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LITERATURE REVIEW 

Common wheat or Triticum aestivum L. cv. Chinese 

Spring is an allohexaploid (AABBDD) derived from the 

hybridization of T. turgidum (AABB) and Aegilops squarrosa 

(DD). A. squarrosa is a very important contributor as it 

carries many desirable qualities such as resistance to leaf 

rust, powdery mildew, greenbug, and Hessian fly (Gill et 

al., 1986), increased salt tolerance (Shah et al., 1987), 

and cold hardiness (Limin and Fowler, 1981). Although A, 

B, and D chromosome groups are homoeologous, there is a 

large amount of variation in the location and organization 

of repeated DNA sequences between the genomes. Even though 

nulli-tetrasomic chromosome complements will compensate, 

compensation is not always complete and reduced vigor and 

fertility can occur (Sears, 1966). Gerlach and Peacock 

(1980) have proposed that although these differences may be 

due in part to differences in homoeologous genes, 

variations in repeated DNA may also be a factor. Appels 

and Moran (1984) suggested that the 'micro-environment' of 

a gene can change its expression. Repeated DNA sequences 

flanking genes could be one way to alter this environment. 

Analysis of the wheat genome by Smith and Flavell 

(1975) with renaturation kinetics has estimated 4-10% of 

the DNA is highly repetitive, 80% is intermediate, and 12% 

is single copy. However, the 12% figure is thought to be 

an overestimate as part of this fraction may represent 
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fragments of highly diverged repeats. Large amounts of 

repeated DNA are found in higher plants which possess a 

high DNA content. This is suggested to have occurred by 

sequence amplification, polyploidy, and duplication of 

chromosomes (Flavell et al., 1974). 

The formation of a repeated sequence family as 

theorized by Britten and Kohne (1968) occurs by the 

replication of the sequence which is then integrated into a 

chromosome and associates with a favorable genetic element. 

The sequence is then dispersed into other species through 

natural selection. The sequence can amplify at any time 

and then diverge through mutations, translocations, and/or 

deletions. Amplifications and deletions can be a result of 

unequal crossing over or intrastrand recombination (Jones 

and Flavell, 1982b). Repeats can vary in size from 2 to 

5,000 base pairs with the size of the repeated family 

ranging from few to several million, and there is 6-10% 

heterogeneity within a family sequence. A sequence family 

usually diverges slowly and independently of other 

families. Results of renaturation studies show that short 

repeats are highly mismatched alluding to a large amount of 

divergence with an organization similar to multigene 

families, whereas long repeats show more homology and are 

probably of more recent origin or more conserved. 

Although most repetitive DNA functions are unknown, 

known functions of these sequences include coding for gene 
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sequences of ribosomal DNA and histones. In addition, 

centromeres and heterochromatin are largely composed of 

repeated DNA suggesting a structural function (John and 

Miklos, 1979). However, most repeated DNA roles remain 

undefined and are proposed to be involved in evolutionary 

mechanisms and speciation or regulation (Hake and Walbot, 

1980). Britten and Davidson (1969) proposed a regulatory 

function for repeated DNA, as single copy DNA is usually 

interspersed with repeated sequences. 

In previous years studies of repeated DNA or DNA 

sequences in general used satellite DNA or mechanically 

sheared DNA. With the advent of cloning techniques to 

incorporate sequences into phage or bacteria, more 

sequences have been purified for use in research. This 

advancement allows for greater resolution using techniques 

like Southern blot and in situ hybridization analysis. 

Differences in wheat heterochromatin can be detected 

with N- and C-banding. Based on this, the heterochromatin 

of wheat chromosomes can be described as C +N+ and C+N-. 

Repeated DNA sequences have been used for further 

characterization of heterochromatin of wheat chromosomes. 

It has been found that a simple satellite sequence DNA is 

associated with C +N+ type of heterochromatin (Gill, 1987). 

Teoh et al. (1983) isolated a probe (TC22b) which 

results in situ hybridization patterns which resemble C- 

banding. Centromeric heterochromatin appeared to be an 
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exception as the amount of heterochromatin was not 

correlated with labeling of TC22b. TC22b was used to 

determine the variation between different ploidy levels of 

Aegilops species. Comparing C-banding and in situ, they 

discovered species with reduced amounts of heterochromatin. 

These results suggest the C-banded heterochromatin is 

probably composed of several repeated families and the 

TC22b sequence has been amplified and deleted during 

Aegilops evolution. 

Increasing the number of chromosome segments which 

can be identified independently allows for greater use of 

techniques to trace the introgression of DNA segments when 

transferring desirable characteristics into agronomically 

useful varieties. Lapitan et al. (1986) detected wheat-rye 

translocations using in situ hybridization with biotin 

labeling of a rye dispersed, repeated DNA (pSC119). This 

DNA is present at a few localized sites in wheat 

chromosomes. These differential patterns of hybridization 

were used to identify rye chromosomes in wheat-rye hybrids 

and wheat-rye translocations. Moreover, breakage points in 

chromosomes could also be determined. Thus, these types of 

probes are useful for tracing the introgression of alien 

chromatin in wheat. 

Koebner et al. (1986) found a recombinant phenotype 

in which homoeologous pairing was suppressed in wheat-rye 

crosses. The plant showed protein markers for 1RL yet 
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lacked some terminal C-banded heterochromatin. When 

analyzed with probes from the 350 by family of rye, it was 

realized that part of the sequence was still present but in 

reduced amounts. Due to the presence of rye protein 

markers and other DNA sequences associated with telomeric 

heterochromatin it appeared that no recombination had taken 

place, only a loss of heterochromatin. Since this family 

is thought to be of recent evolution and in tandem repeats 

(Jones and Flavell, 1982a), Koebner et al. suggest that the 

deletion has occurred through unequal sister chromatid 

exchange. 

Flavell et al. (1979) reported from renaturation 

studies that a significant amount of highly repeated DNA in 

Chinese Spring appears to be from the B genome with the A 

and D genomes contributing lesser amounts. Moreover, 11% 

of the Chinese Spring genome contains repeated sequences 

not found in T. monococcum. Flavell and Smith (1976) also 

reported the discovery of repeated sequences in T. 

monococcum which were not found in A. speltoides or A. 

squarrosa, and sequences present in A. speltoides that were 

not found in A. sqaurrosa or T. monococcum. These results 

verify the existence of genome-specific sequences. 

Gerlach and Peacock (1980) isolated a repeated probe 

from Chinese Spring which hybridizes strongly to T. 

dicoccoides and Chinese Spring but very lightly to A. 

squarrosa and T. monococcum showing it is present 
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predominantly in the B genome. Gerlach et al. (1978) also 

isolated satellite DNA from Chinese spring which labels all 

B genome chromosomes in addition to two A genome 

chromosomes. 

A D-genome clone isolated by Rayburn and Gill (1986) 

was recorded as D-genome specific at the in situ level 

since it labeled the telomeres of 14 chromosomes in Chinese 

Spring heavily. However, further studies indicate it does 

not hybridize exclusively to the D-genome because sites of 

less intense hybridization are seen on some of the 

remaining 28 chromosomes (Henry, unpublished results; Gill 

and Sears, 1988). 

Due to the many desirable genes in the D genome and 

an insufficient number of markers for that genome, we set 

out to characterize D-genome derived clones to elucidate 

new chromosome and molecular markers through the 

implementation of molecular and cytological techniques. 
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INTRODUCTION 

Common wheat or Triticum aestivum L. cv. Chinese 

Spring is an allohexaploid (AABBDD) derived from the 

hybridization of T. turgidum (AABB) and Aegilops squarrosa 

(DD). A. squarrosa is a very important contributor as it 

carries many desirable qualities such as resistance to leaf 

rust, powdery mildew, greenbug, and Hessian fly (Gill et 

al., 1986b), increased salt tolerance (Shah et al., 1987), 

and cold hardiness (Limin and Fowler, 1981). Although A, 

B, and D chromosome groups are homoeologous, there is a 

large amount of variation in the location and organization 

of repeated DNA sequences between the genomes. 

Analysis of the wheat genome by Smith and Flavell 

(1975) with renaturation kinetics has estimated 4-10% of 

the DNA is highly repetitive, 80% is intermediate, and 12% 

is single copy. Large amounts of repeated DNA are found in 

higher plants which possess a high DNA content. This is 

suggested to have occurred by sequence amplification, 

polyploidy, and duplication of chromosomes (Flavell et al., 

1974). 

Repeated DNA sequences which predominantly lie in the 

heterochromatic regions have been used as cytological 

markers in many cytogenetic studies (for review see Appels, 

1982; Rayburn and Gill, 1987a). These sequences have been 

used to trace the introgression of DNA segments during the 

transfer of desirable characteristics into agronomically 
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useful varieties. Lapitan et al. (1986) detected wheat-rye 

translocations and their breakage points using in situ 

hybridization with biotin labeling of a rye dispersed 

repeated DNA (pSC119). 

A D-genome clone (pAS1) isolated by Rayburn and Gill 

(1986) was recorded as D-genome specific at the in situ 

level since it heavily labeled the telomeres of 14 D-genome 

chromosomes in common wheat. Further studies indicate pAS1 

does not hybridize exclusively to the D-genome because 

sites of less intense hybridization are seen on some of the 

remaining 28 chromosomes (Henry, unpublished results; Gill 

and Sears, 1988). Nevertheless, pAS1 is a useful probe 

for cytological labeling of D-genome chromosomes in the 

wheat nucleus. 

Genome-specific repeated DNA sequences have been used 

to develop chromosome-specific unique DNA probes for 

detailed genetic mapping in mammalian somatic hybrids 

(Kasahara et al., 1987). A similar strategy should be 

applicable in the Triticeae hybrids where a large number of 

wheat-alien addition and translocation lines are available. 

Thus, a repeated DNA sequence present in the alien genome 

that is absent in wheat can be used to identify clones 

specific to alien chromosomes in a genomic library of a 

wheat-alien addition line. 

In our laboratory, we have identified and transferred 

a large number of disease and insect resistance genes from 
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A. squarrosa into wheat (Gill et al., 1986a; Gill and 

Sears, 1988). The genes for resistance to Hessian fly, 

greenbug and leaf rust have been mapped on specific D- 

genome chromosomes (Gill and Raupp, 1987; and unpublished 

results). It will be of great interest to undertake 

saturation mapping of specific chromosome arms for 

molecular tagging of resistance genes. For this purpose, 

D-genome specific repeated DNA sequences will be useful for 

construction of chromosome-specific probes of individual D- 

genome chromosomes (for example, in a genomic library of 

single D-genome chromosome addition lines in durum wheat). 

Therefore, we undertook the characterization of a number of 

D-genome repeated DNA clones in search of new cytological 

and molecular markers for describing the D-genome of wheat. 

The results of this study are reported in this paper. 
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MATERIALS AND METHODS 

Plant material was obtained from Kansas State 

University Wheat Genetics Resource Center. The species 

used and their designated genomes are listed in Table 1. 

Repeated DNA clones of A. squarrosa were from the 

library prepared by Rayburn and Gill (1986). The library 

consists of 150 clones in the plasmid pUC8 with inserts 

ranging from 7 kb to 0.2 kb. Plasmid DNA was isolated 

according to Maniatis et al. (1982) by an alkaline lysis 

mini prep. 

Plant genomic DNAs were isolated using a method 

similar to Blin and Stafford (1976) by digestion of leaf 

material in N-lauryl sarcosine lysis buffer containing 

protease. After dialysis, two chloroform/isoamyl 

extractions were performed. DNA was purified on two CsC1 

gradients followed by ethidium bromide elution with 

butanol. DNA samples ere dialyzed to eliminate CsCl. 

The dot blot procedure of Cullis et al. (1984) was 

followed making two identical dot blots. Each blot had one 

dot (1 ug of insert) representing each of the 150 clones. 

The blots were probed separately with nick translated, 32P 

labeled genomic A. squarrosa (D genome) or T. turgidum L. 

cv. Langdon (AB genomes). Autoradiograms were made and 

compared (D vs. AB) to select ten clones which displayed 

hybridization to A. squarrosa in conjunction with little or 

no hybridization to Langdon. 
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Southern blots of genomic DNAs were prepared (10-20 

ug DNA per lane) by depurination in 0.25 N HC1 for 30 

minutes (Wahl et al., 1979), denatured for 15 minutes with 

1.5 M NaC1/0.5 M NaOH, and neutralized for 30 minutes with 

3 M NaC1/1 M Tris pH 7.4. DNA was blotted to 

nitrocellulose paper with 20X SSC overnight. Blots to 

check cross hybridization between the ten selected clones 

were performed as in Rayburn and Gill (1986) utilizing 

biotin incorporation and detection by alkaline phosphatase 

except hybridization time was reduced to 16 hours. 

Southern blots of genomic DNAs were probed with 32P- 

labeled clones. Hybridizations were carried out in 5X SSC, 

10X Denhardt's, 0.02 M sodium phosphate buffer, 0.25 mg/ml 

salmon sperm, and 10% dextran sulfate at 65°C for 16 hours. 

Blots were then rinsed in 0.1X SSC and 1% SDS at the same 

temperature for 3 hours with three solution changes. Blots 

were placed in x-ray film cassettes with two intensifying 

screens for 24 hours before developing. 

In situ was performed using biotin labeled clones 

(Rayburn and Gill, 1985). Slides were pretreated in 70% 

formamide followed by an alcohol dehydration series (70%, 

95%, 100%). Hybridizations were at 37°C for 6.5 hours in 

50% formamide, 10% dextran sulfate, 2X SSC, and 0.4 mg/ml 

salmon sperm. Hybridization was visualized as brown 

precipitate after a reaction of peroxidase with 

diaminobenzidine tetrahydrochloride. Two modifications to 
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the original procedure were incorporated: 1) the probe 

was denatured at 100°C instead of 85°C and 2) the slides 

were incubated for 5 minutes at 80°C immediately after the 

probe was applied. 
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RESULTS 

Dot blot screening 

In order to analyze approximately 150 clones quickly 

and as a preliminary screen for D-genome specific clones 

the dot blot procedure was used. After comparing identical 

dot blots probed with 32P labeled A. squarrosa or Langdon, 

ten clones were selected which appeared to be present 

predominantly in the D-genome (Figure 1). The clone 

designations with insert size are listed in Table 2. 

Each of the ten clones was hybridized against the 

others to check for cross hybridization and sequence 

uniqueness. The clones were also checked against pASl, 2 

and 12 which also originated from the library. Clones 

pAS26 and pAS24 and clones pAS23 and pAS27 have partial 

sequence homology. No further tests were done to determine 

the extent or the exact portions of the clones involved in 

cross hybridization. 

In situ hybridization 

Each of the ten selected probes labeled with biotin 

was hybridized to a chromosome squash of Chinese Spring to 

view the sequence pattern and genome dispersion at the 

chromosomal level. 

A very dispersed hybridization pattern over all the 

chromosomes of each genome was shown with pAS21, 23, 27, 29 

and 30. Figure 2a shows this dispersed pattern with pAS21 
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hybridized to Chinese Spring. In addition to the above 

hybridization pattern, pAS23 and pAS27 show more intense 

hybridization at several sites (fig. 2b). Appels et al. 

(1986) isolated a 350 by family in rye which labels the 

heterochromatin of all chromosomes. They suggested this 

sequence underwent several amplifications and distributions 

as Secale evolved. The sequences in pAS21, 23, 27, 29 and 

30 are probably similar to the sequence in the 350 by of 

rye and are not of recent origin. Therefore, they have 

undergone extensive distribution through previously 

mentioned mechanisms. 

More intense hybridization was seen with pAS28 in 

more localized areas than the previously mentioned clones 

(fig. 3a). This sequence results in hybridization dots 

rather than turning the whole chromosome brown. Therefore, 

this sequence has probably been more amplified and 

maintained in smaller regions of the chromosome and has not 

been extensively dispersed over the whole chromosome area. 

Hybridization of pAS22 and pAS25 revealed a 

restricted site dispersion similar to pAS28 but with 

reduced intensity. Figure 3b shows an example of this type 

of hybridization pattern with pAS25. This sequence is 

present in lower copy number than pAS28 at many regions of 

the chromosomes. 

The distinct hybridization patterns of pAS24 and 

pAS26 primarily labeled the telomeres. Figure 3c shows 
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pAS26 hybridization as an example of the distinct pattern. 

Jones and Flavell (1982b) proposed that a repeat which 

starts at the telomere, through breakage, translocation, 

inversion and fusion or excision and reintegration, may 

move to interstitial positions or perhaps to other 

telomeres. In another paper, Jones and Flavell (1982a) 

discussed the possibility that repeated families at 

telomeric regions may be better tolerated or perform some 

function in this position. As the sequence amplifies, 

translocates and deletes, heteromorphisms are produced 

which provide variation within a population. 

Southern blots 

Each clone was hybridized to an array of digested 

genomic DNAs representing the various genomes listed in 

Table 1. These results represent the distribution of the 

cloned sequence at th molecular level. 

Taql digests of genomic DNAs hybridized with pAS23 

resulted in a similar pattern in A. squarrosa, Chinese 

Spring, Langdon, T. monococcum and rye with reduced 

hybridization to E. ciliaris, barley and D. villosum (fig. 

4a). This sequence shows little to no change in the more 

closely related genomes and may have amplified since wheat 

diverged during cereal evolution. 

The least variable hybridization patterns were 

obtained from pAS22 and pAS25 (data not shown). Figure 4c 
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depicts this characteristic in pAS22. The lack of 

variability is distinguished by few bands, little smearing, 

and little difference in hybridization between the various 

genomes. Upon longer exposures of the autoradiogram 

another band is visible at approximately 2.3 kb with some 

smearing in the D. villosum lane. 

More hybridization to all the genomes by pAS24 was 

denoted by smearing and the presence of many bands (fig. 

4d). A slight hybridization increase is observed in the 

more closely related grasses A. squarrosa, Chinese Spring, 

Langdon and T. monococcum. 

Intense hybridization was exhibited by pAS26 to A. 

squarrosa, Chinese Spring, Langdon, T. monococcum, moderate 

to rye, and lighter to E. ciliaris, barley and D. villosum 

(fig. 4b). Therefore, pAS26 seemed to show an evolution 

similar to pAS 22. 

Figure 5a indic ted pAS28 was present predominantly 

in E. ciliaris. Slight hybridization was seen with A. 

squarrosa, Chinese Spring, Langdon, D. villosum and rye. 

No hybridization was seen in barley. Apparently, the pAS28 

sequence amplified after E. ciliaris diverged from the main 

evolutionary stem. This same sequence has been deleted in 

barley. 

A band present in A. squarrosa and Chinese Spring 

after hybridization with pAS29 was absent in T. monococcum 

and Langdon (fig. 5b). This band is also present in 
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reduced amounts in D. villosum and therefore is not present 

only in the D genome. However, the band is not in the A or 

B genomes. 

While pAS30 hybridized strongly with rye and weakly 

with D. villosum and barley, the other grasses showed 

intermediate hybridization (fig. 5c). This sequence 

appears to support the evolutionary scheme proposed by 

Flavell et al. (1977) where barley diverged from common 

cereal progenitors with wheat and rye diverging 

simultaneously in an evolutionary fork at a later period. 

This sequence may have amplified only slightly during early 

evolution and underwent a large scale amplification after 

wheat and rye diverged. 

Upon hybridization of pAS21 with HindIII restricted 

genomic DNA, two possible D-genome specific bands were 

visualized as denoted by the arrows in figure 6a. When 

pAS21 was probed to Taql digestions of all the genomes 

(fig. 6b), A. squarrosa, Chinese Spring and Langdon all 

appeared the same suggesting the HindIII restriction sites 

which separated the above mentioned bands were probably 

inside Taql sites. However if the fragments were split by 

Taql sites, they may have migrated to the end where 

hybridization was too intense to distinguish differences. 

This sequence showed no hybridization to barley and little 

to E. ciliaris. 

Restriction patterns of pAS27 (which was partially 
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homologous with pAS21) gave patterns very similar to pAS21 

(fig. 6). The HindIII blot for pAS27, unlike the blot for 

pAS21, consisted of the entire array of genomes. Figure 6c 

shows that the data from this autoradiogram made it 

possible to discern that the lower presumed D-genome 

specific band was also present in T. monococcum. The 

larger band was also in T. monococcum but in very reduced 

amounts. Therefore, these bands were not D-genome 

specific. 

Partial sequence homology was exhibited between pAS27 

and pAS21 in the cross hybridization check. By comparing 

the southern blots, it is seen that pAS21 must contain a 

sequence not present in pAS27 which is specific for E. 

ciliaris, D. villosum and rye. 

Bedbrook et al. (1980) found 120 by and 2.2 kb 

repeats in rye. By comparing hybridizations of these 

sequences to rye and wheat, they concluded that this 

sequence was amplified before divergence due to increased 

amounts of the 120 by sequence in both cereals. However, 

the 2.2 kb sequence was present in wheat in reduced amounts 

alluding to divergence followed by amplification in rye. 

The sequences of pAS21 and pAS27 appear to be 

evolutionarily related resembling the 120 by and 2.2 kb 

sequences. 
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DISCUSSION 

The data collected through in situ and southern blot 

hybridization analysis showed that no D genome specific 

sequences were found despite the preliminary results from 

the dot blot comparison. Discrepancies between the 

screening and further analyses are probably due in part to 

the crudeness of the DNA mini-preparations used. Overall 

this method was not sensitive enough for the resolution 

desired. 

Jones and Flavell (1982b) compared accessions of rye on 

ethidium bromide stained gels of digested genomic DNA. 

They suggested this may be a good way to visualize 

differences as they were able to detect differences between 

species at this level. Therefore, comparison of digested 

and stained DNA gels with subsequent cloning of bands which 

appear to be specific to the level desired may be a better 

approach for identifyi g species specific sequences. 

The clones used in this study were dispersed 

extensively throughout the various genomes. Appels et al. 

(1986) located a repeated, non-heterochromatin rye 

sequence. Their conclusions are based on hybridization to 

many fragments in digestions, dispersed in situ patterns on 

all chromosomes, and the lack of repeated arrays detected 

after sequencing. This description is appropriate for the 

clones used in this study. 

Although D-genome specific clones were not isolated, 
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several clones were identified that were widespread in 

several genomes but were virtually absent in others. 

Related clones pAS21 and pAS27 are dispersed in wheat but 

are absent in barley. In addition pAS27 is virtually 

absent in E. ciliaris, D. villosum and rye genomes. 

Because of the contrasting labeling patterns, these clones 

may be used to monitor alien chromatin transfers from these 

genomes into wheat. In such materials the wheat 

chromosomes will be completely labelled and unlabeled 

segments will be identified as alien chromatin. Similarly, 

these clones can be used in identifying wheat chromosomes 

in the rye-wheat addition lines developed by Schlegel 

(personal communication). 

Harris et al. (1986) reported that sequencing of 

several wheat repeats revealed direct terminal repeats 

resembling those found in transposable elements of 

Drosophila, Ty-1 of yeast and retroviruses. They also 

documented sequence duplication at the insertion site. 

These observations led them to propose an evolutionary 

mechanism by reverse transcriptase. If this was a method 

of amplification for some repeats, they no longer retain 

the ability to transpose due to mutations or deletions of 

recognition sequences or important transposition sequences 

needed. Therefore they conclude many dispersed repeats are 

the result of short segments transposed during evolution. 

Further evidence for a large number of short 
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rearrangements is provided by Flavell (1982) who reported 

that 50% of a genome is family repeated DNA between short 

non-repeated and/or unrelated repeats. Most of the clones 

that we analyzed were of dispersed type and may have 

originated by mechanisms proposed by Harris et al. (1986). 

Two of the clones (pAS24 and pAS26) appear to be 

tandem repeats. There are many hypotheses on the origin of 

tandem repeats which are amplified sequences that have not 

undergone much rearrangement or divergence. Unequal 

crossing over of sister chromatids is one proposed 

mechanism (Brown and Blackler, 1972). This would be a very 

gradual process assuming little change in the sequences 

over a long period of time. 

Amplification due to replication errors (Alt et al., 

1978) has also been proposed This event would produce 

sequences more rapidly than unequal crossing over. 

Replication forks would terminate at different sites giving 

sequences with the same origin but of different lengths. 

The rolling circle model entails the excision of a 

DNA sequence which circularizes and is then replicated and 

reintegrated (Wells et al., 1967). The template model is 

similar in that the previous repeat is used as a template 

but without being excised and reintegrated (Lohe and 

Brutlag, 1987). These proposed mechanisms of amplification 

are a few of the ways tandem repeated sequences may have 

originated. 
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Distribution of different repeated DNA sequences 

varied widely among Triticeae genomes analyzed. Some such 

as pAS22 were equally distributed among all genomes. 

Others were widespread in a few genomes and were present in 

reduced amounts in others. Overall most of the differences 

in genome hybridization can be attributed to the three 

possibilities mentioned by Jones and Flavell (1982a): 1) 

separate amplification in diverged species, 2) deletion of 

the repeat in evolving species and 3) introgression from 

one species to another. 
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Figure 1 

Dot blot screen for D-genome specific clones. 

Dot blots representing the collection of clones with A. 
squarrosa inserts. 

a. Probed with A. squarrosa (D genome). 

b. Probed with Langdon (AB genomes). 

Selected clones are circled with designation to the left. 
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Figure 2 

Analysis of clones by in situ hybridization. 

Biotin labeled clones hybridized to chromosome squashes of 
Chinese Spring. 

a. pAS21 with a dispersed hybridization pattern. 

b. pAS23 with a dispersed hybridization pattern in 
addition to more specific sites of hybridization. 
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Figure 3 

Analysis of clones by in situ hybridization. 

Biotin labeled clones hybridized to chromosome squashes of 
Chinese Spring. 

a. pAS28 showed an intense hybridization at many specific 
sites. 

b. pAS25 showed less intense hybridization but was still 
highly distributed over localized sites. 

c. pAS26 showed heavy labeling predominantly at the 
telomeres. 
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Figure 4 

Southern blot hybridization analysis of clones. 

a. HindIII digest, probed with pAS23. 

b. Taql digest, probed with pAS26. 

c. Taql digest, probed with pAS22. 

d. Taql digest, probed with pAS24. 

Lanes for a and b: 1 - E. ciliaris, 2 - H. vulgare, 3 - A. 
squarrosa, 4 - Chinese Spring, 5 - Langdon, 6 - T. 
monococcum, 7 - D. villosum, 8 - S. cereale. 

Lanes for c and d: 1 - E. ciliaris, 2 - H. vulgare, 3 - A. 
squarrosa, 4 - Chinese Spring, 5 - Langdon, 6 - D. 
villosum, 7 - T. monococcum, 8 - S. cereale. 

Lambda DNA restricted with Hindlil size marker: 23.1 kb, 
9.4 kb, 6.7 kb, 4.3 kb, 2.3 kb, 2.0 kb and 0.56 kb. 
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Figure 5 

Southern blot hybridization analysis of clones. 

a. Taql digest, probed with pAS28. 

b. Taql digest, probed with pAS29. 

c. Taql digest, probed with pAS30. 

Arrow in 5b indicates band in D and V genomes. 

Lanes: 1 - E. ciliaris, 2 - H. vulgare, 3 - A. squarrosa, 
4 - Chinese Spring, 5 - Langdon, 6 - T. monococcum, 7 - D. 

villosum, 8 - S. cereale. 

Lambda DNA restricted with HindIII size marker: 23.1 kb, 
9.4 kb, 6.7 kb, 4.3 kb, 2.3 kb, 2.0 kb and 0.56 kb. 
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Figure 6 

Southern blot hybridization analysis of clones. 

a. Hindill digest, probed with pAS21. 

b. Taql digest, probed with pAS21. 

c. Hindill digest, probed with pAS27. 

d. Taql digest, probed with pAS27. 

Top arrow indicates D-genome specific band. Lower arrow 
indicates band previously thought to be D-genome specific. 

Lanes for a: 1 - A. squarrosa, 2 - Chinese Spring, 3- 
Langdon. 

Lanes for b-d: 1 - E. ciliaris, 2 - H. vulgare, 3 - A. 
squarrosa, 4 - Chinese Spring, 5 - Langdon, 6 - T. 
monococcum, 7 - D. villosum, 8 - S. cereale. 

Lambda DNA restricted with HindIII size marker: 23.1 kb, 
9.4 kb, 6.7 kb, 4.3 kb, 2.3 kb, 2.0 kb and 0.56 kb. 
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Table 1. Plant material used with genome designation. 

Accession' 
Number Species 

Elymus ciliaris L. 
Hordeum vulgare L. cv. Betzes 
Aegilops squarrosa L. 
T. aestivum L. cv. Chinese Spring 
T. turgidum L. cv. Langdon 
T. monococcum L. 
Dasypyrum villosum L. 
Secale cereale L. cv. Chaupon 

TA2006 
TA9001 
TA1649 
TA3008 
TA1168 
TA138 
TA2138 
TA9002 

Genome 
SY 
I 

D 
ABD 
AB 
A 
V 
R 

'Kansas State University accession number 
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Table 2. Selected clone designations and size of A. squarrosa insert with summary of 
Southern blot and in situ hybridization analysis. 

Genomic distribution) 
Insert 

Clone size In situ SY I D AB A V R 
pAS21 0.70 dispersed over entire chromosome 
pAS22 0.98 intermediate labeling at many sites ++ 
pAS23 0.57 dispersed with some specific sites 
pAS24 0.74 heavy labeling at telomeres 
pAS25 0.36 intermediate labeling at many sites 
pAS26 0.32 heavy labeling at telomeres 
pAS27 0.34 dispersed over entire chromosome 
pAS28 0.38 intense labeling at many specific sites 
pAS29 1.40 dispersed over most chromosomes 
pAS30 0.52 dispersed over most chromosomes 

+ - +++ +++ +++ ++ ++ 
+++ + + 
+ + +++ +++ ++ + +++ 
++ ++ +++ +++ +++ ++ ++ 
+ + + + + + + 
+ + +++ +++ +++ + ++ 
+ + ++ ++ ++ + + 
+++ - ++ + + + ++ 
++ ++ ++ +++ ++ ++ ++ 
+ + ++ ++ ++ ++ +++ 

1- no, + slight, ++ intermediate, +++ intense hybridization 
IN) 
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ABSTRACT 

Molecular and cytological techniques were used for 

the characterization of repeated DNA clones from the D- 

genome of Aegilops sauarrosa. For preliminary genome 

designation and estimation of copy number, identical dot 

blots of the A. squarrosa genomic clone library in pUC8 

were prepared and probed with nick translated, 32P labeled 

DNA of A. squarrosa (D genome) or Triticum turgidum L. cv. 

Langdon (AB genomes). Autoradiograms of the two dot blots 

were compared, and ten clones hybridizing only to the A. 

squarrosa blot were selected for further analysis by in 

situ and Southern blot hybridizations. 

The Southern blots included an array of genomic DNAs 

from the ancestors of wheat. There were large differences 

in the organization and amount of repeated 

among different genomes. Hybridization patterns varied 

widely between the clones and among genomes. A few clones 

showed no hybridization to barley. Other clones were 

distributed equally among all genomes or exhibited varied 

intensities of hybridization between the genomes. A few D- 

genome specific bands were discovered but none of the 

clones were totally D-genome specific. 

In situ hybridization with each clone to Chinese 

Spring was also done. Hybridization patterns varied from 

dispersed to intense localized hybridization. As expected 

from the Southern blot analysis none of the clones were 



predominantly in the D genome. 

Despite early screening results no D-genome specific 

clones were found. Therefore the screening method used was 

not sensitive enough for this purpose. However, several 

clones that were dispersed and labelled all wheat 

chromosomes were virtually absent in E. ciliaris, barley, 

D. villosum and rye as determined by southern blot 

analysis. Therefore, because of these contrasting 

patterns, some of these clones may be used to monitor alien 

chromatin transfers from these genera into wheat. 


