CARDIOPULMONARY RESPONSES TO EXERCISE IN THE DUCK

by

JAMES PATRICK KILEY

B. A., St. Anselm's College, 1974

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Anatomy and Physiology

KANSAS STATE UNIVERSITY Manhattan, Kansas

1978

Approved by:

Maior

TABLE OF CONTENTS

		rage
LIST OF	FIGURES	iv
LIST OF	TABLES	v
LIST OF	APPENDIX TABLES	vi
GENERAL	INTRODUCTION	viii
PART I:	ARTERIAL AND MIXED VENOUS BLOOD GAS TENSIONS IN EXERCISING DUCKS	1
	ABSTRACT	1
	INTRODUCTION	2
	METHODS	2
	Animal preparation Recordings Experimental protocol Data analysis	2 2 3 4
	RESULTS AND DISCUSSION	5
	REFERENCES	10
PART II	: RESPIRATORY AND CARDIOVASCULAR RESPONSES TO EXERCISE IN THE DUCK	12
	ABSTRACT	12
	INTRODUCTION	13
	METHODS	14
	Animal preparation Recordings Experimental protocol . Clavicular air sac gases Effects of low ambient temperature during exercise Data analysis	14 15 16 16

RESULTS	17
Cardiovascular changes during exercise Ventilatory response to exercise Blood gas changes with exercise Body temperature changes with exercise Clavicular air sac gas changes with exercise Response to exercise at low ambient temperature	17 19 23 23 23
DISCUSSION	26
Critique of methods Cardiovascular changes from rest to exercise Ventilatory and blood gas changes from rest	26 29
to exercise in birds Possible receptors responsible for	30
hyperventilation	31
REFERENCES	33
ACKNOWLEDGMENTS	38
APPENDIX TABLES	39

111

Page

LIST OF FIGURES

Figure		Page
1.	Effect of exercise on arterial and mixed venous pH, PCO, and bicarbonate concentration in ten Pekin ducks. Mean \pm standard error; $*$ denotes significant difference from pre-exercise where P \leq 0.05	7
2.	Cardiovascular changes associated with two levels of exercise in ten Pekin ducks. Mean \pm standard error; \star denotes significant difference from pre-exercise (P $\leq 0, 05$)	20
3.	Effect of exercise on ventilation in ten Pekin ducks. Mean \pm standard error; * denotes significant difference from pre-exercise where P \leq 0,05	21
4.	Changes in arterial and mixed venous blood gas tensions, pH and plasma bicarbonate concentration in ten Pekin ducks. Mean \pm standard error; * denotes significant difference from pre-exercise where P \leq 0.05	22
5.	Influence of exercise on rectal temperature in ten Pekin ducks. Mean \pm standard error; * denotes significant difference from pre-exercise where P \leq 0.05	24
6.	Clavicular air sac PCO ₂ during rest and two periods of exercise in five Pekin ² ducks. Mean \pm standard error; * denotes significant difference from pre-exercise where P \leq 0.05	25

iγ

LIST OF TABLES

Table		Page
۱.	Cardiovascular variables in 10 White Pekin ducks before exercise and 90 minutes after the last exercise period	6
2.	Cardiovascular variables in ten Pekin ducks measured before exercise and at the end of the experiment	18
3.	Avian and mammalian temperature correction factors for PCO2	28

v

LIST OF APPENDIX TABLES

Table (Page
 Experiment I. Uncorrected arterial and mixed venous PCO₂ (torr) at rest and during exercise 	39
 Experiment I. Uncorrected arterial and mixed venous PO₂ (torr) at rest and during exercise 	40
 Experiment I. Uncorrected arterial and mixed venous pH at rest and during exercise 	41
 Experiment I. Uncorrected arterial and mixed venous plasma bicarbonate concentration (mM) at rest and during exercise 	42
 Experiment II. Heart rate (beats · min⁻¹) and mean arterial blood pressure (mm Hg) at rest and during exercise 	43
 Experiment II. Systolic blood pressure (mm Hg) and diastolic blood pressure (mm Hg) at rest and during exercise 	44
 Experiment II. Respiratory tidal volume (ml) BTPS at rest and during exercise 	45
 Experiment II. Respiratory frequency (breaths · min⁻¹) at rest and during exercise 	46
 Experiment II. Respiratory minute volume (1 · min⁻¹) BTPS at rest and during exercise 	47
 Experiment II. Arterial and mixed venous PCO blood gas tensions (torr) at rest and during exercise 	48
 Experiment II. Arterial and mixed venous P02 blood gas tensions (torr) at rest and during exercise 	49
 Experiment II. Arterial and mixed venous pH at rest and during exercise 	50
 Experiment II. Arterial and mixed venous plasma bicarbonate concentration (mM) at rest and during exercise 	51
14. Experiment II. Body temperature (degrees Centigrade) at rest and during exercise	52

vi

Table

15.	Experiment III. Arterial PCO ₂ blood gas tensions (torr) at rest and during exercise	53
16.	Experiment III. Arterial PO ₂ blood gas tensions (torr) at rest and during exercise	54
17.	Experiment III, Arterial pH at rest and during exercise	55
18,	Experiment III. Clavicular air sac PCO2 gas tensions (torr) at rest and during exercise	56
19.	Experiment III. Clavicular air sac PO ₂ gas tensions (torr) at rest and during exercise	57
20.	Experiment III. Body temperature (degrees Centigrade) at rest and during exercise	58

Page

GENERAL INTRODUCTION

Throughout history, numerous studies have been directly or indirectly related to exercise physiology. In the 1800's Schwann, the co-founder of the cell theory, was the first to measure the respiratory quotient on an exercising man. In 1890, Zuntz made a great technological advance in exercise physiology when he introduced the non-rebreathing valve, then continued his work on exercise by being the first to utilize a treadmill to study exercise in horses. During the 20th century, exercise physiology gained more support with pioneers such as Hill, Krogh, and Meyerhoff, who received the Nobel prize for their work.

Exercise physiology, in a general sense, attempts to explain how the living organism functions under conditions which tax the upper limits of its physical performance. By increasing work intensities, one can get a greater understanding of not only the mechanisms which govern the body systems at rest, but also gain insight into how these systems operate during exercise. Barcroft¹ stated that, "the condition of exercise is not a mere variant of the condition of rest, it is the essence of the machine." He was impressed by the "majesty" of the locomotive standing "by the platform of a railway station," but to understand the function of the locomotive it was necessary to study it during its maximal activity.

The purpose of investigating the cardiopulmonary response to exercise in birds was to determine if the conventional theories, regarding the mechanisms which control ventilation and hemodynamics during rest, could

Barcroft, Features in the architecture of physiological function. University Press, Cambridge. pp. 1-368, 1934.

explain the responses elicited by the animal during exercise. It is the attempt of this thesis to add to the already vast quantity of information concerning the factor(s) responsible for the control of ventilation during exercise.

PART I. ARTERIAL AND MIXED VENOUS BLOOD GAS TENSIONS IN EXERCISING DUCKS

ABSTRACT

Adult White Pekin ducks were exercised at three work levels on a treadmill at speeds of 0.9, 1.47, and 2.16 km/hr for 20 minutes with a 90 minute rest period following each exercise period. Blood gas and pH analyses were performed on samples simultaneously withdrawn from the brachial artery and right ventricle (as an estimate of mixed venous blood) at predetermined intervals during the experiment. Both arterial and mixed venous PCO₂ significantly decreased with increases in the level of exercise. Arterial pH did not change significantly from resting values at any exercise level. Mixed venous pH decreased at the onset of exercise but returned to near resting values by the end of each exercise period. These measurements indicate that ducks increase their ventilation during exercise above that required to eliminate the generated CO₂. Because the increased ventilation produces a reduction in arterial PCO₂, it is unlikely that peripheral or central CO₂-sensitive chemoreceptors are responsible for the ventilatory drive.

INTRODUCT ION

The majority of studies on blood gas tensions during exercise have been conducted on humans or other mammals. Information concerning the blood gas values in exercising birds is limited; however, two studies have been reported. Penguins, during unrestrained field exercise and treadmill walking, increased their arterial 0_2 tension and 0_2 saturation but did not appreciably change arterial pH until exercise was severe and exhausting (8). Pigeons, flying in a wind tunnel, exhibited a decrease in arterial and mixed venous PC0₂, a decrease in arterial and mixed venous pH, and a decrease in mixed venous PO₂; arterial PO₂ increased over resting values (2). In the present study, we report on arterial and mixed venous blood gas tensions and acid-base status during rest and during various levels of exercise in ducks.

METHODS

<u>Animal preparation</u>. Ten adult White Pekin ducks (<u>Anas platyrhynchos</u> <u>domesticus</u>) weighing 2.2-3.2 kg were obtained from a local breeder, housed on an indoor floor pen, and provided with feed and water <u>ad libitum</u>. Ducks were weighed, placed in dorsal recumbency, and administered 1.0-2.0 ml xylocaine (1% lidocaine HCl, Astra Pharmaceutical) subcutaneously on the ventral side of the right wing around the cutaneous ulnar vein and brachial artery. The brachial artery was cannulated using a polyethylene catheter (Clay Adams PE 90). Silastic tubing (Dow Corning, 0.76 mm ID, 1.65 mm 0D) was inserted into the right ventricle via the cutaneous ulnar vein. Catheter position was verified at the end of the experiment.

<u>Recordings</u>. Arterial blood pressure and right ventricular pressure were measured with pressure transducers (Statham, model P23Gb and model

P23De) and recorded on a multichannel pen recorder (Brush, model 481). Hematocrit was determined on arterial blood samples by a microcentrifuge method (11).

A treadmill was fabricated from a belt sander. The treadmill belt provided a 152 mm by 610 mm silicone rubber-coated running surface and was driven by a variable-speed motor. A wire cage was constructed around the belt to confine the duck on the treadmill. Openings in the top of the cage enabled the catheters to extend to the sampling syringes, thus eliminating any handling of the animal throughout the experiment. The sides and back of the cage were draped so that the duck could not see anyone during the rest periods; this minimized the possibility of exciting visual stimuli.

The pH and PCO₂ of arterial and mixed venous blood were analyzed at 41.0° C with a blood gas analyzer (Instrumentation Laboratories, model 113). Body temperature of the duck was not measured because a rectal probe appeared to impede exercise, and therefore blood gas values were not corrected for temperature changes throughout exercise. The pH electrode was calibrated before and after each exercise period with buffers of pH 6.840 and 7.384. The PCO₂ electrode was calibrated with gases (5% CO₂, 15% O₂, and 80% nitrogen and 0% O₂, 10% CO₂, and 90% nitrogen) derived from gas mixing pumps (wösthoff, model 301 a/F). The standard bicarbonate concentration was calculated with a blood gas calculator (10) using the pK' for carbonic acid and the solubility coefficient for CO₂ in avian plasma reported by Helbacka <u>et al</u>. (5).

Experimental protocol. Several days before an experiment, each duck was allowed one or two practice runs on the treadmill. This served to (a) accustom each duck to running on the treadmill and (b) determine the maximum running speed the ducks could successfully endure for 20 min, Maximum running speed was found to be 2.16 km/hr; only ducks which successfully met this criterion were used. Conversely, the slowest walking speed at which the ducks would continue to exercise was 0.9 km/hr.

Three predetermined, randomly ordered treadmill speeds (0.9, 1.47, and 2.16 km/hr) at a treadmill incline of 3° constituted the exercise levels of each experiment. Each 20 min exercise period was followed by a 90 min rest period. Samples of arterial and mixed venous blood (about 1.5 ml) were anaerobically withdrawn at four predetermined time intervals during rest and exercise and immediately analyzed for pH and PCO₂. Catheters were flushed with approximately 0.6 ml of saline between samples. Blood taken from donor ducks prior to experimentation was kept tonometered with gas (5% CO₂, 15% O₂, and 80% N₂) throughout, and was used to replace blood withdrawn from the exercising birds. To prevent coagulation, 500 IU of heparin (Organon, Inc.) was added to 50 ml of tonometered blood. No adverse signs resulted from blood transfusions.

An additional experiment was performed on one duck to test the possible influence of cardiac catheterization on the action of the heart. A polyethylene catheter was placed in the right brachial artery under local anesthesia for measuring arterial pH and PCO₂, but the right ventricle was not catheterized. Exercise was conducted as previously described.

Data analysis. The data were analyzed on an ITEL AS/5-3 computer using a two-way analysis of variance to test for difference among means. The means were separated using the least square differences. The level of probability at which means were considered to be significantly different was P<0.05.

RESULTS AND DISCUSSION

Table 1 compares hemodynamic variables during rest before the experiment began and 90 min after the last exercise period. The mean arterial blood pressure, right ventricular pressure, systolic and diastolic blood pressures did not indicate any deterioration of the animal's cardiovascular status from the start to the finish of the experiment. Although there was a statistically significant drop in hematocrit over the course of the experiment, this did not appear to have any noticeable effect on the cardiovascular pressures. The fall in hematocrit may have been due to hemodilution resulting from repeated flushing of the catheters with saline after each sample was taken.

Figure 1 illustrates the average blood gas values during rest and significant differences caused by exercise. Arterial $(PaCO_2)$ and mixed venous PCO_2 $(P_{\nabla}CO_2)$ declined from resting values of 31 torr and 34 torr, respectively, to 19.5 and 25.5 torr during maximal exercise. Although an elevation in body temperature of 2 to 3^o C during exercise--a value estimated from the findings of Taylor <u>et al</u>. (12) and Butler <u>et al</u>. (2)--would result in PCO_2 values from 2 to 3 torr higher than those reported, the magnitude of the PCO_2 changes with exercise was sufficiently great so that significant reductions remained. Arterial pH, uncorrected for temperature, increased during exercise; however, arterial pH would not have increased above resting values if a correction for an increase in body temperature of 2 to 3^o C had been applied. Mixed venous pH exhibited a sharp decline at the onset of exercise, the severity of the drop increasing with increasing treadmill speed, but characteristically rose to near resting values by the end of exercise. Arterial and mixed venous plasma bicarbonate concentration

Pre- experiment	Post- experiment
145 <u>+</u> 5.5 ^a	145 ± 5.0 ^a
201 <u>+</u> 5.3	190 <u>+</u> 7.1
117 <u>+</u> 6.7	119 <u>+</u> 9.7
32 <u>+</u> 2.6	27 <u>+</u> 2.1
32.5 <u>+</u> 1.4 ^b	25.6 <u>+</u> 0.8 ^b
	$\frac{\text{exper iment}}{145 \pm 5.5^{a}}$ 201 ± 5.3 117 ± 6.7 32 ± 2.6

TABLE 1. Cardiovascular variables in 10 White Pekin ducks before exercise and 90 minutes after the last exercise period.

^aMeans <u>+</u> standard error of the mean.

^bSignificantly different (№0.05).

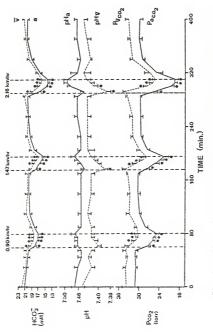


Fig. 1. Effect of exercise on arterial and mixed venous pH, PCO, and bicarbonate concentration in ten Pekin ducks. Mean \pm standard efror; * denotes significant difference from pre-exercise where P \leq 0,05,

declined approximately 5 mM at the two lowest exercise speeds, and 6 mM at the highest exercise speed. Although uncorrected for temperature, these data clearly illustrate how blood gas tensions and the acid-base status of the duck change during running.

The blood gas response to exercise when a duck ran without the cardiac catheter implanted remained the same as for ducks with the heart catheter in place. Therefore, the cannula in the right ventricle had no apparent adverse influence on heart action during exercise. No hemorrhage or myocardial damage was evident upon gross observation of the heart at necropsy, in the birds exercised with a heart catheter implanted.

The mean resting values of arterial pH, PCO₂, and bicarbonate concentration observed in the present study were similar to those reported by Calder and Schmidt-Nielsen (3) in nine different species of birds and by Kawashiro and Scheid (7) in undisturbed, awake ducks and chickens using a remote-control sampling device. Resting mixed venous blood gas tensions in our ducks were similar to those reported by Piiper <u>et al</u>. (9) in anesthetized chickens.

Our data indicate that ducks hyperventilate during exercise; arterial PCO_2 is reduced by as much as 10 torr during severe exercise. The duck, therefore, increases its ventilation far in excess of its CO_2 production, as indicated also by the fall in mixed venous PCO_2 . The hyperventilation during exercise cannot be explained by the altered discharge of known chemoreceptors in the bird. Carotid body chemoreceptors or those in the central nervous system are activated by elevated PCO_2 or decreases in arterial PH and arterial PO₂ (1, 6). In the running ducks, the arterial PCO₂ decreased and arterial PH remained unchanged; thus, these variables could not have provided the stimulus for the hyperventilation. Furthermore,

intrapulmonary CO_2 receptors (4) should have increased their discharge frequency with lowered intrapulmonary CO_2 concentration and thereby inhibited ventilation.

Much of the information relating increases in ventilation to mechanoreceptor activity from exercising muscles is inconclusive. However, Tibes (13) observed that in exercising muscles of the dog the discharge of small group III and IV fibers elicits a strong ventilatory drive. It is possible that local metabolites from exercising muscles could provide the necessary stimulus to excite these nerve fibers in the duck and thus increase ventilation despite hypocapnia.

REFERENCES

- Bouverot, P., N. Hill and Y. Jammes. Ventilatory responses to CO₂ in intact and chronically chemodenervated Peking Ducks. <u>Respir. Physiol</u>. 22: 137-156, 1974.
- Butler, P. J., N. H. West, and D. R. Jones. Respiratory and cardiovascular responses of the pigeon to sustained level flight in a wind tunnel. J. Exp. Biol. 71: 7-26, 1977.
- Calder, W. A., and K. Schmidt-Nielsen. Panting and blood carbon dioxide in birds. <u>Am. J. Physiol</u>. 215: 477-482, 1968.
- Fedde, M. R. and W. D. Kuhlmann. Intrapulmonary carbon dioxide receptors: Amphibians to mammals. <u>In</u>: Respiratory Function in Birds, Adult and Embryonic, Ed. by J. Piiper, Springer-Verlag, New York, pp. 33-50, 1978.
- Helbacka, N. V. L., J. L. Casterline Jr., C. J. Smith, and C. S. Shaffner. Investigations of plasma carbonic acid pK' of the chicken. <u>Poultry Sci</u>. 43: 138-144, 1964.
- Jones, D. R. and M. J. Purves. The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck.
 J. Physiol. (London) 211: 295-309, 1970.
- Kawashiro, T. and P. Scheid. Arterial blood gases in undisturbed resting birds: Measurements in chicken and duck. <u>Respir. Physiol</u>. 23: 337-342, 1975.
- Millard, R. N., K. Johansen, and W. K. Milson. Radiotelemetry of cardiovascular responses to exercise and diving in penguins. <u>Comp</u>. Biochem, Physiol. 46A: 227-240, 1973.

- Piiper, J., F. Drees, and P. Scheid. Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. <u>Respir</u>. <u>Physiol.</u> 9: 234-245, 1970.
- Severinghaus, J. W. Blood gas concentrations. <u>In</u>: Handbook of Physiology, Section 3, Respiration Vol. 2, ed. by W. O. Fenn and H. Rahn. Washington, D. C., American Physiological Society, pp. 1475-1487, 1965.
- Strumia, M. M., A. B. Sample, and E. D. Hart. An improved micro-hematocrit method. <u>Am. J. Clin. Path</u>. 24: 1016, 1954.
- Taylor, C. R., R. Dmi'el, M. Fedak, and K. Schmidt-Nielsen. Energetic cost of running and heat balance in a large bird, the rhea. <u>Am. J.</u> <u>Physiol</u>. 221: 597-601, 1971.
- Tibes, U. Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Circ. Res. 41: 332-341, 1977.

PART II. RESPIRATORY AND CARDIOVASCULAR RESPONSE TO EXERCISE IN THE DUCK

ABSTRACT

To study ventilatory and cardiovascular responses of the duck to running, adult White Pekin ducks were exercised for 20 minutes on a treadmill (3° incline) at two speeds: 0.9 and 1.47 km/hr. Each exercise period was followed by a 90 minute rest period. Heart rate, systolic and diastolic blood pressure increased significantly during each exercise period. During exercise, tidal volume decreased and respiratory frequency increased. Minute ventilation increased at the onset of exercise and continued to increase throughout, while clavicular air sac PCO, decreased. Both arterial PCO, and mixed venous PCO, decreased as the running speed increased. Mixed venous pH decreased at the onset of exercise but returned to near resting values by the end of an exercise period. Arterial pH did not significantly change from control values at either exercise period. Arterial PO, exhibited significant increases at both exercise speeds, while arterial and mixed venous plasma bicarbonate concentration decreased significantly with each exercise period. Body temperature increased 1-2^{O} C during each run. Because the increased ventilation produced a reduction in arterial PCO, it is unlikely that peripheral or central $\rm CO_2$ -sensitive chemoreceptors were responsible for the ventilatory drive but that drive may result from hyperthermia or activity of certain muscle afferents.

INTRODUCTION

Many studies have dealt with changes in blood gas tensions and ventilatory adjustments during exercise in humans and other mammals (9, 13, 33). However, the nature of the stimulus and the controlled variable(s) involved in the control of ventilation remain poorly understood. During moderate muscular exercise in mammals arterial PCO₂ (PaCO₂) and arterial pH (pHa) are regulated about control values despite increases in CO₂ production; PaCO₂ decreases only with very severe and exhaustive exercise (32).

The paucity of information on ventilation and blood gas tensions in exercising birds is due mainly to the difficulty in measuring these variables on an unrestrained bird. However, there have been two studies on blood gas changes and several studies on ventilatory changes during exercise. In the running penguin, PaO, and O, saturation increase but no appreciable change in pHa occurs until exercise is severe and exhaustive (23). Pigeons, during wind tunnel flight, exhibit a decrease in PaCO2, P_CO2 and P_O2 in addition to decreases in pHa and pHz; Pa0, increases over resting values (6). Respiratory frequency (fresp) increases during wind tunnel flight at least twofold in the budgerigar (30), starling (29), and crow (2), and up to 20 times resting values in the pigeon (6, 14, 19). Tidal volume (V_{T}) was found to increase two fold during flight in the fish crow (2), fourfold in the starling (29) and twofold during walking in the pigeon (14). However, during flight in the pigeon there was little increase in V_{τ} , but a 20 fold increase in ventilation resulting mainly from the increased rate of breathing; V_T decreased only when the birds were panting (14). PCO₂ falls and PO₂ rises in the anterior thoracic air sac of the starling during flight suggesting these birds hyperventilate (29).

In the present study, we measured arterial and mixed venous blood gas tensions, ventilation, clavicular air sac gas concentrations and body temperature during rest and various levels of running in ducks, in an attempt to define the variable(s) controlling ventilation during exercise.

METHODS

<u>Animal preparation</u>. Ten adult White Pekin ducks (<u>Anas platyrhynchos</u> <u>domesticus</u>) weighing between 2.2 and 3.4 kg (mean, 2.7 kg) were obtained from a local breeder, housed in an indoor floor pen and provided with feed and water <u>ad libitum</u>. The ducks were weighed, placed in dorsal recumbency, and administered a total dose of approximately 1.5 ml of a local anesthetic (2% lidocaine HCl with epinephrine, Astra Pharmaceutical) subcutaneously in three areas: a) ventral surface of the right wing around the cutaneous ulnar vein and brachial artery; b) around the anal orifice for insertion of a rectal probe for measuring body temperature (Yellow Springs Inst., model 401 and 44TD); and c) on the mid-ventral side of the neck at approximately the level of the 10th cervical vertebrae,

The brachial artery was cannulated using a polyethylene catheter (Clay Adams PE 90). Silastic tubing (Dow Corning, 0.76 mm 1D, 1.65 mm 0D) was inserted into the right ventricle via the cutaneous ulnar vein. Catheter position was verified at the end of the experiment. An incision was made on the mid-ventral side of the neck and the trachea was isolated and cannulated. A pneumotachograph (Fleisch, #0) was attached to the tracheal cannula and secured to the neck. Each duck was then administered Pentazocine (0.30 mg/kg body weight, Talwin-V, Winthrop Laboratories), a non-narcotic analgesic drug, intramuscularly following surgery to provide relief for any discomfort. <u>Recordings</u>. Arterial blood pressure (from the cannulated brachial artery) and right ventricular pressure were recorded with pressure transducers (Statham, model P23Gb and P23De) on a multi-channel pen recorder (Brush, model 481). Heart rate was obtained from the arterial blood pressure tracing. Hematocrit was determined on arterial blood by a micro-centrifuge method (27). Ventilation was measured using a pneumotachograph (Statham-Godart, type 17212) and recorded on the pen recorder. The pneumotachograph was calibrated with a respiratory pump (Harvard Apparatus, model 681) before and after each experiment.

A treadmill was constructed from a commercial belt sander. The treadmill belt provided a silicone rubber-coated running surface which was driven by a variable speed motor. Speed of the belt was measured by computing the time interval between successive interruptions of a light beam by a slotted disc on the treadmill belt using an 8080 based microprocessor. A wire cage was constructed around the belt to confine the duck on the treadmill. Openings were cut in the top of the cage to enable the catheters to extend to the sampling syringes, thus eliminating any handling of the animal throughout the experiment. A television camera (Cohu, model 2810) mounted approximately 1 meter in front of the cage allowed continuous observation of the duck without its knowledge. The sides and back of the cage were draped to minimize visual stimuli to the duck. A constant background of white noise was generated using a preamplifier and an audio monitor (Grass P-511 and AM-8).

The pH, PCO_2 and PO_2 of arterial and mixed venous blood were analyzed at 41.0° C with a blood gas analyzer (Instrumentation Laboratories, model 113), and corrected to the body temperature of the bird (26). The pH electrode was calibrated before and after each exercise period with buffers

of pH 6.840 and 7.384. The PCO₂ and PO₂ electrodes were calibrated with gases (5% CO₂, 15% O₂ and 80% N₂; and 0% O₂, 10% CO₂, and 90% N₂) derived from two gas mixing pumps (Wösthoff, model 301 a/F). A PO₂ electrode correction factor was determined from an equilibrated sample of the ducks' blood at the start of each experiment (24). The standard plasma bicarbonate concentration was calculated with a blood gas calculator (26), using the pK' for carbonic acid and the solubility coefficient for CO₂ in avian plasma (15).

<u>Experimental protocol</u>. The fastest treadmill speed at which all ducks could successfully run for 20 minutes was 1,47 km/hr. Conversely, the slowest walking speed at which they would continue to exercise was 0.9 km/hr. Exercise consisted, therefore, of these two speeds with the treadmill inclined at 3 degrees. Each exercise period was 20 minutes long and was followed by a 90 minute rest period. Samples (about 1.5 ml) of arterial and mixed venous blood were anaerobically withdrawn at four predetermined time intervals during each rest and exercise period, and immediately analyzed for pH, PCO₂ and PO₂. Catheters were flushed with approximately 0.6 ml of saline between samples. Blood taken from donor ducks was continuously tonometered (5% CO₂, 15% O₂ and 80% N₂) and was used to replace blood withdrawn during the experiment. To prevent coagulation, 500 IU of heparin (Organon, Inc.) was added to each 50 ml of tonometered donor blood. No adverse signs resulted from blood transfusions.

<u>Clavicular air sac gases</u>. Five adult Pekin ducks weighing between 1.5 to 2.1 kg (mean 1.8 kg) were prepared as described above but, in addition, a cannula was inserted into the clavicular air sac for measurement of clavicular air sac gas tensions. These ducks underwent the same exercise

protocol described above. The right ventricle was not cannulated and mixed venous blood gas tensions were not measured; the ducks' response to running without the right heart catheter was the same as when the heart catheter was in place.

Effects of low ambient temperature during exercise. An additional experiment was performed on one duck weighing 2.1 kg to test the effects of running at a reduced ambient temperature on changes in arterial blood gas tensions. The brachial artery was cannulated as previously described and the bird underwent the above mentioned protocol in a cold room at a temperature of 8.5° C,

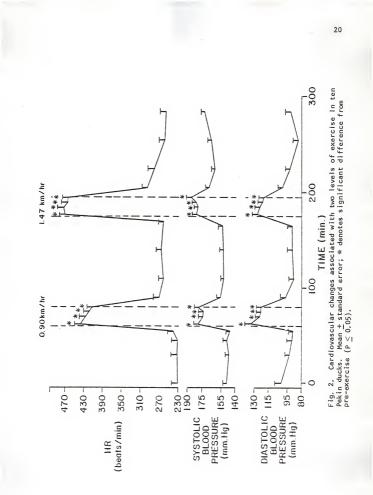
<u>Data analysis</u>. The data were analyzed on an ITEL (model, AS/5-3) computer, using a two-way analysis of variance to test differences among means. The means were separated using the least square differences and the differences were considered significant at the 5% level of probability ($P \le 0.05$). The asterisks (*) denote significant differences from preexercise to exercise periods only, and do not reflect changes in periods following each exercise level.

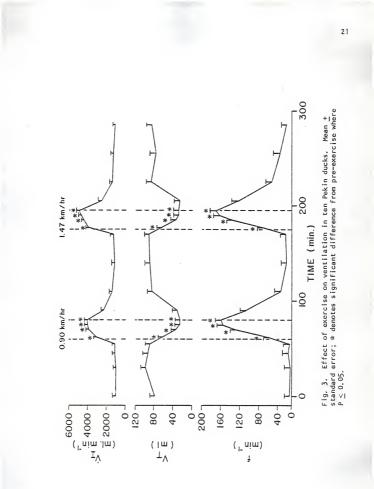
RESULTS

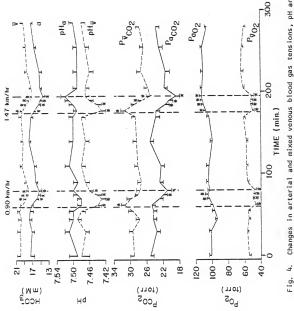
<u>Cardiovascular changes during exercise</u>. A comparison of cardiovascular variables before the birds were exercised and 90 minutes after the last exercise period is shown in Table 2. Only minor changes in heart rate, mean arterial pressure, right ventricular pressure, systolic and diastolic pressures, or in hematocrit occurred. The ducks' condition did not deteriorate from the start to the completion of the experiment and therefore changes observed with exercise were not influenced by failing condition of the animal.

Pre-	Post-
experiment	experiment
*231 <u>+</u> 17.4	266 <u>+</u> 21,8
118 <u>+</u> 8,1	119 <u>+</u> 5.6
194 <u>+</u> 6.3	175 <u>+</u> 4.1
112 <u>+</u> 11.1	107 <u>+</u> 7.9
**24.5 <u>+</u> 2.2	21.4 + 2.1
35.5 <u>+</u> 1.8	31.1 <u>+</u> 1.3
	experiment *231 ± 17.4 118 ± 8.1 194 ± 6.3 112 ± 11.1 **24.5 ± 2.2

TABLE 2. Cardiovascular variables in ten Pekin ducks measured before exercise and at the end of the experiment.

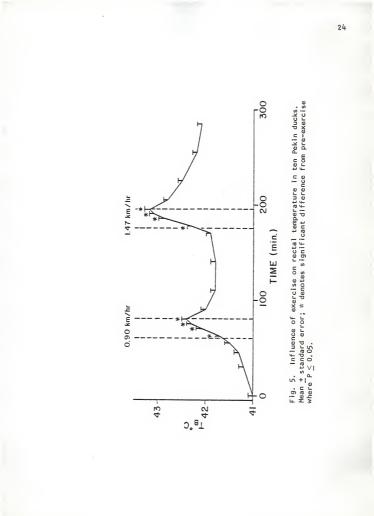

*Values are means <u>+</u> standard error.


** The pre-experiment right ventricular pressure was measured with the birds restrained and in a supine position.


The cardiovascular changes, with significant differences from rest, that occurred during the two exercise periods are shown in Figure 2. Heart rate increased approximately 90% over resting values at both exercise speeds, the increase related to the intensity of exercise. Calculated mean arterial blood pressure rose 30% and systolic and diastolic pressures increased approximately 20% and 40%, respectively, above resting values regardless of treadmill speed.

<u>Ventilatory response to exercise</u>. At the onset of either level of exercise, minute volume rapidly increased within the first two minutes and continued to rise at a slower rate until the completion of the exercise period (Fig. 3). Ventilation was highest at the fastest treadmill speed. Respiratory frequency also rose sharply at the onset of exercise and the magnitude of the increase was slightly higher at the faster treadmill speed. Tidal volume decreased at the onset of exercise from 90 ml at rest to 26 ml by the end of an exercise period. Tidal volume did not show any relationship to the degree of exercise, the fall being the same at both exercise speeds.

<u>Blood gas changes with exercise</u>. Figure 4 illustrates the average blood gas values and significant differences from rest to exercise. Arterial PCO_2 declined from 25.1 torr at rest to 18.7 torr during the fastest exercise speed. Mixed venous PCO_2 , on the other hand, rose significantly by 2 torr at the onset of exercise then fell to 25 torr during the highest work rate. Mixed venous pH initially exhibited a sharp decline at the beginning of exercise but rose to near resting values by the end of exercise; arterial pH did not significantly change at either high or low treadmill speeds. Arterial and mixed venous plasma bicarbonate concentration


error; * denotes significant difference from pre-exercise where $P \leq 0.05$. Changes in arterial and mixed venous blood gas tensions, pH and plasma bicarbonate concentration in ten Pekin ducks. Mean + standard

declined at both treadmill speeds as the ducks exercised. Arterial PO_2 increased by 6 torr over resting levels at low exercise and by 15 torr during the fastest exercise speed, while mixed venous PO_2 declined during both periods of running.

<u>Body temperature changes with exercise</u>. Body temperature increased over the entire course of the experiment (Fig. 5). During exercise rectal temperature rose from 41.0° C at rest to 42.4° C at the low running speed; then during the rest period following exercise returned to a level approximately 0.8° C higher than the starting temperature. At the faster treadmill speed, rectal temperature rose from 41.8° C during rest to 43.2° C before completion of exercise. The total rise in body temperature from the start, prior to any exercise, to the completion of the last exercise period was on the order of 2.2° C.

<u>Clavicular air sac gas changes with exercise</u>. Clavicular air sac PCO_2 significantly decreased from a mean resting value of 37 torr to 27 torr at the highest exercise speed in the flve ducks tested (Fig. 6). $PaCO_2$ of these birds decreased from 30 torr at rest to 24 torr at the end of the exercise period. Arterial pH again remained unchanged from rest to exercise and PaO_2 rose significantly by 10 torr at the fastest exercise speed. These blood gas changes were similar to that exhibited by the 10 ducks previously discussed.

<u>Response to exercise at low ambient temperature</u>. Rectal temperature increased by only 0.6° C in one duck running at 0.9 and 1.47 km/hr for 20 min at an ambient temperature of 8.5° C, and its body temperature returned to the resting value of 41.0° C. Arterial PCO₂ declined in this bird from 29 torr at rest to 19 torr, running at a speed of 1.47 km/hr. Arterial pH exhibited no change at the low exercise level but significantly increased

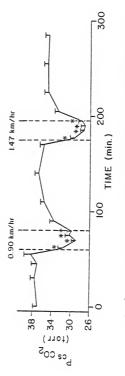


Fig. 6. Clavicular air sac PCO, during rest and two periods of exercise in five Pekin ducks. Nean \pm ståndard error; * denotes significant difference from pre-exercise where P \leq 0.05.

by 0.07 pH units during the high exercise level, while arterial PO_2 increased from 97 torr at rest to 104 torr and 114 torr by the end of the low and high exercise levels, respectively. The blood gas response was dramatic during exercise in the cold environment much the same as in the duck that ran at an ambient temperature of 25^o C; however, pHa rose during the high level of exercise in the cold, a response which was not observed in running ducks at 25^o C.

DISCUSSION

<u>Critique of methods</u>. Tidal volume measurements during exercise in birds are difficult to obtain. We initially attempted to use a mask for this measurement but the ducks failed to run. We therefore were forced to cannulate the trachea mid-cervically under local anesthesia and secure a pneumotachograph to the neck. That most likely altered the normal humidifying and filtering of inspired air, the upper respiratory dead space volume, and airway resistance. The mean resting values of tidal volume, respiratory frequency and minute ventilation observed in the present study are slightly higher than those reported in unanesthetized, resting Pekin ducks (4, 5). These, or other unknown problems, resulting from the tracheal cannulation, presumably caused a lower $PaC0_2$ than expected for intact, resting ducks (17). Resting mixed venous $PC0_2$ averaged 10 torr lower and $P_{v0}^{-0}_2$ was approximately 14 torr higher than those reported for anesthetized chickens (25); however, the blood gas changes with exercise were large and clearly illustrated the ventilatory and acid-base response to this activity.

It was crucial to obtain resting blood gas and ventilatory values which were not affected by possible visual or auditory stimuli that would

have adversely influenced breathing. We used a white noise generator and a video camera during the experiments to minimize such stimuli; these generally prevented irregular breathing, especially during rest.

The blood gas and pH values were corrected for body temperature changes of the ducks during exercise using temperature correction factors derived from mammalian blood (26). However, after completing these experiments, it became apparent that correcting blood gas and pH data for rectal temperature changes using mammalian correction factors may not be entirely precise. Therefore, duplicate 2 ml samples of duck blood, obtained by cardiac puncture, were adjusted to a pH of 7.50 with 1M NaHCO2 and equilibrated for 20 min with gases (5% $\rm CO_2$, 15% $\rm O_2$ and 80% $\rm N_2)$ at temperatures from 41.0 $^{\rm O}$ C to 45.0 $^{\rm O}$ C. The PCO, and pH of the equilibrated blood were measured at 1° temperature increments with the blood gas analyzer at 41.0° C. From experiments on four ducks PCO, increased linearly with increasing temperature. Table 3 provides a comparison of PCO, temperature corrections for avian blood and those derived for mammalian blood (26). For temperatures less than 43° C the mammalian and avian correction factors are in close agreement; however for higher temperatures the Severinghaus correction factors underestimate the true PCO_2 by as much as 1.6 torr at 45° C. If we assume that the blood temperature did not increase above 44° C during exercise (which is likely because this is approaching the lethal temperature for birds (20)), the Severinghaus correction factor which we used would not cause significant error.

The levels of exercise were chosen based on preliminary observations that the maximum running speed which most intact ducks could successfully endure for 20 minutes was 2.16 km/hr. Conversely, the slowest walking speed at which they would continue to exercise was 0.9 km/hr. Birds with

Avia	n PCO2	correction	Mammalian	PC02 co	orrection (26)
Temp, ^O C	ΔT	Ratio (<u>P cool</u>) P warm)	Temp, ^O C	ΔT	Ratio (<u>P cool</u>)
41	0.0	1.00	41	0.0	1,00
42	1.0	0.958	42	1.0	0.958
43	2.0	0.904	43	2,0	0.918
44	3.0	0.852	44	3.0	0,880
45	4.0	0.795	45	4.0	0,843

TABLE 3. Avian and mammalian temperature correction factors for PCO_2^* .

^{*}Temperature corrections for PCO₂; these charts allow calculation of PCO₂ when temperature is changed anaerobically. To use this chart: PCO₂ measured at 41,0° C is corrected to 43,0° C body temperature by dividing the measured PCO₂ by .904 for birds and .918 for mammals or measured at 43° C and corrected to 41° C by multiplying by .904 and .918 for birds and mammals, respectively. a cannulated trachea could not attain the maximum running speed; therefore the highest level of exercise used was an intermediate value between their maximum running capability and a slow walk.

<u>Cardiovascular changes from rest to exercise</u>. The abrupt rise in heart rate and blood pressure at the onset of exercise in running ducks and penguins (23), as well as flying birds (6, 14), is similar to mammalian cardiovascular changes during exercise (18). In mammals there have been many controversial attempts to explain the changes in cardiac output at the onset of exercise with ventilation. Initially, these changes were thought to be induced neurogenically because of their rapidity (9) perhaps as a result of increase in sympathetic discharge. However, it has been demonstrated that at the onset of exercise the flow of CO_2 from the mixed venous blood to the lungs quickly rises; this may be attributed to an immediate rise in cardiac output followed by an increased $P_{\rm V}CO_2$; this increase flow is sensed by receptors, possibly in the lung, which then increase ventilation to match the increased CO_2 flow and cardiac output (33).

The increase in cardiac output during exercise has been shown to be related mainly to an increase in heart rate, while stroke volume remains close to resting levels (9). In the running duck, heart rate increased two fold; thus, we can infer that cardiac output increased proportionally. Mean arterial pressure, on the other hand, increased only approximately 1.2 times during exercise; total peripheral resistance, the ratio of mean arterial pressure to cardiac output, must therefore have decreased during exercise, allowing the heart to pump more blood with higher efficiency than if peripheral resistance had remained unchanged. That response may have

been facilitated by skin vasodilation as body temperature increased with exercise. These findings are similar to those of flying pigeons (6).

Ventilatory and blood gas changes from rest to exercise in birds. Our data indicate that ducks hyperventilate during exercise with respect to their CO, production. Respiratory frequency increased 10 times the resting levels while tidal volume decreased by 1.5 times resulting in a 4-5 fold increase in minute ventilation. As a result of the increased minute ventilation, PCO, was reduced by as much as 7 torr during the high level of exercise. Based on the increase in i_1 and the fall in PaCO, there is a strong indication that the effective parabronchial ventilation, the volume of fresh gas that passes over gas exchange surfaces, increases sharply during exercise. During flight in the starling (29), pigeon (14), and fish crow (2), both respiratory frequency and tidal volume increase with an accompanying rise in ventilation. Upon completion of flight, a sharp fall in respiratory frequency and tidal volume account for the ensuing decline in ventilation. In the running duck, there is also an abrupt fall in ventilation at the completion of exercise, with respiratory frequency and tidal volume returning to resting levels; however, after completion of the high level of exercise, tidal volume continued to decrease for nearly 10 min before returning to pre-exercise values. Arterial pH underwent no significant change from rest to exercise in running ducks, despite the fall in PaCO2, a finding in agreement with that of Millard et al. (23) on walking penguins.

The significant fall in clavicular air sac PCO_2 further indicates that the running duck hyperventilates. This measurement is indicative of a fall in parabronchial CO_2 concentration. Clavicular air sac PCO_2 has been shown

to approximate end-expired PCO_2 (3). That clavicular air sac PCO_2 , and presumably end-expired PCO_2 exceeded arterial PCO_2 is not atypical in birds, as explained by the cross current system for gas exchange (8, 22).

<u>Possible receptors responsible for hyperventilation</u>. Birds possess intrapulmonary CO_2 receptors; neural discharge from these receptors increases as airway CO_2 concentration decreases (10). Impulses from these receptors act centrally to inhibit ventilation. Thus, hyperventilation during exercise with ensuing reduction in intrapulmonary CO_2 concentration should have caused these receptors to increase their discharge frequency and thereby inhibit ventilation. It appears that these receptors are not driving ventilation during exercise; however, they may act to limit hyperventilation and thereby prevent arterial PCO₂ from falling to intolerable levels.

Other chemoreceptors, such as carotid bodies or those in the central nervous system, are activated by elevated PCO_2 , reduced PO_2 , or decreased pHa (16). During exercise, the stimuli to these receptors are reduced. Therefore, these chemoreceptors do not appear to be responsible for the hyperventilation accompanying exercise,

In our running ducks, body temperature rose by approximately 2° C during exercise, a finding common to other running or flying birds (6, 28). The rise in body temperature may have stimulated ventilation and the role of thermoreceptors may be important in the accompanying hyperventilation. In man, hyperthermia greater than 1° C leads to hyperventilation and hypocapnia (12). However, increased body temperature alone does not appear to be an independent stimulus in man; in moderate exercise, ventilation becomes stable after several minutes of exercise yet body temperature continues to rise (34). In addition, our experiment performed on a running duck at a lowered ambient temperature (8.5[°] C), indicates ventilation still increases

and $PaCO_2$ decreases despite only a 0.6° C increase in body temperature. Those data suggest that thermoreceptors may not be causing the increased ventilation during exercise. Most birds that undergo heat stress exhibit a rise in body temperature with ensuing hypocapnia and alkalosis (11, 20, 21), although during moderate heat loads the duck is able to increase its ventilation without alkalosis or hypocapnia (4).

Neural input from muscles and joints is thought to cause the cardiovascular and ventilatory responses during passive movement of these structures in cats (1). Although these studies implicate mechanoreceptors from exercising muscles, other studies (7) suggest that the exercise hyperpnea in man is linked to metabolism through CO₂ production and that the relationship between ventilation and CO₂ production is the same regardless of the rate of limb movement (7). Tibes (31), has provided convincing evidence that discharge of small, unmyelinated, group III or IV afferent fibers from exercising muscles of the dog elicits a strong ventilatory drive. It is likely that local metabolites from exercising muscles could provide a sufficient stimulus to excite these small nerve fiber endings in the running duck and thereby increase ventilation, heart rate and blood pressure despite the hypocapnia that accompanies the exercise.

In summary, the hyperventilation associated with muscular exercise in the duck cannot be explained by stimulation of peripheral or central chemoreceptors bathed by arterial blood, but may result from an increased hyperthermic drive or the activity of certain muscle afferents responding to increases in blood flow, chemical stimulation, or increases in muscle temperature. Any combination of neurogenic or myogenic drives may provide information required for the ventilatory and cardiovascular adjustments during muscular exercise in the duck.

REFERENCES

- Barron, W., and J. H. Coote. The contribution of articular receptors to cardiovascular reflexes elicited by passive limb movements. J. Physiol. (London) 235: 423-436. 1973.
- Bernstein, M. H. Ventilation and respiratory evaporation in the flying crow, Crovus ossifragus. <u>Respiration Physiol</u>. 26: 371-382, 1976.
- Bouverot, P., and P. Dejours. Pathway of respired gas in the air sacs--lung apparatus of fowl and ducks. <u>Respiration Physiol</u>. 13: 330-342, 1971.
- Bouverot, P., G. Hildwein and D. LeGoff. Evaporate water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat. <u>Respiration Physiol</u>. 21: 255-269, 1974.
- Bretz, W. L., and K. Schmidt-Nielsen. Bird respiration: Flow patterns in the duck lung. <u>J. Exp. Biol</u>. 54: 103-118, 1971.
- Butler, P. J., N. H. West, and D. R. Jones. Respiratory and cardiovascular response of the pigeon to sustained level flight in a wind tunnel. <u>J. Exp. Biol</u>, 71: 7-26, 1977.
- Casaburi, R., B. J. Whipp, K. Wasserman and S. N. Koyal. Ventilating and gas exchange responses to cycling with sinusiodally varying pedal rate. <u>J. Appl. Physiol</u>.: <u>Respirat. Environ. Exercise Physiol</u>. 44: 97-103, 1978.
- Davis, D. G., and R. E. Dutton. Gas-blood PCO₂ gradients during avian gas exchange. <u>J. Appl. Physiol</u>. 39: 405-410, 1975.

- Dejours, P. Control of respiration in muscular exercise. <u>In</u>: Handbook of Physiology, Section 3, Respiration Vol. 1, edited by W. O. Fenn, and H. Rahn. Washington, D. C., American Physiological Society, pp. 1475-1487, 1965.
- Fedde, M. R. and W. D. Kuhlmann. Intrapulmonary carbon dioxide receptors: Amphibians to mammals. <u>In</u>: Respiratory Function in Birds, Adult and Embryonic, Ed., J. Pilper, Springer-Verlag, New York, pp. 33-50, 1978.
- Frankel, H. M., and D. Frascella. Blood respiratory gases, lactate and pyruvate during thermal stress in the chicken. <u>Proc. Soc. Exp.</u> <u>Biol. Med.</u> 127:997-999, 1968.
- Grodins, F. S. Analysis of factors concerned in the regulation of breathing in exercise. <u>Physiol. Rev.</u> 30: 220-239, 1950.
- Guz, A. Regulation of respiration in man. <u>Ann. Rev. Physiol</u>. 37: 303-323, 1975.
- Hart, J. S., and O. Z. Roy. Respiratory and cardiac responses to flight in pigeons. Physiol. Zool. 39: 291-306, 1966.
- Helbacka, N. V. L., J. L. Casterline, Jr., C. J. Smith and C. S. Shaffner. Investigation of plasma carbonic acid pK' of the chicken. Poultry Sci. 43: 138-144, 1964.
- Jones, D. R. and M. J. Purves. The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnea in the duck. J. Physiol. (London) 211: 295-309, 1970.
- Kawashiro, T., and P. Scheid. Arterial blood gases in undisturbed resting birds: Measurements in chicken and duck. <u>Respiration Physiol</u>. 23: 337-342, 1975.

- Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. <u>J. Physiol</u>. (London) 47: 112-136, 1913.
- LeFebvre, E. A. The use of D₂0¹⁸ for measuring energy metabolism in Columbia livia at rest and in flight. <u>Auk.</u> 81: 403-416, 1964.
- Lindsley, J. G., and R. E. Burger. Respiratory and cardiovascular responses in the hyperthermic domestic cock. <u>Poultry Sci</u>. 43: 291-305, 1964.
- Marder, J., Z. Arad, and M. Gafni. The effect of high ambient temperatures on acid-base balance of panting Bedouin fowl (<u>Gallus</u> <u>domesticus</u>). <u>Physiol. Zool</u>. 47: 180-189, 1974.
- Meyer, M., H. Worth, and P. Scheid. Gas-blood CO₂ equilibration in parabronchial lungs of birds. <u>J. Appl. Physiol</u>. 41: 302-309, 1976.
- Millard, R. N., K. Johansen and W. K. Milson. Radiotelemetry of cardiovascular responses to exercise and diving in penguins. <u>Comp.</u> <u>Biochem. Physiol</u>, 46A: 227-240, 1973.
- Nightingale, T. E., R. A. Boster and M. R. Fedde. Use of oxygen electrode in recording PO₂ in avian blood. <u>J. Appl. Physiol</u>. 25: 371, 1968.
- Piiper, J., F. Drees, and P. Scheid. Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. <u>Respiration</u> <u>Physiol</u>. 9: 234-245, 1970.
- Severinghaus, J. W. Blood gas concentrations. <u>In</u>: Handbook of Physiology, Section 3, Respiration Vol. 2, edited by W. O. Fenn and H. Rahn. Washington, D. C., American Physiological Society, pp. 1473-1487, 1965.

- Sturmia, M. M., A. B. Sample, and E. D. Hart. An improved microhematocrit method. Am. J. Clin. Path. 24: 1016, 1954.
- Taylor, C. R., R. Dmi'el, M. Fedak, and K. Schmidt-Nielsen. Energetic cost of running and heat balance in a large bird, the rhea. <u>Am. J.</u> Physiol. 221: 597-601, 1971.
- Torre-Bueno, J. R. Respiration during flight in birds. <u>In</u>: Respiratory Function in Birds, Adult and Embryonic. Ed., J. Piiper, Springer-Verlag, New York, pp. 89-94, 1978.
- Tucker, V. A. Respiratory exchange and evaporative water loss in the flying budgerigar. <u>J. Exp. Biol</u>. 48: 78-87, 1968.
- Tibes, U. Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Circulation Res, 41: 332-341, 1977.
- Wasserman, K., A. L. Van Kessel, and G. G. Burton. Interactions of physiological mechanisms during exercise. <u>J. Appl. Physiol</u>. 22: 71-85, 1967.
- 33. Wasserman, K., B. J. Whipp, R. Casaburi, W. L. Beaver, and H. V. Brown. CO₂ flow to the lung and ventilatory control. A review <u>In</u>: Muscular Exercise and the Lung. Ed. J. A. Dempsey and C. E. Reed, Univ. of Wisconsin Press, Madison, Wisconsin, pp. 103-136, 1977.
- Whipp, B. J., and K. Wasserman. Effect of body temperature on the ventilatory response to exercise. <u>Respiration Physiol</u>. 8: 354-360, 1970.

DED I CAT I ON

I dedicate this work to my father, the late James P. Kiley, Jr., whose respect for the value of an education has provided me with the encouragement and strength to continue my pursuit of higher education.

ACKNOWLEDGMENTS

The author wishes to take this opportunity to express his appreciation to many persons who have been involved in assisting with this project. A complete list of those who have done so would be unduly long. A special thanks is extended with admiration and sincere appreciation, to my major professor, Dr. M. Roger Fedde, for his invaluable support and guidance without which this study would not have been possible. I am also indebted to the members of my committee, Drs. Robert Klemm, William Zuti and Randall Gatz for their assistance in manuscript preparation; also to Drs. Arthur Dayton and Raja Nassar for their assistance in the statistical analysis, and to Wade Kuhlmann and Dalyn Wilson for their technical assistance.

Special thanks are also extended to my mother, for her persistent understanding throughout my graduate training; and last but certainly not least to my wife, Randi, for her support and patience during this project, and for her continued help and understanding, I say thank you,

									3	STATE NEARS	Ξ	NO STANNAL CUANA	R3 Davis	(3S) WG														
the second secon														TINE 0	(NIH)													
		Catral	tal.			1	_				Reat			1.12	=			Beat			ľ	Kz 111				Reat		i
Mo	•	2	\$	\$	2	9	2	20	2	2	03	ş	~	01	2	20	2	8	60	06	~	10	2	2	01	9	3	3
1 AFTER INT PUT	84.8 29.6	31.0	11.0 12.7	33.0	2.5	24.5	26.4	26.0	220	1.62	31.6	12	x0.2 36.4	22.2	24.1	20.4	19.0	2.12	5.5	0.0	1.1	22.6 2	1.1.1	20.0	111	32.0	32.9	11.2
2. Apportal PLD	5.8 2.8	13.4	11.0	87.0 99.0	97.5 19.5	29.0 31.0	28.6	22.4	11.0	32.4	1.45	0.0	31.0	0.10	29.1	29.0	14.4	1.5	22	27	9.5	26.4 2	24.7	24.3 2	5.5	11.5	1.16	5.5
I Arterial POI2 Nixed Venues POI2	19.3	29.7	27.0	10.6	26.2	23.4	26.9	31.3	24.1	29.1	34.7	33.0	26.1	21.8	21.1	24.3	24.5	11	29.0	1.0.4	18.5 1	0.0	15.7		11		11	11
4 Arterial ITD Mixed Venous Prin ₂	9.11.6 30.8	22	31.0 11.7	30.4 35.5	27.2	8.45 32.4	27.9	27.6	29.5	29.4	0.11	31.3	28.2	21.6	76.3	2.52	32.5	29.7	28.5 2	2.1 2	26.6 1	19.0 1	0.7	16.7	1.12	10.1	2.12	22.1
5 Art-clal PCD Hixed Venous ⁴ PCD ₂	31.0	11.4	14	32.7	25.55	23.5	22.4	23.5	28.5	31.6	8-92 34-14	13.4	26.0	23.0	21.5	21.0	6.35 6.46	21.5	10.4	1.0	24.3	20.3 1	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27.5 2	8.02	20.5	29.2 2	29.8
6 Activital PUN2 Mared Vousing PUN2	29.9	0.0	30.8 12.6	31.0	27.2	27.6	26.1 32.0	25.8	27.3	1.16	29.2 32.9	31.7	26.7	26.3	24.2	22.9	31.5	8.0.	11.6 2	29.2	1.1 2	28.9	28.0 2	26.1 2	2.0.62	2.4	24-1-52	0.5
7 Arterial Pro Mixed Voncea ² [132 ₂	32.6	31.0	37.0	31.2	26.2	26.7	25.7 28.8	25.0	26.1	29.0	20.4	28.4	25.9 1.1	26.4	23.7	23.2	25.6	222	29.4	29.9 2	25.5 2	21.0 1	19.7	23.3 2	24.2	20.6	59.4	11
Nixed Vectors 2012	27.2	19.4	30.6	29.0	28.7	24.1	22.5	27.2	22.8 29.6	1.41	8.0	29.6	29.0	1.15	27.5	27.0	24.0	1.9.1	22	11.2	26.3 2	23.0 2	23.8 2	24.4 2	1.12	14.9	10.3 2	20.1
9 ALLENTIAL POD	n.4 15.5	10.9	12.0	5 F.C	23.6	23.2	21.0	21.4	23.4	28.5	C.M.	28.7	23.9	19.4	18.7	23.6	26.4	31.7	22.5	22.5	1.4 1	16.2	16.2	22.6 2	2.1.2	21.12	31.5 3	20.7
10 Acres tat Poly	11.7 11.2	22	22.3	1.4	29.5 32.0	26.4	24.3	21.2	28.1	29.2 32.6	29.4	6.9 2.5	29.1	21.9	6.12	25.6	27.9	32.5	29.2	22.4	1 0.00	26.3 2	24.6	1979	11.1	1 1 12	29.9	0.15
X Artectal Pura	11.2	0.1	2.16	30.8 34.0	27.5	25.3 11.1	1.51	24.8	1.8	29.9 33.0	32.7	22	4.1	117	29.6	32.6	90.06	29.5	2.0	29.6 2	1.1 2	27.8 2	1 9.91	8.5 2	9.42	29.2 0.20	20.2	1.4
Ak Asteclal Pub. Mixed Vennes ² Pru ₂	0.48	0.41	0.55	0.78	0.45	0.61	11.0	0.79	87.0	0.75	9.94	0.48	0.71	1.03	1.09	1.14	0.65	17:0	0.51 0	0.14 1	0.79 0	0.94 0	1.06 0	1.02	1.69	0.51 0.0	1 67.0	0.83

Aftimult label 2 Aftimult label 2 General Posting the second scient after the label with the second science states and the second science states (second science) after the second science science (second science) after science sci

														1	THE CHIN	-	1				1							ł	1
	3			Eost re	-			ā			Beat				Exp. 11			1	1.			4	Ξ				-		
	3		•	8			~	9		2	9	60	8	~	10	2	50	10	R							1			9
		Mitcal Neural Po	66.9			-									88.1	90.4	89.0 9	1.1.1	1		1.	1.1		1					53.4
		Arterial PO	6.101 7.01				-					-	-		95.1	1.46	42.7 1		8.6										9.96
	- 4	Artvilal IV, Hised Venous PO ₂	1.42												98.8 42.1	59.6	90.9 1				-								
		Acterial Pu-	105.2												19.0	91.5			22										92.7
	- 4	Aliverial PO	102.9			-									102.5	92.7	42.4 5		0.64									_	122
	< 2		4.13								-				108.7		105.116	11		02.4 11				~					57.1
	< 1	Niterial PU	5.19	-		-							97.7 52.6		47.2		21.5	2.4		90.0 10									
	< X		51.4												84.0	5.7	78.8 5			52.7									54.1
	< £	iterlal P0	91.3								80.9		5.15		6.68	91.2			0.0										67.9
	< ž .	Hard Vision 102	92.4 57.8								90.6	54.3	90.4 59.0		84.2	1.14											-		90.0
2.00 2.34 1.43 1.22 1.49 2.44 2.44 1.49 2.44 2.34 3.34 1.44 2.41 2.44 2.41 2.42 2.44 1.52 2.64 1.40 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64	₹ 2	aterial Fu	98.) 62. J	99.4 62.0								96.8 58.5	24.5	91.7	94.0	90.4			94.4		1		1	1	1				59.2
	4 z	fuel Tuoui IN2	2.09	2.92							2.22	2.39	3.78		2.61	121		-	3.20									33	2.08

APPENDIX TAMLE 3 LXPPEDDATE C. GROUMMACTED ANTENIAL AND MILED VENDIS PR AT 84-ST AND DUMING LEASELSE

ted .	1						1							TIME	(1118 (1118)													
104		S	Control			3	1 13		1	86	Reat.			E.K.	=	ľ.		Best	Ļ			Ex 111	=	1	1	Rest		
Ko.	۰	30	\$	2	2	10	11	20	94	R	3	96	~	9	51	20	10	8	0.4	06	~	2	5	2	10	8	9	96
Arterial pli Mixed Venous pli	7.467	7.448	7.424	1.448	1.405	7.461	7.434	7.468	7.410	1.134	7.414	7.432	7.433	7.456	7.414	7.418	1.426	1.455	7.450	1 444-1	1.452 7	1	1	1	1	1.	1	7.502
Artorial pH Mixed Vences pH	7.402	7.427	7.414	7.414	1.343	7.402	7.410	7.425	1.110	7.414	7.412	7.404	7.410	7.416	7.425	1.425	1.437	7.458	1.428	1.121		7.452 7	1 101-1	1 (24.1				107.1
Arterial pli Mixed Venous pH	7.512	7.489	7.424	1.412	7.462	7.488	1.44.1	7.509	7.488	7.437	7.460	1.404	186.1	1.470	7.451	7.433		11	7.422	1 034-1	1 816.1	1 505.1	7.485		Ð	D	11	11
Arterial pli Mixed Venous pH	7.521	7.467	7.443	1.444	1.511	7.448	7.430	7.427	7.399	7.475	7.446	7.446	7.476	7.448	7.468	7.492	7.435	1.478	7.432	7. 499 7	1.00	1.452.7	1 115-1	1.483	1.445	1 464.1	7. 425	234.1
Arterlai pH Mixed Yenoua pB	1.474	7.438	7.442	7.430	7.414	7.446	7.452	7.440	7.415	7.390	7.434	7.430	1.43%	1.397	7.410	7.451	7.384	7.411	7.451	1.456 7	1.00.1	1 094-1	7.460 7	1.405 7	1.419 7	1 115	1.440	1.424
Acterial pli Hixed Venuus pli	7-492	7.469	7.467	7.459	7.485	7.478	7.42	7.469	7.466	7.500	8677.1	7.474	7.419	7.463	114.1	7.481	1.458	7.459	7.499	7 100 7	1 481.7	1 444 7	1.434 7	1 212.1	1 414-1	1 405	1.521	7.468
Acterial pH Mixed Venous pH	7.469	7.472	1.412	1.451	7.464	7.463	7.460	101-1	7.472	1.454	7.463	7.455	1107-1	7.464	1441	1.441	7.492	1.429	7.424	1.425	1 010.1	7.472 7	7 697 7	1 117.1	1 417-1	1 111	7.430	11
Actecial pil Mixed Venous pil	124.1	7.455	7.448	7.460	7.434	214.1 CUC.1	7.444	7.408	7.425	7.412	7.388	1.413	7.414	1.14.1	1.163	7.402	101.1	1.433	7.430	1. 390	1.44	1 691.1	7.466 7.	7.445 7	1 094-1	7 909.7	107.1	36.97
Acterial pll Mixed Verous pll	7.410	7.460	7.441	7.451	7.400	7.470	7.418	7.430	1.438	7.446	7.451	7.450	7.466	7.492	7.445	7.500	1.433	164.1	977	1 067-1	1.145 7	1.455 7	1.562 1	1 875.1	1 014-1	1 101-1	1.476	1.1.1
O Arterial pli Mixed Venous pli	7.458	7.445	7.405	7.442	7.431	7.490	7.505	7.511	7.485	167.2	2.482	1.465	7.454	7.469	1.499	7.502	1.4.19	7.462	7.417	1 419-1	1 227-1	7 124-1	7.488 7.	1.112 7	1 185.1	1.454.7	2.465	7.455
Arterial pit Mixed Yeanus pit	7.470	1.457	1.448	7.447	7.457	7.458	7.415	7.467	7.445	7.450	7.448	7.447	7.386	1.453	7.414	7.421	1471	1.453	7.441	195-1	1 194-1	1 187-1	421 7	1 167-1	7.462 7	446 7	1.428	7.446
SK Arterial pH Mixed Venous pH	010	-005	00. 600.	.004 100	010.	600°	1009	110-	.010	600- 510-	-009	110.	100.	800-	009	110.	600.	200.	000	100	100.	600	110.	.016 210	110	200.	.012	010

41

APPENDER VALATION APPENDENT VALATION APPENDENT VALATION (101), (CAU APPENDENT APPENDENT APPENDENT APPENDENT (101), (CAU APPENDENT APPENDENT APPENDENT APPENDENT (101), (CAU APPENDENT APPENDENT APPENDENT APPENDENT APPENDENT (101), (CAU APPENDENT AP

EXPERIMENT 11. HEART RATE (BEATS-MIN⁻¹) AND MEAN ARTERIAL BLOOD PRESSURE (mm 11g)

AT REST AND DURING EXENCISE

WITH HEANS (X) AND STANDARD ERROR (SE)

60 90 2 10 15 20 10 70 70 75 793 656 657 654 611 264 75 793 166 166 155 655 655 651 10 192 723 110 110 113 136 136 132 138 137 139 136 733 110 113 136 135 130 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 137 137 137 137 137 137 137 137 137 137 137 138 138 138 137 138 138 138 138 138 138 138 138 138 138 <th></th> <th></th> <th></th> <th>and the second</th> <th>Cont</th> <th>Control</th> <th></th> <th></th> <th>Ex I</th> <th></th> <th>11me (FLH)</th> <th></th> <th>Reat</th> <th></th> <th></th> <th>Contraction of America</th> <th>Ex 11</th> <th></th> <th></th> <th></th> <th>Reat</th> <th></th> <th></th>				and the second	Cont	Control			Ex I		11me (FLH)		Reat			Contraction of America	Ex 11				Reat		
Heart Nate 233 240 231 200 244 418 710 730 731 731 <th< th=""><th></th><th></th><th></th><th>0</th><th>30</th><th>45</th><th>55</th><th>2</th><th>10</th><th>15</th><th>20</th><th>10</th><th>30</th><th>09</th><th>90</th><th>2</th><th>10</th><th>15</th><th>20</th><th>10</th><th>30</th><th>09</th><th>06</th></th<>				0	30	45	55	2	10	15	20	10	30	09	90	2	10	15	20	10	30	09	06
Weart Mark 111 201 236 301 111 101 103 123 230 131	-	Heart Rate Mean Blood	e d Pressur		248 108	251 115	260 103	434	418 164	361	378 160	290 152	295 155	263 145	297 128	465 164	457 164	454 163	431	284 136		288 121	274 150
Weart Nate 100 101 201	2	Heart Rate Mean Blood	e A Pressur	214 e 113	201 127	212 111	208 103	358 156	306 151	311	301 147	199	232	229 103	217 110	338 160	346 158	341 152	250 128	190	192 117	211	
New Mode Freenue 14 19 16 17 100 11 135 16 155		Neart Rate Nean Blood	e d Pressurv	286 e 101	264	271 107	286 105	517 160	506 145	511	448 146	252 106	248 105	259 109	236 111	516 154	546 155	529 150	499	298 142	322 132	230 106	241 108
Next Nate 273 293	4	Heart Rate Nean Blood	e d Pressure		159 94	148	166	437 145	438	430	390 135	161 86	169 85	165 95	195 114	428 145	448 155	463 147	458 143	186 106	161 94	130	175
Neart Hate 131 114 150 130 645 423	\$	Heart Rate Nean Bloom	e I Pressure		292 73		244 63	473 132	474	461 108	468 117	365 90	294 70	282 73	296 7.3	487 143	492 129	488 125	498 139	353 87	368 86	90 90	359 108
New Mool Pressure 13: 210 200 234 459 450 454 466 455 354 335 335 336 336 335	9	Heart Rate Neam Blood	e 4 Pressure		111	136	157 110	369 151	424 148	425 146	429 144	239 134	207	207 144	242 135	477 144	482	472 138	502 135	265 138	226 136	183	161 117
Work false 202 244 239 430 433 534 534 534 534 534 534 534 534 535		Heart Rate Nean Blood	e 1 Pressure		270 135	260 132	324 143	469	445 128	468 143	469 157	354 157	339 145	354 130	322 150	510 152	481 140	459 142	500 153	349 122	356 142	315	325 133
Neart kind 260 273 305 291 210 291 291 291 291 491 460 150 132 131 Neart kind Feasure and 27 391 141 123 121 291 231 241 233 311 312 391 312 312 312 312 312 312 313 311 313 311	۳.	Heart Rate Mean Blood	e 1 Pressure		244	228 148	240 142	416	643 143	429 148	434 144	275 121	267 118	317	268 109	516 123	534 129	534 136	534	363 132	272 119	276 126	271 138
Iterat Inte 217		Heart Rate Mean Blood	e 1 Pressure		275 92	305 89	297 100	478	398 125	370 123	378 126	317	299 99	321 110	287	164	458	436	468	329 126	332 110	321 103	302 109
Hoart Fate 211 213 212 241 438 427 419 411 271 261 266 762 470 473 466 453 296 282 Hean Blood Pressure 113 111 110 106 159 141 140 142 117 110 111 112 146 143 142 143 123 115 Heart Fate 12.0 12.1 12.7 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	20	Heart Rate Mean Blood	e 1 Pressure		11	230	231	434	420 146	424 142	419 144	259 102	255 72	266 74	262 85	465 142	488	480	489 143	342 134	315 96	313	289
Heart Rate 12.0 12.7 12.7 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0		Heart Rate Mean Blood	e 1 Pressure	231 231	233 111	232 110	241 108	438 150	427 141	419	411 142	271	261 110	266 111	262 112	470 146	473 143	466 142	694 143	296 123	282 116	260	257
		lleart Rate Nean Blood	e 1 Pressure				12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.7	12.0	12.7

EXPERIMENT 11. SYSTOLIC BLOOD PRESSURE (num 18) and DIASTOLIC BLOOD PRESSURE (num 18)

AT PEST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

0 10 15 5 1 10 Swrolle Fraaure 10 15 15 10 185 19 Swrolle Fraaure 10 13 1				Control	10.			Ex 1				Rest				Ex 11				Reat		
Systelle Freasure N2 133 130 135 191 135 191 135	No.		0	30	45	55	2	10	15	20	10	30	60	90	2	10	15	20	10	30	60	90
Statilt Framme 12 13	_	Systolic Pressure Disstolic Pressure		133	153 96	1,30 90	185	193	190	187 146	175 140	185	185 125	165	202	202	203	187 147	181	11	184 90	199 125
Systellic Pressure 12, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	2	Systolic Pressure Distolic Pressure	142 98	155	134 99	139 85	183 142	178	180	175 133	142 92	146 98	127 91	130	175	175 150	173 142	143 120	135 97	127 105	140 071	
Systelic Freamere 13 13 13 14 13 16 Systelic Freamere 10 1 7 79 66 100 115 Systelic Freamere 10 13 7 79 66 100 115 Systelic Freamere 10 34 76 73 135 110 Systelic Freamere 13 164 106 153 134 110 Systelic Freamere 13 145 135 134 131 134 131 Systelic Freamere 13 144 135 135 136 136 136 Systelic Freamere 13 144 135 135 136 130 136 130 136 <td< td=""><td></td><td>Systolic Pressure Diastolic Pressure</td><td>142 80</td><td>154 92</td><td>152 85</td><td>140 87</td><td>194 143</td><td>185</td><td>187 133</td><td>184 127</td><td>157 80</td><td>155 80</td><td>158 85</td><td>162 85</td><td>196 133</td><td>199 133</td><td>200 125</td><td>215 125</td><td>193</td><td>182</td><td>175 72</td><td>173</td></td<>		Systolic Pressure Diastolic Pressure	142 80	154 92	152 85	140 87	194 143	185	187 133	184 127	157 80	155 80	158 85	162 85	196 133	199 133	200 125	215 125	193	182	175 72	173
Studic Franke 10 03 104 117 119 Studic Franke 13 14 15 15 15 15 13 13 Studic Franke 13 14 16 15 15 14 10 13 13 13 Studic Franke 13 14 16 13 <t< td=""><td>4</td><td>Systollc Pressure Diastolic Pressure</td><td></td><td>134 74</td><td>138 79</td><td>144 88</td><td>174</td><td>160</td><td>115</td><td>175</td><td>135 61</td><td>133</td><td>138 73</td><td>147 98</td><td>181 127</td><td>183 141</td><td>184 129</td><td>180</td><td>151 83</td><td>149 67</td><td>170</td><td>172 82</td></t<>	4	Systollc Pressure Diastolic Pressure		134 74	138 79	144 88	174	160	115	175	135 61	133	138 73	147 98	181 127	183 141	184 129	180	151 83	149 67	170	172 82
Synthlic Pressures 155 164 156 155 184 115 Standlic Pressures 13 14 13 13 13 13 13 Synthlic Pressures 13 14 13	5	Systolic Pressure Diastolic Pressure		103 58		104 43	167 115	170	147 88	150	116	109 50	115 52	128 46	179	169 109	168 104	198	147 57	141 59	155 58	165 80
Specialic Premares 16 163 153 128 130 166 Munable Frequence 13 113 123 123 130 165 100 105 Synchle Frequence 133 113 123 113 123 130	9	Systolic Pressure Disstolic Pressure		164 84	176 88	165 83	184	183	183 128	193 120	175	186 110	190 121	180	183 125	175	176 119	185	190	189	178 102	175 88
Syntolic Freamer 13 <th13< th=""> 13 13</th13<>	1	Systelic Pressure Diastolic Pressure		168 118	165	178 125	190	166 109	180	200	190 140	180 128	159	180	183	169 125	177 125	190	157	173 126	115	170
Specific France 15 140 13 140 13 130 <t< td=""><td>æ</td><td>Systolic Pressure Disstolic Pressure</td><td></td><td>175 144</td><td>175</td><td>173 126</td><td>165 135</td><td>170</td><td>173</td><td>170</td><td>163</td><td>157 99</td><td>175</td><td>158 85</td><td>163 103</td><td>172 108</td><td>178</td><td>200 125</td><td>175</td><td>183 88</td><td>185 97</td><td>190</td></t<>	æ	Systolic Pressure Disstolic Pressure		175 144	175	173 126	165 135	170	173	170	163	157 99	175	158 85	163 103	172 108	178	200 125	175	183 88	185 97	190
Specific Pressure 157 135 145 136 137 Unsucific Pressure 10 83 145 135 130 Systolic Pressure 10 83 153 135 130 Systolic Pressure 10 83 131 130 130 Systolic Pressure 102 93 91 96 130 135 134 Utable Fressure 4.00 4.04 4.44 4.30 4.50 <td< td=""><td>6</td><td>Systolic Pressure Diastolic Pressure</td><td></td><td>140 68</td><td>137 65</td><td>140 80</td><td>184 120</td><td>103</td><td>170</td><td>182 99</td><td>93</td><td>145</td><td>160 85</td><td>153 78</td><td>180</td><td>180</td><td>180</td><td>195 95</td><td>173</td><td>155 88</td><td>153 78</td><td>163 83</td></td<>	6	Systolic Pressure Diastolic Pressure		140 68	137 65	140 80	184 120	103	170	182 99	93	145	160 85	153 78	180	180	180	195 95	173	155 88	153 78	163 83
Systolic Freemare 149 147 149 146 180 175 Matiolic Freemare 102 93 91 89 135 124 Statiolic Freemare 102 93 91 89 135 124 Distribution 102 94 44 4,44 4,40 4,50	10	Systolle Pressure Diastolle Pressure	157		135 83	145 85	176	177	174 126	177 128	148 80	128 45	123 50	140 58	181 123	178 120	180 118	190 120	175	148 70	163 70	164 68
Systellic Pressure 4.20 4.44 4.44 4.20 4.20 4.20 11.31		tolle Pressure stolle Pressure	149 102	147 93	149 91	146 89	180 135	175 124	175 123	179 123	156 98	152 89	153 91	154 91	182 128	180	182 122	188 121	168 101	162 93	166 85	173 93
tothe tothe forth forth tothe		Systolic Pressure Disstolic Pressure	4.20	4.44	4.44	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4.20	4,20	4.20	4.44	4.93	4.20	4.44

EXPERIMENT 11. RESPIRATORY TIDAL VOLUME (m1) BTPS

AT REST AND DURING EXERCISE WITH HEANS (X) AND STANDARD ERROR (SE)

Time (MIn)	90	test 60	30	101	20	1 2	Ex 1 10	Ex I Reat Ex II N 10 15 20 10 30 60 90 2 10 15 20 10 30	06	t 60	Real	10	20	15	Ex I 10	2	55	Control
		99	30	10	20	15	10	2	06	60	90	30	20	15	10	2	55	30 45 55
		est	Re			_	Ex I				Real				Ex I			trol

	,	ç	2	2		24	2	2	2	R	3	0.6	4	10	2	24		2	20	06	
								-													
-	102.3	109.3	104.4	100.9	72.2	53.2	24.6	24.6	45.3	75.8	89.3	1.17	94.1	22.5	22.0	23.6	16.0	1		18.2	
2	48.2	182.2	168.4	110.4	115.1	40.2	33.0	29.3	24.9	277.6	259.0	243.7	75.1	32.1	23.7	22.5	15.8	92.0	116.9	104.3	
3	49.2	61.8	61.8	65.9	38.9	29.9	28.3	23.0	14.3	22.9	58.0	61.4	38.5	24.8	21.2	21.4	18.9	12.5	13.4	34.9	
4	73.9	84.3	107.4	83.2	57.2	35.0	28.1	24.8	36.3	81.7	98.7	121.1	90.0	51.3	43.9	42.2	32.3	174.2	150.4	150.9	
5	81.7	98.0		108.2	48.5	26.1	25.8	22.8	18.4	23.8	29.8	26.1	47.4	33.5	30.8	33.6	16.0	18.8	23.3	26.8	
9	119.9	131.8	129.3	187.0	83.6	43.2	33.1	32.6	19.1	112.4	96.2	93.5	89.0	39.66	37.7	1.96	32.3	146.7	116.9	162.8	
~	4.16	75.9	60.5	44.0	48.8	25.5	25.7	23.4	24.6	58.2	53.2	66.0	44.4	33.8	30.8	29.8	37.9	48.8	56.4	64.3	
80	77.2	75.6	71.2	64.3	51.9	42.0	32.0	28.5	51.5	59.2	62.2	62.6	73.3	54.3	39.8	34.6	50.5	84.3	91.5	107.6	
6	85.3	67.5	58.5	45.4	43.3	24.1	12.3	34.3	48.1	67.8	62.0	73.3	42.9	29.7	23.8	20.3	31.0	77.6	62.7	67.2	
10	59.1	-	93.8	85.7	53.4	20.2	18.7	18.8	32.8	66.4	87.0	9.66	44.7	22.9	23.5	24.6	13.6	126.9	17.4	126.2	
×	78.8	98.2	92.6	89.5	61.3	33.9	26.2	26.2	31.5	84.6	89.5	91.8	63.9	34.4	29.7	29.2	26.4	86.8	78.7	86.3	
SE	9.79	10.35	10.35	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	9.79	10.35	10.35	9.79	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									5	AT AL	REST A	NO DUR	AT REST AND DURING EXERCISE	CISE	AT REST AND DURING REACT AND DURING REACT AND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11			Distance of the local						Tim	ic (MIn									
30 45 35 2 10 15 20 10 30 60 90 2 10 15 64.1 4.7 4.7 17.9 34.6 94.8 56.6 8.1 8.0 6.6 8.5 16.0 190.0 155.7 55.1 9.4 14.5 14.5 9.4.8 9.6.6 8.1 8.0 6.5 16.0 190.0 151.9 113.9 10 113.9 109.0 113.9 109.0 113.9 109.0 113.9 109.0 113.9 100.0			Cont	Lrol			Ex	-			Res				Ex 11			Rost		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	92	45	55	2	10		20	10	30		90	2		20	10	30	60	06
5.3 6.0 9.2 7.1 9.4 16.5 16.5 6.4 3.0 4.5 </td <td></td> <td>5.3</td> <td></td> <td>4.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.5</td> <td>16.0</td> <td>139.0 155.7</td> <td>164.3</td> <td>74.9</td> <td></td> <td>6.3</td> <td>12.9</td>		5.3		4.7									8.5	16.0	139.0 155.7	164.3	74.9		6.3	12.9
16.0 19.1 19.1 19.4 19.1 19.4 10.4 19.4 10.4 10.4 19.4 10.4 <th< td=""><td></td><td>1.7</td><td></td><td>8.8</td><td>9.2</td><td></td><td></td><td>126.3</td><td></td><td>106.8</td><td></td><td></td><td>4.3</td><td>32.2</td><td>93.1 139.7</td><td>149.3</td><td>145.3</td><td>9.4</td><td>9.4</td><td>7.1</td></th<>		1.7		8.8	9.2			126.3		106.8			4.3	32.2	93.1 139.7	149.3	145.3	9.4	9.4	7.1
124 9.7 14.5 6.2.7 115.4 16.1.7 61.1.9 11.2 10.7 63.3 10.9.7 113.1 14.1 11.0 97.2 200.2 303.4 106.9 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.4 10.9 104.4 100.9 10.4 9.3 7.0 45.0 11.3 11.3 11.3 11.3 11.3 11.4 10.4 104.4 104.6 104.4 104.6 104.4 104.6 104.4 104.6 104.4 104.6 11.1 </td <td></td> <td>34.6</td> <td></td> <td>20.3</td> <td></td> <td></td> <td>157.8</td> <td>172.5</td> <td></td> <td>298.6</td> <td>99.5</td> <td></td> <td>15.6 1</td> <td>1.00</td> <td>168.1 190.4</td> <td>168.2</td> <td>250.1</td> <td>232.7</td> <td>151.1</td> <td>29.8</td>		34.6		20.3			157.8	172.5		298.6	99.5		15.6 1	1.00	168.1 190.4	168.2	250.1	232.7	151.1	29.8
		13.3	12.4	9.7	14.5		115.4	149.9	163.7	63.0	13.8		10.7	58.3	2.661 6.901	149.7	80.9	6.5	7.8	9.1
10.4 9.5 7.0 45.0 14.1.7 10.1.6 10.1.1 26.0		6.41	14.1	-	13.6			203.4		188.9	116.3		113.8 1		164.8 180.9		225.0	180.7	129.3	94.0
16.0 11.6 51.1 1.6.1 1.		3.0	10.4	9.5	7.0			181.6		226.3	11.3		12.3	51.6	161.0 184.6		6**6	9.8	14.8	6.5
0.0 10.4 11.2 45.5 6.6.18.0 10.4 11.2 10.4 11.2 10.4		10.3		16.0	31.6			153.7	162.5	82.6			26.6	88.4	126.6 152.1		42.5	33.0	21.7	22.2
11.5 17.6 26.9 60.2 122.7 14.4 82.4 15.4 16.4 16.4 11.1 13.2 99.4 178.6 213.1 53.2 18.7 13.6 11.1 13.2 99.4 178.6 213.6 208.9 53.2 18.7 13.6 13.4 14.0 13.4 17.8 127.5 155.6 199.2 106.9 34.0 20.6 13.4 14.0 11.5 1		11.0		10.6	11.2			118.0	125.9		16.4			54.6	71.1 113.4		24.8	10.8	11.1	9.6
11.1 13.2 59.4 178.6 215.6 209.9 53.2 18.7 11.6 18.0 15.1 57.4 127.5 155.6 154.9 06.9 34.0 20.8 18.1 57.4 127.5 155.6 154.9 154.7 11.6 18.1 57.4 127.5 155.6 154.9 106.9 34.0 20.8 18.1 11.5 11.5 11.5 11.5 11.5 11.5		9.11		17.6	26.9			144.6			16.4		14.1	91.9	119.0 164.7	196.9	\$7.6	13.5	16.9	16.0
13.6 18.0 15.1 57.6 127.5 135.6 94.0 20.8 11.5 15.1 5.11		7.2		1.11	13.2		178.8	213.6		53.2		13.6	11.11		207.5 212.3	214.4	255.2	8.4	15.2	7.9
12.1 12.1 11.5 11.5 11.5 11.5 11.5 11.5		4.9		18.0	15.1	57.8		155.8	159.5	106.9	34.0		23.3	70.6	135.9 162.7	170.8	125.1	52.6	38.4	21.5
				12.1	11.5		11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5 11.5		11.5	12.1	11.5	11.5

EXPERIMENT 11. RESPIRATORY MIMUTE VOLUME (1.mIn⁻¹) BTPS

AT REST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

								DHITT	(mim)											
5		Cont rol	rol			Ex 1				Rest				Ex 11				Rest		
Bird No.	0	30	45	55	2	10	15	20	10	30	60	06	2	9	15	20	10	30	99	96
	.54	14.	64.	14.	1.29	2.05	2.33	2.38	.38	.61	.59	.60	1.51	3.13	3.43	3.88	1.20		•	.23
	.85	16.	1.48	1.02	2.45	3.78	4.17	4.27	2.66	1.39	11.11	1.05	2.42	2.99	3.31	3.36	2.30	.86	1.10	.74
٦	1.70	1.03	1.25	1.27	4.03	4.72	4.88	4.80	4.27	2.28	1.28	.96	4.20	4.17	4.02	3.60	4.73	2.91	2.02	1.04
	.98	1.05	1.04	1.21	3.59	4.04	4.21	4.06	2.29	1.13	1.17	1.30	5.25	5.61	5.86	6.32	2.61	1.13	1.17	1.37
-	1.22	1.38		1.47	4.81	5.24	5.25	4.75	3.48	2.77	2.46	2.97	5.72	5.52	5.57	5.70	3.60	3.40	3.01	2.52
1	1.56	1.37	1.23	1.31	3.72	6.21	6.01	6.23	4.32	1.27	1.11	1.15	4.59	6.38	96.96	8.26	3.07	1.44	1.73	1.06
	9 4.	1.25	16.	1.39	2.80	3.73	3.95	3.80	2.03	2.01	1.29	1.76	3.93	4.28	4.68	4.64	1.61	1.61	1.22	1.43
	.85	.76	.75	.72	2.26	3.22	3.78	3.59	.80	16.	56 .	1.00	4,00	3.86	4.51	4.55	1.25	16.	1.02	1.03
	66.	1.25	1.03	1.22	2.95	2.96	1.78	2.83	1.22	11.11	1.02	1.03	3.08	3.53	3.92	4.00	1.79	1.05	1.06	1.08
-	1.02		1.04	1.13	3.17	3.61	3.99	3.95	1.75	1.24	1.18	1.11	4.63	4.75	5.00	5.27	3.47	1.07	1.18	1.00
		-																		
٦	1.07	1.06	1.16	1.03	3.11	3.96	4.04	4.07	2.32	1.48	1.21	1.30	3.93	4.42	4.73	4.96	2.56	1.60	1.50	1.15
	.21	.22	.22	.10	.21	.21	.21	.21	. 21	.21	.21	.21	.21	.21	.21	.21	.21	.31	.22	.21

EXPENIHENT II. ARTERIAL AND MIXED VENOUS PCO_2 BLAMD GAS TENSIONS (tort) AT REST AND DURING EXERCISE

WITH MEANS (\overline{X}) AND STANDARD ERROR (SU)

		1									Time (Min)	(uffu)							-		
Rive			ŏ	Control			-	Ex I			Rei	Rest			Ex	Ξ			æ	Reat	
No.		0	30	45	55	2	10	15	20	10	30	09	90	2	10	15	20	10	g	60	90
	Arterial FCO2 Mixed Venous ² PCO2	26.1	24.4 32.7	29.7 28.3	27.1	28.8 35.4	21.8 30.5	23.5 27.2	20.5	23.8	27.5 35.1	34.6 34.5	26.8 36.9	29.1 34.9	21.0 27.7	18.5 23.2	16.7 22.3	22.5 26.1		24.7 28.7	26.5 30.2
	Arterial PCO2 Mixed Venous ² PCO2	22.2 25.6	26.4 33.0	26.1 28.5	24.6 31.2	26.4	25.0 35.4	22.2 31.6	24.1 31.4	22.7 21.7	24.7	27.2 28.9	29.6 32.8	28.3 35.2	25.4 36.3	26.1 32.9	25.4	25.2	20.0 28.2	24.7	27.7 31.1
	Arterial PCO2 Mixed Venous ² PCO2	24.6 31.9	25.1 28.6	20.1	24.9 29.1	25.4 34.1	24.1 30.2	21.5	22.0 27.1	22.7 27.7	26.2 29.7	23.0	25.0 28.9	23.0 33.2	22.0 29.6	20.5 28.3	17.4	15.7 21.6	19.2	23.5 29.3	20.6 25.4
	Arterial PCO2 Mixed Venous ² PCO2	25.0 27.4	18.9 27.1	22.5 24.4	16.4	22.6 29.9	21.2 29.5	23.2 26.5	20.3 26.7	18.0 22.4	17.6	19.4	23.6 29.1	21.7 28.3	17.7	19.5	16.8	18.4 25.7	19.8 26.4	19.4 24.5	19.5 25.5
	Arterial PCO2 Mixed Venous ^{PCO2}	25.7 29.9	22.5		21.2 27.4	22.5 28.8	19.4	16.5 25.0	18.4 24.9	21.8 25.3	22.4 29.9	20.6 26.2	23.1 27.8	20.3 28.3	21.0 27.9	20.2	20.4	20.5	22.5 26.9	24.6 27.7	25.3 29.8
	Arterial PCO2 Mixed Venous ² PCO2	15.8	16.9 22.9	20.7 22.8	23.4 27.0	24.6 29.9	24.3	22.0 27.9	21.3 28.6	23.8 26.2	18.5 25.6	24.7 27.6	21.8 27.6	24.6 28.5	22.4	19.7 25.1	16.0 20.8	21.9	18.5 24.3	18.4 21.8	23.3 25.2
	Arterial PCO2 Mixed Venous ² PCO2	24.3 32.6	22.9 25.3	23.3 27.2	25.1 29.0	22.3 26.1	20.9 26.3	19.6 26.2	19.7 26.3	19.8 26.1	20.5 22.9	24.5 26.7	19.3 24.1	19.2 30.5	19.5 27.6	19.5 27.3	17.4	23.9 27.2	33.6	23.9 28.2	22.0 28.4
	Arterlal PCO2 Mixed Venous ² PCO2	29.3 30.9	25.4	29.1 31.3	27.7 33.6	25.4	21.2	21.3 26.3	19.8 26.2	24.8	21.7 29.0	24.9 26.6	17.6	20.8	18.1 28.5	17.6 25.1	14.9 23.6	22.0 24.7	22.2 25.1	20.4 22.2	18.5 23.8
	Arterial PCO2 Mixed Venous ² PCO2	27.7 33.8	28.4 33.3	24.5	28.4 29.8	25.2 32.1	23.8	23.0 28.5	21.3 27.6	25.4 29.4	23.9 28.2	27.8 32.0	25.6 27.6	22.9 32.8	24.7 287.7	22.0 29.7	23.0 27.7	26.2 30.4	25.0 28.4	24.7 29.6	26.6 29.1
0	Arterial PCO2 Mixed Venous ² PCO2	30.2 32.5		24.4 30.0	25.5	24.3 32.9	26.5 29.8	25.3	22.0 30.1	25.1 30.3	21.9 26.3	24.4	24.9 28.5	26.0 34.4	21.3	20.5 28.7	19.2 24.8	20.8	22.7 28.6	25.0 28.1	26.6 29.0
	Arterial PCO2 Mixed Venous ² PCO2	25.1 29.1	23.6 29.5	24.4 27.8	24.4 29.6	24.7 31.4	22.8 30.0	21.8 28.0	20.9 27.6	22.8	22.5 28.2	25.1 28.5	23.7 28.7	23.6 31.5	21.3 29.0	20.4 27.2	18.7 25.1	21.7 25.7	21.3	22.9 26.8	23.7
SE	Arterial PCO2 Mixed Venous ² PCO2	.78	.83	.82	.78 .79	.78 .79	87. .79	.78 .79	.78 .79	.78	.78 .79	87. .79	.78 .79	.78	.78 .79	.78 .79	.78	.78	.83	.78	: 79

EXPERIMENT 11. ARTERIAL AND MIXED VENOUS PO2 BLOOD GAS TENSIONS (LOTI)

AT REST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

										Time	e (MIn)										
			3	Control			Ex	_			Reat				Ex 11				Reat		
		0	30	45	55	2	10	15	20	1.0	90	09	90	2	10	15 20		10 3	30 60		90
-	Arterial PO	92.6	90.3	85.1	88.7	98.5	100.6		102.2 110.5	110.5									-	-	100.4
ŕ	*	0.20			2.86	42.3	7.14	2.04	44.2	0.80	60.8				49.0 4	44.7 43					48.5
7	Arterial PO ₂ Mixed Venoug PO ₂	57.6	93.5 61.2		96.4 101.7 54.5 57.5	98.7 42.7	96.8	47.4	95.7 107.9 44.6 56.0	107.9 56.0	89.9 112.2 59.6 60.2		86.8 1 62.8	45.5	99.1 10 47.8 4	99.1 102.3 102.0 47.8 46.2 44.6		109.7 111.9 113.9 56.1 63.0 59.6	63.0 59		96.0 62.8
e	Arterial PO2	104.4 62.1		14.0 103.1 104.2 56.7 55.8 51.7	104.2	97.1 46.9	103.0	109.9	98.5 44.9	98.9	108.01	105.2 1 62.2	112.2 1 60.0	54.1	53.8 5	54.3 53.9	-	63.1 6	124.5 108.1 62.5 67.1	-	120.1
4	Arterial PO Mixed Venous PO	98.4 51.7	108.3	86.8 49.8	92.6 50.4	104.1 42.2	107.6 1	47.5	104.7 116.2 47.2 55.4	116.2	109.7	75.9	95.8 1 53.8	41.0 4	44.4 4			_	11 4.60		86.6
\$	Arterial PO2 Mixed Venous PO2	86.9 43.1	79.1		88.0 41.6	86.9 36.3	85.4 38.7	90.2 37.2	84.8 36.8	98.3 52.2	95.1 53.2	96.0	90.1 I	103.4 IC	48.0 5	48.0 50.8 47.7		114.3 105.3 112.0 59.7 64.2 60.3	05.3 113 64.2 60		98.7 62.2
6	Arterial PO2 Mixed Venous PO2	103.4	98.0 55.4	81.3 52.1	80.7 58.5	95.3 50.3	98.5 56.3	101.2 53.0	97.2 53.5	97.0 60.0	98.5 62.6	99.4 62.2	9.96 1.93	53.4	100.1 100.5 55.6 50.6		98.7 10 48.5 6	101.2 9	94.4 104.1 60.9 56.2		89.5
~	Arterial PO2 Mixed Venous PO2	105.5	119.0	105.7	109.9 66.2	108.4 52.9	53.2	116.0	113.2 116.0 115.6 111.2 53.2 54.6 53.7 54.3	54.3	107.0 52.9	[]	133.2 1	124.4 1	136.3 127.5 62.2 61.7	127.5 133	133.0 12	73.7 7	122.0 136.4 130.3	80.2 7	30.3
3	Arterial PO2 Mixed Venoug PO2	1117.6		105.7 108.9 105.6 66.6 63.5 68.3	105.6 68.3	113.6 52.4	57.8	56.5	117.7 119.8 117.4 110.9 57.8 56.5 54.1 64.6	64.6	120.01	120.0 103.2 119.4 70.9 58.8 70.5		54.2	55.2 6	119.1 121.2 128.5 134.1 54.2 55.2 62.0 60.5		122.5 118.9 127.9 126.6 70.0 78.1 69.7 72.0	78.1 69	27.9 12	72.0
6	Arterial P02 Mixed Venous P02	89.1 49.0	97.4 50.2	95.2 53.9	88.9 49.0	91.4 45.0	102.8	96.7 46.8	99.2	91.1	101.6	89.2	93.6 51.2	91.8.10	102.8 100.4 47.5 49.1			91.5 10	101.5 9	97.5 10 60.9 5	101.2 55.9
10	Arterlal PO2 Mixed Venous PO2	108.2 58.5		88.4 57.7	58.0	52.4	112.8 54.6	112.8 109.7 111.7 54.6 55.8 54.1		107.0 62.4	118.2 J 56.1	101.8 110.1 60.0 58.7		53.8	53.2 5				61.8 6	63.6 5	59.5
×	Arterial PO2 Mixed Venous PO2	100.9	100.9 101.1 54.5 57.2	93.5 54.9	97.3 55.9	99.8 46.3	103.8	105.5	105.5 102.7 104.9 48.9 47.8 57.4		104.4 100.0 58.2 58.3	100.01	103.8 1	1 6.70	11.0 11	107.9 111.0 111.7 112.8 49.9 51.7 51.7 50.8		112.1 110.8 111.8	3.6 6	.8 10	105.8
SK	Arterlal PO2 Mixed Venous PO2	2.13 1.26	2.25 1.33	2.25 1.33	2.13 1.26	2.13 1.26	2.13	2.13	2.13 : 1.26	2.13	2.13 2	2.25 2 1.26 1	2.13	2.13 2	2.13 2 1.26 1.	2.13 2.13 1.26 1.26		2.13 2.25 1.33 1.33	2.25 2.13		2.13

EXPERIMENT II. ARTERIAL AND MIXED VENOUS PH APPENDIX TABLE 12

AT REST AND DURING EXERCISE

10.

											Time ((HIII)										
Blrd			3	Control			Ex	-			ä	Reat			Ex	н			Rest	t		
No.		•	30	45	55	2	10	15	20	10	8	99	90	2	10	2	20	9	30	60	90	
-	Arterial pli Mixed Venous pli	7.50	2 7.48	3 7.48	7.49	7.48	7.53	7.48	7.53	7.48	7.48	7.43	7.52	7.49	7.56	7.59	7.61	7.50		7.52	7.50	
2	Arterlal pli Mixed Venous pli	7.41	1 7.48	8 7.47 1 7.49	7.50	7.47	7.48	7.48	7.49	7.48	7.51	7.52	7.45	7.41	7.47	7.49	7.49	7.49	7.55	7.54	7.48	
	Arterlat pli Nixed Venous pli	7.46	5 7.50 7 7.44	7.51	7.47	7.46	7.48	7.49	7.51	7.49	7.45	7.48	7.47	7.50	7.51	7.52	7.54	7.53	7.50	7.49	7.55	
4	Arterlai pli Mxled Venous pli	7.46	5 7.51	1 7.51	7.53	7.48	7.50	7.49	7.50	7.51	7.53	7.54	7.47	7.50	7.45	7.51	7.49	7.47	7.43	7.46	7.45	
\$	Arterlal pll Mixed Venous pll	7.50	0 7.53		7.53	7.51	7.52	7.52	7.53	7.48	7.50	7.52	7.50	7.44	7.43	7.44	7.49	7.49	7.48	7.48	7.48	
9	Arterisi pli Mixed Venous pli	7.64	4 7.60 0 7.53	3 7.54	7.49	7.46	7.45	7.43	7.48	7.48	7.54	7.49	7.49	7.41	7.43	7.49	7.53	7.50	7.56	7.59	7.52	
~	Arteriul pli Nixed Venous pli	7.46	6 7.51 4 7.50	1 7.52	7.57	7.49	7.40	7.42	7.48	7.54	7.51	7.53	7.52	7.41	7.41	7.41	7.47	7.42	7.43	7.41	7.49	
89	Arterial pli Hixed Venous pli	1.43	3 7.45 2 7.39	5 7.44	7.43	7.45	7.43	7.44	7.49	7.45	7.45	7.45	7.53	7.43	7.49	7.49						
6	Arterial pli Mixed Venous pli	1.51	1 7.50	0 7.51 5 7.48	7.48	7.50	7.50	7.51	7.52	7.49	7.52	7.48	7.51	7.51	7.49	7.45	7.50	7.48	7.49	7.48	7.46	
01	Arterial pli Mixed Venous pli	7.50		- 7.56	7.50	7.53	7.52	7.52	7.52	7.41	7.56	7.52	7.54	7.45	7.48	7.53	7.55	7.53	7.49	7.49	7.51	
×	Arterial pli Mixed Venous pli	1.49	9 7.51	1 7.50	7.50	7.44	7.48	7.44	7.50	7.47	7.51	7.50	7.49	7.49	7.50	7.51	7.52	7.47	7.46	7.49	7.48	
SE	Arterial pli Mixed Venous pli	.020	0. 014 0.014	4 0.12 4 .010	.010	110.	110.	110.	110.	.010	.010	.010	.010	.010	.010	.010	.012	.012	.012	.012	.012	

EXPERIMENT II. ARTERIAL AND MIXED VENOUS PLASMA (MCO_3^2) (uM)

AT RES'T AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Civi	Control							TIME	(NIN)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	гd	i.	and of	1011			EX	-	-		Rest				Ex 1				Rest		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	R	6	8	2	01	15	20	10	30	60	90	2	10	15	20	10	30	60	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< >			20.4	19.2	19.7	16.8	17.8	16.0	16.3	19.0	21.4	20.4	20.7	17.5	16.5	15.6	16.6		18.6	20.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*			4.41	21.6	C.12	19.7	18.8	18.3	19.7	22.2	22.2	24.3	22.2	20.3	18.1	18.5	18.9		21.3	22.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< :			17.8	17.8	18.0	17.3	15.4	17.0	15.9	18.2	20.8	18.9	1.9.1	17.3	18.4	18.0	18.0	1 91	0 01	
	>			20.4	21.8	20.2	21.7	19.9	19.9	19.2	20.1	20.0	20.9	20.7	21.8	20.5	20.3	19.0	20.1	19.9	21.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<	16.2		14.8	16.8	16.8	16.8	15.3	16.4	16.2	16.8	15.9	17.7	16.5	16.2	15.7	13.9	12.1	14.0	16.6	91
	>	8.12		17.8	18.8	19.7	19.0	19.0	18.0	18.1	18.9	18.7	19.7	20.8	19.4	19.0	17.2	15.1	15.8	19.6	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< >			16.8	12.7	15.8	15.4	16.4	14.7	13.3	13.8	15.5	16.7	15.8	13.6	14.4	12.1	12.5	13.0	12.8	13.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•			113	1.61	9.71	18.5	16.4	16.9	15.0	19.0	17.4	19.5	17.9	17.7	18.1	17.8	17.5	16.1	15.5	16.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< :	18.6			16.3	16.6	14.6	12.5	14.2	15.1	16.1	15.5	16.7	14.4	14.9	14.6	14.3	14.6	15.4	1 21	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>	1.12			19.7	18.8	18.2	17.1	16.8	16.9	20.9	19.2	19.2	17.7	17.2	15.9	15.8	14.6	18.4	18.5	20.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< >			16.5	.16.6	16.2	15.6	14.6	14.6	16.4	14.7	17.4	15.5	15.9	15.4	13.9	12.5	15.7	15.5	16.2	17.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•			b . / 1	5.4	18.3	C./1	17.2	17.6	17.6	19.4	19.2	19.3	16.8	17.9	16.1	14.1	17.0	18.9	17.6	17.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< :			17.7	21.1	15.8	12.0	11.8	13.6	15.8	14.6	19.0	14.5	12.6	12.8	13.1	11.7	14.2		15.2	51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>			21.3	19.2	17.7	14.5	13.4	16.8	21.9	17.0	16.4	17.0	17.9	16.1	16.1	13.9	15.6	19.2	16.8	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< :			18.3	17.2	16.9	14.2	15.4	14.1	16.1	15.6	16.0	13.8	15.0	12.8	12.5					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>			19.3	20.1	19.0	19.1	16.8	16.9	16.8	18.7	16.8	17.6	17.7	17.3	16.8					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< :			18.1	19.6	18.1	17.3	16.9	16.0	18.0	18.1	19.3	19.1	16.9	17.6	15.9	16.8	18.1	17.8	16.9	-
22.1 20.1 10.1 19.0 20.0 10.3 16.4 16.4 16.6 15.4 16.1 16.1 17.1 16.1 16.1 16.1 16.1 16.1 17.0 1 22.1 22.5 22.6 22.6 20.5 20.5 20.5 20.5 20.5 20.6 17.5 10.5 19.2 20.6 10.5 20.6 17.2 17.3 17.5 10.5 17.5 10.5 17.5 10.5 10.5 10.5 10.6 20.6 17.7 17.8 17.6 17.5 19.6 17.5 15.4 16.7 15.4 16.7 15.4 16.7 15.4 16.7 <td>></td> <td></td> <td></td> <td>23.1</td> <td>20.3</td> <td>20.7</td> <td>18.6</td> <td>19.6</td> <td>18.4</td> <td>20.2</td> <td>19.9</td> <td>21.2</td> <td>19.7</td> <td>21.1</td> <td>18.6</td> <td>19.0</td> <td>18.4</td> <td>19.8</td> <td>19.3</td> <td>19.1</td> <td>18.</td>	>			23.1	20.3	20.7	18.6	19.6	18.4	20.2	19.9	21.2	19.7	21.1	18.6	19.0	18.4	19.8	19.3	19.1	18.
22.1	< :			20.1	18.3	19.0	20.0	19.3	16.5	18.8	18.4	18.6	9.61	18.8	16.4	16.0	3 51	1 91	1 71	0.01	01
17.6 17.2 17.8 17.6 17.3 16.0 15.5 15.3 16.2 16.5 17.9 17.3 16.6 15.5 15.1 14.5 15.3 15.4 16.7 1 20.0 20.0 19.8 20.3 19.6 18.7 18.0 18.0 10.7 19.6 19.3 19.4 19.5 15.1 14.5 15.4 18.4 18.4 0.91 0.62 0.53 0.52 0.51 0.51 0.51 0.51 0.51 0.53 0.51 0.53 0.53 0.53 0.53 0.53 0.53 0.53	>			22.5	22.4	22.6	20.6	21.6	20.6	20.9	20.3	21.5	20.9	22.1	18.7	19.3	18.0	19.3	19.2	20.8	
20.0 10.2 10.8 10.6 10.3 10.0 15.3 15.3 16.2 16.5 10.9 10.3 16.6 15.5 15.1 14.5 15.3 15.4 16.7 120.0 10.8 20.0 10.8 20.1 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15																					
2010 2010 19-8 2013 19-6 18-7 18.0 18.0 18.7 19.6 19.3 19-8 19.5 18.5 17-9 17.4 18.4 18.4 18.8 1 0.81 0.22 0.28 0.72 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	< >			17.8	17.6	17.3	16.0	15.5	15.3	16.2	16.5	17.9	17.3	16.6	15.5	15.1	14.5	15.3	15.4	16.7	17.6
	, ,	4	۰.	0.61	20.3	19.6	18.7	18.0	18.0	18.7	19.6	19.3	19.8	19.5	18.5	17.9	17.1	17.4	18.4	18.8	19.4
	< >			0.58	0.72	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.45	0.45	0.51	0.45	0.45

APPENDIX TABLE 14 EXPERIMENT 11. BODY TEMPERATURE (DECREDS CENTICRADE)

AT REST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR ()

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	(Hia)											
0 30 55 2 10 411 412 413 414 410 420 411 412 413 413 414 410 415 413 418 418 418 410 412 411 416 413 419 418 405 411 411 416 401 40.0 40.1 41.1 41.0 41.1 41.1 40.1 40.1 41.1 41.2 41.1 41.1 41.1 40.1 41.1 41.2 41.1 41.2 41.1 41.1 40.1 41.1 41.2 41.1 41.1 41.1 42.1 41.1 41.2 41.1 41.1 41.1 42.1 41.1 41.2 42.1 41.1 41.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1			Rest			Ex	Ex 11				Reat		
41.2 41.3 41.8 41.8 42.0 40.5 40.5 41.3 41.0 41.5 41.8 41.8 41.9 42.0 42.3 41.8 41.8 41.8 42.0 42.3 40.5 40.6 41.1 41.6 41.6 40.0 40.3 41.1 41.7 41.0 41.1 41.2 41.3 41.4 42.3 42.3 42.8 42.9 42.9 41.0 41.2 42.3 42.9 42.9 41.1 41.2 41.3 41.2 41.3 41.1 41.2 41.3 41.3 42.9 41.3 41.3 41.3 42.5 41.3 41.3 41.3 42.5 41.3 41.3 41.7 41.3		10	30	09	60	2	10	15	20	10	30	09	96
40.5 40.5 40.5 41.0 41.0 41.0 41.8 41.8 41.8 22.0 22.3 40.5 40.6 40.5 41.1 41.0 40.5 40.6 40.5 41.1 41.2 40.0 40.5 41.1 41.2 41.0 41.1 41.2 41.3 41.9 41.3 42.3 42.3 43.0 41.5 41.4 41.2 42.3 42.9 42.5 41.2 41.3 40.5 41.3 42.5 41.2 41.3 41.3 41.3 42.5	0 42.3 42.4	4 42.1	42.1	42.1	42.1	42.2	42.8	42.9	43.0	42.5	1	42.1	42.1
41.8 41.8 41.8 42.0 42.3 40.5 40.6 40.1 41.6 41.1 40.0 40.5 40.5 41.1 40.0 40.5 41.1 41.2 41.0 41.1 41.2 41.3 41.3 41.0 41.1 41.2 41.3 41.3 42.3 42.3 42.8 42.8 42.8 41.0 40.6 41.3 42.5 42.9 41.2 41.3 41.3 42.5 41.2 41.3 41.3 42.5	5 41.8 41.9	9 41.8	41.3	41.5	41.5	41.9	42.2	42.5	42.5	42.2	42.0	41.8	41.8
40.5 40.6 40.6 41.1 41.6 40.0 40.5 41.1 41.3 41.0 41.1 41.2 41.3 41.3 42.0 41.1 41.2 41.3 41.9 42.1 41.2 42.3 41.9 41.9 42.1 42.3 42.8 42.9 42.9 41.0 40.6 42.8 42.9 42.9 41.1 40.6 40.6 41.0 41.5 41.2 41.3 41.3 41.3 42.1	3 42.8 43.0	0 42.8	42.3	42.4	42.3	42.8	43.5	44.0	44.2	44.1	43.9	43.0	42.8
40.0 40.5 41.1 41.7 41.0 41.1 41.2 41.5 41.9 42.1 42.7 41.9 41.9 41.9 42.1 42.7 42.9 42.9 42.9 42.1 42.8 42.8 42.9 42.9 41.0 41.9 40.6 41.9 41.5 41.2 41.3 41.3 41.3 41.2 41.3 41.3 41.3 42.1 41.2 41.3 41.3 41.4 42.1	\$ 42.0 42.0	0 41.9	41.5	41.1	41.1	41.5	41.9	42.1	42.6	42.0	41.5	41.2	41.1
41.0 41.1 41.2 41.3 41.3 41.9 42.5 42.7 42.0 42.0 42.1 42.1 42.3 42.3 42.3 42.3 42.3 42.3 42.1 41.3 42.3 42.4 42.4 42.4 42.4 42.4 41.3 41.3 41.3 41.3 42.3 42.3 41.3 41.3 41.3 41.3 42.1 42.1 41.3 41.3 41.3 41.3 42.1 42.1	7 41.8 42.0	0 42.1	42.0	41.2	41.2	42.2	43.0	43.3	43.5	43.1	43.0	42.8	42.3
1.2 4.2.9 4.2.9 4.2.9 4.2.9 4.2.9 1.2 4.2.9 4.2.9 4.2.9 4.2.9 4.2.9 1.1 4.1.0 40.0 40.0 40.0 40.0 41.0 40.1 40.0 40.0 40.0 41.2 41.1 41.0 40.0 40.1 41.2 41.5 41.7 40.1 40.1	9 42.0 42.2	2 41.6	41.1	41.5	41.6	42.0	42.4	42.1	42.0				
42.3 42.2 42.8 42.9 42.9 41.0 41.0 41.0 41.5 41.0 41.2 41.3 42.0 42.5 41.2 41.3 42.0 42.5 41.2 41.3 42.0 42.5		2 43.0	43.0	43.1	43.2	43.5	44.0	44.0	44.0	43.1	43.0	42.8	43.0
41.0 41.0 40.6 41.0 41.5 41.2 41.3 42.0 42.5 41.3 41.4 42.1 42.1 41.2 41.3 41.5 41.7 42.1 12 13 14 14 14		9 42.0	42.0	42.2	42.8	43.1	43.5	43.9	43.9	43.0	42.8	42.5	42.9
41.2 41.3 42.0 42.5 41.2 41.3 41.5 41.7 42.1 12 13 11 11 11		5 40.8	40.6	41.0	40.8	1.14	42.0	42.5	42.8	42.1	41.5	41.5	41.3
41.2 41.3 41.5 41.7 42.1	42.8 42.9	42.3	42.0	42.1	42.1	43.0	43.3	43.8	44.0	43.2	42.5	42.3	42.2
12 13 11 11 11		42.0	41.8	41.8	41.9	42.3	42.9	43.1	43.2	42.8	42.5	42.2	42.1
II' II' II' 21' 21'	н. н.	п. –	н.	H.	H.	п.	H.	Ŧ.	н.	.12	.12	.12	.12

EXPERIMENT III. ARTERIAL PC02 BLOOD GAS TENSIONS (torr) AT REST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

BIRD NO.		CON	CONTROL			EX	-			В	REST	TIME ()	(HIN.)	ΒX	EX 11			REST	ST	
	•	30	45	55	2	01	5	20	9	30	99	6	2	10	15	20	10	30	60	90
	27.1	29.2	29.5	27.9	25.4	28.7	28.9	28.5	27.6	28.1	28.9	28.5	24.3	26.3	26.3	25.6	27.9	30.7	30.1	30.9
	28.9	30.9	31.6	31.4	25.2	20.9	22.0	24.4	25.3	29.5	30.9	29.3	21.6	20.4	20.0	20.1	26.4	27.5	27.7	31.3
	31.7	30.4	30.8	32.0	27.8	25.9	28.6	26.9	29.9	31.7	30.6	30.7	30.5	29.2	28.8	27.9	29.8	30.5	30.8	29.6
	30.6	30.9	28.1	31.3	25.4	25.7	24.6	24.3	27.4	30.5	29.3	29.1	25.1	22.7	24.3	25.9	27.7	30.7	30.9	31.6
	27.0	29.1	25.5	23.9	19.5	23.6	22.2	I	25.4	22.9	28.8	25.2	21.0	19.2	21.5	20.8	23.2	26.3	25.7	26.1
	29.1	30.1	29.1	29.3	24.7	25.0	25.3	25.2	27.1	28.5	29.7	28.6	24.5	23.6	24.2	24.1	27.0	29.1	29.0	29.9
SE	.96	18.	1.09	1.39	.80	BD	00	8	00	00	1	1								

53

.80 .80 .80 .80 .80 .80

EXPERIMENT III. ARTERIAL PO2 BLOOD GAS TENSIONS (torr) AT REST AND DIRFIM: REVEASE

1							HTIN	AT REST AND DURING EXERCISE With Means (X) and Standard Error (SE)	T AND D	URING E	AT REST AND DURING EXERCISE IEANS (X) AND STANDARD ERROR	(SE)								
1									Time (mtu)	(111)										1
		Con	Control			Ex 1			Rı	Rest				8× 11				Rest		
B1rd No.	0 P	30	45	55	45 55 2	10	15	20	10	30	60	6	2	10	15	20	10	30	60	90
-	97.3	92.6	96.0	96.7	99.2	103.7	1	100.9	99.8	37.5	95.9	100.8	111.2	114.3	95.9 100.8 111.2 114.3 110.4 109.5 104.4	109.5	104.4	103.2	9.79	94.9
2	100.3	95.8	88.4	99.9	98.7	112.3	109.5	105.9	96.2	100.9	98.5	97.6	111.0	110.5	97.6 111.0 110.5 111.2 110.3 101.3 104.9	110.3	101.3	104.9	1.101	100.9
3	103.8	107.0	105.1	98.4		111.3 108.6	106.2	105.4	106.0	103.9	105.6	107.0	107.0 103.9	108.3	105.9	108.3	109.0	104.9	103.9	112.4
4	100.6	95.8	101.1	97.9	9.66	97.9 99.6 103.9	102.7 103.9	103.9	97.0	96.9	96.9 102.6 100.1 117.8 110.4	100.1	117.8	110.4	106.3	103.9	7.76	113.0	112.6	101.1
s	4.66	103.9	104.0		105.2 111.1 112.9	112.9	111.9	,	112.4	108.6	108.6 109.9 108.7 112.3 114.3 109.4 114.3 114.1 115.9	108.7	112.3	114.3	109.4	114.3	114.1	115.9	113.6	114.9
i	We shall all showing																			
×	100.3	0.66	98.9	9.66	99.6 104.0 108.3	108.3	106.7	105.4 102.3 101.6 102.5 102.8 111.2 111.6 108.6 109.3 105.3 108.4 105.8	102.3	9.101	102.5	102.8	111.2	111.6	108.6	109.3	105.3	108.4	105.8	104.8

54

1.79

1.06 27.3 3.07 1.49 1.79 1.79

SK

APPENDIX TABLE 17 EXPERIMENT [11. ARTERIAL PH AT REST AND DURING EXERCISE

WITH MEANS (\bar{X}) AND STANDARD ERROR (SE)

N0.		COR	CORTROL			EX	H			ž	REST			EX	EX 11			ICIN	-	1
	0	30	45	55	2	10	15	20	10	30	60	90	2	10	51	20	9	30	99	90
1	7.52	7.50	7.48	7.48	7.50	7.46	7.47	7.46	1.47	7.48	1.49	7.51	7.47	7.47	7.45	7.48	1.46	7.48	7.49	7.49
2	7.48	1.47	7.45	7.46	7.50	7.51	7.52	1.51	7.48	1.46	7.46	7.47	7.48	7.52	7.53	7.55	7.47	7.46	7.47	7.47
3	7.46	7.48	7.49	1.47	7.45	14.1	7.46	7.49	7.48	7.48	7.48	7.49	7.49	7.49	7.49	7.49	1.49	7.49	7.48	7.48
4	1.47	7.47	7.51	7.46	7.49	7.51	7.50	7.50	7.46	1.47	7.47	7.47	1.47	7.52	7.51	7.50	1.47	1.41	1,41	7.44
5	7.47	7.51	7.47	7.48	1.51	7.50	7.49	1	1.46	7.46	7.44	7.45	7.46	7.48	7.48	7.48	7.45	7.45	7.45	7.45
×	1.48	1.49	7.48	1.4.1	7.49	1.49	7.49	7.49	1.47	7.47	7.47	7.48	7.48	7.49	7.49	7.50	1.41	7.46	7.46	1.47
SE.	.010	.008	.010	.004	.011	.011	.011	.013	.011	.011	.011	.011	.011	.011	.011	110.	110.	.011	.011	110.

EXPERIMENT III. CLAVICULAR AIR SAC PCO_ GAS TENSIONS (fort) AT REST AND DURING EXERCISE

WITH NEANS (\overline{X}) AND STANDARD ERROR (SE)

BIRD NO.		CON	CONTROL			ΕX	н			R	REST	TIME (H	(HIN.)	БХ	EX 11			REST	sr	
	•	30	45	55	2	10	15	20	10	30	60	60	2	10	15	20	10	30	60	90
-	34.7	36.9	35.9	38.5	32.9	31.9	34.5	33.4	37.1	35.3	37.6	37.5	29.4	29.7	28.0	ł	34.5	38.5	37.8	37.3
5	38.0	40.1	39.5	41.5	31.2	25.0	27.3	27.8	32.3	37.6	37.6	37.8	26.7	24.2	24.3	23.8	31.8	34.8	35.9	35.3
	37.9	37.2	37.5	38.8	32.7	31.5	32.8	31.5	34.4	37.0	1.16	35.4	35.0	31.7	30.2	31.5	33.4	32.9	33.9	33.9
-7	39.3	38.5	39.0	40.1	34.5	30.6	29.5	31.0	33.9	1.76	37.3	36.8	30.3	28.4	28.5	29.0	33.3	35.0	35.4	35.2
ŝ	34.5	35.3	33.5	33.3	27.9	26.1	27.3	25.8	30.3	31.2	33.6	31.1	25.7	22.3	24.4	24.8	30.4	33.2	31.7	32.0
	9.96	37.6	37.1	38.4	31.8	29.0	30.3	29.9	33.6	35.6	36.8	35.7	29.4	27.3	27.1	27.6	32.7	34.9	34.9	34.7
SE	.96		1.09	1.39	.83	.83	.83	68.	.83	.83	.83	.83	.83	.83	.83	.93	.83	.83	.83	.83

EXPERIMENT III. CLAVICHLAR AIR SAC PO2 GAS TENSIONS (torr) AT REST AND DURING EXERCISE

WITH MEANS (X) AND STANDARD ERROR (SE)

										Time (Min)	(u							Ľ	H	
Bird		Cont	Control			Ex 1	_			Reat				Ex 11				Reat		
No.	0	30	45	55	2	10	15	20	10	30	60	90	2	10	15	20	10	30	60	90
1	7.66	91.8	93.5	92.1	99.2	100.0	95.8	96.5	91.2	92.0	88.7	95.0	107.8	105.0	100.0		92.5	88.2	90.2	88.0
2	90.0	89.0	92.2	88.0	100.0	107.8	106.0	102.5	93.7	94.8	90.8	90.0	109.3	109.0	106.8	108.0	92.3	96.0	93.8	91.0
3	89.0	90.0	90.8	87.0	102.2	99.0	94.5	96.2	89.3	89.0	86.7	89.0	93.7	99.1	98.0	97.0	91.5	92.2	92.0	93.2
4	95.0	89.8	90.2	87.5	96.9	103.0	102.0	100.0	5.16	89.0	94.5	93.0	103.7	105.0	104.5	103.1	91.7	97.2	93.5	89.8
\$	93.2	9.66	0.66	98.0	109.8	110.0	108.0	115.0	104.0	104.8	99.0	6.99	115.5	116.5	110.5	113.5	103.8	103.5	102.0	104.0
×	92.2	92.0	93.1	90.5	101.6	104.0	101.3	102.0	93.9	93.9	91.9	93.3	106.0	106.9	104.0	104.8	94.4	95.4	94.3	93.2
SE	1.14	1.94	1.57	2.08	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.45	1.29	1.29	1.29	1.2

57

EXPERIMENT 111. BOUY TEMPERATURE (DECRERS CENTRICRADE) AT REST AND DURING EXERCISE

UTTH MEANS (T) AND STANDARD ERROR (SE)

Ì,											TI	TIME (HIN.)	:							
818D NO.		CON	CONTROL			EX I	1			ß	REST			EX	EX II			REST	E	
	0	8	45	55	2	9	15	20	01	96	60	96	2	10	12	20	10	30	909	96
-	ł	١	I	I	I	ł	ł	ł	I	I	ł	1	I	1	ł	I	1	ł	ł	I
7	41.4	41.2	41.5	41.8	42.1	43.0	42.9	42.7	42.0	42.0	42.0	42.2	43.1	43.5	43.5	43.2	42.9	42.5	42.2	42.3
	40.8	41.0	41.0	41.1	41.5	42.0	42.0	42.0	42.0	42.1	42.5	43.0	43.1	43.2	43.2	43.4	43.2	1.64	43.0	42.8
4	41.0	41.5	41.8	41.8	42.0	42.1	42.1	42.1	42.0	42.1	42.3	42.5	42.8	42.9	42.9	43.0	42.9	42.8	42.8	42.7
\$	41.2	41.1	41.1	41.3	42.0	42.6	42.7	42.7	41.9	41.7	42.0	42.1	43.0	43.2	43.1	43.2	42.9	43.0	42.9	42.9
IX	41.1	41.2	41.4	41.5	41.9	42.4	42.4	42.4	42.0	42.N	42.2	42.4	43.0	43.2	43.2	43.2	43.0	42.8	42.7	42.7
SE	.13	11.	.19	.18	.16	.16	.16	.16	.16	.16		.1616	.16	.16	.16	.16	.16	.16	.16	.16

CARDIOPULMONARY RESPONSES TO EXERCISE IN THE DUCK

bу

JAMES PATRICK KILEY

B. A., St. Anselm's College, 1974

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Anatomy and Physiology

KANSAS STATE UNIVERSITY Manhattan, Kansas

The response of the avian cardiopulmonary system to exercise was determined in adult domestic White Pekin ducks (<u>Anas platyrhynchos</u>). In one series of experiments, ten ducks were exercised at three work levels on a treadmill at speeds of 0.9, 1.47, 2.16 km/hr for 20 min with a 90 min rest period following each exercise period. Blood gas and pH analyses were performed on samples simultaneously withdrawn from the brachial artery and right ventricle (as an estimate of mixed venous blood) at predetermined intervals during the experiment. Both arterial PCO₂ (PaCO₂) and mixed venous PCO₂ (P₂CO₂) significantly decreased with increased levels of exercise. Arterial pH (pHa) did not change significantly from resting values at any level of exercise. Mixed venous pH (pH₂) decreased at the onset of exercise but returned to near resting values by the end of each exercise period. These measurements indicate that ducks hyperventilate during exercise over and above that required to eliminate the generated CO₂.

In order to further study the ventilatory and cardiovascular responses associated with exercise in the duck, ten additional adult White Pekin ducks were exercised for 20 min on a treadmill (3° incline) at two speeds: 0.9 and 1.47 km/hr. Each exercise period was followed by a 90 min rest period. Both PaCO₂ and P_vCO₂ decreased as the running speed increased. pH_v decreased at the onset of exercise but returned to near resting values by the end of an exercise period. Arterial PO₂ exhibited significant increases at both exercise speeds. Both arterial and mixed venous plasma bicarbonate concentration decreased significantly with each exercise period. Heart rate and systolic and diastolic blood pressure increased significantly during each

exercise period. During exercise, tidal volume decreased and respiratory frequency increased. Inspired minute volume markedly increased at the onset of exercise and continued to increase throughout. Body temperature increased $1-2^{\circ}$ C during each run. The partial pressure of CO₂ in clavicular air sac gas was determined on an additional five ducks and it decreased at both exercise levels. In these same ducks, PaCO₂ also exhibited a sharp fall at both exercise levels while pHa remained unchanged during each run. Because the increased ventilation produced a reduction in PaCO₂, it is unlikely that peripheral or central CO₂-sensitive chemoreceptors were responsible for the ventilatory drive; that drive may result from hyperthermia or activity of certain muscle afferents.