Efficient data access for Open Modeling Interface (OpenMl)
components

Tom Bulatewicz, Daniel Andresen

\ How to cite this presentation

If you make reference to this version of the manuscript, use the following information:

Bulatewicz, T., & Andresen, D. (2011, July). Efficient data access for Open Modeling
Interface (OpenMI) components. Retrieved from http://krex.ksu.edu

Citation of Unpublished Symposium

Citation: Bulatewicz, T., & Andresen, D. (2011, July). Efficient data access for Open
Modeling Interface (OpenMI) components. Paper presented at the 2011 International
Conference on Parallel and Distributed Processing Techniques and Applications, Las
Vegas, NV.

This item was retrieved from the K-State Research Exchange (K-REX), the institutional
repository of Kansas State University. K-REXx is available at http://krex.ksu.edu

Efficient data access for Open Modeling Interface (OpenMI)
components

Tom Bulatewicz, Daniel Andresen
Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA

Abstract— Data management for linked (or coupled) simu-
lation models can be a challenging task when deploying to
grid environments. In cases where the linked models conform
to a standard interface for data input and output, general-
purpose data providers can be used to supply data to the
models from online sources, reducing the complexity of the
deployment. We have developed a data provider component
that conforms to the Open Modeling Interface (OpenMI)
that is suitable for use on computational grids. Through
the application of three techniques, caching, prefetching,
and pipelining, the component efficiently retrieves data
from standards-based web services and delivers the data
to OpenMI-compliant models. Each technique resulted in
varying performance improvements both within a single
simulation and across multiple simulations concurrently
executing on a cluster. In this paper we report on the design
of the component and the evaluation of its performance.

Keywords: OpenMI, data access, web services, modeling and
simulation

1. Introduction

Computer models require input data in order to perform
simulations. This data may originate from a variety of
sources, may vary in space and time, and may be used
during the initialization of a simulation and during its
execution. In the case of linked (or coupled) models that
execute independently and cooperate to collectively perform
a simulation, each model requires its own input data. Models
often have unique input data formats requiring inputs to be
individually prepared for each model prior to the simulation
run and often results in duplication of the data that is
common between models. These input datasets must be
deployed with the models to the execution environment, such
as a computational grid. To obviate the need to prepare input
data in model-specific formats and to increase the portability
of datasets between models, standard data formats have been
developed (e.g. netCDF [1]). To obviate the need to deploy
datasets to the execution environment and to provide access
to real time measurement data, data distribution frameworks
have been developed that allow models to access online
data sources (e.g. via web services). In the general case,
models must have the capability to use these standard
data formats and data distribution frameworks. In the case
of models that are software components with well-defined

input/output interfaces (e.g. CCA [2]), data access using
these standards can be implemented in general-purpose data
components which can be linked to model components. Such
data provider components play an important role in any
linked modeling environment.

The Open Modeling Interface (OpenMI) [3] provides a
standard way for software components to exchange data with
each other and coordinate their execution. It defines a set
of capabilities that a component must possess in order for
it to be linkable to other components These capabilities are
both descriptive, to support the task of specifying component
interactions at the domain level, and functional, to support
the execution of a set of linked components. To fulfill the
descriptive requirements, a component must be capable of
providing a list (via a function call) of the domain quantities
that it can provide and those that it uses as input, along with
the units and spatial distribution of each. These are called
output exchange items and input exchange items, and in the
case of model components there is typically one output item
for each quantity that it simulates and one input item for
each of its inputs. To fulfill the functional requirements, a
component must possess a GetValues function through which
it provides data (that corresponds to the exchange items) at
runtime.

The GetValues function has three parameters and returns
a set of values as illustrated in Figure 1. The parameters

18915
............ 18921
(J
18923
18921 @18923
J\f 18956 | 12/1/2010 | | temperature
spatial element . E - elementset T - time Q - quantity

conceptualization

GetValues(Q, T E)

67.2
731 GetValues(Q,T,E)
68.2
es9| i 7 4
_ -

V - valueset .

Fig. 1: OpenMI pull-based execution. Solid lines indicate
function calls and dashed lines indicate the flow of data.

collectively identify a specific set of values that represent
the state of a quantity at a single point in time over
some spatial distribution. The quantity is described by a
textual identifier, the time by a modified-Julian date, and
the spatial distribution by a list of spatial elements called an
elementset. An elementset is a list of geo-referenced spatial
elements such as a point, line segment, or polygon. The
GetValues function returns a list of floating-point values
called a valueset. The values in a valueset describe the state
of a single quantity at a specific point in time where each
individual value corresponds to a different spatial element
(based on array index).

The GetValues function not only provides a means for
the exchange of data between a set of linked components
(called a composition) but it also provides a means for
their coordinated execution at runtime. A special component
called a trigger begins by invoking GetValues on one of
the components. The first time GetValues is invoked on a
component it begins executing (e.g. performing time steps)
from its starting simulation time. The component executes
until it requires input values for one of the quantities on
one of its links, at which point it invokes GetValues on
the component at the providing end of the link and blocks.
The component blocks until the call to GetValues completes
and the values are returned, at which point it continues
its execution. The components take turns executing and
pull data from each other until the simulation completes.
A component only performs time steps as-needed in direct
response to a call to its GetValues function.

Compositions can be created in a highly automated way.
Using visual software tools, a scientist chooses a set of com-
ponents of interest, interactively specifies the links between
them, and then executes the simulation. Each link maps an
output exchange quantity from one component to the input
exchange quantity of another component and links can be
uni-directional or bi-directional.

In this work we present the design and evaluation of a
general-purpose Data Provider Component (DPC) that is
capable of delivering data from online sources to OpenMI
components. We describe the design and implementation of
the DPC in the following section and present our experimen-
tal results in Section 3. We review related work in Section
4 and present our conclusions in Section 5.

2. Methods

2.1 System Overview

Figure 2 illustrates the movement of data through a
distributed data delivery system for linked model compo-
nents. Compositions of linked components execute on cluster
nodes. Each composition includes a DPC that retrieves data
from web services and provides it to the other components.
DPCs within compositions that are running on different
cluster nodes share data with each other. When a component

web
services

7 \\
Pttt Tssessmmees 7'/ """""""" \""""""""""",
: cluster / \ :
. A :

node

Fig. 2: System overview.

needs input values it invokes GetValues on the DPC for the
needed quantity, time, and spatial elements and the DPC
returns the appropriate valueset. The DPC calls web services
for a specific quantity identifier, time, and list of location
identifiers (which correspond to elements) and then extracts
the valueset from the response. Thus the content of a web
service call mirrors that of a GetValues call. We assume that
each spatial element has a unique identifier, although this is
not enforced by the OpenMI. Any web service that can be
queried for a quantity, time, and list of locations and returns
a list of values could be used as a data source for the DPC.

Within the context of water resources, there are several
standards for data models to store observations data and
web services to access them [4]. The WaterOneFlow [5] web
service API has recently been utilized by several government
agencies (http://hiscentral.cuahsi.org) and has a GetValues
method that can be queried for an individual quantity in a
single location or region for a timespan. Time series data is
returned in XML that conforms to the WaterML schema [6].

The initial implementation of the DPC supports SOAP
calls to WaterOneFlow web services and to a custom variant
that allows multiple quantities and locations to be queried
in a single call which is not currently supported by the Wa-
terOneFlow API but is necessary to evaluate the performance
of the DPC. The implementation supports parsing WaterML
responses via SAX. An example of a request and response is
shown in Figure 3. The DPC’s configuration file defines its
output exchange items (i.e. quantities and elementsets) and
the information about each web service, such as the URL,
API, response format, and which quantities can be queried.
The implementation can be extended to support other web
services and response formats.

If the DPC were to make a web service call on each
invocation of GetValues then the rest of the composition
would be paused for the duration of the call, adding to the
overall runtime of the simulation. In addition, invocations
by different components for the same values would result in

<GetValues>
<variables>
<variable>Temperature</variable>
</variables>
<locations>
<location>72312003871</location>
</locations>
<times>
<time>2010-11-01T00:00:00</time>
</times>
</GetValues>

Web Service Request

<timeSeriesResponse>
<timeSeries name="DailyWeather">
<sourcelnfo>
<dataSetldentifier>DailyWeather</dataSetldentifier>
<dataSetLocation>98651</dataSetLocation>
</sourcelnfo>
<variable>
<variableCode>1</variableCode>
<variableName>MaxTemperature</variableName>
<units>degrees</units>
</variable>
<values>
<value dateTime="2010-11-01T00:00:00">56.2902</value>
</values>
</timeSeries>
</timeSeriesResponse>

Web Service Response

Fig. 3: Example web service request and response (attributes
and SOAP envelope removed for clarity).

duplicate web service calls which would also increase the
overall runtime and inefficiently utilize network bandwidth
and other resources. To minimize the effect that the DPC has
on the execution of the composition in terms of runtime and
resource use, the DPC must (1) minimize the time it takes for
GetValues to return a valueset and (2) minimize the number
of times a valueset is retrieved from a web service.

In the ideal case there would be zero wait time and
each valueset would be retrieved from a web service once.
To these ends, the DPC utilizes three strategies: caching,
prefetching, and pipelining. All valuesets are retrieved from
web services once and are then cached so that they are im-
mediately available for subsequent invocations of GetValues
by other components (within and across compositions) and
subsequent executions of the composition. Since components
typically advance forward through simulation time, valuesets
are prefetched so that they are available in the cache before
they are requested. Multiple web service calls are performed
simultaneously in a pipelined fashion to maximize use of
available network bandwidth.

The DPC consists of a fetching module and a caching
module as illustrated in Figure 4. The fetching module
identifies the valuesets that the other components need,
retrieves them from the web services, and then stores them in
the cache. The caching module handles calls to GetValues by
retrieving the appropriate values from the cache, assembling
the valueset, and returning it to the calling component.

Fetching | Caching

inspect |-

lJ

’

predict

request

{1

!
1
|
|
|
|
|
|
|
|
|
1
[i

web
services)~~~

ozl

Fig. 4: Operation of the data provider component. Solid lines
indicate function calls and dashed lines indicate the flow of
data.

2.2 Caching

During the execution of a composition, several compo-
nents within a single composition may request the same
valuesets from a DPC. Components in independently exe-
cuting compositions on different cluster nodes may request
the same valuesets from different DPCs. In both cases it is
advantageous for the DPCs to cache the valuesets that they
retrieve from the web services and to share those valuesets
across all the DPCs that are executing simultaneously in
different compositions across a cluster. The same valuesets
may be needed on subsequent executions of the same com-
position so it is also advantageous for the cached valuesets
to be persisted between executions.

To serve these needs, a clustering, scalable data distri-
bution platform (Hazelcast [7]) is utilized by the caching
module to store the values retrieved from the web services.
Each DPC has an instance of the platform peer that is
managed by a set of threads within the same process as
the DPC. Instances dynamically cluster and discover peers
via multicast and communicate via TCP/IP. Thus, there are
no servers involved and each DPC is self-sufficient and
shares data directly with other DPCs. The data structure
used to store the values is a distributed map. Entries in
the cache are evenly partitioned onto the currently executing
instances across the cluster (i.e. DPCs). Each instance uses a
private database file [8] to persist the cache entries between
executions.

The valuesets that are retrieved from the web services
are decomposed into individual values and stored in the
distributed map. Storing the individual values allows the
map to assemble different valuesets ad-hoc as they are
requested by model components, maximizing the reusability
of data and the effectiveness of the cache. Alternatively the
complete valuesets could be stored as single entries in the
map but this would limit the reusability of the data to cases
where subsequent requests are for the same combination of

quantity, time, and elementset.

The DPC may be linked to several model components
that use different time steps, different input element sets,
and different units. It is the responsibility of the providing
component (the DPC) to apply necessary transformations
(units, spatial, temporal) to meet the input of the requesting
component (the model). To maximize the effectiveness of
the cache the DPC caches the values retrieved from the
web service and when a component requests a valueset the
appropriate values are extracted from the cache, transformed,
and provided to the model. Alternatively the DPC could
cache the transformed valuesets but this would limit the
reusability of the data to cases where subsequent requests
are for the same combination of quantity, time, elementset,
and units.

Entries in the distributed map are tuples of the form
<value, availability> and are keyed by a textual string that
uniquely identifies a value by the concatenation of its time,
quantity identifier, and element identifier. The value is a
floating point number and the availability flag is a boolean
that indicates whether the value has been retrieved (true)
or a web service call for the value is in progress (false).
The contents of the map are persisted to the database upon
completion of a composition run and then restored into the
map upon startup.

When GetValues is called by a component, the DPC
checks to see if the value for each element of the requested
elementset exists in the cache by creating the key and then
performing a get operation on the distributed map using the
key. If values for any of the elements are missing then the
valueset is not available and the cache waits for a period of
time before checking again (during which the composition
is blocked). The cache relies on the fetching module to
populate the map with values.

2.3 Fetching

The simulation of physical processes (especially those for
which the OpenMI was initially designed) typically involve
the calculation of output quantities over a simulation period.
The components step through simulation time and periodi-
cally request values from each other. The frequency at which
GetValues is invoked on the DPC by other components is
likely not the most efficient frequency for the DPC to call the
web services. For this reason the DPC prefetches valuesets
to minimize the time that the other components must wait
when calling GetValues on the DPC. Multiple web service
calls are issued simultaneously in a pipelined fashion to take
advantage of multi-core and multi-host web services.

Throughout the execution of a composition the compo-
nents are at approximately the same point in simulation time.
This is because components typically require input data that
reflects their current simulation time which requires that the
components providing the inputs advance to that same point
in simulation time. Prefetching is thus most effective when

it is done such that the data for all components is prefetched
to the same future point in simulation time.

Prefetching relies on knowledge of what data will be
needed before it is requested. It is not possible for the DPC
to obtain this information directly from the other components
as this functionality is not supported by the OpenMI. The
DPC predicts what valuesets will be requested in the future
by observing what valuesets have been requested in the past.
Components that use a fixed-length time step request data
from the DPC at fixed intervals making it possible for the
DPC to identify these components and determine the length
of their time steps. In such cases the DPC can accurately
predict the valuesets that will be requested in the future. It
is more difficult for the DPC to predict the data needs of
components that use a variable-length time step and is not
addressed in this work.

Web service calls request different combinations of quan-
tity, time, and spatial elements, and thus these calls may
be coalesced along any or all of these three dimensions.
Since our goal is to minimize wait time, the coalescing
strategy should group together similar requests as much as
possible without inducing additional wait time. Of the three
dimensions, only spatial coalescing is guaranteed to not incur
any unneeded wait time because the DPC cannot provide
a valueset to a model component unless all values for the
entire elementset have been retrieved. Coalescing by time or
quantity may result in a model component waiting a longer
period of time for a valueset that is part of a larger request
than it would have if the valueset was requested individually.
For this reason the DPC only coalesces web service requests
spatially such that each valueset, corresponding to a single
quantity and time over a complete set of spatial elements, is
requested in each web service call.

2.3.1 Runtime Operation

The fetching module manages a fetch thread for each web
service. It is responsible for identifying the valuesets that
must be retrieved from the web service and issuing the web
service calls to retrieve them. When the state of the fetch
thread changes (as a result of a call starting or completing) or
a cache miss occurs, the fetch thread attempts to identify and
download as many valuesets as possible. A single quantity
may be provided along several links at different temporal
intervals or different spatial elementsets, so each link must be
checked for necessary valuesets individually. Each attempt
makes a series of passes through the links until no valuesets
are found or until there are no available resources. On each
pass, the earliest valueset (either by request or predicted)
needed by a link that is not already in the cache is identified
and a web service call is started (at which time placeholder
entries (availability = false) for the values are created in
the cache to indicate that they are being retrieved). Multiple
DPCs may request intersecting valuesets in which case only
partial valuesets are requested from the web service.

Resource usage maximums can be externally parame-
terized statically in terms of the maximum number of
concurrent web service calls and dynamically in terms of
maximum network bandwidth or CPU utilization (via the
Java Management Extensions). When the maximum number
of concurrent calls is met or the maximum CPU or network
bandwidth is reached, prefetching stops for a period of time
before it is attempted again.

To keep all links prefetched to approximately the same
point in simulation time, each link is prefetched up to a
moving limit: limit = min{p + n X i,e} where p is the
earliest time to which all links are prefetched to, ¢ is the
longest request interval across all links, and e is the ending
time of the composition. The constant n controls how close
in simulation time the links are to be prefetched to and
should be 1 when the difference in request intervals is large
and may be higher when the difference is small.

3. Experimental Results

We conducted a performance study using an onsite Linux-
based Beowulf cluster. The compute nodes had 16-core 2
GHz processors and 64 GB of memory and the server node
had a 4-core 2.7 GHz processor and 8 GB of memory con-
nected via gigabit ethernet. The software components were
implemented in Java (Alterra SDK) conforming to version
1.4 of the OpenMI and the web service was implemented in
ASP.NET. The time spent by the web service to generate the
response to each request was configurable and the contents
of the response contained random numbers.

To represent a model component we created a placeholder
component that used a fixed-length time step of 1 day
and would sleep for 10 s between time steps to mimic
the time spent calculating a time step, which we call the
processing time. There was a single link between the model
component and the DPC and the elementset consisted of
50000 elements. Each composition ran for 60 time steps
resulting in a total of 3 million values in the cache at the
end of the run.

3.1 Caching

To investigate the effect of the cache we performed
two sets of simulations with varying numbers of model
components with and without the cache and measured the
runtime and amount of data transferred (prefetching was
disabled). In the first set, the model components were part
of a single composition and linked to a single DPC. In
the second set, each model component was in a separate
composition running on a different node so each composition
consisted of one model component and one DPC. In both
sets the model components request the exact same valuesets
to maximize the effect of the cache. Since the design of the
DPC necessitates a cache, the effect of disabling the cache
was approximated by removing each valueset from the cache
after it was returned to a model component.

When a component invokes GetValues on a DPC the
requested valueset is either retrieved from the cache if it
exists (a cache hit) or it is retrieved from a web service if
it does not (a cache miss). We define wait time to be the
amount of time that it takes a call to GetValues to return
a valueset. We define total wait time to be the sum of all
wait times over the course of a composition run and may be
estimated by:

m m+h
W= (Ri+Ni+ X))+ > L (1)
i=1 j=1
where m is the number of cache misses, h is the number of
cache hits, R is the average web service response time, N
is the average data transfer time, X is average time to parse
a response, and L is the cache lookup time. We empirically
identified values for N, X and L in our estimation of
expected performance.

The effect of the cache is shown in Figure 5 (top). When
caching was disabled the wait time increased linearly as
the number of components increased (top-left). Enabling the
cache within a single composition achieved constant wait
time. In the case of distributed compositions there was a
super-linear increase in the wait time due to the higher
cache lookup time associated with the distributed map. The
total data transferred increased linearly with the number
of components when the cache was disabled and remained
constant at 1.5 GB when the cache was enabled (top-right).

3.2 Prefetching

To evaluate the effect of prefetching we measured the
wait time of a single model component linked to a DPC
as we varied the web service response time. We used
response times that were multiples of the model component’s
processing time. The DPC prefetched valuesets with a limit
of one active web service call at any one time.

In the ideal case there is perfect predictive capability and
perfect overlap of the time that the DPC spends prefetching
and the time that the model component spends calculating
time steps. In this case the total wait time is based on
the time spent performing concurrent operations C' and
performing serial operations S':

C=> (Ri+Ni+X;))
i=1
m-+h

t
S=) Pt Li 3)
k=1 i=1

where ¢ is the total number of time steps performed by
the model component and P is the processing time of each
time step. The total wait time W with prefetching may be
estimated by:
m+h
W =max(C - 5,00+ Y _ L; (4)
i=1

20

- expected
—— no cache
- - - single /
— - distributed

wn
|

wait (seconds x1 03)
)
|

wn
|

number of components

5 _ expected
------ prefetch

- - - 2 pipeline
— — 3 pipeline
— - 4 pipeline
—— no prefetch

wait (seconds x1 03)

web service retrieval time (multiple)

10 4
@ single
3 distributed
8 B no cache
o 64
<
[2a]
2
g 4-
©
} I
number of components
5 [prefetch
- -~ 2 pipeline
— — 3 pipeline .
o 4 — - 4 pipeline -
- 4 _ - -
T
° s 7
s 34 ST e
] e -
£ z° -
2 2- Pt
] Ve
) /’/
& /*”
1—/
0

2 3 4 5 6 7 8
web service retrieval time (multiple)

Fig. 5: Performance results: effect of caching (top) and effect of prefetching and pipelining (bottom).

We refer to R; + N; + X; as the web service retrieval time
as it reflects the total time necessary to retrieve a valueset
from a web service.

With prefetching disabled the wait time increased linearly
with the web service response time (Figure 5 bottom-left).
When prefetching was enabled the total wait time increased
at the same rate but was lower by a constant value that
corresponded to one web service retrieval time. The speedup
in this case was constant (bottom-right).

3.3 Pipelining

To evaluate the effect of multiple concurrent web service
calls we measured the wait time of a single model com-
ponent linked to a DPC as we varied both the number of
concurrent requests and the web service response time.

When web service calls are made simultaneously the time
spent on concurrent operations is reduced by a factor of the
number of simultaneous calls. Thus, the total wait time W

with pipelining may be estimated by:

m-+h
W:max(——SO +ZL (5)

where @ is the number of simultaneous web service calls.

The wait time remains constant as long as the number
of simultaneous web service calls is the same as the factor
by which the web service retrieval time is greater than the
model component processing time. The wait time increases
sub-linearly with the web service retrieval time once the
number of simultaneous web service calls is insufficient to
complete all of the necessary prefetching during the model
component processing time.

4. Related Work

The synergy between web services and modeling and
simulation was recognized quickly as web standards
emerged [9]. Web services can provide both a means to
access data and to control the execution of online models [9],

[10], [11], [12]. Workflow Management Systems (WMS)
provide an infrastructure to setup, execute, and monitor
scientific workflows composed of web services [13], [14].
Standard data formats [1], [15] and data access systems [16]
have been developed to improve data portability.

There has been recent interest in enabling OpenMI com-
ponents to interoperate with web services. In one effort [17]
a feature type component was developed that can retrieve
point time series data from a server using the OGC Web
Feature Services (WFS) standard. The component steps
forward through time and when GetValues is invoked it
returns the value of the feature type that corresponds to the
current time. Another component [18] was developed that
can retrieve time series data from a proprietary data platform.
To obviate the need for a local data server on the machine
that is executing a composition, the component serves as a
proxy between the components of a composition and the data
server. Our work complements these efforts in the context
of computational grids.

5. Conclusions

We presented the design of the Data Provider Component
(DPC) for OpenMI components and evaluated its perfor-
mance. The DPC efficiently retrieves data from multiple
web services and delivers the data to OpenMI components
that are executing on a cluster. We adapted three common-
practice optimizations, caching, prefetching, and pipelining,
to the unique behavior and constraints of OpenMI compo-
nents. General-purpose data components simplify the task
of deploying linked models to runtime environments and
provide a means for integrating real-time measurement data
into their simulations.

The DPC consists of a fetching module and a caching
module. The fetching module continuously monitors the data
requests made by model components and prefetches data
from web services in a pipelined fashion. The caching mod-
ule services the data requests by extracting the appropriate
data from a distributed map that is shared among all DPCs
across a cluster.

We evaluated the performance of each of the three op-
timizations: caching, prefetching, and pipelining. Caching
within a single composition achieved linear speedup in
wait time as the number of model components increased.
Distributed caching was less performant in terms of wait
time and would be most advantageous in situations with
high latency web services. In both cases the amount of
data transferred was minimized and remained constant as
the number of model components increased. Prefetching
achieved constant speedup in wait time as the web service re-
trieval time increased and pipelining achieved linear speedup
given a sufficient number of simultaneous web service calls.

To mitigate some of the challenges of data management
for linked simulations, intelligent, efficient data provider
components will become an essential part of any OpenMI

linked model. We believe that this work provides a sound
basis for the development of such components.

6. Acknowledgments

This work was supported by the National Science Founda-
tion (grants GEO0909515, EPS0919443, EPS1006860). Ac-
cess to the Beocat compute cluster at the Dept. of Computing
and Information Sciences at Kansas State University was
appreciated.

References

[1] R. K. Rew and G. P. Davis, “The Unidata netCDF: Software for
scientific data access,” in Sixth International Conference on Interactive
Information and Processing Systems for Meteorology, Oceanography,
and Hydrology. Anaheim, California: American Meteorology Soci-
ety, February 1990, pp. 33—40.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski, “Toward a common component architec-
ture for high-performance scientific computing,” in Proceedings of the
8th IEEE International Symposium on High Performance Distributed
Computing, 1999, p. 13.

[3] J.B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen, “OpenMI: Open
modeling interface,” J. Hydroinform., vol. 9(3), pp. 175-191, 2007.

[4] P. Taylor, “Harmonising standards for water observation data — dis-
cussion paper, OGC 09-124r2," Open Geospatial Consortium Inc.,
2010.

[5] T. Whiteaker, “CUAHSI WaterOneFlow workbook, HIS document 5,
CUAHSI, 2010.

[6] 1. Zaslavsky, D. Valentine, and T. Whiteaker, “CUAHSI WaterML,
OGC 07-041r1,” Open Geospatial Consortium Inc., 2007.

[7] T. Ozturk, “Scalable data structures for java,” in Devoxx, Metropolis
Antwerp Belgium, November 2010.

[8] The HSQL Development Group, B. Simpson, and F. Toussi, “Hyper-
SQL user guide: HyperSQL database engine (HSQLDB),” The HSQL
Development Group, 2010.

[9] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth,
“Web service technologies and their synergy with simulation,” Winter
Simulation Conference, vol. 1, pp. 606-615, 2002.

[10] J. M. Pullen, R. Brunton, D. Brutzman, D. Drake, M. Hieb, K. L.
Morse, and A. Tolk, “Using web services to integrate heterogeneous
simulations in a grid environment,” Future Gener. Comput. Syst.,
vol. 21, pp. 97-106, January 2005.

[11] S. Shasharina, C. Li, R. Pundaleeka, N. Wang, D. Wade-Stein,
D. Schissel, and Q. Peng, “HDF5WS — web service for remote access
of simulation data,” APS Meeting Abstracts, p. 2014, October 2006.

[12] J. Horak, A. Orlik, and J. Stromsky, “Web services for distributed and
interoperable hydro-information systems,” Hydrol. Earth Syst. Sci.,
vol. 12, pp. 635-644, 2008.

[13] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows
of services,” Nucleic Acids Research, vol. 34(Web Server issue), pp.
729-732, 2006.

[14] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. J. Crossno,
C. T. Silva, and J. Freire, “Vistrails: Enabling interactive multiple-
view visualizations,” Visualization Conference, IEEE, vol. 0, p. 18,
2005.

[15] H. H. Page, “The HDF
http://www.hdfgroup.org/HDF5/.

[16] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A prototype
rule-based distributed data management system,” in HPDC workshop
on Next Generation Distributed Data Management, Paris, France,
2006.

[17] Q. Harpham, “Future service chain platform,” in First Open Con-
sultation Meeting, Distributed Research Infrastructure For Hydro-
Meteorology Study, Genoa, Italy, October 2010.

[18] KISTERS, “Kisters news,”’
http://www.kistersnews.com.

Group,” 2010,

2010,

	K-RExCoverPage - unpublished symposium.MASTER
	bulatewicz2010efficient

