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Introduction

In 1962, the first formal proposal for a beam-foil experiment
was made by Kayl. Beam-foll Spectroscopy (BFS) has since come into
wide use. Along with other applications BFS provides a new method for
neasuring the lifetimes of atomic states froﬁ which radiative transition
rates may be derived., Previously are, spark, and absorption spectra
were the Pprimary sources for thls informatlon, BFS presents problems of
its owny of course, but it does not have the problem assoclated with it
of the assumption of thermal equilibrium in the light source. In
addition, one need not worry abvout plasma stratification, which is a
gdifficultiy encountered in shock tube experiments.2

A BFS lifetime measurement is performed by passing a beam of
accelerated ions through a thin foll, As atoms pass through the foil
the valence electrons are exclited. Downstream of the foll one may
observe the number of photons emlited as a function 6f distance from
the foil, The velocity of the beam after the foll is then used to
convert the distance scale to a time scale. Thus the final result is
a plot of the number of photons emitted versus time. The slope of this
plot is the lifetime of the emitting level,

Lifetimes of atomic energy levels may be used with branching ratios
to find atomle transition probabllities, which are important to the
study of elemental abundances in the solar and stellar atmosphere, Recent
caleulations of the chromium abundance, hased on EFS lifetimes of CrI,3

make it desirable to ecalculate a simlilar abundance based on the lifetimes



2
of CrlI, The reason for this is that at solar photospheric temperatures

the principle lonic specles is Crll. Therefore; a small error in the
temperature-pressure stratification might lead to a large error in

the fractional abundance of Crl and would produce a significant error in
determining the total chromium abundance from CrI. The ratio of CrII to
total chromium abundance should be much less sensitive to small errors
in the temperature-p?essure stratification,

The work presented in thls thesis may be convenlently divided into
four phases:

1) Some question as to the accuracy of BFS measurements has been
ralsed in comnection with the energy loss incured by the beam.q The
problem has been examined to some extent in this work. The energy loss
for B9 keV Ar+ has been measured and agrees surprisingly well with
stopping power calculations.

2) In preparation for the lifetime experiments, spectral scans of
the BFS spectrum have been taken between 1900 and 4100 A. Lines
originating in Crl and CrIl exist in this region and have been identified.

3) Lifetimes of five lines representing four levels in CrII have
been measured. These measurements were made at two energies to ensure
adequale knowledge of the energy loss.

4) A preliminary calculation of the solar abundance of chromiun

has been made based on our CrII results.

Spectroscopic Background

The following discussion will define common spectroscopic term-
inology and relate the Einstein coefficient (A) to the oscillator
strength (f), and to the atomic radiative lifetime ( 4 ). The following

definitions are based on the shell model of the atom and the LS coupling



scheme, and will consider only radiative transitions of the valence
electrons.5 In this coupling scheme, a spectroscopic "term" 1s character=-
ized by the total orbital angular momentum (L) and the total spin (S)

of the valence electrons. The conventlional notation for a term is

Z5+L1 where 25+1 1s called the "multiplicity" of the texm. The multi-
plicity is the number of possible orientations of S relative to L. One
may think of the multipliclty as the number of ways L and S can couple
to form the total angular momentum, J, but this is only true for L > S,

For example, if S = 4+ and L = 0 as in the hydrogen atom, the term is

25 and there are two possible orlentations of 3, but only one possible
coupling to form J (J = %). A "level" designates one possible value
for J, and is written 2S+1LJ. One specifies the "sublevel® that an
atom is in by specifying the orientation of the atom, M. Sublevels are
degenerate ln energy except in the presence of a magnetic or electric
field., A transitlon between two sublevels produces a "line component™,
The blend of line components produced bty all transitions between two
particular levels form a "line". The set of a2ll lines produced by
transitions between two terms is called a "multiplei",

The lifetimes of atomle levels are the principal quantities with
which this work is concerned. However, the literature often refers to
measurements of "gA-values or gf-values" as a measure of electromagnetic
transition probabilities., Therefore, it is appropriate to discuss these
two quantities as an alternative means of expressing transition probabili-
ties.é

Iet us express the initial sublevel as iIu'J'M'),where ! represents

all internal quantum numbers, and the final sublevel as f{oJM). Also

let us define Ao 'J'N'e&JM) to be the transition rate for the transition



1->f, that is the transition probability per unit time for i->f.
Since, in the absence of an electrlec or magnetic field the components
blend to produce a single line, it is important to know the transition
rate for the line. For each level there will be 2J+1 sublevels,
corresponding to the 2J+1 possible values of M. To calculate the
transition rate for the level (A (&'J'-&J)) it is necessary to sum
the sublevel transition rate over all M and M'., Thus, A{ex'J'-&J)

is defined by the eguation

N(J') A(e¢'d'-o¢T) = % N(I'™M") A(&"T"M" -t JM),

where N(J'j is the population of the level and N(J'N') is the population
of each of the sublevels i(er'J'M'). Since the transitlon rate of the
sublevel is not dependent on the orientation of the atom (M'), it may
be factored from the sum over M'. Thus, supressing M' in the transition

rate,
N(J') Alec'J'-ex]) ='ZA(or'J'—aJM)ZN(J'M').
M MY
Since it is clear that
= N /NG =1,
Ml
we may wrlte

Alorgr) = ZA( o'J'- aJM).
M



In a thermally exclted source the sublevels are assumed to be

equally populated. Thus, we may write
N(J*) = (25'+1) N(J'M') = gN(J'M'),

which is the defining squation for the statlstical welght g. The
observed intensity I is equal to the number of atoms multiplied by the
transition rate. The intensities and populations are the quantities

normally measured in thermal sources. One may express the intensity as
I=0N8J) AMa'd-a]) = gA( & 'T'=ad) N(I'M").

The gA-values may be found experimentally by measuring the populations
of the sublevel and the intensity of the line,

In BFS the lifetimes of atomic levels are measured directly. Thus
a relation must be sought that wlll provide the total transition rate
(Alet 'J‘).) from one particular level. This may be done by summing all

the transition rates out of the level of interest. Therefore one has

A(a'JY) = Z A(g'dr-aJ),
J ot
The lifetime () of a level is defined to be the inverse of the
“{ransition rater, and it is the time needed for the population of the
level to decrease by 1/e of its original value.
By observing the lifetime of a single line originating in the level
of interest, when all transitlons from that level are taking place, one

1s provided with the total lifetime of the level, This is true because



the number of transitions per unit time from the level of interest
to a particular final level is proportional to the number of atoms
(N(ex 'J')) in the level at that time. But N obeys the time dependant

equation
an/at = N/5 ,

and wlll be given by NA(e&A'J'-etJ). Therefore, when all allowed
transitions occur each transition out of level (e 'J') will be
characterized by a decay constant which is the total lifetime of the
level. 1In order to transform the measured lifetime into the corres-
ponding gh-values for a specific transition. More experimental infor-
mation is needed. This is the branching ratio which is defined as the
ratio of the transitlon rate of 1(J') > £(J) to the total transition
rate.

As has been shown, atomic lifetimes and transition rates are
different quantitative measures of the same phenomena., The oscillator
strength or f-value ls yet another way of describing the rate of an

7 The oscillator strength may be defined by comparing

atomic transition,
the strength of absorption by a quantum mechanical atom with that which
would be incurred by an electron moving in a potential characterlized by
the resonant absorption frequency (4~). If, for a particular frequency,
there are N such classical absorbers per unit volume, and N' atoms per
unit volume, then f is defined by N = N'f, and is the number of classical

absorbers per atom. In terms of the transition rate the f-value 1s

given by

gf = gA mc3/8'n2e21f? = l.&&93x10-5m—2 gAﬁf-z,



where m is the mass of the electron and e is the charge on the electron
in esu, Since the natural lifetime (T) of a classically absorbing

electron is

T = 3mc3/8€:27,?2-1,.-‘a .

the preceeding equation may be written as
gf = gA T/jn

This relationship indicates the intrinsieally classical nature of
f-values., It is important to realize that the two values of g are

not the same and may not be factored from the equation,

The Energy loss: Procedure

The energy loss suffered by the chromlum lons traversing the
foil is of great importance in the calculation of the level lifetimes,
as 1t is necessary to express the distance from the foll as a function

of time. This distance 1s related to the time of flight of the ion by
i
t = d (n/2(B~aE))?,

where E and m are the energy and mass respectively of the incident
ion, d is the perpendicular distance between the foll and the axis
of the lens, t is the time it takes for the ion to traverse d, and
AE 1s the energy loss.

The problem of calculating the stopping power of a low energy

8,9

ion traversing matter has been explored by Lindhardt. ! Calculations

7



of energy losses were made using the method of Lindhardt and a program

written by Brand, Fox, and Keller.lo The results for several relevant

. cholces of lon, energy, and thickness of carbon foll are listed in

Table I,

Table I

Theoretical energy loss calculations for 89 keV Ar,
85 keV Cr, and 100 deV Cr

Ton x(_gm/cmz) E(keV) E(keV)
Ar 2.4 89 11
Cr 2.0 85 13
Cr 2,0 100 .13

In order to investigate the validity of these calculations,
the energy loss for an 89 keV Ar ion was measured, Argon was used
rather than chrbmium because the argon beam is easily preduced. Slnce
1% has an atomic number (Z=17) close to that of chromium (Z=24), the
results of t&e experiment provide a useful comparlson to the calculation.,

The beam for the energy loss experiment was supplied by a 150 kV
linear accelerator, equipped with a Physicon unlversal ion source. The
Physicon source 1s capable of producing ioniged gas from elther gaseous
or solid materials. The argon beam was produced by aklowing argon gas
rto enter the source at a rate which produced a partial pressure in the
accelerator of approximately 6X10”6mm of Hgs The gas was ionized 1in the
source and extracted from it by a -10 kV potential on an extractor
electrode. The beam was then accelerated to an energy of 89 keV, mass

analyzed at the magnet, and dlrected into the target chamber, as shown
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10
in Figure I. The argon beam was identified by maximizing the beam
current of the most intense beam at a Faraday cup just downstream of
the magnet. The argon leak was then closed; if the beam current
dropped dramatically, it was assumed that the argon beam had been
identified.

The size of the beam spot was restricted by the use of two % in.
collimators, and vertical control of the beam was accomplished with
the use of electrostatic deflectlon plates powered by a 400 V variable
voltage supply. (The plates and power supply are not shown in Figure
I.) A vacuum was maintained in the target chamber by a 4 in. diffusion
pump locaﬁed several inches downstream of the foil,

An electrostatic analyrer, bullt by Curnutte, was used to measure
the energy of the beam before and after passage through the foil, the
energy loss being the difference between the two values. The analyzer
consisted of two curved parallel plates preceded by a 0,5 mm aperture.
Particles were detected by a Bendix Spiraltron electronmultiplierx
located at the exit aperture of the analyzer,

The signal from the Spiraltron was amplified by a spectroscopic
amplifier and recorded on a TMC (Technical Measurements Corporation)
multi-channel analyzer, model 404-6, The voltage for the analyzer
plates was supplied by a Spellman high voltage power supply, and was
calibrated with an electrostatic voltmeter to + 0.1 kV (corresponding
to approximately + 1,06 keV in particle energy)s In order t0 record
the energy spectrum on the TG, the plate voltage was varled manually
at a rate of .03 kV/sec, while the TMC address was advanced internally

by 1 channel/sec.
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The beam was electrostatically analyzed Hithout a foll from which
the ratio of the beam energy to the plate voltage of the electrostatic
analyzer was determined to be 0.0945 kV/keV of particle energy.
Several energy loss measurements were then made on a single foil, It
was noted that as time elapsed the energy loss of the beam increased.
Therefore energy loss measurements were made using a new foil noting
carefully the time elapsed during each run. The foil used for these
runs had been damaged in mounting and thus small holes were present
in the foill. Under these cilrcumstances, the energy spectrum contained
a peak for the beam of particles that passed through the foll and a
second peak for the unperturbed particles, which passed through the
holes. Three additional runs were made with unused foils to make possible
a calculation of the average energy loss.

The folls used throughout the experiments were provided by the
Arizona Foll Company. The thicknesses quoted here{ ranging from
10 },agm/cm2 to 2.0 ﬂgm/cmz, are those measured by the supplier. Thin
carbon foils are not durable 1f self-supporting, and therefore were
mounted on 80% transmission electroplated nickel mesh. Several foils
could be placed in the chamber simultaneously, and could be moved in

‘and out of the beam while the system was under vacuum.

The Energzy Lossi  Results

The results of the energy loss experiment may be divided into
two parts: first, the thickening of the foils; second, the actual
enefgy loss incured by the beam.

Figure II shows the gradual thickening with time of a carbon foil,
which was inltially 2J+,Qmﬁ%m2 in thickness. This time dependence is

probably better described as a dependence on the amount of charge
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13
delivered to the foll, The incident beam was‘89 keV Ar+, and corres-
ponds to the peak of higher energy in each graph. The pressure in the
system was 10—5mm of Hg, The time 1ndicated is the time at which each
run began, a typlcal run duration being 3 minutes. The beam current
could not be measured directly while the electrostatic analyzer was
in use, but it was measured at a forward Faraday cup before the
experiment, The percentage of current transmitted to the foil from
this cup is normally about 30%, but transmission has been as high as
50%, Therefore from the measurement of 13 }lA at the Faraday cup, one
may conclude that the foll actually recelved a current on the order of
several microamperes. It was found that the energy loss increased
from 10 keV to 14 keV in a period of 35 minutes., This implies that
the fpil thickened at a rate of O.Ol5ﬁgm/cm2;min. This effect is
attributed to the presence of hydrocartons (pump, oil, etc.) in the
system. The build up. probably occurs when a molecqle very close to
the foil is hit by an incoming ion. Dissociated, the molecule may
form newlbonds with the foil or other molecules. If 1s hypothesized
that better vacuum would reduce the size of the effect. Precautions
were taken both in subsequent energy loss experiments and in the life-

- time experiments to avoid this change in foil thickness. For the energy
loss measurements each foil was used only once, while in the lifetime
experiments the time each foil was exposed to the beam was kept below
15 minutes.

An average energy loss of 10 keV was measured using Z.h}ng/cmz
foils., The folls were bombarded for approximately 2 min., The agreement
between this measurement and the previous calculation of 11 keV (see
Table I) strongly supports the valldity of our use of the Lindhardt

calculations for the chromium lifetime analyses.
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The Spectral Scans: Apparatus

The same acceleration, collimation, and pumping systems were
utilized for the spectral scans as for the energy loss experiment
(see Figure IIT)., Solid chromous chloride was used in the source to
produce the chromium beam. The Cr+ beam was identified by first pro-
ducing an Ar+ beam as in the energy loss experiment. A Hall probe was
then used to measure the magnetic field of the deflection magnet. The
voltage measured across the Hall probe 1s proporticnal to the magnetic
field. The magnetic field needed to turn an lon of given energy
througzh a specified radius of curvature 1s proportional to the square
root of the mass of the ion, Thus, for Ar* and Cr+ beams the following
formula gives the projected Hall probe voltage (VZ) for the chromium
beam, | ‘

V, = 1.14 V

2 it

where Vl is the Hall probe voltage ﬁeasured when argon was used.

An ad justable LiF lens, with a focal length of 4,5 in. at 4000 A,
was placed perpendicular to the beam line and downstream of the foil,
‘The purpose of thls lens was to focus the 1light emitted by the decaying
lons on the slits of the monochromator. Survey scans were made using
6 }4gm/cm2 foils. The position of the foil was such that a maximum
“amount of light was focused on the slits of the monochromator. The
monochromator used was a McFherson model 218 vacuum ultraviolet mono-
chromator. Two gratings were available for use wlth the monochromator;
a 1200 1line per mm grating blazed at 3000A which produced a dispersion
in the system of 26,5 A/mm of slit width, and a 2400 line per mm grating

blazed at 1500 A which produced a dispersion of 13.3 A/mm.



15

JuauiIadxe auf4aITL oUl IoI pur sueds yedloads oy} IoF snieiedde ayl--'III °*JTd

B3 wwpoaly Jjowainy dwy SN 1L da4ramadhy

jo1juon

10jD18]090 Y

19;2WO JY0 UO Y

e f)ddng
Vi lamod

411 burddaig

durng

uoisnyig

- e e e E— S e S — — — —— p— — —
— — =
—-—
— -
T
L o

¥~ dn9y £pppiDy o~ Ve

$40 JDWI||09)




16

Photons of the proper wavelength were detected with an EMI 62568
photomultiplier tube., The tube was enclosed in a copper case and
was cooled by means of a thermoelectric cooling device. A voltage
of 1.5 kV was supplied to the tube by a Fluke model 4O4M power supply.
A Nuclear Data Corporation duval channel amplifier and single channel
analyzer model ND500, was used to amplify the photomultiplier signal
and discriminate against low level nolse., This amplifier supplies
two output slgnals, positive pulses which were counted by the TMC,
and negative pulses which were monitored on a count rate meter. The
electrostatic analyzer had to be removed, and was replaced by a Faraday
cup which was used to monitor the beam current.

Two seté of scans were made:

1) Low resolution scans were made using the 2400 line/mm grating.
The monochromator slits were set at 250 microns +o produce an instru-
mental resolution of 3 A. The scanning rate was 50 A/min. and the TMC
was operated in the internal channel advance mode at one channel per
second. Thus the TNC recorded all counts produced within a wavelength
range of 5/6 Aina single channel, Seven overlapping scans of 400
channels (330 A) each wére taken to cover the wavelengths between 1900
and 4100 A, The results of these scans are presented in Figures IV - IX.

2) High resolution scans of selected regions were taken in a similar
manner using the 1200 line/mm gratingz, S1it widths for these scans
were reduced to 150 or 200 microns depending on the resolution needed.
The TMC was paced at 1 channel/sec., and the monochromator scan rate
was 5 A/min. The length of these scans was approximately 50 A. The

resulting spectra are shown in Figures IX - XITI.
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The Spectra: Analysls

The spectral analysis provides the experimenter with the basic
information needed to decide which lines are appropriate for lifetime
analysis., The procedure used in this analysls consisted of three -
steps:

1) A graph of the THC output was made (counts versus channel, and

the appropriate wavelength scale was superimposed on the graph, This

26

produced a graph of counts versus wavelength., Selected gA values (gA >

109 sec_l) of CrI and CrII, taken from the tables of Corliss and
Bozman CB),lO were then plotted on the same graph,

2) Preliminary line identifications were made on the basis of
the correspondence between intensity and gA=-value. The‘multiplets
to which these lines belong were then found by consulting Moore's A

Multiplets Table of Astrophysical Interestlz and An Ultraviolet

Multiplet Ta.ble.13 If other members of identified multiplets were

present with the requlred intensity, the identification was assumed
10 be correct. Those CrIl multiplefs ldentifiled in'our spectra which
seemed to be well resolved and of sufficient intensity for 1lifetime
analysis were noted.

3) High resolution scans were taken in the vieinity of those
multiplets chosen to detect any unresolved structure that could in-
fluence the lifetime analysis., Table II gives a list of CrI and CrIl

 lines identified.
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Table II
Lines of CrI and CrII identified in this spectrum
A gA
Wavelength . Wavelength & N Wavelength

(a) (108H530 1) (4) (108 nsec 1) (a) (lOBn%ecﬁl)

Crl )
2739.38 26, 3639.80 Tl 3050,1L Ll.
2701.07 36. 37L3.58 L2, 3118.65 32,
27h2.17 37, 37L3.88 50, 3120.37 60,
2986,00 23, 3757.66 20. 3124.94 66.
2986,47 3k, 3768.2) 18. 3132.,06 85,
3014.92 21, 380L.80 0. 3136.68 20,
3017.57 hly. 3963.69 93, 3147.23 20.
3021.56 L7. 3969.75 75, 3180.70 as.
3039, 78 29, 3976.66 7h. 3197.08 3e.
3053.88 11. 3983.91 L5 3209.18 25,
3109.34 10, 3991,12 Lb. 321740 ad,
3110.86 10, 3295.43 12,
3119,25 18, 3360,30 35,
3119.71 15, 3368.,05 L6,
3148, Ll 29. Cril 3378.34 12,
3155,15 35 2055.52 9.1 3379.83 21,
3163.76 35. 2061,1,9 Te 3h21.21 18 .
3237.73 20, 2065142 4.8 3422, 74 254
3251.,8L Wi . 2677.16 132,
3257.82 L. 2800.77 2.,
3259,98 g 2812,01 21
3346.02 29, 2818,36 214
33L6.74 28, 2822,01 15,
3L33.60 L, 2822,37 56,
3436,19 26, 2830.47 55+
34L5.62 28, 280,02 36.
3h53.33 30. 2851,36 39,
3L55.60 20, 2897.67 19,
3467.02 11, 2911.68 16,
3h67.72 19. 2921,2 33,
3L69.59 13. 2927.08 23,
3L81.30 1. 2928,15 25,
3481.,54 15, 2930,85 11
349L.97 15, 2935.14 28,
3510.54 21, 2940,22 17.
3566.,16 38, 29L6.8) 22,
3576.69 8.3 2971.91 66,
3593.4L9 7.0 2979.7h 61,
3605,33 5.2 2985,32 36,
3636.59 k3., 2989,19 49.
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The Lifetimess Experimental Procedure

In addition to the apparatus used for the spectral scans, the
lifetime experiment required the use of a stepping motor and a control
box (see Figure IIT)., The stepping motor was used to step the foil up
and down stream, the length of one step being 0.258 mm. The control
box provided stepping voltage to the motor and a channel advance to
the TMC. Since all lines chosen for analysis were in the region of
3000 A, the grating blazed at 3000 A was used for the lifetime runs,
The foils used were measured by the Arizona Foil Company to be 2.0
,Agm/cm2 in thickness.

A lifetlme measurement was made at 85 and 100 keV for each of the
lines., Spectral lines were located by setiing the monochromator for
the appropriate wavelength and maximizing the count rate meter in
that wavelength reglon. The slit widths were set at 100 or 150
microns depending upon the resolution required, The foll and the TNC
were stepped at the same rate, i.ee 104 sec/channel and 1,04 sec/motor
step. At this rate one run of 400 channels took approximately six
ninutes. —

One run consisted, in most cases, of stepping the foll upstreanm
a distance of approximately 3 cm and hack downstream the same dlstance,
This produced two decay curves for one run., In some cases the counting
rate was such that the reversal was unnecessary. During each run the
chanber was isolated from the accelerator for several seconds in order
1o measure the dark count., The dark count was measured to be from four
10 six counts per channel,

The beam current was monltored continuously 1n order to note any

large fluctuations in the amount of beam delivered to the foil., When
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changes of more than 15% occured the run was discontinued. During
most runs the beam current was quite steady and fluctuated no more than
5%. Because of the hydrocarbon bulldup mentioned in the energy loss
experiment the folls were not used for more than 15 min, The time
elapsed on each foil was noted and is stated in the heading of each

computer output (see the Appendix).

Lifetimes: The Results

Lifetime data was taken on five lines originating from four atomic
levels in CrII. Pigure XIIT is a partial Grotrlan Diagram showing the
transitions whose lifetimes were measured and posslible cascades into
these levels of interest. A measurement was made on each line at two
energies (85 and 100 keV). Each decay curve was analyzed separately,
and an average over all of the data for each level was used to obtain
the stated lifetimes.,

The 1ifetimes were calculated from the decay curves using a four

parameter least-squares fit to the double exponential function
F(t) = A exp(-t/7’1) + B exp(-t/7% ) + D,

where D is the measured dark count, and A and B are the amplitudes of
the decays. The computer program used was writiten by Brand, Fox, and
~ Keller, The Appendix 1s composed of photographic reductions of the final
computer output,

Brandlu has indicated that the fitting program will resolve a short
component and a longer lived "cascade' component, but that the program

will not resolve two short llved componenta. Therefore it is imperative

that one know whether or not strong cascading occurs. Table III provides
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Fig., XIII.--A partial Grotrlan Diagram of CrII

30



Pogaible

Table ITI

cascades Into levels of Interest

Wavelength I Level Configuration
Transitions into zuHoé% Bdu(aBH)4p
2415.23 L f“c; Pt Bd“(a%) 58
Transitions into zuHOE% 3a*(a2k)up
2404, 72 2w e 51 jdu(aBG) 5s
21,08, 02 I £ ” 13*(a’)5s
Transitions into zqFoh% 3d4(a5D)4p
3049,49 10w, 1 el*njé_ : 3d”(a5n) 55
2569,40 152,1 e“FL% 3d“(a5n)4d
2577 7H 10w eL’F% 3d4(a5n)i+d
2661.22 50w e”c,% 3d”(a5n)f4d
267,26 7w el’LGu% | 33*(a%p)ua
Transitions into zl’F"B% 3a*(a”D)ip
056,66 Bl ey %" (a”0)5s
2642, 60 23 f“'DB% 3% (27D )id
2652,78 3wyl fl’DE% sdl*( 27D Y
2567.50 5w e”FB% 38 (a7D)Md
2576.,45 2w el”FZ% 3a*(a>p )ea
2663.28 30w, 1 ell'Gu%_ 34 (270 )44
2674, 07 Bw &' 3d“(a5n Jud
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a listing of all transitions into the levels studies gilven by Keiss.15

There are no lines listed that occur in the spectral scans with a
significant counting rate. The generally low intensities given by
Kelss for these lines also suggest that one should not expect short
lived cascades. Under these circumstances 1t was assumed that no
strong cascades need be considered.

Table IV provides a summary of the lifetime analyses. The average
value for each line are given for 85 and 100 keV, and an average
lifetime for each level is stated. Note that there is no systemafic
relationship between the measured lifetime and the energy at which
it was taken. Thls indicates that if a trend of this kind is present,
1ts magnitude must be within the limits of the experiment. The errors
quoted in Table V are based on the standard deviations of the lifetime
measurements, and on an estimated possible error in the energy l1oss
of 50%, The standard deviations ran between 0.1 and 0.4 nsec., while

the error in eﬁergy loss produced an error in the lifetimes of 0.2 nsec.

Table IV,

The lifetimes measured at 85 and 100 keV for five lines

Lifetimes (nsec.)

Wavelength (A) Level 85 keV 100 keV level
L o 1 _
2971.9 z H 6% 543 46 5.0 + 0.6
29797 | 2053 4.9 a7 4.8 + 0,3
3124,9 2"FO3% 5.0 4.9 5.0 + 0.4
3132,1 2POus 4.9 5.2
b9 + 0ok

3180, 8 2Pl 4,8 k.7
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Since branching ratlo measurements are needed before gf values

can be derived for the transiticns, the BF data cannot be compared
directly to previous measurements of gf-values, To avoid this difficulty,
lifetimes were derlved from all gA-values given by CB for transitions
out of the level of interest. A comparison was then made on the basis
of these lifetimes (see Table V). These lifetimes were derived by
sumnming all gA-values for transitions out of the level of interest

and dividing by the g of the upper level. This 1s the total transition
rate out of the level and its ilnverse is the lifetime of the level.

The ratio of these lifetimes to BFS lifetimes should be equivalent

to a ratio of gf-values. Thus the ratios of gf-values given in Table

V compared to the ratio of lifetimes provide; a method qf inter-
comparing our lifetime results with gf—valueé measured by other authoxrs,
Shacklefordlu has measured a gf-value for one line and Byard15 has
measured the gf-values for two lines originating from the zuFOM% level,
It may be seen‘that these results glve gf/gf(CB) in fair agreement

with our 'gf (cB)/ ¢ ( BF ) for that level. |

One shdﬁld note that the ratio of lifetimes 1is a factor of two

higher for the lines at 2971.9 A and 2979.7 A, The reason for this
‘discrepancy may be that some transitions out of the ZQHO term were

not seen by Corliss and Bozman. If this were true j’(CB) would be
reduced, produqing a more uniform ratio of lifetimes. In particular,
lines at 2297.17 and 2307.19 A were not observed in the present spectirum
nor does CB list gA-values for them, but Kelss lists them wlth sub-
stantial intensities (Table VII-VIII). This result may indicate

experimental problems in observing this part of the spectrum (2250 to

2650 A) since there seems to be no structure in this region (see
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Figure V), Although, the same arguments could be made for the
zuFo levels, it 1s believed not to be the case slnce there 1s good
agreement wlth gf-values measured by Schackleford and Byard gf-values

for those transitions.

Table V.

A comparison of the measured lifetimes to the results
of CB, Shackleford, and Byard

Wavelength "’(BF; ')’(CBg
(n (nsec) y(cB)/(2F) gf(0sU)/grf(CB) af(s)/ef(CB)

(4) sec
2971,9 5.0 1,8 .36
2979.7 4,8 1.7 .38
3124,9 5.0 0.8 .16
3132.1 . 09 «10
4.9 O'? ulu‘ i
3180,8 «16

The Solar Photospheric Abundance of Chromium

Two measurements are necessary before the calculation of the
chromium abundance is possible. First, the branching ratios for the
measured levels must be found, and second, the eguivalent widths for
the llnes out of these levels must be measured in the solar spectrum.
The branching ratlos can easily be measured with conventional light
sources. Problems exist in the measurement of the equlvalent-width of
ultraviolet lines in the solar spectrum., The intensity of the continum
in the UV region is low and the number of lines is large. Thus the
exact height of the continum is not well known, This 1is not as much

of a problem in the visible region and, as can be seen in Tables VI-IX,



Table VI

4 o

Transitlions from the z H

51 (Bdu(ajH)hp) level

Solar
Wavelength I gh Level Configuration Eq. Width
3552, 42 2 szj% 347 +
3540.23 2 szh% 34° +
342,98 1 a2H5% 3% (a7H)bs +
w21.62(2) 5 a?Hu% 3a*(a’H)bs 2,3 nin,
3315.28 12 bPG5% 3d”(a3c)4s blended
3307, 02 50 9.2 via . 3d”(a3c)us blended
3225, 44 8 B'F ; 347 blended
3063, 82 7 ayFu% 3d4(a3H)as 78 n
2988, Ol 12 34H6% 33 (a1 s blended
2979, 73% 80 61 a”HS% 3d4(a3H)4s ?
2972,67 7w auHu% 30 (o H)ls ?
2307.19 35 2l %7 +
2306, 81 10 aFGB% 347 +

*L1fetime measured in this experiment.

+Not observed according to MMH.

?Principal contributor to blend.

@ .2

2

4 o
a H5%—z H 6L may be present.

35



Transitions from the z H

Table VII
L o

64 (3du(a3H)4p) level

36

Solar
Wavelength I gA Level Configuration Eq. Width
4195,40 3 .bzlé% 3d”(a11)rs 1l m
3529.73 2 thﬁ% 33 +
3421.62(3) 5 azHB% 3d”(a3ﬂ)4s 23
3295.42 50 12 hFCS% 3d“(a3G)us 53
2971,90% 75 66 a4H6% 3d“(a3ﬂ)us ?
2950,69 i a216% 3d5 +
2950.10(%) 10 a215% 337 ¥
2297,17 50 a”G5% 37 +
¥Lifetime measured in this experiment.
+Not obsexrved by M,.M.H.
?Principal contﬁihutor to blend.
(a)aZH é-zqu 1 transition may also be present,
(b). & 2.0

b'G 1=z I _4 transition may alsc be present.
bz 5%



Transltions from
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Table VIII

the zuFoj% (3d4(a3D)4p) level

Solar
Wavelength I gA level Configuratlion Eq. Width
5502, 07 40 v’ g 34 (2’ s 23
572,60 12 b4G3% BdLL(aBG)i#s +
5280, 08 30 bl*rvz% 3a° blended
5209,88 50 bz‘LFL'% a0 18
5271,99 75 bb(Fj% 347 blended
4860,20 20 aun% BdLP(a,jF)LLs 9
4eus.2l 75 a.qu% 338 (a%F s 52
4836.22 25 ab’Fz% Bdb’(a.BF)lLs blended
3738, 38 35 cj“nz_% 3d4( a.3D Vs blended
373656 1 By %0 "
3336.16 2 a'hy 30 "
3197,08 75 32 e ” 337 blended
3196,93 © 20 al‘”cj% 33° blended
3196.35 3 a'e,y 30 39
3147.22(5') 50 20 a'D . Bdu(asD)if—s blended
312k, 9l 40 66 al*nz% 3% (a”D)us 149
254,26 15 aén%_ 30 (a”D s +
2531, 84 25 aén}%_ 3du'(a.5D Vs +

¥Iifetime measured in this experiment.

+Not observed by MMH.

?Prinecipal contributor to blend.

(a) b
b Gy 1=
I

4
EO@A transition may be present.
2



Transitions from the ZqFoqé (3du(a3D)hp) level
F

Table IX

38

Solar
Wavelength 1 gA Level Configuration Eq. Width
7311, 60 2 cb‘D}% BdL"(a,BD)L;s 5
6478, 37 50 v 5 3d‘*(a3a Yis +
5455, 86 8 hb(GL'%_ 38427 s +
5237.35 100 b“Fu% 347 49
5232.54 20 Wry 30 12
h82k,12 100 a.L*FL% BdL*( 2 F s 9
4812,34 25 a¥F 1 3d4(a3F)l+s L1
371518 25 v s 347 58
3181, 42 20 4.6 a”G@% 3¢9 blended
3180, 70% 75 35 a'c 5 347 blended
3132, 05% 100 85 aLLDB% 34 (%D s 137
2534.33 40 6ult aén,% 3a*(a7D)ls "
2522,01 I aénj% 3a™*(a5D s %

*¥Lifetime measured in this experiment.

+Not observed by M.M.H,

?Prinecipal contributor to blend.



which are a compilatlion from Ke:lssll‘L and Moore, Minnaert, and
Houtgastls, lines from the levels measured do exlst 1n the visible.
Thus, a relatlvely straight forward experiment to measure therbranch—
ing ratios will produce many gf values for lines which may be useful
in the solar abundance problem,

Although, the measured lifetimes alone do not determine the
abundance unambigouously, one may derive an approximate abundance by

19,20

comparison, Warnexr has measured gf values in CrII and has
derived an abundance of log NCr = 5,47, where log NH = 12, based on
those gf-values, Warner's gf-values may not be compared to the BF
lifetimes directly, as there are no lines in common, but a comparison
of both measurements to CB will produce a correction to the abundance
given by Warner.

Table X compares gf-values taken from CB with those of several
authors and with the results of this experiment., The value of 0.82
dex for the CB-BF comparison was arrived at on the assumption that
strong transitions out of the szo levels do exist and were not
observed by CB. The correctlon is thus the log of the average of the
two ratios listed in Table VI for the zuFo transitions.

The value obtained by Cocke, Stark, and Evan53 based on EFS
lifetimes for neutral chromium is 5.80. The correction of 0.82
dex from the present study would indicate a value of 5.54 foi log NCr'
Although the branching ratios must be measured before any firm con=-
clusions are possible, one might seek an explanation for the large
disparity in the gf-values of log N,

equilibrium for chromium or in the abundance of 5.47 given by Warner,

. elther in the lonlzation

39



Table X

A comparison of the measured lifetimes

to the gA values of others

log gf(CB-Warner)

log gf(CB-Byard)

log gf(CB=Shackleford)

log gf (CB-Huber and Tobey)

log gf(CB-Wolnik et al)

log

(BF-CB)

0.75 dex
0.89 dex
0.95 dex
0,94 dex
0.60 dex

0.82 dex

LG
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Part one of the 100 keV lifetime fit for the
line at 2971,9 A
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Figure XIV. B.

Part two of the 100 keV lifetime fit for the
line at 2971.9 A
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Figure XIV. C,

Part one of the 85 keV lifetime fit for the
line at 2971.9 A
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Flgure XIV. D,

Part two of the 85 keV lifetime fit for the
line at 2971.9 A
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Figure XV, A,

Part one of the 100 keV lifetime fit for the
line at 2979.7 A
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Figure XV, B,

Part two of the 100 keV lifetime fit for the
line at 2979,7 A
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Figure XV, C.

Part one of the 85 keV lifetime fit for the
line at 2979,7 A
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Figure XV, D,

Part two of the 85 keV lifetime fit for the
line at 2979.7 A
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Filgure XVI. A.

Part one of the 100 keV lifetime fit for the
line at 3124.9 A
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Figure XVI. B,

Part two of the 100 keV lifetime fit for the
- line at 3124.9 A
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Plgure XVI, C, Part one of the 85 keV lifetime fit for the
line at 3124.9 A
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Figure XVI. D.

Part two of the 85 keV lifetime fit for the
line at 3124.9 A
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Figure XVII. A. The 100 keV lifetime fit for the
line at 3132.1 A
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Figure XVII. B.

Part one of the 85 keV lifetime fit for the
line at 3132.1 A
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Figure XVII. C.

Part two of the 85 keV lifetime fit for the
line at 3132.1 A
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Figure XVIII, A, The 100 keV lifetime fit for the
line at 3180.8 A
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Flgure XVIII, B. The 85 keV lifetime fit for the
line at 3180,8 4 '
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The lifetimes of four atomic levels of CrII have been measured
at 85 and 100 keV using beam-foil methods. In preparation for the
lifetime experimént the beam~foil spectrum of 85 keV chromium from
1900 to 4100 A was taken. The energy loss incured by 89 keV Ar+
passing through a 2.4 Pgm/cm2 carton foll has been measured and
found to be in adequate agreement with stopping power calculations,
From our lifetime measurements a prellminary solar abundance for
chromium of log N

oy 5.54 (where log N, = 12,0) has been calculated,
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