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Abstract

The analysis of concrete columns using unconfined concrete medelgell established
practice. On the other hand, prediction of the actual ultimate tgpafciconfined concrete
columns requires specialized nonlinear analysis. Modern codesaaacists are introducing the
need to perform extreme event analysis. There has been a numtelied that focused on the
analysis and testing of concentric columns or cylinders. This lsas the highest confinement
utilization since the entire section is under confined compressionth®rother hand, the
augmentation of compressive strength and ductility due to fulll aaafinement is not
applicable to pure bending and combined bending and axial load cagd Isecause the area
of effective confined concrete in compression is reduced. The heghentricity causes smaller
confined concrete region in compression yielding smaller inereastrength and ductility of
concrete. Accordingly, the ultimate confined strength is gradua@tuaed from the fully
confined valud: (at zero eccentricity) to the unconfined vafuye(at infinite eccentricity) as a
function of the compression area to total area ratio. The highectientricity the smaller the
confined concrete compression zone. This paradigm is used to impladagtive eccentric
model utilizing the well known Mander Model and Lam and Teng Model.

Generalization of the moment of area approach is utilized basptbpartional loading, finite
layer procedure and the secant stiffness approach, in an itenatigenental numerical model to
achieve equilibrium points dP-¢ and M-¢ response up to failure. This numerical analysis is
adaptod to asses the confining effect in circular cross sectiohahns confined with FRP and
conventional lateral steel together; concrete filled steel (@€ST) circular columns and
rectangular columns confined with conventional lateral steel. model is validated against

experimental data found in literature. The comparison shows goodatiorre Finally computer



software is developed based on the non-linear numerical analysisoffivare is equipped with
an elegant graphics interface that assimilates input datal, dietaings, capacity diagrams and
demand point mapping in a single sheet. Options for preliminary deseptiors and
reinforcement selection are seamlessly integrated as Weadl.software generates 2D interaction
diagrams for circular columns, 3D failure surface for regiitar columns and allows the user to
determine the 2D interaction diagrams for any anglbetween the x-axis and the resultant
moment. Improvements to KDOT Bridge Design Manual using thisvaodt with reference to

AASHTO LRFD are made. This study is limited to stub columns.
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Chapter 1 - Introduction

1-1 Background

Columns are considered the most critical elements in strucithiesunconfined analysis
for columns is well established in the literature. Structdesign codes dictate reduction factors
for safety. It wasn't until very recently that design speatibns and codes of practice, like
AASHTO LRFD, started realizing the importance of introducax¢yeme event load cases that
necessitates accounting for advanced behavioral aspects likaeroefit. Confinement adds
another dimension to columns analysis as it increases the coluapesity and ductility.
Accordingly, confinement needs special non linear analysis tll yecurate predictions.
Nevertheless the literature is still lacking specializedlysis tools that take into account
confinement despite the availability of all kinds of confinement nsodeladdition the literature
has focused on axially loaded members with less attention totecdeading. Although the
latter is more likely to occur, at least with misalignemetgrances, the eccentricity effect is not
considered in any confinement model available in the literature.

It is widely known that code Specifications involve very detailedgieprocedures that
need to be checked for a number of limit states making the tatie afesigner very tedious.
Accordingly, it is important to develop software that guide tglotuhe design process and

facilitate the preparation of reliable analysis/design documents.

1-2 Objectives
This study is intended to determine the actual capacity ofnemhfeinforced concrete

columns subjected to eccentric loading and to generate the faivuedope at three different
1



levels. First, the well-known ultimate capacity analysis ofoafioed concrete is developed
as a benchmarking step. Secondly, the unconfined ultimate inberatingram is scaled
down based on the reduction factors of the AASHTO LRFD to thegmlasteraction
diagram. Finally, the actual confined concrete ultimate anabysisveloped based on a new
eccentricity model accounting for partial confinement effect urmdeentric loading. The
analyses are conducted for three types of columns; circular eslaanfined with FRP and
conventional transverse steel, circular columns confined with sibek tand rectangular
columns confined with conventional transverse steel. It is impddambte that the present
analysis procedure will be benchmarked against a wide rarggefimental and analytical

studies to establish its accuracy and reliability.

It is also the objective of this study to furnish interactivetvgafe with a user-friendly
interface having analysis and design features that willititei the preliminary design of
circular columns based on the actual demand. The overall objelocghesd this research are

summarized in the following points:

Introduce the eccentricity effect in the stress-strain modeling

Implement non-linear analysis for considering the confinement effeatelumn’s actual

capacity

- Test the analysis for three types of columns; circular coluronned with FRP and
conventional transverse steel, circular columns confined withtsteet and rectangular
columns confined with conventional transverse steel.

- Generate computer software that helps in designing and analyainfmed concrete

columns through creating three levels of Moment-Force envelopes; uresbrdurve,

design curve based on AASHTO-LRFD and confined curve.

2



1-3 Scope
This dissertation is composed of seven chapters covering the devetopimeaterial models,
analysis procedures, benchmarking and practical applications.
- Chapter one introduces the objectives of the study and the content diffdrent
chapters.
- Chapter two reviews the literature through four independent sections:

1- Section 1: Reinforced concrete confinement models

2- Section 2: Circular Columns Confined with FRP
3- Section 3: Circular Concrete Filled Steel Tubes Columns (CFST)
4- Section 4: Rectangular Columns subjected to biaxial bending and Axial Compression
- Chapter three deals with Circular columns confined with FRP and lateral stee
- Chapter four talks about concrete filled steel tube (CFST) circular columns
- Chapter five presents rectangular columns analysis for both the urexb@aind confined
cases. Chapter three, four and five address the following subjects:
= Finite Layer Approach (Fiber Model)
=  Present Confinement Model for Concentric Columns
= Present Confinement Model for Eccentric Columns
= Moment of Area Theorem
=  Numerical Formulation
» Results and Discussion
- Chapter six introduces the software concepts and highlights the soffarans and

components

- Chapter seven states the conclusions and recommendations.

3



Chapter 2 - Literature Review

This chapter reviews four different topics; lateral steel inenfient models,
Circular Concrete Columns Filled Steel Tubes (CFST) and Ragdia Columns

subjected to biaxial bending and Axial Compression.

2-1 Steal Confinement M odels

A comprehensive review of confined models for concrete columns undentonesial
compression that are available in the literature is conducted. Tddelsnreviewed are
chronologically presented then compared by a set of criteriassass consideration of different
factors in developing the models such as effectively confined, gielling strength and

ductility.

2-1-1 Chronological Review of Models
The confinement models available are presented chronologiedrdiess of their
comparative importance first. After that, discussion and categ¢jonzef the models are carried
out and conclusions are made. Common notation is used for all the eqdatioms sake of

consistency and comparison.

2-1-1-1 Notation
As the cross sectional area of longitudinal steel reinforcement
Ag: the cross sectional area of transverse steel reinforcement

Ae the area of effectively confined concrete



Ac.c the area of core within centerlines of perimeter spirals omp$icexcluding area of
longitudinal steel

b: the confined width (core) of the section

h: the confined height (core) of the section

c. center-to-center distance between longitudinal bars

d’s. the diameter of longitudinal reinforcement

d’st the diameter of transverse reinforcement

D: the diameter of the column

ds the core diameter of the column

fee the maximum confined strength

f' . the peak unconfined strength

f. thelateral confined pressure

. the effectivgatera cOnfined pressure

fyn the yield strength of the transverse steel

fs the stress in the lateral confining steel

ke the effective lateral confinement coefficient

g: the effectiveness of the transverse reinforcement

S. tie spacing

S: the vertical spacing at which transverse reinforcement is not effectoamanete confinement
&o the strain corresponding to the peak unconfined stréhgth
&c the strain corresponding to the peak confined strepgth
gy. the strain at yielding for the transverse reinforcement

ecu: the ultimate strain of confined concrete



ps. the volumetric ratio of lateral steel to concrete core
pi- the ratio of longitudinal steel to the gross sectional area

p: the volumetric ratio of lateral + longitudinal steel to concrete core

Richart, Brandtzaeg and Brown (1929)

Richart et al's (1929) model was the first to capture the proportional relationship
between the lateral confined pressure and the ultimate caiyarestrength of confined
concrete.
foo = fc' +k f, 21
The average value for the coefficiekt which was derived from a series of short column
specimen tests, came out to be (4.1). The strain corresponding pedkestrengthe. (see

Manderet al.1988) is obtained using the following function:

f|
Eec = gco{l—i_ k2 (f_c]:l k2 = 5k1 2-2

where &, is the strain corresponding ta k; is the strain coefficient of the effective lateral

confinement pressure. No stress-strain curve graph was proposed by &iahgi®29).

Chan (1955)

A tri-linear curve describing the stress-strain relationgfap suggested by Chan (1955)
based on experimental work. The ratio of the volume of steel tiesnitrete core volume and
concrete strength were the only variables in the experiment&l done. Chan assumed that OA
approximates the elastic stage and ABC approximates thécpsiage, Figure (2-1). The

positions of A, B and C may vary with different concrete variablean@ssumed three different

6



slopesk;, 1/E;, AE. for lines OA, AB and BC respectively. However no information about

A;andA,was provided.

f, C
f p
A2Ec
fe e y2Ec
0
0
.
)
O {;'e & p gu
Strain

Figure 2-1: General Stress-Strain curve by Chan (1955)

Blume, Newmark and Corning (1961)

Blume et al. (1961) were the first to impose the effect of the yield strerigr the
transverse sted),in different equations defining the model. The model generated, Rgn}e
has ascending straight line with steep slope starting frorortgm till the plain concrete peak
strengthf’; and the corresponding straia, then a less slope straight line connect the latter point

and the confined concrete peak strendth and e.. Then the curve flatten tilleg,

_ ' Agtfyh
f.. = 085f, + 4.1? for rectangular columns 2-3
022f_ + 400psi
gco = 6 . 2'4
10’ psi
Eoe =8, 2-5
£, =5¢ 2-6

cu su



fcc —-———-—————-

0.85c ———

Stress

Strain

Figure 2-2: General Stress-Strain curve by Blanal (1961)

wheregy is the strain at yielding for the transverse reinforcenteqs the cross sectional area of
transverse steel reinforcemeiht is the confined cross sectional heighi, is the strain of

transverse spiral reinforcement at maximum stresg@mslthe ultimate concrete strain.

Roy and Sozen (1965)

Based on their experimental results, which wengralled by two variables; ties spacing
and amount of longitudinal reinforcement, Roy and Sozeb5)18oncluded that there is no
enhancement in the concrete capacity by using rectilinearQreshe other hand there was
significant increase in ductility. They proposed a bilinear radiog-descending stress strain
curve that has a peak of the maximum strength of plainretaft. and corresponding strai,
with a value of 0.002. The second line goes through the gefined byeso till it intersects with
the strain axis. The stramy was suggested to be a function of the volumetric ratio oftdies

concrete corgs, tie spacing and the shorter side dimension(see Sheikh 1982).
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_3pb 2-7

Soliman and Yu (1967)

Soliman and Yu (1967) proposed another model that echérgim experimental results.
The main parameters involved in the work done were tieirgpaca new term represents the
effectiveness of ties,, the area of tieg, and finally section geometry, which has three different
variables;A.. the area of confined concrete under compresgigithe area of concrete under
compression and. The model has three different portions as shown in Fi§en®). The
ascending portion which is represented by a curve till thk peiat ', c.). The flat straight-
line portion with its length varying depending on the degremofinement. The last portion is a

descending straight line passing through (Q.&) then extending down till an ultimate strain.

=
f=09f_ (1+ 005q) 2-9
£, = 055f  *10° 2-10
&, = 0.00251+ q) 2-11

&, = 000451+ 085q) 2.12

whereq refers to the effectiveness of the transverse reinforcenseris the vertical spacing at
which transverse reinforcement is not effective in conaetdinement and is the greater db

and 0.7h.



0.8f,

o

Stress

Figure 2-3: General Stress-Strain curve by Soliman and 3&i7(

Sargin (1971)

ce

g Ccs
Sran

Sargin conducted experimental work on low and medium stremancrete with no longitudinal

reinforcement. The transverse steel that was used hietedif size and different yield and

ultimate strength. The main variables affecting the results therevolumetric ratio of lateral

reinforcement to concrete cgrg the strength of plain concreftg, the ratio of tie spacing to the

width of the concrete core and the yield strength of theveass stedl,.

fc:kac‘|: Ax+(m-1)x? }
1+ (A-2)x+mx

wherem s a constant controlling the slope of the descending branch:

m= 08— 005f;

psty
=

k,=1+ o.014{1— 0.2455}

c
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2-13
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2-18

f
¢, = 00024+ 0.037{1_ 0'7345} Py

y

c

f =k, f, 2-19

wherekzis concentric loading maximum stress ratio.

Kent and Park (1971)

As Roy and Sozen (1965) did, Kent and Park (1974)raed that the maximum strength
for confined and plain concrete is the sdfaeThe suggested curve, Figure (2-4), starts from the
origin then increases parabolically (Hognestad’'s Parabtlla)the peak atf. and the
corresponding straig,, at 0.002. Then it descends with one of two different gitdiges. For
the confined concrete, which is more ductile, it descendsdilbtiint (0.5°c, 500 and continues
descending to O0f2 followed by a flat plateau. For the plain concrete it descéhdbe point
(0.5 fc, &s50y) and continue descending to 0.2as well without a flat plateau. Kent and Park

assumed that confined concrete could sustain strain to irdingyonstant stress of @'2

|28, | & ’
fo=1 - for ascending branch

800 gCO

fo=f[1-2Z(s,-&,) for descending branch 2-20
. _3+0002f,

50 f _1000 2-21
b= 2(h+b)A, 922

hbs
€50n = €50c ~ €50 2-23
3 b

Eson = ZPS\/g 2-24

11



05
2-25

Eson T €500 ~ € o

7=

whereps is the ratio of lateral steel to the concrete cdris a constant controlling the slope of

descending portion.

Stress

& €500 €soc €20c
Sran

Figure 2-4: Stress-Strain curve by Kent and Park (1971).

Popovics (1973)
Popovics pointed out that the stress-strain diagram is infddmg testing conditions and

concrete age. The stress equation is:

[ S L 2-26
gCC
n-1+ (Qj
gCC
n=04*10°f_+10 2-27
2-28

£, = 27*10°4/T__

Vallenas, Bertero and Popov (1977)

12



The variables utilized in the experimental work conducted &lieWaset al (1977) were
the volumetric ratio of lateral steel to concrete ggreatio of longitudinal steel to the gross area
of the section,, ties spacing, effective width size, strength of ties and size of longitudiass.
The model generated was similar to Kent and Park modeimgifovement in the peak strength
for confined concrete, Figure (2-5). For the ascenbimagch:

fC

== Kl-Ze (x-1)] e.<&. <&4x 2-29

f

f—c, =03k Eoak S &, 2-30
gC

X= 2-31
(("CC

f =kf, 2-32

EC(S:CC X kX2
L _ 1 e, <&, 2-33

For the descending branch:

dg
p + q' P fyh
k=1+ 0.009:{1— 0.2455} = 2-34
hl K
f
¢, = 00024+ o.ooz{ —@} aal'] 2-35
G
Z- 05 2-36

3psﬁ 4| 370002l | 4450,
47*\'s | . -1000

13



wherek is coefficient of confined strength ratid s the slope of descending portiats andd’;

are the diameter of longitudinal and transverse reinforaeraspectively.

Axial Stres:

0.3kfe

Ecc £0.3k

Axial Strain

Figure 2-5: Stress-Strain curve by Valleeasl (1977).

Wang, Shah and Naaman (1978)

Wanget al (1978) obtained experimentally another stress-strainecdescribing the
behavior of confined reinforced concrete under congwas Figure (2-6). The concrete tested
was normal weight concrete ranging in strength from 30aAA.@90 psi (20.7 to 75.8IPa) and
light weight concrete with strength of 3000-8000 psi (20.353&1Pa). Wanget al utilized an

equation, with four constants, similar to that of Saggial

v AX+ BX? 037
1+ CX + DX? i
Where
fC
Y = . 2-38
gC
X=— 2-39
&

14



The four constan®\, B, C, Dwere evaluated for the ascending part independently of the

descending one. The four conditions used to evaluate tis¢ats for the ascending part were

dY/dX = Eg 49 Esec atX=0 Esec= fed &cc
Y =0.45 forX = 0.45/€0.49Esed
Y=1 forX=1
dY/dX=0 at X=1
whereas for the descending branch:
Y=1 forX=1
dY/dX=0 at X=1

Y = fi/fcc f0r X = (9|/8CC

Stress
—

045f,,

Eoc & 2i
Stran

Figure 2-6: Proposed Stress-Strain curve by Wirag(1978)

wheref; andg are the stress and strain at the inflection p&indndes; refer to a point such

that €2 — ¢ = & — ¢ccandEy 45 represents the secant modulus of elasticity atf@,45

Y: f2i/fCC fOI’ X = ggi/é‘cc

Muguruma , Watanabe , Katsuta and Tanaka (1980)

15



Mugurumaet al. (1980) obtained their stress-strain model based on expgaimeork
conducted by the model authors, Figure (2-7). The s$teaim model is defined by three zones;

Zone 1 from 0-A:

f —E fc B Ei Eeo .2
¢ = Eé& +Tgc (kgf/cnd) 0<¢g. <¢, 9-40
Zone 2 from A-D
(eomeu)
fo=fe +"—°C2(fc = fcc) (kgf/cr?) £ <&, < & 241
(gco - gcc)
Zone 3 from D-E
fu B fcc
fc = fcc +ﬁ(€c _gcc) (kgf/Clﬁ) Eee <ELS &, 2-42
2AS—f ¢
f, = M (kgfictn 2-43
gCC + gCU
£, =0004141— /2000  (kgficnd) 2.44
Jf S
Cc= il (1— 0.5—j ]
Ps fc W 2-45

where S is the area surrounded by the idealized stress-strain gprigethe peak stress awdis
the minimum side length or diameter of confined concrete

For circular columns confined with circular hoops:

16



f = (1+150Cc)f, (kgf/ch
&, = (1+146QCc)e,,
&, = (1+990Cc)e,

Whereas for square columns confined with square hoops:
f . =(1+50Cc)f, (kgf/cr)
£, = (1+450Cc)s,,

&, = (1+450Cc)e,

D
fCC
A
2 fec f“ £
o
n
Syl
<
0
Ecofu Ecc Ecu

Axial Strain

Figure 2-7: Proposed Stress-Strain curve by Mugureinaf(1980)
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Scott, Park, Priestly (1982)

Scottet al. (1982) examined specimens by loading at high strain ratertelate with the
seismic loading. They presented the results including thet effezccentric loading, strain
rate, amount and distribution of longitudinal steel and amountestigbution of transverse

steel. For low strain rate Kent and Park equations werdigwtb fit the experimental data

2
f —kf 2¢, _( e J &, < 0.00% 252
° 7 000X | 000X
f.=kf[1-Z, (s, —000XK)] & >0.00% 2.53
where
f
k=1+ % 2-54
_ 05 f.is inMPa 255

Z,= ,
3+020f, 3 [0 oo

145 1000 47\'s

whereb” is the width of concrete core measured to outside ofdbpsh For the high strain

rate, the k and,, were adapted to

f
k= 1250+~ ) 256

C

_ 0.625 f_isinMPa 2-57

Zm_ ,
(3+029f, 3 f 000K
145f, -1000 4" °\'s

and the maximum strain was suggested to be:

18



f
= 0.004+ 09p | 2~ ]
- 000t 035 12

It was concluded that increasing the spacing while maintainingaime ratio of lateral
reinforcement by increasing the diameter of spirals, redhee efficiency of concrete

confinement. In addition, increasing the number of longitudiaas will improve the concrete

confinement due to decreasing the spacing between the langitbdrs.

Sheikh and Uzumeri (1982)

Sheikh and Uzumeri (1982) introduced the effectively ioedf area as a new term in
determining the maximum confined strength (Soliman and Y6@7)LBad trial in effective area
introduction). In addition to that they, in their experimental watkized the volumetric ratio of
lateral steel to concrete core, longitudinal steel distribution,gttresf plain concrete, and ties
strength, configuration and spacing. The stress-strain ,curvgure (2-8), was presented
parabolically up to fl, ), then it flattens horizontally tilk.s, and finally it drops linearly
passing by (0.8%, egs) till 0.3 f, In that sense, it is conceptually similar to the earlier madel o
Soliman and Yu (1967).

fcc andecc can be determined from the following equations:

foo =k, f f, =k, f. k, = 085 2-59

cc s 'cp cp p'c

273° nc? s\ .
k. =1+ 1-—— | 1-— | o.f 2-60
s P H 55b° J[ ZbJ } Pelst

occ

£o = 055K f; *10° 2-61

19



2 )
o= s 14280 S(EJ AR 2-62
c b f

c

g5 = 0.22505E +e 2-63
_ 05 2-64
3 |b
47\s

whereb is the confined width of the cross sectibg,is the stress in the lateral confining bar, c is
center-to-center distance between longitudinal bagss the value of strain corresponding to
85% of the maximum stress on the unloading brancis, the number of laterally supported
longitudinal bars,Z is the slope for the unloading paft, is the equivalent strength of

unconfined concrete in the column, & = Kyf'«(Acc - As)

cc

Stress

gcc 6‘CS 885
Sran

Figure 2-8: Proposed general Stress-Strain curve by Saetkbhlzumeri (1982).
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Ahmad and Shah (1982)

Ahmad and Shah (1982) developed a model based onprbgerties of hoop
reinforcement and the constitutive relationship of plain conchtemal weight concrete and
lightweight concrete were used in tests that were conducted omghrate of loading. No
longitudinal reinforcement was provided and the main two patens varied were spacing and
yield strength of transverse reinforcement. Ahmed andh $haerved that the spirals become
ineffective when the spacing exceeds 1.25 the diameteeafahfined concrete column. They
concluded also that the effectiveness of the spiral is inyepebportional with compressive
strength of unconfined concrete.

Ahmad and Shah adapted Sargin model counting on theedctdtailure theory, the

three stress invariants and the experimental results:

AX+(D, -1)X?
= 2 2-65
1+(A -2)X+D, X
f CS
Y :fL 2-66
pcn
E.
X=—
& 2-67

wherefycsis the most principal compressive stréssis the most principal compressive strength,

& is the strain in the i-th principal direction agglis the strain at the peak in thth direction.

Ei is the initial slope of the stress strain curi2g,is a parameter that governs the descending
branch. When the axial compression is considered to bmdheloading, which is typically the

case in concentric confined concrete columns, Equatio65)(42-66) and (2-67) become:

21



AX +(D -1) X?

"1+ (A-2)X + DX? 2-68
AT, 271

Park, Priestly and Gill (1982)

Parket al (1982) modified Kent and Park (1971) equations to adcfmr the strength
improvement due to confinement based on experimental warlucted for four square full
scaled columns (21.731§14 000 mrf) cross sectional area and 10.8 ft (3292 mm) high),r€igu

(2-9). The proposed equations are as follow:

2
f. =kf, 2%, —( i j for ascending branch 2-72
0.00X \ 0.00%
f.=kf.[1-Z, (s, —&,)]> 02kf'c for descending branch 2-73
z, - - 05 2-74
3+020f, 3 f 000X
145, -1000 4" °\'s

f
K =1+% 2.75

Cc
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fee B

f'c

Axial Stress

0.002K
Axial Strain

Figure 2-9: Proposed general Stress-Strain curve byePaik1982).

Martinez, Nilson and Slate (1984)

Experimental investigation was conducted to propose equatiatefine the stress strain
curve for spirally reinforced high strength concrete undempressive loading. The main
parameters used were compressive strength for uncoromedete, amount of confinement and
specimen size. Two types of concrete where used; haveight concrete with strength to about
12000psi. (82.75 MPa)and light weight concrete with strength to about 9p80(62 MPa)
Martinezet al. (1984) concluded that the design specification for low sthecgncrete might be

unsafe if applied to high strength concrete. For normajhteioncrete:

(F.— f)=af a- d—s,) 2.76

st

and for light weight concrete:

(. f.)=18f - 5) 2-77

st

whered’; is the diameter of the lateral reinforcement.
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Fafitis and Shah (1985)

Fafitis and Shah (1985) assumed that the maximapaaity of confined concrete occurs
when the cover starts to spall off. The experimentark was done on high strength concrete
with varying the confinement pressure and the atecstrength. Two equations are proposed to

express the ascending and the descending brantctiesmodel. For the ascending branch:

A
f= fc{l—(l— ‘9—6] ] O<e <e, 2-78
gCC

and for the descending branch:

fo=foexd-kie, —2)"| e <e 2-79

The equations for the constahandk:

A= Efe 2-80
fCC

k= 017f_ exp(- 001f,) 2-81

fec andecc can be found using the following equations:

fo—f+ {1.15+ %48} f 282

£ =1027+107 f. + 00296 + 000195 2-83

cc

fi represents the confinement pressure and is giyémelfollowing equations:
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_ 2Ast fyh

f, r for circular columns 2-84
S S
2A, f

f, =% for square columns 2-85
.S

ds is the core diameter of the column afds the equivalent diameter.

Yong, Nour and Nawy (1988)

The model suggested by Yomeg) al. (1988) was based on experimental work done for

rectangular columns with rectangular ties; Figa-4.Q).

foo = Kf, 2-86
0'003{1_ 0.7h34sj(pS f, )2/3
¢, = 0.00265+ e 2-87
fe
AR
K =1+ 0.009{1— %J PR Al 2-88
h 8sd, \/fi

f = fc{ 025( : j + 0.4} 2-89
g = K{l{%) + 0.0003} 2-90

f, = f. 0.025(&)—0.065 > 03f, 2-91
1000
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cc

Stress
—h

045f,,

2i

gcc gi ‘92i
Strain

Figure 2-10: Proposed general Stress-Strain cyrwohbget al (1988)

Mander, Priestly and Park (1988)

Using the same concept of effective lateral canfient pressure introduced by Sheikh
and Uzumeri, Mandeet al (1988) developed a new confined model for cincgfaral and hoops
or rectangular ties; Figure (2-11). In addition Manet al (1988) was the second group after

Bazantet al (1972) to investigate the effect of the cycliadcside by side with monotonic one.

f.=f, [—1.254+ 2.254 /1+ 7'9f4f' - 2]':'} 2-92
¢
Eee =€ {1+ 5[% - 1}} 2-93

A
f, = Ekeps fyh =k, f, 2-94
. f oo Xr

Cor=1+x 2-95

26



Ec - Esec
x=2c 2-97
&

Wherek. is the effective lateral confinement coefficient:

K, = A 2-98
A

Ac is the area of effectively confined concrefge. = fodsc and A is area of core within

centerlines of perimeter spirals or hoops excludirga of longitudinal steel.

)

k, = 2d, For Circular hoops
1= Pee 2-99
_s

K, = 1—2d5 For Circular spirals
~Pee 2-100

1y W)y S g S _
y ~ 6b h 2b 2h For Rectangular ties

° (1_pcc) 2-101

Wheres' is the clear spacingy. is the the ratio of longitudinal reinforcementth® core area
Zwi2 is the sum of the squares of all the clear spaoetgieen adjacent longitudinal steel bars

in a rectangular section. Mander al (1988) proposed calculation for the ultimate oo

concrete straim,, based on the strain energy of confined concrete.
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cc

Stress o

cu
Strain

Figure 2-11: Stress- Strain Model proposed by Magrtal (1988)

Fuijii, Kobayashi, Miyvagawa, Inoue and Matsumoto889

Fujii et al. (1988) developed a stress strain relation by ualigesting of circular and
square specimen of 150 mm wide and 300 mm talljrEig2-12). The tested specimen did not

have longitudinal bars and no cover. The proposedsstrain model has four regions;

Region 1 from 0A

fC'—E-é' 2

1~ Cco
1~ C 2 (o3 O S gc S gco 2-102
6‘CO

f :f +M(f'_fcc) co ¢ — ¥cc 2-103

Region 3 fromB-C

1:c = fcc - 9(80 - gcc) Eec <& < Ee20 2-104

Region 4 fromC-end

28



f.=02f_ Eeno < E¢ 2-105
Fujii et al. (1988) defined three confinement coefficientsrf@aximum stres€, corresponding
strain C., and stress degradation gradi€ht For circular specimens, the peak strength and
corresponding strain are as follow:

f

% =17C, +102 2-106
% ~50C_, +125 2107
0 = 417C, 574 2-108
f
S yh
C, = 1- . B}
of Ps( 051de 3 2-109
f
S yh
C —pl1- )
e = £ ( 095dj (1Y 210
\2
C, =1 p(t.f11,, 2-111

Whereas for square columns the values are as follow

f

% = O.OBR:Cf + 108 2-112
&
Zec —702C,, +123 2-113
&

co
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0 =1240C,-2720 2-114

s
C, = ps(l—ﬁj 2-115
f
S yh
Cea = Ps(l——j . 2116
h)(t.f
C,=1p(tf11, 2-117

They showed that the proposed model has higherranecuhan Parket al. (1982) model

compared to the experimental work done by Faijal. (1988).

f oo B
I A 0
@
.g
0.2fc
0
Eco Ecc £c20
Axial Strain

Figure 2-12: Proposed general Stress-Strain cunfeufi et al (1988)

Saatcioglu and Razvi (1992)

Saatcioglu and Razvi (1992) concluded that thesipadateral pressure generated by
laterally expanding concrete and restraining trars reinforcement is not always uniform.

Based on tests on normal and high strength concaeging from 30 to 130/Pa, Saatcioglu

30



and Razvi proposed a new model, Figure (2-13), hlaatexponential relationship between the
lateral confinement pressure and the peak confinersgength. They ran tests by varying
volumetric ratio, spacing, yield strength, arrangemof transverse reinforcement, concrete
strength and section geometry. In addition, thaiB@ance of imposing the tie arrangement as a

parameter in determining the peak confined stremgth highlighted

f.="f. +kf for circular croston 2-118
k, = 67(f,)"* 2-119
2A f : :
f, = % for circular emsection -12D
S
f.=f +kf, for rectangular cresstion 2-121
fe =k 1, 2-122
f,,sin
f = Lw for square columns 2-123
S
K, = 015 /@@(EJQ 2-124
sAcA f,
fied+ fieyh
= ————— for rectangular columns 2-125
b+h
Eee = €CO(1+ S%} 2-126

For the stress strain curve
g5 = 2602—&8 + Eqgs 2-127

slb+h)

wheregggs is the strain at 0.8B¢ for the unconfined concrete
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2 1/[1+2k1f.'eJ
& & fe
fc = cc{z(_cj_(_cj ] 2-128
gcc gCC
where ¢ is spacing of longitudinal reinforcement amds the angle between the transverse

reinforcement and.

Foo g Srrain €20

Figure 2-13: Proposed Stress-Strain curve by Sagtcand Razvi (1992-1999).

Sheikh and Toklucu (1993)
Sheikh and Toklucu (1993) studied the ductilityl astrength for confined concrete and

they concluded that ductility is more sensitivagrtithe strength, to amount of transverse steel,

and the increase in concrete strength due to cemfmt was observed to be between 2.1 and 4

times the lateral pressure.

Karabinis and Kiousis (1994)
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Karabinis and Kiousis (1994) utilized the theory plasticity in evaluating the

development of lateral confinement in concrete wls. However, no stress-strain equations

were proposed

Hsu and Hsu (1994)

Hsu and Hsu (1994) modified Carreira and Chu (1 @®fuation that was developed for

unconfined concrete, to propose an empirical stsgsin equations for high strength concrete.

The concrete strength equation is:

fof | S ) gor p<x<x 2-129
¢ -1+ x ‘
x=-2c 2-130
gCC
1
1_ C
¢ E

wherew and{ are material propertieg depends on the shape of the stress strain curvé and

depends on material strength and it is taken etuhD and x4 is the strain at 0.6; in the

descending portion of the curve

Rasheed and Dinno (1994)

Rasheed and Dinno (1994) introduced a fourth @epatynomial to express the stress

strain curve of concrete under compression.
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2 3 4
f.=a,+ae, +ae; +a,6, +a,6,

2-132
They evaluated the constardsa, using the boundary conditions of the stress steairve.

Similar to Kent and Park, they assumed no diffeedmetween the unconfined and confined peak

strength.
f.=k_f. 2-133

where
k.=1
They used expression taken from Kent and Park modelaluate the slope of the descending
branch starting at strain of 0.003. A flat strailjie was proposed when the stress reableg.
up toCc.sc. whereC.is the ratio of maximum confined compressive sttaig.
The five boundary conditions used are:
f=0at &=0
df./dg =E:at &=0
f=fcat &= &o
df/dg=0at &= &0

df/deg.=-Zf.at &= 0.003

El-Dash and Ahmad (1995)

El-Dash and Ahmad (1995) used Sargiral model to predict analytically the behavior
of spirally confined normal and high strength caterin one series of equations. They used the

internal force equilibrium, properties of materjadsd the geometry of the section to predict the
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pressure. The parameters imposed in the analytiesliction where plain concrete strength,
confining reinforcement diameter and yield strengjte volumetric ratio of lateral reinforcement

to the core, the dimension of the column and sacin

2
_ AX+(B-DX 2.134
1+ (A-2)X + BX?
where
f
Y = fc 2-135
X =Ze 2-136
gCC
foo = otk f, 2-137
fi
Ec =& T k2 f_ 2-138
The values oA, B, k;, k; andf; are defined by the following equations
A Eefee _ Ec 2-139
fCC ESEC
033
B= 165 1 2-140

. \05 Lo\ 025
k, = J{ fCJ s 2-141
fyh ps

K= 2-142
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S
f =05p f,(1- |——o -123
| Ls yh( 12%5)

whered; is the core diameter.

Cusson and Paultre (1995)

Unlike all the previous work, Cusson and Paulfr@96) built their model based on the
actual stress in the stirrups upon failure and tdiglynot consider the yield strength, as the
experimental work have shown that the yield strierigt the transverse steel is reached in case
of well confined columns. The ascending and theeleding branches in the model curve are

expressed by two different equations Figure (2-Ed}.the ascending portion:

5
fof | \Nfee)

¢ Tcc k &S &g 2-144
K+1+ (‘ECJ
8CC
k= B 2-145
gCC
For descending one:
f.="1. exdkl(gcsoc - gcc)kz) £, 2 & 2-146
k= N05 __ 2-147
(£c50c _‘c"cc) ’
f A\ 14
k, = 058+ 16{]‘—'} 2-148
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wheree&soc IS axial strain in confined concrete when stigreps to 0.5 fcc. It is observed that
eqguation (2-144) proposed by Cusson and Paulidemgical to equation (2-95) suggested by
Mander et al (1988).

Following the same methodology of Sheikh and UzuniE982) and Mander et al.

(1988) Cusson and Paultre considered the laterdineament pressurig

f, _Fhee [ At Ay 2-149
S b+h

whereAsy andAgy are the lateral cross sectional area of the laséeal perpendicular to x and y
axes respectively arfgkc is the stress in the transverse reinforcementeatrtaximum strength of

confined concrete.

e [ )a)

K, = 2-150
1- Pec

£ =k f,

2-151

where Zwiz is the sum of the squares of all the clear spabetgveen adjacent longitudinal

steel bars in a rectangular sectidg. and &c can be found by the following equations

f N\ 07

fo— fC[1+ 21(f—'j ] 2152
f N\ 17

Eop = Egy + OZJ[—',J 2-153

N 11
Ego, = 0,004+ o.1{%j 2-154

c
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Axial Stress

Ecc &c50c

Axial Strain

Figure 2-14: Proposed Stress-Strain curve by CuasdrPaultre (1995).

Attard and Setunge (1996)

Attard and Setunge (1996) experimentally deterchindl stress-strain curve for concrete

with compressive strength of 60 —1BPa and with confining pressure of 1-RPa, Figure (2-

15). The main parameters used were peak streas) atrpeak stress, modulus of elasticity, and

the stress and strain at point of inflection. Attand Setunge followed the same equation used

by Wanget al (1978). and Sargin (1971):

_ AX+BX?
1+CX+DX?

where

2-155

2-156

2-157

For the ascending branch, the four constant aermeted by setting four conditions:
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df, _E
£

l-atf, =0,

C
C

df,

de

2-atf, = f, =0

c

3-atf, ="f_ ,6,=¢4

f
4-at f, = 045f' &, = —°

045

The constants are given by:

A~ Ecfee _ E 2-158
fCC Esec
2 AL EE° )
= ATDT S — 045 —-1 2-159
E, (1_ o.45fcj E, | 045f(, 045f,
EO.45 fCC EO.45 fcc fCC
CoA_2 2-160
D=B+1 2-161

while for the descending curve the four boundanydittons were

df,

1- at f_=f_, =0

2-atf, =f,,e, =&,
3-atf, ="f,,¢
4-atf . =f,,c. = ¢y,
wheref; andg refer to the coordinate of the inflection point.

The four constants for the descending curve are
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A:|:82i_8i:||:(f82iEi _ 4k, } 2-162

Eec
B=l(g, —¢& ' - 2 2-163
(82| “ {(fcc - fi ) (fcc - f2i ):|
C=A-2 2-164
D=B+1 2-165

Thef,. came out to be a function of the confining presstlre compressive and tensile strength

of concretd’, f;, f;, and a parametdrthat reflects the effectiveness of confinement.

k
fo _ (L s 1} 2-166
fC t
k= 125{1+ 0.062%}(&' ) MPa 2-167
Fee —14 (17— 006, {%} -188
8(30 C

No lateral pressure equation was provided

fCC

Axial Stress
I~

Figure 2-15: Proposed Stress-Strain curve by Atai Setunge (1996).
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Mansur, Chin and Wee (1996)

Mansur et al (1996) introduced casting direction, if the memhs cast in
place(vertically) or pre-cast (horizontally), asi@w term among the test parameters, for high
strength concrete, which were tie diameter andisgaand concrete core area. They concluded
that the vertically cast confined fiber concrets haggher strain at peak stress and higher ductility
than the horizontally cast specimen. In additiogrtically cast confined non-fiber concrete has
larger strain than that of horizontally cast cotenith no enhancement in ductility. Mansair
al. utilized the same equations found by Carreira @i for plain concrete with some

modifications. For the ascending branch, they tiseaxact same equation

&
ﬂ(eJ
fo=fd———22 2-169
&
_l+ -
()

wheref is a material parameter depending on the stress sthape diagram and can be found

by :

= 2-170

ki andk; are two constants introduced in the equationrdesg the descending branch:

hﬂ(?j
fo=fe i 21
klﬂ—l{‘%j

cc

for confined horizontally and vertically cast nabdr concrete:
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f
k = 2.77(’0 - .y“j 2172

f
k, = 2.19(’0 - ,y“j+ 017 2173

C

for horizontally cast confined fiber concrete

f
K = 33{% 012 2174

c

f
Kk, = 1.62(% 035 2175

c

and the values df. and&. can be obtained from the following equations:fonfmed non-fiber

concrete:
f 123
e 14 0g 2200 2-176
fC fC
for confined fiber concrete:
f f 123
- :1+11.6{p - ,y“j 2177

for vertically cast fiber concrete

f 2
foo L1y 62.2( P - bl J 2-178

&

co Cc

for horizontally cast fiber concrete and verticalst non-fiber concrete

& psfyh >
- =1+ 26 y 2-179

&

co Cc

and for horizontally cast non-fiber concrete
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& psfyh "
—=£=1+59 5 2-180

Hoshikuma, Kawashima, Nagaya and Taylor (1997)

Hoshikumaet al (1997) developed their models to satisfy bridgleimn section design
in Japan. The model was based on series of conmqmelegading tests of reinforced concrete
column specimens that have circular, square antl twa cross sections. The variables that
varied in the experimental wok were hoop volumataito, spacing, configuration of the hook in
the hoop reinforcement and tie arrangement.

Hoshikumaet al (1997) asserted that the ascending branch reypiessa second degree
parabola is not accurate to satisfy four boundandtions:

1- Initial conditionf.= 0, &.=0.

2- Initial stiffness conditiortfy/d e.=E;ate.=0.
3- Peak conditioric=f.c atec= &cc

4- Peak stiffness conditiotfy/de.=0 ate= ecc

The function that defines the ascending branch is:

1(e Y™
f =Ee|1-—| o 2-181
ﬂ 8CC
E ¢
=_—¢’¢cC 2-182
ﬂ Ecgcc - fcc

For the descending branch:

fc = fcc - Edes(gc - ‘900) 2-183
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whereEges is the deterioration rate that controls slopehaf dlescending line and can be found

using the following equation

=112 2-184
ps fyh
f 2
The peak stress and the corresponding strain éocitbular section
f

Tee 14 38370 2-185

fe fe

ps fyh
&, = 0.00218+ 0.0332T 2618
while for the square section
ps f h
© —1+ 07372 2-187
fe fe
f

&, = 0.00245¢ 0.0122% -188

C

Razvi and Saatcioglu (1999)

Razvi and Saatcioglu modified their model of Smgia and Razvi (1992) to fit the high
strength concrete (30 — 130 MPa). The ascending z®rdefined by Popovics equation as

follow:

cc

fo="—"— 2-189
r —1+(‘9c j
gCC

and for the descending branch:

&
f . —=r
8CC
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o0 = €0 (14 5k,K) 2-190

A
£q5 = 260K, %gm[u 05Kk, (k, —1)]+ £0gs 2-191
f
k3=4—(.)£10 k,=—2>10 K:klf,'e 2-192
f. 50C f

Razvi and Saatcioglu (1999) showed the good agneieafiehe model with some experimental

work available in the literature.

Mendis, Pendyala and Setunge (2000)

Mendiset al. (2000) modified Scotet al. (1982) equations to fit high strength concrete.

They empirically adjusted Scadt al (1982) equations to the following ones:

2
f = kf{zgc —(&J } for & <&, 2-193
gCC gCC
fo=kf[l-Z (s.—&.)]2 T fOr & >e. 2-194
f ..=RKf 2-195
fi
K =143 2-196
Z = 05 >0 f'cin MPa 2-197
3+029f, 3 [b
A AFE' AN~ + 7105 T gcc
145f, 1000 4" °\'s
£ = (024K + 076),, 2-198
R= 028-0.0032f, Rx>0 2-199
Z =0.018f_ + 055 2-200

fi is calculated according to Mander equations.
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Assa, Nishiyama and Watanabe (2001)

A new model was proposed for concrete confinedpgbkreinforcement based on concrete-
transverse steel interaction. The two main parametere concrete strength and lateral stress-
lateral strain relationship that represents thpaese characteristics of the transverse steekto th
lateral expansion of concrete. Assaal. (2001) modeled a confinement mechanism and limited
the lateral expansion of the confined concrete \lign maximum lateral expansion capacity.

Assaet al.(2001) reached some relationships expressed iioltbe/ing equations:

f—c.c =1+ 336f—'. 2-201
fe fe
gcc fI
=1+215— 2-202
‘c"co fc
£, = 0.0021+ 0.016% 2-203

c

where g¢, is the maximum lateral concrete strain. The pregostress-strain curve has one

eqguation:
_ 2
fof X+ (6 -)X 2 00
1+(y —2)X +oX
X = fc 2-205
&

where y controls the stiffness of ascending branch arabntrols the slope of the descending

branch:
y= Ece _ = 2-206
fCC Esec
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2
(‘EBOJ —(027+16)%® + 08
S=

€ &

_Feo 2-207
02 feo
gCC

wheregggis the strain ad.8f...

Lokuge, Sanjayan and Setunge (2005)

A simple stress-strain model was proposed baseshear failure. The model was based
on the experimental results taken from Candapp&0)20Lokugeet al (2005) proposed a

relationship between axial and lateral strain:

b {LJ e<e 208
glcc gcc

- (LJ e>¢ 209

glcc 8cc

whereg is a strain at a point where axial strain andrédtstrain curves deviate,is the

initial Poisson’s ratio, ana is a material parameter which depends on the iati@aoncrete

strength
v=8+*10"°(f, )’ + 0.0002f, +0.138 2-210
a=00177f, +1.2818 2-211

wheref' . is in MPa
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Binici (2005)
Binici (2005) introduced a generalized formulassatiding concrete under triaxial
compression. The proposed stress strain curvefirseedeby elastic region then non linear curve.

The axial compression is expressed using Leon-Raramriterion as follow

f, = f.(kycrmg — 1—K)g> +¢) 2212
2 2
¢= il m=te =T 2-213
fe fe f,

wheref'; is the uniaxial tensile strength,is the softening parameter and is equal to one in
hardening region and zero for residual strengthkaisadthe hardening parameter and is equal to
one at ultimate strength and softening region arejual to 0.1 at the elastic limit. Binici (2005)
defined three equations for determining the stiresise elastic, hardening and softening zones as
follow:

For elastic zone:
f. =E., &, <&, 2-214

For the hardening zone:

fo=f+(f, fle)( fe e J ' : <& <c, 2-215
Eec T e ( Ec— & ]
r—1+
gcc gle
f
r= _& E1p = T Ege =96 —+—08 2-216
Ec - Esec Ec fc
For the softening zone:
2 _ 2
a = 1 GfC _ (fcc f1r ) 2217
\/;( fCC fll’ ) IC Ec
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wherel. is the length of the specimen aBd is the compressive failure energy and is calculated

as follow:

2 2
0 E.—& (f.—1,)
G, =1 f.—f - (d ~ee 7 2-218
fc C{LCC( cc Ir )eX[{ [ a j j| gc + 2E }

C

To fully define the stress strain curve for consfaessure, equation (2-212) is used to define the
limit stresses. These stresses are imposed iniegsidR-215, 2-217) to fully define the stress

strain curve. The lateral pressure is calculateéagube lateral straig found by:

g =—Ve&, 2-219
V=V, for &S &, 2-220
- -
_ v, -V
vo=v,—(v,—v, )exg - el for £ <&, pf=—">m>F 2-221
Eee — €1 Vi—Vo
J-Inp

wheres is the secant Poisson’s ratio

3 1
vV, =V, +

—_— £ 56, 2-222
" (¢+ 085)’ T

whereas in case of changing lateral pressureatkeal pressure is solved by equating the lateral

strain in jacket to the lateral strain of concrete:

2f,

€1Vs(f|)— E 0
i

=0 2-223

whereE; andpg is the modulus of elasticity and volumetric ragfcthe jacket respectively.
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2-1-2 Discussion
As stated by many research studies, like Maeted (1988), Scotet al (1982), Sheikh
and Uzumeri (1980) and Shuhaib and Mallare (198®), spirals or circular hoops are more
efficient than the rectangular hoops. The unifomespure generated by the circular hoop is one
of the reasons of circular spirals advantage.
According to Eid and Dancygier (2005), there arerfmain approaches for the modeling of
confined concrete by lateral ties

1- The empirical approach: in which the stress-steairve is generated based on
the experimental results. Fafitis and Shah (1988l) ldoshikumaet al. (1997)
followed that approach.

2- Physical engineering model based approach: thealgbeessure causing the
confined behavior of the concrete core, is providgdhe arch action between
the lateral reinforcement ties. This approach wdspted by Sheikh and
Uzumeri (1980), and was followed by Mand¢mal. (1988).

3- The third approach is based either on the first@ggh or the second one, but
it does not assume the lateral ties yielding. bubtdt include computation of
the steel stress at concrete peak stress, eithenttmducing compatibility
conditions, solved by iterative process as CussohPaultre (1995) did, or by
introducing empirical expressions as SaatcigoluRazvi (1992) followed.

4- A plasticity model for confined concrete core imnced by Karabinis and

Kiousis (1994). The shape of the confined coreaseld on the arching action.
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Based on the reviewed models, around 50% folloviredetmpirical approach, whereas
10% used the physical engineering approach, andréke combined between the
empirical and physical engineering approach.
According to Lokugeet al (2005), the stress strain models can be class#gedhree
categories:
1- Sargin (1971) based models: Martiretzal. (1984), Ahmad and Shah (1982), Eldash
and Ahmad (1995) Assa al (2001).
2- Kent and Park (1971) based models: Sheikh and Uzuih@82), Saatcigolu and
Razvi (1992).
3- Popovics (1973) based models: Mandeal (1988), Cusson and Paultre (1995) and
Hoshikumaet al (1997).
Most of the confined models were developed lsfing small specimens that did not
simulate the real cases for the actual column,samall portion used real columns to verify their
works such as Mandet al (1988).

Table 2-1: Lateral Steel Confinement Models Conguari

Long. | spacing| Lateral | Lateral| Effective | Section | Lateral | Lateral
steel steel |steel |area geometry| pressurg steel
size config. stress
Richart *
Chan *
Blume * * * *
Roy * *
Soliman * *
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Sargin

Kent

Vallenas

Muguruma

Scott

Sheikh

Ahmed

Park

Martinez

Fafitis

Young

Mander

Fujii

Saatcioglu

El-Dash

Cusson

Attard

Mansur

Fuji

Razvi

Mendis

Assa
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Binici

Table (2-1) shows that the most successful modeissidering the lateral pressure

determination parameters are Manéeral (1988) that lies in the third group according to

Lokuge et al. (2005) comparison and Saatcioglu Raadvi (1992), second group (Razvi and

Saatcioglu (1999) was developed for high strengticiete). For the sake of comparing three

models, one from each group, with the experimenasilts, El-Dash and Ahmad Model (1995)

is selected from the first group as the model tmatsidered most of the contributing factors,

Table (2-1), compared to Attard and Setunge (199@ysuret al. (1997), Martinezt al. (1984)

and Sargin (1971) models. However El-Dash and Ahmadlel was developed for spirally

confined concrete, hence, it was eliminated fronct&®gular column comparison. The model

selected from group 2 is Mandet al. (1988) and that chosen from group 3 is Saatciaglu

Razvi (1992) as mentioned above.

Table 2-2: Experimental cases properties

Length| Width | Cover| Fc Fy |Bars| Bars Lateral | Spacing| Fyh
(in.) (in.) (in.) | (ksi)| (ksi) | # | diameter| steel (in.) | (ksi.)
(in.) diameter
(in.)
Casel] 19.69 | Circulan 0.98 | 4.06| 42.8 | 12 0.63 0.47 1.61| 493
Case?2 19.69 | Circulary 0.98 | 4.2| 42.8 12 0.63 0.63 3.66 445
Case3 17.7 17.7 | 0.787 3.6557.13| 8 0.945 0.394 2.83| 4438
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The three models are compared with two experimeesllts, case 1 and case 2 for circ
cross section columns, Table ZP-All the three models are successfudgpturing the ascendir

branch.However, Mander model is the best in expressingl#seending one, Figur2-16) and

(2-17).

8.00 |
7.00 -

= 1 4 | e L —— Experimental

g7y D T

% 5.00 ==

E 4.00 - - = = theoretical Mander

b

= 3.00

Z 2.00 Y| Theoretical EL-Dash and
0.00 ===-=Theoretical Saatciogluand

000 001 002 003 004 005 006 0.07 Razvi

Axial Strain

Figure 2-16Mander et al (1988), Saatcioglu and Razvi (1992)El-Dash and Ahma

(1995) modelicompared to Case 1.

8.00

7.00
— 6.00 m:\ Experimental
0 \
= 5.00 NN N
@ T } | — T, .
o 4.00 - \ T = = Theoreticall Mander
5 ™ ] o= o
2 ; h."".' —
E 3.00 e
X ] o Theoretical EI-Dash and
<200 4

) v Ahmed

1.00

[ L N Theoretical Saatciogluand
0.00 Razvi
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Axial Strain

Figure 2-17Mander et al (1988), Saatcioglu and Razvi (1998)El-Dash and Ahma

(1995) models compared to Cas
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For the case of rectangular column comparisonureig2-18), Saatcioglu and Razvi
(1992) is better in capturing the ultimate compresstrength. Whereas Mander describes the
softening zone better than Saatcioglu and Razviem&hsed on Table (2-1) and Figures (2-16),
(2-17) and (2-18), Mander model is seen to be &t in expressing the stress strain response for

circular and rectangular columns.

7.00

6.00

.00 -
i I Y e N

4.00
"-l--.______ — Eyperimental
—

== == Theoretical Mander

3.00

Axial Stress (hsi)

sgo &4 b e Theoretical Sastcioglu and Razvii
&

1.00

0.00

0.00 0.01 0.0z 0.03 0.04 0.05

Axial Strain

Figure 2-18: Mander et al (1988), Saatcioglu angviR@l992) and El-Dash and Ahmad

(1995) models compared to Case 3.
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2-2 Circular Columns Confined with FRP

FRP wrapping used in retrofitting concrete colunsnsonsidered one of the simplest and
most efficient applications, as FRP has excelleatenml characteristics like high strength to
weight ratio and high corrosion resistance FRPabe$ elastically, and therefore its confining
strength increases proportionally with increasimg force applied. The literature review in this
section cares about FRP wrapping only and doexamtider the effect of FRP tubes, as the
mechanics is different. This section reviews thevimus extensive work concerns FRP concrete

columns confining chronologically. Hence, the eavils classified according to its author/s.

2-2-1 Past Work Review

Fardis and Khalili (1981)

Fardis and Khalili (1981) focused on concentricédladed short circular columns. They
performed short term compression tests on 3 *@Gid 4*8 in. cylinders and concluded that
there is agreement between the strength and tla stréss suggested by Richarttal. (1928)

and Newman and Newman equations:

f.=f.+41f, 2.224

f 086
f, = f,+37f, [f—'J

c

2-225

Fardis and Khalili (1982)

Fardis and Khalili (1982) approximated the failawial strain, using experimental
results, in the following form:
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E,t
£,, ~ 0.002+ 0.0005——
Df, 2-226

And the stress equation can be expressed usimgpdeshyperbola having initial slope Bf:

1+ 8{ < —1J
Eeo 2-227

whereE. is the tangent modulus at failure

Katsumata , Kobatake, Takeda (1988)

Katsumataet al. (1988) tested ten 7.87 * 7.87 in. rectangular spenss wound with
carbon fiber. They concluded three outcomes; uteénaisplacement and energy dissipation are
linearly proportional to carbon fiber quantity, #smuake resistance capacities results from
unbinding concrete with carbon fiber do not diffesm these of wound concrete directly to
carbon fiber and using equivalent quantities ofboar fiber or steel hoops, using effective

strength ratio, the earthquake resistance capeaitypoe correlated.

Ahmed, Khaloo and Irshaid (1991)

Ahmedet al. (1991) tested 33 concrete cylinders confined ilterglass wire. They
concluded that the increase in confined strengttredses with increasing the unconfined
concrete strength. And by decreasing the fiber svigacing, the values of maximum strain at
failure and strain at maximum stress increase.dflaear flat post peak curves can be generated
in stress-strain curves by increasing amount officement. Ahmedet al. (1991) suggested
using the same equations developed for steel piahforced concrete by Ahmest al. (1982)

by replacing’; and &, by f.c ande& in the stress equation:
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2
{e)-ea()
f = f €eo €eo 2-228

1+ —E=1+—
o 4 2-229

k and n are constants that vary based on unconfined censteength. Ahmeet al. (1991)
showed the superior behavior of confining concreith fiberglass wire that has zero spacing
over the concrete confined with steel tubes. Thezispen used for comparison has diameter of

76.2 mm for steel tubes confining compared to 1@in% for fiberglass wiring confinement.

Demers and Neale (1994)

Demers and Neale (1994) conducted experimentak woor 20 circular and square
columns, fourteen of which were confined with 1&g of FRP, glass and carbon. The circular
columns were 152 mm in diameter and 305 mm higheM#s, the square ones were 152 mm
wide and 505 mm high. The results were comparethsigaell known proposed models that
were developed for steel hoops and spirals conimenDemers and Neale (1994) reported that
all the models overestimate the ultimate strengtiept for Cussoet al. (1992). They suggested

stress function as follow:
fc = fc +(€c _gco)g(Eftf ’1/ fc) 2_230

They suggested conducting more accurate analysisflather tests to generate the function

g(Et;,1/f;). They also reported that 70 % increase in streagth up to seven times strain at
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failure can be found for wrapped columns compaoeitié unconfined ones. It was observed that

strength improvement in squared columns is verylssompared to the rounded ones.

Taniguchi, Mutsuyoshi, Kita and Machida (1993)

Taniguchiet al. adapted Sakai (1991) equation for concrete cedfimith lateral steel to
fit the FRP behavior as follow:

. 0.019¢, _5a3)*
0.024& 0] 2.231

f 05
f = (1+ 4—',] *f 2-232

2-233
05
f = (1+ ef—',] *e 2-234
¢, = 0.024E520°) 2-235
E = (1— 3}* 2AE, /(s/ D)
D 2-236

where E; is the lateral confining rigidity and, is the axial strain. The past equations were
developed based on experimental work done on aighdnd prisms that were confined with

lateral steel and FRP. However no FRP parameterseshin the proposed equations.
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Hoppel, Bogetti, Gillespie Jr, Howie and Karbhd994)

Hoppelet al. (1994) related the hydrostatic pressure of caacseapped with composite
to the axial stress:

tE,
DE

P=oc(P=0)
c 2-237

where P is the hydrostatic pressure(P=0) is the concrete compressive failure strength at

atmospheric pressure,

Saadatmantesh, Ehsani and Li (1994)

Saadatmanesht al. (1994) utilized Mandeet al. model (1988) that was originally
generated for concrete confined with steel hoopspamals, in developing a computer program
that calculates the ultimate moment and curvatufailare for columns. Interaction diagrams for
different cases were plotted and compared to theonfmed case from Chat al (1991).

However, no evidence of the proposed procedureracguwas conducted.

Nanni and Bradford (1995)

Nanni and Bradford (1995) tested 150 * 300 cmyfifine cylinder specimen of
unconfined concrete and confined with FRP. AraniRPRape, glass filament winding and glass
aramid pre formed shells are the three types usecbmfining. Nanni and Bradford (1994)
reported that unconfined specimens and specimerfgied with Aramid FRP tape with spacing
of 50 mm had shear cone failure mode. Whereasrnbenith less than 50 mm spacing and glass
filament wound specimens failed by shell rupturedAinally specimen confined with glass

aramid pre-formed shells had joint failure. Thepwhd that the models; Mander model (1988)
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and Fardis and Khalili (1982) are correlated ancueate in predicting the ultimate strength.
However, they underestimated the ultimate straoh @dd not represent the stress strain curves
shape. They also suggested bilinear stress straire avith a bend over point at unconfined

strength and 0.003 for strain.

Howie and Karbhari (1995)

Howie and Karbhari (199%poncluded through testing study that setting phethe hoop

direction gives the largest increase in strength.

Harmon, Slattery and Ramakrishnan (1995)

Harmonet al (1995) developed a new model for stress-straidigtien based on linear
elastic deformation and shear slip. Although thédvmollapse was mentioned as one of the
parameter that influences the stress strain behadviwas disregarded due to its possible small
effect by having a well compacted concrete mix.rtam et al. (1995) defined the confinement

efficiency ratio as follow:

R=45+ f.be
NAFE S 2-238
025
b= 06+ 05k, /1000 2-239
z=-02(c, + f,)/b? 2-240

whereks is the secant stiffnedsis the split cylinder strength aridis the radial stress. It was

observed that stress strain curves plotted usmgtbposed model were having bilinear pattern.
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Mirmiran and Shahawy (1995)

Mirmiran and Shahawy (1995) introduced a modelettped specifically for concrete
wrapped with FRP that considers concrete laterphesion and the fiber composite non ductile
behavior. They utilized Madas and Elnashai (199f)ation that relates the axial and radial
strain to predict the radial strain. Consequently talculated radial strain is used to find the

lateral pressure as follow:

t
f,=2-LE,¢,
D 2-241

whereg; is the radial strain.Finally the lateral pressiyreavas used to find the equivelant stress

using Mander model (1988).

Hosotani , Kawashima and Hoshikuma (1997)

Hosotaniet al (1997) conducted experimental work on 10 cylingeecimens and 12
square specimen that are 600 mm high and 200 mm. Witk stress strain model proposed by

idealizing the experimental stress strain curveslémy:

E i .
f.=E.e, - ﬁ(l- —QJ(g—j 0<e, <eé 2-242
n E. | &
fC: ft+Eg(8c_gt) gt’ SECSECCU 2_243
_(E.-Ey )

E.c, — f, 2-244
&'= 21, 2-245

Ec - E2
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E
A 193% for cylinder specimens

fC Cc

f, piEfEy .

i =1+ 153f for square specimens
_4nt

Ps D

E
&, = 0.00343+ 0.00939% for cylinder specimens

e E
&, = 0.00330+ 0.00995’1% for square specimens

c

f? . :
E,=-742 pfcff +0.086/p, E;, for cylinder specimens

f? .
E, =-13726——+0.023/p; E; for square specimens
oy fi

wheref; is the FRP tensile strength.

f
£, =1.384 /pf E—f for cylinder specimens
cf
f, |
6a,=1212p(| =~ |  for square specimens
cf

2-246

2-247

2-248

2-249

2-250

2-251

2-252

2-253

2-254

The proposed model compared well with the experiedlemork done by the same researchers.

They noted thap: becomes effective for values more than 1%.

Miyauchi, Nishibayashi and Inoue (1997)

Miyauchi et al (1997) tested cylindrical specimens ( 10 cm vfid@) cm heigh and 15

cm * 30 cm heigh) wrapped with one, two and threebon fiber sheets. They found that
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compressive strength and corresponding strain imepreith increasing the number of FRP

sheets. The proposed ultimate compressive stregthtion was adapted from Richart model as

follow :
To g, 2060
c f. 2-255
f = Ps fcf
2 2-256
p, = Ant
" D 2-257
f 0.373
fon _ 1.0+10.€{f—'.] for 30.0MPa 2258
gCO C
f 0.525
fan _ 1.0+1o.5[f—'.] for 50.0MPa 2259
ECO C

And the proposed stress equations are as follow:

2
fcfc'[z[g‘:]—(gcn 0<e, <e 2-260
gCO gCO

f.="f

C Ccu

ey, —¢.) £ <s.<¢ 2-261

&, 2-262

. . 2
£ f{z[ij[ij J
gCO gCO
2-263
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|:_ 2 fc (gcu —& )+ (Zl'fc'(fc"gcu2 -2 fclgcugco +2 fcgczo));}

A= >
Eeo 2-264

The proposed model (Figure (2-19)) was well coteelato the experimental work done by

Miyauchi et al (1997)

fCU 777777777777

Axial Stress

Axial Strain

Figure 2-19: Axial Stress-Strain Curve proposedvioyauchiet al (1997)

Kono , Inazumi and Kaku (1997)

Kono et al ( 1997) reported, through conducting compressagtston 100 * 200 mm
cylinder specimens wrapped with one, two or thré&®kE sheets, that increasing confinement

index increase compressive strength and correspgstiiain linearly

Mirmiran and Shahawy (1997)

Mirmiran and Shahawy (1997) examined thirty 6*h2aylinder specimens, twenty four
of which are concrete wrapped with FRP (6, 10 afyliés). The rest are unconfined concrete.
Failure observed was near or at the mid heighpetisnens due to fracture of FRP. The stress
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strain response for the tested specimens is hiliogeve with no descending curve. Mirmiran

and Shahawy (1997) compared different confined sodepredicting the behavior of concrete

wrapped with FRP. These models were Maneleal 1988, Ahmed and Shah 1982 and
Karabinas and Kiousis 1994. They concluded thabfathe compared models are overestimating
the FRP behavior due to failure in imposing thatdihcy of concrete wrapped with FRP. They
compared these models with Mirmiran model (1996} tiras originally developed for FRP, and

they showed that Mirmiran model is in best agregmeétin experimental work of Mirmiran and

Shahawy (1997) of 14 plies.

Watanabe, Nakamura, Honda, Toyoshima, Iso, Fujimidiineto and Shirai (1997)

Watanabest al (1997) tested cylindrical specimens (100 * 200 nson)fined with CFRP,
high strength CFRP and AFRP. The number of layared from 1 to 4 layers. They utilized the
Endochronic theory found by Bazant (1976) in a maar 3D fininte element model to predict
the stress-strain behavior as it was tested bdfwreoncrete confined with transverse steel by
some of this study authors. They found good agee¢imetween the model and the experimental
work conducted. And they concluded that the congivesstrength increase linearly with
increasing the number of plies. They expressedva teem which is the C-index that is the
product of lateral strain in FRP at compressiversjth, young’s modulus of FRP and volumetric
ratio of FRP. They found that the linear relati@ivizeen the ultimate strength and strain with the
unconfined ultimate strength and strain can beaesp descriptive. They proposed the following

equations:
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f.=aC+f, 2265

Foo = Pt &co 2-266
wherea andg are constants identified by the tests.

Monti and Spoelstra (1997)

Monti and Spolestra (1997) adapted the lateralsune value in Mander model (1988) to
fit the FRP elastic behavior up to failure throutginative process. The proposed process aims to

iterate for the lateral pressure, based on thalratfain generated in the section, till conversion

£ = 055 Eeur
Eeun 2-267
fy =—05pE; &,

2-268
whereaga Is the lateral pressure agids a constant depends on concrete type and iadagted
from Pantazopoulou and Mills (1995)

Then Mander model was used in the rest of the puoeeof predicting stress strain behavior.

The proposed model was compared successfully terempntal work done by Pichest al

(1996)

Samaan ,Mirmiran and Shahawy (1998)

Samaaret al (1998) introduced a new model, Figure (2-20)t tepends mainly on the
relation between the dilation rate and confiningterial hoop stiffness. The proposed model

adapted Richard and Abbott equation (1975) asvollo
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P =9 > S Ee 2-269
1+ (El — E2 )80 "
fO
wheren is a curve shape parameter. The ultimate stresgtétermined by:
f.=f, +60f°% MPa 2-270
102 Eftf
E, = 24561f, +1.3456T MPa 2-271
f, =0.872f, +0.371f +6.258 MPa 2-272
n f Cu
N
o
)
I
<>‘:< fo
Axial Strain
Figure 2-20: Axial Stress-Strain Curve proposedhynaaret al. (1998)
And the ultimate strain:
fcu B fo
gcu =
E, 2-273

The proposed model was well compared with experiahemork done by Picher (1995), Nanni

and Bradford (1995) and Mastrapa (1997).
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Mirmiran and Shahawy, Samaan ,EIEchary,MastrapgePaco (1998)

Mirmiran et al. (1998) studied the effect of shape, length anddbon FRP confined

concrete on the confinement effectiveness of FRBsu

Harmon, Ramakrishnan and Wang (1998)

Harmonet al (1998) proposed two internal friction based coarfitent models; stress
ratio model and crack path model. They assumedtttal concrete strain forms from elastic
strain, crack strain and void strain. The propasedels did not take into account the void strain
as it is non-measurable parameter. The stressaaqtiation is derived from Coroeaal (1995),

The following equations are used iteratively witle telastic strain to generate the whole stress

strain curve:

5+ ——=
+ f / '
r | O'r+f| 2.974

r 2-275

T _ ,u+5,7
o+f l-pe,

2-276
whereu is the friction coefficientg, is the slope of the crack opening pathis the axial stress,
or is the radial stress. The crack path model is baseiierating for radial stress till converge.

The internal confining stress is found from theagapon strain that is calculated from crack slip

strain.
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Spoelstra and Monti (1999)

Spoelstra and Monti (1999) adopted the same iNergirocedure from Monti and
Spoelstra (1997). The procedure mainly relies aratig the lateral strain with FRP strain and
uses the latter in calculating the lateral confieat The lateral strain is calculated from a

formula derived from the work done by Pantazopowod Mills (1995) as follow:

Ecgc B fc

B 2-277
1

fi==p;E;&,

Lot 2-278

4= 500  f..in.MPa

f 2-279

C

Spoelstra and Monti (1999) showed good agreement tveir procedure and the experimental
work done by Picheet al (1996), Kawashimat al (1997) and Mirmiran and Shahawy (1997).
They utilized Mander model stress strain curve \thién secant modulus at ultimate strain to find
a closed form expression for the ultimate straihisTultimate strain is found by intersecting

Mander curve with a straight line having a slopeh# secant modulus at ultimate FRP strain

ESeC,L;
E = 2-280
1+2p¢,,
£y = €., Esec(Ec - Esecu) 2.281
Esecu (Ec - Esec)
feu = Eceobeu 2-282
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f
sec =
Eec 2-283

In addition, they proposed approximate values Far tltimate strength and strain based on

regression analysis of 600 cases. The proposedi@gsiare as follow:

f,, = f.(02+3/%,) 2284
Eey = gco(2+ 125EC8fU \/f—lu) 2.285
E - 'ff_ 2-286

wherefy, is the lateral confinement pressure at ultimatngith

Matthys, Taerwe, and Audenaert (1999)

Mathyset al. (1999) conducted experimental work on cylindrispecimen (150 * 300
mm) wrapped with one layer of FRP, as well asngstull scale columns ; 8 has circular cross
section (400 mm wide * 2m high) and 3 with squaiess section having the same height and
same cross sectional area as the circular ones=RRewrapping ranged from 2 to 6 layers. The
experimental results are compared to Mander md@dg), CEB-FIP code model, Monti model
(1997) and Sammaet al. (1998). They concluded that the results frominigsiarge and small
scale specimens are similar. However, the circuental strains were different. They also found
that the failure load correlate well with the comgsh models. And the GFRP showed more

ductility compared to CFRP that gave higher strengt
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Toutanji (1999)

Toutanji (1999) tested 18 (3* 12 in) cylindricg@leximen, 12 of them were wrapped with
FRP and the rest were plain concrete. He repoigdfar the same stress level the axial strain is
more than the lateral strain in the carbon fibehe¥éas, in glass fiber they are equal, he claimed
that to the higher stiffness of carbon comparedléss. The proposed stress strain-model was
divided into two regions, Figure (2-21). The secoedion when the FRP gets fully activated.
Richart (1929) equation was evaluated for each raxpatal point in the second region to find
the constant k through regression analysis. Thesst@and strain equations found for the second

region are as follow:

f 085
f.= f{1+ 35£f_lj ]
¢ 2-287

£, = eco(l+ (31057¢, + 1.9)(%} —1}
¢ 2-288

The first region where the behavior is similar taconfined concrete was evaluated based on

Ahmed and Shah (1982) equation:

3 Ac,
° 1+Ceg, +Deg,
2-289
A=E, 2-290
C=5—i+ EuiEg‘gui
fua &y fua
2-291
1 Eui Eii
PR
v * 2-292
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E. :1020(6fc')~%»

2-293
AL
E, =51004f_ 2-294
g, =0002 9205
Eua = Ee {1+ 0. O44{%} ]
2-296
£, [1+ 0 on{%j ]
2-297
E, 2-298
-
E,, = 0.3075-<
Eeo 2-299

whereEj, is initial tangent of axial stress-strain curves,, is the tangent between the elastic
region and plastic region of axial stress-strairveLE, is the tangent between the elastic region
and plastic region of axial stress-lateral strainve, g, is the strain between the elastic region
and plastic region of axial stress-lateral strairve, &,, is the strain between the elastic region
and plastic region of axial stress-strain curvel fanis the axial stress between the elastic region
and plastic region , the model proposed was wetipared with experimental work of Toutanji
(1999), Harmoret al (1995), Picher et al (1996), Nareti al (1994), Miyauchiet al (1997) and

Mirmaran and Shahay (1997)
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Axial Stress (MPa)

Lateral Strain

—
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-
~
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— — — — second region

Axial Strain

Figure 2-21: Axial Stress-(axial & lateral) Str&irve proposed by Toutanji (1999)

Xiao and Wu (2000)

Xiao and Wu (2000) tested 36 cylindrical specim&B2 mm wide and 305 mm high.

The concrete used was low, medium and high streargiithe carbon fiber sheets ranged from 1

to 3 layers. They proposed empirical equations fexperiments and from theory of elasticity

equations using four parameters of confined coar@tial stress and strain, transverse strain

and confinement stress. The bilinear model deswilhe behavior of plain concrete confined

with FRP sheets has two sets of equations; beéaehing’ . and after as follow:

Approaching’:

f. =E.&, + 2

74

2-300

2-301

2-302



Whereas after reachinfy; the equations are as follow:

f =of  +Kf 9-303
& = grlo - V(I:gz 2-304
f=-Ce 2-305
.\ 08
‘ ( fc J
V.= C_
j 2-306
g,, =0.0005 2-307
L
C,=2—E,
D 2-308

2
k=41- 0.75%
J 2-309

wherea = 1.1 andvis Poisson’s ratio The model proposed was wellpamed with Hosotaret

al. (1996) experimental data.

Theriault and Kenneth (2000)

Theriault and Kenneth (2000) proposed empiricadiynple design equations for
concentrically loaded short columns wrapped withiPFRhey also proposed strengthening limits

accounting for creep and fatigue.

Aire , Gettu and Casas (2001)

Aire et al (2001) tested cylindrical specimens (150 * 300 )miar normal and high

strength concrete and they found out the following:
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-The stress-strain curve behaves bilinear and t@nge in slope happens around the peak
unconfined strength indicating that the FRP getmgad after cracks development.

-The behavior of CFRP is better than GFRP sligiitipormal concrete and is evident in high
strength concrete.

-The ductility in normal concrete wrapped with CFRFPnore than that of high strength concrete
wrapped with CFRP as well

-Increasing the number of layers of FRP increaseskbpe of the stress strain curve

Pessiki, Harries, Kestner, Sause, Ricles (2001)

Pessikiet al. (2001) reported , by testing small and large es@atcular and square
specimens, that the jacket efficiency in squareispens are less than that of circular ones. They
suggested using shape fackgrin determining the lateral pressure induced byRR#. This

value was adopted from Restrepol and De Vino (1996)

1_((b—2r)2+(d—2r)2]
k

3db
1- p, 2-310

S

Whereb is the width of the section,is the depth of the sectionis the radius of the corners and
ps is the longitudinal steel ration. Strain efficiency factor wag@sed due to the premature

failure of FRP as follow

k, =" 2-311
gfr

Whereg, is the average strain in the jacket ands the ultimate strain obtained from tests. Also

the dilation rate can be limited by increasing the FRP strendtbktdfmess.
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Monti, Nistico and Santini (2001)

Monti et al (2001) proposed a procedure for determining upgraitidgx that relates
available ductility for existing columns to target one using FR&hgthening. This procedure

found an optimal thickness for FRP to enhance ductility stiex circular columns.

Alsayed, Alsalloum, Almussalam and Ahmed (2001)

Alsayedet al (2001) showed that strength gaining from confinementedsess with size

increase. They modified Satcioglou and Rasvi (1992) ultintegagth equation as follow:

2-312

- 0.79J

f,=f. +a[4f |

f, =k, f, For circular columnsk is equal to 1 for fully wrapped columns and equals to

1{“’_ or );;r(]h_ 2y } ~ s _ 1{“" 2r )23;(]“‘ ar) }* (1-05: )1 05;)

1_ps 1_:05

for continuous

and separate straps respectivelys a reduction factor and is taken equal 0.8 or 0.9.
They showed that the proposed equation correlate well witexherimental work conducted by

Picheret al (1996), Koneet al (1998), Harrie®t al (1998) and Samaaet al (1998)

Lam and Teng (2001)

Lam and Teng (2001) showed from experimental workbdata that the strain varies
with FRP types, as the GFRP and AFRP has higher ultinraie shan CFRP with the same

confinement ratio. The ultimate axial strain is approximated|s\fo
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fa g5l

Eco fe 2-313

But for the design use, they suggested the following equation

fa _ 175,100
€eo fe 2-314

It should be noted that the well know Lam and Teng modedtemms were first proposed in this

paper. However for the sake of integrity it is mentionedetaitlin Lam and Teng (2003).

Yuan, Lam, Teng and Smith (2001)

Yuan et al (2001) compared the available stress strain models of FRidis and
Khalilii (1982), Karbhari and Gao (1997), Samaaral (1998), Miyauchiet al (1999), Saafet
al. (1999), Spoelstra and Monti (1999), Toutangi (199%0>and Wu (2000), Lam and Teng
2001). These models showed big variation regardingltimeate strength, ultimate strain and the
ductility. Force moment interaction diagrams were plotted usiagdmpared models. Yuan
al. (2001) reported that the ultimate column strength is depemadéiigly on concrete confining
strength and is little influenced by ultimate strain.They alsortepahat Miyauchet al (1999),
Saafiet al (1999), Samaaeat al (1998) and Lam and Teng (2001) predicted the foroment

interaction diagram similarly.

Karabinis and Rousakis (2002)

Using plasticity approach, Karabins and Rousakis (20@2)ifred Drucker-Prager model
to capture the FRP response. The proposed model slygmeddagreement with the experimental
work as it was compared to Samaatnal. (1998), Saafiet al (1999), Spoelestra and Monti

(1999) models. In addition they tested 22 cylinders wrappédCFRP (200 * 320 mm).
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Harries and Kharel (2002)

Harries and Kharel (2002) developed a model basedilatiod relationship (relation

between axial and lateral strain) and FRP stiffness. Thiehi®ditilized in an iterative model

for determining the complete stress strain curve. They tesfedirical specimens (6*12 in)

confined with CFRP and E-GFRP (0-15 plies). They founttbat the stress-strain response

varies between descending post peak behavior for lighineonént and bilinear ascending curve

for heavy confinement. They reported also after certalnevof strain (Z¢,) the dilation ratio

appeared to stop increasing. They adopted Madas andh&ilnd®92) model to develop the

variably confined concrete model (VCCM) Figure (2-ZY)e model is defined in four quadrants

as follow:

1- First quadrant: stress strain relation for concrete confined auitistant pressure: they

used the formula found by Popovics (1973) that was adidgter by Collins and Porasz

(1992):

f. & n

|, Nk
cc gCC

n-1+ (ng
(C"CC

n= E

e

&

fee( N
Ee =" | T4
E.\n-1
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Relation betweehl
and FRP strength

fu &z

FRP Stress-Strajn dilation ratio betwee
curve axial and lateral strai

&1 lel

Figure 2-22: variably confined concrete model proposeddryies and Kharel (2002)
where k is curve fitting factor for the descending branch. The ualtemcompressive
strength is taken from Mirmiran and Shahawy (1997) andctieesponding strain is

adopted from Richast al (1929):

' 0.587
fcc = fc + 426q fl ) 2-318

Eeo = 8{5 ffc,c —~ 4}
¢ 2-319

2- Quadrant 2: finding the lateral strain from axial strain usingdthewing equations:

£ =ne, 2-320

n=n &= 0.66‘(; 2.321
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=7, ' ' '
n= (—1.45; J(gc - O.68C)+ n,  0beg, <¢g,<2¢, 2.322
77 :77u <gC >2¢9C 2'323
7, =—099In(nE, )+12 CFRP 2-324
m, =—O.66|n(nEf )+8 E-glass 2-325

3- Quadrent 3: determining the FRP stress from lateral strain
4- Quadrant 4: determining the lateral pressure from the FRBsafiing the following
equation

_ 4nf,
D

fl
2-326

The value of the lateral pressure is used in recalculftiagd s in equations (2-318 &
2-319) which are used in equation (2-315) to determinstthes corresponding to given

strain. They showed the good agreement between the nmabi#ieexperimental results.

Lam and Teng (2002)

Lam and Teng (2002) formed a database consists oEX@&imental testing cases for
circular specimens wrapped with FRP with no longitudinal steeforeement. Based on the

study conducted they concluded that the peak strength eaaltulated using the following

equation:
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f—°.° =1+ 2f—'.
fe fe 2.327

They concluded that the confinement effectiveness of FREndis significantly on FRP tensile

strength.

Li, Lin and Sung (2002)

Li et al (2002) proposed two models for concrete confined wiHRIE and concrete
confined with CFRP and Steel reinforcement together. The rusdel is found from the
similarity between concrete confined with FRP and the meainanes the tri-axial test of the
soil, according to Let al (2002). The proposed equations are as follow:

For the ascending portion:

fo=f +f tarf(45 +¢/2)

2-328
, 2ntE; ¢,

f ot 2 2-329

$=36"+1°(1, 135)< 45° 2-330

wherek; is the shape factor angs the angle of internal frication of concrete. The cqweasing

straing. is found using testing of 108 specimens:

Eop = £, 1+ tan?(45° + ¢ /2)% 2-331

The parameterris depending on the confinement material properties and sl fequal to 2.24

using regression analysis, and the value of stress dawihe using the following equation
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IEES

While for the descending portion of the curvedtial (2002) used Hoshikumet al (1997)

2-332

straight line equation:

fc = fcc - Edes(gc - gcc) 2-333
The ultimate straim, is calculated from the following equation:

— _ cc
Eeu = €50 =& T

i 2Bes 2-334
The second proposed stress strain curve representsype® of confinement the CFRP and
transverse steel. lat al (2002) determined the peak strength as the summatioe ahttonfined
strength and the strengths from steel and CFRP simultdpedhe lateral pressure from the

steel action is adopted from Mander et al (1988) equatiorthE@scending branch

cc

fo=f +(f, + fI;)tan2(45° %j

2-335
fe
Eoo = £oo| 1+ 224tar?(45° + ¢/2)T
c 2-336
2
e 4]
gCC gCC
2-337

For the descending portion the Hoshikuetaal (1997) was used. The first model was verified
against 108 cylindrical specimens and the second model evdied by testing 18 cylindrical

specimens (30 * 60 cm) confined with steel and CFRP.
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Chun and Park (2002)

The proposed passive confinement model by Chun akd(B@02) is summarized in the

following steps:
1- Selecting axial straig

2- Determining Poisson,s ratio

v, = —O.2305|n(%} +0.087

‘ 2-338
2 3
y=v, {1+ 1.3763% — SBG{iJ + 8.58({ij ]
gCC gCC gCC
2-339
2f,t
iy =-—JLl-ks+15th 2-340
D Ay

whereks is the shape factor ard is the core area of concrete enclosed by hoopsiaiscthe
ultimate poison ratio anig is the design confining pressure.

3- Calculating the transverse strain

G = Ve 2-341

4- Calculating confining pressufe

¢ 2¢, E t, K .

=75 K or cover concrete 2-342
2¢, E(t,

f :TkS +f,  for core concrete 2-343

5- Calculating ultimate strength and corresponding strain accotalivignder Model

(1988).
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6- Calculating stress according to Mander Model (1988)
The test program was prepared for testing eccentric loadfagts on the columns for
0.0P,, 0.25P,, 0.5P,, 0.75P,, and the specimen tested are 200 wide *1000 mm high,
strengthened with hoops and 2 layers of FRP sheets. ddreyjuded that using FRP
sheets increases the columns strength and ductility, prenfailure of FRP should be
considered and the proposed model can predict reasotisblyoncrete wrapped with

FRP behavior.

Moran and Pantelides (2002) (a, b)

Moran and Pantelides (2002) introduced the strain ductdiig,rwhich is a function of
hoop stiffness and the internal damage of concrete tor,plasticity model. The proposed

plasticity model is defined by the following equations:

fc _ (Es )mgm 2-344
(E.), = GRS T+ Em
[1+ (Em _fEmp m| J "
I om | 2-345
E . 1
E,= (ﬂ_H:J S = fe0e = E[(ap )=l 2-346
26
“ 2-347
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c ! 2-348

(). = ok ), +[if’j((eep ) - eulu, +(20)])

2-349
whereEsn is the secant modulus &t (from Richard and Abbott 1973, is the average plastic
modulus, E,, is the tangent modulus of elasticityy, initial Poisson’s ratio for unconfined
concretefom is the reference intercept stres¥a, is the normalized reference intercept stress ,
Nm IS & curvature parametew, is the bond dependent effective confinement indexis the
analytical plastic dilation raté p is the variable confinement coefficient, is the plastic jacket
strain, n is a factor range between 0.8 and 0.9. They compéredoroposed model with
Mirmiran (1997) and Xiao and Wu (2000) experimental wofke results showed good

agreement

Cheng, Sotelino and Chen (2002)

Chenget al. (2002) proposed the following equations:

(Ec B Ep )gc

=)

f =

C

+ Epg

c

S

2-350
. E.t,
E, =-1133+424f_ + 066—
D 2-351
. E.t,
f, =—131+ 115f_ + 002
D 2-352

86



where n is the curve shaped parameter

fcu

fO n

Axial Stres:

Ec

Ecu
Axial Strain

Figure 2-23: Axial Stress-Strain Model proposeddheng et al (2002)
Cheng showed the good agreement of the proposedImatth the experimental work done by

Demers and Neale (1994), Mirmiran and Shahawy (L88d Mastrapa (1997).

Campione and Miraglia (2003)

Campione and Miraglia (2003) suggested using Ridli®29) equation for determining

the maximum compressive strength with changingktbeefficient to be equal to 2 for concrete

wrapped with FRP

f.= fc' +2f, 2-353
2tf ) .
f, = b “ for circular cross section 2-354
d
f = 2, are with round corner
| = b, squ Wi u S 2.355
f = @f” k are cro ection
| = b, i squ SS secti 2.356
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f, = fuﬁl—gkjﬂwi Q}

2
by 2-357

wherek; is shape reduction factor and is found experintigria be equal to 0.2121. ariglis the
ultimate strength in FRP arandd is the core dimension to FRP centerline.

The stress-strain equation, Figure 2-24, suggédstéde authors is as follow:

ol
. gco

f—c. =p—+ 1
fc €0 R R
{1+ (‘%J }
€0
2-358
E f.—f.
B= E_h E=——
(] €ou €0 2-359

Axial Stress

Axial Strain

Figure 2-24: Axial Stress-Strain Model proposeddaynpione and Miraglia (2003)
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The ultimate strain value is calculated in a wayilsir to Mander ultimate strain equation using
energy approach

Eom Eeo TAE 2.360

They showed that the proposed model correlatetavdiie experimental work in the literature.

Lam and Teng 2003

Lam and Teng (2003) categorized the axial streagmamodels into two sections; design
oriented models that form closed form equationsethasn experimental work to predict the
compressive strength and the ultimate strain, anadyais oriented models that use incremental
numerical approach. This approach takes into adabenequilibrium between concrete and the
confining material and radial displacement compl#ifbconsiderations. They did not consider
failure due to insufficient vertical lap joints. @ pointed out the existence of differences
between FRP ultimate strength or strain reachedaterial tests and those reached in specimens
loading tests. This was due to two factors; premeatailure of FRP Jackets due to non uniform
stress distribution in cracked concrete and theature effect on FRP tensile strength. They
determined three different cases of columns codfwéh FRP based on the amount of FRP;
The bilinear stress strain up to failure, the adoen descending stress strain curve that has
ultimate strength more than unconfined strength ted ascending descending one that has
ultimate strength lower than unconfined strengthe Tatter is due to insufficient amount of
confining material provided. Also, a certain amoahtonfining FRP can decrease the dilation
of the concrete. They verified, as Spolestra anahtMd.999) did, that the ratio of the actual
maximum confinement pressure to the unconfinechgtlehas to be taken not less than 0.07.
The proposed stress-strain model, Figure 2-2%fised by two equations:
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2
f.=E., ——(E° EZ) % 0<eg <eg 2-361
4fC
fC = fc + EZEC St' <& S €y 2.362
fo—f
E, = ce < 2-363
gCCU
2f "
& '= = 2-364
Ec - EZ

Lam and Teng (2003) imposed the stiffness, asriesdrom type to type unlike the steel, into

the equation that determines the maximum axiainstra

f £ 045
£, = 500{1.75+ 12—'[ﬂ] J 2-365

1
C gCO

where &, yp IS the strain at FRP rupture. And the maximum ioeaf strength is give by:

f, = f, +33f, 2-366
2Et ¢

fi=—— 2 2-367
D

fCU

fe

Axial Stress

Axial Strain

Figure 2-25: Axial Stress-Strain Model Proposed.asn and Teng (2003)
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Thef, that determine the linear second portion interedgh the stress axis is found by testing
experimental results to range between 1.0 andf'dl.Zor simplicity Lam and Teng (2003)

considered, = f'¢. The efficiency factor that relates FRP premaftaii@re strain to FRP rupture

strain from coupon test is taken to be equal t8®.5

Ere =K 8y 2-368

Ciupala, Pilakoutas and Taranu (2003)

Ciupalaet al (2003) tested cylindrical specimens wrapped witl kayer of GFRP, CFRP
or AFRP. The experimental stress strain curve gdothowed good agreement with Sameian
al. (1998) and Miyauchi et al (1999) as far as ulten@ompressive strength concerns. Whereas
the two models overestimated the ultimate stragimland Teng model (2003) was conservative
for ultimate strength while it predicted the ultimatrain closely. Finally, Spoelstra and Monti

model (1999) overestimated both the ultimatengiite and strain.

De Lorinzis and Tepfers (2003)

Lorinzis and Tepfers (2003) gathered 180 experiaiatata available in the literature and
classified them, and by analyzing the data and pgraposed models they concluded the
following:

1- The FRP models derived from steel models is inateum predicting the concrete
confined with FRP behavior

2- Using the ultimate lateral pressure and the ul@mstrain overestimate the ultimate
strength and the corresponding strain found fropeamental work.
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3- None of the proposed model predict accurately thienate strain, accordingly they

proposed an equation as follow:

08
oo 14064 f1| g ome
& f '
' ‘ 2-369

whereE; is the lateral modulus.

Xiao and Wu (2003)

Xiao and Wu (2003) tested 243 concrete cylinde&? (lhm * 300 mm) wrapped with
CFRP and GFRP of nine types up to four layers. Tioemd the relation between axial and

lateral strain is as follow

. 09
g = —0.00047—1({ oD j &, 2-370
2tf f
They proposed a new stress strain curve relatidollasv:
fC — (El_EZ)gc - +E28C
T
bl(e )T 2371
C.
E,=E, {1+ 2vv, E—'}
c 2-372
fcu = fc + kCJ & 2-373
£D )"
E, =10kC;| ¢
2y 2-374
f=1+48 *1(T4C]-O85 2.375
2tf
C, =—F
D 2-376
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They showed that the proposed model correlatewittl their experimental work.

Tenqg and Lam 2004

Teng and Lam (2004) studied stress-strain behaditation properties and ultimate
conditions. In addition to the two reasons mentibire Lam and Teng (2003) for differences
between FRP ultimate strength and strain reachedaterial tests and those reached in
specimens loading tests, Teng and lam (2004) atliedxistence of overlapping zones that

cause non uniform strain.

Berthet, Ferrier and Hamelin (2004)

Upon conducting experimental work on cylindricglesimens, Berthe@t al (2004)

verified the bilinear stress-strain behavior of @@te wrapped with FRP.

Theriault, Neale and Claude (2004)

Theriaultet al (2004) studied the effect of specimens size onetterimental results.
They concluded the adequacy of using cylindric&cgpens size in assessing the short column

behavior

Montoya, Vecchio and Sheikh (2004)

Montoya et al. (2004) proposed a constitutive model based on cesspn field
modeling that considers nonlinear elasticity arasptity. This model was incorporated in FE

software to analyze columns confined with FRP aeelst The results well agreed with
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experimental work done by Demers and Neale (19B&lucu (1992) and Sheikh and Uzumeri

(1980)

Marques, Marques,Silva, and Cavalcante (2004)

Marquez et al (2004) developed a numerical iterative incremlerapproach for
predicting the stress-strain curve for rectangalad circular columns wrapped with FRP. The
model iterates for area strain by changing theadhstrain then updates the axial strain according

to the lateral one. The equations used in the mar@ehs follow:

1
a ™ (E—l ! 2-377
s B
ﬂ:(_Ecgc; “fe ey 2378
yoL ( E.c, j £, —0.001
2\ Ee,, - f. )(1-v, ), —0.001,) 9-379
2, : :
f =05 E; ¢ for circular ceosection 2-380
A f, + 2t :
fi=——"—— for rectangular crosstisec 2-381

b+h
whereb andh are the section dimensions dpdfy, are the confining pressure actinglmandh
sides respectively. The equation used to deterthieexial stress from the given axial strain is
Popovics (1973) equation. Marquetzal (2004) utilized Ravi and Saatcioglu (1999) moda a
Kono et al (1998) model to determing. and & for circular and rectangular cross sections

respectively as follow:
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for circular cross section 2-382

fcc = fc + ki fI
fI
Eee = Ego| 1+ 5k1kgT
c 2-383
k=671 Kk, -0
fe 2.384
853-3

f.=f.+00572f for rectangular cross section

Eoe = Ego + 028f, 2.386

They showed the good agreement between the modebged and experimental work of

Toutanji (1999), Saa#t al (1999), Rochette and Labossiere (2000) and Mimm({2800).

Bisby, Dent and Green (2005)
Based on analysis done on experimental result200f concrete wrapped cylinders

available in literature, Bisbgt al (2005) ran comparison among the models availabtethey

concluded that any of the available models hasaat|13 % error for ultimate strength and 35 %

for ultimate strain.

Berthet, Ferrier and Hamelin (2005)
Using experimental work done, Bertlettal (2004) and some others experimental work,

Berthetet al (2005) developed a new stress-strain model facrate wrapped with FRP. The

ultimate strength and strain equation are as follow
2-387

fcu = fc +k1£Efgfu
r
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= )
Ey=€a0 T \E[f_lzJ (gfu - chao)

c 2-388

k, =345  for 20<f, <50MPa 2-389
_ % for 50< f, <200MP

kl_(f-)i or <t < a 2-390

wherer is column radiuse,, is the maximum unconfined strain amndis the Poisson ratio for
unconfined concrete. The stress strain curve ikiated in two linear zones. The first one has
the following equations:

Acs

fo_ M
¢ 1+Be+Cég? 9391
A=E 2-392
E.¢ E ¢
B: Er _i'i'er I";p C:iz_gr rI;P
pr gfp fcp grp fcp
E, = E{1+5(1— v, )}
h : 2-393
And the second zone is defined by:
fC = fCD +9f KVC —]/)an _ngJ+0r750 & 2 ‘9ap =&p T glp o
y 2-394
=2
1(E|°
e :E f'2
‘ 2-395
fCP = fcc - gr (gfu - glp) 9-396
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0 = 273 ~163 E-LE,
r 2.397

wheregp is the transverse strain corresponding to thesiian zone and is equal to 0.002 ang

is the radial strain at,.

Monti and Alessandri (2005)

Monti and Alessandri (2005) proposed approximaeast approach to develop design
equation for columns strengthened with FRP and segbdo axial load and bending moment.

The approximate approach proposed was shown tebeampared with the exact approach.

Saenz and Pantelides (2005)

Saenz and Pantelides (2005) developed a new $tasied FRP model that is based on
Pantazopoulou and Mills formulas (1995). The mduet three zones; linear elastic response
zone, transitional zone and ultimate axial streskat strain zone. The first zone has the same
response as the elastic region for the unconfimedrete and it is limited by radial strain equal

to -0.1 mm/m (Saenz 2004) (cracking strain). Treppsed equations are as follow

gr,cr
Ve=—

Eeur 2-398
g, =1-2v,)e, 2-399
fo=Ee 2-400
E, =5700, f, 2-401
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The transitional zone is ranging from cracking ist® the strain were the volumetric strain

becomes zero as a sign of reversing from contradiio expansion. The transitional zone

equations are as follow:

c
_ 1- 2Vc & — gc,cr
& ==V &~ 2 Eevo
Eevo ~ e

2-402
o= E.— 2-403
2¢,
1+
B
fc = Eser,gc 2-404

wherec is the rate of unstable volumetric growth withaddtrain increasing and it is equal to 2

for normal weight concrete antlis the secant modulus softening rate and is detsefollow

B =—(341u, +144)10° 2-405

063
2t
wherey, is the ultimate radial to axial strain ratio ahiiequal to62{ [;f i j
Cc

The last region starts after expansion of volumestrain up till ultimate radial strain. The

eguations are:

f.=E (& 0—&)+ foro 2-406

rvo

2-407
where ecvo = 2.06 mm/m (Saenz 2004). The proposed model wdkoompared to Saenez

(2004) experimental work.

98



Deniaud and Neale (2005)

Deniaud and Neale (2005) developed elastoplastdemto assess the behavior of
circular columns wrapped with FRP and compared thatlel to nonlinear elastic models ,
Ottosen (1979), Elwi and Murray (1979) , Ahmad &fthh (1982), Ahmad, Shah and Khaloo
(1986). They showed the reasonability of their psmnl model compared with the nonlinear

elastic models against some experimental work.

Binici (2005)
Binici (2005) introduced a generalized formulassaldbing concrete under triaxial
compression. The proposed stress-strain curvefiisedeby elastic region then non-linear curve.

The axial compression is expressed using Leon-Rarartriterion as follow
f, = f.(kycrmg — - K)g* +¢) 5408

¢p=—- m:% 2-409
c c't

wheref'; is the uniaxial tensile strength,is the softening parameter and is equal to one in
hardening region and zero for residual strengthkaisdthe hardening parameter and is equal to
one at ultimate strength and softening region anelgual to 0.1 at the elastic limit. He defined
three equation for determining the stress in theti , hardening and softening zones as follow:
For elastic zone:

f. =E., &, <&, 2-410

For the hardening zone:

99



f=f,+(f, fle)( £c e j ' : e.<6 <&, 2-411
6‘CC & e _
0y —1+( e " tte ]
gcc gle
f
r= E, £, =—2 £. =5y, f—c,c— 0.8 2-412
Ec - Es Ec fc
For the softening zone
E.— & 2]
fo="f, +(f —f, )ex;{—( c j £ <&, 2-413
(04
2G —f )
o= 1 fc _(fcc f1r) 2.414
\/;( fcc - flr ) IC EC

wherel. is the length of the specimen aBg is the compressive failure energy and is calcdlate

as follow:

2 2
& E.— & (f — f )
G, =I f —f )e %— £ £C de 4+~ ¥/ 2-415
fc C{Lm( cc 1r) X ( j :l gc 2E ]

C

To fully define the stress strain curve for consfaressure, equation (2-408) is used to define the
limit stresses. These stresses are imposed inieqsdR-411 & 2-413) to fully define the stress

strain curve. The lateral pressure is calculateagu$e lateral strain el found by:

g =—Ve&, 2-416
V=V, for E.S&, 2-417
- -
_ v, —V
v, =v, — (v, —v, Jexp —| e~ Fe _ for £ <&, p=—"™=F  2.418

€oc "€ Vi=Vo
J-Inp
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1

= 4+
= (¢+ 085)"

6158 2-419

Whereas in case of changing lateral pressureatheal pressure is solved by equating the lateral
strain in jacket to the lateral strain of concrete:
2f, 0

Ele(f| )_ E -
iPi 2-420

whereE; andp, is the modulus of elasticity and volumetric ratgicthe jacket respectively. Bicini
(2005) verified his proposed model against expentadedata for some researches including steel

hoops, steel tubes and FRP jackets.

Carey and Harries (2005)

Shawnet al. (2005) investigated the effect of testing largalesd columns compared to small
scaled ones and they concluded that the scaleadlumn does not have a significant effect on

the normalized stress strain curve behavior.

Li (2006)

After testing 24 cylindrical specimens with ditet amount of FRP wrapping, Li (2006)
reported that the insufficient amount of FRP deteetl by Spolestra and Monti (1999) cause the
concrete to behave similarly to the unconfined cetec At the same time he supported the

bilinear behavior of concrete wrapped with sufiitiamount of FRP.

Harajli (2006)

Harajli (2006) utilized Richart (1929), Scettal (1982) and Toutanji (1999) equations to

generate two simple parabolas to express the sttesn relationship for concrete confined with
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FRP and transverse steel, Figure (2-26). Thedssending parabola is defined by the following

equations:

2
f = fc{zgc _[‘g—cJ } £ <ée, 2-421
gCO gCO

wheref, and &, are the stress and strain for the intersectiontgmtween the first and second

parabolas. The equations define the second parab®kss follow:

f,=(KZ-K)-K 2-422

K, =0.003k,E, — f, -lklEISg,o A 2-423
2 Ay
2 ' A%c ! gc
K=f +kfE.ze, —=—-0003%E, f|-=+09 2-424
Ag co
E, =k,p,E, /2 E. =k Kk p.E, /2 2-425

whereg, is the yield strain at hoops and is equal to 0.802 4.1 (as Richart (1929 is the
confined areakes and kes are the confinement coefficient in the horizonpéne, ke is the

confinement coefficient (same as Mander formul&e $tress and strain at the intersection point

of the two parabolas are defined by:

. ko, E
fo= f ke, 2 oy KeepaBs | Ao 2-426
2 2 A,
oy =gw[1+ (31057¢, +1.9)(%— B 2-427
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Figure 2-26: Axial Stress-Strain Model proposedayajli (2006)
Harajli (2006) showed the good agreement of hisehedth the experimental work conducted
by Hantouche and Harajli (2005) for rectangulamuoats, Toutanji (1999), Nanweit al (1994),

Miyauchet al (1997) and Teng and Lam (2002)

Braga, Gigliotti and Laterza (2006)

Bragaet al. (2006) developed analytical model based on Elagticeory to predict the
confining pressure in stirrups and internal latares for square and circular cross section
columns. This model was expanded to be applied iocul@r cross section columns confined
with FRP. The proposed equation is as follow:

EcEf tm(bm / S)V

f = 2-428
! ECD+Eftf(bmls)(l—vc)(vcgaJrl)gz

whereby, is the wrapping width anslis the wrapping spacing.
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Matthys, Toutanji and Taerwe (2006)

Mathyset al (2006) tested six large scale circular columngl@® mm wide and 2 m
heigh wrapped with CFRP, GFRP and hyprid FRP (HFRMPEey adapted Toutanji (1999)

equation to account for the premature failure oPR& be as follow:

f 085
f = f{1+ 23(f—'j ] 2-429

A Eiey,
fi=——— 2-430
D

They showed that this adaptation for Toutanji ()98®del and Spoelstra and Monti (1999) are
the most accurate models compared to the experanewoirk. Whereas Lam and Teng (2003)
model has lower stiffness for the second branchpawed to higher ones for the experimental

work.

Rocca, Galati and Nanni (2006)

Roccaetal (2006) concluded, by conducting testing on laige solumns wrapped with
FRP having different cross sectional shapes, tieasize effect is negligible for sections of size

aspect ratio equal to 2 or less.

Youssef, Feng and Mosallam (2006)

Youssefet al (2006) developed a bilinear stress strain relasiomlar to Lam and Teng
(2003) model. They considered shape effect, reatangnd circular, hence the seconed linear
branch was expressed by ascending or descendipggsline based on the confinement ratio and

the shape geometry. For the ascending curve wupltod the proposed equation are as follow:
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n-1
f, = 5650{11(1513] ] O<e, <e 2-431
n E. \ &

n= w 2-432
Ec‘gt - ft
f.=f+E(s, —¢) 2-433

Whereas for the descending branch, for the sedoedrlcurve:

n-1
fo= Ecgcll—l(‘ij ] 6 <e <e, 2-434
n\ &
n=EBla 2-435
Ecgt - ft
f.=f +E(e,—¢) 2-436
The parameters used for both the ascending anem#isg curves are as follow:
5
fIf 4
f,=1+22 - 2-437
1
fIf ff 2
&, =0.003368+0.25 | 2-438
5
E 4
f :1+{pfff€‘] 2439
6 1
. pPiEe ([ fi )2
& =0.002748+0.116 — |7 2-440

Youssefet al (2006) showed good agreement with experimentallteefor rectangular (10 *15

in), square (15*15 in) and circular (16 in) speanmevrapped with FRP. They compared their
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model with other models available in literaturewks observed the good correlation with Lam

and Teng model (2003).

Debaiky, Green and Hope (2007)

Debaikyet al (2007) developed an iterative procedure to prdiueistress strain behavior
of concrete wrapped with steel and FRP simultarigoti$iey divided the cross sectional area
into ; area confined with FRP only (cover coatihg steel) and core area confined with steel and
FRP. The lateral pressure applied on the confined s the summation of FRP and Steel lateral

pressure. The equations used in calculating the d&fRiFsteel pressure are as follow:

f 07
f =f, [1+ 21(f—'j ] 2-441

fooXr
fo=—=— 2-442
r—1+x
& = Ecgc B fc
Iy o 2-443
E. 1
B=1"—17 2-444
fo el
— —th Epé 2-445
If D -
f _ 2'A%Esgl
Is dSS 2'446

It is mentioned thaf.; equation was adopted from Cusson and Paultre }198%ss equation

from Popovics (1973) and the lateral strain equaftom Pantazapoulou and Mills (1992). The
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proposed procedure was correlated to a 305 mmlaircolumn tested by Lee (1998) and also

with corroded columns constructed by the authors.

Teng, Huam, Lam and Ye (2007)

Tenget al (2007) proposed a new analysis based model fordeRREned concrete that
considers the response of concrete core and thej&dREt. The proposed equation that relates
the axial strain to lateral strain for unconfinemhcrete was benchmarked for its usability for

confined concrete as well. The equation is:

Q(;_:j - os{(u 0.75)(;—:Hm - ex;{— 7(_5_8” -

And the proposed equation for the ultimate stremith strain are as follow:

f—"f’ =1+ 3.5f—'.
f f

c c 2-448
S 941750
€0 fe 2449

The iterative procedure utilizes Popovics (1973)atipn and the well know lateral pressure

equation:
Eiti g
f, = 2-450
! D
f xr
fo="——— 2-451
© r-1+x

They showed good corelation between the proposeatthamd Xiao and Wu (2000) and Aee

al (2001).
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Eid and Paultre (2007)

Eid and Paultre proposed analytical quad lineadehbased on the elastoplastic behavior
of confined concrete columns and Druker-Brager the®he model is charactrized by four
phases; elastic phase, elasic behavior of confinmageral and plastic behavior of concrete,
elastic behavior of FRP and plastic behavior ofccete and steel and lastly after FRP ruptures.
Eid and Paultre (2007) showed reasonable compahstmeen their model and experimental

work done by Eidt al (2006) and Demers and Neale (1999)

Jiang and Teng (2007)

Jiang and Teng (2007) compared eight analysisntege models ; Mirmiran and
Shahawy(1997), Spoelstra and Monti (1999), FamRiz#alla (2001), Chun and Park (2002),
Harries and Kharel (2002), Marquez al (2004), Binici (2005), Tengt al (2007). And they
found out that Tenget al (2007) model is the most accurate one to captugestress-strain
response compared to a set of 48 test cases. Tdwypm@posed a refinement equation for the
ultimate strain as follow:

12
fec _q4 17.5{%} 2-452

co C

Eid and Paultre (2008)

Eid and Paultre (2008) pointed out the importanEehaving a stress-strain model
accounts for the action of the transverse steelRRid confinement together, as many structural
codes dictates certain amount of steel used with ééhfinement). The effective lateral pressure

due to steel and FRP action is given by:
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fle = Pseyfsn+ Er&¢ —AP 2-453

Ke’A%hy

Psey = 2-454
sey S ds

wherefs, is the lateral steel pressut€; is the effective confinement coefficient (Sheikida
Uzumeri (1982) Ashy is the total cross section area of the ties inytldrection andl, is lateral
pressure developed due to transverse steel agtienultimate strength and strain are determined

using the following equations:

foo = fo+ 330y, fn + Er6e)> foo 2455

el pseyfyh Ef e | Cte o
-4 =156+1 — + . 2-456
€co fc fc €co

The stress equations were proposed by modifing Oégeron and Paultre (2003) ones as

follow:

fcu =f ccexdkl(gc B ‘C"cc)k2 + Ecu (‘90 o gcc)) €eu 2 Ec > & 2-457
ccs Xdkls ccs kzs) gc > gcu 2-458

In(0.5
k= (05) ke 2-459
(80050 - gcc)

k, =1+ 251 o, ] 2-460

Eos0 _

I 1+ 6OI €50 2-461

8050

Pseyfyn | Ei&;
| g0 = Sefy.y + f.e 2-462

C C
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whereegsg IS the post peak strain corresponding to stresaléq 50% of the unconfined concrete

strength andics, &cs, Ki.sandk; sare valuse for concrete confined with steel only:

f;c.'s =1+ 2.4(| ;)0'7 2-463
8;’5 —1+35, )" 2464
I' _ fle

e = f_ 2-465

The model was well compared with experimental waoke by Eidet al (2006), Xiao and Wu

(2000) and Demers and Neale (1999).

Benzaid, Chikh and Mesbah (2008)

Benzaid et al (2008) tested square (100 * 100 mmd)cylindrical (160 mm)high strength
concrete specimens wrapped with EFRP up to 4 laydmsy reported that all the stress strain
response is bilinear curve with tranzition zones@Athey reported for circular specimens testing
that Samaaset al (1998) and Saabt al (1999) are more accurate than Tengl (2007 ) model

especially for concrete wrapped with 4 layers.

Rocca, Galati and Nanni (2009)

Roccaet al (2008) developed simplified approach for genegaAM interaction diagram
through defining five points; axial compressionuye bending, three points corresponding to
ultimate strain in concrete and zero strain, ym@in and 0.005 strain in tensioned steel. The

ultimate strain in concrete is taken from Lam arehd@ (2003) model according to ACI code
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provisions. The interation diagram was ploted byrsxting the five points by straight lines.

And the compression controlled zone was validatEinst some experimental work.

Tengq, Jiang, Lam, and Luo (2009)

This work aimed to refine the Lam and Teng (2068)del for better formulas for
ultimate strength and strain. They pointed outdifiecency of the former database that used in
developing Lam and Teng Model in 2003 such as tieeainty of the strain gauge location on
the overlapping zone of FRP. Hence, they used iaddittests that were conducted by Lam and
Teng (2004), Lanet al (2006), Tenget al (2007) and Jiang and Teng (2007). Based on that ne

ultimate strength and strain equations were prapasedollow:

08

2E e 145
Eeu _ ft fu
D

£ 2-467
(7o)
€co

Farther, A new adapted model was proposed to atdouroncrete behavior with stress strain

descending branch, Figure (2-27). The axial stresguations are as follow:

2
.=E.&, —%53 0<eg <¢ 2-468

Cc

f
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2F,
f
f.=f. +E,¢, & <6, &y V = 001 2-469
¢ D
c 2Eftf
fo=f ——¢ — (gc —eco) gt' <& S &gy i <001 2-470
Eeu " €0 c D
20|,
f, > 085f'c £ - 2-471
¢ D
gCO
26, |,
f, = 085f'c i B 2-472
¢ D
gCO

This model was well compared to Lam and Teng (2004 et al (2004), Tenget al (2007) and

Jiang and Teng (2007) experimental work.

Axial Stress

EC 00035 &'

Axial Strain

Figure 2-27: Axial Stress-Strain Model proposedriepget al (2009)
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Csuka and Kolla'r (2010)

Csuka and Kollar (2010) built experimental datafasm the work done by Almusallam
(2007) Al-Salloum (2007) Berthett al. (2004) , De Lorenzis and Tepfers (2003), Haraed
Kharel (2002), Jiang and Teng (2007), Lam and T@0§7), Mirmiranet al. (2000), Shahawy
et al (2000), and Toutanji (1999). They reasoned thempature failure of FRP to four
parameters; the vertical cracks developed in coa¢hat cause localized strain peak in FRP, the
resistance decrease in the lateral direction dusgaxial stress on FRP, missalignement of the
fiber and the variation of FRP strain in the inaad outer surface because of the curved surface.
They proposed an analysis oriented model basedh@rdncrete model found by Papaikoloau
and Kappos (2007) with the introduction of the FRifness. They developed an equation for
the stiffness ratio as follow

] ) 2E,t
Stiffnessatio =
DE

C

2-473

They pointed out the advantage of using highemsisis FRP, that cause higher strength, over
using lower stiffness ones. However using overfrefs FRP causes FRP to rupture before

concrete reaches failure state. They defined thi &tiffness between high and low stiffness as

follow:
, . f_.—40 :
Stiffnessatio—limit = 0.0195+ - f. <40MPa 2-474
310c
, . f_—40 :
Stiffnessatio—limit = 0.0195+ —< f. >40MPa 2-475
1200(

The optimal stiffness that separates the over pedfiand adequately confined concrete is

defined by:

113



£\
g J 2-476

02
Stiffnessatio — optimal = -0.1+ ozz(f—'i‘j (2—0

f

c

The Lower approximation for compressive strengtharffined concrete value is give by:

foomin = fia ++y1016f, 2-477

They also determined that the sufficient confinemettio has to be more than 0.083. The

proposed model showed good correlation with databas

Wei and Wu (2011)

Wei and Wu (2011) developed a unified stresssstraiirve, Figure (2-28), for
rectangular, square and circular columns by utigjizivo ratiosh/b and2r/b where r is the corner
radius, and in case of circular shapeepresents the radius. The proposed model wat dyuil
gathering 432 specimens, 100 of which from the @sthvork and the rest are from literature.

The model developed has the following equations:

f =E.¢, +ft_—'fcgtgj 0<eg <se, 2-478
gt
f =f +E,(¢c.—¢) £ <e, <e, 2-479
f+f +Ee )—+(f +f +Ec ) —8fE
gt :( t Ccu CSCU) \/( t cu cgcu) t CSCU 2'480
2E,
fo—f
E, =% 2-481
Eoy — &
072 094 -19
T gy z.z(ﬂj Al (ﬂj 2-482
f b f b
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f 075 f 062 2 h -03
S _ 1754 12(f—') [ f@) ( 036% + 0.64)(Ej
¢ c c 2-483

co

068 -1
f, = fc'+o.4{2—brj (Ej f 2-484

wherefsg is the concrete strength of unconfined gr&8e concrete

Axial Stress

Axial Strain

Figure 2-28: Axial Stress-Strain Model proposedMsgi and Wu (2011)

The model is well compared to the experimental vabrdwn in the authors’ database.

2-2-2 Discussion
Based on the extensive review done in the pasbsesbme points can be concluded:

1- Most of the confinement axial stress-strain modmis generated empirically from

experimental work.
2- The ascending bilinear behavior up to failure oé tboncrete confined with FRP
wrapping is confirmed by many authors such as Namci Bradford (1995), Harmon

(1995), Miyauchi (1997), Samaaat al (1998), Xiao and Wu (2000), Airet al (2001),
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Campione and Miraglia (2003), Harries and Khardd0@, Lam and Teng (2003),
Berthedet al (2004), Li (2006), Youssedt al (2006) Benzaicet al (2008) and Wei and
Wu (2011). In addition Lam and Teng (2003) conctudeat insufficient confinement
ratio yield descending second linear branch. Tres gonfirmed by Li (2006) who stated
that confined concrete with insufficient confinerhéehaves like unconfined one. Also
Youssefet al (2006) reasoned the descending zone to shape ggoanel confinement
ratio. The first linear zone in the axial stressist curve is similar to the unconfined
response as an evidence of inactive behavior of. FRter unconfined strength is
reached and concrete tends to dilate, FRP getgedga confining. Hence the modulus
changes or the second line slope decreases. Téar Iehavior is due to the linear
behavior of FRP up to Failure.

Specimen sizes are good representative of shofinedncolumns and the scale effect is
negligible. This was verified by Roce al (2006), Mathyset al (1999), Shawret al
(2005) and Theriault (2004).

Concrete Wrapped with CFRP are higher in strertgih that wrapped with same ratio of
GFRP, while concrete wrapped with GFRP are mor¢ildutam and Teng (2001), Aire
et al (2001) and Toutanji (1999) showed the advantageFéi®P and GFRP.

Increasing the layer numbers increase the slopdeofsecond linear curve. Aiet al
(2001)

Circular wrapping is more efficient than rectangwaapping. Pessilet al (2001)

The dilation rate decreases after reaching a cestaain value. Mirmiran and Shahawy

(1997), Pessiket al (2001), Harries and Kharel (2002) and others.
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8- The shape factor is introduced in calculating #terkl confining pressure, Pesskial
(2001), Campione and Miraglia (2003),dtial (2002) and Youssef (2006), especially for
non-circular sections.

9- Premature failure of FRP compared to Labs Tendiength tests was confirmed by
Chun (2002), Mathyst al (1999), Pessiket al (2001), Chun and Park (2002), Lam and

Teng (2003) and Csulat al (2011). This is due to some reasons:

The vertical cracks developed in concrete thatedosalized strain peak in FRP and

non uniform stress distribution in cracked concrete

- The curvature effect on FRP tensile strength oratian of FRP strain in the inner
and outer surface because of the curved surface

- The resistance decrease in the lateral directienta biaxial stress on FRP

- missalignement of the fiber and Manufacturing esror

Existence of overlapping zones that cause non umigtrain
10- For columns confined with lateral steel and FR® dhbtion from both was added up to
yield effective lateral pressure, Li et al (200€hun and Park (2002), Debaiky (2002)

and Eid and Paultre (2008)
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2-3 Circular Concrete Filled Steel Tube (CFST) Columns

CFST columns are not relatively new constructioemednts compared to lateral steel
confined columns. The first to use concrete filtades was swelling in 1901 to resist internal
rust of steel. There are some structures that ST columns in the early 1900s such as
Almondsbury Motorway Interchange (England), ChaileRailways (Belgium) (Shams and
Saadeghvaziri (1997)). The concrete was used taligea the column. However extensive
research on CFSTs did not start until the beginoinhP60s. And with the appearance of FRP as
a cheaper and more practical material in the 198Fs5T did not capture much attention
compared to FRP. Hence, CFSTs analysis is considerdeveloping subject. This section
reviews the previous work concerns CFST column®rabipgically. Hence, the review is

classified according to its author/s.

2-3-1 Past Work Review

Furlong (1967)

Furlong (1967) tested 22 round and 17 square Cle&ihms subjected to axial load and
bending moment, and 8 round and 5 square CFST osluarially loaded. He proposed the

following equations:

f f
P=Af +Af |—Y — —2) <100 2-485
o= AL TA °\ 0.001¢E, | 0.0018E,

f

M, =2 (0z-07)
6 2-486
P 2 M 2
(F”j (MJ =t
A 0 2-487
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whereP, andM, are the concentric ultimate load and ultimate pageding,P, andM,
are the ultimate force and moment capacity witkegieccentricity As is the steel ared\ is the
concrete areaks is the steel modulus of elasticity afidis the steel yield strength. Furlong
(1967) concluded that Equation (2-487) is consergdbor most of the data. He also concluded
that concrete should be treated as ordinary raiatbiconcrete section to best predict columns

strength.

Gardner and Jacobson (1967)

Gardner and Jacobson (1967) reported that CFSTsegpo compression can fail under
a combination of three modes; crushing, generaklmg and local buckling. The internal

pressure the steel is exposed to is as follow:
fo="t 2-488
t

wheref is the internal forcd; is the lateral pressure,s the column radius artds the

steel tube thickness. The axial stress is :
f.= fc' + 41, 2-489
And the total axial load will be:

P=Af +4A T AR, 2-490
r

It is noted that eithefi; or fs might reactf, or both reacH,. Gardner and Jacobson (1967)

concluded that strong concrete core should be taspevent local buckling
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Tomii, Yoshimara and Morishita (1977)

Tomii et al (1977) conducted extensive study on 270 CFST cunceally loaded
specimens and concluded that the ultimate straagtffected by the steel tube thickness and the
cross sectional shape. He concluded three pattethe stress-strain behavior; strain hardening,

perfectly plastic and stiffness degradation.

Sakino, Tomii and Watanabe (1985)

Sakinoet al (1985) tested eighteen CFST specimens with diftel@ading conditions.
They concluded that when the steel and concretdoaided together, the steel provides no

confinement till post yielding.

Shams and Saadeghavaziri (1997)

Shams and Saadeghavaziri (1997) presented theimeméal and analytical work of the

state of the art of CFST columns. They concludeddiowing:

The ultimate strength is not predicted well and ¢bafinement effect should be

taken into account, as well as slenderness rasipec ratio, creep and cross

sectional shape.

e The effect of the bond between the steel and therete is not well defined

e The mechanism of local buckling should be studiedavell as the effect of high
strength concrete on ultimate strength and dugtilit

e The importance of finding New design methods andluate the seismic

performance of CFST columns.
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Schneider 1998

Schneider tested fourteen CFST specimens, threghwh were circular specimens of
D/t equal to 47, 21.7, 21 arldD equal 4.3, 4.3 and 4.4. He concluded that alldiheular
specimens had post peak strain hardening and tiwyesl more ductility than the rectangular

specimens. He also showed some local bucklingdruhbes.

Shams and Saadeghvaziri (1999)

Shams and Saadeghvaziri (1999) developed a 3@ #tetment model for CFST columns
simulations. This model was verified against 6 expental cases by Tomet al (1977). The
steel model was the Von Mises elastic-plastic medti kinematic hardening and the concrete
model was Pramano-Willimas model (fracture energyeld model). Then the 3D model was
used in parametric study to evaluate the effedhefaspect ratio, length-width ratio, ultimate
strength and concrete uniaxial compressive strei@tams and Saadeghvaziri (1999) proposed

the following stress-strain equations:

A

D/ 2-491
w7

1+

—e 14—

351
" D/ 2-492
1+ A
60
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fo
355

A= 1.831e_[

2-493
B=-32517+ 20
fe 2-494
¢ _ ¢ [00181+4.69430- 5.531x* + 4.63689%K° —1.54584x" + 0.16773°
¢l 144212912+ 5.0808%” + 5.08680x* —1.86773* + 0.20046¢° 5.495

The steel tube maximum compressive stress is fagridllow:

038
V 2 2-496
1+ /D
[2219}

Wheref is the ultimate compressive strength, is the strain af..,« is equal to 1x =

f,,= (1.08— 0.045In(%j 059+

&d &o andL/D is length to width ratioShams and SaadeghvaZitP99)concluded that

e Concrete maximum compressive strength depends emnatiio of D/t, f'c and

cross sectional shapes

e The amount of the ratio of confinement is higher doncrete with lower

unconfined compressive strength.

e Local buckling occurs at peak load for CFST that[Dé more than 95.

e The steel compressive strength dependd/bandL/D
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O’shea and Bridge (2000)

O’shea and Bridge (2000) tested CFST specimensigdength to diameter ratio 3.5,
diameter to thickness ratio ranged from 60 to A2y loaded the specimens with with different
loading conditions; axial loading of steel only,i@xloaded of concrete only and axial and
eccentric loading of both the steel and concrefteyTadapted Mander equation for the ultimate

confined strength for 50-MPa concrete as follow:

f_ = fc'[—l.228+ 21721+ 7'4f§f' —2” 2-497

whereas they used Attard and Setunge (1996) fosiala80-100 MPa concrete. O’shea

and Bridge (2000) concluded that the highest onfer level is provided when the concrete
only is loaded, Eurocode is the best in estimatimgcrete strength in CFST and local buckling

can’t occur if there is concrete steel bonding

Shanmugam and Lakshmi (2001)

Shanmugam and Lakshmi (2001) conducted an extemewew of the analytical and

experimental work that was done.

Abdel-Salam, Abdel-Ghaffar and Zaki (2001)

Abdel-Salanet al (2001) proposed an analytical model based on Visesryield criteria
and plastic flow rule for steel. They derived equmafor calculating the first yield axial load and
the ultimate axial load and well compared theseaggns to experimental work done by Furlong

(1967) and Sakino and Hayashi (1995).
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Elchalakani, Zhao and Grzebieta (2001)

Elchalakaniet al (2006) conducted experimental investigation on Thkfder pure
bending loading for D/t ranging from 12 to 110. yhwovided simplified formula to determine

the CFEST ultimate flexural capacity

Johansson and Akesson (2002)

Johansson and Akesson (2002) developed elastieptasdel based on Drucker-Prager
yield criteria. They introduced both the strengtid ahe plastic modulus as dependence of

confinement sensitivity. They developed FE proglased on their model to analyze CFST.

Huang, Yeh, Liu, Hu, Tsai, Weng, Wang and Wu (2002)

Huanget al (2002) reported that the CFST is influenced bytlwitb thickness ratio,
height to width ratio, the cross sectional shape the strength ratio of concrete to steel. Huang
et al (2002) showed two different axial stress-straihdweor of CFST; the first is similar to
elastic perfectly plastic for colummd{t = 40 andf,/f'c = 9.79) and the second behavior showed
strain softening after reaching the peak for twhuems O/t = 70, 150 andy/f'c = 8.75, 12.5
respectively). They also concluded that the CFSAsabe better than square ones in terms of

strength, stiffness and ductility.

Johansson and Gylitoft (2002)

Johansson and Gylltoft (2002) tested 13 CFST spmwmwvith three different concentric

loading conditions. They developed a 3D FE progtamerify the experimental results. They
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concluded that the columns capacities was detedniesteel yield and the bond between

concrete and steel has no effect when the steat@mttete are loaded simultaneously.

Elremaily, Azizinamini (2002)

Elremaily, Azizinamini (2002) conducted experiméntavestigation of six CFST
subjected to axial load and cyclic lateral loadeyltoncluded that CFSTs have high levels of
energy dissipation and ductility, AISC_LRFD are yweonservative in CFST calculations and

CFSTs can experience axial shortening at high lefvdisplacements that can lead to failure.

Lakshmi and Shanmugam (2002)

Lakshmi and Shanmugam (2002) developed a finitecag to predict the moment-
curvature-thrust relationship for CFST having datuor rectangular shapes. They limit the
concrete ultimate strain to 0.003 and divided thes€ section into finite elements. This
procedure was generalized to cover the whole coltoraccount for slenderness. Lakshmi and

Shanmugam (2002) showed the accuracy of their wonkpared to experimental work.

Hu, Huang, Wu and Wu (2002, 2003)

Hu et al (2002, 2003) proposed material constitutive motl<CFST columns.The steel
model was Von Mises elastic-plastic model and tiecrete one was modeld by elastic-plastic
theory with isotropic hardening rule and based ach&t (1928) ultimate strength equations.
The model was incorporated in ABAQUS and verifieghiast experimental work done by
Schneider (1998) and Huamg al (2002). Hu et al. concluded that good confinenwart be

provided especially with D/t < 40 and local buchliis not likely to occur.
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Fam, Qir and Rizkalla (2004)

Famet al (2004) conducted experimental work on 10 circ@&STs specimens. Five of
which were loaded axially and the rest were loadeidlly and laterally in cycles. The main
objective was to evaluate the strength and ductilithey developed an analytical model to
evaluate the Force-Moment diagram using the folhgwequations (these equations are valid for

axial load less or equal B85f:A):

M, =K(M_+M,) 2-498
K =113 B <01

foA

2

P P
K=113+2354—"-01 n>01 2-499

foA fA
M, = f,Z, 2-500

3 N3
Z, = (b:-07) 2-501
6

M. =Ce 2-502

C C

whereM, is the flexural strengtiVl. andMs are the flexural strength for the concrete and
steel K is strength enhancement factdg,is the area of the entire cross sectigyis the plastic
section modulus of the tube. For loads more tQ&%f. Ac linear interpolation is conducted
beween the point 00.85f; A. force and the pure axial compression force. Fednal (2004)
showed the good correlation between this modelthadexperimental points. In addition they
plotted the exact Force-Moment diagram using streampatability, Mander Model and

elastoplastic steel model with and without straémdening that were conservative and accurate
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without showing analysis steps. They concluded ¢baimns subjected to axial and lateral load
failed with steel fracture in the areas that halduckling, whereas bonded columns subjected
to axial load only failed by diagonal cracking ambounded columns failed with combination
of diagonal and vertical cracking. They also showedductility improvement of CFST columns
and showed that design codes are very consenatigeinderestimating the columns capacity.
Finally they reported that the axial strength c#yaof CFST short columns at axial strain

ranging from 0.009-0.012.

Inai, Mukai, Kai, Tokinoya, Fukomoto and Mori (200

Inai et al (2004) tested 33 CFST specimens with circular squhre cross sections. The
main variables studied were the concrete and stesigth and diameter to thickness ratio. The
load pattern was axial loading and lateral cyatiad. Inaiet al (2004) developed analytical
model to express the hysteresis behavior basedkindet al (1997) and Nakahaet al (1998)
work. They concluded ductility increasing with dtetrength increase and decreasing with
concrete strength increase and to utilize highngtre concrete, high strength steel should be

used and there is moment enhancement for circlH&TCQolumns due to steel confinement.

Giakoumelis and Lam (2004)

Giakoumelis and Lam (2004) tested fifteen circ@&ST short columns. They concluded
that the shrinkage and bond effects are criticahfgh strength concrete and they found that the
Euro code 4 give the best predicition of CFST camgdo Australian Standardsand American

Codes
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Fujimoto, Mukai and Sakino. (2004)

Fujimoto et al (2004) studied the effect of higher strength om flexural behavior and

tested. They tested thirty three CFSTs specimeadeld eccentrically. They proposed a stress-

strain curve based on the fiber analysis methddlbmsv:

_ 2
_ X+ (W-1)x 2 2503
1+ (V-2)X +WX
X =fe 2-504
i
Y=—t 2-505
V= Ef—g 2-506
W=15-171f *10° + 239/ f 2-507
fo= 4l f, 2-508
23
£ =1+ 47(K 1) K<15 2-509
£, = 335+ 20(K —15) K>15 2-510
2-511

f_=f +41f,

K is undefined parameter.
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Figure 2-29: Axial stress-strain model Proposedrbjymoto et al (2004)
Fujimoto et al (2004) concluded that high strength concrete cdusglity reduction but
this can be improved by using high strength steed emall diameter to thickness ratio. They

also verified the two different stress-strain patsefound by Huangt al (2002).

Jarquio 2004

Jarquio 2004 showed analytical equation for catowgaCFST’s concrete force and
moment. The formulas were developed for unconficatrete by limiting the ultimate strain to

0.003.

Ellobody, Young and Lam (2005)

Ellobodyet al (2005) conducted a study of CFST columns with petecstrength ranging
from 30-110 MPa and D/t ratios from 15-80. Theyealeped a 3D finite element model analysis.
This model was verified against fourty specimenftetfAthat a parametric study was conducted

to yield the conservative approach for the desaeso
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Yu, Ding and Cai (2006)

Yu et al (2006) tested seventeen CFST specimens to inaéstihe different testing
loading and parameters on the ultimate capacitthefcolumns. The test was conducted using
self compacting concrete and normal concrete. Thoemd out that increasing the concrete
strength for either kind increases the load capaaitl there was a significant confinement effect

appeared after reaching certain percentage ofltineate axial load.

Baig, Jiansheng and jianguo (2006)

Baig et al (2006) tested 16 CFST specimens andll@Mhsteel sections having different
cross section shapes. The length to diameter ratiged from 4 to 9. They concluded that there
was increase in strength for circular sectionsaipG% for some cases and all the tested cases

behaved in ductile manner.

Goode (2008)

Goode (2008) showed that Eurocode 4 can be useftleotally in CFST design by
testing 1819 CFST specimens with circular and regtkar cross sections, and comparing the

results with that code.

Yu, Tao and Wu (2008)

Yu et al (2008) tested 28 high strength self-cbdating concrete filled in thin steel
tubes. The slenderness ratio ranged from 12 to IRty reported the failure model is local
outward folding for square cross section, shedurifor circular sections and overall bucking

for beam-columns. They concluded that the self-claiating concrete is less ductile than the
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normal one. They also compared the results withAlls€, Euro code 4 DBJ13-51-2003 (China)

and concluded that these codes give reasonablgltsesu

Liang and Fragomeni (2010)

Liang and Fragomeni (2010) proposed a nonlineasrétieal model for the behavior of

CFST stub columns under eccentric loading. Theyptadamander model in the following

equations:
f..=y.f. +41f 2-512
Eoe =& 1+205——
vefe
2-513y, = 185d_*** 085<y, <10 2-514

Wherey, is a reduction factor that account for column size

A
fee

ﬂ Cfec

Axial Stress

Etu 0 Ecc . . Ecu
Axial Strain

fot

Figure 2-30: stress_strain curve for confined cetecm circular CFST columns, Liang and

Fragomeni (2010)
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f,=07(v,-v,) 2 f, Poa 2-515
D-2t t
P D
f, = 0.7] 0.006241- 0.000035 : f, 47< =< 150 2-516
. f. { f. .
v, =0.2312+ 03582/, — 0.1524 < |+ 4843/ | —° |- 9.169 —* 2-517
fy fy fy
. (DY (DY (D
v'e =0.881¥10 ~| - 258+ 10 i 1.953*10 ~ 0.4011 2-518

For the stress-strain curve shown in figure (2-p@)t OA is expressed by Mander stress

equation. Whereas part AB and BC are expressed by:

fc = ﬂc fcc + ( Fou ~ Fe j( 1:cc - ﬂc fcc) Ec <E&¢ < Eey 2-519
&

cu gcc
f.=p.1. £y <&, 2-520
Liang and Fragomeni (2010) reported that hoopsidangduces the longitudinal yield
strength due to the confinement effect as foundNiepgi et al. (1969). The fiber element
formulation was used in calculating the force andnmant in the cross section. Liang and

Fragomeni (2010) proposed also a formula for ulten@ure bending strength for CFST circular

columns as follow:

Mo :ﬂ“macasfy 2355

t t)* D
I =00087+123 —|-36 10<--<120 2-522
o, =07741, )" 30< f, <12QMPa 2-523
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2
y fy

o, = 0383+ [21147] . [420

2} 250< f, <690VPa 2-524

Lee, Uy, Kim, Choi and Choi (2011)

Lee et al (2011) conducted experimental worke&i L1 high strength concrete circular
stub CFST specimens. They utilized the concretssistrain model found by Hu et al (2003).
They concluded that AISC and Korean building camtestructures, KBCS, give good agreement

with the experimental results. Whereas Eurocodeefastimates the eccentric testing results.

Liu, Tu and Ye (2011)

Liu et al. (2011) developed a volume-based methmd calculating the value of
effectively confined coefficient. They utilized Mae&r model for determining the lateral pressure
and in stress-strain ascending relation, whereag tised Schneider (1998) formulas for the
softening branch. They simulated numerical analysis number of CFST columns using

ABAQUS

Yang, Han (2011)

Yang and Han (2011) tested 28 stub CFST specimariadhdifferent cross sections. 16
specimens were subjected to partial eccentric tgpdind the rest were under full eccentric
loading. Shape of the loading bearing plate wasafrike tests variables. They showed that the
partially loaded specimens have bearing capacitly darctility comparable to the fully loaded.
Yang and Han (2011) constructed finite element rhmtethe behaviour of CFST stub column

under eccentric partial compression
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2-2-2 Discussion
According to the literature review, there are saugaclusions that can be drawn as
follow:
Mander Model is adopted by some researchers fofTGifalysis such as Liu et al.
(2011) Liang and Fragomeni (2010), O'shea and B¥if@00 and Fam et al (2004).
Hence it can be considered as a representativel fuodeFST.
Failure models for CFST columns can be classifeedrushing, local buckling and
general buckling.
The CFST analysis affecting parameters are widtihittkness ratio, height to width
ratio, the cross sectional shape and the streagithaf concrete to steel
Most of the research contributions are experimentak and implementation of 3D
finite element models, then comparing it to theezkpental outcomes.
Bond effect and loading type affect significanthg tresults
Eurocode best predicts the CFST capacity as shgtégiakoumelis and Lam (2004)

Yu, et al (2008) and Goode (2008).
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2-4 Rectangular Columns subjected to biaxial bending and Axial Compression

Rectangular reinforced concrete columns can beestdy to biaxial bending moments
plus axial force. When the load acts on one of dtess section bending axes the problem
becomes uniaxial bending. However when the loapied eccentrically on a point that is not
along any of the bending axes the case becomesbinding. The biaxial bending case can be
found in many structures nowadays. This case iediextensively in the literature disregarding
the confinement effect. The failure surface of aagular columns is 3D surface consisted of
many 2D interaction diagrams. Each of the 2D imtitoa diagrams represents one angle
between the bending moment about x-axis and thdtaes moment. Many simplifications are
introduced to justify the compressive trapezoidpe of concrete, due to the two bending axes
existence. This section reviews the previous wavkcerns CFST columns chronologically.

Hence, the review is classified according to ithaus.

2-4-1 Past Work Review

A study of combined bending and axial load in f@iced concrete members (Hogenstad

1930)

Hogenstad classified concrete failure subjectetlebaure with or without axial load to

five modes
1- Failure by excessive compressive strain in the acwith no yield in tensioned
steel (compression failure)
2- Tension failure where the tensioned steel yieldseaxcessive strain in the concrete
3- Balanced failure where tensioned steel yield atsémme time compressive concrete

fail
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4- Compression failure where the tensioned steel thasgield stress

5- Brittle failure caused by tensioned steel ruptuiterathe cracks developed in the
compressive concrete.
Hogenstad (1930) suggested designing by the ukirfzalure theory in his report as
opposed to the linear elastic theory (standardrihebat was widely applicable up to
nearly fifty years. He discussed some of the albalanelastic theories that were
limited to uniaxial stress according to him. Thedhes discussed were E. Suenson
(1912), L. Mensch (1914), H. Dyson (1922), F. St({%832). C. Schreyer (1933). S.
Steuermann (1933). G. Kazinczy (1933). F. Gebal@34) O. Baunmann (1934). E.
Bittner (1935). A. Brandtzxg (1935). F. EmpergeB3@). R. Saliger (1936). C.
Witney (1937), USSR specifications OST 90003, (3938. Jensenl943. R.
Chambaud (1949). Also Hognestad (1930) introdudsdnkew theory of inelastic
flexural failure. He sat equations for tensionuesl and compression one.

A simple analysis for eccentrically loaded conersgtctions (Parker and Scanlon 1940)

Parker and Scanlon (1940) used elastic theory

P M, Mgc
o=—= +
ALl 2-525

They developed a procedure by first calculatingssies at the four corners, then checking if all
stresses are positive, no further steps are needleelwise, calculating center of gravity and
recalculating moment of inertia then recalculattigss and determining the new position of the

neutral axis. These steps are repeated till tenat forces converge with the applied one.
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Reinforced concrete columns subjected to bendbmutaboth principal axes (Troxell

1941)

Troxell (1941) Suggested that portion of the agaplaxial load can be used with the
bending moment about one axis to find the maximampressive and tensile strength in the
cross section. Then the remaining load along wiéhdther bending moment about the other axis
can be used the same way, using the method of mageon. The summation stresses are the
stresses generated from the section. He also degge&ing equivalent steel area in each side to
facilitate the calculation procedure.

Design diagram for sguare concrete columns edcalr loaded in two directions

(Anderesen 1941)

Andersen (1941) implemented a new procedure fteraening maximum compressive
and tensile stresses on cross sections withoutndigieg the location of the neutral axis. The
limitation of this procedure that it is just applien square cross sections and the steel has to be
symmetric. Based on the linear elastic theory d&dperpendicularity of the neutral axis to the
plane of bending which was proven in a previoushsténdersen derived stresses coefficients
equations basically for cross sections reinforceth iour bars, and then represented them
graphically. This derivation was set after clagadythe problem into three different cases based
on the neutral axis location

_ ¢, +3np(2k — cos#)cos20
6k cos 20

T :Ll_ﬂjﬁ_l o7
D) k

C 2-526

c1 = is a coefficient that is fully determined in lpigper for each case of the three cases
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n = modular ratio

P = steel ratio

k = distance from apex of compression area to neaxia divided by diagonal length

D= diagonal length

d = distance from corner to reinforcing bar

These two values can be substituted in the follgwéguations to determine the maximum

compressive strength and tensile strength resgdygtiv

P
f.=—
Ca 2-528
fo=nTL

2-529

wherea is the side length of cross section &id force magnitude.
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Figure 2-31: relation between T and C by Anderdé&4 1)
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Anderesen (1941) plotted graphs relating T and iGure (2-31). It should be noted that the
graphs differ with angl& and the ratia/D variations. Andersen adapted his procedure tibdit
8 bar reinforcement, as well as 16 bar one. That dene by finding the location of the

equivalent four bars in the same cross sectionyileéts the same internal moment and moment

of inertia.

Reinforced concrete columns under combined comnesnd bending (Wessman 1946)

Wessman (1946) introduced algebraic method undeoralition of the plane of the
bending coincides with the axis of symmetry. Basedthe elastic theory, Wessman (1946)

found that the distance between the applied loddfz neutral axis a:

a=—" 2-530

I, = moment of inertia of the effective area withpest to the load axis

Q= the first moment of the effective area.
The procedure proposed has very limited applidgisince it required the applied load lies on
the axis of symmetry, which consider a very specade. In addition it relies on the elastic

theory.

Analysis of normal stresses in reinforced concesetion under symmetrical bending

(Bakhoum 1948)

Using the elastic theory and equating the intefoi@les and moments to the applied one,
Bakhoum (1948) developed procedure in locatingrtletral axis. This procedure was set for
uniaxial bending. He also intensified the imporaraf taking the tensioned concrete into

account while analyzing.
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Lty

H
s+ 4 2531
H-H
t 2-532
~nl bs
| =
bt 2533
n
S= —SZS
bt 2-534

H = distance between the load and the neutral axis

N= modular ratio

b= section width

t = section height

lps = Moment of inertia of the total reinforcement $taleout the line parallel to the neutral axis
through the point of application of the externata

Ss = Statical moment of the total reinforcement sambut the line parallel to the neutral axis
through the point of application of the externata

The relation betweea and/ is plotted graphically; Figure (2-32).
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Figure 2-32: relation between c amdy Bakhoum (1948)

For the case of unsymmetrical bending, Bakhoum &§18dggested three solutions; methods of
center of action of steel and concrete, produdneftia method and method of mathematical
successful trial. It is noted that the first twothwels are trial and error methods, and all theethre
methods were built on the elastic linear theory.

Design of rectanqular tied columns subjected todbey with steel in all faces (Cervin

1948

The Portland cement association published “coittina concrete frames” (third edition)
that has an equation that relates the maximumtlm#uke actual applied load and moment. It can

be applied on a cross section:
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M

P=N+CD—
t 2-535

P = total allowable axial load on column section
N= actual axial load on column section
M = moment
T = section height

— fa

~ 045f, 2-536
fa = the average allowable stress on axially loa@éatfarced concrete column

t2
T 2R? 2-537

R = radius of gyration

This equation is limited to reinforcement on thel éaces. Crevin (1948) redefined the tddnn

the equation to fit reinforcement in the four faessollow

1+(n-1)p
D = 2
0.167+(x+ yZ Jn-1)pg 2-538
ES
n=—
E. 2-539

p = reinforcement ratio

g = ratio between extremities of column steel andal/eolumn depth
x = ratio of total column steel at one end

y = ratio of total column steel between centroid and end

z = arm from cetroid of steel ratio y to centroidcolumn
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CENTROID OF COLUMN

Figure 2-33: geometric dimensions in Crevin analy$b48)
He showed that+yZ vary from 0.25 to 0.5. The limitation of this edjeat applicability is that
the ratioe/t has to be less than one.

The strength of reinforced concrete members stdalecto compression and

unsymmetrical bending (Mikhalkin 1952)

Mikhalkin (1952) performed studies on determinataf the allowable load and ultimate
load of biaxially loaded rectangular members. Heettiped design and analysis procedure for
tension and compression failure according to ultartaeory, as he generated charts for design
simplification based on the elastic theory usinge compatibility equations; Figure (2-34) and
(2-35). These charts locate the concrete and stzrérs of pressure with respect to the neutral

axis.

143



(&

09 9 90 9o B B P E B NNNNDND®® W
S Fe)

] 0.1 0.2 0.3 0.4 0.5

Xc/b or Yc/h

Figure 2-34: Concrete center of pressure Vs neaxiallocation ,Mikhalkin 1952
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Figure 2-35: Steel center of pressure Vs neutral lagation, Mikhalkin 1952

Eccentric bending in two directions of rectangwancrete columns (Hu 1955)

Hu (1955) followed the elastic assumption in bnigd his analysis. He showed
numerically that the slope of the neutral axisrion homogeneous section can be replaced by
that of homogeneous one with small error percentbigefound algebraically the equilibrium

equations
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N  chk 1 1
SLAE LAY i |
bdf, 6 2h 2k

c

2-540

- 1-a
f, = nfc[l—l % yj
K

2-541

iey(l_i_ mz):C_hk|:n-(1_ij+(l_Cdj:|+Q_np
bdf, 6| |2 2 12 0547

Q=(m?ng, +nq, )/(np) 2-543

N = the normal compressive force

b = section width

d = section height

fc = maximum concrete strength

h andk define the position of the neutral axis

C, Cp, Cq coefficients (functions of h)

Ay = cover in x direction coefficient

A, = cover in y direction coefficient

e = load eccentricity from the geometric centrom Xidirection)

e~ load eccentricity from the geometric centroidydirection)
c 2-544
2-545

cX I cy 2'546

145



& 2-547

The previous equations are plotted graphicallylitaion the unkown valuds n/bdf; Figure (2-
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Figure 2-36: bending with normal compressive farieartnp = 0.03, Hu (1955)

In his paper the graphs were plotted with differadties oinp 0.03,0.1,0.3.

The first obvious interest in the ultimate stréngf the structural members appeared in
the first half of the past century. Prior to ththgre were some designations to the importance of
designing with ultimate strength. While Thullies®exural theory (1897) and Ritter’s
introduction of the parabolic distribution of coata stresses (1899) were introduced prior to the
straight line theory of Coignet and Tedesco (19T0g straight line theory became accepted due
to its simplicity and the agreement with the testgjuirements that time. Coignet’s theory grew
widely till it was contradicted by some experimémt@ark done on beams by Lyse, Slatter and

Zipprodt in 1920’s, and on columns by McMillan (192 as the concrete’s construction
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applicability was spreading out (ACI-ASCE commit&2/7(1956)).. After 1950 there was a call
to start working with the ultimate strength desagnit was adopted in several countries in Europe
and others, as the reinforced concrete design dhzaneed. This led the ACI-ASCE committee
327 to propose the first report on ultimate strendesign in 1956 (ACI-ASCE committee
327(1956)). The committee members showed in thattiss that the ultimate strength design
load can be found accurately.

They defined the maximum load capacity for concemdad
I:>o = 0'85fc (Ag - A%t) + A%t fy 2-548
A, = the gross area of the section.

A, = steel bars area

The committee considered minimum eccentricity vaoiedesign with. For tied columns the
value was 0.1 times the section’s depth.

For combined axial load and bending moment
P, = 085f.bdk k, + A f, — A f, 2-549

. k . d
Pe= 085fcbd2kuk1(1—k—2kuli + A fyd£1—EJ

1

2-550
P, = axial load on the section

€= eccentricity of the axial load measured fromcahatroid of tensile reinforcement.

f,= stress in the tensile reinforcement.

dk, = distance from extreme fiber to neutral axis, wehgjis less than one

k, = ratio of the average compressive stress to f).8@herek, is not greater than 0.85 and is

to be reduced at the rate of 0.5 per 1000 psidackete strength over 5000 psi.
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k, = ratio of distance between extreme fiber and tastilof compressive stresses to distance

between extreme fiber and the neutral axis.

ﬁ should not be taken less than 0.5.

After ultimate strength design was released, tiid éommittee 318 in their “Building
code requirements for reinforced concrete (ACI S68- approved the usage of the ultimate
strength method for designing reinforced concregenlvers along with the standard method in

1956. They conditioned that:

f
Ta T Ty g 2-551
R R

a
Given that the ratie/t does not exceed 2/3 where

f,,= the bending moment about y-axis divided by sectiwdulus of the transformed section
relative to y-axis.

f,,= the bending moment about y-axis divided by sectimdulus of the transformed section
relative to y-axis.

e = eccentricity of the load measured from the getimcentrod

t = overall depth of the column

f,= nominal axial unit stress.
f, = allowable bending unit stressG8* (0.225fc' + fspg)
p, = steel ratio to the gross area.

f,= nominal allowable stress in reinforcement.

Guide for ultimate strength design of reinforcedarete (Whitney and Cohen 1957)

148



Following this massive change in paradigm, Chandstney and edward cohen released
their paper “ guide for ultimate strength designreinforced concrete” which served as a
supplement to the ACI building code (318-56). Thaggested a linear relationship between the

case of the pure bending and that of concentrit iodhe following equation

M, P —P,

- 2-552
M P,

0
M, = total moment of the plastic centroid of the gBtt

P, = ultimate direct load capacity for a concentticdaded short column.

P, = ultimate direct load capacity for an eccenthyciwaded short column.

M, = the moment capacity without thrust as controldgdcompressin assuming enough tensile

steel to develop it in full and it is equal to
M, = 0.33%d?f, + A f (d—-d) 2-553

They limited the maximum moment allowed for dedigivl, using the following equation

M, c e d

| = 03061, + pfy£1—7;j 2-554
f, = f, — 085f, 2-555
p =A/bd 2-556

As = compressive steel area.

d = distance from extreme compressive fiber to oatrof tension force in tensile
reinforcement.

d’ = distance from extreme compressive fiber to cattiof tension force in compressive
reinforcement.

b = column width.
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Figure 2-37: Linear relationship between axial load and momentbmpression failure

Whitney and Cohen 1957

Ultimate strength design of rectanqular concretmimers subjected to unsymmetrical

bending (Au 1958)

Au (1958) generated Charts to calculate the etpvaompressive depth of the stress
block based on assumed values of section’s dimessamd bars arrangements. The design
equations were created complying with the ACI-AS3Bumptions.

He showed that when a member is subjected to casipeeforce as well as bending, the section
can be controlled either by tension or compresdalure depending on the magnitude of
eccentricities.

His procedure is to first approximate the locatminthe neutral axis that can be made by

observing that the applied load, the resultanteftensile force in steel and the resultant of the
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compressive forces in compressive steel and caneretst all lie in the same plane. This

classifies the problem as one of the three cases:

1-

2-

Neutral axis intersects with two opposite sides

Neutral axis intersects with two adjacent sidesnfag a compression zone bigger than
half of the cross sectional area

Neutral axis intersects with two adjacent sidesnfog a compression zone smaller than

half of the cross sectional area

Equilibrium equations plus compatibility equatioase needed when the section is
controlled by compression (concrete crush). Whereaguilibrium equations are

sufficient in tension controlled cases. Tung spedifwo conditions based on ACI-ASCE
report, that are the average stregs is assigned to each tensioned bar and the aesult

tensile force is considered the tensile bar grarmiroid. Based on that, the bars close to
the neutral axis are ignored in computations. Haveguilibrium equations, Tung
denoted six dimensionless variables, two for eamée cof the three cases mentioned
above and plotted charts relating each two assatidriables Figures (2-38, 2-39 & 2-
40). The charts generated have an output of datergithe neutral axis position. The

dimensionless variables utilized are:
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t = total depth of rectangular section

dy = distance from extreme compressive corner to oghtf tensile reinforcement measured in
the direction of y-axis

p'=A'Jbt

b = width of rectangular section

m' =m-1 , m =§/0.85f

d’y = distance from extreme compressive corner to chtof compressive reinforcement
measured in the direction of y-axis.

P, = ultimate direct load capacity for the member sabjo bending in two directions

ry = distance from centroid of tensile reinforcem@nx’-axis.

r« = distance from centroid of tensile reinforcemieny’-axis.

e’y = eccentricity of ultimate direct load measuredrfreentroid of rectangular section in the
direction of y-axis

d’x = distance from extreme compressive corner to oghtof compressive reinforcement
measured in the direction of x-axis

dy = distance from extreme compressive corner to oghtf tensile reinforcement measured in
the direction of x-axis

e’y = eccentricity of ultimate direct load measurednfreentroid of rectangular section in the
direction of x-axis.

Design of symmetrical columns with small ecceitige in one or two directions

(Wiesinger 1958)

Using the section moment of inertia and the sactinodulus, Wiesinger (1957)

introduced a new designing equation for the grestianal area required by design for columns
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subjected to small eccentricities in one directantwo. Wiesinger (1957) proposed gross

section equation:

A - N .\ Ne /t
Qo225f, + f,p, ] Rla, +a,(n-1g7p, ] 2.563
and the capacity of a given column is calculatadguthe following equation
1
N . 2-564
_ e e/t )
Qlo22st, + .p,] Fula, +a.(n-1a%p,]
2l
%= A
g 2-565
0 = 2l
G 2:566

Ag = gross area

A Steel area

t = column length in the direction of bending

lg= gross moment of inertia in the bending direction

|= moment of inertia of steel in the bending direwti

e’ = eccentricity of the resultant load measured taereof gravity
N= applied axial load

Q= reduction factor = 0.8 for short tied column

Pg = AdAq

Fp= allowable bending unit stress that is permitfdzending stress existed = 0.85
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G = center to center steel in the direction of begdlivided by column length in the direction of
bending

Biaxially loaded reinforced concrete columns (Gima Pabarcius 1958)

In 1958 Chu and Pabarcuis introduced a new nuaigtocedure to determine the actual
stresses for a give section. Their procedure waedan the inelastic theory showed earlier by
Hogenstad. Initially, they assumed the cross sedsoin the elastic range, and assumed a
location for the neutral axis. Then used the follvformula that was found by Hardy Cross

(1930), to solve for stresses

p" oy ~ "Vlox ony M ;x -M ;y ony
f=E+ iz X + iz = 2-567
I oy % I ox %
) oy
f = stress

Ac = Area of the elastic portion.

lox = moment of inertia about x-axis

loy = moment of inertia about y axis

loxy = product of inertia

M” oy =moment of the elastic portion about the y axis

M” ox =moment of the elastic portion about the x axis

P” = axial force taken by the elastic portion.

If the concrete and steel stresses lie in theielesmtge, the above equation was used to locate a
new position for the neutral axis, and comparingith the assumed one. The whole process is
repeated till the position of the calculated ndutras coincides with the assumed one. On the

other hand if any of the concrete or steel are beyhe elastic range, the plastic load and
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moments are calculating, then deducted from tha toad and moments. The reminder is used,
as the elastic portion of the load, to locate thetral axis.

Design criteria for reinforced columns under axmdd and biaxial bending (Bresler

1960)

Bresler (1960) proposed a new approach of appratms of the failure surface in two
different forms. He showed the magnitude of théufaiload is a function of primary factors;
column dimensions, steel reinforcement, stressastarves and secondary factors; concrete
cover, lateral ties arrangement. He introduced different methods. The first method named

reciprocal load method

t 1,11 2-568
P PP P

P; =approximation oP,

Px = load carrying capacity in compression with urgdueiccentricity x.
Py = load carrying capacity in compression with ungveiccentricity y.
P, = load carrying capacity under pure axial compogss

The second method is the load contour

a B
M
o vo 2-569

and this can be simplified to

{L] {_J .
Yo X 2-570

By equatinga and g for more simplification the interaction diagrarmdae plotted as shown in

Figure (2-43)
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Bresler (1960) well correlated equation (2-570)etgerimental studies formed from eight

columns, and analytically showed the strength maitean be approximated by
[LJ {lj .
X
Yo 0 2-571

Ip

P M INTERACTION CURVES

FAILURE SURFACE S3

PLANE P
A CONSTANT

Pu

Figure 2-42: Graphical representation of Method bydresler (1960)
158



Y/IYC

1.0

08 Q
@ @
NN \
0.6 s
Q’\\
7
04 \\
02

0 X/Xo
.0

Figure 2-43: Interaction curves generated from g#agar and by Bresler(7960)
Rectanqular concrete stress distribution in ultéstrength design (Mattock and Kritz

1961)

Mattock and Kritz (1961) determined five casestfa position of the neutral axis with

respect to the rectangular cross section; whenghé&ral axis cut through two adjacent sides with
small and big compression zone, the neutral axeysact with the section length or width and
when it lies outside the cross section.

They implemented formulas for calculating the posibf the neutral axis based on the load and

moment equilibrium and the geometry of the compoessone.

Square columns with double eccentricities solvwedummerical methods (Ang 1961)

Ang (1961) introduced a numerical method to sohesproblem. He proposed iterative
process to find equilibrium between internal foraesl applied ones, by assuming a position for

the neutral axis. The location of the neutral &ept changing till equilibrium. However, he
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calculated stresses based on Bernoulli's planer¢heevhich was built upon straight line theory
(elastic theory). The stress of the extreme conspyasfiber was approximately calculated

according to the specification of AASHTO 1957 “Stard specifications for highway bridges”.

Ultimate strength of square columns under biaxiadicentric load (Furlong 1961)

Furlong (1961) analyzed square columns that hgualeeinforcement in the four sides
and reinforcement in two sides only, to visualire behavior of rectangular columns that has
unsymmetrical bending axis. He used a series d@ilpaneutral axis with the crushing ultimate
strain of 0.003 at one of the section corners twelb@ a full interaction diagram at one angle.
And by using different angles and locations of tiesitral axis a full 3D interaction surface can
be developed. He was the first to introduce thasedure.

Furlong (1961) concluded that the minimum capaefta square column, having equal amount
of steel in all sides, exists when the load cabsesling about an axis of 45 degree from a major

axis. He also concluded that

2 m 2
( 3* J + (M—yJ <1
X y 2-572

My = moment component in direction of major axis.

My = moment component in direction of minor axis.
My = moment capacity when the load acts along themajis.

M,= moment capacity when the load acts along the ngiris.
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Tie requirements for reinforced concrete columBsesler and Gilbert 1961)

Bresler (1961) introduced the importance of tkecbnfinement in columns as objects to
hold the longitudinal bars in place and preventrtiieom buckling after the cover spalling off.

No concrete strength improvement was discussed.

Analytical approach to biaxial eccentricity (CzZekn1962)

Czerniak (1962) proved that the slope of the m@éwkis is depending on the relative
magnitude of moment about tieaxis to the moment about tifeaxis and the geometry of the
sections and it is independent of the magnitudeeodling moment and the applied force for the
elastic range. According to the effective compressioncrete, Czerniak (1962) determined five

cases based on the location of the neutral agsir&i(2-44).

@ (b) © () (e)

Figure 2-44: five cases for the compression zosedban the neutral axis location Czerniak
(1962)
He developed an iterative procedure for locating mleutral axis position for a given cross

section, by using equations (2-557 and 2-558) terdene the initial position of the neutral axis

(I Xy _YPQoyxl xy X DQOX)_ (l ox _Yonxxl oy X ony)
(Qox _Yp AXI xy X onx)_ (Qoy - X pAXI ox _Yonx) 2-573

_ (l Xy _YPQoyxl xy X DQOX)_ (l 0x _Yonxxl oy X ony)
(Qox -X pAXI Xy Yony)_ (Qox - Yp AXI oy — X ony) 2-574
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a = x-intercept of the neutral axis line

b = y-intercept of the neutral axis line

l,,= elastic product of inertia of the area aboutdtigin

| ,=elastic moment of inertia of the area about tlaxis-

| ,,=elastic moment of inertia of the area about ttexig-
Q,« = moment area about x-axis (within elastic region)

Q,y = moment area about y-axis (within elastic region)

A = area of transformed section (within elasticoeg)

Y, = y-coordinate of the applied eccentric load

X, = x-coordinate of the applied eccentric load

then calculating the new section properties, effeatoncrete and transformed steel, and finding

the new values ok, andY,,.

(g_@uiij
a b
Y =~ 7

] ——— 2-575
R
a b

X, == 2-576

and solving for a, b again and repeat the procedjoitdl convergence.
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As for ultimate strength design, Czerniak (1962)vpd with some simplification that the neutral
axis is parallel to concrete plastic compressioe land steel plastic tension and compression
line, so they can be found by multiplying the lagatof the neutral axis by some values. The

ultimate eccentric load and its moment about xyaagis can be found from:

Pu: fo|:A\‘1 _&_&}
a b 2577
- ¥ =
M ux fo qu -2\ PUYP
. a b 2578
M =f _Q' —Iﬂ—li_—PX
uy o_ uy a b | — Tu’p 2-579
QLIJX = Qox + a[Qxc + (m_l)st - mQ(s] 2-580
Ql‘,ly = Qoy + a[ch + (m_l)st - mst] 2_581
f, = stress intensity at the origin
and the x-axis and y-axis intercept of the newtxad are found:
a= (I xy' _YPQO)"XI xy X onx)_ (I o'x _Yonx'xl oy X ony)
(qu —Yo A )(' y ~ X pPox)_ (Quy = XA, XI ox _Yonx) 2-582
b= (I X)‘/ _YPQOVXI xy X onx)_ (I o‘x _Yon'xxl oy X ony)
(Quy -X pAJ Xl xy _Yony)_ (qu - YpAJ XI oy X ony) 2-583
where
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'A\‘J = A+;_C[AJC +(m_1)'6\'15 - mAﬁs]

2-584
. f' .
qu = Qox + f_C[Qxc + (m_l)st - mst]
o 2-585
. fc" .
Quy = Qoy + f_[ch + (m_l)st - mst]
o 2-586

Q,.= moment of area about x-axis of the plastic partibthe concrete effective section

Q,.= moment of area about y-axis of the plastic partbthe concrete effective section

Q,. = moment of area about x-axis of the plastic partf the yielded tensile reinforcement
Q,s = moment of area about y-axis of the plastic porbf the yielded tensile reinforcement
Q,.= moment of area about x-axis of the plastic partiof the yielded compressive
reinforcement

Q'ys= moment of area about y-axis of the plastic partiof the yielded compressive

reinforcement

A',: equivalent plastic transformed area.

A,. = area of concrete under plastic compression

A= area of yielded tensile reinforcement

A= area of yielded compressive reinforcement.

P, = ultimate strength of eccentrically loaded cresstion

M .= moment of the ultimate load about x-Axis

M, = moment of the ultimate load about y-Axis
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f_ = maximum concrete stress at ultimate loads (asdwas 0.85 ()

C

Failure surfaces for members in compression aaxidibending (Pannell 1963)

Pannell implemented a relation between the fainoenent about y-axis for a given load
and they component of radial moment with the same load. fimmula was found based on
deviation study between the actual load contouveand an imaginary curve found from the

revolution of the failure point about y axis, witfie same load, about the z axis. The equation

found for sections that have equal steel in each: fa

My
My = " Nsin? 29
Sin 2-587
N=1- M
My 2-588

My, = failure moment for some load in plane y
0= angle between y and the transformed failure plane

He showed that his formula is more accurate andeaemwative than that of Bresler. He also

developed a chart for N for unequal steel distrdsytFigure (2-43).
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Figure 2-45: Values for N for unequal steel disttibn by Pannell (1963)

Ultimate strength of column with biaxially eccaatioad (Meek 1963)

Meek (1963) assumed constant ratio of moment aloet x-axis and the y-axis.

Consequently, increasing the force will increasgerttoment proportionally.

y ex
M_ = e— =qa =const
X y 2-589

Using the above relation a location of the newdsas is selected. Then this location is adjusted

until the following relation is satisfied

I:)u :ZA:fc—i_ZAscfsc_zAstfst 2-590
He also showed set of experimental points corrglatell to the theoritical interaction diagram

developed.
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Biaxial eccentricities in ultimate load design §A2akobsen 1964)

To comply with local design code, Aas-jakbosed6d) replaced biaxially eccentric load

acts on a regtangular cross section with an ecanvdbad acts on the main axis of symmetry

with an equivelant moment. He showed , using moraadtforce equilibrium, that the egivelant

moment Me:
M, =(Pg, +cM,)m 2501
o &b

et, 2-592

m=+/1+ C2 2.593

The momentM; is small additional moment depends on failure madeé some other factors.

And in most cases it is equal to zero.

Design of columns subjected to biaxial bendin@iftthg and Werner 1965)

Fleming and Werner (1965) utilized the formulaarfd by Mattock (1961) for locating

the neutral axis in the different cases of the a@®sgion zone shape along with Furlong (1961)

method, by varying the location and inclination langf the neutral axis, to plot the interaction

diagram. Fleming and Werner (1965) plotted dimemis&s interaction diagram for a square

cross section for fourteen cases using paramétatsstcommonly used.
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Figure 2-46: design curve by Flemiagal (1961)

Investigation of the ultimate strength of squane aectangular column under biaxially

eccentric loads (Ramamurthy 1966)

Ramamurthy (1966) proposed a new method for defitine load contour for sections
having eight or more bars distributed evenly. Hmtioned that the available methods of design
of biaxially loaded column are trial and error prdare and determination of ultimate load from
failure surface. He showed that columns contairfmgr bars behave differently than those
containing eight or more bars with the same regdorent ratio. He found theoretically for
square columns that the neutral axis inclinatiogl@and the angle formed between the load ray
and y-axis are almost equal. And the relation betwbe moment and the moment about x-axis

in any load contour level is equal to

M ux =M uxo(l_Sin3 0) 2-594

Mux =ultimate moment about x-Axis
Muxo = uniaxial moment on the same load contouvigf
@=inclination of the neutral axis to x-axis angle

Equation (2-594) can be simplified to
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M, =M uxo(1—sin3 a)seczx 9505

My =ultimate radial load about z axis
and with plotting the previous equation against s@ttual load contour he found the following

relation is more accurate especially for small ar{a)

M, =M uxo(l— 0.11J

45 2-596
Similarly for rectangular columns, by finding thearisformed shape of the rectangular
interaction diagram to the square ones using somiar triangles calculations

fa2
M, = Muxo(l— 0.1ﬁj\/cos? p+ S0P
45 K 2-597

S = transformed equivalent angle of

uxo

K = transformation factor equal te

uyo
Also he showed that the upper equation is in gawdparison with experimental actual load
contour. He plotted the relation betweé@rand « for different ratios of length to width for

rectangular columns.
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Figure 2-47: relation betweanandd by Ramamurthy (1966)
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Capacity of reinforced rectanqular columns sulk@db biaxial bending (Parme, Nieves,

and Gouwens 1966)

Parmeet.al (1966). suggested relating the biaxial bendindnéouniaxial resistance. They

restated Bresler equation

log05 log05

M log g M @
(—XJ + [—y] =1 2-598
M M.,

ux

My = uniaxial ultimate moment capacity about x-axis

Muy = uniaxial ultimate moment capacity about y-axis

M,= biaxial bending capacity component about x-axis.

M,= biaxial bending capacity component about y-axis.

S is a function of reinforcement position, colummeénsion and the materialistic properties of
steel and concrete. Parrakal (1966) used a computer program to obtain valuegfdmeng

was represented graphically in four charts, Fig@rd9, 2-40, 2-51, 2-52).
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Figure 2-48: biaxial moment relationship by Pamehal. (1966)
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Figure 2-49: Biaxial bending design constant (foars arrangement) by Parmieal. (1966)
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Figure 2-50: Biaxial bending design constant (elzdrs arrangement) by Pareieal. (1966)
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Figure 2-52: Biaxial bending design constant (608rs arrangement) by Pareteal. (1966)
Parmeet al (1966) showed agreement between the suggestediaud2-598) and the

theoretical one calculated with equilibrium equasio Furthermore, they simplified the

172



exponential representation of the upper equatiomtrgducing two equations for two straight

line starting from MyMyy =1 andM,/ My =1 intersecting at the point of equal relative moment

(Figure 2-52). The equations of the two straighesi are as follow:

M, (1-
My+MX—”y—( p)_ M.,
Mo 5 2-599
M, 1-
M, +|v|y—ux—( p)_ M
My A 2-600
1.0
exponential contour
i
(Mx/Mux)(1-B/B)+My/Muy = 1
3
S
=)
(Mx/Mux)(My.Muy)+(1-B/B) = 1
Q|
4
0 Mx/My

Figure 2-53: Simplified interaction curve by Paretal. (1966)

Ultimate strength design charts for columns witixlal bending (Weber1966)

Based on Furlong conclusion that the most critietding axes is the 45 degree ones

after the major and minor axes in the case of hlab@nding. Weber (1966) generated sixteen

chart for the 45 degree interaction diagrams farasg columns . the columns are having

symmetrical reinforcement with different amountstéel barsDesign aids in the 1970 ACI SP-
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17A Handbookl2 and the 1972 CRSI Handbookl3 wesetan interaction diagrams developed

be Weber (1966).

Working stress column design using interactiomdiens (Mylonas 1967)

Mylonas (1967) adapted the interaction diagrammrtshgenerated in the ACI Design
handbook (1965), that were mainly for columns stiiejg to axial load and uniaxial bending and
the steel is distributed on two faces paralleln® bending axis, to fit cases of biaxial bending
and steel distributed along the four faces. Twaicédn factors were introduced , one for each

zone (Figure 2-54).

Region

AN

x.M'ax

p
Region 2

zone

Phbx

Ix.M'bx M'bx
Tension control
zone

Ix.M'bx M’
Dx _
Compression control

N' M'xx Region 3

kDX.M'GX M‘DX M‘X

Figure 2-54: Working stress interaction diagramiending about x-axis by Mylonas (1967)

for zone 2;

1+ K W,

1+w, 2-601
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ks is the momet of the steel distributed on twefaand is equal to

> al;

- 2a(0s) 2-602

_ N\n2
w, =3(2n-1)gp, 2-603

Ox =bars center

py = steel ratio

as = section area of arbitrary bar

A x= bar distance from x-axis divided by gx t(secti@ight)

For zone 3

r>; = kox +i(rx - kox)
Po 2-604

Kox is the moment reduction factor for pure bendingualx-axis

_ Z asﬂ’x

K =

" 2.a,(05) 2-605
P'ox = load at balance failure
N’ = normalized axial load
Mylonas (1967) also suggested that the applied ihgnashoment should be compared to the
reduced moment capacity, the moment capacity fonomd uniaxial bending interaction chart, of

the section in form
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S— 2-606

M’y ,M’yare the applied moment

M’y ,M’yy moment capacity

Comparison of experimental results with ultimatersgth theory for reinforced concrete

columns in biaxial bending (Brettle and Taylor 1968

Brettle and Taylor (1968) suggested partitioning cross section into small size area,
and using the limiting strain and the neutral gasition in calculating stresses in each filament
using curvilinear stress distribution or rectamgustress distribution or trapezoidal stress
distribution for concrete. They generated ultimrgttength design charts relatir®y/P, to /b for
different t/b ratios and different inclination angle beween line conecting the load to the

centroid and the x-axis.
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Figure 2-55: Comparison of steel stress variatmrbfaxial bending whegy =30 & g =1.0
Brettle and Taylor (1968)
@= resultant eccentricityed
t= section height
b = section width
B = theoritical ultimate load with no eccentricities

Pu= theoritical ultimate load with eccentricities

177



Biaxial Flexure and Axial Load Interaction in Shé&tectanqular Reinforced Concrete

Columns (Row and Paulay 1973)
Row and Paulay (1974) introduced six charts redatirem, to P,/f' cbh to facilitate the design

process. However these charts are applicable tdetincases only based on the material

properties required for design

M, V1+k?

m, = W 2-607

k=—2" 2-608

Biaxial bending simplified (Gouwens 1975)

Gouwens (1975) proposed simplified analytical éigua for design column subjected to
biaxial bending. He utilized Parne al (1966) simplified moment equations (2-599 & 2-500
He found that # approaches 1 for 0.25; bh by examining 67 column cases. Based on that he
proposed? equations as follow:

For P>0.25C,

% - 025

F=bost 02 0gs c I 2-609
For P <0.25C,

B =P+ o.z( 025- %j(os& C./2C,) 2-610
C.=fbh C,=Af, 2-611
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C C,

Ps = 0485+ 003 = >~ > 05 2612
c Y C
f,. = 0.545+ 035( 0.5—E°J <05 2613

Analysis of Short Rectangular Reinforced Concr€mumns Subjected to Biaxial

Moments (Sallah 1983)

Sallah (1983) evaluated the Paramgterfound by Parmet al (1966) and found that it
was most affected by, f'c , r, P/Py and less affected by the number of bars. Sall@B3)L

introduced number of charts similar to Pamrehal’s (1966) for findings

Design contour charts for biaxial bending of ragidar reinforced concrete columns

using bresler method (Taylor and Ho 1984)

Taylor and Ho (1984) developed a computer progtamgenerate the two main
interaction diagrams (with uniaxial bending-one éarch axis). These two charts were used to
generate the whole biaxial failure surface (and faikire contours)using Bresler equations.
Different positions of parallel neutral axis andigiing strain of concrete were used to generate
strain profile. The stresses were generated bgsshiock or other accepted formulas. And forces

and moments were calculated. They plotted cham/tgothe load tracing on the cross section
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Figure 2-56: Non dimensional biaxial contour onreracolumn by Taylor and Ho (1984).

Radial contour method of biaxial short columnigiegHartley 1985)

Hartley (1985) proposed two design procedure,fonéinding the cross sectional length
and the other to calculate the steel reinforcentgwmen all other desin parametes. He showed an
optimum point to exist on th& D. interaction diagram that relates to the smallesa af the

cross section. Initially, he showed the relatiotwigen the load and eccentricity in the form:

in| P :c(fj 2614
P b

wherec is a curve constattjs section length anéis force eccentricity the initial value of the

cross section length can be found by

358&32{326+In(PF;” *$Hb+°{l\M:0
o/ Ay u 2615
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Hartley (1985), using computer program, plottedppreally the relation between the cross

sectional area and the ratioRfP,. These charts can be used to determine the suiiyth in

design
fy = 300MPa
03 fc = 20MPa
p=300MPa M/M
y>=0.6 WY oy
bit>=1
0.28% ar
6% /\
4%, /‘\
0.3 1.0
Ao [ R E R E 8 19
p+1%
-0.1 1%
s \ 2%
’ 4% >
03 8% 6\

1.0 Mx/Mox

Pu/Puw

Figure 2-57P /Py, to A relation for 4bars arrangement by Hartley83)9(left) non dimensional

load contour (right)
Hartley (1985) also showed the relation betweerRtnd#in the load contour by
R=1- Asin" 20 2-616
WhereR and @ are showen in Figure 2-57 (right).

Expert interactive design of R/C columns under iildxending (Sacks snd Buyukozturk

1986)

Sacks and Buyukozturk (1986) developed computetwaoé EIDOCC (Expert
interactive design of concrete columns) to analysd design columns subjected to biaxial

bending. The procedure as follow
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1- Finding the neutral axis location, according to Ramarthy procedure, such that

eUy ey
tan — [=tan = 2-617
eUX eX

eux= ultimate eccentricity measured parallel to x-axis
euy = ultimate eccentricity measured parallel to ysaxi
e = eccentricity measured parallel to x-axis

g, = eccentricity measured parallel to y-axis

2- Using the neutral axis depthfor the balanced failure as initial value

w
1

CalculatingP, and iterating forc using modified secant numerical method till thedas

very close tdP,

4- Calculatingeyy, &x and comparing them &, e, to check section adequacy.

Interactive design of reinforced concrete columiih biaxial bending (Ross and Yen

1986)

Ross and Yen (1986) developed a computer progmaranalyze and design
rectangular columns subjected to biaxial bendinge Pprocedure is to change the
inclination angle of the neutral axis to find adatgurelation betweekl.y, Mny, and then
change the position of the neutral axis to solvetie axial load. The section capacity is

calculated using a predifined postion of the néwtxés and crushing strain equal to 0.003
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for concrete. They suggested using four bars Ihitia the design process and keep
increasing according to the applied loads with tiimgi the number of bars as stated by

ACI code.

Design of columns subjected to biaxial bendingr@idatz 1989)

Horowitz (1989) developed a computer program folumins with any cross section
subjected to biaxial bending. He relied on findihg least possible location of steel bars that

make the section capacity more than the appliedl loa

Strength of reinforced concrete column in biakiehding (Amirthandan 1991)

Amirthandanet.al (1991)showed good corelation between the experimentak \@one
before and the method propsed in the austrailiandsird for concrete structures AS 3600 for
short columns. The load contour in the standardpgroximated by bresler equation. They
adopted the beta value from the british standard
B =0.7+17(N /06Nuo) 2618
N = design axial force

Nuo = ultimate axial load.

Computer analysis of reinforced concrete sectiorer biaxial bending and longitudinal

load (Zak 1993)
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Zak (1993) proposed solving the equilibrium etpratwith the modification of the

secant modulus method. The ultimate strain wasdatgrmined. However, it was found using

maximization method.

Analysis and Design of Square and Rectangular @olby Equation of Failure Surface

Hsu (1994)

Hsu (1994) proposed equation that covers columbgsied to biaxial bending and axial

compression or tension. The proposed equationfislasy:

P_P MY (M)
n_ "nb + nx + ny =10
Po - I:)nb M nbx M nby

P, = nominal axial compression or tension

Mnx, Mny= nominal bending moments about x and y axis
P, = maximum nominal axial compression or axial tensi

Pnp = nominal axial compression at balanced strairditmm

Mnbx Mnby = nominal bending moments about x and y axisaktrized strain condition.

2-619

Biaxial Interaction Diagrams For short RC colunafisany cross section (Rodriguez and

Ochoa (1999)

Rodriguez and Ochoa (1999) proposed a generaloohdtin analyzing any cross section

subjected to biaxial bending. They developed cldseth solution for nominal total axial force
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strength and nominal bending moment strengths aheuglobal X and Y-axes. Quasi-Newton’s

method was used to solve these coupled nonlinegtiegs to locate the neutral axis position.

P, = > Py +Zn‘,pbi fg _f‘,p\ai fg 2-620
= i1 i1

ny n ny ny M

M, =sina) My, +cosed Mg, +Y, D P+ D AT, =D A TY, 2-621
i1 i—1 i1 -1 i1
n ny n n, e

M, =cosa) M —sinad My + X, > P+ A f. X, —> A f X, 2-622
i1 i1 i1 i1 i1

P,= Nominal axial force strength.

Mnx = nominal bending moment strength about x axis

Mny = nominal bending moment strength about x axis

Xa, Ya = coordinates of origin with respect to globakaxes

o = angle of inclination of neutral axis with resptx Xaxis;

n = number of reinforcement bars;

Ny = number of rebars located on compression sideoss section;
n; = number of trapezoids used to approximate coacnetier compression;
Api = area of steel rebar i;

fci = concrete stress at reinforcement bar |

fsi= steel stress at reinforcement bar i

P.i = force for each trapazoid.
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M.y = Moment of each trapazoid about y axis.

Mcix = Moment of each trapazoid about x axis.

Short reinforced concrete column capacity undexibl bending and axial load (Hong

2000)

Hong (2000) did not assume any crushing straiit.likhe proposed two equation from

equating forces and moments

M y
? -ex,_ = 0 2'623
'\;I)x e, =0 2-624

whereey , g, is the load eccentricity to x and y axes respebtiThe two equations has three
unknows; the curvature, neutral axis inclinatioglarand the neutral axis intercipt with the y-
axis. Hong (2000) used the sequential quadratigrproming method to solve the case as a

nonlinearly constrained optimization problem.

Reliability of Reinforced Concrete Columns undexigh Load and Biaxial Bending

(Wang and Hong 2002)
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Wang and Hong (2002) evaluated the param@{@®armeet al (1966) ) and fount that it

is insensitive to the reinforced ratio, it is meensitive to biaxial bending than uniaxial bending,

it increases withload and concncrete compressreagth

Analysis and design of concrete columns for bilakending —overview-(Furlong , Hsu

and Mirza 2004)

Furlong et al (2004) reviewed many of the proposed formulas dogmlysis. These
formulas were compared to experimental work. Theyctuded that the equations of Bresler
(1960), although simple, are not very conservatiwdile Hsu equation is much more
conservative. As Hsu equation can be used in Bibgiading and tension as well. However, both
Hsu equation and Bresler reciprocal load equatemm ot be used in selecting cross section,

unlike Bresler load contour equation.

New Method to Evaluate the Biaxial Interaction Brpnt for RC Columns (Bajaj and

Mendis 2005)

Bajaj and Mendis (2005) suggested new equationsvéduate the biaxial interaction

exponenet a found by Bresler (1960). The propogedtens are as follow

2 2-625

187



log 0.5
logps 2-626

a=K

Bajaj and Mendis (2005) benchmarked their equastign comparing the results with

experimental work done on 8 (150* 150 mm) columns.

Analysis of Reinforced Concrete Columns SubjedteBiaxial Loads (Demagh, Chabil

and Hamzaoui 2005)

Demaghet al (2005) suggested solving for the three equatidregjoilibrium to find the

nominal forceP,, the inclination angle of the neutral axisand the depth of the neutral akis

The three equation are:

Rq = ZF)CI +Z(fsi o fci )A& 2-627
My =Pe, =sinad Mgy+cosed Mgx+YD P+ > (fg— f )ALy, 2-628
M,, =Pe =cosad Mgy+sinaY Myx+X> P+ (fy— f)A Y 2.629

Where the subscriptrefers to a concrete layer or steel bar element.

Analvytical approach to failure surfaces in reicfdt concrete sections subjected to axial

loads and biaxial bending (Bonet, Miguel, Fernaraiet Romero 2006)

Bonetet al (2006) developed a new method for the surfaceraibased on numerical
simulation. The numerical simulation was generatsthg a computer program capable of
analysing moment-curvature diagram for given alead and moment ratio. The maximum

value was used as a failure point for the giverd$oarhe failure surface is defined by two
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directrix curves and generatrix curves. The dineaturves are the curve corresponds to zero
axial force and the one corresponds to balancerrégihe generatix curves are defined in
Muy/Mux plane, the first curve connects the puresien axial load to balnce failure load.

Whearas the second curve connects the balnceddodad to the pure compression load. The

equations for the four curves are as follow

Directrix 1
71 i 72
{Mdl.cosﬂ} J{Mdl.smﬁ} 1
M g1 My 2-630
Directrix 2
nl i n2
{Mdz.cosﬁ} +[Mdz.smﬂ} 1
M 424 M d2y 2-631
generatix 1
M, — Mdl(l—N“J
nut _ENU_Nutj*ENquo
M, Mdl[l— Edzj Naz =N ) A Neo
ut 2-632
generatix 2
M,-Mg|1-— c
dl( Utj _( I\Iu_Nuj _(Mujzo
N —N M
Mdz Md]_(l— NNdzj uc d2 d2
ut 2-633
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Mgy= absolute value of the nominal bending moment of #eetion in simple flexure

corresponding to angle beta

Md; x Mdi,,= nominal bending moments of the section in sinfl@eure for the x and y axes,

respectively.

Mg = absolute value of the nominal bending momentesponding to the maximum bending
capacity

of the section for a particular angke

Md;x Md:y= nominal bending moments corresponding to the mam flexure capacity of the

section for the x and the y axes, respectively.

v, n=exponents of the directrices.

y=13w+ 2

n=-0220w+ 115

o = steel reinforcement
N, = axial load applied
Nyc = the ultimate axial load in pure compression

Ng2 =balance failure load.

N, - N,

uc

¢ =(08*w- 0.7)[ } 095

uc ~ '"Vlim

2-634

Nim = nominal axial compression at the balanced stramition
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Biaxial bending of concrete columns:An analytisalution (Cedolin, Cusatis, Eccheli,

Roveda 2006)

Cedolinet al (2006) introduced analytical solution of the diad envelope of rectangular
R/C cross sections subjected to biaxial bending tandn axial force by approximating the
rectangle to equivalent square section. The arsalyas for unconfined concrete and the solution

outcome was dimensionless

Comparative study of analytical and numerical atbms for designing reinforced

concrete sections under biaxial bending (Bonetrrd3a Romero 2006)

Bonetet al (2006) introduced analytical and numerical methfmtsdesigning circular
and rectangular cross sections subjected to bl-&eading. The analytical method uses the
heviside function (Barrost al 2004) to define the failure strain, then integrdwe stress based
on that failure. The numerical method breaks trai@e into multi thick layers parallel to the
nuteral axis. The internal forces are found by mirakintegration of each layer using Gausss-
Legendre quadrature (Barres al 2004). They concluded that the two method areasfitefor
circular cross section’s analysis and the modiffedk layer integration is more efficient for the

rectangular cross section’s analysis.

Investigation of Biaxial Bending of Reinforced @oste Columns Through Fiber Method

Modeling (Lejano 2007)
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Lejano (2007) expanded the finite element metloaohd by Kaba and Mahin (1984). To
predict the behavior of unconfined rectangular cois subjected to biaxial bending. The
analysis was limited to uniform semmetric squarturoms. Lejano (2007) utilized Bazant's

Endochronic theory for concrete and Ciampi modekteel.

Variation of ultimate concrete strain at RC Colun8ubjected to Axial Loads with Bi-

directional Eccentricities (Yoo and Shin 2007 )

Yoo and Shin (2007) introduced the modified regtdar stress block (MRSB) to
account for non-rectangular compression zone irdluog bi-axial bending. They showed
experimentally that the ultimate strain of concreig@osed to bi-directional eccentricities can
reach up to 0.0059. Based on this finding theyoohiced new equation for the unconfined

ultimate strain as follow:

—0.003F,

g, = 0.003+ 2045 P coss 2-635
045 P, P

£y = 0.003+ £oss —00031, By P oss 2-636
055 P, P,

£ous = 0,003+ 20025 0<6< tanl(gj 2-637

tan‘l(hj
b
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0.0025

90— tan‘l[hJ
b

No definition fordwas provided.

£ us = 0,003+ (90-9) tanl(gj <6<90 2-638

Capacity of Rectangular Cross Sections under BligxiEccentric Loads (Cedolin,

Cusatis, Eccheli, Roveda 2008)

Cedolinet al (2008) utilized the work of Cedolin et al (2006)denerate more accurate
moment failure contour through creating one extimts on the contour. This point correspond
to the load acting on rectangle diagonlas and vpgsoaimated by using equivelant square to
benefit from symmetry. The developed moment conteas used for better evaluating the

parameter found by Bresler (1960)

Development of a computer program to design cae@a@umns for biaxial moments and

normal force (Helgason 2010)

Helgason 2010 developed a computer program usiatiaM for designing unconfined
rectangular hollow or solid columns subjected tealaforce and bending moment. Helgason
2010 used the predefined strain profile to genettageinteraction diagram and the equivelant
stress block equal to 80 % of the compression zteph. The outcome was compared to

Eurocode
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2-4-2 Discussion

According to the literature review, there are fiferent approaches that treated the

columns under axial load and bending moment problémase ways are summarized as follow:

1

Trial for locating the neutral axis position such Rarker and Scanlon (1941), Ang
(1961) and Czerniak (1962) works.

Implementing closed form equations for special sasech as Andersen (1941),
Wiesinger (1958), Cedoliet al (2006) and Yoo and Shin (2007) works.

Generating charts that relate two or more varidbléacilitate the design process,
such as Mikhalkin, Au (1958), Fleming and Werne®68) and Brettle and Taylor
(1968) works.

Developing simplified Interaction diagrams by usowgfficients for curve defining.
This method was adopted by some researchers likeéngyhand Cohen (1957),
Bresler (1960), Furlong (1961), Parme (1966), Mgl¢1067), Bonet et al (2006).
Generating Sets of ready Interaction diagrams tosee directly by designers, Weber
(1966) and others

There are some conclusions that can be drawn lasvfol

The finite layer approach is successful in analy$his approach was adopted by
some authors such as Brettle and Taylor (1968)eBetal (2006) and Lejano (2007)
The Bresler Method is one of the most well knowrd auccessful method in
predicting the unconfined interaction diagrams &adl contours. This method was
utilized and refined by many such as Rammamurtt96§), Parme et al (1966),

Gouwens (1975), Sallah (1983) Amirthandan (1991an@/and Hong (2002) and
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Bajaj and Mendis (2005). However it is very conséime for some cases as shown
by Furlonget al (2004) and others.

Software applications on columns spreaded and begerpular in the beginning of
1980s.Taylor and Ho (1984) developed computer pragnased on Bresler Method.
Sacks and Bugukoztruck (1986) developed their mrmogbased on iterating for
neutral axis and load converge. Ross and Yen (1886) the predefined strain
profile in their software. Horowitz (1989) incremed the steel bars till the column
capacity exceeded the load applied. This transitiorrelying on machines for
facilitates calculations. Hence more accurate aedige analysis is needed to define
exactly the unconfined and confined capacity diedént sections.

The predefined strain profile is seen to be on@imost effective and fast procedure
foe unconfined analysis. This method was suggdsyefurlong (1961) and utilized
by many, such as Ross and Yan (1986)

There is lack of confinement effect analysis oruguls capacity. Nowadays, there is
a need in predicting columns extreme events asdstay some structural codes like

AASHTO-LRFD.
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Chapter 3 - Circular Columns Confined with FRP and lateral Steel

3-1 Introduction

FRP used in retrofitting concrete columns is co&i®d one of the simplest and most
efficient application, as FRP has excellent materaracteristics like high strength to weight
ratio and high corrosion resistance FRP behavesieddy, and therefore its confining strength
increases proportionally with increasing the foapplied. On the other hand, the confining steel
provides constant confining pressure after itsdyg). Many empirical and theoretical models
were proposed describing the FRP contribution tefioement. According to Lam and Teng
(2003), the proposed models can be classified agm®riented and analysis oriented. In the
design oriented approach, closed-form equations deseloped to predict the stress-strain
behavior based on experimental findings. Exampfesuch models are those of Fardis and
Khalili (1982), Ahmedet al (1991); Saadatmanesh al (1994); Karbhari and Gao (1997), Saafi
et al (1998) and Toutanji (1999).Whereas in the secqomtaach, an incremental numerical
analysis is generated and an active confined misdatilized to determine the Stress-Strain
curve. Examples of such models are those of Spalesid Monti (1999), Xiao and Wu (2000).
Several researchers realized the importance ofeimghting the effect of the Lateral Steel
Reinforcement (LSR) and FRP combined in one mdglelgaet al (2006) and Eid and Paultre
(2008) are two different models accounting for muam amount of confining steel to be used in
the columns when FRP wrapping is used. This chapig@roposing a new model accounting for
the FRP and LSR side by side based on a direch&rte of the procedure established by ACI
440.2R-08. This chapter discusses the finite lappraach used, the material models, eccentric

based models, numerical formulation of the alganitmd finally the results and discussion.
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3-2 Formulations

3-2-1 Finite Layer Approach (Fiber Model)
The column cross section is divided into a finitenber of thin layers (Figure 3-1). The force
and moment of each layer is calculated and stdrkeed.rebars are treated as discrete objects in
their actual locations. The advantage of that isvoid inaccuracy generated from using the
approximation of the stress block method, as aessmtative of the compression zone and to
precisely calculate the internal forces inducedsteel bars and concrete layers in the column

Cross section.

|
Es Y\Si o o

Y .

I{ \ YLS'/O

. | | | H
Yo r

&c [ e °

W Es

Figure 3-1: Using Finite Layer Approach in Analysis

3-2-2 Present Confinement Model for Concentric Columns

3-2-2-1 Lam and Teng Model
Lam and Teng (2003) proposed a new model for comeveapped with Fiber Reinforced
Polymer (FRP). This model is adopted by ACI 44008Reode for FRP wrapping. The stress-

strain equations are as follow:
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f.=E., —~————¢&; :
4f, 0<g <g 31
f.=f, +E,e, £ <&, <€y 3.2
fo—f
E,=—"—° 3-3
gCCU
. 2f
& '=
E.-E 3-4

where ¢ is the transition strain. To find the maximum d¢oafl concrete compressive

strength
foo = fc' +33¥x, T, 3-5
£ 2E(nt &,
| D 3-6
. fCC ************
(7]
g E
& 1 |
'Q f'c — ‘
Ee
| \ \
Elc &t 0.003 Eccu
Axial Strain

Figure 3-2:Axial Stress-Strain Model proposed bynland Teng (2003).
fi is the maximum confined pressukg.is tensile modulus of elasticity of FRE, is the

efficiency factor accounts for the geometry of geetion and it is equal to 1 in case of the
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circular cross sectiom is the number of plies usetljs the nominal thickness of one pD,is
the cross section diameter of the colummis a reduction factor determined by the code to be
0.95. g¢ is the effective strain level at failure and igisen by:
E =K, Eq 3-7

k. IS a reduction factor that considers the premafaitere of the FRP.ACI 440.2R-08
implements an average valuexf= 0.586 based on Lam and Teng (2003 a) findings found
experimentally to range between 0.57 and 0.61hdukl be noted that the lowest level of
confinement pressurd)(required is equal to 0.(& to avoid having a descending branch in the
stress strain curve. This note is verified by Sgtoée and Monti (1999). The maximum

compressive strairg,, can be found by:

045
_ ] f| gfe
Eecu = €c 150+ 12Kb ? — 3-8
c \ &

And to avoid excessive cracking, this strain shdnddimited to:

<001

ccu —

&

where x, accounts for the geometry of the cross sectiahiarequal to 1 for circular

columns.

3-2-2-2 Mander Model for transversely reinforced steel

Mander model (1988) was developed based on teetsf¢ lateral confinement pressure,
1, and the confinement effective coefficid@twhich is the same concept found by Sheikh
and Uzumeri (1982). The advantage of this proceduits applicability to any cross section
since it defines the lateral pressure based ornséisdion geometry. Mandeat al (1988)
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showed the adaptability of their model to circutairrectangular sections, under static or
dynamic loading, either monotonically or cyclicadlgplied. In order to develop a full stress-
strain curve and to assess ductility, an energwnoal approach is used to predict the

maximum longitudinal compressive strain in the cete

Mander derived the longitudinal compressive comcettess-strain equation from Popovics

model that was originally developed for unconfimetcrete (1973):

f xr
fC = ce . 3-9
r—1+ x
&
X = _c 3'10
gCC
(- E 3-11
Ec - Esec
E =4723/f. in MPa 3-12
fCC
Esec:_ 3-13
&

cc

and as suggested by Richat al (1928) the strain corresponding to the peak oeuafi

compressive strengfth; is:

Eoe = gc{l+ 5{% —1H 3-14

The different parameters are defined in Figur8)(3-
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Figure 3-3: Axial Stress-Strain Model proposed bgrideret al. (1988) for monotonic loading

As shown in Figure 3-3: Axial Stress-Strain Modebposed by Mander ei. (1988) for
monotonic loading, Mandest al (1988) model has two curves; one for unconfinedcecete
(lower curve) and the other for confined concraipper one). The upper one refers to the
behavior of confined concrete with concentric logd{no eccentricity). It is shown that it has
ascending branch with varying slope starting fi&naecreasing till it reaches the peak confined
strength at f(,, &¢. Then the slope becomes slightly negative in descending branch
representing ductility till the strain ef, where first hoop fractures. The lower curve expess
the unconfined concrete behavior. It has the sasoeraing branch as the confined concrete
curve till it peaks atf{c, &o). Then, the curve descends till 1.5:2A straight line is assumed
after that till zero strength at spalling straip
Mander et al. (1988) utilized an approach similar to that of iBhend Uzumeri (1982) to

determine effective lateral confinement pressutewds assumed that the area of confined
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concrete is the area within the centerlines ofrpeter of spiral or hoop reinforcemef. as

illustrated in Figure (3- 4)

L ——r7

Effecively T[
onfined Core 4?0 T T T
L %
45° 37
Effectively
Confined Core Smallest Length Smallest Length
for Confined Core for Confined Core
ds

Figure 3-4: Effectively confined core for circulamop and spiral reinforcement (Mander Model)
Figure 3-4 shows that effectively confined conerebreAe inbetween hoops or spirals,

is smaller than the area of core within centerdimmé perimeter spiral or hoops excluding

longitudinal steel areal... To satisfy that condition, the effective latecahfinement pressure,

' ,should be a percentage of the lateral predsure

f =k, f, 3-15

e

and the confinement effectiveness coefficient defined as the ratio of effective confined area

to the area enclosed by centerlines of spiral opho

Ke =% 3-16
Ac=A A= dl-A 317
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3-18

A%c = A\:(l_ pcc) 3-19
where A; is the area of the section core enclosed by spioal hoops,Aq is the area of
longitudinal steel angc.is the ratio of longitudinal steel to the arealsf tore.

For hoop case, the effective lateral confined core:

L
) L=

n—

.

il |

]

Smallest Length Smallest Length
for Confined Core for Confined Core

Figure 3-5: Effective lateral confined core for pbaand spiral reinforcement (Mander Model)

, 2 , 2
pia S S
=T | =A 1= ]
A 45( ZdJ A:( ZdJ 3-20
, 2
2d
Ky =~—"— 3-21
1_pcc

wheres’ is the clear spacing between spiral or hoop badsla is the core diameter to spirals or

hoops centerline. While for spiral case it can @ from Figure (3-5) that

, 2
T s P 2s g7
T T P T ]
A= ( 4de 4 ( 4d 16d2] 3-22

and the last term can be neglected so the valkgi®found from the following equation:
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f yhAsp

b

fi ds

3-23

) —

fyrAop

Figure 3-6: Confinement forces on concrete fromutar hoop reinforcement

Figure (3-6) illustrates force equilibrium on afhiairn of a circular hoop. The uniform

hoop tension at yield generated in the transvdess should be balanced by the uniform lateral

stress on the concrete core:

2f A, = fsd

_ 2f A,
sd

S

fi

3-24

3-25

and the ratio of the volume of transverse stegh&volume of confined core argacan be

expressed as

p — Aspﬂds — 4&{)
® zst Sds
hence
1
f :Epsfyh

and from equation (3-1%), can be found:
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1
f = Ekepsfyh 3-28

The maximum confined compressive strength can beritied as a function of the peak

unconfined strength and the uniform effective lateonfinement pressure:

. f;[_1.254+ 2254 /1+7'9f4,f' _z]‘:',] 3-29

Manderet al (1988) proposed an energy balancing theory tdigiréhe ultimate confined strain,
which is determined at the first hoop fracture. yistated that the additional ductility for
confined concrete results from the additional stremergy stored in the hoopk, Therefore

from equilibrium:
U =Uy -Ug 3-30
whereUy is the external work done in the concrete to tnecthe hoop, andc, is the work done

to cause failure to the unconfined concrétg.can be represented by the area under the tension

stress strain curve for the transverse steel bet®e® and fracture straig.

Esf

U sh — psAcc J fsdg 3-31
0

while Ug is equal to the area under the confined stressnsturve plus the area under the
longitudinal steel stress strain curve:

gSCLJ gSCLJ

Ug = ‘O[fcpkcdg-'_ _([fsAsldg 3-32

Similarly, it was proven experimentally tHag, is equal to:
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Espall

U, = A | fde = AL0017/ T, inmpa 3-33
0

and

Esf

U sh — psA:c J. fsdg :110105A:c 3-34
0

Substituting equations (3-32), (3-33) and (3-340 equation (3-30):

110p, = [ fde+ | f,de 0,017 f, 335
0 0
wherefy is the stress in the longitudinal steel. Equaf@#35) can be solved numerically fay,

The above equations (3-30) to (3-35) are develsatyihe Sl units

3-2-3Present Confinement Model for Eccentric Columns
Unlike concentric loading, the eccentric loadingegm@ates bending moment in addition to
axial loading. Columns subjected to eccentric Ingdibehave differently from those
concentrically loaded, as the shape of the strassnscurve for fully confined reinforced
concrete (concentric loading) shows higher peangth and more ductility than the unconfined
one (infinite eccentricity). Most of the previousidies were based on the uniform distribution of

compressive strain across the column section.

avl w
| N

Z.

Figure 3-7: Effect of compression zone depth orcoste strength
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Figure (3-7) illustrates three different sectiomsder concentric load, combination of
axial load and bending moment and pure bending mgntiee highlighted fiber in the three
cases has the same strain. Any current confinemedel yields the same stress for these three
fibers. So the depth or size of compression zores aot have any role in predicting the stress.
Hence, it is more realistic to relate the strenggid ductility in a new model to the level of

confinement utilization and compression zone.

dl wd
NIAN A

Figure 3-8: Amount of confinement gets engagedfferént cases

By definition, confinement gets engaged only whember is subjected to compression.
Compressed members tend to expand in lateral dingcand if confined, confinement will
prevent this expansion to different levels basedtlom degree of compressive force and
confinement strength as well. For fully compressedmbers (Figure 3-8 c), confinement
becomes effective 100% as it all acts to preveet ldieral expansion. Whereas members
subjected to compression and tension, when theaalenis lies inside the section perimeter,
only adjacent confinement to the compression zoets g@ngaged. Accordingly, members
become partially confined.

In FRP wrapped columns literature, various modetse implemented to assess the
ultimate confined capacity of columns under congeratxial load. On the other hand the effect

of partial confinement in case of eccentric loadnfbined axial load and bending moments) is
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not investigated in any proposed model. Therefdrés pertinent to relate the strength and
ductility of reinforced concrete to the degree @fftnement utilization in a new model.

The two curves of fully confined and unconfinechoete in any proposed model are
used in the eccentricity-based model as upper emerl bounds. The upper curve refers to
concentrically loaded confined concrete (zero etimty), while the lower one refers to pure
bending applied on concrete (infinite eccentricity) between the two boundaries, infinite
numbers of stress-strain curves can be generatet an the eccentricity which is found to
directly relate to the size of compression zongufé (3-9). The higher the eccentricity the
smaller the confined concrete region in compresshacordingly, the ultimate confined strength
is gradually reduced from the fully confined vafueto the unconfined valui; as a function of
eccentricity to diameter ratio. In addition theibiate strain is reduced linearly from the ultimate

straingy for confined concrete to the ultimate strain foconfined concrete 15, or 0.003

90
80
o L ea
60 R 4
50
40
30
20
10

Compression area ratio to the cross
section

e/D

Figure 3-9: Relation between the compression at@ to the normalized eccentricity
Figure (3-9) shows that the compression area ttotéarea decreases linearly with the increase

in normalized eccentricity. This relation is almbsear as it is depicted by the solid line. Hence,
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the eccentricity can be related simply to the casgion zone area as explained in the following

section.

3-2-3-1 Eccentric Model Based on Lam and Teng Equations
The ultimate eccentric or partially confined ngIsnf_cc is determined from the

following equation:

3-36

wheree is the eccentricityD is the column diameter anE is the eccentric peak strength at the
eccentricity (e).

The strairg,, corresponding to the peak partially confined siteif.., which corresponds to the
ultimate point on the curve, Figure (3-10), is giviey linear interpolation between the two

extreme bounds of strain:

£y = foo ~ e (£.,, — 0.003+ 0.003 3-37

cecu
fcc - fc

Any point on the generated eccentric curves caralmilated using the following equations:

f.=E.¢, —uc _E 2 g’

4t O<e, <é. 3-38
fo=Tc+Ee <5, <o 3-39
E, ==l 3-40
8CU
. 2f
g = e 3-41
Ec - E2
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Figure 3-10: Eccentricity Based Confined -Lam aead Model-

3-2-3-2 Eccentric Model based on Mander Equations
The equation that defines the eccentric peak dineanrording to the eccentricity is simply a
1 1

mixture rule:f_ccz— fee t—5 f. 3-42

1+ S 1+ —
D €

wheree is the eccentricityD is the column diameter anE is the eccentric peak strength at the

eccentricity €). The corresponding stra@ is given by

= 50{“ s[ ‘; _ H 3-43

and the maximum strain corresponding to the reduaecentricity will be a linear function of

the stress corresponding to maximum strain for/fotinfined concreté&,, and the stress at the

maximum unconfined traify,, at &0 =0.003.
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Esec r
E r f f
Eou = €ec Csecu -r+1 Esecu = __wo 3-44
<, £y — 0.003

fo, — Eqe, ¥ 0.003

cu secy

E

secu

In order to verify the accuracy of the model atéi&reme cases, the eccentricity is first set to be

zero. The coefficient df ;will be zero and equation (3-42), (3-43) and (3-4#) reduce to be:

fcc = fcc 3-45
£ =&, 3-46
£, =¢ 3-47

On the other hand, if the eccentricity is set tortbaity the other coefficient of.c will be

zero, and the strength, corresponding strain antllithiequations will be:

f.=f. 3-48
£, =&, 3-49
£, =0003 3-50
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Figure 3-11: Eccentricity Based Confined -Mander klod

Any point on the generated eccentric curves carahmilated using the following equation:

¢ fXr
c- - 5 3-51
r—1+x
where
X== 3-52
ECC
_ Ec
r= E_E 3-53
— f
Eseczgz 3-54

3-2-4 Moment of Area Theorem

The very general axial stress equation in a symoadigection subjected to axial forBe

and uniaxial bendinlyl, (Hardy Cross 1930):
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3-55

o, = normal stress at any point (a) in cross section

P = applied load.

A = cross sectional area.

M, = bending moment about x-axis

y = distance between the point (a) and the cefdloi-axis

X

| . = moment of inertia about the centroidal x-axis

Rewriting Equation (3-55) to determine the strdiaray point in the cross section:

P M,
£,=—+
EA EI

y

3-56

In case of linear elastic analysis,in EA or EI expressions is constaE<E.). However, if the

section has variable strain and stress profilejilltamount to variableE profile (per layer) in

nonlinear analysis. Accordingly, the section parmsemust includg EA, ZEiIi for a more

generalized theory (Rasheed and Dinno 1994). Natethe linear strain profile of the section

from Equation (3-56) yields a distinct constantveture:

Mx
¢x - EIX
I\/Ix :¢xElx

where ¢, = x- curvature

Rewriting equation (3-56) in terms @f

P
€z=§+¢xy

3-5

3-58

3-59
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Finding &, at the centroid, since= 0.

P
“ T EA 3-60

Finding ez at the geometric centrojd= y

P

g0 Tt Y
Solving forP at the geometric centroid,

P=EAs, — EAYS, 261

g_o is the axial strain at the geometric centroid
But
EAM, = EAy y=Y, -V,
Ye is the vertical distance to the geometric centroehsured from bottom extreme fiber afad
is the vertical distance to the inelastic centmoiglasured from the bottom extreme fiber, Figure
(3-12)

The general formula of the moments about the geenetixis is derived as follows:

when the moment is transferred from the centroithéogeometric centroid , Figure (3-12)
M, =M,-Py 3-62

Substituting equation (3-58) and (3-61) in (3-6@)ds:

M, =—EAM,z, +(EI, + EAM, y)p, 3-63
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.

Figure 3-12: Transfering moment from centroid te ¢egometric centroid

The termEl, + EAMXY/ represents thél, about the geometric centroid using the paralles axi

theorem. Using equations (3-61) and (3-63) yidh@sNloment of Area equation:
P EA -EAM_||¢
= | ° 3-64
M, -EAM, El, &,

Since the moment of area about the actual cenuamishes (Rasheed and Dinno 1994),

Equation (3-64) reduces to an uncoupled set whenapplied back at the actual centroid since

EAM, vanish about the centroid.
P _ EA O . & 3-65
M, 0 El, || 4,

which is simply equations (3-58) and (3-60).

215



3-3 Numerical Formulation

3-3-1 Model Formulation

AR 7T W% %‘&
= A fy A
L\fff ' 1 I 1 I A1, 1
«— D —»
(a) (b) (©) (d)

Figure 3-13: Equilibrium between Lateral Confiniagess, LSR and FRP Forces

It is demanded to integrate the effect of late3tdel reinforcement (LSR) and Fiber
Reinforced Polymer (FRP) simultaneously in one rtal@eccurately express the whole column

confinement behavior. As shown in Fig (3-12 d) aodsidering equilibrium:

fo=(f; +Ap)+ f, 3-66

fle = effective lateral confinement due to LSR and E&fether

s = effective lateral confinement due to FRP only

f'|s = effective lateral confinement due to LSR only.

Ap = lateral pressure difference developed due twstearing the’ from the FRP position to the
LSR position.

It is noted thatdp is negligible especially for proportionally smabver compared to core
diameter of cross section (Eid and Paultre 2008toAdingly Ap may be neglected from the

previous equation that can be simplified to:
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fo="f +f, 3-67
Using equilibrium in the free body diagram in FigyB-13 b), the valure &fy is:

fr =k, fy 3-68
And for fully wrapped columnk. is equal to 1, hence:

fi = fi 3-69
By using force equilibrium in the y- direction:

fyds=2f, A, =2E;¢,t;sn 3-70
d= column diameter
E; = FRP modulus of Elasticity
t = FRP layer thickness
n = number of FRP layers
& = FRP strain.
s= column length
Accordingly:

pA =

"= p 3-71

Similarly to find s, equilibrium of forces in Figure (3-13 c) in thertical direction are

summed:
fIls = ke 1:js 3-72
f.d.s=2k Af. 3.73

It can be assumed that spiral steel yields at atenstrength, sfais replaced by,

217



oA,

Is d.s 3-74
- 23
ke = lateral Steel confinement coefficient and itgsial to 1 S
~ Pss

As = Lateral Steel area

fyn = Lateral Steel yield strength

ds = core diameter

s= spiral spacing

By subistituting equations (3-71) and (3-74) ir3e6(7)

2E;eitin 2k AT,
e~ b ' ds 3-75

Lam and Teng (2003) stated that the ratidi:6f. has not to be taken less than 0.07 to
furnish minimum sufficient ratio of FRP and to eresthat the stress-strain curve is ascending
beyondf’; up to failure. But ACI 440 guidelines adopted 0a838a minimum for this ratio. This
note is verified by Spolestra and Monti (1999). &hen the previous statement, th . ratio is
calculated and if it is more than 0.08, Lam andglreguations are used according to ACI 440.
Otherwise Mander model is used since it generatefress-strain curve with a descending
branch, Figure (3-14). The reason for that is thetéd FRP confinement ratio is considered
minor and the FRP characteristics are not domindence, the cross section behavior is

governed by lateral steel.
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Ecceniric Based model {;..;.... 4 f-‘f/:fc >0. ] ECCENinic based modei
and Teng Equations)is used ‘_\ / (Mander Equations)is used

~

Figure 314: FRP and LSR Model Implementation

3-3-2 Numerical Analysis
The cross section analyzed is loaded incrementgllgnaintaining a certain eccentric
between the axial force and the resultant momeMg. Sinceincreasing the load and result:
moment causes the neutral aargd centroi to vary nonlinearlythe generalized moment of ai

theorem is devised.
The method is developed using incremental iteraivalysis algorithm, secant stiffne

approach and proportionaf radia loading. It is explained in the following stepsdéie -18):
1- Calculating the initial section properti
e Elastic axial rigidityEA:

EA= ZECWiti +Z(ES —-E,)A, 3-76

E. = initial modulus of elasticity of the concre
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E, = initial modulus of elasticity of the steel rebar
The depth of the elastic centroid position from thettom fiber of the sectionY,

D EwWt(H-Y)+ D (E.-E)A(H-Y,)
Y = i i

‘ EA 3-77

e Elastic flexural rigidity about the elastic centtdil:

EIX = ZEC\Mtl (H _Yi _Yc)z +Z(Es - EC)ASI(H _YSi _YC)2 3.78

Typically Yc= H/2.

e The depth of the geometric section centroid pasifrom the bottom and left fibers of

the sectior¥g:

|
2 3-79
s
£ Vi A
[ \ Y_S|/ o
Y | 1 H
Ec = & o
W Es

Figure 3-15: Geometric properties of concrete laygard steel rebars

2- Calculatingfi/f'c and check the ratio to decide which model is ugemtentric model
based on Lam and Teng Equations or Eccentric mbaetd on Mander Equations)

Figure (3-14).
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3- Defining eccentricitye, which specifies the radial path of loading on th&eraction

diagram.

Axial Force

Load Stepr GP
Resultant Moment

Figure 3-16: Radial loading concept

4- Defining loading stepGP as small portion of the maximum load, and computhng
axial force at the geometric centroid.

GR.,=CGR, +AGP 3-80

5- Calculating momen&M about the geometric centroid.

GM,
e= GMX ZG*GP 3'81

GP

6- Transferring moment to the updated inelastic céhtrand calculating the new
transferred momeMy :

™, =GM, +GH(Y; -Y,) 3.82
The advantage of transferring the moment to thé&ipoof the inelastic centroid is to eliminate

the coupling effect between the force and momentes EAM, =0 about the inelastic

centroid
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Figure 3-17: Transfering Moment from geometric ceidtto inelastic centroid

7- Finding: Curvatures ¢

™,
" El

P

X

Strain at the inelastic centraig, the extreme compression fiber strgin and strain

extreme level of steel in tensiep are found as follow:

GP
&g = ——
EA
=&, +9,(H-Y,)
Ees =&, — 9, (Y, —Cove)

where cover is up to center of bars

3-83

3-84

at the

3-85

3-86

3-87

8- Calculating straingg;and corresponding stres in each layer of concrete section by

using selected model from step 2.

€ =‘c’vec_¢Yi

ci
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9- Calculating strain ¢ and corresponding stress f;; in each bar in the given section by

using the steel model (Elastic up to yield strength and then perfectly plastic)

gsi = gec - ¢K1
3-89

10- Calculating the new section properties: axial rigidity EA. flexural rigidities about the
inelastic centroid EI,, moment of axial rigidity about inelastic centroid EAM,, internal

axial force F, internal bending moments about the inelastic centroid M,, ,

EA= ZEC,-W,-fi + Z(Esi -E)A,

3-90
EAM =) E wit,(H~Y, ~Y)+ > (E, ~E)A,(H~Y, ~Y,)
i i 3-91
Fz :chiwiti +Z(fvz _fci)Asi 3-92
El =Y Ewi(H-Y,~Y) + Y (E,~E)A,(H~Y,~Y,) 3-93
Mox=Zf;iwiti(H_Yc_K)+z(f;i_ﬂi)Asi(H_}/c_}/si) 3-94
where E.; = secant modulus of elasticity of the concrete layer.
E;= secant modulus of elasticity of the steel bar.
11- Transferring back the internal moment about the geometric centroid
GM()X :Mox _GP(YG _Yc) 3-95
12- Checking the convergence of the inelastic centroid
TOL =EAM | EA/Y, 3-96

13- Comparing the internal force to applied force, internal moments to applied moments,

and assuring that the moments are calculated about the geometric centroid :
- *107°
GP ~F.|<1*10 3.97
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IGM, ~GM,,|<1*10° 3-08
[Tol,| <1*10° 3-99

If Equations (3-97), (3-98) and (3-99) are not<fad, the location of the inelastic centroid is

updated byEAM/EA and steps 5 to 11 are repeated till Equations7§3{8-98) and (3-99) are

satisfied.
Y, :Yc‘d+EAMX
e EA 3-100

Once equilibrium is reached, the algorithm chedtsultimate strain in concrete,. and steel

£, NOt 1O exceedg_CC (or g_cu based on the selected model) and 0.05 respectitiedy it
increases the loading bGP and runs the analysis for the new load level usirg latest
section properties. Otherwise, iE,, equaISg_m(or 8_cu based on the selected model) &y

equals 0.05, the target force and resultant momenteached as a point on the failure surface

for the amount of eccentricity used.
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Figure 3-18: Flowchart of FRP wrapped columns analysis
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3-4 Results and Discussion

First the stress-strain curves are compared withesexperimental work found in the
literature. Then, Interaction diagrams generatedKDYT Column Expert Software are plotted
and compared to the corresponding experimental wawkwell. Interaction diagrams are

generated using the numerical formulation describesgction 3-3

3-4-1 Stress-Strain Curve Comparisons with Experimental Work
To validate the concentrically confined model, & &feexperimental data are compared to this
model. The cross section properties of the coluaneshown in Table 3-1

Table 3-1:Experimental data used to verify the ultimate siterand strain for the confined model (Etid.

2006)
FRP LSR
case D cover fe g t = fyn S )
mm mm MPa mm GPa | MPa mm mm

1 253 0 36 0.002 0.762 78 456 65 11.3
2 303 25 31.7 0.002 1.524 78 456 100 11.3
3 303 25 31.7 0.002 0.762 78 456 65 11.3
4 303 25 50.8 0.002 1.524 78 456 65 11.3

ery for all cases is 0.0134

As shown in Fig. 3-18 there is an excellent catreh between the experimental point
and the stress strain curve developed theoretjcsilige the theoretical ultimate peak strength
and strain are 9.35 ksi (64.5 MPa) and 0.0142, edsethe experimental point is at 9.5 ksi (65.5
MPa) in strength with a strain of 0.0155. The petage errors are about 3% for strength and 8%

for strain. From Table 3-1, the cross section lmsaver which means the LSR and the FRP act
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on the same position. The ratiofef/f'c is 0.1 which is bigger than 0.08, hence, the ststisin
curve is generated based on Lam and Teng model, ks lateral pressure due to FRP is equal
to 0.535 ksi that contributes to 40% of the totédaive lateral confinement which has a value

of 1.32 ksi. So the amount of confinement providgdhe FRP is significantly high.
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Figure 3-19: Case 1 Stress-Strain Curve Comparéaperimental Ultimate Point
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Figure 3-20: Case 2 Stress-Strain Curve Comparéaperimental Ultimate Point

The cross section in case 2 has a 25 mm covesseping 16.5 % of the full diameter.
At the same time the FRP contribution to the oVdastral pressure is around 65% (0.89 ksi to
1.37 ksi). The curve is underestimating the actxgkerimental data by 9% for strength and 21%
for the strain. The theoretical strength is 8.9 (&i.36 MPa) and the ultimate strain is 0.016
compared to 9.98 ksi (68.8 MPa) and 0.0208 fronmettperiment. This might be attributed to the
fact of neglecting thelp action, since the FRP pressure is more than 50&teatfotal confining
pressure and at the same time the cover is not somapared to the full diameter. Dependently,
the effective lateral confining pressure was ureltimated so it did not push the curve further
closer to the experimental point. Yet, if the sattine is extended it will perfectly intersect the

experimental point. This is a sign of the conseveatltimate strain prediction.
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Figure 3-21: Case 3 Stress-Strain Curve Comparéatperimental Ultimate Point

The cross section parameters in case 3 are exhetlgame as case 2 with two important
variations. FRP thickness is half that of case.Z6® mm) and the LSR spacing is 65 mm as
opposed to 100 mm for case 2. These differencesiloote to increase the LSR lateral pressure
and decrease the FRP lateral pressure. Howeveoytrall effective lateral pressure is close to
that of case 2 (1.26 ksi compared to 1.37 ksi &mec2 or 8% difference). The peak ultimate
theoretical strength and strain are 8.55 ksi aftd®.while the peak ultimate experimental
strength and strain are 7.1 ksi and 0.0132. Ther percentages are 14% and 12% for strength
and strain respectively. The ultimate theoreticahpis close to the previous case. This is due to
the fact that the decrease in the FRP lateral menfent is balanced out by the increase in LSR

lateral confinement. The ratio 8f /f'c is 0.097 which is still above but close to the AdD.2R-
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08 ratio and the contribution of the FRP is abdf#3f the total confinement. Those two ratios
are way less than those of the previous case. Evais case appears not to be conservative, the

experimental peak point is close to that of th@tbgcal peak point.
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Figure 3-22: Case 4 Stress-Strain Curve Comparéaperimental Ultimate Point
Case 4 is similar to case 2 but with 5RsBfor f'c and LSR spacing of 65 mm. The contribution
of the FRP and LSR are almost the same in this (3% and 49% for FRP and LSR
respectively). There is an obvious enhancementfa@ctesze confinement pressure compared to
case 2 (1.7 ksi compared to 1.37 ksi) due to tbheease in the peak unconfined strength and the
decrease in LSR spacing. Also there is a noticaabltease in the ultimate strength and decrease
in the ultimate strain (13.2 ksi and .0164). laiso noticed that the ratio @f /f'c decreased to

0.12 as opposed to 0.19 for case 2. The reasdmeofidcrease in ultimate strain is due to the
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increase of’c since they are inversely proportional. Howeferincreases the ultimate strength
because of the proportional relation between tleevalues.

In conclusion all the four cases were generatedrétieally according to Lam and Teng model
since the ratio ofy /f exceeded 0.08. The reason of wrapping the sectitim FRP is to
increase its ultimate strength and strain, so lgpainalue ofy; /f'¢ less than 0.08 in experimental
work or even practically will be very rare. Alsbgtconfining pressure provided by the FRP was
at least 30% of the total effective lateral pressuin general the proposed model successfully
compared to the experimental data with acceptaldeance.

Furthermore, the proposed model is compared tdulhetress-strain curves from experimental
work and another analytical modeling. The experitalenork cases are shown in Table (3-2).

Table 3-2:Experimental data used to verify the fully confimaddel

FRP TSR
D c f'c t E &u fyn S bar #
(in) | (@in) |(ksi) |(mm) | wpa (ksi) | (in)

1 303 | 25 31.7 0.762 7800®.013| 456 65 11.3

2 303 | 25 31.7 0.762 7800®.013| 456 100 11.3

3 253 | O 36 0.762 780000.013| 456 5 11.3

4 303 | 25 31.7 0.762 7800®.013| 602 70 9.5

5 303 | 25 0.8 1.524 7800@®.013| 456 65 11.3

6 303 | 25 50.8 0.762 7800®.013| 456 65 11.3

7 300 | 20 23.9 0.9 84000.015] 400 150 11.3

8 300 | 20 43.7 0.9 840Q000.015| 400 300 6.4
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Figure 3-23: Case 1 Proposed Stress-Strain Curagp@eed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-24: Case 2 Proposed Stress-Strain Curagp@ed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-25: Case 3 Proposed Stress-Strain Curagp@eed to Experimental and Eid and
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Figure 3-26: Case 4 Proposed Stress-Strain Curagp@ed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-27: Case 5 Proposed Stress-Strain Curagp@eed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-28: Case 6 Proposed Stress-Strain Curagp@eed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-29: Case 7 Proposed Stress-Strain Curagp@ed to Experimental and Eid and

Paultre (2008) theoretical ones
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Figure 3-30: Case 8 Proposed Stress-Strain Curagp@eed to Experimental and Eid and
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Figure (3-23) to (3-30) show the accuracy of theppsed model compared to experimental work
and the plasticity model proposed by Eid and Pay®008). The eight cases in table 3-2 are

taken from Eid and Paultre (2008) paper.

3-4-2 Interaction Diagram Comparisons with Experimental Work
To illustrate the results of the eccentricity bassadel, the interaction diagram is plotted using

the eccentricity model and compared to experimgyuaits.

Table 3-3: Experimental data used to verify therattion diagrams.

FR TSR Long. Steel
D c f'c t E &u fyn S # # fy
mm | mm | MPa | mm MPa | mm MPa

1 303 | 25 31.7 2*0.38178000| 0.013| 456 100 | #3 | 6#5| 423

2 303 | 25 36 2*0.38178000| 0.013| 456 100 | #3 | 6#5| 423

3 303 | 25 31.7 4*0.381178000| 0.013| 456 100 | #3 | 6#5| 423

4 303 | 25 31.7 2*0.38178000| 0.013| 456 100 | #3 | 6#5| 550

5 303 | 25 50.7 2*0.38178000| 0.013| 456 100 | #3 | 6#5| 423

6 303 | 25 31.7 2*0.38178000| 0.013| 456 65 #3 | 6#5| 423

7 303 | 25 36 2*0.38178000| 0.013| 456 65 #3 | 6#5| 423

8 303 | 25 36 4*0.38178000| 0.013| 456 65 #3 | 6#5| 423

9 303 | 25 50.7 2*0.38178000| 0.013| 456 65 #3 | 6#5| 423

10 | 303 | 25 50.7 4*0.38[178000| 0.013| 456 65 #3 | 6#5| 430
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11 | 305 | 25 34.5 | 6*0.762| 18600| 0.029| 89 3.5 #3 | 14#4| 65

12 | 355 | 25 40.3 | 1.245 25533 0.02 | 500 300 #3| 6#8 | 500

13 | 355 | 25 44.8 | 0.99 75000 0.013| 500 300 #3 | 6#8 | 500

14 | 355 | 25 40.3 | 0.5 75000 0.013| 500 300 #3 | 6#8 | 500

The first ten cases are taken from ket al (2006), case number 11 is taken fr

Saadatmanestt al (1996) and the last three cases are taken fronkisheid Yau (200:

Interaction diagram

H I H I I I I i H

[=]ulu}

Force kip

200

o ' z0 ' 40 ' &0 ' a0 ' 100 120
Fesultant Moment kip.ft

Figure 3-31: Case Rroposed Interaction Diagram comp: to Experimentapoini from Eidet

al (2006)

237



Interaction diagram
T ' T ] T T T T T T T T T

Force kip

1] ) 20 ] 0 (=il } ] a0 ] 100 120 ] 140
Resultant Moment  kip.f

Figure 3-32: Case Rroposed Interaction Diagram comp: to Experimentapoini from Eidet

al (2006)
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Figure 3-33: Case 3 Proposederaction Diagram compar to Experimentapoini from Eid et

al (2006)
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Interaction diagram
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Figure 3-34: Case Broposed Interaction Diagram compz to Experimentapoini from Eidet

al (2006)
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Figure 3-35: Case Broposed Interaction Diagram compz: to Experimentapoini from Eidet

al (2006)
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Interaction diagram
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Figure 3-36: Case 6 Proposed Interaction Diagrampemed to Experimental point from Eadl

al (2006)
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Figure 3-37: Case 7 Proposed Interaction Diagrampemed to Experimental point from Eadl

al (2006)
240



Interaction diagram
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Figure 3-38: Case Broposed Interiion Diagram compared to Experimenpaini from Eidet

al (2006)
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Figure 3-39: Case BProposed Interaction Diagram comp: to Experimentapoini from Eidet

al (2006)
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Figure 3-40: Case 1Proposed Interaction Diagram comp: to Experimentapoint from Eidet

al (2006)
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Figure 3-41: Case 1Rroposed Interaction Diagram comp: to Experimente point from

Saadatmanesdt al (1996)
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Interaction diagram
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Figure 3-42: Case 12 Proposed Interaction Diagrampared to Experimental point from

Sheikh and Yau (2002)
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Figure 3-43: Case 13 Proposed Interaction Diagrampared to Experimental point from

Sheikh and Yau (2002)
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Figure 3-44: Case 1Broposed Interaction Diagram comp: to Experimente point from
Sheikh and Yau (2002)
The upper fourteen cases, Figure-31) to Figure (3-44show the accuracy of the interact
diagramsgenerated by the proposed numal analysisand the eccentric based st-strain
model. For most of the cases the experimental podiiet outside the intaction diagram
expressing conservative approach used throughsis Figure (344) shows two experiment
points having the same load level and significantdifferent moment values which
theoretically not feasible, since the moment haseaelativly proportional to the load applie
This justifies that the load and moment valuesha inner experimental point might not

accurate.
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Chapter 4 - Circular Concrete Filled Steel Tube Columns (CFST)

4-1 Introduction

CFST columns are not a relatively new construcipproach compared to lateral steel
confined columns. There are some structures tlet G&ST columns in the early 1900s such as
Almondsbury Motorway Interchange (England), CharleRailways (Belgium) (Shams and
Saadeghvaziri 1997). The concrete was used toliz&alhe steel column against buckling.
However extensive research on CFST columns didstaot until the beginning of 1960s. With
the appearance of FRP as a more durable materthkeii980s, CFST did not capture much
attention compared to FRP. Hence, CFST column aisaig still considered a developing
subject. Research was focused on CFST axially tbadkumns and formulas were derived to
predict their ultimate capacity. In addition thé&sesome work that focuses on eccentric loading.
However, there is still need for analysis of CF®Iumns under combined force and moment as
the literature is lacking formulas and analysiscpdure in this direction. The CFST columns are
superior to conventional reinforced concrete aeglsinembers as they provide more stiffness,
ductility and energy absorption. The steel tubereseras construction formwork so there is no
need for temporary formwork. The steel tube alsdfines the concrete and shares the axial load.
The concrete, besides taking axial load, preveatsteel inward buckling. Studies showed that
the behavior of CFST columns are influenced by vigit diameter to thickness ratio, height to
width or diameter ratio, cross sectional shapes aomtrete to steel strength ratio. This study
focuses only on circular stub columns so the slaapkeheight to diameter ratio are insignificant.
Poisson’s ratio is a very important factor in ewadlog the loading behavior. During the initial

loading of CFST section, concrete has lower Poiss@tio compared to steel. Hence it expands
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laterally with no engagement from the steel. Ascksadevelop and concrete behaves
inelastically, concrete Poisson’s ratio becomesatgrethan steel’'s one and steel starts to confine
concrete. Accordingly, concrete becomes underisiiatate of stress while steel is under biaxial
stress state.

To develop a realistic estimation of the valuailbimate confined strengthy. under pure
axial compression, the Mander and Richart modelsadapted to the case of concrete filled steel
tubes and their predictions are compared to experiah data of normal and high strength
concrete. Accordingly, a modified Richart equatisrdeveloped and used to obtain predictions
for fcc. Once the augmented strendighis computed, the eccentricity model is incorpatatea
numerical procedure that combines radial loadimiteflayer method, secant stiffness procedure
and moment of area concept to incrementally-iteeitigenerate the moment-curvature response
of the column up to failure using a spectrum ofeetacities that yield the confined column
interaction diagram. This has not been studiediezarThis procedure is benchmarked by

comparing its results to some experimenet| dathariterature

4-2 Formulations

4-2-1 Finite Layer Approach (Fiber Model)
The column cross section is divided into a fimtenber of thin layers (Figure 4-1). The
force and moment of each layer is calculated amekdt The steel tube is divided also into small
radial segments. The advantage of that is to awwétcuracy generated from using the

approximation of the stress block method, as aessmtative of the compression zone and to
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precisely calculate the internal forces inducedstael tube segments and concrete layers in the

column cross section.

extreme fiber

-

Figure 4-1: Using Finite Layer approach in analy6€EST section)

4-2-2 Present Confinement Model for Concentric Columns

4-2-2-1 Mander Model for transversely reinforced steel

Mander model (1988) was developed based on teetaft lateral confinement pressure
(f ') and the confinement effective coefficiemt)(which is the same concept found by
Sheikh and Uzumeri (1982). The advantage of trosquture is its applicability to any cross
section since it defines the lateral pressure basethe section geometry. Mandet al.
(1988) showed the adaptability of their model t@wliar or rectangular sections, under static
or dynamic loading, either monotonically or cycligaapplied. In order to develop a full
stress-strain curve and to assess ductility, anggr@lance approach is used to predict the

maximum longitudinal compressive strain in the cete

Mander derived the longitudinal compressive comcsttess-strain equation from Popovics

model that was originally developed for unconfimedcrete (1973):
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f = cc
Cor—14x
X=— 4-2
gCC
r = E. 4-3
Ec - Esec
E =4723/f. in MPa 4-4
fCC
Esec:_ 4-5
&

cc

and as suggested by Richat al (1928) the strain corresponding to the peak oeuafi

compressive strengtffid):

Eee = gm{1+ 5{% —1H 4-6

The different parameters of this model are defingeigure (4-2).
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Figure 4-2: Axial Stress-Strain Model proposed bgnideret al (1988) for monotonic loading

As shown in Figure (4-2) Mandet al (1988) model has two curves; one for unconfined

concrete (lower curve) and the other for confinedarete (upper one). The upper one refers to
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the behavior of confined concrete with concenwaxding (no eccentricity). It is shown that it has
ascending branch with varying slope starting fi&naecreasing till it reaches the peak confined
strength at f(,, &¢. Then the slope becomes slightly negative in descending branch
representing ductility till the strain ef, where first hoop fractures. The lower curve expess
the unconfined concrete behavior. It has the sasoenaing branch as the confined concrete
curve till it peaks atf{c, &o). Then, the curve descends till 1.5:2A straight line is assumed
after that till zero strength at spalling straip

The rest of this section discusses the spiral ayaps effectiveness as they were originally
explained in Mandeet al (1988). However the adaptability of this modelfiiothe CFST
columns is explaind in section 3.4.1.

Mander et al. (1988) utilized an approach similar to that of iBhaend Uzumeri (1982) to
determine effective lateral confinement pressutewds assumed that the area of confined
concrete is the area within the centerlines ofrpeter of spiral or hoop reinforcemef. as

illustrated in Figure (4-3).

Effectively W . P
Confined Core
T 4

45° 37
Effectively
Confined Core, Smallest Length Smallest Length

for Confined Core for Confined Core
ds:

Figure 4-3: Effectively confined core for circulamop and spiral reinforcement (Mander Model)
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Figure (4-3) shows that effectively confined caater coreAe  in between hoops or
spirals, is smaller than the area of core withinteelines of perimeter spiral or hoops excluding
longitudinal steel area... To satisfy that condition, the effective latecahfinement pressure

,F'1 ,should be a percentage of the lateral predsure
f =k,f 4-7

and the confinement effectiveness coefficians defined as the ratio of effective confined area

A, to the area enclosed by centerlines of spir@loop,Ac.:

Kk, = % 4-8
Ac=A-A =7 d2-A 49
A= Al-pe) 411

where A; is the area of the section core enclosed by spioal hoops,Aq is the area of

longitudinal steel angc.is the ratio of longitudinal steel to the arealw tore.

| _—
)_L—

For hoop case, the effective lateral confined core:

1] 1]
& T T
[

Smallest Length Smallest Length
for Confined Core for Confined Core

Figure 4-4: Effective lateral confined core for pbaand spiral reinforcement (Mander Model)
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, 2 , 2
/4 S S
“Td1-=> | =Al1-> ]
A= ( 2de ( 2dj 4-12

4-13

wheres’ is the clear spacing between spiral or hoop badsla is the core diameter tospiral or

hoops centerline. While for spiral case it can @ from Figure 4-4) that:

, 2
T S T 2s' s?
Tg1-= | =Zg3 1= ]
A 4 ( 4de 4 ( ad 16d2] 4-14

and the last term can be neglected so the valkgi®found from the following equation:

R
1o
Ko=—> 4-15
1- pcc
tyhASP
fi ds [S
|
fynlisp

Figure 4-5: Confinement forces on concrete fromutar hoop reinforcement
Figure (4-5) illustrates force equilibrium on afhiairn of a circular hoop. The uniform
hoop tension at yield generated in the transvdess should be balanced by the uniform lateral

stress on the concrete core:
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2f A, = fisd 4-16

_2f,A,

f|
sd

4-17

S

and the ratio of the volume of transverse stegh&volume of confined core arggcan be

expressed as

p — Aspﬂds — 4&{)
S zsdz Sds 4-18
hence
1
fi = > Ps Fyn 4-19

and from Equation (4-7), can be found:

£ = Zkp,f

| 2 yh 4-20

The maximum confined compressive strength can berithed as a function of the peak

unconfined strength and the uniform effective lateonfinement pressure:

foo = fc'[—1.254+ 2254 [1+ 7'9f4.f' —2:',] 4-21

Manderet al (1988) proposed an energy balancing theory tdigréhe ultimate confined strain,

which is determined at the first hoop fracture. yisated that the additional ductility for
confined concrete results from the additional stramergy stored in the hoopk, Therefore

from equilibrium:

Ug,=U,-U_, 4-22
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whereUy is the external work done in the concrete to tracthe hoop, and, is the work done
to cause failure to the unconfined concrétg.can be represented by the area under the tension

stress strain curve for the transverse steel betzew and fracture straig:.

Est

U sh — psA%c J fsd‘c" 4-23
0

while Ug is equal to the area under the confined stresgnsturve plus the area under the
longitudinal steel stress strain curve:

Escu Escu

Uy = [ foAde+ [ f,Ade 4-24
0

0

similarly, it was proven experimentally thag, is equal to:

Espall

U, = Ay | fode = AL0017 T, inmpa .95
0

and

U sh — psA:c JS. fsdg :110105A:c 4-26
0

Substituting Equations (4-23), (4-24) and (4-2%9 iBquation (4-27)

SCU gCU

110p, = [ fde + [ f,de—0.017f, 497
0 0

wherefy is the stress in the longitudinal steel. Equa(#27) can be solved numerically fay;.

The above equations (4-22) to (4-27) are develogaty Sl units
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4-2-2-2 Lam and Teng Model

Lam and Teng (2003) proposed a new model for comeveapped with Fiber Reinforced

Polymer (FRP). This model is adopted by ACI 44008Reode for FRP wrapping. The stress-

strain equations are as follow:

2
f =E.e, _@55 .
4f, O<e <¢ 4-28
f.=f, +E.e, £ <& <€y 4-29
f.— f.
E,=—4—° 4-30
gCCU
. 2f
g '=
E.-E, 4-31

where ¢ is the transition strain. To find the maximum d¢oafl concrete compressive

strength
f..=f +33¥«,f 4-32
2Ent; s,
| D 4-33

Axial Stres:

N
|
|
|

\

\

\

|
€lc &t 0.003 Eccu
Axial Strain

Figure 4-6:Axial Stress-Strain Model proposed bynland Teng (2003).
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fi is the maximum confined pressuk.is tensile modulus of elasticity of FRE, is the
efficiency factor accounts for the geometry of #extion and it is equal to 1 in case of the
circular cross sectiom is the number of plies usetljs the nominal thickness of one pD,is
the cross section diameter of the colummis a reduction factor determined by the code to be
0.95. g is the effective strain level at failure and igisen by:
e =K. Eq, 4-34
k. IS a reduction factor that considers the premafaitare of the FRP.ACI 440.2R-08
implements an average valuexf= 0.586 based on Lam and Teng (2003 a) findings found
experimentally to range between 0.57 and 0.61hdukl be noted that the lowest level of
confinement pressurd)(required is equal to 0.(8& to avoid having a descending branch in the
stress strain curve. This note is verified by Sstoée and Monti (1999). The maximum
compressive strairg,, can be found by:

045
_ ] f| gfe _
ooy = 62 150+126, 1| == 4-35
&

Cc C

And to avoid excessive cracking, this strain shdnddimited to:

<001

gCCU -
wherex, accounts for the geometry of the cross sectiahiarequal to 1 for circular

columns.

4-2-3Present Confinement Model for Eccentric Columns
Unlike concentric loading, the eccentric loadinggm@ates bending moment in addition to
axial loading. Columns subjected to eccentric Iogdibehave differently from those

concentrically loaded, as the shape of the strassnscurve for fully confined reinforced
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concrete (concentric loading) shows higher peangth and more ductility than the unconfined

one (infinite eccentricity). Most of the previousidies were based on the uniform distribution of

compressive strain across the column section.

7

~
N\

7

.

/
|

%

Figure 4-7: Effect of compression zone depth orcoete strength

Figure (4-7) illustrates three different sections under comerbad, combination of

axial load and bending moment and pure bending mgntiee highlighted fiber in the three

cases has the same strain. Any current confinemedel yields the same stress for these three

fibers. So the depth or size of compression zores aat have any role in predicting the stress.

Hence, it is more realistic to relate the strengid ductility in a new model to the level of

confinement utilization and compression zone.

al
N

/

o
J

Figure 4-8: Amount of confinement gets engagedfferént cases
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By definition, confinement gets engaged only whember is subjected to compression.
Compressed members tend to expand in lateral dingcand if confined, confinement will
prevent this expansion to different levels basedtlom degree of compressive force and
confinement strength as well. For fully compressedmbers (Figure 4-8 c), confinement
becomes effective 100% as it all acts to preveet ldieral expansion. Whereas members
subjected to compression and tension, when theaalenis lies inside the section perimeter,
only adjacent confinement to the compression zoets g@ngaged. Accordingly, members
become partially confined.

In CFST literature, various models were impleménie assess the ultimate confined
capacity of columns under concentric axial load. e other hand the effect of partial
confinement in case of eccentric load (combinedalaload and bending moments) is not
investigated in any proposed model. Therefores fiartinent to relate the strength and ductility
of reinforced concrete to the degree of confinenaditization in a new model.

The two curves of fully confined and unconfinechoete in any proposed model are
used in the eccentricity-based model as upper emerl bounds. The upper curve refers to
concentrically loaded confined concrete (zero ecimty), while the lower one refers to pure
bending applied on concrete (infinite eccentricity) between the two boundaries, infinite
numbers of stress-strain curves can be generats®t ban the eccentricity, which is found to
directly relate to the size of compression zongufé (4-9). The higher the eccentricity the
smaller the confined concrete region in compresshacordingly, the ultimate confined strength
is gradually reduced from the fully confined valueto the unconfined valui; as a function of
eccentricity to diameter ratio. In addition thembite strain is reduced linearly from the ultimate

straingy for confined concrete to the ultimate strain foconfined concrete 1§, or 0.003.
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Figure 4-9: Relation between the compression aa to the normalized eccentricity
Figure (4-9) shows that the compression area ttothaéarea decreases linearly with the increase
in normalized eccentricity. This relation is almbsear as it is depicted by the solid line. Hence,
the eccentricity can be related simply to the casgion zone area as explained in the following

section.

4-2-3-1 Eccentric Model based on Mander Equations
The equation that defines the eccentric peak sﬂhneng according to the eccentricity is simply

: s 1 1 .
a mixture rule: f . = foo + f. 4-36
e D
1+ — 1+—
D €

wheree is the eccentricityD is the column diameter anE is the eccentric peak strength at the

eccentricity €). The corresponding stra’ni Is given by

Eo = EC{H '5[ ‘; - 1ﬂ 4-37
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and the maximum strain corresponding to the reduaecentricity will be a linear function of
the stress corresponding to maximum strain foryfatinfined concreté,, and the stress at the

maximum unconfined straifig,o at o= 0.003

_ -1
Esec '
Eres foo
Ey = € %—I’+l ESecu :M 4-38
I £o,—0.003
€y
f, — E.., * 0003
C=
Esecu
f - E
Eec = i r= <
e Ec - Esec

In order to verify the accuracy of the model atéireme cases, the eccentricity is first set to be

zero. The coefficient df ;. will be zero and equation (4-36), (4-37) and (4-88) reduce to be:

f_=f 4-39
oo = o 4-40
£, =&, 4-41

On the other hand, if the eccentricity is set tonbaity the other coefficient of,c will be

zero, and the strength, corresponding strain aotlithyequations will be:

foo = fe 4-42
£ =6 4-43
&, = 0003 4-44
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Fully Confined Concrete
fcc -

L
A4

Compressive Stress

/" Unconfined Concrete

Eco 0003 Esp ?m? Ecc Eau Ecu
Compressive Strain

Figure 4-10: Eccentricity Based Confined -Mander klod

Any point on the generated eccentric curves carahmilated using the following equation:

¢ fXr
b — 4-45
r—1+x
where
X == 4-46
ECC
- E
r=——= 4-47
Ec - Esec
E - T 4-48
ec” — -
&

4-2-3-2 Eccentric Model Based on Lam and Teng Equations
The ultimate eccentric or partially confined sgﬂsnf_cc is determined from the

following equation:

f_cczlf 1

1+ ° 1+—
D

4-49
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wheree is the eccentricityD is the column diameter anE is the eccentric peak strength at the

eccentricity (e).
The strairg,, corresponding to the peak partially confined siteif.., which corresponds to the
ultimate point on the curve, Figure (4-11), is giviey linear interpolation between the two

extreme bounds of strain:

£ = oo = 1 (£, — 0.003+ 0.003 4-50

~\Cccu
fcc - fc

Any point on the generated eccentric curves caralmilated using the following equations:

f.=E. —@53

4t O<e, <é. 4-51
f.="1 +E,s, g_t'ggc S: 4-52
— f.-f
J 4-53
— 2f
= 4-54
Ec - EZ
fCC ************
wn il
8 foor = ~
= — |
= — |
< f'c ‘j// \ \
< I -
B
I | f 1
Elcg't 0.003 Ecu Eccu
Axial Strain

Figure 4-11: Eccentricity Based Confined -Lam aredd Model-
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4-2-4 Moment of Area Theorem
The very general axial stress equation in a symoaétection subjected to axial forBe
and uniaxial bendintylx (Hardy Cross 1930):

P M,
;=7
A |

X

o y 4-55

o, = normal stress at any point (a) in cross section

P =applied load.

A = cross sectional area.

M, = bending moment about x-axis

y = distance between the point (a) and the cetalotaxis
I, = moment of inertia about the centroidal x-axis

Rewriting Equation (4-55) to determine the strdiargy point in the cross section:

P M,
£,=—+
EA EI

y 4-56

In case of linear elastic analysis,in EA or EI expressions is constarE<E.). However, if the

section has variable strain and stress profilajllitamount to variableE profile (per layer) in

nonlinear analysis. Accordingly, the section par@msemust incIudE EA, Z El, for a more

generalized theory (Rasheed and Dinno 1994). Natethe linear strain profile of the section

from Equation (4-56) yields a distinct constantveture:

MX
g, =

El 35
M, =¢,El, 4-58
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where ¢, = x- curvature

Rewriting equation (4-56) in terms @f

P
L 4-59
£ =t Y

Finding &, at the centroid, since= 0.

_ P
%o T EA 4-60

Finding & at the geometric centroigl,= y

P

—_ Ca Y
o= Ea t Y

Solving forP at the geometric centroid;

P=EAs, — EAYp,

4-61
3_0 IS the axial strain at the geometric centroid
But
EAM, = EAy y=Y,-Y,

Yg is the vertical distance to the geometric centro@hsured from bottom extreme fiber afud
is the vertical distance to the inelastic centmiglasured from the bottom extreme fiber, Figure
(4-12)
The general formula of the moments about the ga@netxis is derived as follows:
when the moment is transferred from the centroithéogeometric centroid ,Figure (4-12)
M, =M, ~Py 4-62

Substituting equation (4-58) and (4-61) in (4-6@)ds:
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M, =—EAM, z, +(EI, + EAM, y)p, 463

Figure 4-12: Transfering moment from centroid te geometric centroid

The termEl, + EAMXY/ represents thE_IX about the geometric centroid using the paralle$ axi

theorem. Using equations (4-61) and (4-63) yidh@sMoment of Area equation:

P EA -EAM, |[¢.

— | = — " ° 4-64
|:M>J {_ EAMX Elx }|:¢x}

Since the moment of area about the actual cemtianiishes (Rasheed and Dinno 1994),
Equation (4-64) reduces to an uncoupled set whenapplied back at the actual centroid since

EAM, vanish about the centroid.
P EA
_ 0% 4-65
M, 0 El,||¢,

which is simply equations (4-58) and (4-60)
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4-3 Numerical Model Formulation

4-3-1 Model Formulation

NNERN

INSEEERE

Figure 4-13: 3D Sectional elevation and plan foSCEolumn.

Using equilibrium in the free body diagram in Figy4-13):

2f ts=sd, f, 4-66

Rearranging equation (4-66) by solving for

o 20t
' d, 4-67

Since the confinement coefficiektis equal to 1 for steel tube confinement case:

4-68

Equation (4-68) means that the whole cross seieffectively confined, hence:
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T d 4-69

Equation (4-69) represents the effective laterasgure induced by the steel. To evaluate the
peak ultimate concrete confined strength, two wetw equations are adapted. These equations

are Mander and Richart equations and they hav®liogving formulas:

C e fl' fI'
fo= fc[— 1254+ 2.254 [1+ 794 Zf_c} (Mander) 4-70

o f;
foe = fc[” 4'1T] (Richart) 4-71

C

The literature showed that Mander equation iszatili in several studies to represent CFST
confined cases. In addition, Richart formula isduseother studies with coefficient adaption to
best fit experimental results. These two equatiares adopted herein, plotted and compared
against the experimental results shown in Tablé&)(4Fhis experimental data is taken from

several references as detailed below

Table 4-1: CFST Experimental data

case | t fy D f'e fi
filfc | Dt
in.(mm) | ksi (MPa) |in. (mm) | ksi (MPa) | ksi (MPa)

1 0.26(6.5) | 45.4(313)| 5.5(140) 3.45(23.8) 4.65(8p|0.35 | 21.54

2 0.2(5) 38.5(265.8) 7.87(200)| 3.94(27.15) 2.03(14) | 0.52| 40

3 0.12(3) | 37.4(285) | 5.5(140] 4.1(28.18) 1.85(12]7®Y5 | 46.67

4 0.16(4) | 39.5(272.6)11(280) | 4.52(31.15)1.16(8.02) | 0.26| 70

5 0.12(3) | 33.6(232) | 11.8(300).00(27.23) 0.7(4.73) | 0.17| 100
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6 0.08(2) | 49.6(341.7)11.8(300)] 4.00(27.23) 0.67(4.62) | 0.17] 150

7 0.11(2.82) 52.7(363.3) 6.5(165) | 7.00(48.3)| 1.83(12.63D.26 | 58.5

8 0.08(1.94) 37.2(256.4) 7.5(190) | 6.00(41) | 0.77(5.29] 0.18 979
9 0.06(1.52) 44.4(306.1) 7.5(190) | 7.00(48.3)| 0.72(4.94) 0.1] 125
10 | 0.04(1.13) 26.9(185.7) 7.5(190) | 6.00(41) | 0.32(2.2)| 0.05 168.1
11 | 0.03(0.86) 30.6(210.7) 7.5(190) | 6.00(41) | 0.28(1.92] 0.05 220.9
12 | 0.11(2.82) 52.7(363.3) 6.5(165) | 11.6(80.2)| 1.83(12.6) 0.18 58)51
13 | 0.08(1.94) 37.2(256.4) 7.5(190) | 10.8(74.7)| 0.77(5.29) 0.07 97/94
14 | 0.06(1.52) 44.4(306.1) 7.5(190) | 11.6(80.2)| 0.72(4.94) 0.0p 125
15 | 0.04(1.13) 26.9(185.7) 7.5(190) | 11.6(80.2)| 0.32(2.2)| 0.02868.1
16 | 0.03(0.86) 30.6(210.7) 7.5(190) | 11.6(80.2)| 0.28(1.92) 0.08 220.9
17 | 0.11(2.82) 52.7(363.3) 6.5(165) | 15.7(108) | 1.83(12.6) 0.12 58)51
18 | 0.08(1.94) 37.2(256.4) 7.5(190) | 15.7(108) | 0.77(5.29) 0.06 97/94
19 | 0.06(1.52) 44.4(306.1) 7.5(190) | 15.7(108) | 0.72(4.94) 0.05 125
20 | 0.04(1.13) 26.9(185.7) 7.5(190) | 15.7(108) | 0.32(2.2)| 0.0 168.1
21 | 0.03(0.86) 30.6(210.7) 7.5(190) | 15.7(108) | 0.28(1.92] 0.02 220.9
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Cases 1, 3 and 5 are from Schneider's work (1998%es 2, 4 and 6 are taken from
Huanget al’'s work (2002). The rest of the cases are from O’sirehBridge’s work (2000).
The experimental data is classified according ® ¢bncrete strength to normal and high
strength concrete and is analyzed separately. ineate compressive confined strength)(
is plotted against unconfined strength)(in Figure (4-14), for normal strength concreted a

(4-15), for high strength concrete.

180 I ' '
® Richart
160 L ®  Mander
¢ mod Richart
= 140 A Mod Mander
) X  Exp
S
a 120 —-—-— Linear (mod Richart)
g 00 L L Linear (Mod Mander) |
ﬁ . ° Linear (Exp)
B 80 —
g | N ] -
S 60 7Y $
2 A 88 |,
E 40 e A
= * 2
> 20
0
20 25 30 35 40 45 >0

Ulimate unconfined Strength (f'c)

Figure 4-14f .. vsf' . for normal strength concrete
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5 140 A
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3 100 =
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E 80
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S 60 Mander
= Mod Richart
E 40
£ Mod Mander
5 L Exp with no steel
I Linear (Mod Richart)
o4 @ o Linear (Mod Mander)
€0 100 110 120

70Ulimate ur?c%nfined Str&Qch (f'c)
Figure 4-15f .. vsf'; for high strength concrete
The best equations fitting the best fit line of esimental data are those of the modified Richart
as follows:
For normal strength concrete

D f,
foo = f{1+1TJ 4-72

C

For high strength concrete

o f
fl = f{1+ 0.9?j 473

Cc
It is observed from the literature that theretare different patterns for the stress-
strain curves as shown in Figure (4-16). Patteastending up to failure (case 1 and 2 from

Table 4-1). Pattern 2; ascending then softenirgy attak (case 4 and 5 from Table 4-1)
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Figure 4-16: CFST Stress-strain Curve for differeages from Table 4-1

a) casel b) case 2 c)cased4 d)caseb5

It can be seen from Table 4-1 that the cut oftigadffi/f’' . that determines the sterss-
strain pattern is 0.4. The reason of selectingghiameter is to impose the impact of the most
influencing parameter that affect the CFST behavarcording to equation (4-69¥, is a

function of steel yield strength, tube thicknesd eolumn diameter. Hence; the vafug. is a

good representitve measure of all column parameters

Case 1,2 and 3 from Table (4-1) are plotted ukarg and Teng Model that describes the
same behavior of CFST pattern 1 and compared t@xperimental stress-strain curves. It is

evident from Figure (4-17), (4-18) and (4-19) thatm and Teng Equations are well correlating
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to the experimental curves. Hence, Lam and Ten@fitins can be used to express pattern 1.

Besides that, Mander model is used to expressrpéte
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Figure 4-17: Case 1 Stress-Strain curve using LiaoT@ng equations compared to Experimetal

curve.
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Figure 4-18: Case 2 Stress-Strain curve using LiaaT@ng equations compared to Experimetal

curve.
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Figure 4-19: Case 3 StreS¢rain curve using Lam and Teng equations compar&sperimeta

curve.
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Figure4-20: CFST Model Flowchart
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4-3-2 Numerical Analysis
The cross section analyzed is loaded incremenigllgnaintaining a certain eccentricity
between the axial force and the resultant momekltg. Since increasing the load and resultant
moment causes the neutral axis and centroid tonamiinearly, the generalized moment of area

theorem is devised.
The method is developed using incremental iteradivalysis algorithm, secant stiffness

approach and proportional or radial loading. Explained in the following steps (Figure 4-24):
1- Calculating the initial section properties:

e Elastic axial rigidityEA:

EA=Y Ewt +> EA, 4-74

E. = initial modulus of elasticity of the concrete

E, = initial modulus of elasticity of the steel rebar

The depth of the elastic centroid position from thettom fiber of the sectionY,

Z ECVViti (H _YI) +Z ESA\JW(H _Ysi)

Y, 4-75
EA
e Elastic flexural rigidity about the elastic centtdil:
Elx ZZECV\/ItI(H _Yi _Yc)2+zEsAsi(H _Ysi_Yc)2 4-76

Typically Yc= H/2.
e The depth of the geometric section centroid pasittom the bottom fiber of the section

Yc:

2 4-77
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Extreme Fiber

Centroid — {

\I\/I

Figure 4-21: Geometric properties of concrete layers and steel tube
2- Calculatingf; / f'c and check the ratio against 0.4 to decide which model is used
(Eccentric model based on Lam and Teng Equations or Eccentric ivaskd on
Mander Equations), Figure (4-20).
3- Defining eccentricitye, which specifies the radial path of loading on the interaction

diagram.

Axial Force

Load Stepr GP
Resultant Moment

Figure 4-22: Radial loading concept

4- Defining loading stepGP as small portion of the maximum load, and computing

the axial force at the geometric centroid.

—~GP,, +AGP 4-78
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5- Calculating momen&M about the geometric centroid.

GM,

6- Transferring moment to the updated inelastic centroid and calagylétie new

transferred mometMy :
™, =GM, +GH(Y; -Y,) 4-80
The advantage of transferring the moment to the position of thetinalastroid is to eliminate

the coupling effect between the force and moment, diskl, =0 about the inelastic centroid

e 5 e ]2

€ec
™

P%

H i )
P (> 1: |
GMy ’ t |

G TC

€es

Figure 4-23: Moment transferring from geometric centroid to inelasticaid

7- Finding the Curvatureg,

™
= X 4-82
=

X—current

Strain at the inelastic centraig, the extreme compression fiber strain and strain at the

extreme level of steel in tensiep are found as follow:
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GP

g, =

EAcurrent 4'83
Eee =€, T ¢x (H o Yc) 4-84
E,=6,—9Y 4-85

where cover is up to center of bars

8- Calculating strain &, and corresponding stress f; in each layer of concrete section by

using selected model from step 2.

gci = gec - ¢AK 4'86

9- Calculating strain ¢ and corresponding stress f;; in each steel tube segment in the

given section by using the steel model (Elastic up to yield strength and then perfectly
plastic)

gsi = gec - ¢A‘YSi
4-87

10- Calculating the new section properties: axial rigidity £4, flexural rigidity about the
inelastic centroid EI, , moment of axial rigidity about inelastic centroid EAM,,

internal axial force F., internal bending moments about the inelastic centroid M, ,

EA=YE,wt +y E A,

4-88

EAMx :ZEthtz(H_K _K)+ZEVIAVI(H_YL _Yw) 4_89

Fz = chiwiti +Z.fsiAsi 4_90
El, = zEciWiti(H_Yc _Yi)2 +zEsiAsi(H_Yc _Ysi)z

i i 4-91

Mox=chiWiti(H_Yc_Yi) +Z So(H =Y, =Y,) 4-92

where E.; = secant modulus of elasticity of the concrete layer.
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Ei= secant modulus of elasticity of the steel tube segment.

11-Transferring back the internal moment about the geometric centroid

GM,, =M, —GR(Y; -Y;) 4-93
12-Checking the convergence of the inelastic centroid

TOL, = EAM, / EAVY, 4-94

13-Comparing the internal force to applied force, internal monterdpplied moments,

and making sure that the moments are calculated about the geometric centroid :

* 5
GP —F, <1*10° 4.5
5
GM, —GM_ <1*10 496
5
Tol, <1*10° 407

If Equations (4-95), (4-96) and (4-97) are not satisfied, the locafitineoinelastic centroid is

updated bYEAM/EA and steps 6 to 11 are repeated untill Equations (4-95), (4-96) and §4e97)

satisfied.
_y LEAM, 4-98
new old EA

Once equilibrium is reached, the algorithm checks for ultimaténsin concretes,, and steel

£, ot to exceedg_CC (or g_cu based on the selected model) and 0.05 respectively. Then, it
increases the loading bGP and runs the analysis for the new load level using the latest
section properties. Otherwise, ik, equaISg_cc(or g_cu based on the selected model) &t

equals 0.05, the target force and resultant moment are reachedoas an the interaction

diagram is attained for the amount of eccentricity used.
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Calculate initial
section properties

EAEIlx, Y Yo,

L

Input
e & P
L

Transfer moment
to inelastic centroid

TMx=GM x+P(YG-Yc)

L

Calculate
Dx,€0,Eec,Ees

€

Calculate

€ci, Esiyf ci,f s

N2
Calculate new
section properties

EA,Elx, EAM

€

Calculate internal
force and moments

F:M ox
€L
Transfer moment No convergance
back to G.C. achieved. stop

GM ox=M ox -P(YG-Ye)

Ye+r-EAMx/EA

Figure 4-24:

P & M achieved

New eccintricity

End

Flowchart of CFST columns analysis
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The proposed numerical algorithm explained in section (4-3-2) is cenchpaith

4-4 Results and Discussion

4-4-1 Comparisons with Experimental Work

experimental data shown in Table (4-2)

Table 4-2: Experimental data for CFST

fy f'c fi

case| D t Ksi ksi L/D | D/t | ksi f offy filfy filfe
in.(mm)| in.(mm) | (MPa) (MPa) (MPa)

1 6.5 0.11 52.7 7 35 | 585| 1.83 0.133 | 0.035 0.26
(165) | (2.82) (363.3) | (48.3) (12.6)

2 6.5 0.11 52.7 11.63 3.5 | 585 | 1.83 0.22 0.035 0.16
(165) | (2.82) (363.3) | (80.2) (12.6)

3 6.5 0.11 52.7 15.7 35 | 585]| 1.83 0.3 0.035 0.12
(165) | (2.82) (363.3) | (108) (12.6)

4 7.48 .076 37.19 5.95 3.48|97.9 | 0.77 0.16 0.02 0.13
(190) | (1.94) (256.4) | (41) (5.29)

5 7.48 .076 37.19 10.83 3.49/979 | 0.77 0.29 0.02 0.07
(190) | (1.94) (256.4) | (74.7) (5.29)

6 7.48 .076 37.19 15.66 3.49/979 | 0.77 0.42 0.02 0.05
(190) | (1.94) (256.4) | (108) (5.29)

7 7.48 .076 44.39 7 3.49| 125 | 0.72 0.16 0.016 0.1
(190) | (1.94) (306) (48.3) (4.94)
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8 |7.48 |.076 4439 [11.6 3.49[125 [ 0.72 0.26 | 0.016 0.06
(190) |(1.94) |(306) |(80.2) (4.94)

9 |7.48 |.076 4439 |16.34 |3.49(125 | 0.72 0.35 | 0.016 0.045
(190) |(1.94) |(306) |(112.7) (4.94)

10 | 7.48 |.044 269 |5.95 3.49| 168 | 0.32 0.22 | 0.012 0.05
(190) |(1.13) |(185.7) | (41) (2.22)

11 | 7.48 |.044 269 |11.63 |35 | 168 | 0.32 |0.43 | 0.012 0.02¢
(190) |(1.13) |(185.7) | (80.2) (2.22)

12 | 7.48 |.044 3055 |5.95 3.49] 168 | 0.32 0.58 | 0.012 0.02
(190) |(1.13) |(210.7) | (41) (2.22)

13 | 7.48 |.034 3056 |10.83 |3.49|221 | 0.28 0.19 | 0.009 0.04]
(190) |(0.86) |(210.57)| (74.7) (1.92)

14 |55 |0.26 454 | 3.45 43 | 22 465 |0.08 | 0.097 1.35
(140) | (6.5) (313) | (23.8) (32.04)

15 | 7.87 |02 385 |3.94 42 |40 | 203 |01 | 0.053 0.52
(200) | (5) (265.8) | (27.15) (14)

16 |55 |0.12 374 | 452 43 | 47 | 185 |01 | 0.043 0.45
(140) | (3) (285) | (31.15) (12.76)

17 | 11 0.16 395 |45 3 |70 | 1.16 0.1 | 0.029 0.26
(280) | (4) (272.6) | (31.2) (8.02)

18 | 11.8 |0.12 3365 |4 3 |100 | 068 |01 | 0.02 0.17
(300) | (3) (232) | (27.23) (4.62)

19 | 11.8 | 0.08 49.6 4 2.d 150 0.67 0.08  0.013 0

280
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(300) | (2) (341.7) | (27.23) (4.62)

Table 4-3 shows nineteen experimental data cases collectedhiediterature. The first
thirteen cases are from O’shea and Bridge (2000) paper. Casésdat 18 are from Schneider

(1998) paper. Cases 15, 17 and 19 are taken from Huad2002) paper

= e e s
Resultant Moment  kip it

Figure 4-25: KDOT Column Expert Comparison with CFST case 1:
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E] S
Resultant Moment kip ft

Figure 4-26: KDOT Column Expert Comparison with CFST case 2

Interaction diagram
T T

20 25
Resultart Moment  kip.ft

Figure 4-27: KDOT Column Expert Comparison with CFST case 3
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Interaction diagram
T T

12 14 E
Resuttant Moment  kip.ft

Figure 4-28; KDOT Column Expert Comparison with CFST case 4

Interaction diagram
T

Figure 4-29: KDOT Column Expert Comparison with CFST case 5
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Interaction diagram
T

i 8 8 8 8 4 & 8
i S

Force kip
]

. w B B B B B %

1= 20
Resuftant Moment  kip ft

Figure 4-30: KDOT Column Expert Comparison with CFST case 6

Interaction diagram

Figure 4-31: KDOT Column Expert Comparison with CFST case 7
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Foroe kip

Interaction diagram
T

Figure 4-32: KDOT Column Expert Comparison with CFST case 8

Interaction diagram
T
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M
i
T
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Figure 4-33: KDOT Column Expert Comparison with CFST case 9
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Interaction diagram
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Figure 4-34: KDOT Column Expert Comparison with CFST case 10

Interaction diagram
T

Figure 4-35: KDOT Column Expert Comparison with CFST case 11
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Interaction diagram

Force kip

10 12 1
Resuttant Moment  kip ft

Figure 4-36: KDOT Column Expert Comparison with CFST case 12

Interaction diagram

Foroe kip

10 12 N
Resultant Moment  kip.ft

Figure 4-37: KDOT Column Expert Comparison with CFST case 13
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Interaction diagram
T
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[ E]
Resultant Moment  kip.ft

Figure 4-38: KDOT Column Expert Comparison with CFST case 14

Interaction diagram
T

1
El

25 30
Resuttant Moment  kip ft

Figure 4-39: KDOT Column Expert Comparison with CFST case 15
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Interaction diagram
T

Figure 4-40: KDOT Column Expert Comparison with CFST case 16

Interaction diagram

Figure 4-41: KDOT Column Expert Comparison with CFST case 17
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Interaction diagram
T

Foroe kip

Figure 4-42: KDOT Column Expert Comparison with CFST case 18

Interaction diagram
T

Force kip

Figure 4-43: KDOT Column Expert Comparison with CFST case 19
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Figures (4-25) to (4-43) show the interaction diagrams for thee@natases in table 4-2

with comparison to the corresponding experimental points. The interattagrams are plotted

using KDOT Column Expert software that was implemented usingntimeerical analysis

described in section 4-3-2. Several observations can be drawn:

In general there is good agreement between the theoreticaktiterdiagrams

and the corresponding experimental data.

Some experimental points lie inside the envelope of the interaction diagram which

represents slightly un-conservative cases. This can be justifiedtadube

following reasons:

1- Local buckling occurance that is not addressed by the model.

2- The effect of the biaxial stress on the steel. For the aboes,che steel is
subjected to compression axial stress and tension lateras. sTies steel
lateral strain needs to be monitored, and the analysis should aéoodme
yield strength in the lateral direction. A rough calculatiom&le to case one
to test the steel lateral strain. Some values are asssinesdthey are missing
from their source:

f.=f +f =7+183=88Xsi
It should be noted that the peak strength equation used herein is atinserv

with respect to Mander and Richart equations. The axial sitaiihe peak

confined stress is calculated based on Mander and Richart equation as follow:

el {5 o
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&o IS assumed conservatively equal to 0.002. Poisson’s ratio for concrete
in non-linear zone is equal to 0.5 (Mazzotti and Savoia 2002), so thal late
strain is equal to 0.0023, and this is the same lateral straisteel
approximately. The yield strain for the steel is calculatexdnfthe tube

properties given by the author as follow:

From the previous calculations, it is seen that the steghgsit the peak
stress is exceeding the yielding steel strain in thealatdrection. Hence,
considering the lateral steel strain to exceed yieldingwallg for free
expansion of concrete is one of the ways that may improve thesré€Shdms
and Saadeghavaziri 1997).

For heavy steel cross sections, such as case 14 and 15, theiametsgram
shape looks like the steel cross section’s W shape and the iioterdicigram is
conservative.

Overall there is good agreement between the theoretical maui@l the

experimental data.
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Chapter 5 - Rectangular Columns subjected to biaxial bending and

Axial Compression

5-1 Introduction

Rectangular reinforced concrete columns can be subjected talaxiding moments
plus axial force. When the load acts directly on one of the crasersdending axes the
problem becomes of uniaxial bending and axial force. However when ttasl@pplied
eccentrically on a point that is not along any of the bendingtaresase is generally biaxial
bending and axial force. The biaxial bending case can be found in nramcyuIes
nowadays. This case is visited extensively in the literatuide alsom the confinement
effect. The failure surface of rectangular columns is 3D seréansisted of many adjacent
2D interaction diagrams. Each of the 2D interaction diagramssepts one angle between
the bending moment about x-axis and the resultant moment. Many siatpiis are
introduced to justify the compressive trapezoidal shape of the comomefgression zone,
due to the existence of the two bending axes. Approximationsval®presented to depict
the 3D failure shape from the principal interaction diagram#herntwo axes of symmetry.
The most effective procedure found in the literature is the pnedeultimate strain profile
that determines a certain position of the neutral axis andnassigshing ultimate strain (
typically 0.003) in one of the column corners. With the advance in technalod)the
enormous speed of computations, analysis is needed to plot a moratadaiure
interaction diagram for both the unconfined and confined cases.

The methodology in this study is based on two different approachesijbsted
predefined ultimate strain profile and the moment of area gé&rsrah approaches
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described below. The two methods are compared to benchmark the momarda
generalization method that will be used in the actual capaatlysis (Confined analysis).

This analysis is compared to experimental data from the literature.

5-2 Unconfined Rectangular Columns Analysis

5-2-1 Formulations

5-2-1-1 Finite Layer Approach (Fiber Method)

The column cross section is divided into finite small-area &lats (Figure 5-1 a). The
force and moment of each filament is calculated and stored. Thes r@igatreated as discrete
objects in their actual locations. The advantage of that is t@ amaccuracy generated from
using the approximation of the stress block method, as a represeofatihe compression zone
and to well treat cases that have compressive trapezoidarayuiar shapes generated from the

neutral axis inclination (Figure 5-1 b).

a) SN RS R b) /
3 s Mx
N
4 .
Al £ .::.
wel

Figure 5-1:a) Using finite filaments in analysis  b)Trapezoidal sbbfempression zone
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5-2-1-2 Concrete Model

Concrete is analyzed using the model proposed by Hognestad thadwepted from
Ritter's Parabola 1899 (Hognestad 1951). Hognestad model is usatsiegly in numerous
papers as it well explains concrete stress-strain behavioonpression. In addition, it was

utilized by widely used concrete models such as Kent and RadlkInl971). The stress-strain

model is expressed using the following equation (Figure 5-2 a)

f = fc[zi[iﬂ 5-1
80 60
f. = stress in concrete in compression.
f.= maximum compressive strength of the concrete.
&, = strain atf;

&,= strain atf,
As shown in Figure (5-2 a) concrete carries tension up to craskiength, then it is

neglected in calculation beyond that.

a) L b) —

0. 77f’c

Axial s

Axial strain

Axial stress

€, 0.003 iy

—a Axial strain

Figure 5-2: a) Stress- strain Model for concrete by Hognestad by®éss-strain Model
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5-2-1-3 Steel Model
Steel is assumed to be elastic up to the yield stress thextpedlastic as shown in Figure (5.2
b). It is assumed that there is perfect bond between the longitstiehlbars and the concrete.
According to Bernoulli's Hypothesis, strains along the depth otttdhemn are assumed to be

distributed linearly.

5-2-2 Analysis Approaches
The process of generalization of the moment-force interactiorrasiags developed
using two different approaches; the adjusted predefined ultimadén gprofile and the
generalized moment of area methods. The common features ofatlagpnoaches are described

as follow:

5-2-2-1 Approach One: Adjusted Predefined Ultimate Strain Profile

The first approach is the well known method that was used by mesewarchers and
practicing engineers. The procedure is to assign compressiuee fatrain at one of the
column corners (0.003) and to vary the position and the inclination ahtfe neutral axis
that ranges from zero degree, parallel to the width of thexoglto ninety degrees parallel to

the height as shown in Figure (5-3).
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0.003

Figure 5-3: Different strain profiles due to different neutral axis joosit

Each set of the parallel neutral axes of a certain orienta¢presents approximately one 2D
interaction diagram, and all of the sets from zero to ninety degmepresent the 3D failure
surface in one quadrant, which is identical to the other three antadilue to the existence of
two axis of symmetry with respect of concrete and steel. Theedure is described in the
following steps:

1- Defining the strain profile for each neutral axis position and corner ultirirate applied.

2- Calculating strain and the corresponding stress in each filanferdncrete and doing the

same for each steel bar (Figure 5-4).
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Figure 5-4: Defining strain for concrete filaments and steel rel@rsdtrain profile

3- Calculating the force and the moment about the geometric centroid for eawntiland

steel bar (Figure 5-5)

for concrete: for steel
Pci = fcivviti Psi = fsipgi 5-2
chi = I:z:i *Y_i sti = Psi *Y_Si 5-3
My, =R * X _ My, =Py * X _si 5-4
B B
-X_i—Xi— 0.003 -stﬁXsi- 0.003
! o i W
| o e
Y i o o) Y_si
b I Y l
@] (@]
O O
O O

Figure 5-5: Filaments and steel rebars geometric propertiesesitiect to crushing strain point

and geometric centroid
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4- Summing up the forces and moments, from steel bars and contastents, to get the
internal force and moment about x-axis and y-axis. The resultaat &d moments represent

one point on the unconfined interaction diagram. (Figure 5-6).

Start
N

Define

Neutral axis
position & orientation

N2
Determine strain

profile based on
0.003 at a corne

N2
Calculate
8c,8s,f c,f s

L

Sum up internal
New Point >« | forces and moments

Fz,GMo«GMoyGMRr

=

End

Figure 5-6: Method one Flowchart for the predefined ultimate strain proétbod
The problem arising from this procedure is that the points developed dne set of

parallel neutral axes are close to but not lined up in one plémsever, they are scattered
tightly near that plane (Figure 5-7). To correct for that, anamesangle ofx = cos*(M, /M)

is calculated and another run is established by slightly chgrigen inclination angle of the
neutral axis of the section with respect to the y-axis amditiig till the angle determined for

each point converges to the average angleThe average angle is taken as the average of all

o angles obtained for a certdimngle orientation of the neutral axis (Figure 5-3 and Figure 5-7).
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—— Plane of the average angle
| §§ Point before correction
@ Point after correction

X “ My

Figure 5-7: 2D Interaction Diagram from Approache(efore and After Correction
The iterations mentioned above converge fast ircadles. This approach yields a very
fast computation since it directly evaluates thi#tmate unconfined strain profile. However, no

moment curvature or load-strain history responselable with this approach

5-2-2-2 Approach Two: Generalized Moment of Area Theorem

5-2-2-2-a Moment of Area Theorem
The very general axial stress equation in an unsstmeal section subjected to axial
force P and biaxial bendin$yly andMy (Hardy Cross 1930):

M. I, —M_I M, I, —M.I
O'Z:E+ Xy_gxyy+ yx_gxyx 5-5
A L, =1y L, =1y

o, = normal stress at any point (a) in cross section

P =applied load.

A = cross sectional area.
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M, = bending moment about the geometric x-axis
M, = bending moment about the geometric y-axis

X = distance between the point (a) and y-axis

y = distance between the point (a) and x-axis

I, = moment of inertia about the geometric x-axis

X

|, = moment of inertia about the geometric y-axis

|, = product moment of inertia in xy plane

Rewriting Equation (5-5) to determine the strai@y point in the cross section:

P _M.EI,-M,ElL, MEl-ME,

£, =— y+ 5-6
EA  ELEl -EI EIEl,—EI}

In case of linear elastic analysis,n EA or EI expressions is constaE<E.). However, if the

section has linear strain but nonlinear stresslpraf will amount to variabld profile (per layer

or filament) in nonlinear analysis. Accordinglyetlsection parameters must incIlEeEiA ,
i

ZEiIi for a more generalized theory (Rasheed and Dinrggl)1Note that the linear strain

profile of the section from Equation (5-6) yielagotdistinct constant curvatures:

_MEI,-M,El,
' P’ 5.7
_M,ElL-M,El
y ,62 5_8

¢,= curvature about the x-axis

¢,= curvature about the y-axis
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2 2
B =ElLEl, —El}
To prove Equations (5-7) and (5-8) above, invoke tbupled equations of moments

about the actual or current centroid (Bickford 1998

M, = ElLg +El 4, 5-9

M, = Elxy¢x+E|y¢y 5-10

In a matrix form:
[MX}_[EIX Elxy}{¢x}

M,| |El, EI, |4, £ 11
Inverting Equation (5-11)

P, 1| El, —El, |M,

é,| p?|-El, El |M, 512
which reproduces Equations (5-7) and (5-8). Remgittquation (5-6) in terms @f andg,

P
&,=—+PY+P X
L= Ea Y+,

5-13
Finding &, at the actual or current centroid, sirxce y = 0.
£, = P 5-14
EA

Finding &, at the geometric centroigh,= y
I P — —

=—+ + ¢, X
s = Tath YA
Solving forP at the geometric centroid,
P =EAz, - EAyg, — EAX, 5.15

But
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EAM, = EAy y=Y, -V,
EAM, = EAX x=Xg - X
Y is the vertical distance to the geometric centroghsured from bottom,{s the distance to
the geometric centroid measured from the crossosesteft side, ¥ is the vertical distance to

the inelastic centroid measured from the bottomni$ the horizontal distance to the inelastic

centroid measured from the cross section’s le#,digure (5-8).
Thus,
P = EAs, - EAM, ¢, - EAM ¢, 5-16

The general formula of the moments about the getmetixis and the geometric y-axis

is derived as follows:

when the moment is transferred from the centroithéogeometric centroid ,Figure (5-8 a)

M,=M, -Py 5-17
Substituting Equations (5-9) and (5-16) in (5-1iélds:

M, =ElL g, +El 4, — EAc,y+ EAM,4, y+EAM ¢ y 5-18
M, =—EAM,z, +(EI, + EAM, y), + (Elxy + EAMyWy 5-19

Similarly, (Figure 5-8 b):

Figure 5-8: Transfering moment from centroid to gle@metric centroid
303



M, =M, - Px 520
M, = El, ¢, + El ¢, — EAc,x+ EAM, 4 X+ EAM, 4, X 5 o1

M, =—EAM, z, +(EI,, + EAM, x}s, +(EI, + EAM, X}, 529

The termsEl, + EAM,yand El, +EAM, x represent theEl, and El, about the geometric
centroid respectively using the parallel axis tleeor And the termsEIxy+EAMx;< and

El,,+ EAM, y are equal given thdEAM, x= EAyx and EAM, y = EAyx. Using Equations (5-

16), (5-19) and (5-22) yields the extended germzdlmoment of area equation:

P EA -EAM, -EAM,|e,
Mx |=|-EAM,  EI, El,, | 4 5-23
M,| |-EAM, EI, El, |g,

Since the moment of area about the inelastic centranishes (Rasheed and Dinno
1994), Equation (5-23) reduces to a partially upded set when it is applied back at inelastic

the centroid sincBAM, andEAM, vanish about that centroid.

Pl [EA 0 0 e
M, |=| 0 EI, El,|g 5-24
My

Xy

0 El, El |4g,

y
which is simply Equations (5-9), (5-10) and (5-14)

5-2-2-2-b Method Two
This approach simulates the radial loading of thkeed and moments by keeping the

relative proportion between them constant during kbading. Accordingly, all the points
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comprising an interaction diagram of anglevill be exactly on that 2D interaction diagram. In
addition to the ultimate points, the complete lo@fiormation response is generated. The cross
section analyzed is loaded incrementally by manmtgi a certain eccentricity between the axial
force P and the resultant momehtz. SinceMg is generated as the resultant\bf and My, the
angle a = taril(l\/ly/MX) is kept constant for a certain 2D interaction thag And since
increasing the load and resultant moment propalipncauses the neutral axis to vary
unpredictably, the generalized moment of area #mads devised. This method is based on the
general response of rectangular unsymmetrical @ediibjected to biaxial bending and axial
compression. The asymmetry stems from the diffeoehtavior of concrete in compression and

tension.
The method is developed using incremental iteradivalysis algorithm, secant stiffness
approach and proportional or radial loading. lexplained in the following steps. (Figure 5-12

presents a flowchart of the outlined procedure):
1- Calculating the initial section properties:

= Elastic axial rigidityEA:

EA= ZECWiti +Z(ES -E,)A, 5-25

E. = initial modulus of elasticity of the concrete
E, = initial modulus of elasticity of the steel rebar

= The depth of the elastic centroid position from lle&iom fiber of the sectiovi. and from
the left side of the sectiox

D Ewit (H-Y)+> (E,.—E)A;(H-Y,)
Y — i i
¢ EA

5-26
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ZEC\Niti (B_ xi)+Z(Es - Ec)Asi(B_ xsi)
¢ =7 EA

X 5-27

whereY; andYs; are measured to the top extreme fibgr@ndX are measured to the right most
extreme fiber, see Figure (5-9)

= Elastic flexural rigidity about the elastic centt@il:

Elx = ZEC\Nlt| (H _Yi _Yc)2 +Z(Es - EC)ASl(H _Ysi _Yc)2 5-28
EIy = Z Ecvviti (B_ Xi - Xc)2 +Z(Es - Ec)Asi(B_ ><si - xc)2 5-29
Elxy = ZECVVItI (H _Yi _Yc)(B_ Xi - Xc)+Z(Es - EC)AS|(H _Ysi _Yc)(B_ Xsi - Xc) 5-30

Typically the initial elastic Y& H/2, X. = B/2 andEl,, =0

Xsj
B : B
—Xi— 0.003 0.003
5 |
Ysi
Yi
i ol | el |
% C
C 0 )
i H G
o G O o
Yc o o
Yc G
G
0 o)
7XC7
~XC— X

Figure 5-9: geometric properties of concrete filataeand steel rebars with respect to, geometric

centroid and inelastic centroid.
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The depth of the geometric section centroid pasifimm the bottom and left fibers of the

sectionYg, Xa:
Y = ﬂ 5-31
2
B
XG = E 5'32

2- Defining the eccentricitg, which specifies the radial path of loading on ititeraction

diagram. Also, defining the anglein between the resultant mom&tr andGMy

Axial Force

Load Stepr GP
Resultant Moment

Figure 5-10: Radial loading concept

3- Defining the loading stepGP as a small portion of tieeximum load, and computing
the axial force at the geometric centroid.

new

4- Calculating the momer@&Mg about the geometric centroid.

_ GM,

e GP GMR =e*GP 5-34
GMX ZGMRCOSCZ 5-35
GMY =GM « lana 5-36
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5- Transferring the moments to the inelastic centamd calculating the new transferred

momentsTMyxandTMy :
™™, =GM, +GR(Y; -Y,) 5.37
™M, =GM, +GP(X; — X,) 5.38

The advantage of transferring the moment to thé@iposof the inelastic centroid is to eliminate

the coupling effect between the force and the tvoments, since EAM, = EAM, =0 about

the inelastic centroid

P] [EA 0 0 e
™, |=| 0 EI, El, |4 5-39

X

T™,| | 0 El, El |4g,
v £
GM,

VXGA

Figure 5-11 Moment transferring from geometric oc&idtto inelastic centroid

6- Finding: Curvatures¢x and ¢v

™ ™
¢x: 2X *EIY_—ZY* Elyy
p B 5-40
™ ™
o, =—2Y* El, - 2X *El,, 5-41
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B? =EIEl, —El, 5-42

Strain at the inelastic centraig , the extreme c@sgion fiber straig

ec !

and strain at

the extreme level of steel in tensign  are fountbhsw:

, _GP

° EA 5-43
Eec =6, + P (H-Y,)+9,(B-X,) 5.44
Ees =&, — @ (Y, —Cove) - ¢, (X —Cove) 5-45

Where cover is up to center of bars
7- Calculating strains,; and corresponding strigsi® each filament of concrete section by

using Hognestad’s model (equation 5-1) in casenobnfined analysis

_g TMX(H_YC_YI)EI TMy(B_XC_Xi)EI _TMx(B_XC_Xi)EI

g = + 2 Y+ 2 X 2 14
EA B B B

T™M (H =Y, -Y,

Ry

5-46

8- Calculating straing, and corresponding stréssn each bar in the given section by

using the steel model shown in Figure (5-2b).
e _g_i_TMx(H - Y, _Ysi) TMy(B_Xc_Xsi)
si T EA ,32 ,32
™ (H =Y, =Y,
_ y( IBZ c S|)E|xy

El, + El, - El

g N 5-47

9- Calculating the new section properties: axial fitgidEA flexural rigidities about the
inelastic centroicEly, Ely, Ely, moment of axial rigidity about inelastic centrdzd\M,

EAM,, internal axial forcd=;, internal bending moments about the inelastic oghivlyy

,Moy:
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EA=D E wt; + > (Ey—E)A

EAM, =D Ewit (H =Y, =Y)+ > (Eg - E) Au(H =Y - Y)
EAM, = > E,wt (B— X, = X))+ X (Ey — Eq)Au(B— X, = Xy)
Fo=2 fawit + X (fg — fa) A

Bl =2 Eawiti (H =Y, =Y)? + 3 (B — By ) Ay (H - Y, - Yg)°
Ely =3 EaWit; (B- X = X)" + 2 (Eg ~ E)Ay(H = X, = X)?

Elxy = ZEci\Niti (H _Yc _Y|)(B_ Xc - XI)

+Z(Esi —Ej)A(H =Y, —Ysi)(B— X, — Xsi)
Mo =3 Wt (H =Y, ¥)+ 3 (f, — LA (H -, -Y,)

|\/loy :Z fcivviti(B_xc_xi)"'Z(fsi - fci)Asi(B_xc_xsi)

where E; = secant modulus of elasticity of the concretenfiat.

Ei = secant modulus of elasticity of the steel bar.

10-Transferring back the internal moment about thergeac centroid

GM, =M_ —GP(Y;-Y,)
GM,, =M, —GP(X, - X,)

oy oy

11-Checking the convergence of the inelastic centroid
TOL, = EAM, / EA/Y,
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TOL, = EAM, /EA/ X, 560

12-Comparing the internal force to applied force, inéé moments to applied moments,

and making sure the moments are calculated abewetbmetric centroid :

GP - F,|<1*10° 561
IGM, —~GM,|<1*10° GM, -GM, |<1*10° 5 60
TOL|<1*10° ToL|<1*10° c.63

If Equations (5-61), (5-62) and (5-63) are nois$igd, the location of the inelastic centroid is
Uupdated byEAM/EA andEAM/EA and steps 5 to 12 are repeated till Equationslf5{6-62)
and (5-63) are satisfied.

EAM,

Yo=Y, to 5-64
EAM,
xcnew = Xcom + EA 5-65

Once equilibrium is reached, the algorithm checksultimate strain in concrete,, ~ and steel
.5 NOt to exceed 0.003 and 0.05 respectively, thamieases the loading bYGP  and runs the
analysis for the new load level using the latestise properties. Otherwise, it,. equals 0.003
or g, equals 0.05, the target force and resultant embrare reached as a point on the failure

surface for the amount of eccentricity and anglesed.
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Start

N

Calculate initial
section properties

EA,Elx, EIy,Elxy
YC,YG,XC,XG
N2
Input P,
e & a
N2

Transfer moment
to inelastic centroid
TM.XZGMX+P(YG'Y(?)
™ y:GMy +P(XG -X (:)
N
Calculate
Fx,0y,€0,Ecc,Ees

NE
Calculate

Sci,Ssixfci,fsi

Calculate new
section properties
EA,Elx, Ely, EAM x
EAM y,Elxy
N2

Calculate internal
force and moments

Fz,M ox.M oy
N No convergence
Transfer moment achieved. stop
back to G.C.

GMOXZMOX—P(YG —Yc)
GM oy:M oy —P(XG -X e

[GP-F:|< 107
\GMX.GM“\<10"7
|[GM y-GMoy|< 10

gec>0.003
ges > 0.05

yes

Ye+- EAMx/EA
Xcv-EAMy/EA

P & M achieved

New eccintricity
yes

no
New a End

yes

Figure 5-12: Flowchart of Generalized Moment of Area Method used for unconfined analysis
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5-2-3 Results and Discussion

5-2-3-1 Comparison between the two approaches
The two approaches are compared to each otherifottowing. The column used in
comparison has the following properties:
Section Height = 20 in.
Section Width = 10 in.
Clear Cover =2in
Steel Bars in x direction = 3 # 4

Steel Bars in x direction =6 # 4

Hoop #3
fc=4Kksi
f, = 60 ksi.
1000
\
900 ~__
800 ~
=
- 700 =
X 600 ===
@ 500 ™
(9] \
B 400 = = = Method 1
L ;gg ,;/ Method 2
/
100 ]
0 —
0 500 1000 1500 2000 2500
Resultant Moment (k.in)

Figure 5-13: Comparison of approach one and o Q)
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Force (k.)

1000
900
800
700
600
500
400
300
200
100

A\
)
S
/

"7
-

500 1000 1500 2000

Resultant Moment (k.in)

2500

= = = Method 1
Method 2

Figure 5-14: Comparison of approach one and e 4.27)

Force (k.)

1000
900
800
700
600
500
400
300
200
100

/

500 1000 1500 2000

Resultant Moment (k.in)

2500

= = = Method 1
Method 2

Figure 5-15: Comparison of approach one and s 10.8)
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1000
900 S~~g
800 -
— 700 S=zaaol
- \%\
= 600 S
g 00 N
B 400 N ettt Method 1
W 300 y o
200 ”/ Method 2
100 =
0 = .
0 200 400 600 800 1000 1200 1400
Resultant Moment (k.in)

Figure 5-16: Comparison of approach one and o 52)

The excellent correlation between the two approa@ppears in Figure (5-13) through
(5-16). The resultant moment angle is shown belaghegraph. This is evidence that approach
two effectively compared to the well known predefinultimate strain profile approach.
Accordingly, method two can be used in the confiaadlysis for analyzing the actual capacity

of the rectangular columns.

5-2-3-2 Comparison with Existing Commercial Software
KDOT Column Expert is compared with CSI Col 8 ofhquuters and structures Inc. and SP
column Software of structure point LLC. The casaselected from Example 11.1 in “Notes on
ACI 318-05 Building code Requirements for structumancrete” by PCA. The column details
are as follow (Figure 5-17):
Section Height = 24 in.

Section Width = 24 in.
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Clear Cover =1.5in

Steel Bars = 16 # 7 evenly distributed °c - ° 0 0%
Hoop #3 N )

O g
f'c = 6ksi

O g
fy = 60 ksi.

@] @) @) @) a

Figure 5-17: column geometry used in software carapa

4500 :
4000 = == Unconfined curve(SP
— Column)

, 3500 = S—
- \\ T ~ Unconfined curve(KDOT

3000 i
o 2500 ~_ Column Expert)
S N
[ N~
L 2000 N ~
2 1500 \

g

< 1000 ,/

500 7

0
0 200 400 600 800 1000 1200
Resultant Moment k-ft.

Figure 5-18: Unconfined curve comparison betweer©ROColumn Expert and SP Columa £

0)
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Figure (5-18) shows the match between thepwgrams in axial compression calculations
and in tension controlled zone. However KDOT Coluixpert shows to be slightly more
conservative in compression controlled zone. Thghtrbe due to using finite layer approach in

calculations that has the advantage of accuracy atber approximations like Whitney stress

block.

2000

1800
\\ Design curve (KDOT

1600 N Column Expert)

. N
~ ™
1400 ‘ = == Design curve (CSI Col 8)
@ 1200

N
S
© 1000 \
800 \>
600 7
400 =
200
0 .
0 200 400 600 800 1000

Resultant Moment k-ft.

Axial F

Figure 5-19: Design curve comparison between KDO@Iu@n Expert and CSI Col 8 using ACI
Reduction Factors
The design curves in Figure (5-19) and Fig6r2Q) were plotted using ACI reduction factors
that use a reduction factor of 0.65 in compressiomirolled zone as opposed to 0.75 used by
AASHTO. There is a good correlation between the RDCblumn Expert curve and CSI Col 8

and SP Columns curves as shown in Figure 5-19 ayunld=5-20.
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~ 1400 N '
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& 600
400 ~
200
0
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Figure 5-20: Design curve comparison between KD@Iu@n Expert and SP column using

ACI reduction factors

5-3 Confined Rectangular Columns Analysis

5-3-1 Formulations

5-3-1-1 Finite Layer Approach (Fiber Method)

The column cross section is divided into finite Braeea filaments (Figure 5-21 a). The
force and moment of each filament is calculated stoded. The rebars are treated as discrete
objects in their actual locations. The advantagehef is to avoid inaccuracy generated from
using the approximation of the stress block metlagda representative of the compression zone
and to well treat cases that have compressivezoaga or triangular shapes generated from the

neutral axis inclination (Figure 5-21 b).
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- = | I |
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we

Figure 5-21:a) Using finite filaments in analysis)Trapezoidal shape of Compression zone

5-3-1-2 Confinement Model for Concentric Columns

5-3-1-2-a Mander Model for transversely reinforced steel

Mander model (1988) was developed based on thetieffidateral confinement pressufe,

and the confinement effective coefficiektwhich is the same concept found by Sheikh and
Uzumeri (1982). The advantage of this procedurisispplicability to any cross section
since it defines the lateral pressure based orséigion geometry. Mandest al. (1988)
showed the adaptability of their model to circuterrrectangular sections, under static or
dynamic loading, either with monotonically or cyelily applied loads. In order to develop a
full stress-strain curve and to assess ductilityeaergy balance approach is used to predict

the maximum longitudinal compressive strain in¢bacrete.

Mander derived the longitudinal compressive comcettess-strain equation from Popovics

model that was originally developed for unconfimedcrete (1973):
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fo=—"=5 5-66
Cor=1+x
&
X=— 5-67
gCC
. E 5-68
Ec - Esec
E,=4723/f. in MPa 5-69
fCC
Esec:_ 5-70
&

and as suggested by Richat al (1928) the strain corresponding to the peak oeufi

compressive strengtfig, is:

6 = gm{n 5{‘;— —1ﬂ 571

The different parameters of this model are defingéigure (5-22)

et Confined Concrete
& fecc >
) ’ First Hoop
% Fracture
4
5 fc—
=
@]
O e

\/ Unionfined Cpncrete

€ Esec
Ewo 1.5 Ecc Ea

Figure 5-22: Axial Stress-Strain Model proposedManderet al (1988) for monotonic loading
As shown in Figure (5-22) Mandest al (1988) model has two curves; one for

unconfined concrete (lower curve) and the otherctorfined concrete (upper one). The upper
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one refers to the behavior of confined concretén wincentric loading (no eccentricity). It is
shown that it has ascending branch with varyingesistarting fronk; decreasing till it reaches
the peak confined strength at.( &c). Then the slope becomes slightly negative in the
descending branch representing ductility till thieaia of &, where first hoop fractures. The
lower curve expresses the unconfined concrete l@hdivhas the same ascending branch as the
confined concrete curve till it peaks 8t,(s0). Then, the curve descends till 1.5:2A straight

line is assumed after that till zero strength allsp strainss,

Mander et al. (1988) utilized an approach similar to that of i8hand Uzumeri (1982) to
determine effective lateral confinement pressutewds assumed that the area of confined
concrete is the area within the centerlines ofrpetér of spiral or hoop reinforcemefy. as

illustrated in Figure (5-23)

Effectively
Confined Core 45°
1]
45° 3T
Effectively
Confined Core Smallest Length
for Confined Core

Figure 5-23: Effectively confined core for rectafegthoop reinforcement (Mander Model)
Figure (5-23) shows that effectively confined a@e coreA. is smaller than the area of

core within center lines of perimeter spiral or pe@xcluding longitudinal steel arég., and to
satisfy that condition the effective lateral coefiment pressurk should be a percentage of the

lateral pressurg:
f =k.f, 5-72
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and the confinement effectiveness coefficikenis defined as the ratio of the effective confined

areaA. to the area enclosed by centerlines of hoops ediexg the longitudinal bam.:

ke = % 5-73
A=A -A 5-74
A A

A A 5-75
A\:c = A\:(l_ pcc) 5-76

whereA is the area of the section core enclosed by hadgps,the area of longitudinal steel and

pcciS the ratio of longitudinal steel to the areahs tore.

B
bc
*W'i
_ _ F) x \ g {
Efegtively Confined i % do-s/2dc H
[ \
L/ \Jfﬁ
Ineffectively Confined T
Core V % | § S
N7 A
bc-s'/2—
bc

Figure 5-24: Effective lateral confined core foctangular cross section

The total ineffective confined core area in theelenf the hoops when there are n bars:
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A =Z(W6)2 5-77

Given that the arching formed between two adjadsts (Figure 5-24) is second degree
parabola with an initial tangent slope of Afhe ratio of the area of effectively confined cae
to the core area at the tie level:

hs

= 7 7 ) 5-78
A

whereA; = b.* d¢, The area of confined concrete in the midway sedtigtaveen two consecutive

ties:

Ao (b _2J(d _2J bﬂ{l_ij( 2ZJ o7

Hence, the effective area at midway:

R S
oo £ 22

Using equation (5-73)

\2 . '
S
ke _ i=1 cYc c c 5_82
bcdc(l_pcc)
{1_26\3()1 J(l_ 2Sb ]( 22 J
ke _ i=1 cYc c c 5'83
(1_/000)

and the ratio of the volume of transverse steel any y directions to the volume of confined

core aregnandpy is defined as:
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_Ab A
P "'shd,  sq,

shd. sk

Asx Asy are the total area of lateral steel in x and galion respectively. The effective lateral

5-84

on = 5'85

confining pressure in x and y directions are gilign

fl)'( = kepx fyh 5-86

fy =kepy 5.87

Confined Strength ratiof'cc/f'co

3 0 1.0 15 20
S
(=)
S
2 0.1
o
&
I
g WAA
£ 02 \\ 1) \,
S \ I
% R RATRIANIN
g \\ \\ \\ \\ \\\\\\\ \
303 0 0.1 0203

Largest confining Stress rati¢i1/f'co
Figure 5-25: Confined Strength Determination
Figure (5-25) was developed numerically using ranitl stress procedure to calculate ultimate
confined strength from two given lateral pressufidge numerical procedure is summarized in
the following steps:

1- Determiningf’x andf';, using equations (5-86) and (5-87)
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2- Converting the positive sign &y andf’\, from positive to negative to represent the major
and intermediate principal stresses (These valieegegered to as; andoc, so thats; >
02).

3- Estimating the confined strendtk. (o3) as the minor principal stress

4- Calculating the octahedral stresg; octahedral shear stress: and lode angled as

follows:

1
Ooct = é(al +0,+ 63)

5-88
S S S
oct 3 1 2 2 3 3 1 5_89
| 017 Ot
0059{ Jor,, } 5-90

5- Determining the ultimate strength meridian surfatgs (for 8 =60 and 0 respectively)
using the following equations derived by Elwi andifky (1979) from data by Scickert

and Winkler (1977):

T = 0069232 0.66109%, . — 0.04935@ .~ 5-91
C = 0.122965-1.150502_ — 0.31554%__~ 5-92
Tt = Oou! T 593

6- Determinig the octahedral shear stress using tleepolation function found by Willam

and Warnke (1975):
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1
— _05D/cosf+(2T —C)[D+5T2 -4TC]

Toq =C 5-94
" D+(2T -CY’
D =4(C?-T?)cos 6 5-95
Tow = Togt fc 5-96
7- Recalculating ¢ using the following equation(same as equation9p+it solving for
O3.
Gl + 02 2 2
o,=———=—4/45¢5. — 0790, — o
3 2 \/ oct q 1 2) 5_97

8- If the value from equation (5-97) is close to thaial value then there is convergance.
Otherwise, the value from equation (5-97) is reusexteps 4 through 8.

Equations 5-91 and 5-92 that define the tensi@hcampression meredians are compared with
different equations for different unconfined congsige strength. The results are shown in
section 5-3-3-2
Manderet al (1988) proposed an energy balancing theory tdigiréhe ultimate confined strain,
which is determined at the first hoop fracture. yistated that the additional ductility for
confined concrete results from the additional stremergy stored in the hoopk, Therefore

from equilibrium:
U =Ug-Ug 5-98
whereUy is the external work done in the concrete to tnacthe hoop, andc, is the work done

to cause failure to the unconfined concrétg, can be represented by the area under the tension

stress strain curve for the transverse steel betwe® and fracture straig.
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Esf

U sh — psAcc J fsdg 5-99
0

while Ug is equal to the area under the confined stressnsturve plus the area under the

longitudinal steel stress strain curve:

gSCLJ gSCLJ

Ug = I fCA\:cd8+ _[ fsAsldg 5-100
0 0

similarly, it was proven experimentally tHag, is equal to:

gspall

Uco = Atc J fcd‘c" = AtcOO]-?\/Tc in MPa 5-101
0

and

Ush = psA%c j. fsdg =110pspbc 5-102
0

Substituting Equations (5-100), (5-101) and (5-1@8&) Equation (5-98):

110p, = [ f.de + | fyde 0,017 f, 5.103
0 0
where fg is the stress in the longitudinal steel. Equat{®103) can be solved

numerically forg,

5-3-1-3 Confinement Model for Eccentric Columns
Unlike concentric loading, the eccentric loadinggrtes bending moment in addition to
axial loading. Columns subjected to eccentric Iogdibehave differently from those
concentrically loaded, as the shape of the stréssnscurve for fully confined reinforced

concrete (concentric loading) shows higher peangth and more ductility than the unconfined
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one (infinite eccentricity). Most of the previousidies were based on the uniform distribution of

compressive strain across the column section.

7

%

Figure 5-26: Effect of compression zone depth orcoete stress
Figure (5-26) illustrates three different sectiamgler concentric load, combination of
axial load and bending moment and pure bending mgntiee highlighted fiber in the three
cases has the same strain. Anycurrent confinemedethyields the same stress for these three
fibers. So the depth or size of compression zomes dot have any role in predicting the stress.
Hence, it is more realistic to relate the strengtid ductility in a new model to the level of

confinement utilization and compression zone size.

Figure 5-27: Amount of confinement engaged in déife cases
By definition, confinement gets engaged only wheamber is subjected to compression.
Compressed members tend to expand in lateral dingcand if confined, confinement will
prevent this expansion to different levels basedtlm degree of compressive force and

confinement strength as well. For fully compressedmbers (Figure 5-27c), confinement
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becomes effective 100% as it all acts to prevent lieral expansion. Whereas members
subjected to compression and tension, when theaatearis lies inside the section perimeter,
only confinement adjacent to the compression zoets gngaged. Accordingly, members
become partially confined.

In literature, various models were implementeddseess the ultimate confined capacity
of columns under concentric axial load. On the oti@nd the effect of partial confinement in
case of eccentric load (combined axial load anddisghmoments) is not investigated in any
proposed model. Therefore, it is pertinent to eeldte strength and ductility of reinforced
concrete to the degree of confinement utilizatiroa hew model.

The two curves of fully confined and unconfinechceete in any proposed model are
used in the eccentricity-based model as upper eamerl bounds. The upper curve refers to
concentrically loaded confined concrete (zero ermgty), while the lower one refers to pure
bending applied on concrete (infinite eccentricity) between the two boundaries, infinite
numbers of stress-strain curves can be generateeldban the eccentricity. The higher the
eccentricity the smaller the confined concreteaedn compression. Accordingly, the ultimate
confined strength is gradually reduced from théyfabnfined valud. to the unconfined value
f'c as a function of eccentricity to diameter ratin.dddition, the ultimate strain is gradually
reduced from the ultimate straigy, for fully confined concrete to the ultimate stréior
unconfined concrete 1§,

The relation between the compression area to wlaoea ratio and normalized
eccentricity is complicated in case of rectanguarss sections due to the existence of two
bending axes. The force location with respect tbtlteaxes causes the compression zone to take

a trapozidal shape some times if the force appdieabt along one of the axes. Hence the relation
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between the compression area and the load ecagntiéeds more investigation as oppose to the
case of circular cross section which was shon tsirbeler.

The normalized eccentricity is plotted againstdbmpression area to cross sectional area
ratio for rectangular cross sections having difieraspect ratio (length to width) at the
unconfined failure level. The aspect ratios usedlat, 2:1, 3:1, 4:1 as shown in Figures (5-28),
(5-29),(5-30) and (5-31).Each curve representsifipee angle (tana = My/Mx) ranging from
zero to ninty degrees. It is seen from these figuhat there is inversely proportional relation

between the normalized eccentricity and compresgmme ratio regardless of the angle

followed.
Aspect ratio 1:1
8 120 o ?ngles
kS 0
]
E 100 - a mee 10 B
-t; Q\ ....... 20
b 3 - = 30
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© b 80
\
5 40 \ 90 [
2 T
a ~— f\'_‘--o ;- oo -.: ..........
E 20 - Tma —ll -
o
o
0
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Figure 5-28: Normalized Eccentricity versus Comgi@s Zone to total area ratio (Aspect ratio

1:1)
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Figure 5-29: Normalized Eccentricity versus Comgias Zone to total area ratio (Aspect ratio

2:1)
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Figure 5-30: Normalized Eccentricity versus Comgias Zone to total area ratio (Aspect ratio
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Aspect ratio 4:1
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Figure 5-31 Normalized Eccentricity versus Compression Zantotal area ratio (Aspect ral
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Figure 5-32 Cumulative chart for Normalized Eccentricity aggiCompression Zone Re (All

data points).
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In order to find accurate mathematical expressiat relates the compression zone to
load eccentricity, the data from figures (5-28)otig (5-31) are replotted as scatter points in
Figure (5-32).

The best fitting curve of these points based on lgast square method has the following

equation:
e
02* —+01
Ci = @ 5-104
Jbh

whereCr refers to compression area to cross sectionalratiea

5-3-1-3-a Eccentric Model based on Mander Equations
The equation that defines the peak strenﬁhaccording to the eccentricity is:

- 1 1

fcc = 1 cc + 1+C c 5-105
1+ — *r
Cr
Whereas the equation developed for circular cresBans
- 1 1 :
fCC = fCC + fC
1+ i \/%
1+—
Jbh e 5-105 a

wheree is the eccentricityh andh is the column dimensions arrE is the peak strength at the

eccentricity €). The corresponding stra@ is given by

o =gc{1+5[ ‘; - H 5-106
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and the maximum strain corresponding to the reduaecentricity will be a linear function of
stress corresponding to maximum strain for conficeacretef, and the maximum unconfined

concrete.oat seuo= 0.003:

_ -1
Esec '
E ' f f
gcu :gcc &—I’ +1 Ese(:ly| :M 5_107
c . £, —0.003
€y
£, — E.., * 0003
C=
Esecu
f - E
Eec = i r= <
e Ec - Esec

In order to verify the accuracy of the model ateé&reme cases, the eccentricity is first set to be
zero. The coefficient off ; will be zero in Equation (5-105) and Equationsl(®), (5-106) and

(5-107) will reduce to be:

foo = fec 5-108
Eee=Ecc 5-109
£ =& 5-110

On the other hand, if the eccentricity is set torbaity the other coefficient will be zero,

and the strength, corresponding strain and dycétjuations will be:

f.=f, 5-111
Ee = Eco 5-112
&, = 0003 5-113
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Confined Concrete
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(7]
o
¢n fcc
o fcc
o fec N
(%)) . .
O e - Patially Confined Concrete
s fc
£
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&) P
.+~ Unconfined Concrete
Eco 0'a03 gsp EC Ecc Eu Ecu

Compressive Strain

Figure 5-33: Eccentricity Based confined -Mandepddl

Any point on the generated curves the stress-smartion can be calculated using the following

eguation:
o fuxr
c- = = 5-114
r—1+x
where:
— gc
X == 5-115
gCC
_ EC
[=——=——— 5-116
Ec_ sec
— f.
EseC:€= 5-117

To show the distinction between the Eccentric matkdigned for rectangular cross sections,
Figure (5-34) and that of circular cross sectidghgure (5-35), Equations (5-105) to (5-107) and

(5-114) to (5-117) are used in plotting a set ak&i-Strain curves with eccentricity ranging
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from 0in. too. The column cross sectional properties used totpé&se curves is 36 in *36 in.,
steel bars are 13 #11, spiral bar is # 5, spasingn., f'¢ is equal to 4ksi, f, is equal to 6&si
andfy is equal to 6&si. This case is used in plotting the Eccentric St®sain curve that are
developed for rectangular cross sectional con@@tenns; Figure (5-34) while the same case is
used in plotting the eccentric Strss-Strain curbed are developed for circular cross section,
Figure (5-35). The eccentric stress-Strain curvesFigure (5-35) are almost parallel and
equidistant to each other. Whereas, the leap ioencurve to the next one in Figure (5-34) is
varying. This is due to the effect of the coeffigc€z, that is used in Equation (5-105), which
has non linear impact on the compression zone psased to the linear relation between the

eccentricity and compression zone for circular sesctions (Figure (5-35))

6
i ”/\\
&7 N :\\
N \\:\\\\~\ \
~ 4 ST T —
2 ' ) e=0in
? e=1in
g 3 .
o 7 e=2in
E e __ — .
3 e=3in
<24 e=4in
——-e=5in
1 e=6in
e=7in
e=38in
0 e=9in
0 0.01 0.02 0.03 e
-=--- e =infiniti
Axial Strain

Figure 5-34: Eccentric based Stress-Strain Curggsgucompression zone area to gross area

ratio
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X

< 2 1 ——-e=5in
e=6in

1

0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Axial Strain
Figure 5-35: Eccentric based Stress-Strain Cursegyunormalized eccentricity instead of

compression zone ratio

5-3-1-4 Generalized Moment of Area Theorem
The very general axial stress equation in an unsgtmensection subjected to axial force
P and biaxial bendiniyl, andMy (Hardy Cross 1930):

P MXI -M |X M |X—MX|X
UZ:Z+ Ily —IZ Yy+ IyI =T Y x 5-118
X'y Xy X'y Xy

o, = normal stress at any point (a) in cross section

P =applied load.

A = cross sectional area.
M, = bending moment about x-axis
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M, = bending moment about y-axis

X = distance between the point (a) and y-axis

y = distance between the point (a) and x-axis

|, = moment of inertia about x-axis

X

|, = moment of inertia about y-axis

|, = product moment of inertia in xy plane
Rewriting Equation (5-118) to determine the stitiany point in the cross section:

P MEl,-MEl, MEl -MEl, 5-119

&,=—+ Y+ >
EA  ElEl,—EI? EIEl, —EI?

In case of linear elastic analysis,in EA or EI expressions is constaE<E.). However, if the

section has linear strain and nonlinear stressigrof will amount to variableE profile (per

filament) in nonlinear analysis. Accordingly, thecBon parameters must incluEeEiA,
ZEiIi for a more generalized theory (Rasheed and Dinrgzl)1Note that the linear strain

profile of the section from Equation (5-119) yietds distinct constant curvatures:

M_El. —M _EI
$ =— yﬂz y Xy 5-120
M,El, —M,El,,
P, = 7 5-121

¢,= X- curvature
¢,= y- curvature

p?=EILEl, —EI}
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To prove Equations (5-120) and (5-121) above, ievible coupled equations of moments
about the centroid (Bickford 1998).

MX = EIX¢X+EIXy¢y

5-122
M y Elxy¢x + E|y¢y 5-123

In a matrix form:

M,] [El. ElL,T4, 5124
M,| |El, EI, |4, )

Inverting Equation (5-124)

e, a
9y B - El,, ElL M, 5-125

which reproduces Equations (5-120) and (5-121). iRiemy Equation (5-119) in terms @f and

%

£ —i+¢ + ¢, X 5-126
z EA xy y

Finding &, at the centroid, since=y = 0.

&, =PIEA 5.127

Solving forP at the geometric centroid;

P=EAs, - EAyg, - EAX, £.128

3_0 IS the axial strain at the geometric centroid

But
EAM, = EAy y=Y, -V,
EAM, = EAX x=Xg - X,
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Y is the vertical distance to the geometric centro@hsured from bottom,oX{s the distance to
the geometric centroid measured from the crossosestieft side, ¥ is the vertical distance to
the inelastic centroid measured from the bottom s the horizontal distance to the inelastic

centroid measured from the cross section’s le# sid
Thus,
P =EAs, - EAM, 4, - EAM ¢, 5-129

The general formula of the moments about the ga@mnetxis and the geometric y-axis

is derived as follows:

when the moment is transferred from the centroithéogeometric centroid ,Figure (5-36 a)

M,=M, —Py 5-130
Substituting Equations (5-122) and (5-129) intd. 8®) yields:

M, =El g +El ¢ —EAs, y+EAM ¢ y+EAM 4 y 5-131
X XX xyr'y o] X7TX yry

M, =-EAM,z, +(EI, + EAM, yJs, +(EI,, + EAM, Y}, 5-132

Similarly, (Figure 5-36 b):

a) b)
P
TV KNM*
G - Mx My | My
? C‘K jMx \Ge
Y B S "Ll

Figure 5-36: Transfering moment from centroid te geometric centroid
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M, =M, - Px 5-133

M, = El ¢, +El ¢, — EAc,x+ EAM, 4 X+ EAM, 4, X 5 134

M, =~EAM, z, +(El, + EAM, X}, +(EI, + EAM, X, 5-135

The termsEl, + EAM,yand EI, +EAM, x represent theEl, and El, about the geometric
centroid respectively using the parallel axis tkewr And the termsEIxy+EAMx;< and

El,,+ EAM, y are equal given thdEAM, x=EAyx and EAM, y = EAyx. Using Equations (5-

129), (5-132) and (5-135) yields the extended gdmeoment of Area equation:

P EA -EAM, -EAM,|¢
Mx|=|-EAM,  El_ El, |4 5-136
M,| |-EAM, El, El, |4,

Since the moment of area about the centroid vasigRasheed and Dinno 1994),
Equation (5-136) reduces to a partially uncoupktdaden it is applied back at the centroid since

EAM, andEAM, vanish about the centroid.

P| [EA 0 0 e
M,|=| 0 EI, El,| ¢
My

0 El, El|g,

5-137

which is simply Equations (5-122), (5-123) and &1L

5-3-2 Numerical Formulation
This approach simulates the radial loading of thkeed and moments by keeping the

relative proportion between them constant durirggltiading. Accordingly, all the points will be
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exactly on the 2D interaction diagram. In additkonthe ultimate points, the complete load
deformation response is generated. The cross seatialyzed is loaded incrementally by
maintaining a certain eccentricity between the laoiece P and the resultant momeliz. Since

Mg is generated as the resultantvf and My, the anglen = taril(My/Mx) is kept constant for a
certain 2D interaction diagram. Since increasirgylttad and resultant moment cause the neutral
axis to vary nonlinearly, the generalized momentuafa theorem is devised. This method is
based on the general response of rectangular unsiyioah section subjected to biaxial bending
and axial compression. The asymmetry stems from different behavior of concrete in

compression and tension.
The method is developed using the incremental titeraanalysis algorithm, secant
stiffness approach and proportional or radial Ingdilt is explained in the following steps

(Figure 5-40):
1- Calculating the initial section properties:
» Elastic axial rigidityEA:

EA=Y Ewt + > (E,—E)A, 5-138

E. = initial secant modulus of elasticity of the cceter
E, = initial modulus of elasticity of the steel rebar

»= The depth of the elastic centroid position from ltletom fiber of the sectior. and from
the left side of the sectiok; Figur (5-37)

2 Ewit (H=Y)+ > (B - E)A(H-Y)

Y. =

g 5-139
EA
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ZEC\Niti (B— xi)+Z(Es -E.)A(B-Xy)

X, 5-140
EA
= Elastic flexural rigidity about the elastic centt@il:
Elx = z E(:\Niti (H _Yi _Yc)2 +Z(Es - EC)A\Sl(H _Ysi _Yc)2 5-141
Ely = Z ECVViti (B_ xi - Xc)2 + Z(Es - EC)ASI(H - Xsi - xc)2 5-142
Elxy = Z EC\Niti (H _Yi _Yc)(B_ Xi - Xc)+ Z(Es - Ec)A5|(H _Ysi _Yc)(B_ Xi - Xc) 5_143
Typically the initial elastic Y& H/2, X; = B/2 andEl,, =0
Xsj
| X 0.003 i 0.003
o B
. Ysi
Yi
A ol | ot
@ 0 0
H G i 0 G g
Ye G O O
G
O O
*XC*
~XC— X

Figure 5-37: geometric properties of concrete feats and steel rebars with respect to crushing

strain point, geometric centroid and inelastic cadt

The depth of the geometric section centroid pasifimm the bottom and left fibers of the

sectionYg, Xg, Figure (5-37):
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y, -1 5-144

X, =2 5-145
2

2- Defining eccentricitye, which specifies the radial path of loading on thieraction

diagram. Also, defining the anglein between the resultant mome&ivir andGMy

Axial Force

Load Stepr GP
Resultant Moment

Figure 5-38: Radial loading concept

3- Defining loading steA\GP as a small portion of the mmaxn load, and computing the

axial force at the geometric centroid.

GR., =GR, +AGP 5-146

4- Calculating momen&M about the geometric centroid.

GM
e= GPR GM, =e*GP 5-147
GMX ZGMRCOSCZ 5-148
GMY =GM « lana 5-149

5- Transferring moment to the current inelastic cadtemd calculating the new transferred
momentTMyandTMy :
™™, =GM, +GR(Y; -Y,) 5-150
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™M, =GM, +GP(X; — X,) 5.151
The advantage of transferring the moment to thé&iposof the inelastic centroid is to eliminate

the coupling effect between the force and momesitsce EAM, =EAM, =0 about the

inelastic centroid

P] [EA 0 0 e
™, |=| 0 EI, El|4, 5-152

X Xy

™ 0 El, El|g,

y y
T, il
GM,

RXGﬂ

GM,, 'T™M,

Figure 5-39 Moment Transferring from geometric oeidtto inelastic centroid

6- Finding: Curvatures¢x and ¢v

™ ™
Py = 2X *El, - ZY*EIXY
B B 5-153
™ ™
by = ZY*EIX_ ZX*EIXY
B 5-154
ﬂZZElely—Elfy 5-155

Strain at the inelastic centraig , the extreme c@sgipon fiber straia,, , and strain at

the extreme level of steel in tensigp  are fountbhew:
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GP
e =

° EA 5-156
gec:go+¢x(H _Yc)+¢y(B_Xc) 5-157
Ees =&, — @ (Y, —Cove) -4, (X —Cove) 5-158

where cover is up to the centers of bars

7- Calculating strains; and corresponding strigsi® each filament of concrete section by

using Eccetric Based Model (Mander Equations)

-Y -Y T™M (B- X_. - X,
5GP ML (H Y ) TML(B-X = X)
EA B B 5-159

— - X. T™M (H =Y. -Y
_TMX(Bﬁz(C X')Elxy— J ﬂzc .)Elxy

8- Calculating straing, and corresponding str&ssn each bar in the given section by

using the steel model shown in Figure (5-2b).
-Y.-Y. ™ (B- X, - X,
SSi:GP+TMX(H zYC Ys.)E|y+ ,( X. S')EIX
=A o p 5-160
- - X T™M (H =Y, =Y,
™, (B ﬂ>2<c XS')EIXY— ,( - . S')Elxy

9- Calculating the new section properties: axial nitgidEA flexural rigidities about the
inelastic centroicEly, Ely, Ely, moment of axial rigidity about inelastic centrdzd\M,,

EAM,, internal axial forcd=,, internal bending moments about the inelastic oghivly

,Moy:
EA= Z E.Wt; +Z(Esi - Eci)pgi
i i 5-161
EAMX :ZEci\Niti (H _Yc _Yi)+Z(Esi - Eci)ASi(H _Yc _Ysi)
i i 5-162

346



EAMy - Z ECi\Niti (B_ XC o xi)+Z(Esi B Eci)AEi(B_ Xc B Xsi)

5-163

F,= z fowit, +Z(fsi —fa)A 5-164
Elx = z Eci\Niti (H _Yc _Yi)z +Z(Esi - Eci)Asi(H _Yc _Ysi)z

i i 5-165

El, = ZECiVViti (B—X, - xi)2 +Z(Esi —Eg)A(H - X, - Xsi)2 5166

Elxy = ZEci\Niti (H _Yc _Y|)(B_ Xc - Xi)+Z(Esi - Eci)A‘si(H _Yc _Ysi)(B_ Xc - Xsi)

5-167
Mox :Z fcivviti (H _Yc _Yi)+2(fsi - fci)Asi(H _Yc _Ysi) 5-168
Moy = Z 1:ci\Niti (B_ xc - X|) +Z(fsi - fci)Aﬁi(B_ Xc - xsi) 5-169

fei

Eci

where E; = secant modulus of elasticity of the concretenfdat=

Ei= secant modulus of elasticity of the steel bde!

Esi

10-Transferring back the internal moments about tloergeric centroid

GM, =M, ~GP(Y, -Y,)

5-170

GM,, =M, —GP(Y; - X,) 5171
11-Checking the convergence of the inelastic centroid

TOL, = EAM, / EA/Y, 5.172

TOL, =EAM, /EA/ X, 5173

12-Comparing the internal force to applied force, inéé moments to applied moments,
and making sure the moments are calculated abegetbmetric centroid :

GP - F |<1*10®

5-174
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IGM, —~GM,|<1*10° GM, -GM, |<1*10°

5-175

TOL,|<1*10° TOL |<1*10° 5176

If Equations (5-174), (5-175) and (5-176) are ratis$ied, the location of the inelastic centroid is
updated bYEAM/EA andEAM/EA and steps 5 to 11 are repeated till equations §;15-175)

and (5-176) are satisfied.

Y -v+ EAM,
" EA 5-177
EAM,
xcn = XC Id +
™ EA 5-178

Once equilibrium is reached, the algorithm chdoksiltimate strain in concrete,,  and
steel¢,, not to exceed,, and 0.05 respectively. Then it increases the f@py AGP and runs
the analysis for the new load level using the tasestion properties. Otherwise, ,.  equals
£ Or g, equals 0.05, the target force and resultammhemt are reached as a point on the failure

surface for the amount of eccentricity and anglesed.

This method can be used combined with Approach f@n#he unconfined analysis,
section (5-2-2-1): Predefined Ultimate Strain Repffor processing time optimization. Initially
unconfined analysis is utilized. The sectional prtips,EA, Ely Ely El,y, EAM, EAM,, Y, X: F,
Mox and M,y are calculated from the unconfined failure poind aised as section properties for
the following step. So instead of loading the secttirom the beginning, The equilibrium is
sought at unconfined failure point, Then, knowihg tnternal force capacity of the sectiat®,
is added and the cross section is analyzed usmgtbposed numerical formulation of this

section until failure of the confined section.
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Figure 5-40: Flowchart of Generalized Moment of Area Method
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5-3-3 Results and Discussion
Interaction diagrams generated by KDOT Column Ex@@oftware are plotted and
compared to the corresponding experimental workdom the literature. Interaction diagrams

are generated using the numerical formulation dssdrin section 5-3-2.

5-3-3-1 Comparison with Experimental Work

Casel
A Study of combined bending and axial load in reioéd concrete members (Eivind

Hogenstad)

10.00

Section Height =10 in.

Section Width = 10 in.

Clear Cover =0.8575in 1000 7.00

Steel Bars in x direction = 2

Steel Bars in y direction = 4

Steel Diameter = 0.785 in. Figure 5-41:Hognestad column
Tie Diameter = 0.25 in.

fc=5.1ksi fy=60ksi. fyn=61.6 ksi. Spacing =8 in.
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E—

50 )
Resultant Moment kip.ft

Figure 5-42: Comparison between KDOT Column Expatt Hognestad experimend & 0)

Case 2

Design criteria for reinforced columns under aX@hd and biaxial bending (Boris

Bresler)

Section Height = 8 in.
SectionWidth = 6 in.

Clear Cover =1.1875in
Steel Bars in x direction = 2#5
Steel Bars in y direction = 2#5

Tie Diameter = 0.25 in.

fc=3.7ksi fy=53.5ksi. f;,=53.5ksi. Spacing =4 in

6.00

.00

Figure 5-43: Bresler Column



Interaction diagram
T T T T T T T T T

240 [

Force kip
B
T
A
|

100 | N 1

o I I I I 1 | I el 1 I I I
0 1 2 3 4 5 ] T ] e 10 n 12 3 14 15 18
Resuitant Moment  kip ft

Figure 5-44: Comparison between KDOT Column Exp#ttt Bresler experimenio= 90)

Interaction diagram
T T T T T T T T T T T

— T
MO~ _— Unconfined  [#

120 - e 4
180 [ e b

140 S 4

Force kip
=]
5]
T

0 I I I I I I I T I I I I
0 2 4 8 8 10 2 4 1 2
Resultant Moment  kip.ft

Figure 5-45: Comparison between KDOT Column Exp#ttt Bresler experimento(= 0)
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Case 3

Investigation of the ultimate strength of squard escttangular columns under biaxially eccentric

loads (L.N. Ramamurthy)

6.00

Section Height =12 in. o o
Section Width = 6 in.

12.00 e | 8.40
Clear Cover =1.2375in
Steel Bars in x direction = 3#5 e o o
Steel Bars in y direction =3#5
Tie Diameter = 0.25 in. Figure 5-46 : Ramamurthy Column

fc =3.8ksi fy=46.79 ksifyn=46.79 ksi. Spacing =6 in

Interaction diagram
T T

Force kip
A
z
T
I

20 25
Resultant Moment kip.ft

Figure 5-47: Comparison between KDOT Column Expeth Ramamurthy experimentx(=

26.5)
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case 4

Confined columns under eccentric loading

(Murat Saatcioglu. Amir Salamat amd Salim Razvi )

Section Height = 8.27 in.
SectionWidth =8 .27 in.
Clear Cover =0.5in
Steel Bars in x direction = 3
Steel Bars in y direction = 3
Steel Area = 0.155n

Tie Diameter = 0.364 in.

827

12

Figure 5-48 : Saagtu Column

fc =5.1ksi f,=75Kksi. fy,=59.45ksi. Spacing = 1.97 in.

700
600
500
400
300
200
100

Force (k.)

B Experimental points

--------- Interaction diagram " e relation"

Interaction diagram "CR relation"

20

Moment (k.in.)

60

Figure 5-49: Comparison between KDOT Column Expéttt Saatciogliet al experiment & =

0)
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case 5

Confined columns under eccentric loading

(Mural Saatcioglu. Amir Salamat amd Salim Razvi )

Section Height = 8.27 in.

SectionWidth =8 .27 in. V’ “

Clear Cover =0.5in

8.27 6.12
Steel Bars in x direction = 4
Steel Bars in y direction = 4
Steel Area = 0.155 fn Figure 5-50 : Saatcioglu Column
Tie Diameter = 0.364 in.
fc=5.1ksi f,=75Kksi. fy,=59.45ksi. Spacing = 1.97 in.
800 B Experimental points
700 Interaction Diagram " e relation"
600 Interaction Diagram " CR relation"
g 500 T~ L
8 400 \
£ 300 e

200 }t .......
100 4

Moment (k.in.)

Figure 5-51: Comparison between KDOT Column Expattt Saatciogliet al experiment 14

=0)
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case 6

Stress strain behavior of concrete confined by lapeing

hoops at low and high strain rate

5

(B. Scott, R Park and MPriestly

Clear Cover =0.787in

Section Height 17.7 in. o w
Section Width =17 .7 in. ﬁ\)

Steel Bars in x direction = 4

Steel Bars in y direction = 4
Steel Area = 0.49 fn Figure 5-52Scott Column
Tie Diameter = 0.394 in.

f'c =3.67 ksi fy=63 ksi. fyhn=44.8 ksi. Spacing = 2.83 in.

B Experimemtal points
2000
1800 e L e Interaction diagram "e relation"
1600 Interaction diagram "CR relation"
1400 TS Interaction dia " ion" wi
‘-~ - . gram "CR relation" with
~ 1200 - : \ cover spalling
N S0 N e
8 1000 3 : -‘_\\\---
—_ ~
Z 800 SRS \
600 N \
400 D
200 _
0 ]
0 100 200 300 400 500
Moment (k.in.)

Figure 5-53 Comparison between KDOT Column Expert with Set alexperiment « = 0)
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case 7

Stress strain behavior of concrete confined bylapeimg hoops at low and high strain rate

(B. Scott, R Park and M. Priestly)

Section Height = 17.7 in.

Section Width =17 .7 in.

Clear Cover =0.787in

Steel Bars in x direction = 3

Steel Bars in y direction = 3

Steel Area = 0.7 in

Spiral Diameter = 0.394 in.

17,70

)

Figure 5-54 : Scott Column

fc =3.67 ksi  f,=57.13 ksi. fy,=44.8 ksi. Spacing = 2.83 in.

W Experimental points
2000
1800 N e Y [RIEIi Interaction diagram "e relation"
.“&\'_ .....
1600 ?‘ \\\ ..... 4 Interaction diagram "CR relation"
. . i ..
1400 — 1 : \\ ........ == . e|nteraction diagram "CR relation"
;_\ 1200 = e e . with cover spalling
< 3 . 1
8 1000 ‘\
L 800
600
400
200
0
0 100 200 300 400 500
Moment (k.in.)
Figure 5-55: Comparison between KDOT Column Exp&tit Scottet al experiment & = 0)
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The analyzed seven cases cover the three InteradidBgram zones of; compression controlled,
tension controlled and balanced zones. There il gagreement between the theoretical
interaction diagram and the corresponding experiai@ata as shown in Figures (5-42), (5-44),
(5-45), (5-47), (5-49), (5-51), (5-53) and (5-55).

It is shown from Figures (5-49), (5-51), (5-53)da(b-55) that interaction diagrams
plotted using Equation (5-105) that is represevdatf the compression zone area are more
accurate compared to those plotted using Equ#idi05 a) that is a function of eccentricity.
Also the experimental data correlate well to itsoggated interaction diagrams.

Figure (5-53) and (5-55) show more accuracy am$exwative interaction diagram when
the analysis account for the cover spalling when uhconfined crushing strain is considered.
This is represented by the most inner curve in féig§5-53) and (5-55). Also in Figure (5-53)
and (5-55) the experimental points 1 and 2 arengatfie same eccentricity but the loading strain
rate is different. The loading strain rate for pdiris 0.0000033, whereas it is 0.0167 for point 2.
Points 3 and 4 also have the same loading str&n Itais seen that the loading strain rate for
points 1 and 3 are extremely small. Hence poirded®4 are more realistic and they are captured
well by the theoretical interaction diagram. In clusion, the strain rate is a parameter that needs

further invistigation.

5-3-3-2 Comparison between the surface meridians T & C used in Mander model
and Experimental Work
The ultimate strength surface meridians equati@mscbmpression C and tension T
derived by Elwi and Murray (1979) from the data Sdickert and Winkler (1977), that are

utilized by Manderet al (1988) to predict the ultimate confined axial sg#nusing the two
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lateral confined pressures, are compared heregortee experimental data found from Mills and
Zimmerman (1970). The equations used by mandedeveloped originally for concrete that

has unconfined strength of 4.4 ksi. They have dlleviing formulas

T = 0069232 0.66109%, . — 0.04935@ .~ 5-179
C = 0.122965-1.150502_ — 0.31554%__~ 5-180
~.

AN =-0.3195x? - T.15x + 0,122
~

AN
N

o)
%o

T (theta=0)

T oct

o
>

= == (C (theta =60)

g

o) /%>
e

y =-0/0493x? - 0.661x + 0.069

Poly. (T ( theta = 0))

Poly. (C (theta = 60))

-1.5 -1 -0.5

o

0.5

coct

Figure 5-56: T and C meridians using equations/®)}and (5-180) used in Mander Model for
f'c= 4.4 ksi
The T and C meridians adopted by Mander from Eld Blurray (1979) work are reported on
in Figure (5-56). Mills and Zimmerman (1970) deymd three sets of multiaxial tests for
concrete with unconfined strength of 3.34, 3.9 &riiksi. For each set, the valuesagf; and
T, are extracted at unoconfined strendth the cracking tensile strength, equibiaxial
compressive strengthy, and two extra points; one on each of the merididhgse five points

are used to plot the T and C, Tables () meridiarshawn in Figures (5-57), (5-58) and (5-59)
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1.2
3 A -0.1865x%- 1.0471x + 0.1431
\\ \ 0:8
‘g \ 0.6 T (theta=0)
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y =-0/0169x? - 0.6172x +0.0851 “\”\ Poly. (T ( theta = 0))
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Figure 5-57: T and C meridians fiog = 3.34 ksi
1.2
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Figure 5-58: T and C meridians fiog = 3.9 ksi
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Figure 5-59: T and C meridians fiog = 5.2 ksi

The T and C equations for Figures (5-57) through9pare as follow:

for f'.= 3.34 ksi:

T=0.0851-0617%,,—-0016% 2

C=01431-1.0470, - 0.18653:”12

for f'.= 3.9 ksi:

T = 00825-0.647%_ — 00155~

C=01348-1047%, —011%_ "

for f.=5.2 ksi:

T = 0.0719- 0.665%._ — 0.060%F_ -

C=01244-1133%,_ - 02768
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Equations (5-181) through (5-186) are used in gdimgy confined strength values for
different lateral pressures as shown in AppendiEduations (5-179) and (5-180) are used also
in developing confined strength values for the s#aeral pressure values. It is seen from the
tables that equations (5-179) and (5-180) give esagive values compared to equations (5-181)
through (5-186). Accordingly, Equations (5-179) af%d180) are used herin to predict the

ultimate confined axial strength values for anyegiwinconfined strengtlfi §) value.

Table 5-1: Data for constructing T and C meridiam@s forf' . equal to 3.34 ksi

control parameter | ¢ oct T oct

flc=3.34 ksi -0.33333 | 0.471405
f't 0.043258 | 0.061176
f'cb -0.81497 | 0.576271
triaxialon C -1.15968 | 1.10653
triaxialon T -1.50898 | 0.978094

Table 5-2: Data for constructing T and C meridiam@s forf’; equal to 3.9 ksi

control parameter | o oct T oct

flc=3.9 ksi -0.33333 | 0.471405
f't 0.040006 | 0.056578
f'cb -1.0904 | 0.771027
triaxial on C -1.06018 | 1.119058
triaxialon T -1.26248 | 0.876414

Table 5-3: Data for constructing T and C meridiamv@s forf' ;. equal to 5.2 ksi

control parameter | ¢ oct T oct

flc=5.2 ksi -0.33333 | 0.471405
f't 0.034553 | 0.048865
f'cb -0.80229 | 0.567306
triaxialon C -0.68386 | 0.76993
triaxialon T -0.88634 | 0.614725
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Chapter 6 - Software Development

6-1 Introduction

The softwareKDOT Column Exper is prepared using the object oriented programn
“OO0P”, within the framework of the visual# language. The OOP is useful tool that breaks
bulky codes into differentlasses the components of each class akated to each otl. Each
class generates objects that have its class chasdicis and can be used in other clas This
procedure is adaptable to simulate the real procasswell as it is flexible enough f
modification and addition to the progri

As shown in Figure (@), the mainhree classesr@a material, which has concresteel
and FRPinherited from it, shape thclassifies the cross sectiém Circular orRectangular, and
finally Model that inheriteshe material models used in the progt Any combination of shape
and material elements forms reinforced concretescsection. This section is lent, beside

models, to the numerical analysis, and calculations aramplemented to yield the fini

product.
Model Material Shape
|
[ i 1 [ 1
FRP m Steel Concrete Rectangle Circle
I 3} 7 |
1
e ninininks it > Circular Reinforced concrete
Concrete Model NS I Section
1
! Rectangular Reinforced
1
steel Model EEEEEEEE concrete Section
1
FRP Model '
1
|
) v
Eccentricity Model Numerical Analysis

Figure6-1: KDOT Column Expert classes
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6-2 Interface Design

The interface was generated using the graphical ingerface “GUI” which is a convenient
communication tool between the user and the progfm initial form has links to circular
columns and rectangular columns.

o L=

KDOT Column Expert.

Circular Columns

Rectangular Cohunns

Ahmed Abd EL Fattah. WMSc. | LEED AP.
Hayder Rasheed. FhD. , PE, ASCE Fellow
Asad Esmaeily. PhD. , PE.

Figure 6-2: KDOT Column Expert Initial form

6-2-1 Circular Columns Interface

E5¢-DOT Column Expert STy
File  Help
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& fnalysis © Desgn | —Secton————————— Rt
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o 500 1000 1500 2000 2500
Resultant Motment kipt l— l—
i~ Langitudinal Steel Properties — Operations:

i

Modulus of ;

Flastioiy | 122000 | ksi Accuracy Plol Confined - Unconfined and Design | Pt Corfined Curve. |

ield Stress [50 i —J) Plot Uncoriined and Design | it Uncontied | a | Llll
i~ Transverse Steel Properties —— & MaFRP { FRP Designfon Steel Ratio I Flot Design Curve | KDOT Column Expert

IModulus of o .

g 23000 e K8, Civil Er Dy
Elncticiy si Add FRP | — | L oad Faints I KEDOT Non Redundant Stuctures % “:"' ngineering Department
Yield Stress [0 ksi : : Flat (.75 Canfined Curve s IGS 1}1} I E
Exit | SavePoinis | PintCuvers | Unsonfined D esign s z
' Spiral  Hoop ) -

Figure 6-3: Circular Column GUI
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The interface is divided into five sections as shawFigure (6-4):

1- Data Input

Data Input section is divided into five sub-secsipeometric properties, concrete
properties, longitudinal steel properties, transgesteel properties and FRP properties

2- Graphics Input representation

This section automatically generates sectional piaw and elevation view of the
cross section. It shows the scaled proportionatlon of each element in the cross
section in order to avoid unrealistic overlapping.

3- Selection tools
This section has different buttons which contrdlsttmg the interaction diagram

curve/s:

Plotting the three curves; confined concrete, ufined concrete and design curves
Plotting any one of the previous curves separately.

Plotting a series of design curves for the fullgaof reinforcement ratio.

Plotting curve for the non-redundent structuress Turve is limited to 75% of the
distance between the design curve and the confinec

It has also buttons for optionally save or loadesadefined in the “Data Input”
section and print the “plotting area” section view

4- Plotting area

The plotting area section shows the requested &urve

5- Projection points input

This section enables the user to input any numblensoment-force points up to 25

points, which show up immediately on the plottingaawith the existing curve/s.
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Interaction diagram Interaction diagram
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6-2-2 Rectangular Columns Interface
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Figure 6-8: Rectangular Column GUI
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The interface is divided into five sections as shawFigure (6-9):

1- Data Input

Data Input section is divided into four sub-sectiofbeometric properties, concrete
properties, longitudinal steel properties and tvarse steel properties.

2- Graphics Input representation

This section automatically generates sectional piaw and elevation view of the
cross section. It shows the scaled proportionatlon of each element in the cross
section in order to avoid unrealistic overlapping.

3- Selection tools

This section has different buttons which contrdlsttmg the interaction diagram
curve/s:

Plotting the three curves; confined concrete, ufined concrete and design curves
Plotting any one of the previous curves separately.

Plotting a series of design curves for the fullgaof reinforcement ratio.

It has also buttons for optionally save or loadesadefined in the “Data Input”
section and print the “plotting area” section view

4- Plotting area

The plotting area section shows the requested urve

5- Projection points input

This section enables the user to input any numbermoment-force points up to 25 points,
which show up immediately on the plotting area wilie existing curve/s. The interaction

diagram is updated according to #a@ngle input that is determind from the two momexfitsut
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x and y axes. The angle is ploied on the sectional plan to show the load pos#iad the twc

moments’ ratio with respect the cross sectio
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The program is able to plot 3D interaction Diagrannface as shown in Figure (6-12).
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Figure 6-12: 3D Interaction Diagram
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Chapter 7 - Conclusions and Recommendations

7-1 Conclusions

This dissertation accomplished several objectivesh@ analysis, material modeling, design

implications and software development levels. lyrna concluded that:

1-

Based on the extensive review of the confined medelilable in the literature,
Mander Model is found to be the most suitable cotreeloading model expressing
the stress-strain behavior of circular and rectirgweolumns confined with
convenient lateral steel and steel tubes as welhddition Lam and Teng model is
found to be the suitable for predicting the strasain behavior of circular columns
confined with FRP in case of concentric loading

The eccentric based stress-strain model developethis study provides more
accuracy compared to the available concentric nedfimodels in the literature as it
is shown through comparison with experimental dataall of the three cases of
different confinements.

The stress-strain curve developed for circular oolsi confined with FRP and steel
together compares very well with experimental ofié® amount of FRP provided in
strengthening the columns is very essential inrdeteng the shape of the stress-
strain curve. It should be a value that causesate of fi /f'c to be at least 0.08 in
order to have an ascending branch beyond the unednbeak strength.

Columns confined with steel tubes have to hiayg. ratio equal to or morthan 0.4

in order to have an ascending branch beyond thenfined peak strength.
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5-

For rectangular columns, the ratio of the areaahression zone to the sectional
gross area is more representative than the nordadilone eccentricity in correlating
eccentric behavior. For circular columns, the ndized eccentricity is directly
correlated to the ratio of compression zone togysestional area.

The non-linear numerical procedure introduced, guishre eccentric model and the
finite layer approach, successfully predicted tit@mate capacity of circular and
rectangular reinforced concrete columns confinedh wdifferent materials. The
columns examined are circular columns confined WHRP, circular columns
confined with steel tubes and rectangular colunamdiced with lateral steel.

A computer program named “KDOT Column Expert” i¥eleped based on the non-
linear approach implemented for analysing and aésigcircular columns wrapped
with FRP and rectangular columns confined withrkdtsteel hoops.

The unconfined concrete analysis carried out by KDGQGolumn Expert is
benchmarked successfully against well-establistoedneercial software for a range
of design parameters

The confined concrete analysis implemented by KDOdlumn Expert is well
correlated to experimental data for the column dypeith three different

confinements mentioned above.
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7-2 Recommendations

This work should be extended to address the foligvaireas:

1-

2-

Model the effect of FRP wrapping on confinementrémtangular columns.
Model corrosion of longitudinal and transverse Istéar circular and
rectangular columns

Refine CFST modeling by considering the biaxiakssr on the steel and
accounting for the premature failure of steel.

Refine the modeling of concrete wrapped with FRRI&ermining thedp that
represents the lateral pressure difference dewelahe to transferring the
confinemnet stress from FRP position to lateralgtesition

Model CFST for rectangular columns

Expand the software application to include the CESITimns.
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Appendix A - Ultimate Confined Strength Tables

Table A-1 is developed for f'c of 3.3 using equatid®-181 and 5-182. Table A-2 is for f'c of 3.9
using equations 5-183 and 5-184. Table A-3 is agpexl using Mander procedure that utilizes
Scickert and Winkler (1977) formulas. Table A-4fas f'c of 5.2 using equations 5-185 and 5-
186. Tables A-5 through A-7 show the confined valfier the same lateral pressure using
Scickert and Winkler (1977) equations. Tables ARBouigh A-7 give conservative values
compared to table A-1, A-2 and A-4. This indicatleat equations 5-179 and 5-180 found by
Scickert and Winkler (1977) and utilized by Maneéeral (1988) are conservative enough to be

used in the analysis
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Table A-1: Ultimate confined strength to unconfirgtgength ratio fof' . = 3.3 ksi

o1l*
o2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.02

3.7260

3.9001

4.0336

4.1442

4.2396

4.3238

4.3994

4.4680

4.5309

4.5888

4.6424

4.6924

4.7389

4.7825

4.8233

0.04

3.9001

4.1298

4.2988

4.4318

4.5436

4.6408

4.7273

4.8054

4.8768

4.9424

5.0032

5.0598

5.1128

5.1624

5.2091

0.06

4.0336

4.2988

4.5141

4.6779

4.8098

4.9220

5.0205

5.1086

5.1887

5.2621

5.3299

5.3930

5.4520

5.5074

5.5596

0.08

4.1442

4.4318

4.6779

4.8808

5.0396

5.1700

5.2821

5.3812

5.4705

5.5519

5.6269

5.6965

5.7614

5.8223

5.8797

0.1

4.2396

4.5436

4.8098

5.0396

5.2316

5.3855

5.5140

5.6257

5.7250

5.8150

5.8974

5.9736

6.0445

6.1109

6.1734

0.12

4.3238

4.6408

4.9220

5.1700

5.3855

5.5679

5.7172

5.8436

5.9544

6.0537

6.1440

6.2271

6.3041

6.3761

6.4436

0.14

4.3994

4.7273

5.0205

5.2821

5.5140

5.7172

5.8910

6.0358

6.1600

6.2698

6.3687

6.4591

6.5425

6.6201

6.6928

0.16

4.4680

4.8054

5.1086

5.3812

5.6257

5.8436

6.0358

6.2019

6.3424

6.4643

6.5728

6.6712

6.7614

6.8450

6.9230

0.18

4.5309

4.8768

5.1887

5.4705

5.7250

5.9544

6.1600

6.3424

6.5015

6.6380

6.7575

6.8647

6.9623

7.0522

7.1357

0.2

4.5888

4.9424

5.2621

5.5519

5.8150

6.0537

6.2698

6.4643

6.6380

6.7907

6.9233

7.0405

7.1462

7.2428

7.3322

0.22

4.6424

5.0032

5.3299

5.6269

5.8974

6.1440

6.3687

6.5728

6.7575

6.9233

7.0703

7.1991

7.3139

7.4180

7.5137

0.24

4.6924

5.0598

5.3930

5.6965

5.9736

6.2271

6.4591

6.6712

6.8647

7.0405

7.1991

7.3407

7.4660

7.5784

7.6810

0.26

4.7389

5.1128

5.4520

5.7614

6.0445

6.3041

6.5425

6.7614

6.9623

7.1462

7.3139

7.4660

7.6026

7.7245

7.8347

0.28

4.7825

5.1624

5.5074

5.8223

6.1109

6.3761

6.6201

6.8450

7.0522

7.2428

7.4180

7.5784

7.7245

7.8566

7.9753

0.3

4.8233

5.2091

5.5596

5.8797

6.1734

6.4436

6.6928

6.9230

7.1357

7.3322

7.5137

7.6810

7.8347

7.9753

8.1031
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Table A-2: Ultimate confined strength to unconfirgigength ratio fof' ¢ = 3.9 ksi

o1*
o2

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0.02 | 4.4819 | 4.7318 | 4.9351 | 5.1101 | 5.2656 | 5.4063 | 5.5355 | 5.6552 | 5.7670 | 5.8721 | 5.9712 | 6.0651 | 6.1544 | 6.2394 | 6.3206

0.04 | 4.7318 | 5.0412 | 5.2854 | 5.4880 | 5.6642 | 5.8217 | 5.9649 | 6.0969 | 6.2196 | 6.3345 | 6.4427 | 6.5450 | 6.6422 | 6.7347 | 6.8230

0.06 | 4.9351 | 5.2854 | 5.5802 | 5.8187 | 6.0197 | 6.1962 | 6.3548 | 6.4998 | 6.6337 | 6.7587 | 6.8759 | 6.9865 | 7.0914 | 7.1911 | 7.2862

0.08 | 5.1101 | 5.4880 | 5.8187 | 6.1005 | 6.3333 | 6.5323 | 6.7083 | 6.8674 | 7.0134 | 7.1488 | 7.2753 | 7.3943 | 7.5068 | 7.6136 | 7.7154

0.1 | 5.2656 | 5.6642 | 6.0197 | 6.3333 | 6.6037 | 6.8308 | 7.0273 | 7.2024 | 7.3616 | 7.5081 | 7.6443 | 7.7720 | 7.8923 | 8.0062 | 8.1145

0.12 | 5.4063 | 5.8217 | 6.1962 | 6.5323 | 6.8308 | 7.0908 | 7.3125 | 7.5063 | 7.6802 | 7.8389 | 7.9855 | 8.1222 | 8.2506 | 8.3718 | 8.4868

0.14 | 5.5355 | 5.9649 | 6.3548 | 6.7083 | 7.0273 | 7.3125 | 7.5631 | 7.7795 | 7.9704 | 8.1427 | 8.3007 | 8.4471 | 8.5840 | 8.7128 | 8.8346

0.16 | 5.6552 | 6.0969 | 6.4998 | 6.8674 | 7.2024 | 7.5063 | 7.7795 | 8.0215 | 8.2328 | 8.4208 | 8.5913 | 8.7483 | 8.8942 | 9.0310 | 9.1599

0.18 | 5.7670 | 6.2196 | 6.6337 | 7.0134 | 7.3616 | 7.6802 | 7.9704 | 8.2328 | 8.4670 | 8.6733 | 8.8582 | 9.0269 | 9.1827 | 9.3279 | 9.4644

0.2 | 5.8721 | 6.3345 | 6.7587 | 7.1488 | 7.5081 | 7.8389 | 8.1427 | 8.4208 | 8.6733 | 8.9002 | 9.1018 | 9.2837 | 9.4503 | 9.6048 | 9.7492

0.22 | 5.9712 | 6.4427 | 6.8759 | 7.2753 | 7.6443 | 7.9855 | 8.3007 | 8.5913 | 8.8582 | 9.1018 | 9.3219 | 9.5190 | 9.6978 | 9.8624 | 10.0154

0.24 | 6.0651 | 6.5450 | 6.9865 | 7.3943 | 7.7720 | 8.1222 | 8.4471 | 8.7483 | 9.0269 | 9.2837 | 9.5190 | 9.7328 | 9.9255 | 10.1014 | 10.2638

0.26 | 6.1544 | 6.6422 | 7.0914 | 7.5068 | 7.8923 | 8.2506 | 8.5840 | 8.8942 | 9.1827 | 9.4503 | 9.6978 | 9.9255 | 10.1334 | 10.3220 | 10.4948

0.28 | 6.2394 | 6.7347 | 7.1911 | 7.6136 | 8.0062 | 8.3718 | 8.7128 | 9.0310 | 9.3279 | 9.6048 | 9.8624 | 10.1014 | 10.3220 | 10.5243 | 10.7080

0.3 | 6.3206 | 6.8230 | 7.2862 | 7.7154 | 8.1145 | 8.4868 | 8.8346 | 9.1599 | 9.4644 | 9.7492 | 10.0154 | 10.2638 | 10.4948 | 10.7080 | 10.9060
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Table A-3: Ultimate confined strength to unconfirggength ratio fof . = 4.4 ksi (used by Mander et al

. (1988))

Gchl* 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 5.0255 | 5.2550 | 5.4259 | 5.5656 | 5.6849 | 5.7895 | 5.8829 | 5.9674 | 6.0444 | 6.1152 | 6.1806 | 6.2412 | 6.2976 | 6.3502 | 6.3993
0.04 | 5.2550 | 5.5622 | 5.7791 | 5.9460 | 6.0845 | 6.2040 | 6.3096 | 6.4044 | 6.4906 | 6.5695 | 6.6423 | 6.7098 | 6.7728 | 6.8315 | 6.8866
0.06 | 5.4259 | 5.7791 | 6.0569 | 6.2623 | 6.4247 | 6.5613 | 6.6803 | 6.7860 | 6.8815 | 6.9686 | 7.0487 | 7.1230 | 7.1920 | 7.2566 | 7.3171
0.08 | 5.5656 | 5.9460 | 6.2623 | 6.5164 | 6.7112 | 6.8688 | 7.0030 | 7.1209 | 7.2263 | 7.3218 | 7.4094 | 7.4903 | 7.5654 | 7.6355 | 7.7012
0.1 | 5.6849 | 6.0845 | 6.4247 | 6.7112 | 6.9456 | 7.1307 | 7.2834 | 7.4150 | 7.5313 | 7.6359 | 7.7312 | 7.8188 | 7.9000 | 7.9756 | 8.0464
0.12 | 5.7895 | 6.2040 | 6.5613 | 6.8688 | 7.1307 | 7.3486 | 7.5248 | 7.6726 | 7.8012 | 7.9157 | 8.0193 | 8.1140 | 8.2013 | 8.2825 | 8.3582
0.14 | 5.8829 | 6.3096 | 6.6803 | 7.0030 | 7.2834 | 7.5248 | 7.7283 | 7.8964 | 8.0394 | 8.1650 | 8.2775 | 8.3797 | 8.4735 | 8.5604 | 8.6413
0.16 | 5.9674 | 6.4044 | 6.7860 | 7.1209 | 7.4150 | 7.6726 | 7.8964 | 8.0875 | 8.2480 | 8.3864 | 8.5089 | 8.6193 | 8.7200 | 8.8127 | 8.8989
0.18 | 6.0444 | 6.4906 | 6.8815 | 7.2263 | 7.5313 | 7.8012 | 8.0394 | 8.2480 | 8.4282 | 8.5818 | 8.7156 | 8.8350 | 8.9431 | 9.0422 | 9.1338
0.2 | 6.1152 | 6.5695 | 6.9686 | 7.3218 | 7.6359 | 7.9157 | 8.1650 | 8.3864 | 8.5818 | 8.7522 | 8.8994 | 9.0289 | 9.1451 | 9.2510 | 9.3483
0.22 | 6.1806 | 6.6423 | 7.0487 | 7.4094 | 7.7312 | 8.0193 | 8.2775 | 8.5089 | 8.7156 | 8.8994 | 9.0610 | 9.2022 | 9.3276 | 9.4408 | 9.5443
0.24 | 6.2412 | 6.7098 | 7.1230 | 7.4903 | 7.8188 | 8.1140 | 8.3797 | 8.6193 | 8.8350 | 9.0289 | 9.2022 | 9.3560 | 9.4916 | 9.6130 | 9.7231
0.26 | 6.2976 | 6.7728 | 7.1920 | 7.5654 | 7.9000 | 8.2013 | 8.4735 | 8.7200 | 8.9431 | 9.1451 | 9.3276 | 9.4916 | 9.6383 | 9.7687 | 9.8861
0.28 | 6.3502 | 6.8315 | 7.2566 | 7.6355 | 7.9756 | 8.2825 | 8.5604 | 8.8127 | 9.0422 | 9.2510 | 9.4408 | 9.6130 | 9.7687 | 9.9087 | 10.0343
0.3 | 6.3993 | 6.8866 | 7.3171 | 7.7012 | 8.0464 | 8.3582 | 8.6413 | 8.8989 | 9.1338 | 9.3483 | 9.5443 | 9.7231 | 9.8861 | 10.0343 | 10.1683
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Table A-4: Ultimate confined strength to unconfirgtgength ratio fof' . = 5.2 ksi

(O

oo 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 5.9070 | 6.1647 | 6.3409 | 6.4785 | 6.5923 | 6.6891 | 6.7730 | 6.8467 | 6.9120 | 6.9700 | 7.0217 | 7.0679 | 7.1091 | 7.1458 | 7.1783
0.04 | 6.1647 | 6.5586 | 6.8072 | 6.9847 | 7.1258 | 7.2436 | 7.3448 | 7.4332 | 7.5113 | 7.5810 | 7.6435| 7.6996 | 7.7502 | 7.7959 | 7.8370
0.06 | 6.3409 | 6.8072 | 7.1633 | 7.4023 | 7.5789 | 7.7215 | 7.8417 | 7.9458 | 8.0373 | 8.1187 | 8.1917 | 8.2574 | 8.3170 | 8.3710 | 8.4201
0.08 | 6.4785 | 6.9847 | 7.4023 | 7.7279 | 7.9573 | 8.1317 | 8.2746 | 8.3962 | 8.5020 | 8.5957 | 8.6794 | 8.7548 | 8.8231 | 8.8853 | 8.9420
0.1 | 6.5923 | 7.1258 | 7.5789 | 7.9573 | 8.2579 | 8.4780 | 8.6495 | 8.7917 | 8.9137 | 9.0206 | 9.1157 | 9.2010 | 9.2782 | 9.3485 | 9.4126
0.12 | 6.6891 | 7.2436 | 7.7215 | 8.1317 | 8.4780 | 8.7576 | 8.9688 | 9.1369 | 9.2778 | 9.3996 | 9.5070 | 9.6028 | 9.6893 | 9.7678 | 9.8395
0.14 | 6.7730 | 7.3448 | 7.8417 | 8.2746 | 8.6495 | 8.9688 | 9.2303 | 9.4332 | 9.5975| 9.7367 | 9.8579 | 9.9652 | 10.0615 | 10.1486 | 10.2280
0.16 | 6.8467 | 7.4332 | 7.9458 | 8.3962 | 8.7917 | 9.1369 | 9.4332 | 9.6790 | 9.8740 | 10.0344 | 10.1716 | 10.2917 | 10.3987 | 10.4951 | 10.5826
0.18 | 6.9120 | 7.5113 | 8.0373 | 8.5020 | 8.9137 | 9.2778 | 9.5975 | 9.8740 | 10.1061 | 10.2937 | 10.4501 | 10.5850 | 10.7039 | 10.8102 | 10.9063
0.2 | 6.9700 | 7.5810 | 8.1187 | 8.5957 | 9.0206 | 9.3996 | 9.7367 | 10.0344 | 10.2937 | 10.5135 | 10.6941 | 10.8465 | 10.9790 | 11.0964 | 11.2019
0.22 | 7.0217 | 7.6435 | 8.1917 | 8.6794 | 9.1157 | 9.5070 | 9.8579 | 10.1716 | 10.4501 | 10.6941 | 10.9029 | 11.0770 | 11.2255 | 11.3555 | 11.4713
0.24 | 7.0679 | 7.6996 | 8.2574 | 8.7548 | 9.2010 | 9.6028 | 9.9652 | 10.2917 | 10.5850 | 10.8465 | 11.0770 | 11.2759 | 11.4438 | 11.5885 | 11.7159
0.26 | 7.1091 | 7.7502 | 8.3170 | 8.8231 | 9.2782 | 9.6893 | 10.0615 | 10.3987 | 10.7039 | 10.9790 | 11.2255 | 11.4438 | 11.6338 | 11.7959 | 11.9367
0.28 | 7.1458 | 7.7959 | 8.3710 | 8.8853 | 9.3485 | 9.7678 | 10.1486 | 10.4951 | 10.8102 | 11.0964 | 11.3555 | 11.5885 | 11.7959 | 11.9776 | 12.1342
0.3 |7.1783 | 7.8370 | 8.4201 | 8.9420 | 9.4126 | 9.8395 | 10.2280 | 10.5826 | 10.9063 | 11.2019 | 11.4713 | 11.7159 | 11.9367 | 12.1342 | 12.3084
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Table A-5: Ultimate confined strength to unconfireeength ratio fof' = 3.3 ksi (using Scickert and Winkler (1977))

o1
O2*

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.02

3.7369

3.9076

4.0347

4.1385

4.2272

4.3050

4.3745

4.4373

4.4946

4.5472

4.5958

4.6408

4.6827

47218

4.7584

0.04

3.9076

4.1360

4.2973

44214

4.5244

4.6133

4.6918

4.7623

4.8263

4.8850

4.9391

4.9894

5.0361

5.0799

5.1208

0.06

4.0347

4.2973

4.5039

4.6566

4.7773

4.8789

4.9674

5.0460

5.1170

5.1818

5.2414

5.2966

5.3479

5.3959

5.4410

0.08

4.1385

44214

4.6566

4.8456

4.9904

5.1076

5.2074

5.2950

5.3734

5.4445

5.5096

5.5697

5.6255

5.6777

5.7266

0.1

4.2272

4.5244

4.7773

4.9904

5.1647

5.3023

5.4159

5.5137

5.6002

5.6780

5.7489

5.8140

5.8744

5.9306

5.9832

0.12

4.3050

4.6133

4.8789

5.1076

5.3023

5.4643

5.5954

5.7053

5.8009

5.8861

5.9631

6.0335

6.0984

6.1588

6.2151

0.14

4.3745

4.6918

4.9674

5.2074

5.4159

5.5954

5.7467

5.8717

5.9780

6.0714

6.1551

6.2311

6.3009

6.3654

6.4256

0.16

4.4373

4.7623

5.0460

5.2950

5.5137

5.7053

5.8717

6.0138

6.1332

6.2361

6.3271

6.4092

6.4841

6.5531

6.6171

0.18

4.4946

4.8263

5.1170

5.3734

5.6002

5.8009

5.9780

6.1332

6.2671

6.3813

6.4809

6.5696

6.6500

6.7237

6.7918

0.2

4.5472

4.8850

5.1818

5.4445

5.6780

5.8861

6.0714

6.2361

6.3813

6.5081

6.6175

6.7138

6.8003

6.8789

6.9513

0.22

4.5958

4.9391

5.2414

5.5096

5.7489

5.9631

6.1551

6.3271

6.4809

6.6175

6.7377

6.8427

6.9359

7.0201

7.0970

0.24

4.6408

4.9894

5.2966

5.5697

5.8140

6.0335

6.2311

6.4092

6.5696

6.7138

6.8427

6.9571

7.0579

7.1481

7.2300

0.26

4.6827

5.0361

5.3479

5.6255

5.8744

6.0984

6.3009

6.4841

6.6500

6.8003

6.9359

7.0579

7.1669

7.2639

7.3512

0.28

4.7218

5.0799

5.3959

5.6777

5.9306

6.1588

6.3654

6.5531

6.7237

6.8789

7.0201

7.1481

7.2639

7.3681

7.4614

0.3

4.7584

5.1208

5.4410

5.7266

5.9832

6.2151

6.4256

6.6171

6.7918

6.9513

7.0970

7.2300

7.3512

7.4614

7.5611
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Table A-6: Ultimate confined strength to unconfirseagength ratio fof' . = 3.9 ksi (using Scickert and Winkler (1977))

02(31* 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 4.4163 | 4.6181 | 4.7683 | 4.8909 | 4.9958 | 5.0877 | 5.1698 | 5.2441 | 5.3118 | 5.3740 | 5.4314 | 5.4846 | 5.5342 | 5.5804 | 5.6236
0.04 | 4.6181 | 4.8880 | 5.0786 | 5.2253 | 5.3470 | 5.4520 | 5.5448 | 5.6281 | 5.7038 | 5.7732 | 5.8372 | 5.8965 | 5.9518 | 6.0035 | 6.0519
0.06 | 4.7683 | 5.0786 | 5.3228 | 5.5032 | 5.6460 | 5.7660 | 5.8705 | 5.9635 | 6.0474 | 6.1239 | 6.1944 | 6.2596 | 6.3203 | 6.3770 | 6.4302
0.08 | 4.8909 | 5.2253 | 5.5032 | 5.7266 | 5.8977 | 6.0362 | 6.1542 | 6.2577 | 6.3504 | 6.4344 | 6.5113 | 6.5824 | 6.6484 | 6.7100 | 6.7677
0.1 | 49958 | 5.3470 | 5.6460 | 5.8977 | 6.1038 | 6.2664 | 6.4006 | 6.5162 | 6.6184 | 6.7104 | 6.7941 | 6.8711 | 6.9424 | 7.0089 | 7.0711
0.12 | 5.0877 | 5.4520 | 5.7660 | 6.0362 | 6.2664 | 6.4578 | 6.6127 | 6.7426 | 6.8557 | 6.9563 | 7.0473 | 7.1305 | 7.2072 | 7.2785 | 7.3452
0.14 | 5.1698 | 5.5448 | 5.8705 | 6.1542 | 6.4006 | 6.6127 | 6.7916 | 6.9392 | 7.0650 | 7.1753 | 7.2742 | 7.3640 | 7.4465 | 7.5228 | 7.5939
0.16 | 5.2441 | 5.6281 | 5.9635 | 6.2577 | 6.5162 | 6.7426 | 6.9392 | 7.1072 | 7.2483 | 7.3699 | 7.4775 | 7.5745 | 7.6630 | 7.7445 | 7.8202
0.18 | 5.3118 | 5.7038 | 6.0474 | 6.3504 | 6.6184 | 6.8557 | 7.0650 | 7.2483 | 7.4066 | 7.5416 | 7.6592 | 7.7641 | 7.8591 | 7.9462 | 8.0267
0.2 | 5.3740 | 5.7732 | 6.1239 | 6.4344 | 6.7104 | 6.9563 | 7.1753 | 7.3699 | 7.5416 | 7.6913 | 7.8207 | 7.9345 | 8.0367 | 8.1297 | 8.2152
0.22 | 5.4314 | 5.8372 | 6.1944 | 6.5113 | 6.7941 | 7.0473 | 7.2742 | 7.4775 | 7.6592 | 7.8207 | 7.9628 | 8.0868 | 8.1970 | 8.2964 | 8.3874
0.24 | 5.4846 | 5.8965 | 6.2596 | 6.5824 | 6.8711 | 7.1305 | 7.3640 | 7.5745 | 7.7641 | 7.9345 | 8.0868 | 8.2220 | 8.3412 | 8.4478 | 8.5446
0.26 | 5.5342 | 5.9518 | 6.3203 | 6.6484 | 6.9424 | 7.2072 | 7.4465 | 7.6630 | 7.8591 | 8.0367 | 8.1970 | 8.3412 | 8.4700 | 8.5846 | 8.6878
0.28 | 5.5804 | 6.0035 | 6.3770 | 6.7100 | 7.0089 | 7.2785 | 7.5228 | 7.7445 | 7.9462 | 8.1297 | 8.2964 | 8.4478 | 8.5846 | 8.7077 | 8.8175
0.3 | 5.6236 | 6.0519 | 6.4302 | 6.7677 | 7.0711 | 7.3452 | 7.5939 | 7.8202 | 8.0267 | 8.2152 | 8.3874 | 8.5446 | 8.6878 | 8.8175 | 8.9358
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Table A-7: Ultimate confined strength to unconfirgeength ratio fof'c = 5.2 ksi (using Scickert and Winkler (1977))

o1*
o2+ 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 5.8885 | 6.1574 | 6.3577 | 6.5213 | 6.6610 | 6.7836 | 6.8931 | 6.9921 | 7.0823 | 7.1652 | 7.2418 | 7.3128 | 7.3788 | 7.4405 | 7.4980
0.04 | 6.1574 | 6.5173 | 6.7715 | 6.9671 | 7.1294 | 7.2694 | 7.3931 | 7.5042 | 7.6051 | 7.6976 | 7.7829 | 7.8620 | 7.9357 | 8.0046 | 8.0692
0.06 | 6.3577 | 6.7715 | 7.0970 | 7.3376 | 7.5279 | 7.6880 | 7.8274 | 7.9513 | 8.0632 | 8.1652 | 8.2592 | 8.3461 | 8.4270 | 8.5027 | 8.5736
0.08 | 6.5213 | 6.9671 | 7.3376 | 7.6354 | 7.8636 | 8.0483 | 8.2056 | 8.3437 | 8.4672 | 8.5792 | 8.6818 | 8.7765 | 8.8645 | 8.9467 | 9.0237
0.1 | 6.6610 | 7.1294 | 7.5279 | 7.8636 | 8.1384 | 8.3552 | 8.5342 | 8.6883 | 8.8246 | 8.9472 | 9.0588 | 9.1615| 9.2566 | 9.3452 | 9.4281
0.12 | 6.7836 | 7.2694 | 7.6880 | 8.0483 | 8.3552 | 8.6105 | 8.8169 | 8.9902 | 9.1409 | 9.2750 | 9.3963 | 9.5073 | 9.6096 | 9.7047 | 9.7935
0.14 | 6.8931 | 7.3931 | 7.8274 | 8.2056 | 8.5342 | 8.8169 | 9.0554 | 9.2523 | 9.4200 | 9.5671 | 9.6989 | 9.8187 | 9.9286 | 10.0304 | 10.1251
0.16 | 6.9921 | 7.5042 | 7.9513 | 8.3437 | 8.6883 | 8.9902 | 9.2523 | 9.4763 | 9.6644 | 9.8265 | 9.9700 | 10.0994 | 10.2174 | 10.3261 | 10.4270
0.18 | 7.0823 | 7.6051 | 8.0632 | 8.4672 | 8.8246 | 9.1409 | 9.4200 | 9.6644 | 9.8755 | 10.0554 | 10.2123 | 10.3522 | 10.4789 | 10.5949 | 10.7023
0.2 | 7.1652 | 7.6976 | 8.1652 | 8.5792 | 8.9472 | 9.2750 | 9.5671 | 9.8265 | 10.0554 | 10.2551 | 10.4276 | 10.5793 | 10.7155 | 10.8396 | 10.9536
0.22 | 7.2418 | 7.7829 | 8.2592 | 8.6818 | 9.0588 | 9.3963 | 9.6989 | 9.9700 | 10.2123 | 10.4276 | 10.6170 | 10.7824 | 10.9293 | 11.0619 | 11.1832
0.24 | 7.3128 | 7.8620 | 8.3461 | 8.7765 | 9.1615 | 9.5073 | 9.8187 | 10.0994 | 10.3522 | 10.5793 | 10.7824 | 10.9627 | 11.1216 | 11.2637 | 11.3928
0.26 | 7.3788 | 7.9357 | 8.4270 | 8.8645 | 9.2566 | 9.6096 | 9.9286 | 10.2174 | 10.4789 | 10.7155 | 10.9293 | 11.1216 | 11.2934 | 11.4462 | 11.5838
0.28 | 7.4405 | 8.0046 | 8.5027 | 8.9467 | 9.3452 | 9.7047 | 10.0304 | 10.3261 | 10.5949 | 10.8396 | 11.0619 | 11.2637 | 11.4462 | 11.6103 | 11.7574
0.3 | 7.4980 | 8.0692 | 8.5736 | 9.0237 | 9.4281 | 9.7935 | 10.1251 | 10.4270 | 10.7023 | 10.9536 | 11.1832 | 11.3928 | 11.5838 | 11.7574 | 11.9144
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