacent to v

are adjacent to each other. Denote the vertices adjacent to v by ui (i from 1 to ∆). Create

a path of length ∆ consisting of cannonically numbered vertices wi and connect each wi

to the corresponding ui. Repeat this by creating another path of length ∆ consisting of

canonically numbered xi’s and connecting each xi to the corresponding ui. See Figure 3.4

for an example with ∆ = 4.

The claim is that this graph is (1,≤ 2)-identifiable. This is a simple matter of case

checking. We will do so in general, with the convention that a subscript for a specific case

13

v

u1 u2 u3 u4

w1 w2 w3 w4

x1 x2 x3 x4

Figure 3.4: An example of a graph satisfying 3∆ + 1 = n

is 0 or ∆ + 1 implies that the “vertex” in question should be ignored.

N [v] = {v} ∪ {uk|k = 1, ...,∆}

N [ui] = {ui, wi, xi, v}

N [wi] = {wi−1, wi, wi+1, ui}

N [xi] = {xi−1, xi, xi+1, u}

N [v] ∪N [ui] = {wi, xi, v} ∪ {uk|k = 1, ...,∆}

N [v] ∪N [wi] = {wi−1, wi, wi+1, v} ∪ {uk|k = 1, ...,∆}

N [v] ∪N [xi] = {xi−1, xi, xi+1, v} ∪ {uk|k = 1, ...,∆}

N [ui] ∪N [uj] = {v, ui, uj, wi, wj, xi, xj}

N [ui] ∪N [wj] = {v, ui, uj, wj−1, wj, wj+1, xi}

N [ui] ∪N [xj] = {v, ui, uj, wi, xj−1, xj, xj+1}

N [wi] ∪N [wj] = {ui, uj, wi−1, wi, wi+1, wj−1, wj, wj+1}

N [wi] ∪N [xj] = {ui, uj, wi−1, wi, wi+1, xj−1, xj, xj+1}

N [xi] ∪N [xj] = {ui, uj, xi−1, xi, xi+1, xj−1, xj, xj+1}

To show that no two of these intersections of neighborhoods would be identical, we

observe the following distinctions. Let S be of the form N [i] ∪ N [j]. Given such an S, we

will show that we may uniquely determine the vertices i and j. To do so, please consult the

flow chart in Figure 3.5.

Since each closed neighborhood above is distinct from any other, this shows that graphs

14

constructed in this way have exactly 3∆ + 1 many vertices.

Corollary 9. Given maximum degree ∆, a lower bound on the order of a (1,≤ 2)-identifiable

graph lies between ∆ + 1 + log2(∆) and 3∆ + 1.

Proof. Combining Proposition 7 and Proposition 8 gives this result

As seen in Proposition 6, there are no forbidden subgraphs of (1,≤ 2)-identifiable graphs.

This was shown by taking an arbitrary graph and constructing a (1,≤ 2)-identifiable graph

containing it. However, it should be noted that there is more than one way to construct

such a graph. This variety of structures can be useful in computations, since different classes

of graphs can be easier to program into a computer. As it turns out, we can observe any

connected graph as an induced subgraph of a cycle with chords. In addition to having a

structure which is easier to work with, the construction method presented below requires

far fewer vertices than that in Proposition 6. The number of computations needed to

exhaustively check if a particular set is a valid (1,≤ 2)-identifying code grows quickly with

the order of the graph, hence keeping graphs as small as possible is quite desirable.

Proposition 10. For any connected graph G of order n > 2, (1,≤ 2)-identifiable cycle H

with |E(G)| many chords such that G is an induced subgraph of H with γID1,≤2(H) ≥ 4n.

Proof. Let G be a connected graph with order n. Choose an arbitrary ordering on the

vertices: v0, v1, ..., vn−1. For each vertex vi, create four new vertices ai, bi, ci and di. Introduce

edges (vi−1, ai), (ai, bi), (bi, ci), (ci, di) and (di, vi) where indexes are modulo n. The resulting

graph will be denoted as H and we will refer to {ai, bi, ci, di|i = 1, ..., n − 1} “additional

vertices”. Observe that H is a 5n-cycle with |E(G)| many chords. Note that since G was

connected with order greater than two, each vi has degree ≥ 3 in H; it is adjacent to di

and ai+1. Also, the additional vertices ai, bi, ci and di are all of degree 2, with the bi’s and

ci’s being the only vertices adjacent to nothing but vertices of degree 2. Thus even with

out labels, it is easy to identify which are the additional vertices. We need only show that

H is (1,≤ 2)-identifiable. Clearly from construction, the closed neighborhood of any one

15

vertex is distinct from that of any other since it contains at least 2 but no more than 3

additional vertices. So consider N [X] where |X| = 2. There are 15 simple cases to check:

If X = {vi, vj}, then N [X] contains di, vi, ai+1, dj, vj, aj+1, along with at least one other v,

but no other additional vertices.

If X = {ai, vj} then N [X] contains vi−1, ai, bi, dj, vj, aj+1, along with at least one other

v, but no other additional vertices.

If X = {bi, vj} then N [X] contains ai, bi, ci, dj, vj, aj+1, along with at least one other v,

but no other additional vertices.

If X = {ci, vj} then N [X] contains bi, ci, di, dj, vj, aj+1, along with at least one other v,

but no other additional vertices.

If X = {di, vj} then N [X] contains ci, di, vi+1, dj, vj, aj+1, along with at least one other

v, but no other additional vertices.

If X = {ai, aj}, then N [X] contains vi−1, ai, bi, vj−1, aj, bj but no other vertices

If X = {ai, bj} then N [X] contains vi−1, ai, bi, aj, bj, cj but no other vertices

If X = {ai, cj} then N [X] contains vi−1, ai, bi, bj, cj, dj, but no other vertices

If X = {ai, dj} then N [X] contains vi−1, ai, bi, cj, dj, vj, but no other vertices

If X = {bi, bj}, then N [X] contains ai, bi, ci, aj, bj, cj+1, but no other vertices

If X = {bi, cj} then N [X] contains ai, bi, ci, bj, cj, dj, but no other vertices

If X = {bi, dj} then N [X] contains ai, bi, ci, cj, dj, vj, but no other vertices

If X = {ci, cj}, then N [X] contains bi, ci, di, bj, cj, dj, but no other vertices

If X = {ci, dj} then N [X] contains bi, ci, di, cj, dj, vj, but no other vertices

If X = {di, dj}, then N [X] contains ci, di, vi, cj, dj, vj, but no other vertices.

The combination of additional vertices in any N [X] will indicate exactly which vertices

are in X. To confirm this statement, let S be of the form N [i] ∪ N [j]. Given such an S,

we may uniquely determine the vertices i and j by consulting the flow chart in Figure 3.6.

Therefore, H is (1,≤ 2)-identifiable.

Furthermore, any (1,≤ 2)-identifying code C on H must contain each additional vertex.

16

If this were not the case, either H[C] would contain a vertex of degree 1 and contradict

Theorem 4 or C would not dominate H, in contradiction with the fact that any (1,≤ 2)-

identifying code must cover each vertex of H. Since there are 4n many additional vertices,

each of which must be in any valid (1,≤ 2)-identifying code, we have that γID1,≤2(H) ≥ 4n.

If the complement of a (1,≤ 2)-identifiable graph G has a Hamiltonian cycle, the same

proof can be applied with the modification of only introducing three additional vertices

per vertex in G as opposed to the four used in the proof of Proposition 10. However,

the existence of Hamiltonian cycles in graph complements of (1,≤ 2)-identifiable graphs,

although plausibly true, is beyond the scope of this research.

One will find an example of the construction from Proposition 10 in Figure 3.7. Observe

that the construction presented in Proposition 10 must quadruple the order of a graph.

However, it turns out that not all of the additional vertices must be added if the original

graph G is already (1,≤ 2)-identifiable!

Proposition 11. If G is a connected (1,≤ 2)-identifiable graph, then there exists a (1,≤ 2)-

identifiable graph H with |V (H)| = |V (G)| + 3 which contains G as an induced subgraph.

Proof. Let G be a connected (1,≤ 2)-identifiable graph with distinct nonadjacent vertices

u and v. Define H = (V (G) ∪ {a, b, c}, E(G) ∪ {(u, a), (a, b), (b, c), (c, v)}). Clearly, G is an

induced subgraph of H, so we need only show that H is (1,≤ 2)-identifiable. Note that for

any two X1, X2 ⊂ V (G) − {u, v}, NG[X1] 6= NG[X2] since G is (1,≤ 2)-identifiable. Thus

by construction, NH [X1] 6= NH [X2]. Once again, we are left with case-checking around sets

X which are adjacent to the additiona vertices. For this, let w ∈ V (G)− {u, v}.

NH [w] ∪NH [u] = NG[w] ∪NG[u] ∪ {a}

NH [w] ∪NH [a] = NG[w] ∪ {u, a, b}

It should be noted that since G was (1,≤ 2)-identifiable, there does not exist a vertex z

with closed neighborhood NG[z] = NG[w] ∪ {u} by Proposition 1.

17

NH [w] ∪NH [b] = NG[w] ∪ {a, b, c}

NH [w] ∪NH [c] = NG[w] ∪ {b, c, v}

NH [w] ∪NH [v] = NG[w] ∪NG[v] ∪ {c}

NH [u] ∪NH [a] = NG[u] ∪ {a, b}

NH [u] ∪NH [b] = NG[u] ∪ {a, b, c}

NH [u] ∪NH [c] = NG[u] ∪ {b, c, v}

NH [u] ∪NH [v] = NG[u] ∪NG[v] ∪ {a, c}

NH [a] ∪NH [b] = {u, a, b}

NH [a] ∪NH [c] = {u, a, b, c, v}

NH [a] ∪NH [v] = NG[v] ∪ {u, a, b, c}

NH [b] ∪NH [c] = {a, b, c, v}

NH [b] ∪NH [v] = NG[v] ∪ {a, b, c}

NH [c] ∪NH [v] = NG[v] ∪ {b, c}

To confirm that none of the above are equal, consult the flow chart in Figure 3.8, where

S is of the form N [i]∪N [j] and observe that we may uniquely determing i and j. Therefore,

it follows that the graph H is (1,≤ 2)-identifiable.

Proposition 11 is particularly useful when trying to find graphs which are (1,≤ 2)-

identifiable as it may be used to create a graph with a Hamiltonian cycle for which a

(1,≤ 2)-identifiable graph is an induced subgraph. When a graph has a Hamiltonian cycle,

it can be considered a cycle with chords, which some may find computationally easier to

work with. Indeed, a brute-force program was written in Maple to exhaustively check for

(1,≤ 2)-identifiable graphs inside of cycles with chords. In the appendix, one will find a list

of all cycles on up to 11 vertices with less than or equal to a particular number of chords

which are (1,≤ 2)-identifiable, along with a copy of the Maple code used to find them.

18

v ∈ S

S ∩W 6= ∅

|U ∩ S| = 2

i, j = x
no

i = xi, j = xjyes
no

|X ∩ S| 6= ∅

|U ∩ S| = 2

i, j = wino

i = wi, j = wjyes
no

i = wi, j = wj
yes

yes

no

|U ∩ S| ≥ 3

|W ∩ S| = 1

|X ∩ S|=1

i = ui, j = ujno

i = ui, j = wjyes
no

|X ∩ S| = 1

i = ui, j = xjno

i, j = uiyes

yes
no

W ∩ S 6= ∅

X ∩ S 6= ∅
i, j = vno

i = v, j = xjyes
no

W ∩ S 6= ∅
i = v, j = wj

no

i = v, j = ujyes

yes

yes

yes

Figure 3.5: A flow chart for determining i and j given S = N [i] ∪N [j] in the construction
from the proof of Proposition 8 where U = {uk|k = 1, ...,∆}, W = {wk|k = 1, ...,∆}, and
X = {xk|k = 1, ...,∆}.

19

|S ∩ A| = 2

|S ∩D| = 2

|S ∩ C| = 2

|S ∩B| = 2

i = ai, j = djno

i = ai, j = cjyes
no

|S ∩B| = 2

i = bi, j = djno

i = bi, j = cjyes

yes
no

|S ∩ C| = 2

|S ∩B| = 2

S ∩B 6= ∅
i = di,
j = dj

no

i = ci,
j = djyes

no

i = ci, j = cjyes
no

S ∩B 6= ∅
i = vi, j = djno

i = vi, j = cjyes

yes

yes

no

|S ∩B| = 2

S ∩ C 6= ∅

S ∩B 6= ∅
i = vi, j = vjno

i = ai, j = vjyes
no

i = bi, j = vjyesno

S ∩ C 6= ∅

|S ∩ C| = 2

i = ai, j = bjno

i = bi, j = bjyes
no

i = ai, j = aj
yes

yes

yes

Figure 3.6: A flow chart for how to determine i and j given S = N [i]∪N [j] in the construc-
tion from the proof of Proposition 10

20

(a) A graph which does not contain a Hamiltonian cycle.

(b) A (1,≤ 2)-identifiable graph with a Hamiltonian cycle
containing Figure 3.7a as an induced subgraph.

Figure 3.7: An example for Proposition 10

21

a, b, c ∈ S

b ∈ S

a ∈ S

c ∈ S

i = wi, j = wj

no

S − {c} = N [v]

i = v,
j = w

no

i = v,
j = v

yes

yes
no

c ∈ S
i = u, j = wno

i = u, j = vyes

yesno

a ∈ S

S − {b, c} = N [v]
i = c, j = wno

i = c, j = vyes
no

S − {a, b} = N [v]
i = a, j = wno

i = a, j = vyes

yes

yes

no

S − {a, b, c, u, v} = ∅

S−{a, b, c} =
N [u]

S − {a, b, c} = N [v]
i = w, j = bno

i = v, j = byes
no

i = u, j = byes
no

S−{a, b, c} =
∅

i = a, j = cno

i = b, j = byes

yes

yes

Figure 3.8: A flow chart for how to determine i and j given S = N [i]∪N [j] in the construc-
tion from the proof of Proposition 11

22

Chapter 4

Conclusion

We have discussed relationships between the existence of (1,≤ 2)-identifying codes and the

structure of a graph. Many of these are most useful in determining whether such a code

exists and if so, determining if a particular set will constitute a valid (1,≤ 2)-identifying

code. Additionally, a connection between the maximum degree of a graph and the order of a

(1,≤ 2)-identifiable graph was presented, which can also be helpful in determining whether

a particular graph is (1,≤ 2)-indistinguishable or not. It should be noted that none of these

methods can be used to prove that a (1,≤ 2)-identifying code exists, but they are helpful

in quickly determining if such a code does not. Further, we explored different methods of

constructing (1,≤ 2)-identifiable graphs which contain particular induced subgraphs. This

is not particularly helpful in understanding (1,≤ 2)-identifying codes in and of themselves,

but it is incredibly useful in computation.

Clearly, there is much more yet to be discovered in the exciting field of (1,≤ 2)-identifying

codes. In an effort to help facilitate further investigation into the subject, several (1,≤ 2)-

identifiable graphs were found and minimum (1,≤ 2)-identifying codes of these were indi-

cated. Since verifying that a particular graph is (1,≤ 2)-identifiable is so computationally

intensive, it is expected that these examples will be helpful in inspiring new theorems in the

future.

23

Bibliography

[1] T. W. Haynes, D. J. Knisley, E. Seier, and Y. Zou. A quantitative analysis of secondary

rna structure using domination based parameters on trees. BMC Bioinformatics, 7:

108–138, 2006.

[2] S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg, and D. Starobinski. Robust

location detection in emergency sensor networks. Proceedings of IEEE INFOCOM 2003,

1:10441053, 2003.

[3] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin. On a new class of codes for

identifying vertices in graphs. IEEE Transactions on Information Theory, IT-44:599611,

1998.

[4] T Laihonen and J. Moncel. On graphs admitting codes identifying sets of vertices.

Australasian Journal of Combinatorics, 41:81–91, 2008.

[5] A. Lobstein. Watching systems, identifying, locating-dominating and discriminating

codes in graphs. http://www.infres.enst.fr/∼lobstein/debutBIBidetlocdom.pdf, 2014.

(Accessed July 31, 2014).

[6] T. Laihonen and S. Ranto. Lecture notes in computer science, no. 2227. Springer-Verlag,

2227:82–91, 2001.

[7] F. Foucaud and G. Perarnau. Bounds for identifying codes in terms of degree parameters.

Electronic Journal of Combinatorics, 19:28–32, 2006.

24

Appendix A

Maple code

Below is the Maple code which was used to find all graphs which are (1,≤ 2)-identifiable

and are of the form of cycles on 10 vertices up to 4 chords. A similar code was run for the

other graphs which are included in the following part of the appendix. The limit on the

number of chords was imposed to fit time restrictions. Not only does this return whether

a particular graph is (1,≤ 2)-identifiable, but it since it checks possible codes in order of

increasing cardinality, it will also find a minimum (1,≤ 2)-identifying code. Hence we know

the (1,≤ 2)-identification number γID1,≤2 for each graph. To indicate this, each vertex which

need not be in a minimum (1,≤ 2)-identification code has been colored. Some graphs have

more than one minimum (1,≤ 2)-identifying code, in which case the removable vertices are

different colors for the different codes.

The general strategy was to begin with a cycle and choose all possible combinations

of chords among the vertices. Then that graph would be tested for (1,≤ 2)-identifying

codes. This, however, resulted in several isomorphic graphs appearing in the output. These

redundancies of rotation and mirror images were drawn, labeled, and eliminated by hand

to make the list more concise.

with(GraphTheory):

with(combinat):

25

ord := 10:

mustbethisbig := ceil(log[2](.5 ∗ (ord ∗ ord+ ord) + 1)):

bidentifiable := []:

V ert := {}:

E := {}:

for i to ord− 1 do

V ert := (V ert, {i}):

E := E ∪ {{i, i+ 1}})

end do:

V ert := V ert ∪ {ord}:

E := E ∪ {{1, ord}}:

codewannabes := {}:

for i from mustbethisbig to ord do

codewannabes := codewannabe ∪ choose(V ert, i)

end do:

chords := choose(V ert, 2)/E:

allcombos := {}:

for i from 0 to 4 do

allcombos := allcombos ∪ choose(chords, i)

end do:

howmanygraphs := 0:

for picksome in allcombos do

if {{}, {1, 3}, {1, 4}, {1, 5}, {1, 6}} ∩ picksome 6= {} then

G := Graph(E ∪ picksome):

howmanygraphs = howmanygraphs+ 1:

for C in codewannabes do

nbhd := {}:

26

fail := 0:

used := :

for i in V ert do

Ian := convert(Neighborhood(G, i, closed), set):

for j from i to ord do

Jon := convert(Neighborhood(G, j, closed), set):

nbhd := (Ian ∪ Jon) ∩ C:

if (nbhd ∈ used) or (Jon ∩ C) = {} then

fail := 1: break: break: break:

else used := used ∪ {nbhd}:

end if:

end do:

end do:

if fail = 0 then

bidentifiable := [op(bidentifiable), picksome,C]: break: break: break:

end if:

end do:

end if:

end do:

27

Appendix B

Maple Code Output

Each of the graphs below is (1,≤ 2)-identifiable and has a minimum (1,≤ 2)-identifying

code indicated. If all vertices are white, then each vertex must be in a (1,≤ 2)-identifying

code. If there is a blue vertex or a red vertex, this indicates that the set of all vertices which

are not blue (or red respectively) form a (1,≤ 2)-identifying code.

Cycles on 7 vertices with any number of chords:

Cycles on 8 vertices with any number of chords:

28

Cycles on 9 vertices with up to 5 chords:

29

30

31

Cycles on 10 vertices with up to 4 chords

32

33

34

35

36

37

38

39

40

41

Cycles on 11 vertices with up to 3 chords:

42

43

44

45

46

47

48

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Preface
	Introduction
	Some known results for bold0mu mumu (1, l)(1, l)2005/06/28 ver: 1.3 subfig package(1, l)(1, l)(1, l)(1, l)-identifying codes of a general graph
	Additional results for graphs admitting bold0mu mumu (1, 2)(1, 2)2005/06/28 ver: 1.3 subfig package(1, 2)(1, 2)(1, 2)(1, 2)-identifying codes
	Conclusion
	Bibliography
	Maple code
	Maple Code Output

