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Abstract 

 The analysis of concrete columns using unconfined concrete models is a well established 

practice. On the other hand, prediction of the actual ultimate capacity of confined concrete 

columns requires specialized nonlinear analysis. Modern codes and standards are introducing the 

need to perform extreme event analysis. There has been a number of studies that focused on the 

analysis and testing of concentric columns or cylinders. This case has the highest confinement 

utilization since the entire section is under confined compression. On the other hand, the 

augmentation of compressive strength and ductility due to full axial confinement is not 

applicable to pure bending and combined bending and axial load cases simply because the area 

of effective confined concrete in compression is reduced. The higher eccentricity causes smaller 

confined concrete region in compression yielding smaller increase in strength and ductility of 

concrete. Accordingly, the ultimate confined strength is gradually reduced from the fully 

confined value fcc (at zero eccentricity) to the unconfined value f’ c (at infinite eccentricity) as a 

function of the compression area to total area ratio. The higher the eccentricity the smaller the 

confined concrete compression zone. This paradigm is used to implement adaptive eccentric 

model utilizing the well known Mander Model and Lam and Teng Model.  

Generalization of the moment of area approach is utilized based on proportional loading, finite 

layer procedure and the secant stiffness approach, in an iterative incremental numerical model to 

achieve equilibrium points of P-ε and M-ϕ response up to failure. This numerical analysis is 

adaptod to asses the confining effect in circular cross sectional columns confined with FRP and 

conventional lateral steel together; concrete filled steel tube (CFST) circular columns and 

rectangular columns confined with conventional lateral steel. This model is validated against 

experimental data found in literature. The comparison shows good correlation. Finally computer 



  

software is developed based on the non-linear numerical analysis. The software is equipped with 

an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and 

demand point mapping in a single sheet. Options for preliminary design, section and 

reinforcement selection are seamlessly integrated as well.  The software generates 2D interaction 

diagrams for circular columns, 3D failure surface for rectangular columns and allows the user to 

determine the 2D interaction diagrams for any angle α between the x-axis and the resultant 

moment. Improvements to KDOT Bridge Design Manual using this software with reference to 

AASHTO LRFD are made. This study is limited to stub columns. 
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an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and 
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Chapter 1 - Introduction 

 1-1 Background 

Columns are considered the most critical elements in structures. The unconfined analysis 

for columns is well established in the literature. Structural design codes dictate reduction factors 

for safety. It wasn’t until very recently that design specifications and codes of practice, like 

AASHTO LRFD, started realizing the importance of introducing extreme event load cases that 

necessitates accounting for advanced behavioral aspects like confinement. Confinement adds 

another dimension to columns analysis as it increases the column’s capacity and ductility. 

Accordingly, confinement needs special non linear analysis to yield accurate predictions. 

Nevertheless the literature is still lacking specialized analysis tools that take into account 

confinement despite the availability of all kinds of confinement models. In addition the literature 

has focused on axially loaded members with less attention to eccentric loading. Although the 

latter is more likely to occur, at least with misalignement tolerances, the eccentricity effect is not 

considered in any confinement model available in the literature.  

It is widely known that code Specifications involve very detailed design procedures that 

need to be checked for a number of limit states making the task of the designer very tedious. 

Accordingly, it is important to develop software that guide through the design process and 

facilitate the preparation of reliable analysis/design documents.  

 

 1-2 Objectives 

 This study is intended to determine the actual capacity of confined reinforced concrete 

columns subjected to eccentric loading and to generate the failure envelope at three different 



2 

 

levels. First, the well-known ultimate capacity analysis of unconfined concrete is developed 

as a benchmarking step. Secondly, the unconfined ultimate interaction diagram is scaled 

down based on the reduction factors of the AASHTO LRFD to the design interaction 

diagram. Finally, the actual confined concrete ultimate analysis is developed based on a new 

eccentricity model accounting for partial confinement effect under eccentric loading. The 

analyses are conducted for three types of columns; circular columns confined with FRP and 

conventional transverse steel, circular columns confined with steel tubes and rectangular 

columns confined with conventional transverse steel.  It is important to note that the present 

analysis procedure will be benchmarked against a wide range of experimental and analytical 

studies to establish its accuracy and reliability. 

It is also the objective of this study to furnish interactive software with a user-friendly 

interface having analysis and design features that will facilitate the preliminary design of 

circular columns based on the actual demand. The overall objectives behind this research are 

summarized in the following points: 

- Introduce the eccentricity effect in the stress-strain modeling 

- Implement non-linear analysis for considering the confinement effects on column’s actual 

capacity  

- Test the analysis for three types of columns; circular columns confined with FRP and 

conventional transverse steel, circular columns confined with steel tubes and rectangular 

columns confined with conventional transverse steel. 

- Generate computer software that helps in designing and analyzing confined concrete 

columns through creating three levels of Moment-Force envelopes; unconfined curve, 

design curve based on AASHTO-LRFD and confined curve. 
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 1-3 Scope 

This dissertation is composed of seven chapters covering the development of material models, 

analysis procedures, benchmarking and practical applications. 

- Chapter one introduces the objectives of the study and the content of the different 

chapters. 

- Chapter two reviews the literature through four independent sections: 

1- Section 1: Reinforced concrete confinement models 

2- Section 2: Circular Columns Confined with FRP  

3- Section 3:  Circular Concrete Filled Steel Tubes Columns (CFST)  

4-  Section 4: Rectangular Columns subjected to biaxial bending and Axial Compression 

- Chapter three deals with Circular columns confined with FRP and lateral steel.   

- Chapter four talks about concrete filled steel tube (CFST) circular columns 

- Chapter five presents rectangular columns analysis for both the unconfined and confined 

cases. Chapter three, four and five address the following subjects: 

�  Finite Layer Approach (Fiber Model)  

�  Present Confinement Model for Concentric Columns 

� Present Confinement Model for Eccentric Columns 

� Moment of Area Theorem 

� Numerical Formulation 

� Results and Discussion 

- Chapter six introduces the software concepts and highlights the software forms and 

components 

- Chapter seven states the conclusions and recommendations. 
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Chapter 2 - Literature Review 

 This chapter reviews four different topics; lateral steel confinement models, 

Circular Concrete Columns Filled Steel Tubes (CFST) and Rectangular Columns 

subjected to biaxial bending and Axial Compression. 

 2-1 Steel Confinement Models 

 A comprehensive review of confined models for concrete columns under concentric axial 

compression that are available in the literature is conducted. The models reviewed are 

chronologically presented then compared by a set of criteria that assess consideration of different 

factors in developing the models such as effectively confined area, yielding strength and 

ductility. 

 2-1-1 Chronological Review of Models 

 The confinement models available are presented chronologically regardless of their 

comparative importance first. After that, discussion and categorization of the models are carried 

out and conclusions are made. Common notation is used for all the equations for the sake of 

consistency and comparison. 

 2-1-1-1 Notation 

As:   the cross sectional area of longitudinal steel reinforcement 

Ast:  the cross sectional area of transverse steel reinforcement 

Ae:   the area of effectively confined concrete 
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Acc: the area of core within centerlines of perimeter spirals or hoops excluding area of 

longitudinal steel 

b:    the confined width (core) of the section 

h: the confined height (core) of the section 

c:   center-to-center distance between longitudinal bars 

d’s:   the diameter of longitudinal reinforcement  

d’st: the diameter of transverse reinforcement  

D:  the diameter of the column 

ds   the core diameter of the column 

fcc:  the maximum confined strength 

f’ c:  the peak unconfined strength 

fl:     the lateral confined pressure 

f’ l:     the effective lateral confined pressure 

fyh:  the yield strength of the transverse steel 

fs:  the stress in the lateral confining steel 

ke:   the effective lateral confinement coefficient 

q:   the effectiveness of the transverse reinforcement 

s:  tie spacing 

so:  the vertical spacing at which transverse reinforcement is not effective in concrete confinement 

εco:  the strain corresponding to the peak unconfined strength f’ c 

εcc:  the strain corresponding to the peak confined strength fcc 

εy:   the strain at yielding for the transverse reinforcement 

εcu:  the ultimate strain of confined concrete 
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ρs:  the volumetric ratio of lateral steel to concrete core 

ρl:   the ratio of longitudinal steel to the gross sectional area 

ρ:  the volumetric ratio of lateral + longitudinal steel to concrete core 

 

 Richart, Brandtzaeg and Brown (1929) 

 Richart et al’s. (1929) model was the first to capture the proportional relationship 

between the lateral confined pressure and the ultimate compressive strength of confined 

concrete. 

lccc fkff 1
' +=                             2-1 

The average value for the coefficient k1, which was derived from a series of short column 

specimen tests, came out to be (4.1). The strain corresponding to the peak strength εcc (see 

Mander et al. 1988) is obtained using the following function: 
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where εco is the strain corresponding to f’c, k2 is the strain coefficient of the effective lateral 

confinement pressure. No stress-strain curve graph was proposed by Richart et al (1929).                                                

 

 Chan (1955) 

 A tri-linear curve describing the stress-strain relationship was suggested by Chan (1955) 

based on experimental work. The ratio of the volume of steel ties to concrete core volume and 

concrete strength were the only variables in the experimental work done. Chan assumed that OA 

approximates the elastic stage and ABC approximates the plastic stage, Figure (2-1). The 

positions of A, B and C may vary with different concrete variables. Chan assumed three different 
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slopes Ec, λ1Ec, λ2Ec for lines OA, AB and BC respectively. However no information about 

λ1 and λ2 was provided.  

 

  

 

 

 

 

 

 

Blume, Newmark and Corning (1961) 

 Blume et al. (1961) were the first to impose the effect of the yield strength for the 

transverse steel fyh in different equations defining the model. The model generated, Figure (2-2), 

has ascending straight line with steep slope starting from the origin till the plain concrete peak 

strength f’ c and the corresponding strain εco, then a less slope straight line connect the latter point 

and the confined concrete peak strength fcc and εcc. Then the curve flatten till εcu

sh
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Figure 2-1: General Stress-Strain curve by Chan (1955) 
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Figure 2-2: General Stress-Strain curve by Blume et al. (1961) 

                    

where εy is the strain at yielding for the transverse reinforcement, Ast is the cross sectional area of 

transverse steel reinforcement ,h is the confined cross sectional height, εsu is the strain of 

transverse spiral reinforcement at maximum stress and εcu is the ultimate concrete strain. 

 

 Roy and Sozen (1965) 

          Based on their experimental results, which were controlled by two variables; ties spacing 

and amount of longitudinal reinforcement, Roy and Sozen (1965) concluded that there is no 

enhancement in the concrete capacity by using rectilinear ties. On the other hand there was 

significant increase in ductility. They proposed a bilinear ascending-descending stress strain 

curve that has a peak of the maximum strength of plain concrete f’ c and corresponding strain εco 

with a value of 0.002. The second line goes through the point defined by ε50 till it intersects with 

the strain axis. The strain ε50 was suggested to be a function of the volumetric ratio of ties to 

concrete core ρs, tie spacing s and the shorter side dimension b’ (see Sheikh 1982). 
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 Soliman and Yu (1967) 

 Soliman and Yu (1967) proposed another model that emerged from experimental results. 

The main parameters involved in the work done were tie spacing s, a new term represents the 

effectiveness of ties so, the area of ties Ast, and finally section geometry, which has three different 

variables; Acc the area of confined concrete under compression, Ac the area of concrete under 

compression and b. The model has three different portions as shown in Figure (2-3). The 

ascending portion which is represented by a curve till the peak point (f’ c, εce). The flat straight-

line portion with its length varying depending on the degree of confinement. The last portion is a 

descending straight line passing through (0.8 f’ c, εcf) then extending down till an ultimate strain.
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where q refers to the effectiveness of the transverse reinforcement , so is the vertical spacing at 

which transverse reinforcement is not effective in concrete confinement and B is the greater of b 

and 0.7 h. 
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Sargin (1971) 

Sargin conducted experimental work on low and medium strength concrete with no longitudinal 

reinforcement. The transverse steel that was used had different size and different yield and 

ultimate strength. The main variables affecting the results were the volumetric ratio of lateral 

reinforcement to concrete core ρs, the strength of plain concrete f’ c, the ratio of tie spacing to the 

width of the concrete core and the yield strength of the transverse steel fyh. 
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Figure 2-3: General Stress-Strain curve by Soliman and Yu (1967) 
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where k3 is concentric loading maximum stress ratio. 

 

 Kent and Park (1971) 

 As Roy and Sozen (1965) did, Kent and Park (1971) assumed that the maximum strength 

for confined and plain concrete is the same f’ c. The suggested curve, Figure (2-4), starts from the 

origin then increases parabolically (Hognestad’s Parabola) till the peak at f’ c and the 

corresponding strain εco at 0.002. Then it descends with one of two different straight lines. For 

the confined concrete, which is more ductile, it descends till the point (0.5 f’c, ε50c) and continues 

descending to 0.2f’c followed by a flat plateau. For the plain concrete it descends till the point 

(0.5 f’c, ε50u) and continue descending to 0.2f’ c as well without a flat plateau. Kent and Park 

assumed that confined concrete could sustain strain to infinity at a constant stress of 0.2 f’c  
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where ρs is the ratio of lateral steel to the concrete core, Z is a constant controlling the slope of 

descending portion. 

 

 Popovics (1973) 

 Popovics pointed out that the stress-strain diagram is influenced by testing conditions and 

concrete age. The stress equation is: 
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 Vallenas, Bertero and Popov (1977) 
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Figure 2-4: Stress-Strain curve by Kent and Park (1971). 
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 The variables utilized in the experimental work conducted by Vallenas et al. (1977) were 

the volumetric ratio of lateral steel to concrete core ρs, ratio of longitudinal steel to the gross area 

of the section ρl, ties spacing s, effective width size,  strength of ties and size of longitudinal bars. 

The model generated was similar to Kent and Park model with improvement in the peak strength 

for confined concrete, Figure (2-5). For the ascending branch: 
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where k is coefficient of confined strength ratio, Z is the slope of descending portion, d’s and d’st 

are the diameter of longitudinal and transverse reinforcement respectively. 
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Figure 2-5: Stress-Strain curve by Vallenas et al. (1977). 

 

 Wang, Shah and Naaman (1978) 

  Wang et al. (1978) obtained experimentally another stress-strain curve describing the 

behavior of confined reinforced concrete under compression; Figure (2-6). The concrete tested 

was normal weight concrete ranging in strength from 3000 to 11000 psi (20.7 to 75.8 MPa) and 

light weight concrete with strength of 3000-8000 psi (20.7 to 55 MPa). Wang et al. utilized an 

equation, with four constants, similar to that of Sargin et al.  
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The four constant A, B, C, D were evaluated for the ascending part independently of the 

descending one. The four conditions used to evaluate the constants for the ascending part were 

 dY/dX  = E0.45/Esec        at  X=0          Esec = fcc/εcc 

 Y = 0.45   for X = 0.45/(E0.45/Esec)           

 Y=1  for X=1 

 dY/dX = 0 at  X=1 

whereas for the descending branch: 

 Y=1  for X=1 

 dY/dX = 0 at  X=1  

Y = fi/fcc  for    X = εi/εcc 

Figure 2-6: Proposed Stress-Strain curve by Wang et al (1978) 

 

where fi and εi are the stress and strain at the inflection point, f2i and ε2i refer to a point such 

that   cciii εεεε −=−2 and E0.45 represents the secant modulus of elasticity at 0.45 fcc 

Y = f2i/fcc  for   X = ε2i/εcc 

 

 Muguruma , Watanabe , Katsuta and Tanaka (1980) 
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 Muguruma et al. (1980) obtained their stress-strain model based on experimental work 

conducted by the model authors, Figure (2-7). The stress-strain model is defined by three zones; 

Zone 1 from 0-A: 
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where S  is the area surrounded by the idealized stress-strain curve up to the peak stress and W is 

the minimum side length or diameter of confined concrete    

For circular columns confined with circular hoops: 
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( ) ucu Cc εε 9901+=                                                       2-48 

Whereas for square columns confined with square hoops: 
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Figure 2-7: Proposed Stress-Strain curve by Muguruma et al (1980) 
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 Scott, Park, Priestly (1982) 

 Scott et al. (1982) examined specimens by loading at high strain rate to correlate with the 

seismic loading. They presented the results including the effect of eccentric loading, strain 

rate, amount and distribution of longitudinal steel and amount and distribution of transverse 

steel.  For low strain rate Kent and Park equations were modified to fit the experimental data 
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where b”  is the width of concrete core measured to outside of the hoops. For the high strain 

rate, the k and Zm were adapted to 
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and the maximum strain was suggested to be: 
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It was concluded that increasing the spacing while maintaining the same ratio of lateral 

reinforcement by increasing the diameter of spirals, reduce the efficiency of concrete 

confinement. In addition, increasing the number of longitudinal bars will improve the concrete 

confinement due to decreasing the spacing between the longitudinal bars. 

 

 Sheikh and Uzumeri (1982) 

 Sheikh and Uzumeri (1982) introduced the effectively confined area as a new term in 

determining the maximum confined strength (Soliman and Yu (1967) had trial in effective area 

introduction). In addition to that they, in their experimental work, utilized the volumetric ratio of 

lateral steel to concrete core, longitudinal steel distribution, strength of plain concrete, and ties 

strength, configuration and spacing. The stress-strain curve,  Figure (2-8), was presented 

parabolically up to (fcc, εcc), then it flattens horizontally till εcs, and finally it drops linearly 

passing by (0.85fcc, ε85) till 0.3 fcc, In that sense, it is conceptually similar to the earlier model of 

Soliman and Yu (1967). 

fcc and εcc can be determined from the following equations: 
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where b is the confined width of the cross section, f’ st is the stress in the lateral confining bar, c is 

center-to-center distance between longitudinal bars,εs85 is the value of strain corresponding to 

85% of the maximum stress on the unloading branch, n is the number of laterally supported 

longitudinal bars, Z is the slope for the unloading part, fcp is the equivalent strength of 

unconfined concrete in the column, and Pocc = Kpf'c(Acc - As) 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-8: Proposed general Stress-Strain curve by Sheikh and Uzumeri (1982). 

  

S
tr

e
ss

Strain

ccf

ccε csε 85ε



21 

 

 Ahmad and Shah (1982) 

 Ahmad and Shah (1982) developed a model based on the properties of hoop 

reinforcement and the constitutive relationship of plain concrete. Normal weight concrete and 

lightweight concrete were used in tests that were conducted with one rate of loading. No 

longitudinal reinforcement was provided and the main two parameters varied were spacing and 

yield strength of transverse reinforcement. Ahmed and Shah observed that the spirals become 

ineffective when the spacing exceeds 1.25 the diameter of the confined concrete column. They 

concluded also that the effectiveness of the spiral is inversely proportional with compressive 

strength of unconfined concrete. 

 Ahmad and Shah adapted Sargin model counting on the octahedral failure theory, the 

three stress invariants and the experimental results: 

2
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pcn
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f

f
Y =                                                                                                                                      2-66 

ip

iX
ε
ε

=                                                                                                                                       2-67 

where fpcs is the most principal compressive stress, fpcn is the most principal compressive strength, 

εi is the strain in the i-th principal direction and εip is the strain at the peak in the i-th direction.  

 
ip

i
i E

E
A =                   

ip

pcn
ip

f
E

ε
=  

Ei is the initial slope of the stress strain curve, Di is a parameter that governs the descending 

branch. When the axial compression is considered to be the main loading, which is typically the 

case in concentric confined concrete columns, Equations (2-65), (2-66) and (2-67) become: 
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 Park, Priestly and Gill (1982) 

 Park et al. (1982) modified Kent and Park (1971) equations to account for the strength  

improvement due to confinement based on experimental work conducted for four square full 

scaled columns (21.7 in2 (14 000 mm2) cross sectional area and 10.8 ft (3292 mm) high), Figure 

(2-9). The proposed equations are as follow: 
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Figure 2-9: Proposed general Stress-Strain curve by Park et al (1982). 

 

 Martinez, Nilson and Slate (1984) 

 Experimental investigation was conducted to propose equations to define the stress strain 

curve for spirally reinforced high strength concrete under compressive loading. The main 

parameters used were compressive strength for unconfined concrete, amount of confinement and 

specimen size. Two types of concrete where used; normal weight concrete with strength to about 

12000 psi. (82.75 MPa) and light weight concrete with strength to about 9000 psi (62 MPa). 

Martinez et al. (1984) concluded that the design specification for low strength concrete might be 

unsafe if applied to high strength concrete. For normal weight concrete: 
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and for light weight concrete: 
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'
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d

s
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where d’st is the diameter of the lateral  reinforcement. 
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 Fafitis and Shah (1985) 

 Fafitis and Shah (1985) assumed that the maximum capacity of confined concrete occurs 

when the cover starts to spall off. The experimental work was done on high strength concrete 

with varying the confinement pressure and the concrete strength. Two equations are proposed to 

express the ascending and the descending branches of the model. For the ascending branch: 




















−−=

A

cc

c
ccc ff

ε
ε

11        ccc εε ≤≤0                                                                                     2-78 

and for the descending branch: 
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The equations for the constant A and k: 
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fcc and εcc can be found using the following equations: 
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fl represents the confinement pressure and is given by the following equations: 
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ds is the core diameter of the column and de is the equivalent diameter. 

 

 Yong, Nour and Nawy (1988) 

 The model suggested by Yong et al. (1988) was based on experimental work done for 

rectangular columns with rectangular ties; Figure (2-10). 
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Figure 2-10: Proposed general Stress-Strain curve by Yong et al. (1988) 

 

 Mander, Priestly and Park (1988) 

 Using the same concept of effective lateral confinement pressure introduced by Sheikh 

and Uzumeri, Mander et al. (1988) developed a new confined model for circular spiral and hoops 

or rectangular ties; Figure (2-11). In addition Mander et al. (1988) was the second group after 

Bazant et al. (1972) to investigate the effect of the cyclic load side by side with monotonic one. 














−++−=

'

'

'

'
' 2

94.7
1254.2254.1

c

l

c

l
ccc

f

f

f

f
ff                                                                                      2-92 




















−+= 151

'

'

c

cc
cocc

f

f
εε                                                                                                                2-93 

leyhsel fkfkf == ρ
2

1'
                                                                                                         2-94 

r
cc

c xr

xrf
f

+−
=

1
                                                                                                                       2-95 

 

Strain

S
tr

es
s

ccf

ccf45.0

ccε iε i2ε

if

if2



27 

 

secEE

E
r

c

c

−
=                                                                                                                              2-96 

cc

cx
ε
ε

=                                                                                                                                        2-97 

Where ke is the effective lateral confinement coefficient: 
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Ae is the area of effectively confined concrete, Esec = fcc/εcc and Acc is area of core within 

centerlines of perimeter spirals or hoops excluding area of longitudinal steel. 
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Where s’ is the clear spacing, ρcc is the the ratio of longitudinal reinforcement to the core area

∑ 2
iw  is the sum of the squares of all the clear spacing between adjacent longitudinal steel bars 

in a rectangular section. Mander et al. (1988) proposed calculation for the ultimate confined 

concrete strain εcu based on the strain energy of confined concrete. 

  

For Circular hoops 

           For Circular spirals 

For Rectangular ties 
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Figure 2-11: Stress- Strain Model proposed by Mander et al (1988)
 

 

Fujii, Kobayashi, Miyagawa, Inoue and Matsumoto (1988) 

 Fujii et al. (1988) developed a stress strain relation by uniaxial testing of circular and 

square specimen of 150 mm wide and 300 mm tall; Figure (2-12). The tested specimen did not 

have longitudinal bars and no cover. The proposed stress strain model has four regions; 
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Fujii et al. (1988) defined three confinement coefficients for maximum stress Ccf, corresponding 

strain Ccεu and stress degradation gradient Cθ.  For circular specimens, the peak strength and 

corresponding strain are as follow: 
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Whereas for square columns the values are as follow: 
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They showed that the proposed model has higher accuracy than Park et al. (1982) model 

compared to the experimental work done by Fujii et al. (1988). 
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Figure 2-12: Proposed general Stress-Strain curve by Fujii et al. (1988)  

 

           Saatcioglu and Razvi (1992) 

 Saatcioglu and Razvi (1992) concluded that the passive lateral pressure generated by 

laterally expanding concrete and restraining transverse reinforcement is not always uniform. 

Based on tests on normal and high strength concrete ranging from 30 to 130 MPa, Saatcioglu 
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and Razvi proposed a new model, Figure (2-13), that has exponential relationship between the 

lateral confinement pressure and the peak confinement strength. They ran tests by varying 

volumetric ratio, spacing, yield strength, arrangement of transverse reinforcement, concrete 

strength and section geometry. In addition, the significance of imposing the tie arrangement as a 

parameter in determining the peak confined strength was highlighted 
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where ε085 is the strain at 0.85 f’c for the unconfined concrete 
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where c is spacing of longitudinal reinforcement and α is the angle between the transverse 

reinforcement and b. 

Figure 2-13: Proposed Stress-Strain curve by Saatcioglu and Razvi (1992-1999). 

  

 Sheikh and Toklucu (1993) 

 Sheikh and Toklucu (1993) studied the ductility and strength for confined concrete and 

they concluded that ductility is more sensitive, than the strength, to amount of transverse steel, 

and the increase in concrete strength due to confinement was observed to be between 2.1 and 4 

times the lateral pressure. 

 

 Karabinis and Kiousis (1994) 
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 Karabinis and Kiousis (1994) utilized the theory of plasticity in evaluating the 

development of lateral confinement in concrete columns. However, no stress-strain equations 

were proposed 

  

 Hsu and Hsu (1994) 

 Hsu and Hsu (1994) modified Carreira and Chu (1985) equation that was developed for 

unconfined concrete, to propose an empirical stress strain equations for high strength concrete. 

The concrete strength equation is: 
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where ω  and ζ are material properties. ω  depends on the shape of the stress strain curve and ζ  

depends on material strength and it is taken equal to 1.0 and xd is the strain at 0.6 f'c. in the 

descending portion of the curve 

 

 Rasheed and Dinno (1994) 

 Rasheed and Dinno (1994) introduced a fourth degree polynomial to express the stress 

strain curve of concrete under compression. 
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They evaluated the constants ao-a4 using the boundary conditions of the stress strain curve. 

Similar to Kent and Park, they assumed no difference between the unconfined and confined peak 

strength. 

'
cccc fkf =                                                                                                                                  2-133 

 where  

1=ck   

They used expression taken from Kent and Park model to evaluate the slope of the descending 

branch starting at strain of 0.003. A flat straight line was proposed when the stress reaches 0.2 fcc 

up to Ccεcc. where Cc is the ratio of maximum confined compressive strain to εcc. 

The five boundary conditions used are: 

           fc = 0 at  εc=0 

 d fc /d εc = Ec at  εc=0 

           fc = f’ c at  εc= εco 

          d fc /d εc = 0 at  εc= εco 

          d fc /d εc = -Z fc at  εc = 0.003 

 

 El-Dash and Ahmad (1995) 

 El-Dash and Ahmad (1995) used Sargin et al. model to predict analytically the behavior 

of spirally confined normal and high strength concrete in one series of equations. They used the 

internal force equilibrium, properties of materials, and the geometry of the section to predict the 
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pressure. The parameters imposed in the analytical prediction where plain concrete strength, 

confining reinforcement diameter and yield strength, the volumetric ratio of lateral reinforcement 

to the core, the dimension of the column and spacing.  
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The values of A, B, k1, k2 and fl are defined by the following equations 

secE

E

f

E
A c

cc

ccc ==
ε

                                                                                                                      2-139 

33.0

'

'

5.16



















=

st

l

c

d

s
f

f
B                                                                                                                     2-140 

25.0''
5.0

'

1 1.5























=

s

st

yh

c d

f

f
k

ρ
                                                                                                         2-141 

7.1'
'

2

66

c
st

f
d

s
k









=                                                                                                                         2-142 

 



36 

 

 

)
25.1

1(5.0
s

yhsl d

s
ff −= ρ                                                                                                      2-143 

where ds is the core diameter.  

  

 Cusson and Paultre (1995) 

 Unlike all the previous work, Cusson and Paultre (1995) built their model based on the 

actual stress in the stirrups upon failure and they did not consider the yield strength, as the 

experimental work have shown that the yield strength for the transverse steel is reached in case 

of well confined columns. The ascending and the descending branches in the model curve are 

expressed by two different equations Figure (2-14). For the ascending portion: 
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For descending one: 
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where εc50c  is axial strain in confined concrete when stress drops to 0.5 fcc. It is observed that 

equation (2-144) proposed by Cusson and Paultre is identical to equation (2-95) suggested by 

Mander et al (1988). 

 Following the same methodology of Sheikh and Uzumeri (1982) and Mander et al. 

(1988) Cusson and Paultre considered the lateral confinement pressure fl. 
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where Asx and Asy are the lateral cross sectional area of the lateral steel perpendicular to x and y 

axes respectively and fhcc is the stress in the transverse reinforcement at the maximum strength of 

confined concrete. 
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where ∑ 2
iw  is the sum of the squares of all the clear spacing between adjacent longitudinal 

steel bars in a rectangular section. fcc and εcc can be found by the following equations
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Figure 2-14: Proposed Stress-Strain curve by Cusson and Paultre (1995). 

 

 Attard and Setunge (1996) 

 Attard and Setunge (1996) experimentally determined full stress-strain curve for concrete 

with compressive strength of 60 –130 MPa and with confining pressure of 1-20 MPa, Figure (2-

15). The main parameters used were peak stress; strain at peak stress, modulus of elasticity, and 

the stress and strain at point of inflection. Attard and Setunge followed the same equation used 

by Wang et al (1978). and Sargin (1971): 
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For the ascending branch, the four constant are determined by setting four conditions: 
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while for the descending curve the four boundary conditions were 

1- at ccc ff = , 0=
c

c
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ε
 

 2- at ccc ff = , ccc εε =  

 3- at ic ff = , ic εε =  

 4- at ic ff 2= , ic 2εε =  

where fi and εi refer to the coordinate of the inflection point. 

The four constants for the descending curve are 



40 

 

( ) ( )







−
−

−






 −
=

icc

ii

icc

ii

cc

ii

ff

E

ff

E
A

2

222 4εε
ε

εε
                                                                                   2-162 

( )
( ) ( )







−
−

−
−=

icc

i

icc

i
ii ff

E

ff

E
B

2

2
2 εε                                                                                       2-163 

2−= AC                                                                                                                                  2-164 

1+= BD                                                                                                                                  2-165 

The fcc came out to be a function of the confining pressure, the compressive and tensile strength 

of concrete f’ c, fl, ft, and a parameter k that reflects the effectiveness of confinement. 
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No lateral pressure equation was provided 
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Figure 2-15: Proposed Stress-Strain curve by Attard and Setunge (1996). 
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 Mansur, Chin and Wee (1996) 

 Mansur et al. (1996) introduced casting direction, if the member is cast in 

place(vertically) or pre-cast (horizontally), as a new term among the test parameters, for high 

strength concrete, which were tie diameter and spacing and concrete core area. They concluded 

that the vertically cast confined fiber concrete has higher strain at peak stress and higher ductility 

than the horizontally cast specimen. In addition, vertically cast confined non-fiber concrete has 

larger strain than that of horizontally cast concrete with no enhancement in ductility. Mansur et 

al. utilized the same equations found by Carreira and Chu for plain concrete with some 

modifications. For the ascending branch, they used the exact same equation 
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where β is a material parameter depending on the stress strain shape diagram and can be found 

by : 
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k1 and k2 are two constants  introduced in the equation describing the descending branch: 
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for confined horizontally and vertically cast non-fiber concrete: 
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for horizontally cast confined fiber concrete 
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and the values of fcc and εcc can be obtained from the following equations:for confined non-fiber 

concrete: 
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for confined  fiber concrete: 
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for vertically cast fiber concrete 
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for horizontally cast fiber concrete and vertically cast non-fiber concrete 
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and for horizontally cast non-fiber concrete 
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 Hoshikuma, Kawashima, Nagaya and Taylor (1997) 

 Hoshikuma et al. (1997) developed their models to satisfy bridge column section design 

in Japan. The model was based on series of compression loading tests of reinforced concrete 

column specimens that have circular, square and wall type cross sections. The variables that 

varied in the experimental wok were hoop volumetric ratio, spacing, configuration of the hook in 

the hoop reinforcement and tie arrangement. 

 Hoshikuma et al. (1997) asserted that the ascending branch represented in second degree 

parabola is not accurate to satisfy four boundary conditions: 

1- Initial condition fc= 0, εc=0. 

2- Initial stiffness condition dfc/d εc=Ec at εc=0. 

3- Peak condition fc=fcc at εc= εcc 

4- Peak stiffness condition dfc/dεc=0 at εc= εcc 

The function that defines the ascending branch is: 
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For the descending branch: 
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where Edes is the deterioration rate that controls slope of the descending line and can be found 

using the following equation 
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 Razvi and Saatcioglu (1999) 

 Razvi and Saatcioglu modified their model of Saatcioglu and Razvi (1992) to fit the high 

strength concrete (30 – 130 MPa). The ascending zone is defined by Popovics equation as 

follow: 
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and for the descending branch: 
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Razvi and Saatcioglu (1999) showed the good agreement of the model with some experimental 

work available in the literature. 

 

 Mendis, Pendyala and Setunge (2000) 

Mendis et al. (2000) modified Scott et al. (1982) equations to fit high strength concrete. 

They empirically adjusted Scott et al. (1982) equations to the following ones: 
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fl is calculated according to Mander equations. 
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Assa, Nishiyama and Watanabe (2001) 

A new model was proposed for concrete confined by spiral reinforcement based on concrete-

transverse steel interaction. The two main parameters were concrete strength and lateral stress-

lateral strain relationship that represents the response characteristics of the transverse steel to the 

lateral expansion of concrete. Assa et al. (2001) modeled a confinement mechanism and limited 

the lateral expansion of the confined concrete with the maximum lateral expansion capacity. 

Assa et al. (2001) reached some relationships expressed in the following equations: 
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where εlcu is the maximum lateral concrete strain. The proposed stress-strain curve has one 

equation: 
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where γ controls the stiffness of ascending branch and δ controls the slope of the descending 

branch: 
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where ε80 is the strain at 0.8fcc . 

 

 Lokuge, Sanjayan and Setunge (2005) 

A simple stress-strain model was proposed based on shear failure. The model was based 

on the experimental results taken from Candappa (2000). Lokuge et al. (2005) proposed a 

relationship between axial and lateral strain: 
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 where ε’  is a strain at a point where axial strain and lateral strain curves deviate, ν is the 

initial Poisson’s ratio, and a is a material parameter which depends on the uniaxial concrete 

strength 
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where f’ c is in MPa. 
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 Binici (2005) 

 Binici (2005) introduced a generalized formulas describing concrete under triaxial 

compression. The proposed stress strain curve is defined by elastic region then non linear curve. 

The axial compression is expressed using Leon-Paramono criterion as follow 
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where f’ t is the uniaxial tensile strength, c is the softening parameter and is equal to one in 

hardening region and zero for residual strength and k is the hardening parameter and is equal to 

one at ultimate strength and softening region and is equal to 0.1 at the elastic limit. Binici (2005) 

defined three equations for determining the stress in the elastic, hardening and softening zones as 

follow: 
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where lc is the length of the specimen and Gfc is the compressive failure energy and is calculated 

as follow: 
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To fully define the stress strain curve for constant pressure, equation (2-212) is used to define the 

limit stresses. These stresses are imposed in equations (2-215, 2-217) to fully define the stress 

strain curve. The lateral pressure is calculated using the lateral strain εl found by: 
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os νν =              for            ec 1εε ≤                      2-220 

( )






















































−

−

−
−−−=

2

1

11

ln

exp

β

εε

εε
νννν

ecc

ccc
os     for          ce εε ≤1                 

o

p

νν

νν
β

−

−
=

1

1              2-221 

where νs is the secant Poisson’s ratio 
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whereas in case of changing lateral pressure, the lateral pressure is solved by equating the lateral 

strain in jacket to the lateral strain of concrete: 
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where Ej and ρj is the modulus of elasticity and volumetric ratio of the jacket respectively.  
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  2-1-2 Discussion  

 As stated by many research studies, like Mander et al (1988), Scott et al (1982), Sheikh 

and Uzumeri (1980) and Shuhaib and Mallare (1993), the spirals or circular hoops are more 

efficient than the rectangular hoops. The uniform pressure generated by the circular hoop is one 

of the reasons of circular spirals advantage. 

 According to Eid and Dancygier (2005), there are four main approaches for the modeling of 

confined concrete by lateral ties  

1- The empirical approach: in which the stress-strain curve is generated based on 

the experimental results. Fafitis and Shah (1985) and Hoshikuma et al. (1997) 

followed that approach. 

2- Physical engineering model based approach: the lateral pressure causing the 

confined behavior of the concrete core, is provided by the arch action between 

the lateral reinforcement ties. This approach was adopted by Sheikh and 

Uzumeri (1980), and was followed by Mander et al. (1988). 

3- The third approach is based either on the first approach or the second one, but 

it does not assume the lateral ties yielding. Instead, It include computation of 

the steel stress at concrete peak stress, either by introducing compatibility 

conditions, solved by iterative process as Cusson and Paultre (1995) did, or by 

introducing empirical expressions as Saatcigolu and Razvi  (1992) followed. 

4- A plasticity model for confined concrete core introduced by Karabinis and 

Kiousis (1994). The shape of the confined core is based on the arching action. 
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Based on the reviewed models, around 50% followed the empirical approach, whereas 

10% used the physical engineering approach, and the rest combined between the 

empirical and physical engineering approach.  

According to Lokuge et al (2005), the stress strain models can be classified as three 

categories: 

1- Sargin (1971) based models: Martinez et al. (1984), Ahmad and Shah (1982), Eldash 

and Ahmad (1995) Assa et al. (2001). 

2- Kent and Park (1971) based models: Sheikh and Uzumeri (1982), Saatcigolu and 

Razvi (1992).  

3- Popovics (1973) based models: Mander et al. (1988), Cusson and Paultre (1995) and 

Hoshikuma et al. (1997). 

   Most of the confined models were developed by testing small specimens that did not 

simulate the real cases for the actual column, and small portion used real columns to verify their 

works such as Mander et al. (1988). 

Table 2-1: Lateral Steel Confinement Models Comparison 

 Long. 

steel 

spacing Lateral 

steel 

size 

Lateral 

steel 

config. 

Effective 

area 

Section 

geometry 

Lateral 

pressure 

Lateral 

steel 

stress 

Richart        *  

Chan *        

Blume   *   * * * 

Roy * *       

Soliman  *   *    
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Sargin  * *    * * 

Kent  * *    *  

Vallenas * * *    *  

Muguruma  * *   *   

Scott * * *    *  

Sheikh * * * *  * *  

Ahmed  *      * 

Park  * *    *  

Martinez  * *    *  

Fafitis  * *   * *  

Young * * *    *  

Mander * * * * * * * * 

Fujii  * *   * * * 

Saatcioglu * * * * * * * * 

El-Dash  * *    * * 

Cusson * * * * *  * * 

Attard  *     * * 

Mansur  *     * * 

Fujii  *    * * * 

Razvi * * * * * * * * 

Mendis * * * * *  * * 

Assa       * * 
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Binici       * * 

 

 Table (2-1) shows that the most successful models considering the lateral pressure 

determination parameters are Mander et al. (1988) that lies in the third group according to 

Lokuge et al. (2005) comparison and Saatcioglu and Razvi (1992), second group (Razvi and 

Saatcioglu (1999) was developed for high strength concrete). For the sake of comparing three 

models, one from each group, with the experimental results, El-Dash and Ahmad Model (1995) 

is selected from the first group as the model that considered most of the contributing factors, 

Table (2-1), compared to Attard and Setunge (1996), Mansur et al. (1997), Martinez et al. (1984) 

and Sargin (1971) models. However El-Dash and Ahmad model was developed for spirally 

confined concrete, hence, it was eliminated from Rectangular column comparison. The model 

selected from group 2 is Mander et al. (1988) and that chosen from group 3 is Saatcioglu and 

Razvi (1992) as mentioned above. 

Table 2-2: Experimental cases properties 

 Length 

(in.) 

Width 

(in.) 

Cover 

(in.) 

Fc 

(ksi) 

Fy 

(ksi) 

Bars 

# 

Bars 

diameter 

(in.) 

Lateral 

steel 

diameter 

(in.) 

Spacing 

(in.) 

Fyh 

(ksi.) 

Case1  19.69 Circular 0.98 4.06 42.8 12 0.63 0.47 1.61 49.3 

Case2 19.69 Circular 0.98 4.2 42.8 12 0.63 0.63 3.66 44.5 

Case3 17.7 17.7 0.787 3.65 57.13 8 0.945 0.394 2.83 44.8 

 



 

The three models are compared with two experimental results, case 1 and case 2 for circular 

cross section columns, Table (2-2

branch. However, Mander model is the best in expressing the descending one, Figure (

(2-17).  

   

   

Figure 2-16: Mander et al (1988), Saatcioglu and Razvi (1992) and El

(1995) models 

Figure 2-17: Mander et al (1988), Saatcioglu and Razvi (1992) and El

(1995) models compared to Case 2.
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The three models are compared with two experimental results, case 1 and case 2 for circular 

2). All the three models are successfully capturing the ascending 

However, Mander model is the best in expressing the descending one, Figure (

Mander et al (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad 

(1995) models compared to Case 1. 

Mander et al (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad 

(1995) models compared to Case 2. 

The three models are compared with two experimental results, case 1 and case 2 for circular 

capturing the ascending 

However, Mander model is the best in expressing the descending one, Figure (2-16) and 

 

Dash and Ahmad  

 

Dash and Ahmad  
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 For the case of rectangular column comparison, Figure (2-18), Saatcioglu and Razvi 

(1992) is better in capturing the ultimate compressive strength. Whereas Mander describes the 

softening zone better than Saatcioglu and Razvi model. Based on Table (2-1) and Figures (2-16), 

(2-17) and (2-18), Mander model is seen to be the best in expressing the stress strain response for 

circular and rectangular columns. 

 

Figure 2-18: Mander et al (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad  

(1995) models compared to Case 3. 
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 2-2 Circular Columns Confined with FRP  

FRP wrapping used in retrofitting concrete columns is considered one of the simplest and 

most efficient applications, as FRP has excellent material characteristics like high strength to 

weight ratio and high corrosion resistance  FRP behaves elastically, and therefore its confining 

strength increases proportionally with increasing the force applied. The literature review in this 

section cares about FRP wrapping only and does not consider the effect of FRP tubes, as the 

mechanics is different. This section reviews the previous extensive work concerns FRP concrete 

columns confining chronologically.  Hence, the review is classified according to its author/s.   

 2-2-1 Past Work Review 

 

 Fardis and Khalili (1981) 

 Fardis and Khalili (1981) focused on concentrically loaded short circular columns. They 

performed short term compression tests on 3 *6 in. and 4*8 in. cylinders and concluded that 

there is agreement between the strength and the axial stress suggested by Richart et al. (1928) 

and Newman and Newman equations: 

lcc fff 1.4' +=             2-224 
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 Fardis and Khalili (1982) 

 Fardis and Khalili (1982) approximated the failure axial strain, using experimental 

results, in the following form: 
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And the stress equation can be expressed using a simple hyperbola having initial slope of Ec:
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where Ecc is the tangent modulus at failure 

 

 Katsumata , Kobatake, Takeda (1988) 

 Katsumata et al. (1988) tested ten 7.87 * 7.87 in. rectangular specimens wound with 

carbon fiber. They concluded three outcomes; ultimate displacement and energy dissipation are 

linearly proportional to carbon fiber quantity, earthquake resistance capacities results from 

unbinding concrete with carbon fiber do not differ from these of wound concrete directly to 

carbon fiber and using equivalent quantities of carbon fiber or steel hoops, using effective 

strength ratio, the earthquake resistance capacity can be correlated. 

 

 Ahmed, Khaloo and Irshaid (1991) 

 Ahmed et al. (1991) tested 33 concrete cylinders confined with fiberglass wire. They 

concluded that the increase in confined strength decreases with increasing the unconfined 

concrete strength. And by decreasing the fiber wires spacing, the values of maximum strain at 

failure and strain at maximum stress increase. Flat or near flat post peak curves can be generated 

in stress-strain curves by increasing amount of confinement. Ahmed et al. (1991) suggested 

using the same equations developed for steel spirally reinforced concrete by Ahmed et al. (1982) 

by replacing f’ c and εco by fcc and εcc in the stress equation: 
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k and n are constants that vary based on unconfined concrete strength. Ahmed et al. (1991) 

showed the superior behavior of confining concrete with fiberglass wire that has zero spacing 

over the concrete confined with steel tubes. The specimen used for comparison has diameter of 

76.2 mm for steel tubes confining compared to 101.6 mm for fiberglass wiring confinement. 

 

 Demers and Neale (1994) 

 Demers and Neale (1994) conducted experimental work on 20 circular and square 

columns, fourteen of which were confined with 1-3 plies of FRP, glass and carbon. The circular 

columns were 152 mm in diameter and 305 mm high. Whereas, the square ones were 152 mm 

wide and 505 mm high. The results were compared against well known proposed models that 

were developed for steel hoops and spirals confinement. Demers and Neale (1994) reported that 

all the models overestimate the ultimate strength except for Cusson et al. (1992). They suggested 

stress function as follow: 

( ) ( )'' /1, cffcoccc ftEgff εε −+=
           2-230

 

They suggested conducting more accurate analysis and further tests to generate the function 

g(Eftf,1/f’c). They also reported that 70 % increase in strength and up to seven times strain at 
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failure can be found for wrapped columns compared to the unconfined ones. It was observed that 

strength improvement in squared columns is very small compared to the rounded ones.  

 

 Taniguchi, Mutsuyoshi, Kita and Machida (1993) 

 Taniguchi et al. adapted Sakai (1991) equation for concrete confined with lateral steel to 

fit the FRP behavior as follow: 
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where Er is the lateral confining rigidity and εz is the axial strain. The past equations were 

developed based on experimental work done on cylinders and prisms that were confined with 

lateral steel and FRP. However no FRP parameters showed in the proposed equations. 
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 Hoppel, Bogetti, Gillespie Jr, Howie and Karbhari (1994) 

 Hoppel et al. (1994) related the hydrostatic pressure of concrete wrapped with composite 

to the axial stress: 

c

ff

DE

Et
PP υσ )0( ==

            2-237
 

where P is the hydrostatic pressure, σ(P=0) is the concrete compressive failure strength at 

atmospheric pressure,  

 

 Saadatmantesh, Ehsani and Li (1994) 

 Saadatmanesh et al. (1994) utilized Mander et al. model (1988) that was originally 

generated for concrete confined with steel hoops or spirals, in developing a computer program 

that calculates the ultimate moment and curvature at failure for columns. Interaction diagrams for 

different cases were plotted and compared to the unconfined case from Chai et al. (1991).  

However, no evidence of the proposed procedure accuracy was conducted. 

 

 Nanni and Bradford (1995) 

 Nanni and Bradford (1995) tested 150 * 300 cm fifty one cylinder specimen of 

unconfined concrete and confined with FRP. Aramid FRP tape, glass filament winding and glass 

aramid pre formed shells are the three types used in confining. Nanni and Bradford (1994) 

reported that unconfined specimens and specimens confined with Aramid FRP tape with spacing 

of 50 mm had shear cone failure mode. Whereas the one with less than 50 mm spacing and glass 

filament wound specimens failed by shell rupture. And finally specimen confined with glass 

aramid pre-formed shells had joint failure. They showed that the models; Mander model (1988) 
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and Fardis and Khalili (1982) are correlated and accurate in predicting the ultimate strength. 

However, they underestimated the ultimate strain and did not represent the stress strain curves 

shape. They also suggested bilinear stress strain curve with a bend over point at unconfined 

strength and 0.003 for strain. 

 

 Howie and Karbhari (1995) 

 Howie and Karbhari (1995) concluded through testing study that setting plies in the hoop 

direction gives the largest increase in strength. 

 

 Harmon, Slattery and Ramakrishnan (1995) 

 Harmon et al (1995) developed a new model for stress-strain prediction based on linear 

elastic deformation and shear slip. Although the void collapse was mentioned as one of the 

parameter that influences the stress strain behavior, it was disregarded due to its possible small 

effect by having a well compacted concrete mix. Harmon et al. (1995) defined the confinement 

efficiency ratio as follow: 
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( ) 25.01000/5.06.0 skb +=            2-239 

( ) 2/2.0 bfz tr +−= σ             2-240 

where ks is the secant stiffness ft is the split cylinder strength and fr is the radial stress. It was 

observed that stress strain curves plotted using the proposed model were having bilinear pattern. 
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 Mirmiran and Shahawy (1995) 

 Mirmiran and Shahawy (1995) introduced a model developed specifically for concrete 

wrapped with FRP that considers concrete lateral expansion and the fiber composite non ductile 

behavior. They utilized Madas and Elnashai (1992) equation that relates the axial and radial 

strain to predict the radial strain. Consequently the calculated radial strain is used to find the 

lateral pressure as follow: 
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where εr is the radial strain.Finally the lateral pressure fl  was used to find the equivelant stress 

using Mander model (1988). 

 

 Hosotani , Kawashima and Hoshikuma (1997) 

 Hosotani et al (1997) conducted experimental work on 10 cylinder specimens and 12 

square specimen that are 600 mm high and 200 mm wide. The stress strain model proposed by 

idealizing the experimental stress strain curves as follow: 
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where ff  is the FRP tensile strength. 
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The proposed model compared well with the experimental work done by the same researchers. 

They noted that ρ f becomes effective for values more than 1%. 

 
 Miyauchi, Nishibayashi and Inoue (1997) 

 Miyauchi et al (1997) tested cylindrical specimens ( 10  cm wide * 20 cm heigh and 15 

cm * 30 cm heigh) wrapped with one, two and three carbon fiber sheets. They found that 
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compressive strength and corresponding strain improve with increasing the number of FRP 

sheets. The proposed ultimate compressive strength equation was adapted from Richart model as 

follow : 
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And the proposed stress equations are as follow: 
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The proposed model (Figure (2-19)) was well correlated to the experimental work done by 

Miyauchi et al (1997)
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Figure 2-19: Axial Stress-Strain Curve proposed by Miyauchi et al (1997)
 

 

 Kono , Inazumi and Kaku (1997) 

  Kono et al ( 1997) reported, through conducting compressive tests on 100 * 200 mm 

cylinder specimens wrapped with one, two or three CFRP sheets, that increasing confinement 

index increase compressive strength and corresponding strain linearly 

 

 Mirmiran and Shahawy (1997) 

 Mirmiran and Shahawy (1997) examined thirty 6*12 in. cylinder specimens, twenty four 

of which are concrete wrapped with FRP (6, 10 and 14plies). The rest are unconfined concrete. 

Failure observed was near or at the mid height of specimens due to fracture of FRP. The stress 
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strain response for the tested specimens is bilinear curve with no descending curve. Mirmiran 

and Shahawy (1997) compared different confined models in predicting the behavior of concrete 

wrapped with FRP.  These models were Mander et al 1988, Ahmed and Shah 1982 and 

Karabinas and Kiousis 1994. They concluded that all of the compared models are overestimating 

the FRP behavior due to failure in imposing the dilatancy of concrete wrapped with FRP. They 

compared these models with Mirmiran model (1996) that was originally developed for FRP, and 

they showed that Mirmiran model is in best agreement with experimental work of Mirmiran and 

Shahawy (1997) of 14 plies. 

 

 Watanabe, Nakamura, Honda, Toyoshima, Iso, Fujimaki , Kaneto and Shirai (1997) 

 Watanabe et al (1997) tested cylindrical specimens (100 * 200 mm) confined with CFRP, 

high strength CFRP and AFRP. The number of layers varied from 1 to 4 layers. They utilized the 

Endochronic theory found by Bazant (1976) in a nonlinear 3D fininte element model to predict 

the stress-strain behavior as it was tested before for concrete confined with transverse steel by 

some of this study authors.  They found good agreement between the model and the experimental 

work conducted. And they concluded that the compressive strength increase linearly with 

increasing the number of plies. They expressed a new term which is the C-index that is the 

product of lateral strain in FRP at compressive strength, young’s modulus of FRP and volumetric 

ratio of FRP. They found that the linear relation between the ultimate strength and strain with the 

unconfined ultimate strength and strain can be response descriptive. They proposed the following 

equations: 
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where α  and β are constants identified by the tests. 

 Monti and Spoelstra (1997) 

 Monti and Spolestra (1997) adapted the lateral pressure value in Mander model (1988) to 

fit the FRP elastic behavior up to failure through iterative process. The proposed process aims to 

iterate for the lateral pressure, based on the radial strain generated in the section, till conversion: 

curr
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             2-267
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where εlat is the lateral pressure and β is a constant depends on concrete type and it was adopted 

from Pantazopoulou and Mills (1995) 

Then Mander model was used in the rest of the procedure of predicting stress strain behavior. 

The proposed model was compared successfully to experimental work done by Picher et al 

(1996) 

  

 Samaan ,Mirmiran and Shahawy (1998) 

 Samaan et al. (1998) introduced a new model, Figure (2-20), that depends mainly on the 

relation between the dilation rate and confining material hoop stiffness. The proposed model 

adapted Richard and Abbott equation (1975) as follow: 
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where n is a curve shape parameter. The ultimate strength is determined by: 
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Figure 2-20: Axial Stress-Strain Curve proposed by Samaan et al. (1998) 

And the ultimate strain: 
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The proposed model was well compared with experimental work done by Picher (1995), Nanni 

and Bradford (1995) and Mastrapa (1997). 
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 Mirmiran and Shahawy, Samaan ,ElEchary,Mastrapa and Pico  (1998) 

 Mirmiran et al. (1998) studied the effect of shape, length and bond on FRP confined 

concrete on the confinement effectiveness of FRP tubes.  

 

 Harmon, Ramakrishnan and Wang (1998) 

 Harmon et al (1998) proposed two internal friction based confinement models; stress 

ratio model and crack path model. They assumed that total concrete strain forms from elastic 

strain, crack strain and void strain. The proposed models did not take into account the void strain 

as it is non-measurable parameter. The stress ratio equation is derived from Corona et al. (1995), 

The following equations are used iteratively with the elastic strain to generate the whole stress 

strain curve: 
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where µ is the friction coefficient, ε,γ is the slope of the crack opening path, σa is the axial stress, 

σr is the radial stress. The crack path model is based on iterating for radial stress till converge. 

The internal confining stress is found from the separation strain that is calculated from crack slip 

strain. 
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 Spoelstra and Monti (1999) 

 Spoelstra and Monti (1999) adopted the same iterative procedure from Monti and 

Spoelstra (1997). The procedure mainly relies on equating the lateral strain with FRP strain and 

uses the latter in calculating the lateral confinement. The lateral strain is calculated from a 

formula derived from the work done by Pantazopoulou and Mills (1995) as follow: 
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Spoelstra and Monti (1999) showed good agreement with their procedure and the experimental 

work done by Picher et al (1996), Kawashima et al (1997) and Mirmiran and Shahawy (1997). 

They utilized Mander model stress strain curve with the secant modulus at ultimate strain to find 

a closed form expression for the ultimate strain. This ultimate strain is found by intersecting 

Mander curve with a straight line having a slope of the secant modulus at ultimate FRP strain 
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In addition, they proposed approximate values for the ultimate strength and strain based on 

regression analysis of 600 cases. The proposed equations are as follow: 

( )luccu fff 32.0' +=
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where flu is the lateral confinement pressure at ultimate strength  

 

 Matthys, Taerwe, and Audenaert (1999)    

 Mathys et al. (1999) conducted experimental work on cylindrical specimen (150 * 300 

mm) wrapped with one layer of FRP, as well as testing full scale columns ; 8 has circular cross 

section (400 mm wide * 2m high) and 3 with square cross section having the same height and 

same cross sectional area as the circular ones. The FRP wrapping ranged from 2 to 6 layers. The 

experimental results are compared to Mander model (1988), CEB-FIP code model, Monti model 

(1997) and Samman et al. (1998). They concluded that the results from testing large and small 

scale specimens are similar. However, the circumferential strains were different. They also found 

that the failure load correlate well with the compared models. And the GFRP showed more 

ductility compared to CFRP that gave higher strength.   
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 Toutanji (1999) 

 Toutanji (1999) tested 18 (3* 12 in) cylindrical specimen, 12 of them were wrapped with 

FRP and the rest were plain concrete. He reported that for the same stress level the axial strain is 

more than the lateral strain in the carbon fiber. Whereas, in glass fiber they are equal, he claimed 

that to the higher stiffness of carbon compared to glass. The proposed stress strain-model was 

divided into two regions, Figure (2-21). The second region when the FRP gets fully activated. 

Richart (1929) equation was evaluated for each experimental point in the second region to find 

the constant k through regression analysis. The stress and strain equations found for the second 

region are as follow: 
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The first region where the behavior is similar to unconfined concrete was evaluated based on 

Ahmed and Shah (1982) equation: 
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where Eia is initial tangent of axial stress-strain curve, , Eua is the tangent between the elastic 

region and plastic region of axial stress-strain curve, Eul is the tangent between the elastic region 

and plastic region of axial stress-lateral strain curve, εul is the strain between the elastic region 

and plastic region of axial stress-lateral strain curve, εua is the strain between the elastic region 

and plastic region of axial stress-strain curve, and fua is the axial stress between the elastic region 

and plastic region , the model proposed was well compared with experimental work of Toutanji 

(1999), Harmon et al (1995), Picher et al (1996), Nanni et al (1994), Miyauchi et al (1997) and 

Mirmaran and Shahay (1997) 
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Figure 2-21: Axial Stress-(axial & lateral) Strain Curve proposed by Toutanji (1999) 

  

 Xiao and Wu (2000) 

 Xiao and Wu (2000) tested 36 cylindrical specimens 152 mm wide and 305 mm high. 

The concrete used was low, medium and high strength and the carbon fiber sheets ranged from 1 

to 3 layers. They proposed empirical equations from experiments and from theory of elasticity 

equations using four parameters of confined concrete; axial stress and strain, transverse strain 

and confinement stress. The bilinear model describing the behavior of plain concrete confined 

with FRP sheets has two sets of equations; before reaching f’ c and after as follow: 

Approaching f’ c: 
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Whereas after reaching  f’ c the equations are as follow: 
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 where α = 1.1 and ν is Poisson’s ratio The model proposed was well compared with Hosotani et 

al. (1996) experimental data.  

 

 Theriault and Kenneth (2000) 

 Theriault and Kenneth (2000) proposed empirically simple design equations for 

concentrically loaded short columns wrapped with FRP. They also proposed strengthening limits 

accounting for creep and fatigue. 

 
 Aire , Gettu and Casas (2001) 
 
 Aire et al. (2001) tested cylindrical specimens (150 * 300 mm) for normal and high 

strength concrete and they found out the following: 
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-The stress-strain curve behaves bilinear and the change in slope happens around the peak 

unconfined strength indicating that the FRP gets engaged after cracks development. 

-The behavior of CFRP is better than GFRP slightly in normal concrete and is evident in high 

strength concrete. 

-The ductility in normal concrete wrapped with CFRP is more than that of high strength concrete 

wrapped with CFRP as well 

-Increasing the number of layers of FRP increase the slope of the stress strain curve 

  
 
 
 Pessiki, Harries, Kestner, Sause, Ricles (2001) 
 
 Pessiki et al. (2001) reported , by testing small and large scale circular and square 

specimens, that the jacket efficiency in square specimens are less than that of circular ones. They 

suggested using shape factor ks in determining the lateral pressure induced by the FRP. This 

value was adopted from Restrepol and De Vino (1996): 
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Where b is the width of the section, d is the depth of the section, r is the radius of the corners and 

ρs is the longitudinal steel ration. Strain efficiency factor was proposed due to the premature 

failure of FRP as follow 
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 2-311 

Where εju is the average strain in the jacket and εfr is the ultimate strain obtained from tests. Also 

the dilation rate can be limited by increasing the FRP strength and stiffness. 
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 Monti, Nistico and Santini (2001) 

 Monti et al. (2001) proposed a procedure for determining upgrading index that relates 

available ductility for existing columns to target one using FRP strengthening. This procedure 

found an optimal thickness for FRP to enhance ductility of existing circular columns. 

 

 Alsayed, Alsalloum, Almussalam and Ahmed (2001) 

 Alsayed et al. (2001) showed that strength gaining from confinement decreases with size 

increase. They modified Satcioglou and Rasvi (1992) ultimate strength equation as follow: 
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 for continuous 

and separate straps respectively. α is a reduction factor and is taken equal 0.8 or 0.9. 

They showed that the proposed equation correlate well with the experimental work conducted by 

Picher et al. (1996), Kono et al (1998), Harries et al (1998) and Samaan et al (1998) 

  

 Lam and Teng (2001) 

 Lam and Teng (2001) showed from experimental work database that the strain varies 

with FRP types, as the GFRP and AFRP has higher ultimate strain than CFRP with the same 

confinement ratio. The ultimate axial strain is approximated as follow 
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But for the design use, they suggested the following equation: 
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It should be noted that the well know Lam and Teng model equations were first proposed in this 

paper. However for the sake of integrity it is mentioned in detail in Lam and Teng (2003). 

 

 Yuan, Lam, Teng and Smith (2001) 

 Yuan et al. (2001) compared the available stress strain models of FRP; Fardis and 

Khalilii (1982), Karbhari and Gao (1997), Samaan et al. (1998), Miyauchi et al. (1999), Saafi et 

al. (1999), Spoelstra and Monti (1999), Toutangi (1999), Xiao and Wu (2000), Lam and Teng 

2001). These models showed big variation regarding the ultimate strength, ultimate strain and the 

ductility. Force moment interaction diagrams were plotted using the compared models. Yuan et 

al. (2001) reported that the ultimate column strength is depending mainly on concrete confining 

strength and is little influenced by ultimate strain.They also reported that Miyauchi et al. (1999), 

Saafi et al. (1999), Samaan et al. (1998) and Lam and Teng (2001) predicted the force moment 

interaction diagram similarly. 

  

 Karabinis and Rousakis (2002) 

 Using plasticity approach, Karabins and Rousakis (2002) modified Drucker-Prager model 

to capture the FRP response. The proposed model showed good agreement with the experimental 

work as it was compared to Samaan et al. (1998), Saafi et al. (1999), Spoelestra and Monti 

(1999) models. In addition they tested 22 cylinders wrapped with CFRP (200 * 320 mm). 
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 Harries and Kharel (2002) 

 Harries and Kharel (2002) developed a model based on dilation relationship (relation 

between axial and lateral strain) and FRP stiffness. This model is utilized in an iterative model 

for determining the complete stress strain curve. They tested cylindrical specimens (6*12 in) 

confined with CFRP and E-GFRP (0-15 plies). They found out that the stress-strain response 

varies between descending post peak behavior for light confinement and bilinear ascending curve 

for heavy confinement. They reported also after certain value of strain (2 εco) the dilation ratio 

appeared to stop increasing. They adopted Madas and Elnashai (1992) model to develop the 

variably confined concrete model (VCCM) Figure (2-22). The model is defined in four quadrants 

as follow: 

1- First quadrant: stress strain relation for concrete confined with constant pressure: they 

used the formula found by Popovics (1973) that was adapted later by Collins and Porasz 

(1992): 
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Figure 2-22: variably confined concrete model proposed by Harries and Kharel (2002) 

where k is curve fitting factor for the descending branch. The ultimate compressive 

strength is taken from Mirmiran and Shahawy (1997) and the corresponding strain is 

adopted from Richart et al (1929): 
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2- Quadrant 2: finding the lateral strain from axial strain using the following equations: 

cl ηεε =                2-320
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3- Quadrent 3: determining the FRP stress from lateral strain 

4- Quadrant 4: determining the lateral pressure from the FRP stress using the following 

equation 
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The value of the lateral pressure is used in recalculating fcc and εcc in equations (2-318 & 

2-319) which are used in equation (2-315) to determine the stress corresponding to given 

strain. They showed the good agreement between the model and the experimental results. 

 

 Lam and Teng (2002) 

 Lam and Teng (2002) formed a database consists of 199 experimental testing cases for 

circular specimens wrapped with FRP with no longitudinal steel reinforcement. Based on the 

study conducted they concluded that the peak strength can be calculated using the following 

equation: 
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They concluded that the confinement effectiveness of FRP depends significantly on FRP tensile 

strength. 

 

 Li, Lin and Sung (2002) 

 Li et al. (2002) proposed two models for concrete confined with CFRP and concrete 

confined with CFRP and Steel reinforcement together. The first model is found from the 

similarity between concrete confined with FRP and the mechanisms of the tri-axial test of the 

soil, according to Li et al (2002). The proposed equations are as follow: 

For the ascending portion: 
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where kc is the shape factor and φ is the angle of internal frication of concrete. The corresponding 

strain εcc is found using testing of 108 specimens: 
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The parameter α is depending on the confinement material properties and is found equal to 2.24 

using regression analysis, and the value of stress can be found using the following equation 
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While for the descending portion of the curve Li et al (2002) used Hoshikuma et al. (1997) 

straight line equation: 

( )cccdesccc Eff εε −−=            2-333 

The ultimate strain εcu is calculated from the following equation: 

des

cc
cccu E

f

250 +== εεε
           2-334

 

The second proposed stress strain curve represents two types of confinement the CFRP and 

transverse steel. Li et al (2002) determined the peak strength as the summation of the unconfined 

strength and the strengths from steel and CFRP simultaneously. The lateral pressure from the 

steel action is adopted from Mander et al (1988) equation. For the ascending branch 
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For the descending portion the Hoshikuma et al (1997) was used. The first model was verified 

against 108 cylindrical specimens and the second model was verified by testing 18 cylindrical 

specimens (30 * 60 cm) confined with steel and CFRP. 
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 Chun and Park (2002) 

 The proposed passive confinement model by Chun and Park (2002) is summarized in the 

following steps: 

1- Selecting axial strain εc 

2- Determining Poisson,s ratio v 
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where ks is the shape factor and Ac is the core area of concrete enclosed by hoops and vu is the 

ultimate poison ratio and fld is the design confining pressure. 

3- Calculating the transverse strain  εt 

ct νεε =              2-341 

4- Calculating confining pressure fl 
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5- Calculating ultimate strength and corresponding strain according to Mander Model   

(1988). 
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6- Calculating stress according to Mander Model  (1988) 

The test program was prepared for testing eccentric loading effects on the columns for 

0.0 Po , 0.25 Po, 0.5 Po, 0.75 Po, and the specimen tested are 200 wide *1000 mm high, 

strengthened with hoops and 2 layers of FRP sheets. They concluded that using FRP 

sheets increases the columns strength and ductility, premature failure of FRP should be 

considered and the proposed model can predict reasonably the concrete wrapped with 

FRP behavior.    

 

 Moran and Pantelides (2002) (a, b) 

 Moran and Pantelides (2002) introduced the strain ductility ratio, which is a function of 

hoop stiffness and the internal damage of concrete core, in a plasticity model. The proposed 

plasticity model is defined by the following equations: 
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where Esm is the secant modulus at εm (from Richard and Abbott 1975), Emp is the average plastic 

modulus, Em is the tangent modulus of elasticity, mo initial Poisson’s ratio for unconfined 

concrete, fom is the reference intercept stress a, kom is the normalized reference intercept stress , 

nm is a curvature parameter, wje is the bond dependent effective confinement index, mp is the 

analytical plastic dilation rate, ∆ p is the variable confinement coefficient,  εtp is the plastic jacket 

strain, n is a factor range between 0.8 and 0.9. They compared the proposed model with 

Mirmiran (1997) and Xiao and Wu (2000) experimental work. The results showed good 

agreement 

 

 Cheng, Sotelino and Chen (2002) 

 Cheng et al. (2002) proposed the following equations: 
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where n is the curve shaped parameter 
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Figure 2-23:  Axial Stress-Strain Model proposed by Cheng et al (2002) 

Cheng showed the good agreement of the proposed model with the experimental work done by 

Demers and Neale (1994), Mirmiran and Shahawy (1997) and Mastrapa (1997). 

 Campione and Miraglia (2003) 

 Campione and Miraglia (2003) suggested using Richart (1929) equation for determining 

the maximum compressive strength with changing the k coefficient to be equal to 2 for concrete 

wrapped with FRP  
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where ki is shape reduction factor and is found experimentally to be equal to 0.2121. and fu is the 

ultimate strength in FRP and b and d is the core dimension to FRP centerline. 

The stress-strain equation, Figure 2-24, suggested by the authors is as follow: 
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where Eo is the initial concrete modulus of elasticity 
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Figure 2-24: Axial Stress-Strain Model proposed by Campione and Miraglia (2003)
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The ultimate strain value is calculated in a way similar to Mander ultimate strain equation using 

energy approach 

εεε ∆+= cocu               2-360 

They showed that the proposed model correlate well to the experimental work in the literature. 

 

 Lam and Teng  2003 

 Lam and Teng (2003) categorized the axial stress strain models into two sections; design 

oriented models that form closed form equations based on experimental work to predict the 

compressive strength and the ultimate strain, and analysis oriented models that use incremental 

numerical approach. This approach takes into account the equilibrium between concrete and the 

confining material and radial displacement compatibility considerations. They did not consider 

failure due to insufficient vertical lap joints. They pointed out the existence of differences 

between FRP ultimate strength or strain reached in material tests and those reached in specimens 

loading tests. This was due to two factors; premature failure of FRP Jackets due to non uniform 

stress distribution in cracked concrete and the curvature effect on FRP tensile strength. They 

determined three different cases of columns confined with FRP based on the amount of FRP; 

The bilinear stress strain up to failure, the ascending descending stress strain curve that has 

ultimate strength more than unconfined strength and the ascending descending one that has 

ultimate strength lower than unconfined strength. The latter is due to insufficient amount of 

confining material provided. Also, a certain amount of confining FRP can decrease the dilation 

of the concrete. They verified, as Spolestra and Monti (1999) did, that the ratio of the actual 

maximum confinement pressure to the unconfined strength has to be taken not less than 0.07.  

The proposed stress-strain model, Figure 2-25, is defined by two equations: 
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Lam and Teng (2003) imposed the stiffness, as it varies from type to type unlike the steel, into 

the equation that determines the maximum axial strain: 
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where εh,rup is the strain at FRP rupture. And the maximum confined strength is give by:
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Figure 2-25: Axial Stress-Strain Model Proposed by Lam and Teng (2003) 
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The fo that determine the linear second portion intercept with the stress axis is found by testing 

experimental results to range between 1.0 and 1.2 f’ c. For simplicity Lam and Teng (2003) 

considered fo = f’ c. The efficiency factor that relates FRP premature failure strain to FRP rupture 

strain from coupon test is taken to be equal to 0.586 

fufe εκε ε=
             2-368 

 

 Ciupala, Pilakoutas and Taranu (2003) 

 Ciupala et al (2003) tested cylindrical specimens wrapped with one layer of GFRP, CFRP 

or AFRP. The experimental stress strain curve plotted showed good agreement with Samaan et 

al. (1998) and Miyauchi et al (1999) as far as ultimate compressive strength concerns. Whereas 

the two models overestimated the ultimate strain. Lam and Teng model (2003) was conservative 

for ultimate strength while it predicted the ultimate strain closely. Finally, Spoelstra and Monti 

model (1999) overestimated   both the ultimate strength and strain. 

 

 De Lorinzis and Tepfers (2003) 

 Lorinzis and Tepfers (2003) gathered 180 experimental data available in the literature and 

classified them, and by analyzing the data and the proposed models they concluded the 

following: 

1- The FRP models derived from steel models is inaccurate in predicting the concrete 

confined with FRP behavior 

2- Using the ultimate lateral pressure and the ultimate strain overestimate the ultimate 

strength and the corresponding strain found from experimental work. 
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3- None of the proposed model predict accurately the ultimate strain, accordingly they 

proposed an equation as follow: 
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where El is the lateral modulus. 

 Xiao and Wu (2003) 

Xiao and Wu (2003) tested 243 concrete cylinders (152 mm * 300 mm) wrapped with 

CFRP and GFRP of nine types up to four layers. They found the relation between axial and 

lateral strain is as follow 
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They proposed a new stress strain curve relation as follow: 
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They showed that the proposed model correlate well with their experimental work. 

 

 Teng and Lam 2004 

 Teng and Lam (2004) studied stress-strain behavior, dilation properties and ultimate 

conditions. In addition to the two reasons mentioned in Lam and Teng (2003) for differences 

between FRP ultimate strength and strain reached in material tests and those reached in 

specimens loading tests, Teng and lam (2004) added the existence of overlapping zones that 

cause non uniform strain. 

 

 Berthet, Ferrier and Hamelin (2004) 

 Upon conducting experimental work on cylindrical specimens, Berthed et al (2004) 

verified the bilinear stress-strain behavior of concrete wrapped with FRP. 

 

 Theriault, Neale and Claude (2004) 

 Theriault et al (2004) studied the effect of specimens size on the experimental results. 

They concluded the adequacy of using cylindrical specimens size in assessing the short column 

behavior  

 

 Montoya, Vecchio and Sheikh (2004) 

 Montoya et al. (2004) proposed a constitutive model based on compression field 

modeling that considers nonlinear elasticity and plasticity. This model was incorporated in FE 

software to analyze columns confined with FRP or steel. The results well agreed with 
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experimental work done by Demers and Neale (1999), Toklucu (1992) and Sheikh and Uzumeri 

(1980) 

 

 Marques, Marques,Silva, and Cavalcante (2004) 

 Marquez et al. (2004) developed a numerical iterative incremental approach for 

predicting the stress-strain curve for rectangular and circular columns wrapped with FRP. The 

model iterates for area strain by changing the lateral strain then updates the axial strain according 

to the lateral one. The equations used in the model are as follow: 
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where b and h are the section dimensions and flb, flh are the confining pressure acting on b and h 

sides respectively. The equation used to determine the axial stress from the given axial strain is 

Popovics (1973) equation. Marquez et al (2004) utilized Ravi and Saatcioglu (1999) model and 

Kono et al (1998) model to determine fcc and εcc for circular and rectangular cross sections 

respectively as follow: 
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They showed the good agreement between the model proposed and experimental work of 

Toutanji (1999), Saafi et al (1999), Rochette and Labossiere (2000) and Mirmiran (2000). 

 

 Bisby, Dent and Green (2005) 

 Based on analysis done on experimental results of 200 concrete wrapped cylinders 

available in literature, Bisby et al. (2005) ran comparison among the models available and they 

concluded that any of the available models has at least 13 % error for ultimate strength and 35 % 

for ultimate strain. 

 

 Berthet, Ferrier and Hamelin (2005) 

 Using experimental work done, Berthet et al. (2004) and some others experimental work, 

Berthet et al. (2005) developed a new stress-strain model for concrete wrapped with FRP. The 

ultimate strength and strain equation are as follow: 
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where r is column radius. εao is the maximum unconfined strain and vc is the Poisson ratio for 

unconfined concrete. The stress strain curve is evaluated in two linear zones. The first one has 

the following equations: 
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And the second zone is defined by: 
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where εlp is the transverse strain corresponding to the transition zone and is equal to 0.002 and εro 

is the radial strain at εao.  

 

 Monti and Alessandri (2005) 

 Monti and Alessandri (2005) proposed approximate secant approach to develop design 

equation for columns strengthened with FRP and exposed to axial load and bending moment. 

The approximate approach proposed was shown to be well compared with the exact approach. 

 

 Saenz and  Pantelides (2005) 

 Saenz and Pantelides (2005) developed a new strain based FRP model that is based on 

Pantazopoulou and Mills formulas (1995). The model has three zones; linear elastic response 

zone, transitional zone and ultimate axial stress radial strain zone. The first zone has the same 

response as the elastic region for the unconfined concrete and it is limited by radial strain equal 

to -0.1 mm/m (Saenz 2004) (cracking strain). The proposed equations are as follow 
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The transitional zone is ranging from cracking strain to the strain were the volumetric strain 

becomes zero as a sign of reversing from contraction to expansion. The transitional zone 

equations are as follow: 
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where c is the rate of unstable volumetric growth with axial strain increasing and it is equal to 2 

for normal weight concrete and β is the secant modulus softening rate and is defined as follow 
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The last region starts after expansion of volumetric strain up till ultimate radial strain. The 

equations are: 
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where εc,vo = 2.06 mm/m (Saenz 2004). The proposed model was well compared to Saenez 

(2004) experimental work. 
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 Deniaud and Neale (2005) 

 Deniaud and Neale (2005) developed elastoplastic model to assess the behavior of 

circular columns wrapped with FRP and compared that model to nonlinear elastic models , 

Ottosen (1979), Elwi and Murray (1979) , Ahmad and Shah (1982), Ahmad, Shah and Khaloo 

(1986). They showed the reasonability of their proposed model compared with the nonlinear 

elastic models against some experimental work. 

 

 Binici (2005) 

 Binici (2005) introduced a generalized formulas describing concrete under triaxial 

compression. The proposed stress-strain curve is defined by elastic region then non-linear curve. 

The axial compression is expressed using Leon-Paramono criterion as follow 
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where f’ t is the uniaxial tensile strength, c is the softening parameter and is equal to one in 

hardening region and zero for residual strength and k is the hardening parameter and is equal to 

one at ultimate strength and softening region and is equal to 0.1 at the elastic limit. He defined 

three equation for determining the stress in the elastic , hardening and softening zones as follow: 

For elastic zone: 
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For the hardening zone: 



100 

 

( )
r

ecc

ececc

ec
eccec

r

r
ffff










−
−

+−









−
−

−+=

1

11

1
11

1
εε
εεεε

εε
                         ccce εεε ≤≤1         2-411 

sc

c

EE

E
r

−
=                           

c

e
e E

f1
1 =ε                           








−= 8.05

'
c

cc
cocc f

f
εε

   
 2-412 

For the softening zone 

( )


















 −
−−+=

2

11 exp
α

εε ccc
rccrc ffff                          ccc εε <       2-413 

( )
( )










 −
−

−
=

c

rcc

c

fc

rcc
E

ff

l

G

ff

2
1

1

21

π
α

       

  2-414 

where lc is the length of the specimen and Gfc is the compressive failure energy and is calculated 

as follow: 

( ) ( )










 −
+



















 −
−−= ∫

∞

cc
c

rcc
c

ccc
rcccfc E

ff
dfflG

ε
ε

α
εε

2
exp

2
1

2

1

      

 2-415 

To fully define the stress strain curve for constant pressure, equation (2-408) is used to define the 

limit stresses. These stresses are imposed in equations (2-411 & 2-413) to fully define the stress 

strain curve. The lateral pressure is calculated using the lateral strain el found by: 
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Whereas in case of changing lateral pressure, the lateral pressure is solved by equating the lateral 

strain in jacket to the lateral strain of concrete: 
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where Ej and ρj is the modulus of elasticity and volumetric ratio of the jacket respectively. Bicini 

(2005) verified his proposed model against experimental data for some researches including steel 

hoops, steel tubes and FRP jackets. 

 

 Carey and Harries (2005) 

Shawn et al. (2005) investigated the effect of testing large scaled columns compared to small 

scaled ones and they concluded that the scale of the column does not have a significant effect on 

the normalized stress strain curve behavior. 

 

 Li (2006) 

 After testing 24 cylindrical specimens with different amount of FRP wrapping, Li (2006) 

reported that the insufficient amount of FRP determined by Spolestra and Monti (1999) cause the 

concrete to behave similarly to the unconfined concrete. At the same time he supported the 

bilinear behavior of concrete wrapped with sufficient amount of FRP. 

 

 Harajli (2006) 

 Harajli (2006) utilized Richart (1929), Scott et al (1982) and Toutanji (1999) equations to 

generate two simple parabolas to express the stress-strain relationship for concrete confined with 
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FRP and transverse steel, Figure (2-26). The first ascending parabola is defined by the following 

equations: 
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where fco and εco are the stress and strain for the intersection point between the first and second 

parabolas. The equations define the second parabola are as follow: 
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where εlo is the yield strain at hoops and is equal to 0.002. k1 = 4.1 (as Richart (1929)), Acc is the 

confined area, kef and kes are the confinement coefficient in the horizontal plane, ke is the 

confinement coefficient (same as Mander formula). The stress and strain at the intersection point 

of the two parabolas are defined by: 
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Figure 2-26: Axial Stress-Strain Model proposed by Harajli (2006) 

Harajli (2006) showed the good agreement of his model with the experimental work conducted 

by Hantouche and Harajli (2005) for rectangular columns, Toutanji (1999), Nanni et al (1994), 

Miyauch et al (1997) and Teng and Lam (2002) 

 

 Braga, Gigliotti and Laterza (2006)  

 Braga et al. (2006) developed analytical model based on Elasticity theory to predict the 

confining pressure in stirrups and internal lateral ties for square and circular cross section 

columns. This model was expanded to be applied on Circular cross section columns confined 

with FRP. The proposed equation is as follow: 
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where bm is the wrapping width and s is the wrapping spacing. 
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 Matthys, Toutanji and Taerwe (2006) 

 Mathys et al (2006) tested six large scale circular columns of 400 mm wide and 2 m 

heigh wrapped with CFRP, GFRP and hyprid FRP (HFRP). They adapted Toutanji (1999) 

equation to account for the premature failure of FRP to be as follow: 
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They showed that this adaptation for Toutanji (1999) model and Spoelstra and Monti (1999) are 

the most accurate models compared to the experimental work. Whereas Lam and Teng (2003) 

model  has lower stiffness for the second branch compared to higher ones for the experimental 

work. 

 Rocca, Galati and Nanni (2006) 

 Rocca etal (2006) concluded, by conducting testing on large size columns wrapped with 

FRP having different cross sectional shapes, that the size effect is negligible for sections of size 

aspect ratio equal to 2 or less. 

 

 Youssef, Feng and Mosallam (2006) 

 Youssef et al (2006) developed a bilinear stress strain relation similar to Lam and Teng 

(2003) model. They considered shape effect, rectangular and circular, hence the seconed linear 

branch was expressed by ascending or descending sloped line based on the confinement ratio and 

the shape geometry. For the ascending curve up to failure the proposed equation are as follow: 
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Whereas for the descending branch, for the second linear curve: 
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The parameters used for both the ascending and descending curves are as follow: 

4

5

'
25.21 








+=

c

lf
cu f

f
f

            

2-437 

2

1

''
259.0003368.0 
















+=

c

f

c

lf
cu f

f

f

f
ε

        

  2-438 

4

5

'
31 








+=

c

tff
t f

E
f

ερ

            

2-439 

2

1

'

7

6

'
' 1169.0002748.0 
















+=

c

f

c

tff
t f

f

f

E ερ
ε

         

2-440 

Youssef et al (2006) showed good agreement with experimental results for rectangular (10 *15 

in), square (15*15 in) and circular (16 in) specimens wrapped with FRP. They compared their 

'0 tc εε ≤≤

ccuct εεε ≤≤'
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model with other models available in literature. It was observed the good correlation with Lam 

and Teng model (2003). 

 

 Debaiky, Green and Hope (2007)    

 Debaiky et al (2007) developed an iterative procedure to preidct the stress strain behavior 

of concrete wrapped with steel and FRP simultaneously. They divided the cross sectional area 

into ; area confined with FRP only (cover coating the steel) and core area confined with steel and 

FRP. The lateral pressure applied on the confined area is the summation of FRP and Steel lateral 

pressure. The equations used in calculating the FRP and steel pressure are as follow: 
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It is mentioned that fcc equation was adopted from Cusson and Paultre (1995), stress equation 

from Popovics (1973) and the lateral strain equation from Pantazapoulou and Mills (1992). The 
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proposed procedure was correlated to a 305 mm circular column tested by Lee (1998) and also 

with corroded columns constructed by the authors. 

 

 Teng, Huam, Lam and Ye (2007) 

 Teng et al (2007) proposed a new analysis based model for FRP-confined concrete that 

considers the response of concrete core and the FRP jacket. The proposed equation that relates 

the axial strain to lateral strain for unconfined concrete was benchmarked for its usability for 

confined concrete as well. The equation is: 
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And the proposed equation for the ultimate strenth and strain are as follow: 
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The iterative procedure utilizes Popovics (1973) equation and the well know lateral pressure 

equation: 
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They showed good corelation between the proposed model and Xiao and Wu (2000)  and Aire et 

al (2001). 
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 Eid and Paultre (2007) 

 Eid and Paultre proposed analytical quad linear model based on the elastoplastic behavior 

of confined concrete columns and Druker-Brager theory. The model is charactrized by four 

phases; elastic phase, elasic behavior of confining materal and plastic behavior of concrete, 

elastic behavior of FRP and plastic behavior of concrete and steel and lastly after FRP ruptures. 

Eid and Paultre (2007) showed reasonable comparison between their model and experimental 

work done by Eid et al (2006) and Demers and Neale (1999) 

 

 Jiang and Teng (2007) 

 Jiang and Teng (2007) compared eight analysis oriented models ; Mirmiran and 

Shahawy(1997), Spoelstra and Monti (1999), Fam and Rizkalla (2001), Chun and Park (2002), 

Harries and Kharel (2002), Marquez et al (2004), Binici (2005), Teng et al (2007). And they 

found out that Teng et al (2007) model is the most accurate one to capture the stress-strain 

response compared to a set of 48 test cases. They also proposed a refinement equation for the 

ultimate strain as follow: 
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 Eid and Paultre (2008)  

 Eid and Paultre (2008) pointed out the importance of having a stress-strain model 

accounts for the action of the transverse steel and FRP confinement together, as many structural 

codes dictates certain amount of steel used with FRP confinement). The effective lateral pressure 

due to steel and FRP action is given by: 
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where fsh is the lateral steel pressure, Ke is the effective confinement coefficient (Sheikh and 

Uzumeri (1982), Ashy is the total cross section area of the ties in the y direction and dp is lateral 

pressure developed due to transverse steel action. The ultimate strength and strain are determined 

using the following equations: 
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The stress equations were proposed by modifing The Légeron and Paultre  (2003) ones as 

follow: 
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where εc50 is the post peak strain corresponding to stress equal to 50% of the unconfined concrete 

strength and fcc,s, εcc,s, k1,s and k2,s are valuse for concrete confined with steel only: 
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The model was well compared with experimental work done by Eid et al (2006), Xiao and Wu 

(2000) and Demers and Neale (1999). 

 

 Benzaid, Chikh and Mesbah (2008) 

 Benzaid et al (2008) tested square (100 * 100 mm) and cylindrical (160 mm)high strength 

concrete specimens wrapped with EFRP up to 4 layers. They reported that all the stress strain 

response is bilinear curve with tranzition zone. Also they reported for circular specimens testing 

that Samaan et al (1998) and Saafi et al (1999) are more accurate than Teng et al (2007 ) model 

especially for concrete wrapped with 4 layers. 

 

 Rocca, Galati and Nanni (2009) 

 Rocca et al (2008) developed simplified approach for generating P-M interaction diagram 

through defining five points; axial compression , pure bending, three points corresponding to 

ultimate strain in concrete and zero strain, yield strain and 0.005 strain in tensioned steel. The 

ultimate strain in concrete is taken from Lam and Teng (2003) model according to ACI code 
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provisions. The interation diagram was ploted by connecting the five points by straight lines. 

And the compression controlled zone was validated against some experimental work. 

 

 Teng,  Jiang, Lam, and Luo (2009) 

 This work aimed to refine the Lam and Teng (2003) model for better formulas for 

ultimate strength and strain. They pointed out the difficency of the former database that used in 

developing Lam and Teng Model in 2003 such as the uncertainty of the strain gauge location on 

the overlapping zone of FRP. Hence, they used additional tests that were conducted by Lam and 

Teng (2004), Lam et al (2006), Teng et al (2007) and Jiang and Teng (2007). Based on that new 

ultimate strength and strain equations were proposed as follow: 
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Farther, A new adapted model was proposed to account for concrete behavior with stress strain 

descending branch, Figure (2-27). The axial stress equations are as follow:
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This model was well compared to Lam and Teng (2004), Lam et al (2004), Teng et al (2007) and 

Jiang and Teng (2007) experimental work. 
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Figure 2-27: Axial Stress-Strain Model proposed by Teng et al (2009) 
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 Csuka and Kolla´r (2010) 

 Csuka and Kollar (2010) built experimental database from the work done by  Almusallam 

(2007) Al-Salloum (2007) Berthet et al. (2004) , De Lorenzis and Tepfers (2003), Harries and 

Kharel (2002), Jiang and Teng (2007), Lam and Teng (2007), Mirmiran et al. (2000), Shahawy 

et al. (2000), and Toutanji (1999). They reasoned the premature failure of FRP to four 

parameters; the vertical cracks developed in concrete that cause localized strain peak in FRP, the 

resistance decrease in the lateral direction due to biaxial stress on FRP, missalignement of the 

fiber and the variation of FRP strain in the inner and outer surface because of the curved surface. 

They proposed an analysis oriented model based on the concrete model found by Papaikoloau 

and Kappos (2007) with the introduction of the FRP stiffness. They developed an equation for 

the stiffness ratio as follow 
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They pointed out the advantage of using higher stiffness FRP, that cause higher strength, over 

using lower stiffness ones. However using over stiffness FRP causes FRP to rupture before 

concrete reaches failure state. They defined the limit stiffness between high and low stiffness as 

follow: 
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The optimal stiffness that separates the over confined and adequately confined concrete is 

defined by: 



114 

 

3.0'2.0

' 20
22.01.0 
















+−=− c

c

la f

f

f
optimalatioStiffnessr

       
2-476 

The Lower approximation for compressive strength of confined concrete value is give by: 
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They also determined that the sufficient confinement ratio has to be more than 0.083. The 

proposed model showed good correlation with database. 

 

 Wei and Wu (2011) 

 Wei and Wu (2011) developed a unified stress-strain curve, Figure (2-28), for 

rectangular, square and circular columns by utilizing two ratios h/b and 2r/b where r is the corner 

radius, and in case of circular shape, r represents the radius. The proposed model was built on 

gathering 432 specimens, 100 of which from the authors work and the rest are from literature. 

The model developed has the following equations:
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where f30 is the concrete strength of unconfined grade C30 concrete 
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Figure 2-28: Axial Stress-Strain Model proposed by Wei and Wu (2011) 

 

The model is well compared to the experimental work shown in the authors’ database. 

 

 2-2-2 Discussion 

Based on the extensive review done in the past section, some points can be concluded: 

1- Most of the confinement axial stress-strain models are generated empirically from 

experimental work. 

2- The ascending bilinear behavior up to failure of the concrete confined with FRP 

wrapping is confirmed by many authors such as Nanni and Bradford (1995), Harmon 

(1995), Miyauchi (1997), Samaan et al (1998), Xiao and Wu (2000), Aire et al (2001), 
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Campione and Miraglia (2003), Harries and Kharel (2002), Lam and Teng (2003), 

Berthed et al (2004), Li (2006), Youssef et al (2006) Benzaid et al (2008) and Wei and 

Wu (2011). In addition Lam and Teng (2003) concluded that insufficient confinement 

ratio yield descending second linear branch. That was confirmed by Li (2006) who stated 

that confined concrete with insufficient confinement behaves like unconfined one. Also 

Youssef et al (2006) reasoned the descending zone to shape geometry and confinement 

ratio. The first linear zone in the axial stress-strain curve is similar to the unconfined 

response as an evidence of inactive behavior of FRP. After unconfined strength is 

reached and concrete tends to dilate, FRP gets engaged in confining. Hence the modulus 

changes or the second line slope decreases. The linear behavior is due to the linear 

behavior of FRP up to Failure. 

3- Specimen sizes are good representative of short confined columns and the scale effect is 

negligible. This was verified by Rocca et al (2006), Mathys et al (1999), Shawn et al. 

(2005) and Theriault (2004).  

4- Concrete Wrapped with CFRP are higher in strength than that wrapped with same ratio of 

GFRP, while concrete wrapped with GFRP are more ductile. Lam and Teng (2001), Aire 

et al (2001) and Toutanji (1999) showed the advantage of CFRP and GFRP. 

5- Increasing the layer numbers increase the slope of the second linear curve. Aire et al 

(2001) 

6- Circular wrapping is more efficient than rectangular wrapping. Pessiki et al (2001) 

7- The dilation rate decreases after reaching a certain strain value. MIrmiran and Shahawy 

(1997), Pessiki et al (2001), Harries and Kharel (2002) and others. 
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8- The shape factor is introduced in calculating the lateral confining pressure, Pessiki et al. 

(2001), Campione and Miraglia (2003), Li et al (2002) and Youssef (2006), especially for 

non-circular sections. 

9- Premature failure of FRP compared to Labs Tensile strength tests was confirmed by 

Chun (2002), Mathys et al. (1999), Pessiki et al (2001), Chun and Park (2002), Lam and 

Teng (2003) and Csuka et al (2011). This is due to some reasons: 

- The vertical cracks developed in concrete that cause localized strain peak in FRP and 

non uniform stress distribution in cracked concrete  

- The curvature effect on FRP tensile strength or variation of FRP strain in the inner 

and outer surface because of the curved surface 

-  The resistance decrease in the lateral direction due to biaxial stress on FRP 

- missalignement of the fiber and Manufacturing errors 

- Existence of overlapping zones that cause non uniform strain 

10-  For columns confined with lateral steel and FRP the action from both was added up to 

yield effective lateral pressure, Li et al (2002), Chun and Park (2002), Debaiky (2002) 

and Eid and Paultre (2008) 
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2-3 Circular Concrete Filled Steel Tube (CFST) Columns 

CFST columns are not relatively new construction elements compared to lateral steel 

confined columns. The first to use concrete filled tubes was swelling in 1901 to resist internal 

rust of steel. There are some structures that used CFST columns in the early 1900s such as 

Almondsbury Motorway Interchange (England), Charleroi Railways (Belgium) (Shams and 

Saadeghvaziri (1997)). The concrete was used to stabilize the column. However extensive 

research on CFSTs did not start until the beginning of 1960s. And with the appearance of FRP as 

a cheaper and more practical material in the 1980s, CFST did not capture much attention 

compared to FRP. Hence, CFSTs analysis is considered a developing subject. This section 

reviews the previous work concerns CFST columns chronologically.  Hence, the review is 

classified according to its author/s.   

 2-3-1 Past Work Review 

Furlong (1967) 

Furlong (1967) tested 22 round and 17 square CFST columns subjected to axial load and 

bending moment, and 8 round and 5 square CFST columns axially loaded. He proposed the 

following equations: 
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where Po and Mo are the concentric ultimate load and ultimate pure bending, Pu and Mu 

are the ultimate force and moment capacity with given eccentricity , As is the steel area, Ac is the 

concrete area, Es is the steel modulus of elasticity and fy is the steel yield strength. Furlong 

(1967) concluded that Equation (2-487) is conservative for most of the data. He also concluded 

that concrete should be treated as ordinary reinforced concrete section to best predict columns 

strength. 

 

Gardner and Jacobson (1967) 

Gardner and Jacobson (1967) reported that CFST exposed to compression can fail under 

a combination of three modes; crushing, general buckling and local buckling. The internal 

pressure the steel is exposed to is as follow: 

lst f
t

r
f =

             
2-488 

where fst is the internal force, fl is the lateral pressure, r is the column radius and t is the 

steel tube thickness. The axial stress is : 

lcc fff 4' +=                                2-489 

And the total axial load will be: 

slsstccc fAf
r

t
AfAP ++= 4'                                         2-490 

It is noted that either fst or fsl might reach fy or both reach fy. Gardner and Jacobson (1967) 

concluded that strong concrete core should be used to prevent local buckling 
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Tomii, Yoshimara and Morishita (1977) 

Tomii et al (1977) conducted extensive study on 270 CFST concentrically loaded 

specimens and concluded that the ultimate strength is affected by the steel tube thickness and the 

cross sectional shape. He concluded three patterns in the stress-strain behavior; strain hardening, 

perfectly plastic and stiffness degradation.  

 

Sakino, Tomii and Watanabe (1985) 

Sakino et al (1985) tested eighteen CFST specimens with different loading conditions. 

They concluded that when the steel and concrete are loaded together, the steel provides no 

confinement till post yielding. 

 

Shams and Saadeghavaziri (1997) 

Shams and Saadeghavaziri (1997) presented the experimental and analytical work of the 

state of the art of CFST columns. They concluded the following: 

• The ultimate strength is not predicted well and the confinement effect should be 

taken into account, as well as slenderness ratio, aspect ratio, creep and cross 

sectional shape. 

• The effect of the bond between the steel and the concrete is not well defined 

• The mechanism of local buckling should be studied as well as the effect of high 

strength concrete on ultimate strength and ductility. 

• The importance of finding New design methods and evaluate the seismic 

performance of CFST columns. 
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Schneider 1998 

Schneider tested fourteen CFST specimens, three of which were circular specimens of 

D/t equal to 47, 21.7, 21 and L/D equal 4.3, 4.3 and 4.4. He concluded that all the circular 

specimens had post peak strain hardening and they showed more ductility than the rectangular 

specimens. He also showed some local buckling in the tubes.  

 

Shams and Saadeghvaziri (1999) 

Shams and Saadeghvaziri (1999) developed a 3D finite element model for CFST columns 

simulations. This model was verified against 6 experimental cases by Tomii et al (1977). The 

steel model was the Von Mises elastic-plastic model with kinematic hardening and the concrete 

model was Pramano-Willimas model (fracture energy-based model). Then the 3D model was 

used in parametric study to evaluate the effect of the aspect ratio, length-width ratio, ultimate 

strength and concrete uniaxial compressive strength. Shams and Saadeghvaziri (1999) proposed 

the following stress-strain equations: 
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The steel tube maximum compressive stress is found as follow: 
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Where fcc is the ultimate compressive strength, εcc is the strain at fcc,α is equal to 1, x = 

εcc/εco and L/D is length to width ratio.
 
Shams and Saadeghvaziri (1999) concluded that  

• Concrete maximum compressive strength depends on the ratio of D/t, f’c and 

cross sectional shapes 

• The amount of the ratio of confinement is higher in concrete with lower 

unconfined compressive strength. 

• Local buckling occurs at peak load for CFST that has D/t more than 95. 

• The steel compressive strength depends on D/t and L/D 
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O’shea and Bridge (2000) 

O’shea and Bridge (2000) tested CFST specimens having length to diameter ratio 3.5, 

diameter to thickness ratio ranged from 60 to 220. They loaded the specimens with with different 

loading conditions; axial loading of steel only, axial loaded of concrete only and axial and 

eccentric loading of both the steel and concrete. They adapted Mander equation for the ultimate 

confined strength for 50-MPa concrete as follow: 
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whereas they used Attard and Setunge (1996) formulas for 80-100 MPa concrete. O’shea 

and Bridge (2000) concluded that the highest onfinement level is provided when the concrete 

only is loaded, Eurocode is the best in estimating concrete strength in CFST and local buckling 

can’t occur if there is concrete steel bonding 

 

Shanmugam and Lakshmi (2001) 

Shanmugam and Lakshmi (2001) conducted an extensive review of the analytical and 

experimental work that was done. 

 

Abdel-Salam, Abdel-Ghaffar and Zaki (2001) 

Abdel-Salam et al (2001) proposed an analytical model based on Von-mises yield criteria 

and plastic flow rule for steel. They derived equation for calculating the first yield axial load and 

the ultimate axial load and well compared these equations to experimental work done by Furlong 

(1967) and Sakino and Hayashi (1995). 

 

 



124 

 

Elchalakani, Zhao and Grzebieta (2001) 

Elchalakani et al (2006) conducted experimental investigation on CFST under pure 

bending loading for D/t ranging from 12 to 110. They provided simplified formula to determine 

the CFST ultimate flexural capacity  

 

Johansson and Akesson (2002) 

 Johansson and Akesson (2002) developed elasto-plastic model based on Drucker-Prager 

yield criteria. They introduced both the strength and the plastic modulus as dependence of 

confinement sensitivity. They developed FE program based on their model to analyze CFST. 

 

Huang, Yeh, Liu, Hu, Tsai, Weng, Wang and Wu (2002) 

 Huang et al (2002) reported that the CFST is influenced by width to thickness ratio, 

height to width ratio, the cross sectional shape and the strength ratio of concrete to steel. Huang 

et al (2002) showed two different axial stress-strain behavior of CFST; the first is similar to 

elastic perfectly plastic for column (D/t = 40 and fy/f’ c = 9.79) and the second behavior showed 

strain softening after reaching the peak for two columns (D/t = 70, 150 and fy/f’ c = 8.75, 12.5 

respectively). They also concluded that the CFSTs behave better than square ones in terms of 

strength, stiffness and ductility. 

 

Johansson and Gylltoft (2002) 

Johansson and Gylltoft (2002) tested 13 CFST specimens with three different concentric 

loading conditions. They developed a 3D FE program to verify the experimental results. They 
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concluded that the columns capacities was determined by steel yield and the bond between 

concrete and steel has no effect when the steel and concrete are loaded simultaneously.  

 

Elremaily, Azizinamini (2002) 

Elremaily, Azizinamini (2002) conducted experimental investigation of six CFST 

subjected to axial load and cyclic lateral load. They concluded that CFSTs have high levels of 

energy dissipation and ductility, AISC_LRFD are very conservative in CFST calculations and 

CFSTs can experience axial shortening at high level of displacements that can lead to failure. 

 

Lakshmi and Shanmugam (2002) 

Lakshmi and Shanmugam (2002) developed a finite approach to predict the moment-

curvature-thrust relationship for CFST having circular or rectangular shapes. They limit the 

concrete ultimate strain to 0.003 and divided the cross section into finite elements. This 

procedure was generalized to cover the whole column to account for slenderness. Lakshmi and 

Shanmugam (2002) showed the accuracy of their work compared to experimental work. 

 

Hu, Huang, Wu and Wu (2002, 2003) 

Hu et al (2002, 2003) proposed material constitutive models for CFST columns.The steel 

model was Von Mises elastic-plastic model and the concrete one was modeld by elastic-plastic 

theory with isotropic hardening rule and based on Richart (1928) ultimate strength equations. 

The model was incorporated in ABAQUS and verified against experimental work done by 

Schneider (1998) and Huang et al (2002). Hu et al. concluded that good confinement can be 

provided especially with D/t < 40 and local buckling is not likely to occur. 
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Fam, Qir and Rizkalla (2004) 

Fam et al (2004) conducted experimental work on 10 circular CFSTs specimens. Five of 

which were loaded axially and the rest were loaded axially and laterally in cycles. The main 

objective was to evaluate the strength and ductility. They developed an analytical model to 

evaluate the Force-Moment diagram using the following equations (these equations are valid for 

axial load less or equal to 0.85f’cAc): 
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where Mn is the flexural strength, Mc and Ms are the flexural strength for the concrete and 

steel, K is strength enhancement factor, Ac is the area of the entire cross section, Zs is the plastic 

section modulus of the tube. For loads more than 0.85f’c Ac linear interpolation is conducted 

beween the point of 0.85f’c Ac force and the pure axial compression force. Fam et al (2004) 

showed the good correlation between this model and the experimental points. In addition they 

plotted the exact Force-Moment diagram using strain compatability, Mander Model and 

elastoplastic steel model with and without strain hardening that were conservative and accurate 
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without showing analysis steps. They concluded that columns subjected to axial and lateral load 

failed with steel fracture in the areas that had local buckling, whereas bonded columns subjected 

to axial load only failed by diagonal cracking and unbounded columns failed with combination 

of diagonal and vertical cracking. They also showed the ductility improvement of CFST columns 

and showed that design codes are very conservative and underestimating the columns capacity. 

Finally they reported that the axial strength capacity of CFST short columns at axial strain 

ranging from 0.009-0.012. 

 

 Inai, Mukai, Kai, Tokinoya, Fukomoto and Mori (2004) 

Inai et al (2004) tested 33 CFST specimens with circular and square cross sections. The 

main variables studied were the concrete and steel strength and diameter to thickness ratio. The 

load pattern was axial loading and lateral cyclic load. Inai et al (2004) developed analytical 

model to express the hysteresis behavior based on Sakino et al (1997) and Nakahara et al (1998) 

work. They concluded ductility increasing with steel strength increase and decreasing with 

concrete strength increase and to utilize high strength concrete, high strength steel should be 

used and there is moment enhancement for circular CFST columns due to steel confinement. 

 

Giakoumelis and Lam (2004) 

 Giakoumelis and Lam (2004) tested fifteen circular CFST short columns. They concluded 

that the shrinkage and bond effects are critical for high strength concrete and they found that the 

Euro code 4 give the best predicition of CFST compared to Australian Standardsand American 

Codes  
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Fujimoto, Mukai and Sakino. (2004) 

Fujimoto et al (2004) studied the effect of higher strength on the flexural behavior and 

tested. They tested thirty three CFSTs specimens loaded eccentrically. They proposed a stress-

strain curve based on the fiber analysis method as follow: 
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Figure 2-29: Axial stress-strain model Proposed by Fujimoto et al (2004) 

Fujimoto et al (2004) concluded that high strength concrete cause ductility reduction but 

this can be improved by using high strength steel or a small diameter to thickness ratio. They 

also verified the two different stress-strain patterns found by Huang et al (2002). 

 

Jarquio 2004 

Jarquio 2004 showed analytical equation for calculating CFST’s concrete force and 

moment. The formulas were developed for unconfined concrete by limiting the ultimate strain to 

0.003.  

 

Ellobody, Young and Lam (2005) 

Ellobody et al (2005) conducted a study of CFST columns with concrete strength ranging 

from 30-110 MPa and D/t ratios from 15-80. They developed a 3D finite element model analysis. 

This model was verified against fourty specimens. After that a parametric study was conducted 

to yield the conservative approach for the desin codes. 
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Yu, Ding and Cai (2006) 

Yu et al (2006) tested seventeen CFST specimens to investigate the different testing 

loading and parameters on the ultimate capacity of the columns. The test was conducted using 

self compacting concrete and normal concrete. They found out that increasing the concrete 

strength for either kind increases the load capacity and there was a significant confinement effect 

appeared after reaching certain percentage of the ultimate axial load.  

 

Baig, Jiansheng and jianguo (2006) 

Baig et al (2006) tested 16 CFST specimens and 12 hollow steel sections having different 

cross section shapes. The length to diameter ratio ranged from 4 to 9. They concluded that there 

was increase in strength for circular sections up to 60% for some cases and all the tested cases 

behaved in ductile manner. 

 

Goode (2008)  

Goode (2008) showed that Eurocode 4 can be used confidentally in CFST design by 

testing 1819 CFST specimens with circular and rectangular cross sections, and comparing the 

results with that code. 

 

Yu, Tao and Wu (2008)  

 Yu et al (2008) tested 28 high strength self-consolidating concrete filled in thin steel 

tubes. The slenderness ratio ranged from 12 to 120.  They reported the failure model is local 

outward folding for square cross section, shear failure for circular sections and overall bucking 

for beam-columns. They concluded that the self-consolidating concrete is less ductile than the 
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normal one. They also compared the results with the AISC, Euro code 4 DBJ13-51-2003 (China) 

and concluded that these codes give reasonable resuslts  

  

Liang and Fragomeni (2010) 

Liang and Fragomeni (2010) proposed a nonlinear theoretical model for the behavior of 

CFST stub columns under eccentric loading. They adapted mander model in the following 

equations: 
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Figure 2-30: stress_strain curve for confined concrete in circular CFST columns, Liang and 

Fragomeni (2010) 
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For the stress-strain curve shown in figure (2-30), part OA is expressed by Mander stress 

equation. Whereas part AB and BC are expressed by: 
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Liang and Fragomeni (2010) reported that hoops tension reduces the longitudinal yield 

strength due to the confinement effect as found by Neogi et al. (1969). The fiber element 

formulation was used in calculating the force and moment in the cross section. Liang and 

Fragomeni (2010) proposed also a formula for ultimate pure bending strength for CFST circular 

columns as follow: 
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 Lee, Uy, Kim, Choi and Choi (2011) 

  Lee et al (2011) conducted experimental work to test 11 high strength concrete circular 

stub CFST specimens. They utilized the concrete stress-strain model found by Hu et al (2003). 

They concluded that AISC and Korean building code for structures, KBCS, give good agreement 

with the experimental results. Whereas Eurocode 4 overestimates the eccentric testing results.  

 

Liu , Tu  and Ye (2011) 

 Liu et al. (2011) developed a volume-based method for calculating the value of 

effectively confined coefficient. They utilized Mander model for determining the lateral pressure 

and in stress-strain ascending relation, whereas they used Schneider (1998) formulas for the 

softening branch. They simulated numerical analysis for number of CFST columns using 

ABAQUS   

 

Yang, Han (2011) 

Yang and Han (2011) tested 28 stub CFST specimens having different cross sections. 16 

specimens were subjected to partial eccentric loading and the rest were under full eccentric 

loading. Shape of the loading bearing plate was one of the tests variables. They showed that the 

partially loaded specimens have bearing capacity and ductility comparable to the fully loaded. 

Yang and Han (2011) constructed finite element model for the behaviour of CFST stub column 

under eccentric partial compression 
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 2-2-2 Discussion 

According to the literature review, there are some conclusions that can be drawn as 

follow: 

- Mander Model is adopted by some researchers for CFST analysis such as Liu et al. 

(2011) Liang and Fragomeni (2010), O’shea and Bridge 2000 and Fam et al (2004). 

Hence it can be considered as a representative model for CFST. 

- Failure models for CFST columns can be classified to crushing, local buckling and 

general buckling. 

- The CFST analysis affecting parameters are width to thickness ratio, height to width 

ratio, the cross sectional shape and the strength ratio of concrete to steel 

- Most of the research contributions are experimental work and implementation of 3D 

finite element models, then comparing it to the experimental outcomes. 

- Bond effect and loading type affect significantly the results 

- Eurocode best predicts the CFST capacity as stated by Giakoumelis and Lam (2004) 

Yu, et al (2008) and Goode (2008). 
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2-4 Rectangular Columns subjected to biaxial bending and Axial Compression 

Rectangular reinforced concrete columns can be subjected to biaxial bending moments 

plus axial force. When the load acts on one of the cross section bending axes the problem 

becomes uniaxial bending. However when the load is applied eccentrically on a point that is not 

along any of the bending axes the case becomes biaxial bending. The biaxial bending case can be 

found in many structures nowadays. This case is visited extensively in the literature disregarding 

the confinement effect. The failure surface of rectangular columns is 3D surface consisted of 

many 2D interaction diagrams. Each of the 2D interaction diagrams represents one angle 

between the bending moment about x-axis and the resultant moment. Many simplifications are 

introduced to justify the compressive trapezoidal shape of concrete, due to the two bending axes 

existence. This section reviews the previous work concerns CFST columns chronologically.  

Hence, the review is classified according to its author/s.   

 

 2-4-1 Past Work Review 

 A study of combined bending and axial load in reinforced concrete members (Hogenstad 

1930) 

 Hogenstad classified concrete failure subjected to flexure with or without axial load to 

five modes 

1- Failure by excessive compressive strain in the concrete with no yield in tensioned 

steel (compression failure) 

2- Tension failure where the tensioned steel yield cause excessive strain in the concrete 

3- Balanced failure where tensioned steel yield at the same time compressive concrete 

fail 
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4- Compression failure where the tensioned steel pass the yield stress 

5- Brittle failure caused by tensioned steel rupture after the cracks developed in the 

compressive concrete. 

Hogenstad (1930) suggested designing by the ultimate failure theory in his report as 

opposed to the linear elastic theory (standard theory) that was widely applicable up to 

nearly fifty years. He discussed some of the available inelastic theories that were 

limited to uniaxial stress according to him. The theories discussed were E. Suenson 

(1912), L. Mensch (1914), H. Dyson (1922), F. Stussi (1932). C. Schreyer (1933). S. 

Steuermann (1933). G. Kazinczy (1933). F. Gebauer (1934) O. Baunmann (1934). E. 

Bittner (1935). A. Brandtzxg (1935). F. Emperger (1936). R. Saliger (1936). C. 

Witney (1937), USSR specifications OST 90003, (1938). V. Jensen1943. R. 

Chambaud (1949). Also Hognestad (1930) introduced his new theory of inelastic 

flexural failure. He sat equations for tension failure and compression one. 

 A simple analysis for eccentrically loaded concrete sections (Parker and Scanlon 1940) 

 Parker and Scanlon (1940) used elastic theory 
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They developed a procedure by first calculating stresses at the four corners, then checking if all 

stresses are positive, no further steps are needed, otherwise, calculating center of gravity and 

recalculating moment of inertia then recalculating stress and determining the new position of the 

neutral axis. These steps are repeated till the internal forces converge with the applied one. 
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 Reinforced concrete columns subjected to bending about both principal axes (Troxell 

1941) 

 Troxell (1941) Suggested that portion of the applied axial load can be used with the 

bending moment about one axis to find the maximum compressive and tensile strength in the 

cross section. Then the remaining load along with the other bending moment about the other axis 

can be used the same way, using the method of superposition. The summation stresses are the 

stresses generated from the section. He also suggested taking equivalent steel area in each side to 

facilitate the calculation procedure. 

 Design diagram for square concrete columns eccentrically loaded in two directions 

(Anderesen 1941) 

 Andersen (1941) implemented a new procedure for determining maximum compressive 

and tensile stresses on cross sections without determining the location of the neutral axis. The 

limitation of this procedure that it is just applied on square cross sections and the steel has to be 

symmetric. Based on the linear elastic theory and the perpendicularity of the neutral axis to the 

plane of bending which was proven in a previous study, Andersen derived stresses coefficients 

equations basically for cross sections reinforced with four bars, and then represented them 

graphically. This derivation was set after classifying the problem into three different cases based 

on the neutral axis location 
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c1 = is a coefficient that is fully determined in his paper for each case of the three cases 
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n = modular ratio 

P = steel ratio 

k = distance from apex of compression area to neutral axis divided by diagonal length θ 

D= diagonal length 

d = distance from corner to reinforcing bar 

These two values can be substituted in the following equations to determine the maximum 

compressive strength and tensile strength respectively 

2Ca

P
f c =

                 2-528   

cs nTff =              2-529      

where a  is the side length of cross section and P is force magnitude.
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Figure 2-31: relation between T and C by Andersen (1941) 
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Anderesen (1941) plotted graphs relating T and C; Figure (2-31). It should be noted that the 

graphs differ with angle θ and the ratio d/D variations. Andersen adapted his procedure to fit the 

8 bar reinforcement, as well as 16 bar one. That was done by finding the location of the 

equivalent four bars in the same cross section that yields the same internal moment and moment 

of inertia. 

 Reinforced concrete columns under combined compression and bending (Wessman 1946) 

 Wessman (1946) introduced algebraic method under a condition of the plane of the 

bending coincides with the axis of symmetry. Based on the elastic theory, Wessman (1946) 

found that the distance between the applied load and the neutral axis a: 

p

p

Q

I
a =

             

2-530

  

 

 Ip = moment of inertia of the effective area with respect to the load axis 

 Qp = the first moment of the effective area. 

The procedure proposed has very limited applicability since it required the applied load lies on 

the axis of symmetry, which consider a very special case. In addition it relies on the elastic 

theory. 

 Analysis of normal stresses in reinforced concrete section under symmetrical bending 

(Bakhoum 1948) 

 Using the elastic theory and equating the internal forces and moments to the applied one, 

Bakhoum (1948) developed procedure in locating the neutral axis. This procedure was set for 

uniaxial bending. He also intensified the importance of taking the tensioned concrete into 

account while analyzing.  
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H = distance between the load and the neutral axis 

N= modular ratio 

b= section width 

t = section height 

Ips = Moment of inertia of the total reinforcement steel about the line parallel to the neutral axis 

through the point of application of the external force. 

Sps = Statical moment of the total reinforcement steel about the line parallel to the neutral axis 

through the point of application of the external force. 

The relation between α and β is plotted graphically; Figure (2-32). 
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Figure 2-32: relation between c and α by Bakhoum (1948) 

 

For the case of unsymmetrical bending, Bakhoum (1948) suggested three solutions; methods of 

center of action of steel and concrete, product of inertia method and method of mathematical 

successful trial. It is noted that the first two methods are trial and error methods, and all the three 

methods were built on the elastic linear theory. 

 Design of rectangular tied columns subjected to bending with steel in all faces (Cervin 

1948) 

 The Portland cement association published “continuity in concrete frames” (third edition) 

that has an equation that relates the maximum load to the actual applied load and moment. It can 

be applied on a cross section: 
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t

M
CDNP +=

            2-535 
 

P = total allowable axial load on column section 

N= actual axial load on column section 

M = moment 

T = section height 

'45.0 c

a

f

f
C =

             2-536 
 

fa = the average allowable stress on axially loaded reinforced concrete column 

2

2

2R

t
D =

             2-537 
 

R = radius of gyration 

This equation is limited to reinforcement on the end faces. Crevin (1948) redefined the term D in 

the equation to fit reinforcement in the four faces as follow 

( )
( )( ) 22 1167.0

11

pgnyzx

pn
D

−++
−+

=
           2-538

 

c

s

E

E
n =

             2-539
 

p = reinforcement ratio 

g = ratio between extremities of column steel and overall column depth 

x = ratio of total column steel at one end 

y = ratio of total column steel between centroid and one end 

z = arm from cetroid of steel ratio y to centroid of column 
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Figure 2-33: geometric dimensions in Crevin analysis (1948) 

He showed that x+yz2 vary from 0.25 to 0.5. The limitation of this equation applicability is that 

the ratio e/t has to be less than one. 

 The strength of reinforced concrete members subjected to compression and 

unsymmetrical bending (Mikhalkin 1952) 

 Mikhalkin (1952) performed studies on determination of the allowable load and ultimate 

load of biaxially loaded rectangular members. He developed design and analysis procedure for 

tension and compression failure according to ultimate theory, as he generated charts for design 

simplification based on the elastic theory using simple compatibility equations; Figure (2-34) and 

(2-35). These charts locate the concrete and steel centers of pressure with respect to the neutral 

axis.  

 



144 

 

                 

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Xc/b or Yc/h

K
=2

0<
K<1

K=3

J

3.2

3.4

 

Figure 2-34: Concrete center of pressure Vs neutral axis location ,Mikhalkin 1952 
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Figure 2-35: Steel center of pressure Vs neutral axis location, Mikhalkin 1952 

 Eccentric bending in two directions of rectangular concrete columns (Hu 1955) 

 Hu (1955) followed the elastic assumption in building his analysis. He showed 

numerically that the slope of the neutral axis for non homogeneous section can be replaced by 

that of homogeneous one with small error percentage. He found algebraically the equilibrium 

equations 
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( ) ( )npnqnqmQ yx += 2

           2-543 

N = the normal compressive force 

b = section width 

d = section height 

fc = maximum concrete strength 

h and k define the position of the neutral axis 

c, cb, cd coefficients (functions of h) 

Ax = cover in x direction coefficient 

Ab = cover in y direction coefficient 

ex = load eccentricity from the geometric centroid (in x-direction) 

ey= load eccentricity from the geometric centroid (in y-direction) 

c
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             2-544
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y
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e

e
m =

             2-547
 

The previous equations are plotted graphically to obtain the unkown values k, n/bdf’c, Figure (2-

36) 
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Figure 2-36: bending with normal compressive force chart np = 0.03, Hu (1955) 

In his paper the graphs were plotted with different values of np  0.03,0.1 ,0.3. 

 

 The first obvious interest in the ultimate strength of the structural members appeared in 

the first half of the past century. Prior to that, there were some designations to the importance of 

designing with ultimate strength. While Thullies’s flexural theory (1897) and Ritter’s 

introduction of the parabolic distribution of concrete stresses (1899) were introduced prior to the 

straight line theory of Coignet and Tedesco (1900). The straight line theory became accepted due 

to its simplicity and the agreement with the tests’ requirements that time. Coignet’s theory grew 

widely till it was contradicted by some experimental work done on beams by Lyse, Slatter and 

Zipprodt in 1920’s, and on columns by McMillan (1921), as the concrete’s construction 
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applicability was spreading out (ACI-ASCE committee 327(1956)).. After 1950 there was a call 

to start working with the ultimate strength design as it was adopted in several countries in Europe 

and others, as the reinforced concrete design has advanced. This led the ACI-ASCE committee 

327 to propose the first report on ultimate strength design in 1956 (ACI-ASCE committee 

327(1956)). The committee members showed in their studies that the ultimate strength design 

load can be found accurately. 

They defined the maximum load capacity for concentric load 

yststgco fAAAfP +−= )(85.0 '

          2-548  
 

gA  = the gross area of the section. 

stA = steel bars area 

The committee considered minimum eccentricity value to design with. For tied columns the 

value was 0.1 times the section’s depth. 

For combined axial load and bending moment 
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uP = axial load on the section 

e= eccentricity of the axial load measured from the centroid of tensile reinforcement. 

sf = stress in the tensile reinforcement. 

udk = distance from extreme fiber to neutral axis, where uk is less than one 

1k  = ratio of the average compressive stress to 0.85'
cf , where 1k  is not greater than 0.85 and is 

to be reduced at the rate of 0.5 per 1000 psi for concrete strength over 5000 psi. 
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2k = ratio of distance between extreme fiber and resultant of compressive stresses to distance 

between extreme fiber and the neutral axis. 

1

2

k

k
 should not be taken less than 0.5. 

 After ultimate strength design was released, the ACI committee 318 in their “Building 

code requirements for reinforced concrete (ACI 318-56)” approved the usage of the ultimate 

strength method for designing reinforced concrete members along with the standard method in 

1956. They conditioned that: 
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2-551 

Given that the ratio e/t does not exceed 2/3 where 

byf = the bending moment about y-axis divided by section modulus of the transformed section 

relative to y-axis.
 

bzf = the bending moment about y-axis divided by section modulus of the transformed section 

relative to y-axis.
 

e   = eccentricity of the load measured from the geometric centrod 

t    = overall depth of the column 

af = nominal axial unit stress. 

bf = allowable bending unit stress = ( )gsc pff +'225.0*8.0  

gp = steel ratio to the gross area. 

sf = nominal allowable stress in reinforcement. 

 Guide for ultimate strength design of reinforced concrete (Whitney and Cohen 1957) 
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 Following this massive change in paradigm, Charles Whitney and edward cohen released 

their paper “ guide for ultimate strength design of reinforced concrete” which served as a 

supplement to the ACI building code  (318-56). They suggested a linear relationship between the 

case of the pure bending and that of concentric load in the following equation 

o

uo

o

u

P

PP

M

M −
=

            
2-552

  
 

Mu = total moment of the plastic centroid of the section. 

Po  =  ultimate direct load capacity for a concentrically loaded short column. 

Pu  =   ultimate direct load capacity for an eccentrically loaded short column. 

Mo = the moment capacity without thrust as controlled by compressin assuming enough tensile 

steel to develop it in full and it is equal to  

( )''''2333.0 ddfAfbdM ysco −+=
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They limited the maximum moment allowed for design to Mu using the following equation 
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As
’  = compressive steel area. 

d = distance from extreme compressive fiber to centroid of tension force in tensile   

reinforcement. 

d’ = distance from extreme compressive fiber to centroid of tension force in compressive 

reinforcement. 

b = column width. 
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Figure 2-37: Linear relationship between axial load and moment for compression failure 

Whitney and Cohen 1957 

 

 Ultimate strength design of rectangular concrete members subjected to unsymmetrical 

bending (Au 1958) 

 Au (1958) generated Charts to calculate the equivalent compressive depth of the stress 

block based on assumed values of section’s dimensions and bars arrangements. The design 

equations were created complying with the ACI-ASCE assumptions. 

He showed that when a member is subjected to compressive force as well as bending, the section 

can be controlled either by tension or compression failure depending on the magnitude of 

eccentricities. 

His procedure is to first approximate the location of the neutral axis that can be made by 

observing that the applied load, the resultant of the tensile force in steel and the resultant of the 
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compressive forces in compressive steel and concrete must all lie in the same plane. This 

classifies the problem as one of the three cases: 

1- Neutral axis intersects with two opposite sides 

2- Neutral axis intersects with two adjacent sides forming a compression zone bigger than 

half of the cross sectional area 

3- Neutral axis intersects with two adjacent sides forming a compression zone smaller than 

half of the cross sectional area 

 

Equilibrium equations plus compatibility equations are needed when the section is 

controlled by compression (concrete crush). Whereas, equilibrium equations are 

sufficient in tension controlled cases. Tung specified two conditions based on ACI-ASCE 

report, that are the average stress  sf    is assigned to each tensioned bar and the resultant 

tensile force is considered the tensile bar group centroid. Based on that, the bars close to 

the neutral axis are ignored in computations. Having equilibrium equations, Tung 

denoted six dimensionless variables, two for each case of the three cases mentioned 

above and plotted charts relating each two associated variables Figures (2-38, 2-39 & 2-

40). The charts generated have an output of determining the neutral axis position. The 

dimensionless variables utilized are: 
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Figure 2-38: section and design chart for case 1(rx/b = 0.005), Au (1958) 
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Figure 2-39: section and design chart for case 2, Au (1958) 
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Figure 2-40: section and design chart for case 3(dx/b = 0.7, dy/t = 0. 7), Au (1958) 
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t = total depth of rectangular section 

dy = distance from extreme compressive corner to centroid of tensile reinforcement measured in 

the direction of y-axis 

p’ = A’ s/bt 

b = width of rectangular section 

m’ = m-1  , m =fy/0.85f’c 

d’y = distance from extreme compressive corner to centroid of compressive reinforcement 

measured in the direction of y-axis. 

Pu = ultimate direct load capacity for the member subject to bending in two directions 

ry = distance from centroid of tensile reinforcement to x’-axis. 

rx = distance from centroid of tensile reinforcement to y’-axis. 

e’y = eccentricity of ultimate direct load measured from centroid of rectangular section in the 

direction of y-axis 

d’x = distance from extreme compressive corner to centroid of compressive reinforcement 

measured in the direction of x-axis 

dx = distance from extreme compressive corner to centroid of tensile reinforcement measured in 

the direction of x-axis 

e’x = eccentricity of ultimate direct load measured from centroid of rectangular section in the 

direction of x-axis. 

 Design of symmetrical columns with small eccentricities in one or two directions 

(Wiesinger 1958) 

 Using the section moment of inertia and the section modulus, Wiesinger (1957) 

introduced a new designing equation for the gross sectional area required by design for columns 
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subjected to small eccentricities in one direction or two.  Wiesinger (1957) proposed gross 

section equation: 
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and the capacity of a given column is calculated using the following equation 
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Ag = gross area 

As= Steel area 

t = column length in the direction of bending 

Ig= gross moment of inertia in the bending direction 

Is= moment of inertia of steel in the bending direction 

e’ = eccentricity of the resultant load measured to center of gravity 

N= applied axial load 

Q= reduction factor = 0.8 for short tied column 

pg = As/Ag 

Fb= allowable bending unit stress that is permitted if bending stress existed = 0.45 f’ c 
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G = center to center steel in the direction of bending divided by column length in the direction of 

bending 

 Biaxially loaded reinforced concrete columns (Chu and Pabarcius 1958)  

 In 1958 Chu and Pabarcuis introduced a new numerical procedure to determine the actual 

stresses for a give section. Their procedure was based on the inelastic theory showed earlier by 

Hogenstad. Initially, they assumed the cross section is in the elastic range, and assumed a 

location for the neutral axis. Then used the following formula that was found by Hardy Cross 

(1930), to solve for stresses 
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f = stress 

Ae = Area of the elastic portion. 

Iox = moment of inertia about x-axis 

Ioy = moment of inertia about y axis 

Ioxy = product of inertia 

M” oy =moment of the elastic portion about the y axis 

M” ox =moment of the elastic portion about the x axis 

P”  = axial force taken by the elastic portion.
 

If the concrete and steel stresses lie in the elastic range, the above equation was used to locate a 

new position for the neutral axis, and comparing it with the assumed one. The whole process is 

repeated till the position of the calculated neutral axis coincides with the assumed one. On the 

other hand if any of the concrete or steel are beyond the elastic range, the plastic load and 
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moments are calculating, then deducted from the total load and moments. The reminder is used, 

as the elastic portion of the load, to locate the neutral axis.   

 Design criteria for reinforced columns under axial load and biaxial bending (Bresler 

1960) 

 Bresler (1960) proposed a new approach of approximations of the failure surface in two 

different forms. He showed the magnitude of the failure load is a function of primary factors; 

column dimensions, steel reinforcement, stress-strain curves and secondary factors; concrete 

cover, lateral ties arrangement. He introduced two different methods. The first method named 

reciprocal load method  

oyxi PPPP

1111
−+=

            
2-568 

Pi =approximation of Pu 

Px = load carrying capacity in compression with uniaxial eccentricity x. 

Py = load carrying capacity in compression with uniaxial eccentricity y. 

Pu = load carrying capacity under pure axial compression 

The second method is the load contour  
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and this can be simplified to 
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By equating α and β for more simplification the interaction diagram can be plotted as shown in 

Figure (2-43) 
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Bresler (1960) well correlated equation (2-570) to experimental studies formed from eight 

columns, and analytically showed the strength criteria can be approximated by 
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Figure 2-41: Graphical representation of Method one by Bresler (1960) 
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Figure 2-42: Graphical representation of Method two by Bresler (1960) 
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Figure 2-43: Interaction curves generated from equating α and by Bresler  (1960) 

 Rectangular concrete stress distribution in ultimate strength design (Mattock and Kritz 

1961) 

 Mattock and Kritz (1961) determined five cases for the position of the neutral axis with 

respect to the rectangular cross section; when the neutral axis cut through two adjacent sides with 

small and big compression zone, the neutral axis intersect with the section length or width and 

when it lies outside the cross section. 

They implemented formulas for calculating the position of the neutral axis based on the load and 

moment equilibrium and the geometry of the compression zone. 

 

 Square columns with double eccentricities solved by numerical methods (Ang 1961) 

 Ang (1961) introduced a numerical method to solve the problem.  He proposed iterative 

process to find equilibrium between internal forces and applied ones, by assuming a position for 

the neutral axis. The location of the neutral axis kept changing till equilibrium. However, he 
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calculated stresses based on Bernoulli’s plane theorem which was built upon straight line theory 

(elastic theory). The stress of the extreme compression fiber was approximately calculated 

according to the specification of AASHTO 1957 “Standard specifications for highway bridges”. 

 

 Ultimate strength of square columns under biaxially eccentric load (Furlong 1961) 

 Furlong (1961) analyzed square columns that have equal reinforcement in the four sides 

and reinforcement in two sides only, to visualize the behavior of rectangular columns that has 

unsymmetrical bending axis. He used a series of parallel neutral axis with the crushing ultimate 

strain of 0.003 at one of the section corners to develop a full interaction diagram at one angle.  

And by using different angles and locations of the neutral axis a full 3D interaction surface can 

be developed. He was the first to introduce this procedure. 

Furlong (1961) concluded that the minimum capacity of a square column, having equal amount 

of steel in all sides, exists when the load causes bending about an axis of 45 degree from a major 

axis. He also concluded that 
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Mx = moment component in direction of major axis. 

My = moment component in direction of minor axis. 

Mx = moment capacity when the load acts along the major axis. 

My= moment capacity when the load acts along the minor axis. 

  

 



161 

 

 Tie requirements for reinforced concrete columns ( Bresler and Gilbert 1961) 

 Bresler (1961) introduced the importance of the tie confinement in columns as objects to 

hold the longitudinal bars in place and prevent them from buckling after the cover spalling off. 

No concrete strength improvement was discussed. 

 

 Analytical approach to biaxial eccentricity (Czerniak 1962) 

 Czerniak (1962) proved that the slope of the neutral axis is depending on the relative 

magnitude of moment about the X axis to the moment about the Y axis and the geometry of the 

sections and it is independent of the magnitude of bending moment and the applied force for the 

elastic range. According to the effective compressive concrete, Czerniak (1962) determined five 

cases based on the location of the neutral axis, Figure (2-44).  

        
(a) (b) (c) (d) (e)

 

Figure 2-44: five cases for the compression zone based on the neutral axis location Czerniak 

(1962) 

He developed an iterative procedure for locating the neutral axis position for a given cross 

section, by using equations (2-557 and 2-558) to determine the initial position of the neutral axis 
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a = x-intercept of the neutral axis line 

b = y-intercept of the neutral axis line 

xyI = elastic product of inertia of the area about the origin  

oxI =elastic moment of inertia of the area about the x-axis 

oyI =elastic moment of inertia of the area about the y-axis

 

oxQ  = moment area about x-axis (within elastic region) 

oyQ  = moment area about y-axis (within elastic region) 

A = area of transformed section (within elastic regions)

 
pY = y-coordinate of the applied eccentric load 

pX = x-coordinate of the applied eccentric load 

then calculating the new section properties, effective concrete and transformed steel, and finding 

the new values of Xp and Yp. 
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and solving for a, b again and repeat the procedure up till convergence. 
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As for ultimate strength design, Czerniak (1962) proved with some simplification that the neutral 

axis is parallel to concrete plastic compression line and steel plastic tension and compression 

line, so they can be found by multiplying the location of the neutral axis by some values. The 

ultimate eccentric load and its moment about x and y axis can be found from: 
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of  = stress intensity at the origin

 
and the x-axis and y-axis intercept of the neutral axis are found: 
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xcQ = moment of area about x-axis of the plastic portion of the concrete effective section 

ycQ = moment of area about y-axis of the plastic portion of the concrete effective section 

xsQ  = moment of area about x-axis of the plastic portion of the yielded tensile reinforcement 

ysQ  = moment of area about y-axis of the plastic portion of the yielded tensile reinforcement 

'
xsQ = moment of area about x-axis of the plastic portion of the yielded compressive 

reinforcement 

'
ysQ = moment of area about y-axis of the plastic portion of the yielded compressive 

reinforcement 

'
uA = equivalent plastic transformed area. 

ucA  = area of concrete under plastic compression 

usA = area of yielded tensile reinforcement 

'
usA = area of yielded compressive reinforcement. 

uP  = ultimate strength of eccentrically loaded cross section 

uxM = moment of the ultimate load about x-Axis 

uyM = moment of the ultimate load about y-Axis 
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''
cf  = maximum concrete stress at ultimate loads (assumed as 0.85 f’ c) 

"
c

y
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f
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 Failure surfaces for members in compression and biaxial bending (Pannell 1963) 

 Pannell implemented a relation between the failure moment about y-axis for a given load 

and the y component of radial moment with the same load. The formula was found based on 

deviation study between the actual load contour curve and an imaginary curve found from the 

revolution of the failure point about y axis, with the same load, about the z axis. The equation 

found for sections that have equal steel in each face: 
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Mfy = failure moment for some load in plane y 

θ = angle between y and the transformed failure plane 

He showed that his formula is more accurate and conservative than that of Bresler. He also 

developed a chart for N for unequal steel distribution; Figure (2-43).  



166 

 

         

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

P/f'cbd

fy
/f

'c

 

Figure 2-45: Values for N for unequal steel distribution by Pannell (1963) 

 Ultimate strength of column with biaxially eccentric load (Meek 1963) 

 Meek (1963) assumed constant ratio of moment about the x-axis and the y-axis. 

Consequently, increasing the force will increase the moment proportionally.  
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Using the above relation a location of  the neutral axis is selected. Then this location is adjusted 

until the following relation is satisfied 

ststscscccu fAfAfAP ∑∑∑ −+=
           2-590                

 

He also showed set of experimental points correlated well to the theoritical interaction diagram 

developed. 
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 Biaxial eccentricities in ultimate load design (Aas-Jakobsen 1964) 

  To comply with local design code, Aas-jakbosen (1964) replaced biaxially eccentric load 

acts on a regtangular cross section with an equivelant load acts on the main axis of symmetry 

with an equivelant moment. He showed , using moment and force equilibrium, that the eqivelant 

moment  Me: 

( )mcMPeM xe 1+=             2-591 
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21 cm +=              2-593 

The moment M1 is small additional moment depends on failure mode and some other factors. 

And in most cases it is equal to zero.  

 Design of columns subjected to biaxial bending (Fleming and Werner 1965) 

 Fleming and Werner (1965) utilized the formulas found by Mattock (1961) for locating 

the neutral axis in the different cases of the compression zone shape along with Furlong (1961) 

method, by varying the location and inclination angle of the neutral axis, to plot the interaction 

diagram. Fleming and Werner (1965) plotted dimensionless interaction diagram for a square 

cross section for fourteen cases using parameters that is commonly used. 
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Figure 2-46: design curve by Fleming et al (1961) 

 Investigation of the ultimate strength of square and rectangular column under biaxially 

eccentric loads (Ramamurthy 1966) 

 Ramamurthy (1966) proposed a new method for defining the load contour for sections 

having eight or more bars distributed evenly.  He mentioned that the available methods of design 

of biaxially loaded column are trial and error procedure and determination of ultimate load from 

failure surface. He showed that columns containing four bars behave differently than those 

containing eight or more bars with the same reinforcement ratio. He found theoretically for 

square columns that the neutral axis inclination angle and the angle formed between the load ray 

and y-axis are almost equal. And the relation between the moment and the moment about x-axis 

in any load contour level is equal to 

( )θ3sin1−= uxoux MM                                   2-594 

Mux =ultimate moment about x-Axis 

Muxo = uniaxial moment on the same load contour of Mux 

θ = inclination of the neutral axis to x-axis angle
 

Equation (2-594) can be simplified to  
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( ) αα secsin1 3−= uxou MM                          2-595 

Mu =ultimate radial load about z axis 

and with plotting the previous equation against some actual load contour he found the following 

relation is more accurate especially for small angle (α) 
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Similarly for rectangular columns, by finding the transformed shape of the rectangular 

interaction diagram to the square ones using   some similar triangles calculations 
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β = transformed equivalent angle of α 

K = transformation factor equal to  
uyo

uxo

M

M
=

 

Also he showed that the upper equation is in good comparison with experimental actual load 

contour. He plotted the relation between θ and α for different ratios of length to width for 

rectangular columns. 
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Figure 2-47: relation between α and θ by Ramamurthy (1966)  
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 Capacity of reinforced rectangular columns subjected to biaxial bending (Parme, Nieves, 

and Gouwens 1966) 

 Parme et.al (1966). suggested relating the biaxial bending to the uniaxial resistance. They 

restated Bresler equation  
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Mx =  uniaxial ultimate moment capacity about x-axis  

Muy = uniaxial ultimate moment capacity about y-axis 

Mx= biaxial bending capacity component about x-axis. 

My= biaxial bending capacity component about y-axis. 

β is a function of reinforcement position, column dimension and the materialistic properties of 

steel and concrete. Parme et.al (1966) used a computer program to obtain values for β. Then β 

was represented graphically in four charts, Figure (2-49, 2-40, 2-51, 2-52).      
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Figure 2-48: biaxial moment relationship by Parme et al. (1966) 
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Figure 2-49: Biaxial bending design constant (four bars arrangement) by Parme et al. (1966) 
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Figure 2-50: Biaxial bending design constant (eight bars arrangement) by Parme et al. (1966) 
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Figure 2-51: Biaxial bending design constant (twelve bars arrangement) by Parme et al. (1966) 
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Figure 2-52: Biaxial bending design constant (6-8-10 bars arrangement) by Parme et al. (1966)

 
 Parme et al (1966) showed agreement between the suggested equations (2-598) and the 

theoretical one calculated with equilibrium equations. Furthermore, they simplified the 
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exponential representation of the upper equation by introducing two equations for two straight 

line starting from My/Muy =1 and Mx/ Mux =1 intersecting at the point of equal relative moment 

(Figure 2-52). The equations of the two straight lines are as follow: 
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Figure 2-53: Simplified interaction curve by Parme et al.  (1966)

 
 

 Ultimate strength design charts for columns with biaxial bending (Weber1966) 

 Based on Furlong conclusion that the most critical bending axes is the 45 degree ones 

after the major and minor axes in the case of biaxial bending. Weber (1966) generated sixteen 

chart for the 45 degree interaction diagrams for square columns . the columns are having 

symmetrical reinforcement with different amount of steel bars.

 

Design aids in the 1970 ACI SP-
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17A Handbookl2 and the 1972 CRSI Handbookl3 were based on interaction diagrams developed 

be Weber (1966). 

 

 Working stress column design using interaction diagrams (Mylonas 1967) 

 Mylonas (1967) adapted the interaction diagrams charts generated in the ACI Design 

handbook (1965), that were mainly for columns subjected to axial load and uniaxial bending and 

the steel is distributed on two faces parallel to the bending axis, to fit cases of biaxial bending 

and steel distributed along the four faces. Two reduction factors were introduced , one for each 

zone (Figure 2-54).  
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Figure 2-54: Working stress interaction diagram for bending about x-axis by Mylonas (1967)

 
for zone 2: 

x

xx
x w

wk
r

+

+
=

1

1

             2-601 



175 

 

kx  is the momet of the steel  distributed on two faces and is equal to 
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                       2-602

( ) gxx pgnw 2123 −=
                       2-603

 

 gx =bars center 

pg = steel ratio 

as = section area of arbitrary bar  

λ x = bar distance from x-axis divided by gx t(section height) 

For zone 3 
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Kox is the moment reduction factor for pure bending about x-axis  
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P’bx = load at balance failure 

N’ = normalized axial load 

Mylonas (1967) also suggested that the applied bending moment should be compared to the 

reduced moment capacity, the moment capacity found from uniaxial bending interaction chart, of 

the section in form 
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M’ x ,M’y are the applied moment 

M’ xx ,M’yy moment capacity 

  

 Comparison of experimental results with ultimate strength theory for reinforced concrete 

columns in biaxial bending (Brettle and Taylor 1968) 

 Brettle and Taylor (1968)  suggested partitioning the cross section into small size area, 

and using the limiting strain and the neutral axis position in calculating stresses in each filament 

using  curvilinear stress distribution or rectangular stress distribution or trapezoidal stress 

distribution for concrete. They generated ultimate strength design charts relating  Pu/Po to er/b for 

different t/b ratios and different inclination angle beween the line conecting the load to the 

centroid and the x-axis.  
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Figure 2-55: Comparison of steel stress variation for biaxial bending when ψ = 30 & q = 1.0 

Brettle and Taylor (1968)   

           er = resultant eccentricityed  

            t = section height 

            b  = section width 

            Po = theoritical ultimate load with no eccentricities 

 Pu= theoritical ultimate load with eccentricities 
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 Biaxial Flexure and Axial Load Interaction in Short Rectangular Reinforced Concrete 

Columns (Row and Paulay 1973) 

Row and Paulay (1974) introduced six charts relating the mφ to Pu/f’ cbh to facilitate the design 

process. However these charts are applicable to limited cases only based on the material 

properties required for design 
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 Biaxial bending simplified (Gouwens 1975) 

 Gouwens (1975) proposed simplified analytical equations for design column subjected to 

biaxial bending. He utilized Parme et al (1966) simplified moment equations  (2-599 & 2-600). 

He found that  β approaches 1 for 0.25 f’ c bh by examining 67 column cases. Based on that he 

proposed β equations as follow: 
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 Analysis of Short Rectangular Reinforced Concrete Columns Subjected to Biaxial 

Moments (Sallah 1983) 

 Sallah (1983) evaluated the Parameter β , found by Parme et al (1966) and found that it 

was most affected by fy, f’c , r, Pu/Puo and less affected by the number of bars. Sallah (1983) 

introduced number of charts similar to Parme et al’s (1966) for finding β 

 

 Design contour charts for biaxial bending of rectangular reinforced concrete columns 

using bresler method (Taylor and Ho 1984)  

 Taylor and Ho (1984) developed a computer program to generate the two main 

interaction diagrams (with uniaxial bending-one for each axis). These two charts were used to 

generate the whole biaxial failure surface (and the failure contours)using Bresler equations. 

Different positions of parallel neutral axis and crushing strain of concrete were used to generate 

strain profile. The stresses were generated by stress block or other accepted formulas. And forces 

and moments were calculated. They plotted chart showing the load tracing on the cross section 
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Figure 2-56: Non dimensional biaxial contour on quarter column by Taylor and Ho (1984). 

 

 Radial contour method of  biaxial short column design (Hartley 1985) 

 Hartley (1985) proposed two design procedure, one for finding the cross sectional length 

and the other to calculate the steel reinforcement, given all other desin parametes. He showed an 

optimum point to exist on the 3 D. interaction diagram that relates to the smallest area of the 

cross section. Initially, he showed the relation between the load and eccentricity in the form: 
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where c is a curve constant,b is section length and e is force eccentricity the initial value of the 

cross section length can be found by 
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Hartley (1985), using computer program, plotted graphically the relation between the cross 

sectional area and the ratio of Pu/Po. These charts can be used to determine the suitable length in 

design              
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Figure 2-57: Pu/Puo to A relation for 4bars arrangement by Hartley (1985) (left) non dimensional 

load contour (right)

 
Hartley (1985)  also showed the relation between the R and θ in the load contour by 

θ2sin1 nAR −=                           2-616

 
Where R and θ are showen in Figure 2-57 (right). 

 Expert interactive design of R/C columns under biaxial bending  (Sacks snd Buyukozturk 

1986) 

 Sacks and Buyukozturk (1986) developed computer software EIDOCC (Expert 

interactive design of concrete columns)  to analyse and design columns subjected to biaxial 

bending. The procedure as follow 
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1- Finding the neutral axis location, according to Ramamurthy procedure, such that 
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eux = ultimate eccentricity measured parallel to x-axis      

euy = ultimate eccentricity measured parallel to y-axis      

ex = eccentricity measured parallel to x-axis       

 ey = eccentricity measured parallel to y-axis 

2- Using the neutral axis depth,c, for the balanced failure as initial value 

3- Calculating Pu and iterating for c using modified secant numerical method till the load is 

very close to Pu 

4- Calculating euy, eux and comparing them to ey, ex to check section adequacy.   

 

 Interactive design of reinforced concrete columns with biaxial bending (Ross and Yen 

1986) 

 Ross and Yen (1986) developed a computer program to analyze and design 

rectangular columns subjected to biaxial bending. The procedure is to change the 

inclination angle of the neutral axis to find adequate relation between Mnx, Mny, and then 

change the position of the neutral axis to solve for the axial load. The section capacity is 

calculated using a predifined postion of the neutral axis and crushing strain equal to 0.003 
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for concrete. They suggested using four bars initially in the design process and keep 

increasing according to the applied loads with limiting the number of bars as stated by 

ACI code. 

 

 Design of columns subjected to biaxial bending (Horowitz 1989) 

 Horowitz (1989) developed a computer program for columns with any cross section 

subjected to biaxial bending. He relied on finding the least possible location of steel bars that 

make the section capacity more than the applied load. 

 

 Strength of reinforced concrete column in biaxial bending (Amirthandan 1991) 

 Amirthandan et.al (1991) showed good corelation between the experimental work done 

before and the method propsed in the austrailian standard for concrete structures AS 3600 for 

short columns. The load contour in the standard is approximated by bresler equation. They 

adopted the beta value from the british standard 

( )NuoN 6.0/7.17.0 +=β                      2-618  

 

N = design axial force 

Nuo = ultimate axial load. 

 

 Computer analysis of reinforced concrete sections under biaxial bending and longitudinal 

load (Zak 1993) 
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 Zak (1993) proposed solving  the equilibrium equation with the modification of the 

secant modulus method. The ultimate strain was not determined. However, it was found using 

maximization  method. 

 

 Analysis and Design of Square and Rectangular Column by Equation of Failure Surface 

Hsu (1994) 

Hsu (1994) proposed equation that covers columns subjected to biaxial bending and axial 

compression or tension. The proposed equation is as follow: 

0.1

5.15.1

=









+








+









−

−

nby

ny

nbx

nx

nbo

nbn

M

M

M

M

PP

PP

                   

2-619 

  

Pn = nominal axial compression or tension 

Mnx, Mny= nominal bending moments about x and y axis 

Po = maximum nominal axial compression or axial tension 

Pnb = nominal axial compression at balanced strain condition 

Mnbx, Mnby  = nominal bending moments about x and y axis at balanced strain condition. 

 

 Biaxial Interaction Diagrams For short RC columns of any cross section (Rodriguez and 

Ochoa (1999) 

 Rodriguez and Ochoa (1999) proposed a general method for analyzing any cross section 

subjected to biaxial bending. They developed closed form solution for nominal total axial force 
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strength and nominal bending moment strengths about the global X and Y-axes. Quasi-Newton’s 

method was used to solve these coupled nonlinear equations to locate the neutral axis position. 
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Pn= Nominal axial force strength. 

Mnx = nominal bending moment strength about x axis 

Mny = nominal bending moment strength about x axis 

Xa, Ya = coordinates of origin with respect to global x, xaxes 

α = angle of inclination of neutral axis with respect to Xaxis; 

 n = number of reinforcement bars; 

nbc = number of rebars located on compression side of cross section; 

nt = number of trapezoids used to approximate concrete under compression; 

Abi = area of steel rebar i; 

fci = concrete stress at reinforcement bar i 

fsi = steel stress at reinforcement bar i 

Pci = force for each trapazoid.  
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Mciy = Moment of each trapazoid about y axis. 

Mcix = Moment of each trapazoid about x axis. 

 

 Short reinforced concrete column capacity under biaxial bending and axial load (Hong 

2000) 

 Hong (2000) did not assume any crushing strain limit. He proposed two equation from 

equating forces and moments 
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where exl , eyl is the load eccentricity to x and y axes respectively.The two equations has three 

unknows; the curvature, neutral axis inclination angle and the neutral axis intercipt with the y-

axis. Hong (2000) used the sequential quadratic programming method to solve the case as a 

nonlinearly constrained optimization problem. 

 

 Reliability of Reinforced Concrete Columns under Axial Load and Biaxial Bending 

(Wang and Hong 2002)  
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 Wang and Hong (2002) evaluated the parameter β (Parme et al (1966) ) and fount that it 

is insensitive to the reinforced ratio, it is more sensitive to biaxial bending than uniaxial bending, 

it increases withload and concncrete compressive strength

  

 

 Analysis and design of concrete columns for biaxial bending –overview-(Furlong , Hsu 

and Mirza 2004) 

 Furlong et al (2004) reviewed many of the proposed formulas for analysis. These 

formulas were compared to experimental work. They concluded that the equations of Bresler 

(1960), although simple, are not very conservative, while Hsu equation is much more 

conservative. As Hsu equation can be used in biaxial bending and tension as well. However, both 

Hsu equation and Bresler reciprocal load equation can not be used in selecting cross section, 

unlike Bresler load contour equation.  

 

 

 New Method to Evaluate the Biaxial Interaction Exponent for RC Columns (Bajaj  and 

Mendis 2005) 

 Bajaj and Mendis (2005) suggested new equations to evaluate the biaxial interaction 

exponenet a found by Bresler (1960). The proposed equations are as follow 
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Bajaj and Mendis (2005) benchmarked their equastion by comparing the results with 

experimental work done on 8 (150* 150 mm) columns. 

 

 Analysis of Reinforced Concrete Columns Subjected to Biaxial Loads (Demagh, Chabil 

and Hamzaoui 2005) 

 Demagh et al (2005) suggested solving for the three equations of equilibrium to find the 

nominal force Pn, the inclination angle of the neutral axis α and the depth of the neutral axis b. 

The three equation are: 

( ) sicisicin AffPP ∑∑ −+=
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( ) sisicisicicicixnny yAffPXxMyMePM ∑∑∑∑ −+++== αα sincos
          2-629 

Where the subscript i refers to a concrete layer or steel bar element. 

 Analytical approach to failure surfaces in reinforced concrete sections subjected to axial 

loads and biaxial bending (Bonet, Miguel, Fernandez and Romero 2006) 

 Bonet et al (2006) developed a new method for the surface failure based on numerical 

simulation. The numerical simulation was generated using a computer program capable of 

analysing moment-curvature diagram for given axial load and moment ratio. The maximum 

value was used as a failure point for the given loads. The failure surface is defined by two 
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directrix curves and generatrix curves. The directrix curves are the curve corresponds to zero 

axial force and the one corresponds to balance failure.the generatix curves are defined in 

Muy/Mux plane, the first curve connects the pure tension axial load to balnce failure load. 

Whearas the second curve connects the balnce failure load to the pure compression load. The 

equations for the four curves are as follow 
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Md1= absolute value of the nominal bending moment of the section in simple flexure 

corresponding to angle beta 

Md1,x, Md1,y= nominal bending moments of the section in simple flexure for the x and y axes, 

respectively. 

Md2 = absolute value of the nominal bending moment corresponding to the maximum bending 

capacity 

of the section for a particular angle β 

Md2,x, Md2,y = nominal bending moments corresponding to the maximum flexure capacity of the 

section for the x and the y axes, respectively. 

γ, η=exponents of the directrices. 

23.1 += ωγ  

 
15.122.0 +−= ωη

 ω = steel reinforcement 

Nu = axial load applied 

Nuc = the ultimate axial load in pure compression 

Nd2 =balance failure load. 
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Nlim = nominal axial compression at the balanced strain condition 
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 Biaxial bending of concrete columns:An analytical solution (Cedolin,  Cusatis,  Eccheli, 

Roveda 2006) 

 Cedolin et al (2006) introduced analytical solution of  the failure envelope of rectangular 

R/C cross sections subjected to biaxial bending and to an axial force by approximating the 

rectangle to equivalent square section. The analysis was for unconfined concrete and the solution 

outcome was dimensionless  

 
 Comparative study of analytical and numerical algorithms for designing reinforced 

concrete sections under biaxial bending (Bonet , Barros , Romero 2006) 

 Bonet et al (2006) introduced analytical and numerical methods for designing circular 

and rectangular cross sections subjected to bi-axial bending. The analytical method uses the 

heviside function (Barros et al 2004) to define the failure strain, then integrate the stress based 

on that failure. The numerical method breaks the section into multi thick layers parallel to the 

nuteral axis. The internal forces are found by numerical integration of each layer using Gausss-

Legendre quadrature (Barros et al 2004). They concluded that the two method are effeicint for 

circular cross section’s analysis and the modified thick layer integration is more efficient for the 

rectangular cross section’s analysis. 

 

 Investigation of Biaxial Bending of Reinforced Concrete Columns Through Fiber Method 

Modeling (Lejano 2007) 
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 Lejano (2007) expanded the finite element method found by Kaba and Mahin (1984). To 

predict the behavior of unconfined rectangular columns subjected to biaxial bending. The 

analysis was limited to uniform semmetric square columns. Lejano (2007) utilized Bazant’s 

Endochronic theory  for concrete and Ciampi model for steel. 

 

 Variation of ultimate concrete strain at RC Columns Subjected to Axial Loads with Bi-

directional Eccentricities (Yoo and Shin 2007 ) 

 Yoo and Shin (2007) introduced the modified rectangular stress block (MRSB) to 

account for non-rectangular compression zone induced by bi-axial bending. They showed 

experimentally that the ultimate strain of concrete exposed to bi-directional eccentricities can 

reach up to 0.0059. Based on this finding they introduced new equation for the unconfined 

ultimate strain as follow: 
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No definition for θ was provided. 

 

 
 Capacity of Rectangular Cross Sections under Biaxially Eccentric Loads (Cedolin, 

Cusatis, Eccheli, Roveda 2008) 

 Cedolin et al (2008) utilized the work of Cedolin et al (2006) to generate more accurate 

moment failure contour through creating one extra points on the contour. This point correspond 

to the load acting on rectangle diagonlas and was approximated by using equivelant square to 

benefit from symmetry. The developed moment contour was used for better evaluating the 

parameter α found by Bresler (1960) 

 
 Development of a computer program to design concrete columns for biaxial moments and 

normal force (Helgason 2010) 

 Helgason 2010 developed a computer program using Matlab for designing unconfined 

rectangular hollow or solid columns subjected to axial force and bending moment. Helgason 

2010 used the predefined strain profile to generate the interaction diagram and the equivelant 

stress block equal to 80 % of the compression zone depth. The outcome was compared to 

Eurocode 
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 2-4-2 Discussion 

According to the literature review, there are five different approaches that treated the 

columns under axial load and bending moment problem. These ways are summarized as follow: 

1- Trial for locating the neutral axis position such as Parker and Scanlon (1941), Ang 

(1961) and Czerniak (1962) works. 

2- Implementing closed form equations for special cases such as Andersen (1941), 

Wiesinger (1958), Cedolin et al (2006) and Yoo and Shin (2007) works. 

3- Generating charts that relate two or more variable to facilitate the design process, 

such as Mikhalkin, Au (1958), Fleming and Werner (1965) and Brettle and Taylor 

(1968) works. 

4- Developing simplified Interaction diagrams by using coefficients for curve defining. 

This method was adopted by some researchers like Whitney and Cohen (1957), 

Bresler (1960), Furlong (1961), Parme (1966), Mylons (1967), Bonet et al (2006). 

5- Generating Sets of ready Interaction diagrams to be used directly by designers, Weber 

(1966) and others 

There are some conclusions that can be drawn as follow 

- The finite layer approach is successful in analysis. This approach was adopted by 

some authors such as Brettle and Taylor (1968), Bonet et al (2006) and Lejano (2007) 

- The Bresler Method is one of the most well known and successful method in 

predicting the unconfined interaction diagrams and load contours. This method was 

utilized and refined by many such as Rammamurthy (1966), Parme et al (1966), 

Gouwens (1975), Sallah (1983) Amirthandan (1991), Wang and Hong (2002) and 
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Bajaj and Mendis (2005). However it is very conservative for some cases as shown 

by Furlong et al (2004) and others. 

- Software applications on columns spreaded and became popular in the beginning of 

1980s.Taylor and Ho (1984) developed computer program based on Bresler Method. 

Sacks and Bugukoztruck (1986) developed their program based on iterating for 

neutral axis and load converge. Ross and Yen (1986) used the predefined strain 

profile in their software. Horowitz (1989) incremented the steel bars till the column 

capacity exceeded the load applied. This transition in relying on machines for 

facilitates calculations. Hence more accurate and precise analysis is needed to define 

exactly the unconfined and confined capacity of different sections. 

- The predefined strain profile is seen to be one of the most effective and fast procedure 

foe unconfined analysis. This method was suggested by Furlong (1961) and utilized 

by many, such as Ross and Yan (1986) 

- There is lack of confinement effect analysis on columns capacity. Nowadays, there is 

a need in predicting columns extreme events as stated by some structural codes like 

AASHTO-LRFD. 
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Chapter 3 - Circular Columns Confined with FRP and lateral Steel 

 3-1 Introduction 

 FRP used in retrofitting concrete columns is considered one of the simplest and most 

efficient application, as FRP has excellent material characteristics like high strength to weight 

ratio and high corrosion resistance FRP behaves elastically, and therefore its confining strength 

increases proportionally with increasing the force applied. On the other hand, the confining steel 

provides constant confining pressure after its yielding. Many empirical and theoretical models 

were proposed describing the FRP contribution to confinement. According to Lam and Teng 

(2003), the proposed models can be classified as design oriented and analysis oriented. In the 

design oriented approach, closed-form equations are developed to predict the stress-strain 

behavior based on experimental findings. Examples of such models are those of Fardis and 

Khalili (1982), Ahmed et al (1991); Saadatmanesh et al (1994); Karbhari and Gao (1997), Saafi 

et al (1998) and Toutanji (1999).Whereas in the second approach, an incremental numerical 

analysis is generated and an active confined model is utilized to determine the Stress-Strain 

curve. Examples of such models are those of Spolestra and Monti (1999), Xiao and Wu (2000). 

Several researchers realized the importance of implementing the effect of the Lateral Steel 

Reinforcement (LSR) and FRP combined in one model. Braga et al. (2006) and Eid and Paultre 

(2008) are two different models accounting for minimum amount of confining steel to be used in 

the columns when FRP wrapping is used. This chapter is proposing a new model accounting for 

the FRP and LSR side by side based on a direct extension of the procedure established by ACI 

440.2R-08. This chapter discusses the finite layer approach used, the material models, eccentric 

based models, numerical formulation of the algorithm and finally the results and discussion. 
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 3-2 Formulations 

 3-2-1 Finite Layer Approach (Fiber Model) 

The column cross section is divided into a finite number of thin layers (Figure 3-1). The force 

and moment of each layer is calculated and stored. The rebars are treated as discrete objects in 

their actual locations. The advantage of that is to avoid inaccuracy generated from using the 

approximation of the stress block method, as a representative of the compression zone and to 

precisely calculate the internal forces induced by steel bars and concrete layers in the column 

cross section. 
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Figure 3-1: Using Finite Layer Approach in Analysis 

 

 3-2-2 Present Confinement Model for Concentric Columns 

 3-2-2-1 Lam and Teng Model 

Lam and Teng (2003) proposed a new model for concrete wrapped with Fiber Reinforced 

Polymer (FRP). This model is adopted by ACI 440.2R-08 code for FRP wrapping. The stress-

strain equations are as follow: 
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where ε’ t is the transition strain. To find the maximum confined concrete compressive 

strength  
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Figure 3-2:Axial Stress-Strain Model proposed by Lam and Teng (2003). 

fl is the maximum confined pressure. Ef is tensile modulus of elasticity of FRP. κa is the 

efficiency factor accounts for the geometry of the section and it is equal to 1 in case of the 
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circular cross section, n is the number of plies used, tf is the nominal thickness of one ply, D is 

the cross section diameter of the column, ψf is a reduction factor determined by the code to be 

0.95. εfe is the effective strain level at failure and it is given by: 

fufe εκε ε=                                                                                    3-7   

κε is a reduction factor that considers the premature failure of the FRP.ACI 440.2R-08 

implements an average value of κε = 0.586 based on Lam and Teng (2003 a) finding.  It is found 

experimentally to range between 0.57 and 0.61. It should be noted that the lowest level of 

confinement pressure (fl) required is equal to 0.08 f’ c to avoid having a descending branch in the 

stress strain curve. This note is verified by Spolestra and Monti (1999). The maximum 

compressive strain  εccu   can be found by: 
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And to avoid excessive cracking, this strain should be limited to: 

01.0≤ccuε           

 where κb  accounts for the geometry of the cross section and is equal to 1 for circular 

columns. 

 

 3-2-2-2 Mander Model for transversely reinforced steel 

 Mander model (1988) was developed based on the effective lateral confinement pressure, 

f’ l, and the confinement effective coefficient ke which is the same concept found by Sheikh 

and Uzumeri (1982). The advantage of this procedure is its applicability to any cross section 

since it defines the lateral pressure based on the section geometry. Mander et al (1988) 



200 

 

showed the adaptability of their model to circular or rectangular sections, under static or 

dynamic loading, either monotonically or cyclically applied. In order to develop a full stress-

strain curve and to assess ductility, an energy balance approach is used to predict the 

maximum longitudinal compressive strain in the concrete. 

Mander derived the longitudinal compressive concrete stress-strain equation from Popovics 

model that was originally developed for unconfined concrete (1973): 

r
cc

c xr

xrf
f

+−
=

1
                3-9  

cc

cx
ε
ε

=                              3-10  

secEE

E
r

c

c

−
=                              3-11  

'4723 cc fE =      in  MPa                                                                                                  3-12

cc

ccf
E

ε
=sec                           3-13  

and as suggested by Richart et al. (1928) the strain corresponding to the peak confined 

compressive strength fcc is:  
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 The different parameters are defined in Figure (3-3). 
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Figure 3-3: Axial Stress-Strain Model proposed by Mander et al. (1988) for monotonic loading 

 

 As shown in Figure 3-3: Axial Stress-Strain Model proposed by Mander et al. (1988) for 

monotonic loading, Mander et al. (1988) model has two curves; one for unconfined concrete 

(lower curve) and the other for confined concrete (upper one). The upper one refers to the 

behavior of confined concrete with concentric loading (no eccentricity). It is shown that it has 

ascending branch with varying slope starting from Ec decreasing till it reaches the peak confined 

strength at (fcc, εcc). Then the slope becomes slightly negative in the descending branch 

representing ductility till the strain of εcu where first hoop fractures. The lower curve expresses 

the unconfined concrete behavior. It has the same ascending branch as the confined concrete 

curve till it peaks at (f’ c, εco). Then, the curve descends till 1.5-2εco. A straight line is assumed 

after that till zero strength at spalling strain εsp 

Mander et al. (1988) utilized an approach similar to that of Sheik and Uzumeri (1982) to 

determine effective lateral confinement pressure. It was assumed that the area of confined 
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concrete is the area within the centerlines of perimeter of spiral or hoop reinforcement Acc as 

illustrated in Figure (3- 4)  

45° s's
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Figure 3-4: Effectively confined core for circular hoop and spiral reinforcement (Mander Model) 

 Figure 3-4 shows that effectively confined concrete core Ae , inbetween hoops or spirals, 

is smaller than the area of core within center lines of perimeter spiral or hoops excluding 

longitudinal steel area, Acc. To satisfy that condition, the effective lateral confinement pressure, 

f’ l ,should be a percentage of the lateral pressure fl: 

lel fkf ='
                          3-15  

and the confinement effectiveness coefficient ke is defined as the ratio of effective confined area 

to the area enclosed by centerlines of spiral or hoop: 
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where Ac is the area of the section core enclosed by spirals or hoops, Asl is the area of 

longitudinal steel and ρcc is the ratio of longitudinal steel to the area of the core.  

For hoop case, the effective lateral confined core: 
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Figure 3-5: Effective lateral confined core for hoop and spiral reinforcement (Mander Model) 
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where s’ is the clear spacing between spiral or hoop bars and ds  is the core diameter to spirals or 

hoops centerline. While for spiral case it can be shown from Figure (3-5) that 
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and the last term can be neglected so the value of ke is found from the following equation: 
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Figure 3-6: Confinement forces on concrete from circular hoop reinforcement 

Figure (3-6) illustrates force equilibrium on a half turn of a circular hoop. The uniform 

hoop tension at yield generated in the transverse steel should be balanced by the uniform lateral 

stress on the concrete core: 
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and the ratio of the volume of transverse steel to the volume of confined core area ρs can be 

expressed as 
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hence 
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2

1
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and from equation (3-15) f’ l can be found: 
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The maximum confined compressive strength can be described as a function of the peak 

unconfined strength and the uniform effective lateral confinement pressure: 
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Mander et al. (1988) proposed an energy balancing theory to predict the ultimate confined strain, 

which is determined at the first hoop fracture. They stated that the additional ductility for 

confined concrete results from the additional strain energy stored in the hoops Ush. Therefore 

from equilibrium: 

cogsh UUU −=               3-30  

where Ug is the external work done in the concrete to fracture the hoop, and Uco is the work done 

to cause failure to the unconfined concrete. Ush can be represented by the area under the tension 

stress strain curve for the transverse steel between zero and fracture strain εsf. 
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ε

dfAU
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while Ug is equal to the area under the confined stress strain curve plus the area under the 

longitudinal steel stress strain curve: 
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Similarly, it was proven experimentally that Uco is equal to:  
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Substituting equations (3-32), (3-33) and (3-34) into equation (3-30): 
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where fsl is the stress in the longitudinal steel. Equation (3-35) can be solved numerically for εcu 

The above equations (3-30) to (3-35) are develoed using the SI units 

 3-2-3Present Confinement Model for Eccentric Columns 

Unlike concentric loading, the eccentric loading generates bending moment in addition to 

axial loading. Columns subjected to eccentric loading behave differently from those 

concentrically loaded, as the shape of the stress strain curve for fully confined reinforced 

concrete (concentric loading) shows higher peak strength and more ductility than the unconfined 

one (infinite eccentricity). Most of the previous studies were based on the uniform distribution of 

compressive strain across the column section. 

            

Figure 3-7: Effect of compression zone depth on concrete strength 
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Figure (3-7) illustrates three different sections under concentric load, combination of 

axial load and bending moment and pure bending moment, the highlighted fiber in the three 

cases has the same strain. Any current confinement model yields the same stress for these three 

fibers. So the depth or size of compression zone does not have any role in predicting the stress. 

Hence, it is more realistic to relate the strength and ductility in a new model to the level of 

confinement utilization and compression zone. 

 

Figure 3-8: Amount of confinement gets engaged in different cases 

 By definition, confinement gets engaged only when member is subjected to compression. 

Compressed members tend to expand in lateral direction, and if confined, confinement will 

prevent this expansion to different levels based on the degree of compressive force and 

confinement strength as well. For fully compressed members (Figure 3-8 c), confinement 

becomes effective 100% as it all acts to prevent the lateral expansion. Whereas members 

subjected to compression and tension, when the neutral axis lies inside the section perimeter, 

only adjacent confinement to the compression zone gets engaged. Accordingly, members 

become partially confined.  

 In FRP wrapped columns literature, various models were implemented to assess the 

ultimate confined capacity of columns under concentric axial load. On the other hand the effect 

of partial confinement in case of eccentric load (combined axial load and bending moments) is 
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not investigated in any proposed model. Therefore, it is pertinent to relate the strength and 

ductility of reinforced concrete to the degree of confinement utilization in a new model. 

 The two curves of fully confined and unconfined concrete in any proposed model are 

used in the eccentricity-based model as upper and lower bounds. The upper curve refers to 

concentrically loaded confined concrete (zero eccentricity), while the lower one refers to pure 

bending applied on concrete (infinite eccentricity). In between the two boundaries, infinite 

numbers of stress-strain curves can be generated based on the eccentricity which is found to 

directly relate to the size of compression zone, Figure (3-9). The higher the eccentricity the 

smaller the confined concrete region in compression. Accordingly, the ultimate confined strength 

is gradually reduced from the fully confined value fcc to the unconfined value f’ c as a function of 

eccentricity to diameter ratio. In addition the Ultimate strain is reduced linearly from the ultimate 

strain εcu for confined concrete to the ultimate strain for unconfined concrete 1.5εco or 0.003 

                     

Figure 3-9: Relation between the compression area ratio to the normalized eccentricity 

Figure (3-9) shows that the compression area to the total area decreases linearly with the increase 

in normalized eccentricity. This relation is almost linear as it is depicted by the solid line. Hence, 
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the eccentricity can be related simply to the compression zone area as explained in the following 

section. 

 3-2-3-1 Eccentric Model Based on Lam and Teng Equations 

 The ultimate eccentric or partially confined strength ccf  is determined from the 

following equation: 
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where e is the eccentricity, D is the column diameter and ccf is the eccentric peak strength at the 

eccentricity (e). 

The strain ������� corresponding to the peak partially confined strength ���
����, which corresponds to the 

ultimate point on the curve, Figure (3-10), is given by linear interpolation between the two 

extreme bounds of strain: 
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Any point on the generated eccentric curves can be calculated using the following equations: 
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Figure 3-10: Eccentricity Based Confined -Lam and Teng Model- 

 

 3-2-3-2 Eccentric Model based on Mander Equations 

The equation that defines the eccentric peak strength according to the eccentricity is simply a 

mixture rule: '
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where e is the eccentricity, D is the column diameter and ccf is the eccentric peak strength at the 

eccentricity (e). The corresponding strain ccε  is given by 
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and the maximum strain corresponding to the required eccentricity will be a linear function of 

the stress corresponding to maximum strain for fully confined concrete fcu and the stress at the 

maximum unconfined train fcuo at εcuo = 0.003. 
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In order to verify the accuracy of the model at the extreme cases, the eccentricity is first set to be 

zero. The coefficient of f’ c will be zero and equation (3-42), (3-43) and (3-44) will reduce to be: 

cccc ff =                3-45   

cccc εε =                3-46   

cucu εε =                3-47   

On the other hand, if the eccentricity is set to be infinity the other coefficient of fcc will be 

zero, and the strength, corresponding strain and ductility equations will be: 

'
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Figure 3-11: Eccentricity Based Confined -Mander Model - 

Any point on the generated eccentric curves can be calculated using the following equation: 
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 3-2-4 Moment of Area Theorem 

The very general axial stress equation in a symmetrical section subjected to axial force P 

and uniaxial bending Mx (Hardy Cross 1930): 
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3-55 

zσ  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 

xM  = bending moment about x-axis 

y    = distance between the point (a) and the centroidal x-axis  

xI   = moment of inertia about the centroidal x-axis 

Rewriting Equation (3-55) to determine the strain at any point in the cross section: 
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In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, if the 

section has variable strain and stress profile, it will amount to variable E profile (per layer) in 

nonlinear analysis. Accordingly, the section parameters must include∑
i

ii AE , ∑
i

ii IE
 
for a more 

generalized theory (Rasheed and Dinno 1994). Note that the linear strain profile of the section 

from Equation (3-56) yields a distinct constant curvature: 
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where  xφ = x- curvature 

Rewriting equation (3-56) in terms of φx  
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Finding εz at the centroid, since y = 0. 
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P
= oε

                                 3-60
  

Finding ez at the geometric centroid, � � �� 

yxo  
EA

P
= φε +  

Solving for P at the geometric centroid; 

 
xo yEAEAP φε −=
                             3-61

oε  is the axial strain at the geometric centroid 

But  

yEAEAMx =
                  

cG YYy −=                                  

YG is the vertical distance to the geometric centroid measured from bottom extreme fiber and Yc 

is the vertical distance to the inelastic centroid measured from the bottom extreme fiber, Figure 

(3-12) 

The general formula of the moments about the geometric x-axis is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid , Figure (3-12) 

yPMM xx −=               3-62 

Substituting equation (3-58) and (3-61) in (3-62) yields:  
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215 

 

                                             

G

Cy

P

Mx

Mx

Y
Y G

c

 

Figure 3-12: Transfering moment from centroid to the geometric centroid 

 

The term yEAMEI xx +  represents the xEI about the geometric centroid using the parallel axis 

theorem. Using equations (3-61) and (3-63) yields the Moment of Area equation: 
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3-64 

Since the moment of area about the actual centroid vanishes (Rasheed and Dinno 1994), 

Equation (3-64) reduces to an uncoupled set when it is applied back at the actual centroid since 

EAMx vanish about the centroid. 
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3-65 

which is simply equations (3-58) and (3-60). 
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 3-3 Numerical Formulation 

 3-3-1 Model Formulation

 

Figure 3-13: Equilibrium between Lateral Confining Stress, LSR and FRP Forces 

 

 It is demanded to integrate the effect of lateral Steel reinforcement (LSR) and Fiber 

Reinforced Polymer (FRP) simultaneously in one model to accurately express the whole column 

confinement behavior. As shown in Fig (3-12 d) and considering equilibrium: 

( ) ''
lslfle fpff +∆+=

                         3-66  
 

fle = effective lateral confinement due to LSR and FRP together 

f’ lf = effective lateral confinement due to FRP only 

f’ ls = effective lateral confinement due to LSR only. 

∆p = lateral pressure difference developed due to transferring the f’ lf from the FRP position to the 

LSR position. 

It is noted that ∆p is negligible especially for proportionally small cover compared to core 

diameter of cross section (Eid and Paultre 2008). Accordingly ∆p may be neglected from the 

previous equation that can be simplified to: 

D 
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''
lslfle fff +=

                          3-67 
 

Using equilibrium in the free body diagram in Figure (3-13 b), the valure of f’ lf is: 

lfelf fkf ='

 3-68
 

And for fully wrapped columns ke is equal to 1, hence: 

lflf ff ='

                             3-69
 

By using force equilibrium in the y- direction: 

sntEAfdsf ffffflf ε22 ==
                          3-70

 

d= column diameter 

Ef = FRP modulus of Elasticity 

t = FRP layer thickness 

n = number of FRP layers 

εf = FRP strain. 

s = column length 

Accordingly: 

D

ntE
f

fff
lf

ε2
=

                            3-71 

Similarly to find f’ ls, equilibrium of forces in Figure (3-13 c) in the vertical direction are 

summed: 

jsels fkf ='

                             3-72
 

ssesls fAksdf 2' =
                              3-73 

It can be assumed that spiral steel yields at ultimate strength, so fs is replaced by fyh 
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sd

fAk
f

s

yhse
ls

2' =
                        3-74

 

ke = lateral Steel confinement coefficient and it is equal to  
ss

sd

s

ρ−

−

1

2

'
1

 

As = Lateral Steel area 

fyh = Lateral Steel yield strength 

ds = core diameter 

s= spiral spacing
 

By subistituting equations (3-71) and (3-74) into (3-67) 

sd

fAk

D

ntE
f

s

yhsefff

le

22
+=

ε
               3-75

 

 Lam and Teng (2003) stated that the ratio of flf/f’ c has not to be taken less than 0.07 to 

furnish minimum sufficient ratio of FRP and to ensure that the stress-strain curve is ascending 

beyond f’ c up to failure. But ACI 440 guidelines adopted 0.08 as a minimum for this ratio. This 

note is verified by Spolestra and Monti (1999). Based on the previous statement, the flf/f’ c ratio is 

calculated and if it is more than 0.08, Lam and Teng equations are used according to ACI 440. 

Otherwise Mander model is used since it generates a stress-strain curve with a descending 

branch, Figure (3-14). The reason for that is the limited FRP confinement ratio is considered 

minor and the FRP characteristics are not dominant. Hence, the cross section behavior is 

governed by lateral steel. 



 

 

Figure 3-

The cross section analyzed is loaded incrementally by maintaining a certain eccentricity 

between the axial force P and the resultant moment 

moment causes the neutral axis and centroid

theorem is devised. 

 

The method is developed using incremental iterative analysis algorithm, secant stiffness 

approach and proportional or radial

1- Calculating the initial section properties:

• Elastic axial rigidity EA: 

∑∑ −+=
i

sicsii
i

c AEEtwEEA )(

cE = initial modulus of elasticity of the concrete 
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-14: FRP and LSR Model Implementation 

 3-3-2 Numerical Analysis 

The cross section analyzed is loaded incrementally by maintaining a certain eccentricity 

and the resultant moment MR. Since increasing the load and resultant 

and centroid to vary nonlinearly, the generalized moment of area 

The method is developed using incremental iterative analysis algorithm, secant stiffness 

or radial loading. It is explained in the following steps (Figure 3

Calculating the initial section properties: 

 

       

= initial modulus of elasticity of the concrete  

 

The cross section analyzed is loaded incrementally by maintaining a certain eccentricity 

increasing the load and resultant 

, the generalized moment of area 

The method is developed using incremental iterative analysis algorithm, secant stiffness 

loading. It is explained in the following steps (Figure 3-18): 

           
     3-76 
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sE = initial modulus of elasticity of the steel rebar 

The depth of the elastic centroid position from the bottom fiber of the section Yc 

EA

YHAEEYHtwE
Y i i

sisicsiiic

c

∑ ∑ −−+−
=

)()()(

                                           3-77 

• Elastic flexural rigidity about the elastic centroid EI: 

22 )()()( csisic
i

sciii
i

cx YYHAEEYYHtwEEI −−−+−−= ∑∑
        3-78

 

Typically Yc = H/2. 

 

• The depth of the geometric section centroid position from the bottom and left fibers of 

the section YG: 

2

H
YG =

                            3-79
 

Yi

Y_i

Ysi

Y_si

wi

t
H

ε s

ε s

ε c

 

Figure 3-15: Geometric properties of concrete layers and steel rebars  

 

2- Calculating flf/f’ c and check the ratio to decide which model is used (Eccentric model 

based on Lam and Teng Equations or Eccentric model based on Mander Equations)  

Figure (3-14).                                                  
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3- Defining eccentricity e, which specifies the radial path of loading on the interaction 

diagram.  

           

e

Resultant Moment

A
xi

al
 F

or
ce

Load Step   GP

 

Figure 3-16: Radial loading concept 

 

 

4- Defining loading stepGP∆  as small portion of the maximum load, and computing the 

axial force at the geometric centroid. 

 GPGPGP oldnew ∆+=                                   3-80   

5- Calculating moment GM about the geometric centroid. 

GP

GM
e x=                             GPeGMx *=                       3-81 

6- Transferring moment to the updated inelastic centroid and calculating the new 

transferred moment TMX  : 

)( cGxX YYGPGMTM −+=              3-82   

The advantage of transferring the moment to the position of the inelastic centroid is to eliminate 

the coupling effect between the force and moment, since   0=xEAM
 
about the inelastic 

centroid   
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Figure 3-17: Transfering Moment from geometric centroid to inelastic centroid 

           

 

7- Finding:  Curvatures   φ   

x

x
x EI

TM
=φ                           3-84 

Strain at the inelastic centroidoε , the extreme compression fiber strainecε , and strain at the 

extreme level of steel in tensionesε  are found as follow: 

EA

GP
o =ε

                          3-85

)( cxoec YH −+= φεε                             3-86 

)( CoverYcxoes −−= φεε              3-87 

where cover is up to center of bars 

8- Calculating strain ciε and corresponding stress fci in each layer of concrete section by 

using selected model from step 2. 

iecci Yφεε −=
               3-88

 



223 

 

9- Calculating strain 
siε and corresponding stress fsi in each bar in the given section by 

using the steel model (Elastic up to yield strength and then perfectly plastic) 

siecsi Yφεε −=

                 3-89

 

10- Calculating the new section properties: axial rigidity EA, flexural rigidities about the 

inelastic centroid EIx,, moment of axial rigidity about inelastic centroid EAMx, internal 

axial force Fz, internal bending moments about the inelastic centroid Mox , 

∑∑ −+=
i

sicisiii

i

ci AEEtwEEA )(

            3-90

)()()( sicsici

i

siicii

i

cix YYHAEEYYHtwEEAM −−−+−−= ∑∑
            3-91

∑∑ −+= sicisiiiciz AfftwfF )(
                     

3-92 

22 )()()( sicsici

i

siicii

i

cix YYHAEEYYHtwEEI −−−+−−= ∑∑         3-93

 

 

)()()( sicsicisiiciiciox YYHAffYYHtwfM −−−+−−= ∑∑                                                      
3-94

 

where  Eci = secant modulus of elasticity of the concrete layer. 

            Esi = secant modulus of elasticity of the steel bar. 

11- Transferring back the internal moment about the geometric centroid 

)( cGoxox YYGPMGM −−=
                                                                    3-95 

 

12- Checking the convergence of the inelastic centroid 

cxx YEAEAMTOL //=
             3-96  

13- Comparing the internal force to applied force, internal moments to applied moments, 

and assuring that the moments are calculated about the geometric centroid :
 
 

510*1 −≤− zFGP
                                                                                3-97  
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510*1 −≤− oxx GMGM               3-98   

510*1 −≤xTol               3-99 

If Equations (3-97), (3-98) and (3-99) are not satisfied, the location of the inelastic centroid is 

updated by EAMx/EA and steps 5 to 11 are repeated till Equations (3-97), (3-98) and (3-99) are 

satisfied. 

EA

EAM
YY x

cc oldnew
+=

                       3-100
 

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete ecε   and steel 

esε  not to exceed ccε  (or cuε  based on the selected model) and 0.05 respectively, then it 

increases the loading by GP∆  and runs the analysis for the new load level using the latest 

section properties. Otherwise, if  ecε  equals ccε (or  based on the selected model) or esε  

equals 0.05, the target force and resultant moment are reached as a point on the failure surface 

for the amount of eccentricity used. 

cuε
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Figure 3-18: Flowchart of FRP wrapped columns analysis 
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 3-4 Results and Discussion 

First the stress-strain curves are compared with some experimental work found in the 

literature. Then, Interaction diagrams generated by KDOT Column Expert Software are plotted 

and compared to the corresponding experimental work as well. Interaction diagrams are 

generated using the numerical formulation described in section 3-3 

 3-4-1 Stress-Strain Curve Comparisons with Experimental Work  

To validate the concentrically confined model, a set of experimental data are compared to this 

model. The cross section properties of the columns are shown in Table 3-1 

Table 3-1: Experimental data used to verify the ultimate strength and strain for the confined model (Eid et al. 

2006) 

εfu for all cases is 0.0134 

 As shown in Fig. 3-18 there is an excellent correlation between the experimental point 

and the stress strain curve developed theoretically, since the theoretical ultimate peak strength 

and strain are 9.35 ksi (64.5 MPa) and 0.0142, whereas the experimental point is at 9.5 ksi (65.5 

MPa) in strength with a strain of 0.0155. The percentage errors are about 3% for strength and 8% 

for strain. From Table 3-1, the cross section has no cover which means the LSR and the FRP act 

 FRP LSR 

case D 

mm 

cover 

mm 

f’ c 

MPa 

ε’ c t 

mm 

Ef 

GPa 

fyh 

MPa 

S 

mm 

Φ 

mm 

1 253 0 36 0.002 0.762 78 456 65 11.3 

2 303 25 31.7 0.002 1.524 78 456 100 11.3 

3 303 25 31.7 0.002 0.762 78 456 65 11.3 

4 303 25 50.8 0.002 1.524 78 456 65 11.3 
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on the same position. The ratio of flf /f’c is 0.1 which is bigger than 0.08, hence, the stress-strain 

curve is generated based on Lam and Teng model. Also, the lateral pressure due to FRP is equal 

to 0.535 ksi that contributes to 40% of the total effective lateral confinement which has a value 

of 1.32 ksi. So the amount of confinement provided by the FRP is significantly high. 

              

 
 

Figure 3-19: Case 1 Stress-Strain Curve Compared to Experimental Ultimate Point 
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Figure 3-20: Case 2 Stress-Strain Curve Compared to Experimental Ultimate Point 

 The cross section in case 2 has a 25 mm cover representing 16.5 % of the full diameter. 

At the same time the FRP contribution to the overall lateral pressure is around 65% (0.89 ksi to 

1.37 ksi). The curve is underestimating the actual experimental data by 9% for strength and 21% 

for the strain. The theoretical strength is 8.9 ksi (61.36 MPa) and the ultimate strain is 0.016 

compared to 9.98 ksi (68.8 MPa) and 0.0208 from the experiment. This might be attributed to the 

fact of neglecting the ∆p action, since the FRP pressure is more than 50% of the total confining 

pressure and at the same time the cover is not small compared to the full diameter. Dependently, 

the effective lateral confining pressure was under estimated so it did not push the curve further 

closer to the experimental point. Yet, if the second line is extended it will perfectly intersect the 

experimental point. This is a sign of the conservative ultimate strain prediction.   

0

2

4

6

8

10

12

0 0.005 0.01 0.015 0.02 0.025

A
xi

al
 S

tr
es

s 
(k

si
)

Axial Strain

Confined Concrete

Experimental point

Unconfined Concrete



229 

 

     

 

Figure 3-21: Case 3 Stress-Strain Curve Compared to Experimental Ultimate Point 

 The cross section parameters in case 3 are exactly the same as case 2 with two important 

variations. FRP thickness is half that of case 2 (0.762 mm) and the LSR spacing is 65 mm as 

opposed to 100 mm for case 2. These differences contribute to increase the LSR lateral pressure 

and decrease the FRP lateral pressure. However, the overall effective lateral pressure is close to 

that of case 2 (1.26 ksi compared to 1.37 ksi for case 2 or 8% difference). The peak ultimate 

theoretical strength and strain are 8.55 ksi and 0.015 while the peak ultimate experimental 

strength and strain are 7.1 ksi and 0.0132. The error percentages are 14% and 12% for strength 

and strain respectively. The ultimate theoretical point is close to the previous case. This is due to 

the fact that the decrease in the FRP lateral confinement is balanced out by the increase in LSR 

lateral confinement. The ratio of flf /f’c is 0.097 which is still above but close to the ACI 440.2R-

0

1

2

3

4

5

6

7

8

9

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

A
xi

al
 S

tr
es

s 
(k

si
)

Axial Strain

Confined Concrete

Experimental point

Unconfined Concrete



230 

 

08 ratio and the contribution of the FRP is about 35% of the total confinement. Those two ratios 

are way less than those of the previous case. Even if this case appears not to be conservative, the 

experimental peak point is close to that of the theoretical peak point. 

        

 

Figure 3-22: Case 4 Stress-Strain Curve Compared to Experimental Ultimate Point 

Case 4 is similar to case 2 but with 50.8 ksi for f’c and LSR spacing of 65 mm. The contribution 

of the FRP and LSR are almost the same in this case (51% and 49% for FRP and LSR 

respectively). There is an obvious enhancement in effective confinement pressure compared to 

case 2 (1.7 ksi compared to 1.37 ksi) due to the increase in the peak unconfined strength and the 

decrease in LSR spacing. Also there is a noticeable increase in the ultimate strength and decrease 

in the ultimate strain (13.2 ksi and .0164). It is also noticed that the ratio of flf /f’c decreased to 

0.12 as opposed to 0.19 for case 2. The reason of the decrease in ultimate strain is due to the 
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increase of f’c since they are inversely proportional. However f’c increases the ultimate strength 

because of the proportional relation between the two values. 

In conclusion all the four cases were generated theoretically according to Lam and Teng model 

since the ratio of flf /f’c exceeded 0.08. The reason of wrapping the section with FRP is to 

increase its ultimate strength and strain, so having a value of flf /f’c less than 0.08 in experimental 

work or even practically will be very rare. Also, the confining pressure provided by the FRP was 

at least 30% of the total effective lateral pressure. In general the proposed model successfully 

compared to the experimental data with acceptable tolerance. 

Furthermore, the proposed model is compared to the full stress-strain curves from experimental 

work and another analytical modeling. The experimental work cases are shown in Table (3-2). 

Table 3-2: Experimental data used to verify the fully confined model  

 FRP TSR 

 D 

(in) 

c 

(in) 

f'c 

(ksi) 

t 

(mm) 

Ef 

MPa 

εfu fyh 

(ksi) 

S 

(in) 

bar # 

1 303 25 31.7 0.762 78000 0.013 456 65 11.3 

2 303 25 31.7 0.762 78000 0.013 456 100 11.3 

3 253 0 36 0.762 78000 0.013 456 5 11.3 

4 303 25 31.7 0.762 78000 0.013 602 70 9.5 

5 303 25 0.8 1.524 78000 0.013 456 65 11.3 

6 303 25 50.8 0.762 78000 0.013 456 65 11.3 

7 300 20 23.9 0.9 84000 0.015 400 150 11.3 

8 300 20 43.7 0.9 84000 0.015 400 300 6.4 
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Figure 3-23: Case 1 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 

       

Figure 3-24: Case 2 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 
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Figure 3-25: Case 3 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 

        

Figure 3-26: Case 4 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 
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Figure 3-27: Case 5 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 

 

Figure 3-28: Case 6 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 
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Figure 3-29: Case 7 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 

      

Figure 3-30: Case 8 Proposed Stress-Strain Curve Compared to Experimental and Eid and 

Paultre (2008) theoretical ones 
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Figure (3-23) to (3-30) show the accuracy of the proposed model compared to experimental work 

and the plasticity model proposed by Eid and Paultre (2008). The eight cases in table 3-2 are 

taken from Eid and Paultre (2008) paper. 

 3-4-2 Interaction Diagram Comparisons with Experimental Work 

To illustrate the results of the eccentricity based model, the interaction diagram is plotted using 

the eccentricity model and compared to experimental points.  

 

Table 3-3: Experimental data used to verify the interaction diagrams. 

 FR TSR Long. Steel 

 D 

mm 

c 

mm 

f'c 

MPa 

t 

mm 

Ef εfu fyh 

MPa 

s 

mm 

# # fy 

MPa 

1 303 25 31.7 2*0.381 78000 0.013 456 100 #3 6#5 423 

2 303 25 36 2*0.381 78000 0.013 456 100 #3 6#5 423 

3 303 25 31.7 4*0.381 78000 0.013 456 100 #3 6#5 423 

4 303 25 31.7 2*0.381 78000 0.013 456 100 #3 6#5 550 

5 303 25 50.7 2*0.381 78000 0.013 456 100 #3 6#5 423 

6 303 25 31.7 2*0.381 78000 0.013 456 65 #3 6#5 423 

7 303 25 36 2*0.381 78000 0.013 456 65 #3 6#5 423 

8 303 25 36 4*0.381 78000 0.013 456 65 #3 6#5 423 

9 303 25 50.7 2*0.381 78000 0.013 456 65 #3 6#5 423 

10 303 25 50.7 4*0.381 78000 0.013 456 65 #3 6#5 430 



 

 

The first ten cases are taken from Eid 

Saadatmanesh et al (1996) and the last three cases are taken from Sheikh and Yau (2002)

 

Figure 3-31: Case 1 Proposed Interaction Diagram compared

 

 

 

11 305 25 34.5 

12 355 25 40.3 

13 355 25 44.8 

14 355 25 40.3 
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The first ten cases are taken from Eid et al (2006), case number 11 is taken from 

(1996) and the last three cases are taken from Sheikh and Yau (2002)

Proposed Interaction Diagram compared to Experimental point

al (2006) 

6*0.762 18600 0.029 89 3.5 #3 

1.245 25533 0.02 500 300 #3 

0.99 75000 0.013 500 300 #3 

0.5 75000 0.013 500 300 #3 

(2006), case number 11 is taken from 

(1996) and the last three cases are taken from Sheikh and Yau (2002) 

 

point from Eid et 

 14#4 65 

 6#8 500 

 6#8 500 

 6#8 500 



 

Figure 3-32: Case 2 Proposed Interaction Diagram compared

Figure 3-33: Case 3 Proposed Interaction Diagram compared
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Proposed Interaction Diagram compared to Experimental point

al (2006) 

Interaction Diagram compared to Experimental point

al (2006) 

 

point from Eid et 

 

point from Eid et 



 

Figure 3-34: Case 4 Proposed Interaction Diagram compared

Figure 3-35: Case 5 Proposed Interaction Diagram compared
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Proposed Interaction Diagram compared to Experimental point

al (2006) 

Proposed Interaction Diagram compared to Experimental point

al (2006) 

 

point from Eid et 

 

point from Eid et 
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Figure 3-36: Case 6 Proposed Interaction Diagram compared to Experimental point from Eid et 

al (2006) 

 

Figure 3-37: Case 7 Proposed Interaction Diagram compared to Experimental point from Eid et 

al (2006) 



 

Figure 3-38: Case 8 Proposed Interac

Figure 3-39: Case 9 Proposed Interaction Diagram compared
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Proposed Interaction Diagram compared to Experimental point

al (2006) 

Proposed Interaction Diagram compared to Experimental point

al (2006) 

 

point from Eid et 

 

point from Eid et 



 

Figure 3-40: Case 10 Proposed Interaction Diagram compared

Figure 3-41: Case 11 Proposed Interaction Diagram compared
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Proposed Interaction Diagram compared to Experimental point

al (2006) 

Proposed Interaction Diagram compared to Experimental

Saadatmanesh et al (1996) 

 

point from Eid et 

 

to Experimental point from 
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Figure 3-42: Case 12 Proposed Interaction Diagram compared to Experimental point from 

Sheikh and Yau (2002)

 

Figure 3-43: Case 13 Proposed Interaction Diagram compared to Experimental point from 

Sheikh and Yau (2002) 



 

Figure 3-44: Case 14 Proposed Interaction Diagram compared

The upper fourteen cases, Figure (3

diagrams generated by the proposed numeric

model. For most of the cases the experimental points lie outside the inter

expressing conservative approach used through analysis.

points having the same load level and significantly different moment values which is 

theoretically not feasible, since the moment has to be relative

This justifies that the load and moment values of the inner experimental point might not be 

accurate.  
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Proposed Interaction Diagram compared to Experimental

Sheikh and Yau (2002) 

upper fourteen cases, Figure (3-31) to Figure (3-44) show the accuracy of the interaction 

generated by the proposed numerical analysis and the eccentric based stress

model. For most of the cases the experimental points lie outside the inter

expressing conservative approach used through analysis. Figure (3-44) shows two experimental 

points having the same load level and significantly different moment values which is 

theoretically not feasible, since the moment has to be relatively proportional to the load applied. 

This justifies that the load and moment values of the inner experimental point might not be 

 

to Experimental point from 

) show the accuracy of the interaction 

and the eccentric based stress-strain 

model. For most of the cases the experimental points lie outside the interaction diagram 

44) shows two experimental 

points having the same load level and significantly different moment values which is 

ly proportional to the load applied. 

This justifies that the load and moment values of the inner experimental point might not be 
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Chapter 4 - Circular Concrete Filled Steel Tube Columns (CFST) 

 4-1 Introduction 

CFST columns are not a relatively new construction approach compared to lateral steel 

confined columns. There are some structures that used CFST columns in the early 1900s such as 

Almondsbury Motorway Interchange (England), Charleroi Railways (Belgium) (Shams and 

Saadeghvaziri 1997). The concrete was used to stabilize the steel column against buckling. 

However extensive research on CFST columns did not start until the beginning of 1960s. With 

the appearance of FRP as a more durable material in the 1980s, CFST did not capture much 

attention compared to FRP. Hence, CFST column analysis is still considered a developing 

subject. Research was focused on CFST axially loaded columns and formulas were derived to 

predict their ultimate capacity. In addition there is some work that focuses on eccentric loading. 

However, there is still need for analysis of CFST columns under combined force and moment as 

the literature is lacking formulas and analysis procedure in this direction.  The CFST columns are 

superior to conventional reinforced concrete and steel members as they provide more stiffness, 

ductility and energy absorption. The steel tube serves as construction formwork so there is no 

need for temporary formwork. The steel tube also confines the concrete and shares the axial load. 

The concrete, besides taking axial load, prevent the steel inward buckling. Studies showed that 

the behavior of CFST columns are influenced by width or diameter to thickness ratio, height to 

width or diameter ratio, cross sectional shapes and concrete to steel strength ratio. This study 

focuses only on circular stub columns so the shape and height to diameter ratio are insignificant. 

Poisson’s ratio is a very important factor in evaluating the loading behavior. During the initial 

loading of CFST section, concrete has lower Poisson’s ratio compared to steel. Hence it expands 
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laterally with no engagement from the steel. As cracks develop and concrete behaves 

inelastically, concrete Poisson’s ratio becomes greater than steel’s one and steel starts to confine 

concrete. Accordingly, concrete becomes under triaxial state of stress while steel is under biaxial 

stress state. 

 To develop a realistic estimation of the value of ultimate confined strength fcc under pure 

axial compression, the Mander and Richart models are adapted to the case of concrete filled steel 

tubes and their predictions are compared to experimental data of normal and high strength 

concrete. Accordingly, a modified Richart equation is developed and used to obtain predictions 

for fcc. Once the augmented strength fcc is computed, the eccentricity model is incorporated in a 

numerical procedure that combines radial loading, finite layer method, secant stiffness procedure 

and moment of area concept to incrementally-iteratively generate the moment-curvature response 

of the column up to failure using a spectrum of eccentricities that yield the confined column 

interaction diagram. This has not been studied earlier. This procedure is benchmarked by 

comparing its results to some experimenetl data in the literature 

 

 4-2 Formulations 

 4-2-1 Finite Layer Approach (Fiber Model) 

 The column cross section is divided into a finite number of thin layers (Figure 4-1). The 

force and moment of each layer is calculated and stored. The steel tube is divided also into small 

radial segments. The advantage of that is to avoid inaccuracy generated from using the 

approximation of the stress block method, as a representative of the compression zone and to 
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precisely calculate the internal forces induced by steel tube segments and concrete layers in the 

column cross section. 

     

Y

Y_

w

t
D

extreme fiber

i

i

i

 

Figure 4-1: Using Finite Layer approach in analysis (CFST section) 

 

 4-2-2 Present Confinement Model for Concentric Columns 

 4-2-2-1 Mander Model for transversely reinforced steel 

 Mander model (1988) was developed based on the effective lateral confinement pressure 

(f ’ l) and the confinement effective coefficient (ke) which is the same concept found by 

Sheikh and Uzumeri (1982). The advantage of this procedure is its applicability to any cross 

section since it defines the lateral pressure based on the section geometry. Mander et al. 

(1988) showed the adaptability of their model to circular or rectangular sections, under static 

or dynamic loading, either monotonically or cyclically applied. In order to develop a full 

stress-strain curve and to assess ductility, an energy balance approach is used to predict the 

maximum longitudinal compressive strain in the concrete. 

Mander derived the longitudinal compressive concrete stress-strain equation from Popovics 

model that was originally developed for unconfined concrete (1973): 
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and as suggested by Richart et al. (1928) the strain corresponding to the peak confined 

compressive strength (fcc):  
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 The different parameters of this model are defined in Figure (4-2). 
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Figure 4-2: Axial Stress-Strain Model proposed by Mander et al. (1988) for monotonic loading 

 As shown in Figure (4-2) Mander et al. (1988) model has two curves; one for unconfined 

concrete (lower curve) and the other for confined concrete (upper one). The upper one refers to 
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the behavior of confined concrete with concentric loading (no eccentricity). It is shown that it has 

ascending branch with varying slope starting from Ec decreasing till it reaches the peak confined 

strength at (fcc, εcc). Then the slope becomes slightly negative in the descending branch 

representing ductility till the strain of εcu where first hoop fractures. The lower curve expresses 

the unconfined concrete behavior. It has the same ascending branch as the confined concrete 

curve till it peaks at (f’ c, εco). Then, the curve descends till 1.5-2εco. A straight line is assumed 

after that till zero strength at spalling strain εsp 

The rest of this section discusses the spiral and hoops effectiveness as they were originally 

explained in Mander et al (1988). However the adaptability of this model to fit the CFST 

columns is explaind in section 3.4.1. 

Mander et al. (1988) utilized an approach similar to that of Sheik and Uzumeri (1982) to 

determine effective lateral confinement pressure. It was assumed that the area of confined 

concrete is the area within the centerlines of perimeter of spiral or hoop reinforcement Acc as 

illustrated in Figure (4-3). 
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Figure 4-3: Effectively confined core for circular hoop and spiral reinforcement (Mander Model) 
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 Figure (4-3) shows that effectively confined concrete core Ae , in between hoops or 

spirals, is smaller than the area of core within center lines of perimeter spiral or hoops excluding 

longitudinal steel area, Acc. To satisfy that condition, the effective lateral confinement pressure 

,f’ l ,should be a percentage of the lateral pressure fl: 

lel fkf ='
                          4-7  

and the confinement effectiveness coefficient ke is defined as the ratio of effective confined area, 

Ae,  to the area enclosed by centerlines of spiral or hoop, Acc: 

cc

e
e A

A
k =                             4-8  

slsslccc AdAAA −=−= 2

4

π
             4-9  

c

sl

c

cc

A

A

A

A
−= 1               4-10                                                                                                    

( )ccccc AA ρ−= 1               4-11  

where Ac is the area of the section core enclosed by spirals or hoops, Asl is the area of 

longitudinal steel and ρcc is the ratio of longitudinal steel to the area of the core.  

For hoop case, the effective lateral confined core: 

                   

ss'
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Figure 4-4: Effective lateral confined core for hoop and spiral reinforcement (Mander Model) 



251 

 

2'2'
2

2
1

2
1

4 







−=








−=

s
c

s
se d

s
A

d

s
dA

π
           4-12  

cc

s
e

d

s

k
ρ−









−

=
1

2
1

2'

              4-13  

where s’ is the clear spacing between spiral or hoop bars and ds  is the core diameter tospiral or 

hoops centerline. While for spiral case it can be shown from Figure 4-4) that: 
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and the last term can be neglected so the value of ke is found from the following equation: 
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Figure 4-5: Confinement forces on concrete from circular hoop reinforcement 

Figure (4-5) illustrates force equilibrium on a half turn of a circular hoop. The uniform 

hoop tension at yield generated in the transverse steel should be balanced by the uniform lateral 

stress on the concrete core: 
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and the ratio of the volume of transverse steel to the volume of confined core area ρs can be 

expressed as 
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and from Equation (4-7) f’ l can be found: 
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The maximum confined compressive strength can be described as a function of the peak 

unconfined strength and the uniform effective lateral confinement pressure: 
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Mander et al. (1988) proposed an energy balancing theory to predict the ultimate confined strain, 

which is determined at the first hoop fracture. They stated that the additional ductility for 

confined concrete results from the additional strain energy stored in the hoops Ush. Therefore 

from equilibrium: 

cogsh UUU −=               4-22  
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where Ug is the external work done in the concrete to fracture the hoop, and Uco is the work done 

to cause failure to the unconfined concrete. Ush can be represented by the area under the tension 

stress strain curve for the transverse steel between zero and fracture strain εsf. 

ερ
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dfAU
sf

sccssh ∫=
0

             4-23  

while Ug is equal to the area under the confined stress strain curve plus the area under the 

longitudinal steel stress strain curve: 
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similarly, it was proven experimentally that Uco is equal to:  
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Substituting Equations (4-23), (4-24) and (4-25) into Equation (4-27) 
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where fsl is the stress in the longitudinal steel. Equation (4-27) can be solved numerically for εcu. 

The above equations (4-22) to (4-27) are developed using SI units 
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 4-2-2-2 Lam and Teng Model 

Lam and Teng (2003) proposed a new model for concrete wrapped with Fiber Reinforced 

Polymer (FRP). This model is adopted by ACI 440.2R-08 code for FRP wrapping. The stress-

strain equations are as follow: 
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where ε’ t is the transition strain. To find the maximum confined concrete compressive 

strength 
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Figure 4-6:Axial Stress-Strain Model proposed by Lam and Teng (2003). 
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fl is the maximum confined pressure. Ef is tensile modulus of elasticity of FRP. κa is the 

efficiency factor accounts for the geometry of the section and it is equal to 1 in case of the 

circular cross section, n is the number of plies used, tf is the nominal thickness of one ply, D is 

the cross section diameter of the column, ψf is a reduction factor determined by the code to be 

0.95. εfe is the effective strain level at failure and it is given by: 

fufe εκε ε=                                                                                  4-34   

κε is a reduction factor that considers the premature failure of the FRP.ACI 440.2R-08 

implements an average value of κε = 0.586 based on Lam and Teng (2003 a) finding.  It is found 

experimentally to range between 0.57 and 0.61. It should be noted that the lowest level of 

confinement pressure (fl) required is equal to 0.08 f’ c to avoid having a descending branch in the 

stress strain curve. This note is verified by Spolestra and Monti (1999). The maximum 

compressive strain  εccu   can be found by: 
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And to avoid excessive cracking, this strain should be limited to: 

01.0≤ccuε           

 where κb  accounts for the geometry of the cross section and is equal to 1 for circular 

columns. 

 4-2-3Present Confinement Model for Eccentric Columns 

Unlike concentric loading, the eccentric loading generates bending moment in addition to 

axial loading. Columns subjected to eccentric loading behave differently from those 

concentrically loaded, as the shape of the stress strain curve for fully confined reinforced 



256 

 

concrete (concentric loading) shows higher peak strength and more ductility than the unconfined 

one (infinite eccentricity). Most of the previous studies were based on the uniform distribution of 

compressive strain across the column section. 

 

Figure 4-7: Effect of compression zone depth on concrete strength 

Figure (4-7) illustrates three different sections under concentric load, combination of 

axial load and bending moment and pure bending moment, the highlighted fiber in the three 

cases has the same strain. Any current confinement model yields the same stress for these three 

fibers. So the depth or size of compression zone does not have any role in predicting the stress. 

Hence, it is more realistic to relate the strength and ductility in a new model to the level of 

confinement utilization and compression zone. 

 

Figure 4-8: Amount of confinement gets engaged in different cases 
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 By definition, confinement gets engaged only when member is subjected to compression. 

Compressed members tend to expand in lateral direction, and if confined, confinement will 

prevent this expansion to different levels based on the degree of compressive force and 

confinement strength as well. For fully compressed members (Figure 4-8 c), confinement 

becomes effective 100% as it all acts to prevent the lateral expansion. Whereas members 

subjected to compression and tension, when the neutral axis lies inside the section perimeter, 

only adjacent confinement to the compression zone gets engaged. Accordingly, members 

become partially confined.  

 In CFST literature, various models were implemented to assess the ultimate confined 

capacity of columns under concentric axial load. On the other hand the effect of partial 

confinement in case of eccentric load (combined axial load and bending moments) is not 

investigated in any proposed model. Therefore, it is pertinent to relate the strength and ductility 

of reinforced concrete to the degree of confinement utilization in a new model. 

 The two curves of fully confined and unconfined concrete in any proposed model are 

used in the eccentricity-based model as upper and lower bounds. The upper curve refers to 

concentrically loaded confined concrete (zero eccentricity), while the lower one refers to pure 

bending applied on concrete (infinite eccentricity). In between the two boundaries, infinite 

numbers of stress-strain curves can be generated based on the eccentricity, which is found to 

directly relate to the size of compression zone, Figure (4-9). The higher the eccentricity the 

smaller the confined concrete region in compression. Accordingly, the ultimate confined strength 

is gradually reduced from the fully confined value fcc to the unconfined value f’ c as a function of 

eccentricity to diameter ratio. In addition the ultimate strain is reduced linearly from the ultimate 

strain εcu for confined concrete to the ultimate strain for unconfined concrete 1.5εco or 0.003. 
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Figure 4-9: Relation between the compression area ratio to the normalized eccentricity 

Figure (4-9) shows that the compression area to the total area decreases linearly with the increase 

in normalized eccentricity. This relation is almost linear as it is depicted by the solid line. Hence, 

the eccentricity can be related simply to the compression zone area as explained in the following 

section. 

 4-2-3-1 Eccentric Model based on Mander Equations 

The equation that defines the eccentric peak strength ccf  according to the eccentricity is simply 

a mixture rule: '
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where e is the eccentricity, D is the column diameter and ccf is the eccentric peak strength at the 

eccentricity (e). The corresponding strain ccε  is given by 
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and the maximum strain corresponding to the required eccentricity will be a linear function of  

the stress corresponding to maximum strain for fully confined concrete fcu and the stress at the 

maximum unconfined strain fcuo at εcuo = 0.003 
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In order to verify the accuracy of the model at the extreme cases, the eccentricity is first set to be 

zero. The coefficient of f’ c will be zero and equation (4-36), (4-37) and (4-38) will reduce to be: 

cccc ff =                4-39   

cccc εε =                4-40   

cucu εε =                4-41   

On the other hand, if the eccentricity is set to be infinity the other coefficient of fcc will be 

zero, and the strength, corresponding strain and ductility equations will be: 

'
ccc ff =                4-42   

cocc εε =                4-43   

003.0=cuε                4-44  
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Figure 4-10: Eccentricity Based Confined -Mander Model - 

Any point on the generated eccentric curves can be calculated using the following equation: 
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 4-2-3-2 Eccentric Model Based on Lam and Teng Equations 

 The ultimate eccentric or partially confined strength ccf  is determined from the 

following equation: 
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where e is the eccentricity, D is the column diameter and ccf is the eccentric peak strength at the 

eccentricity (e). 

The strain ������� corresponding to the peak partially confined strength ���
����, which corresponds to the 

ultimate point on the curve, Figure (4-11), is given by linear interpolation between the two 

extreme bounds of strain: 
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Any point on the generated eccentric curves can be calculated using the following equations: 
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Figure 4-11: Eccentricity Based Confined -Lam and Teng Model- 
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 4-2-4 Moment of Area Theorem 

The very general axial stress equation in a symmetrical section subjected to axial force P 

and uniaxial bending Mx (Hardy Cross 1930): 

y
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x
z +=σ

                             
4-55 

zσ  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 

xM  = bending moment about x-axis 

y    = distance between the point (a) and the centroidal x-axis  

xI   = moment of inertia about the centroidal x-axis 

Rewriting Equation (4-55) to determine the strain at any point in the cross section: 
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In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, if the 

section has variable strain and stress profile, it will amount to variable E profile (per layer) in 

nonlinear analysis. Accordingly, the section parameters must include∑
i

ii AE , ∑
i

ii IE
 
for a more 

generalized theory (Rasheed and Dinno 1994). Note that the linear strain profile of the section 

from Equation (4-56) yields a distinct constant curvature: 

x

x
x EI

M
=φ

                                                4-57 

xxx EIM φ=
                                                

4-58 
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where xφ = x- curvature 

Rewriting equation (4-56) in terms of φx  

y
EA

P
xz φε +=

              
4-59

 

Finding εz at the centroid, since y = 0. 

 
EA

P
= oε

                                 4-60
  

Finding εz at the geometric centroid, � � �� 

yxo  
EA

P
= φε +  

Solving for P at the geometric centroid; 
 

xo yEAEAP φε −=
                             4-61

oε  is the axial strain at the geometric centroid 

But  

yEAEAMx =
                  

cG YYy −=                                  

YG is the vertical distance to the geometric centroid measured from bottom extreme fiber and Yc 

is the vertical distance to the inelastic centroid measured from the bottom extreme fiber, Figure 

(4-12)  

The general formula of the moments about the geometric x-axis is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid ,Figure (4-12) 

yPMM xx −=               4-62 

Substituting equation (4-58) and (4-61) in (4-62) yields:  
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( ) xxxoxx yEAMEIEAMM φε ++−=
                                 4-63 
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Y
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Figure 4-12: Transfering moment from centroid to the geometric centroid 

 

The term yEAMEI xx +  represents the xEI about the geometric centroid using the parallel axis 

theorem. Using equations (4-61) and (4-63) yields the Moment of Area equation: 





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4-64 

Since the moment of area about the actual centroid vanishes (Rasheed and Dinno 1994), 

Equation (4-64) reduces to an uncoupled set when it is applied back at the actual centroid since 

EAMx vanish about the centroid. 

















=





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

x

o

xx EI

EA

M

P

φ
ε

.
0

0

                                   

4-65 

which is simply equations (4-58) and (4-60) 
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 4-3 Numerical Model Formulation 

 4-3-1 Model Formulation 

                  

                   

  

 

  

Using equilibrium in the free body diagram in Figure (4-13): 

lsyh fsdtsf =2
               4-66

 

Rearranging equation (4-66) by solving for f l : 

s

yh
l d

tf
f

2
=

               4-67
 

Since the confinement coefficient ke is equal to 1 for steel tube confinement case: 

ll ff ='

           
    4-68

 

Equation (4-68) means that the whole cross section is effectively confined, hence: 

Figure 4-13: 3D Sectional elevation and plan for CFST column. 
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s

yh
l

d

tf
f

2
' =

               4-69 

Equation (4-69) represents the effective lateral pressure induced by the steel. To evaluate the 

peak ultimate concrete confined strength, two well know equations are adapted. These equations 

are Mander and Richart equations and they have the following formulas: 














−++−=

'

'

'

'
'' 294.71254.2254.1

c

l

c

l
ccc f

f

f

f
ff

 (Mander)        4-70
 









+=

'

'
'' 1.41

c

l
ccc f

f
ff   (Richart)                      4-71

 

The literature showed that Mander equation is utilized in several studies to represent CFST 

confined cases. In addition, Richart formula is used in other studies with coefficient adaption to 

best fit experimental results. These two equations are adopted herein, plotted and compared 

against the experimental results shown in Table (4-1). This experimental data is taken from 

several references as detailed below 

 

Table 4-1: CFST Experimental data 

case  t 

 in.(mm)  

fy 

ksi (MPa)  

D 

in. (mm) 

f'c  

ksi (MPa)  

fl  

ksi (MPa)  
fl/f’ c D/t 

1 0.26(6.5) 45.4(313) 5.5(140) 3.45(23.8) 4.65(32.04) 1.35 21.54 

2 0.2(5) 38.5(265.8) 7.87(200) 3.94(27.15) 2.03(14) 0.52 40 

3 0.12(3) 37.4(285) 5.5(140) 4.1(28.18) 1.85(12.76) 0.45 46.67 

4 0.16(4) 39.5(272.6) 11(280) 4.52(31.15) 1.16(8.02) 0.26 70 

5 0.12(3) 33.6(232) 11.8(300) 4.00(27.23) 0.7(4.73) 0.17 100 
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6 0.08(2) 49.6(341.7) 11.8(300) 4.00(27.23) 0.67(4.62) 0.17 150 

7 0.11(2.82) 52.7(363.3) 6.5(165) 7.00(48.3) 1.83(12.63) 0.26 58.5 

8 0.08(1.94) 37.2(256.4) 7.5(190) 6.00(41) 0.77(5.29) 0.13 97.9 

9 0.06(1.52) 44.4(306.1) 7.5(190) 7.00(48.3) 0.72(4.94) 0.1 125 

10 0.04(1.13) 26.9(185.7) 7.5(190) 6.00(41) 0.32(2.2) 0.05 168.1 

11 0.03(0.86) 30.6(210.7) 7.5(190) 6.00(41) 0.28(1.92) 0.05 220.9 

12 0.11(2.82) 52.7(363.3) 6.5(165) 11.6(80.2) 1.83(12.6) 0.18 58.51 

13 0.08(1.94) 37.2(256.4) 7.5(190) 10.8(74.7) 0.77(5.29) 0.07 97.94 

14 0.06(1.52) 44.4(306.1) 7.5(190) 11.6(80.2) 0.72(4.94) 0.06 125 

15 0.04(1.13) 26.9(185.7) 7.5(190) 11.6(80.2) 0.32(2.2) 0.028 168.1 

16 0.03(0.86) 30.6(210.7) 7.5(190) 11.6(80.2) 0.28(1.92) 0.03 220.9 

17 0.11(2.82) 52.7(363.3) 6.5(165) 15.7(108) 1.83(12.6) 0.12 58.51 

18 0.08(1.94) 37.2(256.4) 7.5(190) 15.7(108) 0.77(5.29) 0.05 97.94 

19 0.06(1.52) 44.4(306.1) 7.5(190) 15.7(108) 0.72(4.94) 0.05 125 

20 0.04(1.13) 26.9(185.7) 7.5(190) 15.7(108) 0.32(2.2) 0.02 168.1 

21 0.03(0.86) 30.6(210.7) 7.5(190) 15.7(108) 0.28(1.92) 0.02 220.9 
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 Cases 1, 3 and 5 are from Schneider’s work (1998). Cases 2, 4 and 6 are taken from 

Huang et al’s work (2002). The rest of the cases are from O’shea and Bridge’s work (2000). 

The experimental data is classified according to the concrete strength to normal and high 

strength concrete and is analyzed separately. The ultimate compressive confined strength (fcc) 

is plotted against unconfined strength (f’ c) in Figure (4-14), for normal strength concrete, and 

(4-15), for high strength concrete.   

 

Figure 4-14: f  cc vs f’ c for normal strength concrete 
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Figure 4-15: f cc vs f’ c for high strength concrete 

The best equations fitting the best fit line of experimental data are those of the modified Richart 

as follows: 

For normal strength concrete 
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ff               4-72 

 

For high strength concrete 


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l
ccc f

f
ff               4-73 

  It is observed from the literature that there are two different patterns for the stress-

strain curves as shown in Figure (4-16).  Pattern1; ascending up to failure (case 1 and 2 from 

Table 4-1). Pattern 2; ascending then softening after peak (case 4 and 5 from Table 4-1)  
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  It can be seen from Table 4-1 that the cut off value of fl/f’ c that determines the sterss-

strain pattern is 0.4. The reason of selecting this parameter is to impose the impact of the most 

influencing parameter that affect the CFST behavior. According to equation (4-69), f’ l is a 

function of steel yield strength, tube thickness and column diameter. Hence; the value fl/f’ c is a 

good representitve measure of all column parameters.  

 Case 1,2 and 3 from Table (4-1) are plotted using Lam and Teng Model that describes the 

same behavior of CFST pattern 1 and compared to the experimental stress-strain curves. It is 

evident from Figure (4-17), (4-18) and (4-19) that Lam and Teng Equations are well correlating 

  

a) b) 

c) d) 

Figure 4-16: CFST Stress-strain Curve for different cases from Table 4-1 

a) case 1       b) case 2          c) case 4               d) case 5  
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to the experimental curves. Hence, Lam and Teng Equations can be used to express pattern 1. 

Besides that, Mander model is used to express pattern 2.  

  

Figure 4-17: Case 1 Stress-Strain curve using Lam and Teng equations compared to Experimetal 

curve. 

  

Figure 4-18: Case 2 Stress-Strain curve using Lam and Teng equations compared to Experimetal 

curve. 
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Figure 4-19: Case 3 Stress-Strain curve using Lam and Teng equations compared to Experimetal 
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Strain curve using Lam and Teng equations compared to Experimetal 

curve. 

  

Figure 4-20: CFST Model Flowchart 
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Strain curve using Lam and Teng equations compared to Experimetal 

 

0.06



273 

 

  4-3-2 Numerical Analysis 

The cross section analyzed is loaded incrementally by maintaining a certain eccentricity 

between the axial force P and the resultant moment MR. Since increasing the load and resultant 

moment causes the neutral axis and centroid to vary nonlinearly, the generalized moment of area 

theorem is devised. 

 
The method is developed using incremental iterative analysis algorithm, secant stiffness 

approach and proportional or radial loading. It is explained in the following steps (Figure 4-24): 

1- Calculating the initial section properties: 

• Elastic axial rigidity EA: 

∑∑ +=
i

sisii
i

c AEtwEEA
                  

                 4-74 

cE = initial modulus of elasticity of the concrete  

sE = initial modulus of elasticity of the steel rebar 

The depth of the elastic centroid position from the bottom fiber of the section Yc

EA

YHAEYHtwE
Y i i

sisisiiic

c

∑ ∑ −+−
=

)()(
                                                                                 4-75 

• Elastic flexural rigidity about the elastic centroid EI: 

22 )()( csisi
i

sciii
i

cx YYHAEYYHtwEEI −−+−−= ∑∑
                   

 4-76 

Typically Yc = H/2. 

• The depth of the geometric section centroid position from the bottom fiber of the section 

YG: 

2

H
YG =

                            4-77
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Figure 4-21: Geometric properties of concrete layers and steel tube  

2- Calculating fl / f’c and check the ratio against 0.4 to decide which model is used 

(Eccentric model based on Lam and Teng Equations or Eccentric model based on 

Mander Equations),  Figure (4-20).                                                  

3- Defining eccentricity e, which specifies the radial path of loading on the interaction 

diagram.  

           

e

Resultant Moment

A
xi

al
 F

or
ce

Load Step   GP

 

Figure 4-22: Radial loading concept 

4- Defining loading stepGP∆  as small portion of the maximum load, and computing 

the axial force at the geometric centroid. 

 GPGPGP oldnew ∆+=                                   4-78   
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5- Calculating moment GM about the geometric centroid. 

GP

GM
e x=                             GPeGMx *=                       4-79 

6- Transferring moment to the updated inelastic centroid and calculating the new 

transferred moment TMX  : 

)( cGxX YYGPGMTM −+=              4-80   

The advantage of transferring the moment to the position of the inelastic centroid is to eliminate 

the coupling effect between the force and moment, since 0=xEAM
 
about the inelastic centroid   
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Figure 4-23: Moment transferring from geometric centroid to inelastic centroid 

  

 

7- Finding the  Curvature   φ x  

currentx

x
x EI

TM

−

=φ                          4-82 

Strain at the inelastic centroidoε , the extreme compression fiber strainecε , and strain at the 

extreme level of steel in tensionesε  are found as follow: 
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current

o
EA

GP
=ε

                          4-83

)( cxoec YH −+= φεε                             4-84 

cxoes Yφεε −=                          4-85 

where cover is up to center of bars 

8- Calculating strain ciε and corresponding stress fci in each layer of concrete section by 

using selected model from step 2. 

ixecci Yφεε −=

               

4-86 

9- Calculating strain 
siε and corresponding stress fsi in each steel tube segment in the 

given section by using the steel model (Elastic up to yield strength and then perfectly 

plastic) 

sixecsi Yφεε −=

                 4-87

 

10- Calculating the new section properties: axial rigidity EA, flexural rigidity about the 

inelastic centroid EIx , moment of axial rigidity about inelastic centroid EAMx, 

internal axial force Fz, internal bending moments about the inelastic centroid Mox , 

∑∑ +=
i

sisiii

i

ci AEtwEEA

                        4-88 

)()( sicsi

i

siicii

i

cix YYHAEYYHtwEEAM −−+−−= ∑∑
                                   

4-89

∑∑ += sisiiiciz AftwfF
                                 4-90

 

22 )()( sicsi

i

siicii

i

cix YYHAEYYHtwEEI −−+−−= ∑∑
                                                         4-91  

)()( sicsi

i

icii

i

ciox YYHfYYHtwfM −−+−−= ∑∑                                                              
 4-92 

where  Eci = secant modulus of elasticity of the concrete layer. 
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            Esi = secant modulus of elasticity of the steel tube segment. 

11- Transferring back the internal moment about the geometric centroid 

)( cGoxox YYGPMGM −−=                                                                     4-93  

12- Checking the convergence of the inelastic centroid 

cxx YEAEAMTOL //=              4-94  

13- Comparing the internal force to applied force, internal moments to applied moments, 

and making sure that the moments are calculated about the geometric centroid :  

510*1 −≤− zFGP
                                                                                4-95  

 

510*1 −≤− oxx GMGM               4-96   

510*1 −≤xTol                4-97 

If Equations (4-95), (4-96) and (4-97) are not satisfied, the location of the inelastic centroid is 

updated by EAMx/EA and steps 6 to 11 are repeated untill Equations (4-95), (4-96) and (4-97) are 

satisfied. 

EA

EAM
YY x

cc oldnew
+=

                       
4-98 

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete ecε   and steel 

esε  not to exceed ccε  (or cuε  based on the selected model) and 0.05 respectively. Then, it 

increases the loading by GP∆  and runs the analysis for the new load level using the latest 

section properties. Otherwise, if  ecε  equals ccε (or  based on the selected model) or esε  

equals 0.05, the target force and resultant moment are reached as a point on the interaction 

diagram is attained for the amount of eccentricity used. 

cuε
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Figure 4-24: Flowchart of CFST columns analysis 
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 4-4 Results and Discussion 

 4-4-1 Comparisons with Experimental Work 

The proposed numerical algorithm explained in section (4-3-2) is compared with 

experimental data shown in Table (4-2)  

Table 4-2: Experimental data for CFST 

 

case 

 

D 

in.(mm) 

 

 t 

 in.(mm)  

fy 

ksi 

(MPa)  

f'c  

ksi 

 (MPa)  

 

L/D 

 

D/t 

fl  

ksi  

(MPa)  

 

f’ c/fy 

 

fl/fy 

 

fl/fc 

1 6.5 

(165) 

0.11 

(2.82) 

52.7 

(363.3) 

7 

(48.3) 

3.5 58.5 1.83 

(12.6) 

0.133 0.035 0.26 

2 6.5 

(165) 

0.11 

(2.82) 

52.7 

(363.3) 

11.63 

(80.2) 

3.5 58.5 1.83 

(12.6) 

0.22 0.035 0.16 

3 6.5 

(165) 

0.11 

(2.82) 

52.7 

(363.3) 

15.7 

(108) 

3.5 58.5 1.83 

(12.6) 

0.3 0.035 0.12 

4 7.48 

(190) 

.076 

(1.94) 

37.19 

(256.4) 

5.95 

(41) 

3.48 97.9 0.77 

(5.29) 

0.16 0.02 0.13 

5 7.48 

(190) 

.076 

(1.94) 

37.19 

(256.4) 

10.83 

(74.7) 

3.49 97.9 0.77 

(5.29) 

0.29 0.02 0.07 

6 7.48 

(190) 

.076 

(1.94) 

37.19 

(256.4) 

15.66 

(108) 

3.49 97.9 0.77 

(5.29) 

0.42 0.02 0.05 

7 7.48 

(190) 

.076 

(1.94) 

44.39 

(306) 

7 

(48.3) 

3.49 125 0.72 

(4.94) 

0.16 0.016 0.1 
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8 7.48 

(190) 

.076 

(1.94) 

44.39 

(306) 

11.6 

(80.2) 

3.49 125 0.72 

(4.94) 

0.26 0.016 0.06 

9 7.48 

(190) 

.076 

(1.94) 

44.39 

(306) 

16.34 

(112.7) 

3.49 125 0.72 

(4.94) 

0.35 0.016 0.045 

10 7.48 

(190) 

.044 

(1.13) 

26.9 

(185.7) 

5.95 

(41) 

3.49 168 0.32 

(2.22) 

0.22 0.012 0.054 

11 7.48 

(190) 

.044 

(1.13) 

26.9 

(185.7) 

11.63 

(80.2) 

3.5 168 0.32 

(2.22) 

0.43 0.012 0.028 

12 7.48 

(190) 

.044 

(1.13) 

30.55 

(210.7) 

5.95 

(41) 

3.49 168 0.32 

(2.22) 

0.58 0.012 0.02 

13 7.48 

(190) 

.034 

(0.86) 

30.56 

(210.57) 

10.83 

(74.7) 

3.49 221 0.28 

(1.92) 

0.19 0.009 0.047 

14 5.5 

(140) 

0.26 

(6.5) 

45.4 

(313) 

3.45 

(23.8) 

4.3 22 4.65 

(32.04) 

 

0.08 0.097 1.35 

15 7.87 

(200) 

0.2 

(5) 

38.5 

(265.8) 

3.94 

(27.15) 

4.2 40 2.03 

(14) 

0.1 0.053 0.52 

16 5.5 

(140) 

0.12 

(3) 

37.4 

(285) 

4.52 

(31.15) 

4.3 47 1.85 

(12.76) 

0.1 0.043 0.45 

17 11 

(280) 

0.16 

(4) 

39.5 

(272.6) 

4.5 

(31.2) 

3 70 1.16 

(8.02) 

0.1 0.029 0.26 

18 11.8 

(300) 

0.12 

(3) 

33.65 

(232) 

4 

(27.23) 

3 100 0.68 

(4.62) 

0.1 0.02 0.17 

19 11.8 0.08 49.6 4 2.8 150 0.67 0.08 0.013 0.16 



281 

 

(300) (2) (341.7) (27.23) (4.62) 

 

 

Table 4-3 shows nineteen experimental data cases collected from the literature. The first 

thirteen cases are from O’shea and Bridge (2000) paper. Cases 14, 16 and 18 are from Schneider 

(1998) paper. Cases 15, 17 and 19 are taken from Huang et al (2002) paper     

       

Figure 4-25: KDOT Column Expert Comparison with CFST case 1:  
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Figure 4-26: KDOT Column Expert Comparison with CFST case 2 

     

Figure 4-27: KDOT Column Expert Comparison with CFST case 3 
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Figure 4-28; KDOT Column Expert Comparison with CFST case 4 

 

 

Figure 4-29: KDOT Column Expert Comparison with CFST case 5 
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Figure 4-30: KDOT Column Expert Comparison with CFST case 6 

 

Figure 4-31: KDOT Column Expert Comparison with CFST case 7 
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Figure 4-32: KDOT Column Expert Comparison with CFST case 8 

          

Figure 4-33: KDOT Column Expert Comparison with CFST case 9 
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Figure 4-34: KDOT Column Expert Comparison with CFST case 10 

 

Figure 4-35: KDOT Column Expert Comparison with CFST case 11 
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Figure 4-36: KDOT Column Expert Comparison with CFST case 12 

   

Figure 4-37: KDOT Column Expert Comparison with CFST case 13 
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Figure 4-38: KDOT Column Expert Comparison with CFST case 14 

 

Figure 4-39: KDOT Column Expert Comparison with CFST case 15 
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Figure 4-40: KDOT Column Expert Comparison with CFST case 16 

 

Figure 4-41: KDOT Column Expert Comparison with CFST case 17 
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Figure 4-42: KDOT Column Expert Comparison with CFST case 18 

 

 

Figure 4-43: KDOT Column Expert Comparison with CFST case 19 
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Figures (4-25) to (4-43) show the interaction diagrams for the nineteen cases in table 4-2 

with comparison to the corresponding experimental points. The interaction diagrams are plotted 

using KDOT Column Expert software that was implemented using the numerical analysis 

described in section 4-3-2.  Several observations can be drawn: 

- In general there is good agreement between the theoretical interaction diagrams 

and the corresponding experimental data. 

- Some experimental points lie inside the envelope of the interaction diagram which 

represents slightly un-conservative cases. This can be justified due to the 

following reasons: 

1- Local buckling occurance that is not addressed by the model.  

2- The effect of the biaxial stress on the steel. For the above cases, the steel is 

subjected to compression axial stress and tension lateral stress. The steel 

lateral strain needs to be monitored, and the analysis should account for the 

yield strength in the lateral direction. A rough calculation is made to case one 

to test the steel lateral strain. Some values are assumed since they are missing 

from their source: 

ksifff lccc 83.883.17' =+=+=
  

It should be noted that the peak strength equation used herein is conservative 

with respect to Mander and Richart equations.  The axial strain at the peak 

confined stress is calculated based on Mander and Richart equation as follow:                                                               
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 εco is assumed conservatively equal to 0.002. Poisson’s ratio for concrete 

in non-linear zone is equal to 0.5 (Mazzotti and Savoia 2002), so the lateral 

strain is equal to 0.0023, and this is the same lateral strain in steel 

approximately. The yield strain for the steel is calculated from the tube 

properties given by the author as follow: 

     0018.0
200588

3.363
===

s

y
y E

f
ε              

 From the previous calculations, it is seen that the steel strain at the peak 

stress is exceeding the yielding steel strain in the lateral direction. Hence, 

considering the lateral steel strain to exceed yielding allowing for free 

expansion of concrete is one of the ways that may improve the results (Shams 

and Saadeghavaziri 1997). 

- For heavy steel cross sections, such as case 14 and 15, the interaction diagram 

shape looks like the steel cross section’s W shape and the interaction diagram is 

conservative. 

Overall there is good agreement between the theoretical model and the 

experimental data. 
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Chapter 5 - Rectangular Columns subjected to biaxial bending and 

Axial Compression 

 5-1 Introduction 

 Rectangular reinforced concrete columns can be subjected to biaxial bending moments 

plus axial force. When the load acts directly on one of the cross section bending axes the 

problem becomes of uniaxial bending and axial force. However when the load is applied 

eccentrically on a point that is not along any of the bending axes the case is generally biaxial 

bending and axial force. The biaxial bending case can be found in many structures 

nowadays. This case is visited extensively in the literature aside from the confinement 

effect. The failure surface of rectangular columns is 3D surface consisted of many adjacent 

2D interaction diagrams. Each of the 2D interaction diagrams represents one angle between 

the bending moment about x-axis and the resultant moment. Many simplifications are 

introduced to justify the compressive trapezoidal shape of the concrete compression zone, 

due to the existence of the two bending axes. Approximations also were presented to depict 

the 3D failure shape from the principal interaction diagrams, in the two axes of symmetry. 

The most effective procedure found in the literature is the predefined ultimate strain profile 

that determines a certain position of the neutral axis and assigns crushing ultimate strain ( 

typically 0.003) in one of the column corners. With the advance in technology and the 

enormous speed of computations, analysis is needed to plot a more accurate failure 

interaction diagram for both the unconfined and confined cases.  

The methodology in this study is based on two different approaches;the adjusted 

predefined ultimate strain profile and the moment of area generalization approaches 
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described below. The two methods are compared to benchmark the moment of area 

generalization method that will be used in the actual capacity analysis (Confined analysis). 

This analysis is compared to experimental data from the literature. 

 5-2 Unconfined Rectangular Columns Analysis 

 5-2-1 Formulations 

 5-2-1-1 Finite Layer Approach (Fiber Method) 

The column cross section is divided into finite small-area filaments (Figure 5-1 a). The 

force and moment of each filament is calculated and stored. The rebars are treated as discrete 

objects in their actual locations. The advantage of that is to avoid inaccuracy generated from 

using the approximation of the stress block method, as a representative of the compression zone 

and to well treat cases that have compressive trapezoidal or triangular shapes generated from the 

neutral axis inclination (Figure 5-1 b).    

                 

Mx

My

 

Figure 5-1:a) Using finite filaments in analysis     b)Trapezoidal shape of Compression zone 

 

a)      b) 
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 5-2-1-2 Concrete Model 

Concrete is analyzed using the model proposed by Hognestad that was adopted from 

Ritter’s Parabola 1899 (Hognestad 1951). Hognestad model is used extensively in numerous 

papers as it well explains concrete stress-strain behavior in compression. In addition, it was 

utilized by widely used concrete models such as Kent and Park model (1971). The stress-strain 

model is expressed using the following equation (Figure 5-2 a) 
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cf  = stress in concrete in compression. 

'
cf = maximum compressive strength of the concrete. 

cε  = strain at cf  

oε = strain at '
cf  

As shown in Figure (5-2 a) concrete carries tension up to cracking strength, then it is 

neglected in calculation beyond that. 
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Figure 5-2: a) Stress- strain Model for concrete by Hognestad    b) Steel stress-strain Model  

a)      b) 
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 5-2-1-3 Steel Model 

Steel is assumed to be elastic up to the yield stress then perfectly plastic as shown in Figure (5.2 

b). It is assumed that there is perfect bond between the longitudinal steel bars and the concrete. 

According to Bernoulli’s Hypothesis, strains along the depth of the column are assumed to be 

distributed linearly. 

 5-2-2 Analysis Approaches 

The process of generalization of the moment-force interaction diagram is developed 

using two different approaches; the adjusted predefined ultimate strain profile and the 

generalized moment of area methods. The common features of the two approaches are described 

as follow:  

 5-2-2-1 Approach One: Adjusted Predefined Ultimate Strain Profile 

  The first approach is the well known method that was used by many researchers and 

practicing engineers. The procedure is to assign compressive failure strain at one of the 

column corners (0.003) and to vary the position and the inclination angle of the neutral axis 

that ranges from zero degree, parallel to the width of the column, to ninety degrees parallel to 

the height as shown in Figure (5-3).     
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0.003

γ

 

Figure 5-3: Different strain profiles due to different neutral axis positions. 

Each set of the parallel neutral axes of a certain orientation represents approximately one 2D 

interaction diagram, and all of the sets from zero to ninety degrees represent the 3D failure 

surface in one quadrant, which is identical to the other three quadrants due to the existence of 

two axis of symmetry with respect of concrete and steel. The procedure is described in the 

following steps: 

1- Defining the strain profile for each neutral axis position and corner ultimate strain applied. 

2- Calculating strain and the corresponding stress in each filament of concrete and doing the 

same for each steel bar (Figure 5-4). 
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0.003

N.A

 

Figure 5-4: Defining strain for concrete filaments and steel rebars from strain profile 

3- Calculating the force and the moment about the geometric centroid for each filament and 

steel bar (Figure 5-5)  

for concrete:                                                  for steel  

iicici twfP =                                                  sisisi AfP =          5-2 

iYPMx cici _*=                                            siYPMx sisi _*=            5-3 

iXPMy cici _*=                                           siXPMy sisi _*=             5-4 

           

Y i

B
X i

w
t

Ysi
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B
Xsi
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H
Y_i

X_i  0.003  0.003

 

Figure 5-5: Filaments and steel rebars geometric properties with respect to crushing strain point 

and geometric centroid 
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4-  Summing up the forces and moments, from steel bars and concrete filaments, to get the 

internal force and moment about x-axis and y-axis. The resultant force and moments represent 

one point on the unconfined interaction diagram. (Figure 5-6). 

             

Start

Define

Neutral axis

position & orientation

Determine strain  

Calculate
εc,εs,f c,f s

Sum up internal 
forces and moments

Fz,GMox ,GMoy,GMR

profile based on

End

New Point

 0.003 at a corner

 

Figure 5-6: Method one Flowchart for the predefined ultimate strain profile method 

The problem arising from this procedure is that the points developed from one set of 

parallel neutral axes are close to but not lined up in one plane. However, they are scattered 

tightly near that plane (Figure 5-7). To correct for that, an average angle of )/(cos 1
Rx MM−=α

is calculated and another run is established by slightly changing the inclination angle γ of the 

neutral axis of the section with respect to the y-axis and iterating till the angle determined for  

each point converges to the average angle  α . The average angle  α  is taken as the average of all 

α angles obtained for a certain γ angle orientation of the neutral axis (Figure 5-3 and Figure 5-7). 
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Mx

Plane of the average angle 

α

Point before correction

Point after correction

My

α

 

Figure 5-7: 2D Interaction Diagram from Approach One Before and After Correction 

The iterations mentioned above converge fast in all cases. This approach yields a very 

fast computation since it directly evaluates the ultimate unconfined strain profile. However, no 

moment curvature or load-strain history response is available with this approach 

 

 5-2-2-2 Approach Two: Generalized Moment of Area Theorem  

 5-2-2-2-a Moment of Area Theorem 

The very general axial stress equation in an unsymmetrical section subjected to axial 

force P and biaxial bending Mx and My (Hardy Cross 1930): 

x
III

IMIM
y

III

IMIM
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P

xyyx

xyxxy

xyyx

xyyyx
z 22 −

−
+

−

−
+=σ

                       
5-5 

zσ  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 
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xM  = bending moment about the geometric x-axis 

yM = bending moment about the geometric y-axis 

x   = distance between the point (a) and y-axis 

y    = distance between the point (a) and x-axis  

xI   = moment of inertia about the geometric x-axis 

yI   = moment of inertia about the geometric y-axis 

xyI  = product moment of inertia in xy plane  

Rewriting Equation (5-5) to determine the strain at any point in the cross section: 

x
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+=ε

                     
5-6 

In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, if the 

section has linear strain but nonlinear stress profile, it will amount to variable E profile (per layer 

or filament) in nonlinear analysis. Accordingly, the section parameters must include∑
i

ii AE , 

∑
i

ii IE
 
for a more generalized theory (Rasheed and Dinno 1994). Note that the linear strain 

profile of the section from Equation (5-6) yields two distinct constant curvatures: 

2β
φ xyyyx

x

EIMEIM −
=

                        5-7

2β
φ xyxxy

y

EIMEIM −
=

                        5-8 

xφ = curvature about the x-axis 

yφ = curvature about the y-axis 
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22
xyyx EIEIEI −=β   

To prove Equations (5-7) and (5-8) above, invoke the coupled equations of moments 

about the actual or current centroid (Bickford 1998). 

yxyxxx EIEIM φφ +=
                        5-9

 

yyxxyy EIEIM φφ +=
                         5-10

   

In a matrix form: 
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Inverting Equation (5-11) 
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which reproduces Equations (5-7) and (5-8). Rewriting Equation (5-6) in terms of φx and φy 

xy
EA

P
yxz φφε ++=

              5-13    

Finding εz at the actual or current centroid, since x = y = 0. 

 
EA

P
= oε

                                 
5-14  

Finding εz at the geometric centroid, � � �� 

xy yxo  
EA

P
= φφε ++

              

Solving for P at the geometric centroid;  

yxo xEAyEAEAP φφε −−=
             5-15

  

 

But  
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yEAEAMx =
                  

cG YYy −=  

xEAEAM y =
                  

cG XXx −=  

YG is the vertical distance to the geometric centroid measured from bottom, XG is the distance to 

the geometric centroid measured from the cross section’s left side, Yc is the vertical distance to 

the inelastic centroid measured from the bottom and Xc is the horizontal distance to the inelastic 

centroid measured from the cross section’s left side, Figure (5-8).
 

Thus,  

yyxxo EAMEAMEAP φφε −−=             5-16

  

 

The general formula of the moments about the geometric x-axis and the geometric y-axis 

is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid ,Figure (5-8 a) 

yPMM xx −=               5-17 

Substituting Equations (5-9) and (5-16) in (5-17) yields:          

yEAMyEAMyEAEIEIM yyxxoyxyxxx φφεφφ ++−+=
         5-18  

( ) ( ) yyxyxxxoxx yEAMEIyEAMEIEAMM φφε ++++−=
         5-19

 

Similarly, (Figure 5-8 b): 
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Figure 5-8: Transfering moment from centroid to the geometric centroid 

a) b) 



304 

 

 

xPMM yy −=
              5-20

 

xEAMxEAMxEAEIEIM yyxxoyyxxyy φφεφφ ++−+=
         5-21

 

( ) ( ) yyyxxxyoyy xEAMEIxEAMEIEAMM φφε ++++−=
         5-22

 

The terms yEAMEI xx + and xEAMEI yy +  represent the xEI and yEI  about the geometric 

centroid respectively using the parallel axis theorem. And the terms xEAMEI xxy +  and 

yEAMEI yxy +  are equal given that: xyEAxEAMx =  and xyEAyEAM y = . Using Equations (5-

16), (5-19) and (5-22) yields the extended generalized moment of area equation: 
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Since the moment of area about the inelastic centroid vanishes (Rasheed and Dinno 

1994), Equation (5-23) reduces to a partially uncoupled set when it is applied back at inelastic 

the centroid since EAMx and EAMy vanish about that centroid. 
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5-24 

which is simply Equations (5-9), (5-10) and (5-14) 

 5-2-2-2-b Method Two 

This approach simulates the radial loading of the force and moments by keeping the 

relative proportion between them constant during the loading. Accordingly, all the points 
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comprising an interaction diagram of angle α will be exactly on that 2D interaction diagram. In 

addition to the ultimate points, the complete load deformation response is generated. The cross 

section analyzed is loaded incrementally by maintaining a certain eccentricity between the axial 

force P and the resultant moment MR. Since MR is generated as the resultant of Mx and My, the 

angle α = tan-1(My/Mx) is kept constant for a certain 2D interaction diagram. And since 

increasing the load and resultant moment proportionally causes the neutral axis to vary 

unpredictably, the generalized moment of area theorem is devised. This method is based on the 

general response of rectangular unsymmetrical section subjected to biaxial bending and axial 

compression. The asymmetry stems from the different behavior of concrete in compression and 

tension. 

 
The method is developed using incremental iterative analysis algorithm, secant stiffness 

approach and proportional or radial loading. It is explained in the following steps. (Figure 5-12 

presents a flowchart of the outlined procedure): 

1- Calculating the initial section properties: 

� Elastic axial rigidity EA: 

            
5-25 

= initial modulus of elasticity of the concrete  

= initial modulus of elasticity of the steel rebar 

� The depth of the elastic centroid position from the bottom fiber of the section Yc and from 

the left side of the section Xc 
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where Yi and Ysi are measured to the top extreme fiber, Xi and Xsi are measured to the right most 

extreme fiber, see Figure (5-9) 

� Elastic flexural rigidity about the elastic centroid EI: 
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Typically the initial elastic Yc = H/2, Xc = B/2 and EIxy = 0 

         

            

Yi

H

Yc

B

Xc

Xi

w
t

C

G

X

Y

G

G

0.003

H

Yc

B

Xc

Xsi

Ysi

X

Y

 0 . 003

 0 . 003 0.003

C

G

G

G

 

Figure 5-9: geometric properties of concrete filaments and steel rebars with respect to, geometric 

centroid and inelastic centroid. 
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The depth of the geometric section centroid position from the bottom and left fibers of the 

section YG, XG: 

             
5-31 

2

B
XG =

             
5-32     

2-  Defining the eccentricity e, which specifies the radial path of loading on the interaction 

diagram. Also, defining the angle α in between the resultant moment GMR and GMX 

            

Figure 5-10: Radial loading concept 

3-  Defining the loading step as a small portion of the maximum load, and computing 

the axial force at the geometric centroid. 

             5-33   

4- Calculating the moment GMR about the geometric centroid. 
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5- Transferring the moments to the inelastic centroid and calculating the new transferred 

moments TMX and TMY : 

)( cGXX YYGPGMTM −+=            5-37   

)( cGYY XXGPGMTM −+=           5-38   

The advantage of transferring the moment to the position of the inelastic centroid is to eliminate 

the coupling effect between the force and the two moments, since   0== yx EAMEAM
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Figure 5-11 Moment transferring from geometric centroid to inelastic centroid 

6- Finding:  Curvatures   X and  φ Y 
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   22
xyYX EIEIEI −=β                         5-42     

Strain at the inelastic centroid , the extreme compression fiber strain , and strain at 

the extreme level of steel in tension  are found as follow: 

              5-43

)()( cycxoec XBYH −+−+= φφεε
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)()( CoverXCoverY cycxoes −−−−= φφεε               5-45   

Where cover is up to center of bars 

7- Calculating strain and corresponding stress fci in each filament of concrete section by 

using Hognestad’s model (equation 5-1) in case of unconfined analysis 
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8- Calculating strain and corresponding stress fsi in each bar in the given section by 

using the steel model shown in Figure (5-2b). 
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9- Calculating the new section properties: axial rigidity EA, flexural rigidities about the 

inelastic centroid EIx,, EIy, EIxy moment of axial rigidity about inelastic centroid EAMx, 

EAMy, internal axial force Fz, internal bending moments about the inelastic centroid Mox 

,Moy: 
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where  Eci = secant modulus of elasticity of the concrete filament. 

            Esi = secant modulus of elasticity of the steel bar. 

10- Transferring back the internal moment about the geometric centroid 

             5-57 

)( cGoyoy XXGPMGM −−=
            5-58

   

11- Checking the convergence of the inelastic centroid  

             5-59 

)( cGoxox YYGPMGM −−=

cxx YEAEAMTOL //=
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cyy XEAEAMTOL //=
             5-60

   

12- Comparing the internal force to applied force, internal moments to applied moments, 

and making sure the moments are calculated about the geometric centroid : 

510*1 −≤− zFGP
                                    5-61

   

510*1 −≤− oxx GMGM        510*1 −≤− oyy GMGM
        5-62

 

510*1 −≤xTOL                                  510*1 −≤yTOL
         5-63

 

If  Equations (5-61), (5-62) and (5-63) are not satisfied, the location of the inelastic centroid is 

Uupdated by EAMx/EA and EAMy/EA and steps 5 to 12 are repeated till Equations (5-61), (5-62) 

and (5-63) are satisfied. 

          
  5-64 
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Once equilibrium is reached, the algorithm checks for ultimate strain in concrete   and steel 

 not to exceed 0.003 and 0.05 respectively, then it increases the loading by  and runs the 

analysis for the new load level using the latest section properties. Otherwise, if   equals 0.003 

or  equals 0.05, the target force and resultant moment are reached as a point on the failure 

surface for the amount of eccentricity and angle α used. 
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Figure 5-12: Flowchart of Generalized Moment of Area Method used for unconfined analysis 
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 5-2-3 Results and Discussion 

 5-2-3-1 Comparison between the two approaches  

The two approaches are compared to each other in the following. The column used in 

comparison has the following properties: 

Section Height = 20 in. 

Section Width = 10 in. 

Clear Cover   = 2 in 

Steel Bars in x direction = 3 # 4  

Steel Bars in x direction = 6 # 4  

Hoop #3 

f’ c = 4 ksi 

fy = 60 ksi.          

                    

Figure 5-13: Comparison of approach one and two (α = 0) 
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Figure 5-14: Comparison of approach one and two (α = 4.27) 

 

    

Figure 5-15: Comparison of approach one and two (α = 10.8) 
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Figure 5-16: Comparison of approach one and two (α = 52) 

 

The excellent correlation between the two approaches appears in Figure (5-13) through 

(5-16). The resultant moment angle is shown below each graph. This is evidence that approach 

two effectively compared to the well known predefined ultimate strain profile approach. 

Accordingly, method two can be used in the confined analysis for analyzing the actual capacity 

of the rectangular columns. 

 

 5-2-3-2 Comparison with Existing Commercial Software 

KDOT Column Expert is compared with CSI Col 8 of computers and structures Inc. and SP 

column Software of structure point LLC.  The case is selected from Example 11.1 in “Notes on 

ACI 318-05 Building code Requirements for structural concrete” by PCA. The column details 

are as follow (Figure 5-17): 

Section Height = 24 in. 

Section Width = 24 in. 
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Clear Cover   = 1.5 in 

Steel Bars = 16 # 7 evenly distributed              

Hoop #3 

f’c = 6 ksi 

fy = 60 ksi.                                                                                       

          

Figure 5-17: column geometry used in software comparison 

      

 

Figure 5-18: Unconfined curve comparison between KDOT Column Expert and SP Column (α = 

0) 
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     Figure (5-18) shows the match between the two programs in axial compression calculations 

and in tension controlled zone. However KDOT Column Expert shows to be slightly more 

conservative in compression controlled zone. This might be due to using finite layer approach in 

calculations that has the advantage of accuracy over other approximations like Whitney stress 

block. 

 

Figure 5-19: Design curve comparison between KDOT Column Expert and CSI Col 8 using ACI 

Reduction Factors 

    The design curves in Figure (5-19) and Figure (5-20) were plotted using ACI reduction factors 

that use a reduction factor of 0.65 in compression controlled zone as opposed to 0.75 used by 

AASHTO. There is a good correlation between the KDOT Column Expert curve and CSI Col 8 

and SP Columns curves as shown in Figure 5-19 and Figure 5-20. 
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Figure 5-20: Design curve comparison between KDOT Column Expert and SP column using 

ACI reduction factors  

                  

 

 5-3 Confined Rectangular Columns Analysis 

 5-3-1 Formulations 

 5-3-1-1 Finite Layer Approach (Fiber Method) 

The column cross section is divided into finite small-area filaments (Figure 5-21 a). The 

force and moment of each filament is calculated and stored. The rebars are treated as discrete 

objects in their actual locations. The advantage of that is to avoid inaccuracy generated from 

using the approximation of the stress block method, as a representative of the compression zone 

and to well treat cases that have compressive trapezoidal or triangular shapes generated from the 

neutral axis inclination (Figure 5-21 b).    
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Mx

My

 

Figure 5-21:a) Using finite filaments in analysis     b)Trapezoidal shape of Compression zone 

  5-3-1-2 Confinement Model for Concentric Columns 

 

 5-3-1-2-a Mander Model for transversely reinforced steel 

Mander model (1988) was developed based on the effective lateral confinement pressure, f’ l, 

and the confinement effective coefficient, ke which is the same concept found by Sheikh and 

Uzumeri (1982). The advantage of this procedure is its applicability to any cross section 

since it defines the lateral pressure based on the section geometry. Mander et al. (1988) 

showed the adaptability of their model to circular or rectangular sections, under static or 

dynamic loading, either with monotonically or cyclically applied loads. In order to develop a 

full stress-strain curve and to assess ductility, an energy balance approach is used to predict 

the maximum longitudinal compressive strain in the concrete. 

Mander derived the longitudinal compressive concrete stress-strain equation from Popovics 

model that was originally developed for unconfined concrete (1973): 

a)      b) 
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and as suggested by Richart et al. (1928) the strain corresponding to the peak confined 

compressive strength, f’ cc, is:  
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 The different parameters of this model are defined in Figure (5-22) 
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Figure 5-22: Axial Stress-Strain Model proposed by Mander et al. (1988) for monotonic loading 

 As shown in Figure (5-22) Mander et al. (1988) model has two curves; one for 

unconfined concrete (lower curve) and the other for confined concrete (upper one). The upper 
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one refers to the behavior of confined concrete with concentric loading (no eccentricity). It is 

shown that it has ascending branch with varying slope starting from Ec decreasing till it reaches 

the peak confined strength at (fcc, εcc). Then the slope becomes slightly negative in the 

descending branch representing ductility till the strain of εcu where first hoop fractures. The 

lower curve expresses the unconfined concrete behavior. It has the same ascending branch as the 

confined concrete curve till it peaks at (f’ c, εco). Then, the curve descends till 1.5-2εco. A straight 

line is assumed after that till zero strength at spalling strain εsp 

Mander et al. (1988) utilized an approach similar to that of Sheik and Uzumeri (1982) to 

determine effective lateral confinement pressure. It was assumed that the area of confined 

concrete is the area within the centerlines of perimeter of spiral or hoop reinforcement Acc as 

illustrated in Figure (5-23)  

        

45° s's

Effectively 
Confined Core

Effectively 
Confined Core

45°

Smallest Length
for Confined Core  

Figure 5-23: Effectively confined core for rectangular hoop reinforcement (Mander Model) 

 Figure (5-23) shows that effectively confined concrete core Ae  is smaller than the area of 

core within center lines of perimeter spiral or hoops excluding longitudinal steel area, Acc, and to 

satisfy that condition the effective lateral confinement pressure f’ l should be a percentage of the 

lateral pressure fl: 

lel fkf ='
                          5-72  
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and the confinement effectiveness coefficient ke is defined as the ratio of the effective confined 

area Ae to the area enclosed by centerlines of hoops execluding the longitudinal bars Acc: 

cc

e
e A

A
k =                           5-73  

slccc AAA −=               5-74  

c

sl

c

cc

A

A

A

A
−= 1               5-75                                                                                                    

( )ccccc AA ρ−= 1               5-76  

where Ac is the area of the section core enclosed by hoops, Asl is the area of longitudinal steel and 

ρcc is the ratio of longitudinal steel to the area of the core.  

bc-s'/2

bc

s' s

bc

dcdc-s'/2

w'

Effectively Confined 
Core

Ineffectively Confined 
Core

B

H

 

Figure 5-24: Effective lateral confined core for rectangular cross section 

The total ineffective confined core area in the level of the hoops when there are n bars: 
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Given that the arching formed between two adjacent bars (Figure 5-24) is second degree 

parabola with an initial tangent slope of 45o, the ratio of the area of effectively confined concrete 

to the core area at the tie level: 
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where Ac = bc* dc, The area of confined concrete in the midway section between two consecutive 

ties: 
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Hence, the effective area at midway: 
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Using equation (5-73) 
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and the ratio of the volume of transverse steel in x any y directions to the volume of confined 

core area ρx and ρy  is defined as: 
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Asx, Asy are the total area of lateral steel in x and y direction respectively. The effective lateral 

confining pressure in x and y directions are given by: 

yhxelx fkf ρ='
             5-86 

yhyely fkf ρ='
             5-87 
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Figure 5-25: Confined Strength Determination 

Figure (5-25) was developed numerically using multiaxial stress procedure to calculate ultimate 

confined strength from two given lateral pressures. The numerical procedure is summarized in 

the following steps: 

1- Determining f’ lx and f’ ly using equations (5-86) and (5-87) 



325 

 

2- Converting the positive sign of f’ lx and f’ ly from positive to negative to represent the major 

and intermediate principal stresses (These values are refered to as σ1 and σ2 so that σ1 > 

σ2). 

3- Estimating the confined strength f cc (σ3) as the minor principal stress 

4- Calculating the octahedral stress σoct, octahedral shear stress τoct and lode angle θ as 

follows: 

( )3213
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5-88
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5- Determining the ultimate strength meridian surfaces T,C (for θ =60o and 0o respectively) 

using the following equations derived by Elwi and Murray (1979) from data by Scickert 

and Winkler (1977): 

2
049350.0661091.0069232.0 octoctT σσ −−=

         
5-91

 

2
315545.0150502.1122965.0 octoctC σσ −−=

         
5-92

 

'/ coctoct fσσ =
                          

5-93 

6- Determinig the octahedral shear stress using the interpolation function found by Willam 

and Warnke (1975): 
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( ) θ222 cos4 TCD −=
                     

5-95 

'
coctoct fττ =
               

5-96 

7- 
 
Recalculating f cc using the following equation(same as equation (5-89) but solving for 

σ3: 

( )2
21

221
3 75.05.4

2
σστ

σσ
σ −−−

+
= oct           5-97

 

8- If the value from equation (5-97) is close to the initial value then there is convergance. 

Otherwise, the value from equation (5-97) is reused in steps 4 through 8. 

 Equations 5-91 and 5-92 that define the tension and compression meredians are compared with 

different equations for different unconfined compressive strength. The results are shown in 

section 5-3-3-2 

Mander et al. (1988) proposed an energy balancing theory to predict the ultimate confined strain, 

which is determined at the first hoop fracture. They stated that the additional ductility for 

confined concrete results from the additional strain energy stored in the hoops Ush. Therefore 

from equilibrium: 

cogsh UUU −=               5-98  

where Ug is the external work done in the concrete to fracture the hoop, and Uco is the work done 

to cause failure to the unconfined concrete. Ush can be represented by the area under the tension 

stress strain curve for the transverse steel between zero and fracture strain εsf. 
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while Ug is equal to the area under the confined stress strain curve plus the area under the 

longitudinal steel stress strain curve: 

εε
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dAfdAfU
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00

                     5-100  

similarly, it was proven experimentally that Uco is equal to:  
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Substituting Equations (5-100), (5-101) and (5-102) into Equation (5-98): 
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        5-103

 where fsl is the stress in the longitudinal steel. Equation (5-103) can be solved 

numerically for εcu 

 5-3-1-3 Confinement Model for Eccentric Columns 

Unlike concentric loading, the eccentric loading generates bending moment in addition to 

axial loading. Columns subjected to eccentric loading behave differently from those 

concentrically loaded, as the shape of the stress strain curve for fully confined reinforced 

concrete (concentric loading) shows higher peak strength and more ductility than the unconfined 
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one (infinite eccentricity). Most of the previous studies were based on the uniform distribution of 

compressive strain across the column section. 

               

Figure 5-26: Effect of compression zone depth on concrete stress 

Figure (5-26) illustrates three different sections under concentric load, combination of 

axial load and bending moment and pure bending moment, the highlighted fiber in the three 

cases has the same strain. Anycurrent confinement model yields the same stress for these three 

fibers. So the depth or size of compression zone does not have any role in predicting the stress. 

Hence, it is more realistic to relate the strength and ductility in a new model to the level of 

confinement utilization and compression zone size. 

              

Figure 5-27: Amount of confinement engaged in different cases 

 By definition, confinement gets engaged only when member is subjected to compression. 

Compressed members tend to expand in lateral direction, and if confined, confinement will 

prevent this expansion to different levels based on the degree of compressive force and 

confinement strength as well. For fully compressed members (Figure 5-27c), confinement 
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becomes effective 100% as it all acts to prevent the lateral expansion. Whereas members 

subjected to compression and tension, when the neutral axis lies inside the section perimeter, 

only confinement adjacent to the compression zone gets engaged. Accordingly, members 

become partially confined.  

 In literature, various models were implemented to assess the ultimate confined capacity 

of columns under concentric axial load. On the other hand the effect of partial confinement in 

case of eccentric load (combined axial load and bending moments) is not investigated in any 

proposed model. Therefore, it is pertinent to relate the strength and ductility of reinforced 

concrete to the degree of confinement utilization in a new model. 

 The two curves of fully confined and unconfined concrete in any proposed model are 

used in the eccentricity-based model as upper and lower bounds. The upper curve refers to 

concentrically loaded confined concrete (zero eccentricity), while the lower one refers to pure 

bending applied on concrete (infinite eccentricity). In between the two boundaries, infinite 

numbers of stress-strain curves can be generated based on the eccentricity. The higher the 

eccentricity the smaller the confined concrete region in compression. Accordingly, the ultimate 

confined strength is gradually reduced from the fully confined value fcc to the unconfined value 

f’ c as a function of eccentricity to diameter ratio. In addition, the ultimate strain is gradually 

reduced from the ultimate strain εcu for fully confined concrete to the ultimate strain for 

unconfined concrete 1.5εco.  

 The relation between the compression area to whole area ratio and normalized 

eccentricity is complicated in case of rectangular cross sections due to the existence of two 

bending axes. The force location with respect tothe two axes causes the compression zone to take 

a trapozidal shape some times if the force applied is not along one of the axes. Hence the relation 
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between the compression area and the load eccentricity needs more investigation as oppose to the 

case of circular cross section which was shon to be simpler.  

 The normalized eccentricity is plotted against the compression area to cross sectional area 

ratio for rectangular cross sections having different aspect ratio (length to width) at the 

unconfined failure level. The aspect ratios used are 1:1, 2:1, 3:1, 4:1 as shown in Figures (5-28), 

(5-29),(5-30) and (5-31).Each curve represents specific α angle (tan α = My/Mx) ranging from 

zero to ninty degrees. It is seen from these figures that there is inversely proportional relation 

between the normalized eccentricity and compression zone ratio regardless of the α angle 

followed.  

                     

Figure 5-28: Normalized Eccentricity versus Compression Zone to total area ratio (Aspect ratio 

1:1) 
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Figure 5-29: Normalized Eccentricity versus Compression Zone to total area ratio (Aspect ratio 

2:1) 

 

                     

Figure 5-30: Normalized Eccentricity versus Compression Zone to total area ratio (Aspect ratio 

3:1) 
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Figure 5-31: Normalized Eccentricity versus Compression Zone to total area ratio (Aspect ratio 

                  

Figure 5-32: Cumulative chart for Normalized Eccentricity against Compression Zone Ratio

0

20

40

60

80

100

120

0

C
o

m
p

re
ss

io
n

 a
re

a
 t

o
 t

h
e

 c
ro

ss
 s

e
ct

io
n

a
l 

a
re

a
 r

a
ti

o

0

20

40

60

80

100

120

0 0.5

C
o

m
p

re
ss

io
n

 a
re

a
 t

o
 t

h
e

 c
ro

ss
 s

e
ct

io
n

a
l 

a
re

a
 r

a
ti

o

332 

: Normalized Eccentricity versus Compression Zone to total area ratio (Aspect ratio 

4:1) 

: Cumulative chart for Normalized Eccentricity against Compression Zone Ratio

data points). 
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 In order to find accurate mathematical expression that relates the compression zone to 

load eccentricity, the data from figures (5-28) throug (5-31) are replotted as scatter points in 

Figure (5-32). 

The best fitting curve of these points based on the least square method has the following 

equation: 

bh

e
bh

e

CR

1.0*2.0 +
=

                       

5-104 

where CR refers to compression area to cross sectional area ratio. 

 5-3-1-3-a Eccentric Model based on Mander Equations 

The equation that defines the peak strength ccf  according to the eccentricity is: 

'
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1
1

1

1
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R
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R

cc f
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=                                  5-105      

Whereas the equation developed for circular cross sections 

'
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1
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1
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e
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e
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+
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=

                                                                                           5-105 a

 

where e is the eccentricity, b and h is the column dimensions and ccf is the peak strength at the 

eccentricity (e). The corresponding strain ccε  is given by 
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and the maximum strain corresponding to the required eccentricity will be a linear function of 

stress corresponding to maximum strain for confined concrete fcu and the maximum unconfined 

concrete fcuo at εcuo = 0.003: 

r
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−
=  

In order to verify the accuracy of the model at the extreme cases, the eccentricity is first set to be 

zero. The coefficient of f’ c will be zero in Equation (5-105) and Equations (5-105), (5-106) and 

(5-107) will reduce to be: 

cccc ff =              5-108   

cccc εε =              5-109   

cucu εε =              5-110   

On the other hand, if the eccentricity is set to be infinity the other coefficient will be zero, 

and the strength, corresponding strain and ductility equations will be: 

'
ccc ff =              5-111   

cocc εε =              5-112   

003.0=cuε              5-113  
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Figure 5-33: Eccentricity Based confined -Mander- Model 

Any point on the generated curves the stress-strain function can be calculated using the following 

equation: 

r
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where: 

cc
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ε

ε
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secEE
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cc
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E

ε
=sec              5-117  

To show the distinction between the Eccentric model designed for rectangular cross sections, 

Figure (5-34) and that of circular cross sections, Figure (5-35), Equations (5-105) to (5-107) and 

(5-114) to (5-117) are used in plotting a set of Stress-Strain curves with eccentricity ranging 
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from 0 in. to ∞. The column cross sectional properties used to plot these curves is  36 in *36 in.,  

steel bars are 13 #11, spiral bar is # 5, spacing is 4 in., f’ c is equal to 4 ksi, fy is equal to 60 ksi 

and fyh is equal to 60 ksi. This case is used in plotting the Eccentric Stress-Strain curve that are 

developed for rectangular cross sectional concrete columns; Figure (5-34) while the same case is 

used in plotting the eccentric Strss-Strain curves that are developed for circular cross section, 

Figure (5-35). The eccentric stress-Strain curves in Figure (5-35) are almost parallel and 

equidistant to each other.  Whereas, the leap from one curve to the next one in Figure (5-34) is 

varying. This is due to the effect of the coeffiecent CR, that is used in Equation (5-105), which 

has non linear impact on the compression zone as oppoased to the linear relation between the 

eccentricity and compression zone for circular cross sections (Figure (5-35))  

 

Figure 5-34: Eccentric based Stress-Strain Curves using compression zone area to gross area 

ratio 
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Figure 5-35: Eccentric based Stress-Strain Curves using normalized eccentricity instead of 

compression zone ratio 

 

 5-3-1-4 Generalized Moment of Area Theorem 

The very general axial stress equation in an unsymmetric section subjected to axial force 

P and biaxial bending Mx and My (Hardy Cross 1930): 
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5-118 

zσ  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 

xM  = bending moment about x-axis 
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yM = bending moment about y-axis 

x   = distance between the point (a) and y-axis 

y    = distance between the point (a) and x-axis  

xI   = moment of inertia about x-axis 

yI   = moment of inertia about y-axis 

xyI  = product moment of inertia in xy plane  

Rewriting Equation (5-118) to determine the strain at any point in the cross section: 

x
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EIEIEI
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EA

P

xyyx

xyxxy

xyyx

xyyyx
z 22 −
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+=ε

                   
5-119 

In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, if the 

section has linear strain and nonlinear stress profile, it will amount to variable E profile (per 

filament) in nonlinear analysis. Accordingly, the section parameters must include∑
i

ii AE , 

∑
i

ii IE
 
for a more generalized theory (Rasheed and Dinno 1994). Note that the linear strain 

profile of the section from Equation (5-119) yields two distinct constant curvatures: 

2β
φ xyyyx

x

EIMEIM −
=

                                
5-120

 

2β
φ xyxxy

y

EIMEIM −
=

                                
5-121 

xφ = x- curvature 

yφ = y- curvature 

22
xyyx EIEIEI −=β   
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To prove Equations (5-120) and (5-121) above, invoke the coupled equations of moments 

about the centroid (Bickford 1998). 

yxyxxx EIEIM φφ +=
                               5-122

 

yyxxyy EIEIM φφ +=
                                 5-123

   

In a matrix form: 
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Inverting Equation (5-124) 
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which reproduces Equations (5-120) and (5-121). Rewriting Equation (5-119) in terms of φx and 

φy 

xy
EA

P
yxz φφε ++=

                       
5-126

 

Finding εz at the centroid, since x = y = 0. 

P/EA  = oε
                               5-127 

Solving for P at the geometric centroid;  

yxo xEAyEAEAP φφε −−=
               5-128

   

oε  is the axial strain at the geometric centroid 

But  

yEAEAMx =
                  

cG YYy −=                                  

xEAEAM y =
                  

cG XXx −=  
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YG is the vertical distance to the geometric centroid measured from bottom, XG is the distance to 

the geometric centroid measured from the cross section’s left side, Yc is the vertical distance to 

the inelastic centroid measured from the bottom and Xc is the horizontal distance to the inelastic 

centroid measured from the cross section’s left side 
 

Thus,  

yyxxo EAMEAMEAP φφε −−=                      5-129

  

 

The general formula of the moments about the geometric x-axis and the geometric y-axis 

is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid ,Figure (5-36 a) 

yPMM xx −=                        5-130 

Substituting Equations (5-122) and (5-129) into (5-130) yields:          

yEAMyEAMyEAEIEIM yyxxoyxyxxx φφεφφ ++−+=
                  

5-131
   

( ) ( ) yyxyxxxoxx yEAMEIyEAMEIEAMM φφε ++++−=
                  

5-132
  
 

Similarly, (Figure 5-36 b): 
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Figure 5-36: Transfering moment from centroid to the geometric centroid 

a) b) 
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xPMM yy −=
                       

5-133 

xEAMxEAMxEAEIEIM yyxxoyyxxyy φφεφφ ++−+=
                  5-134

 

( ) ( ) yyyxxxyoyy xEAMEIxEAMEIEAMM φφε ++++−=
                  5-135

 

The terms yEAMEI xx + and xEAMEI yy +  represent the xEI and yEI  about the geometric 

centroid respectively using the parallel axis theorem. And the terms xEAMEI xxy +  and 

yEAMEI yxy +  are equal given that: xyEAxEAMx =  and xyEAyEAM y = . Using Equations (5-

129), (5-132) and (5-135) yields the extended general moment of Area equation: 
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Since the moment of area about the centroid vanishes (Rasheed and Dinno 1994), 

Equation (5-136) reduces to a partially uncoupled set when it is applied back at the centroid since 

EAMx and EAMy vanish about the centroid. 
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which is simply Equations (5-122), (5-123) and (5-127) 

 

 5-3-2 Numerical Formulation 

This approach simulates the radial loading of the force and moments by keeping the 

relative proportion between them constant during the loading. Accordingly, all the points will be 
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exactly on the 2D interaction diagram. In addition to the ultimate points, the complete load 

deformation response is generated. The cross section analyzed is loaded incrementally by 

maintaining a certain eccentricity between the axial force P and the resultant moment MR. Since 

MR is generated as the resultant of Mx and My, the angle α = tan-1(My/Mx) is kept constant for a 

certain 2D interaction diagram. Since increasing the load and resultant moment cause the neutral 

axis to vary nonlinearly, the generalized moment of area theorem is devised. This method is 

based on the general response of rectangular unsymmetrical section subjected to biaxial bending 

and axial compression. The asymmetry stems from the different behavior of concrete in 

compression and tension. 

 
The method is developed using the incremental iterative analysis algorithm, secant 

stiffness approach and proportional or radial loading. It is explained in the following steps 

(Figure 5-40): 

1- Calculating the initial section properties: 

� Elastic axial rigidity EA: 

       
              5-138

= initial secant modulus of elasticity of the concrete  

= initial modulus of elasticity of the steel rebar 

� The depth of the elastic centroid position from the bottom fiber of the section Yc and from 

the left side of the section Xc, Figur (5-37) 

                   
5-139 
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� Elastic flexural rigidity about the elastic centroid EI: 
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5-143 

Typically the initial elastic Yc = H/2, Xc = B/2 and EIxy = 0 
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Figure 5-37: geometric properties of concrete filaments and steel rebars with respect to crushing 

strain point, geometric centroid and inelastic centroid. 

The depth of the geometric section centroid position from the bottom and left fibers of the 

section YG, XG, Figure (5-37): 
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5-144                                                                                                           

2

B
XG =

             
5-145     

2-  Defining eccentricity e, which specifies the radial path of loading on the interaction 

diagram. Also, defining the angle α in between the resultant moment GMR and GMX 

            

Figure 5-38: Radial loading concept 

3-  Defining loading step as a small portion of the maximum load, and computing the 

axial force at the geometric centroid. 

             5-146   

4- Calculating moment GM about the geometric centroid. 

GP

GM
e R=                             GPeGM R *=          5-147 

αcosRX GMGM =             5-148 

αtanXY GMGM =             5-149   

5- Transferring moment to the current inelastic centroid and calculating the new transferred 

moment TMX and TMY : 

)( cGXX YYGPGMTM −+=            5-150   

2

H
YG =

e

Resultant Moment

A
xi

al
 F

o
rc

e

Load Step   GP

GP∆

GPGPGP oldnew ∆+=



345 

 

)( cGYY XXGPGMTM −+=           5-151   

The advantage of transferring the moment to the position of the inelastic centroid is to eliminate 

the coupling effect between the force and moments, since   0== yx EAMEAM
 
about the 
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Figure 5-39 Moment Transferring from geometric centroid to inelastic centroid 

6- Finding:  Curvatures   X and  φ Y 
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   22
xyYX EIEIEI −=β            5-155     

Strain at the inelastic centroid , the extreme compression fiber strain , and strain at 

the extreme level of steel in tension  are found as follow: 

φ

oε ecε

esε
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)()( CoverXCoverY cycxoes −−−−= φφεε               5-158   

where cover is up to the centers of bars 

7- Calculating strain and corresponding stress fci in each filament of concrete section by 

using Eccetric Based Model (Mander Equations)  
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8- Calculating strain and corresponding stress fsi in each bar in the given section by 

using the steel model shown in Figure (5-2b). 
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9- Calculating the new section properties: axial rigidity EA, flexural rigidities about the 

inelastic centroid EIx,, EIy, EIxy moment of axial rigidity about inelastic centroid EAMx, 

EAMy, internal axial force Fz, internal bending moments about the inelastic centroid Mox 

,Moy: 
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)()()( sicsicisiiciicioy XXBAffXXBtwfM −−−+−−= ∑∑            5-169     

where  Eci = secant modulus of elasticity of the concrete filament �
���

���
. 

            Esi = secant modulus of elasticity of the steel bar �
���

���
. 

10- Transferring back the internal moments about the geometric centroid 
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)( cGoyoy XYGPMGM −−=
           5-171

   

11- Checking the convergence of the inelastic centroid  
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cyy XEAEAMTOL //=
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12- Comparing the internal force to applied force, internal moments to applied moments, 

and making sure the moments are calculated about the geometric centroid : 
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510*1 −≤− oxx GMGM        510*1 −≤− oyy GMGM
      5-175

 

510*1 −≤xTOL                                           510*1 −≤yTOL
      5-176

 

If Equations (5-174), (5-175) and (5-176) are not satisfied, the location of the inelastic centroid is 

updated by EAMx/EA and EAMy/EA and steps 5 to 11 are repeated till equations (5-174), (5-175) 

and (5-176) are satisfied. 

            5-177  
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 Once equilibrium is reached, the algorithm checks for ultimate strain in concrete   and 

steel  not to exceed ������� and 0.05 respectively. Then it increases the loading by  and runs 

the analysis for the new load level using the latest section properties. Otherwise, if   equals 

�������  or  equals 0.05, the target force and resultant moment are reached as a point on the failure 

surface for the amount of eccentricity and angle α used. 

 

 This method can be used combined with Approach One in the unconfined analysis, 

section (5-2-2-1): Predefined Ultimate Strain Profile, for processing time optimization. Initially 

unconfined analysis is utilized. The sectional properties, EA, EIx, EIy, EIxy, EAMx, EAMy,Yc,Xc Fz, 

Mox and Moy are calculated from the unconfined failure point and used as section properties for 

the following step. So instead of loading the section from the beginning, The equilibrium is 

sought at unconfined failure point, Then, knowing the internal force capacity of the section, ∆P 

is added and the cross section is analyzed using the proposed numerical formulation of this 

section until failure of the confined section. 

EA

EAM
YY x

cc oldnew
+=

ecε

esε GP∆
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Figure 5-40: Flowchart of Generalized Moment of Area Method 
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 5-3-3 Results and Discussion 

Interaction diagrams generated by KDOT Column Expert Software are plotted and 

compared to the corresponding experimental work found in the literature. Interaction diagrams 

are generated using the numerical formulation described in section 5-3-2.  

 

 5-3-3-1 Comparison with Experimental Work 

 Case 1 

A Study of combined bending and axial load in reinforced concrete members (Eivind 

Hogenstad) 

Section Height = 10 in.                                                 

Section Width = 10 in. 

Clear Cover   = 0.8575 in 

Steel Bars in x direction = 2    

Steel Bars in y direction = 4  

Steel Diameter = 0.785 in.                           Figure 5-41:Hognestad column 

Tie Diameter = 0.25 in. 

  f’c = 5.1 ksi     fy = 60 ksi.    fyh = 61.6 ksi.   Spacing = 8 in.                                        
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Figure 5-42: Comparison between KDOT Column Expert with Hognestad experiment (α = 0)  

 Case 2 

Design criteria for reinforced columns under axial load and biaxial bending (Boris 

Bresler) 

 

Section Height = 8 in.                                                                                                              

SectionWidth = 6 in. 

Clear Cover   = 1.1875 in 

Steel Bars in x direction = 2#5    

Steel Bars in y direction = 2#5  

Tie Diameter = 0.25 in. 

         Figure 5-43: Bresler Column 

f’c = 3.7 ksi     fy = 53.5 ksi.    fyh = 53.5 ksi.   Spacing = 4 in                                        
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Figure 5-44: Comparison between KDOT Column Expert with Bresler experiment (α = 90) 

                         

Figure 5-45: Comparison between KDOT Column Expert with Bresler experiment (α = 0) 
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 Case 3 

Investigation of the ultimate strength of square and rectangular columns under biaxially eccentric 

loads (L.N. Ramamurthy) 

 

Section Height = 12 in.                                                                                                                                                                                              

Section Width = 6 in. 

Clear Cover   = 1.2375 in 

Steel Bars in x direction = 3#5    

Steel Bars in y direction =3#5  

Tie Diameter = 0.25 in.                                      Figure 5-46 : Ramamurthy Column 

f’c = 3.8 ksi     fy = 46.79 ksi  fyh = 46.79 ksi.   Spacing = 6 in                                        

        

          

Figure 5-47:  Comparison between KDOT Column Expert with Ramamurthy experiment (α = 

26.5) 
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 case 4                                                                    

Confined columns under eccentric loading 

(Murat Saatcioglu. Amir Salamat amd Salim Razvi ) 

Section Height = 8.27 in.                                                 

SectionWidth =8 .27 in. 

Clear Cover   = 0. 5 in 

Steel Bars in x direction = 3    

Steel Bars in y direction = 3                                                      Figure 5-48 : Saatcioglu Column 

Steel Area = 0.155 in2. 

Tie Diameter = 0.364 in. 

f’c = 5.1 ksi     fy = 75 ksi.   fyh = 59.45 ksi.   Spacing = 1.97 in. 

 

          

Figure 5-49: Comparison between KDOT Column Expert with Saatcioglu et al experiment (α = 

0) 
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 case 5                                                                    

Confined columns under eccentric loading 

(Mural Saatcioglu. Amir Salamat amd Salim Razvi ) 

Section Height = 8.27 in.                                                 

SectionWidth =8 .27 in. 

Clear Cover   = 0. 5 in 

Steel Bars in x direction = 4    

Steel Bars in y direction = 4 

Steel Area = 0.155 in2.                  Figure 5-50 : Saatcioglu Column 

Tie Diameter = 0.364 in. 

f’c = 5.1 ksi     fy = 75 ksi.   fyh = 59.45 ksi.   Spacing = 1.97 in. 

 

           

Figure 5-51: Comparison between KDOT Column Expert with Saatcioglu et al experiment 1 (α 

= 0) 
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 case 6                                                                   

Stress strain behavior of concrete confined by overlapping 

hoops at low and high strain rate 

 (B. Scott, R Park and M. Priestly)

Section Height = 17.7 in.                                                

Section Width =17 .7 in. 

Clear Cover   = 0. 787 in 

Steel Bars in x direction = 4    

Steel Bars in y direction = 4 

Steel Area = 0.49 in2.   

Tie Diameter = 0.394 in. 

f’c = 3.67 ksi     fy = 63 ksi.   fyh = 

    

Figure 5-53: Comparison between KDOT Column Expert with Scott 
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case 6                                                                    

Stress strain behavior of concrete confined by overlapping 

 

Priestly) 

= 17.7 in.                                                 

               Figure 5-52 : 

= 44.8 ksi.   Spacing = 2.83 in. 

: Comparison between KDOT Column Expert with Scott et al experiment (

100 200 300 400

Moment (k.in.)

Experimemtal points

Interaction diagram "e relation"

Interaction diagram "CR relation"

Interaction diagram "CR relation" with 

cover spalling

4 
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: Scott Column  

 

experiment (α = 0) 

500
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 case 7                                                                   

Stress strain behavior of concrete confined by overlapping hoops at low and high strain rate 

 (B. Scott, R Park and M. Priestly) 

Section Height = 17.7 in.                                                 

Section Width =17 .7 in. 

Clear Cover   = 0. 787 in 

Steel Bars in x direction = 3   

Steel Bars in y direction = 3 

Steel Area = 0.7 in2. 

Spiral Diameter = 0.394 in.                                       Figure 5-54 : Scott Column 

f’c = 3.67 ksi     fy = 57.13 ksi.   fyh = 44.8 ksi.   Spacing = 2.83 in. 

    

 

Figure 5-55: Comparison between KDOT Column Expert with Scott et al experiment (α = 0) 
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The analyzed seven cases cover the three Interaction diagram zones of; compression controlled, 

tension controlled and balanced zones. There is good agreement between the theoretical 

interaction diagram and the corresponding experimental data as shown in Figures (5-42), (5-44), 

(5-45), (5-47), (5-49), (5-51), (5-53) and (5-55). 

 It is shown from Figures (5-49), (5-51), (5-53) and (5-55) that interaction diagrams 

plotted using Equation (5-105) that is representative of the compression zone area are more 

accurate compared to those plotted using  Equation (5-105 a) that is a function of eccentricity. 

Also the experimental data correlate well to its associated interaction diagrams. 

 Figure (5-53) and (5-55) show more accuracy and conservative interaction diagram when 

the analysis account for the cover spalling when the unconfined crushing strain is considered. 

This is represented by the most inner curve in Figures (5-53) and (5-55). Also in Figure (5-53) 

and (5-55) the experimental points 1 and 2 are having the same eccentricity but the loading strain 

rate is different. The loading strain rate for point 1 is 0.0000033, whereas it is 0.0167 for point 2. 

Points 3 and 4 also have the same loading strain rate. It is seen that the loading strain rate for 

points 1 and 3 are extremely small. Hence points 2 and 4 are more realistic and they are captured 

well by the theoretical interaction diagram. In conclusion, the strain rate is a parameter that needs 

further invistigation.  

 

 5-3-3-2 Comparison between the surface meridians T & C used in Mander model 

and Experimental Work 

The ultimate strength surface meridians equations for compression C and tension T 

derived by Elwi and Murray (1979) from the data of Scickert and Winkler (1977), that are 

utilized by Mander et al (1988) to predict the ultimate confined axial strength using the two 
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lateral confined pressures, are compared herein to some experimental data found from Mills and 

Zimmerman (1970).  The equations used by mander are developed originally for concrete that 

has unconfined strength of 4.4 ksi. They have the following formulas  

2
049350.0661091.0069232.0 octoctT σσ −−=

                  
5-179

 

2
315545.0150502.1122965.0 octoctC σσ −−=

                  
5-180 

                   

Figure 5-56: T and C meridians using equations (5-179) and (5-180) used in Mander Model for 

f’ c = 4.4 ksi 

The T and C meridians adopted by Mander from Elwi and Murray (1979) work are reported on 

in Figure (5-56). Mills and Zimmerman (1970) developed three sets of multiaxial tests for 

concrete with unconfined strength of 3.34, 3.9 and 5.2 ksi. For each set, the values of ��������� and 

��������� are extracted at unoconfined strength f’ c, the cracking tensile strength f’ t, equibiaxial 

compressive strength f’ cb and two extra points; one on each of the meridians. These five points 

are used to plot the T and C, Tables () meridians as shown in Figures (5-57), (5-58) and (5-59) 
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Figure 5-57: T and C meridians for f’ c = 3.34 ksi 

  

                 

Figure 5-58: T and C meridians for f’ c = 3.9 ksi 
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Figure 5-59: T and C meridians for f’ c = 5.2 ksi 

The T and C equations for Figures (5-57) through (5-59) are as follow: 

for f’ c = 3.34 ksi: 

2
0169.06172.00851.0 octoctT σσ −−=

                                                 
5-181

 

2
1865.00471.11431.0 octoctC σσ −−=

                             
5-182 

for f’ c = 3.9 ksi: 

2
0151.06479.00825.0 octoctT σσ −−=

                            
5-183

 

2
112.00472.11348.0 octoctC σσ −−=

                                        
5-184 

for f’ c = 5.2 ksi: 

2
0603.06658.00719.0 octoctT σσ −−=

                            
5-185

 

2
2768.01332.11244.0 octoctC σσ −−=

                             
5-186
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Equations (5-181) through (5-186) are used in generating confined strength values for 

different lateral pressures as shown in Appendix A. Equations (5-179) and (5-180) are used also 

in developing confined strength values for the same lateral pressure values. It is seen from the 

tables that equations (5-179) and (5-180) give conservative values compared to equations (5-181) 

through (5-186). Accordingly, Equations (5-179) and (5-180) are used herin to predict the 

ultimate confined axial strength values for any given unconfined strength (f’ c) value. 

 

Table 5-1: Data for constructing T and C meridian Curves for f’ c equal to 3.34 ksi 

control parameter σ oct τ oct 

f'c= 3.34 ksi -0.33333 0.471405 

f't 0.043258 0.061176 

f'cb -0.81497 0.576271 

triaxial on C -1.15968 1.10653 

triaxial on T -1.50898 0.978094 

 

Table 5-2: Data for constructing T and C meridian Curves for f’ c equal to 3.9 ksi 

control parameter σ oct τ oct 

f'c= 3.9 ksi -0.33333 0.471405 

f't 0.040006 0.056578 

f'cb -1.0904 0.771027 

triaxial on C -1.06018 1.119058 

triaxial on T -1.26248 0.876414 

 

Table 5-3: Data for constructing T and C meridian Curves for f’ c equal to 5.2 ksi 

control parameter σ oct τ oct 

f'c= 5.2 ksi -0.33333 0.471405 

f't 0.034553 0.048865 

f'cb -0.80229 0.567306 

triaxial on C -0.68386 0.76993 

triaxial on T -0.88634 0.614725 

  



 

Chapter 6 

 The software, KDOT Column Expert,

“OOP”, within the framework of the visual C

bulky codes into different classes;

class generates objects that have its class characteristics and can be used in other classes. 

procedure is adaptable to simulate the real process, as well as it is flexible enough for 

modification and addition to the program

 As shown in Figure (6-1), the main t

and FRP inherited from it, shape that 

finally Model that inherites the material models used in the program.

and material elements forms reinforced concrete cross section. This section is lent, beside the 

models, to the numerical analysis, and the 

product. 

                

Figure 

363 

Chapter 6 - Software Development 

 6-1 Introduction 

, KDOT Column Expert, is prepared using the object oriented programming 

“OOP”, within the framework of the visual C# language. The OOP is useful tool that breaks the 

classes; the components of each class are related to each other

class generates objects that have its class characteristics and can be used in other classes. 

procedure is adaptable to simulate the real process, as well as it is flexible enough for 

fication and addition to the program 

1), the main three classes are material, which has concrete, 

inherited from it, shape that classifies the cross section to Circular or 

the material models used in the program. Any combination of shapes 

and material elements forms reinforced concrete cross section. This section is lent, beside the 

models, to the numerical analysis, and the calculations are implemented to yield the final 

Figure 6-1: KDOT Column Expert classes 

prepared using the object oriented programming 

language. The OOP is useful tool that breaks the 

related to each other. Each 

class generates objects that have its class characteristics and can be used in other classes.  This 

procedure is adaptable to simulate the real process, as well as it is flexible enough for 

re material, which has concrete, steel 

to Circular or Rectangular, and 

Any combination of shapes 

and material elements forms reinforced concrete cross section. This section is lent, beside the 

implemented to yield the final 
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 6-2 Interface Design 

The interface was generated using the graphical user interface “GUI” which is a convenient 

communication tool between the user and the program. The initial form has links to circular 

columns and rectangular columns. 

                                     

Figure 6-2: KDOT Column Expert Initial form 

 6-2-1 Circular Columns Interface 

 

Figure 6-3: Circular Column GUI 
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The interface is divided into five sections as shown in Figure (6-4): 

1- Data Input 

Data Input section is divided into five sub-sections; Geometric properties, concrete 

properties, longitudinal steel properties, transverse steel properties and FRP properties 

2- Graphics Input representation 

This section automatically generates sectional plan view and elevation view of the 

cross section. It shows the scaled proportional location of each element in the cross 

section in order to avoid unrealistic overlapping. 

3- Selection tools  

This section has different buttons which controls plotting the interaction diagram 

curve/s:  

Plotting the three curves; confined concrete, unconfined concrete and design curves 

Plotting any one of the previous curves separately. 

Plotting a series of design curves for the full range of reinforcement ratio. 

Plotting curve for the non-redundent structures. This curve is limited to 75% of the 

distance between the design curve and the confined curve 

It has also buttons for optionally save or load cases defined in the “Data Input” 

section and print the “plotting area” section view 

4- Plotting area  

The plotting area section shows the requested curve/s. 

5- Projection points input  

This section enables the user to input any numbers of moment-force points up to 25 

points, which show up immediately on the plotting area with the existing curve/s. 



 

Figure 6-4
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4: Circular Column Interface main sections 
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Figure 6-5: Different Interaction Diagrams plot in the Plotting area-Circular Section- 

                           

Figure 6-6: FRP form-Manufactured FRP- 
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Figure 6-7: FRP form-user defined- 

  

 6-2-2 Rectangular Columns Interface 

 

 

Figure 6-8: Rectangular Column GUI 
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The interface is divided into five sections as shown in Figure (6-9): 

1- Data Input 

Data Input section is divided into four sub-sections; Geometric properties, concrete 

properties, longitudinal steel properties and transverse steel properties. 

2- Graphics Input representation 

This section automatically generates sectional plan view and elevation view of the 

cross section. It shows the scaled proportional location of each element in the cross 

section in order to avoid unrealistic overlapping. 

3- Selection tools  

This section has different buttons which controls plotting the interaction diagram 

curve/s: 

Plotting the three curves; confined concrete, unconfined concrete and design curves 

Plotting any one of the previous curves separately. 

Plotting a series of design curves for the full range of reinforcement ratio. 

It has also buttons for optionally save or load cases defined in the “Data Input” 

section and print the “plotting area” section view 

4- Plotting area  

The plotting area section shows the requested curve/s. 

5- Projection points input  

This section enables the user to input any numbers of moment-force points up to 25 points, 

which show up immediately on the plotting area with the existing curve/s. The interaction 

diagram is updated according to the α angle input that is determind from the two moments about 



 

x and y axes. The α angle is plott

moments’ ratio with respect to the cross section.

 

Figure 6-9: Rectangular Column Interface main sections
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angle is plotted on the sectional plan to show the load position and the two 

the cross section. 

: Rectangular Column Interface main sections 

 

Figure 6-10: α angle form 

ed on the sectional plan to show the load position and the two 
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The program is able to plot 3D interaction Diagram surface as shown in Figure (6-12).     

 

 

Figure 6-11: Different Interaction Diagrams plot in the Plotting area- Rectangular Section 

   

Figure 6-12: 3D Interaction Diagram 
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Chapter 7 - Conclusions and Recommendations 

 7-1 Conclusions 

This dissertation accomplished several objectives at the analysis, material modeling, design 

implications and software development levels. It may be concluded that: 

1- Based on the extensive review of the confined model available in the literature, 

Mander Model is found to be the most suitable concentric loading model expressing 

the stress-strain behavior of circular and rectangular columns confined with 

convenient lateral steel and steel tubes as well. In addition Lam and Teng model is 

found to be the suitable for predicting the stress-strain behavior of circular columns 

confined with FRP in case of concentric loading 

2- The eccentric based stress-strain model developed in this study provides more 

accuracy compared to the available concentric confined models in the literature as it 

is shown through comparison with experimental data for all of the three cases of 

different confinements. 

3- The stress-strain curve developed for circular columns confined with FRP and steel 

together compares very well with experimental ones. The amount of FRP provided in 

strengthening the columns is very essential in determining the shape of the stress-

strain curve. It should be a value that causes the ratio of flf /f’c to be at least 0.08 in 

order to have an ascending branch beyond the unconfined peak strength.  

4- Columns confined with steel tubes have to have fl /f’c ratio equal to or more than 0.4 

in order to have an ascending branch beyond the unconfined peak strength.  
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5- For rectangular columns, the ratio of the area of compression zone to the sectional 

gross area is more representative than the normalized alone eccentricity in correlating 

eccentric behavior. For circular columns, the normalized eccentricity is directly 

correlated to the ratio of compression zone to gross sectional area. 

6- The non-linear numerical procedure introduced, using the eccentric model and the 

finite layer approach, successfully predicted the ultimate capacity of circular and 

rectangular reinforced concrete columns confined with different materials. The 

columns examined are circular columns confined with FRP, circular columns 

confined with steel tubes and rectangular columns confined with lateral steel. 

7- A computer program named “KDOT Column Expert” is developed based on the non-

linear approach implemented for analysing and designing circular columns wrapped 

with FRP and rectangular columns confined with lateral steel hoops. 

8- The unconfined concrete analysis carried out by KDOT Column Expert is 

benchmarked successfully against well-established commercial software for a range 

of design parameters 

9- The confined concrete analysis implemented by KDOT Column Expert is well 

correlated to experimental data for the column types with three different 

confinements mentioned above. 
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 7-2 Recommendations 

This work should be extended to address the following areas: 

1- Model the effect of FRP wrapping on confinement for rectangular columns. 

2- Model corrosion of longitudinal and transverse steel for circular and 

rectangular columns 

3- Refine CFST modeling by considering the biaxial stress on the steel and 

accounting for the premature failure of steel. 

4- Refine the modeling of concrete wrapped with FRP by determining the ∆p that 

represents the lateral pressure difference developed due to transferring the 

confinemnet stress from FRP position to lateral steel position 

5- Model CFST for rectangular columns 

6- Expand the software application to include the CFST columns. 
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Appendix A - Ultimate Confined Strength Tables 

 
Table A-1 is developed for f’c of 3.3 using equations 5-181 and 5-182. Table A-2 is for f’c of 3.9 

using equations 5-183 and 5-184. Table A-3 is developed using Mander procedure that utilizes 

Scickert and Winkler (1977) formulas. Table A-4 is for f’c of 5.2 using equations 5-185 and 5-

186. Tables A-5 through A-7 show the confined values for the same lateral pressure using 

Scickert and Winkler (1977) equations. Tables A-5 through A-7 give conservative values 

compared to table A-1, A-2 and A-4. This indicates that equations 5-179 and 5-180 found by 

Scickert and Winkler (1977) and utilized by Mander et al (1988) are conservative enough to be 

used in the analysis 
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Table A-1: Ultimate confined strength to unconfined strength ratio for f’ c = 3.3 ksi 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 3.7260 3.9001 4.0336 4.1442 4.2396 4.3238 4.3994 4.4680 4.5309 4.5888 4.6424 4.6924 4.7389 4.7825 4.8233 

0.04 3.9001 4.1298 4.2988 4.4318 4.5436 4.6408 4.7273 4.8054 4.8768 4.9424 5.0032 5.0598 5.1128 5.1624 5.2091 

0.06 4.0336 4.2988 4.5141 4.6779 4.8098 4.9220 5.0205 5.1086 5.1887 5.2621 5.3299 5.3930 5.4520 5.5074 5.5596 

0.08 4.1442 4.4318 4.6779 4.8808 5.0396 5.1700 5.2821 5.3812 5.4705 5.5519 5.6269 5.6965 5.7614 5.8223 5.8797 

0.1 4.2396 4.5436 4.8098 5.0396 5.2316 5.3855 5.5140 5.6257 5.7250 5.8150 5.8974 5.9736 6.0445 6.1109 6.1734 

0.12 4.3238 4.6408 4.9220 5.1700 5.3855 5.5679 5.7172 5.8436 5.9544 6.0537 6.1440 6.2271 6.3041 6.3761 6.4436 

0.14 4.3994 4.7273 5.0205 5.2821 5.5140 5.7172 5.8910 6.0358 6.1600 6.2698 6.3687 6.4591 6.5425 6.6201 6.6928 

0.16 4.4680 4.8054 5.1086 5.3812 5.6257 5.8436 6.0358 6.2019 6.3424 6.4643 6.5728 6.6712 6.7614 6.8450 6.9230 

0.18 4.5309 4.8768 5.1887 5.4705 5.7250 5.9544 6.1600 6.3424 6.5015 6.6380 6.7575 6.8647 6.9623 7.0522 7.1357 

0.2 4.5888 4.9424 5.2621 5.5519 5.8150 6.0537 6.2698 6.4643 6.6380 6.7907 6.9233 7.0405 7.1462 7.2428 7.3322 

0.22 4.6424 5.0032 5.3299 5.6269 5.8974 6.1440 6.3687 6.5728 6.7575 6.9233 7.0703 7.1991 7.3139 7.4180 7.5137 

0.24 4.6924 5.0598 5.3930 5.6965 5.9736 6.2271 6.4591 6.6712 6.8647 7.0405 7.1991 7.3407 7.4660 7.5784 7.6810 

0.26 4.7389 5.1128 5.4520 5.7614 6.0445 6.3041 6.5425 6.7614 6.9623 7.1462 7.3139 7.4660 7.6026 7.7245 7.8347 

0.28 4.7825 5.1624 5.5074 5.8223 6.1109 6.3761 6.6201 6.8450 7.0522 7.2428 7.4180 7.5784 7.7245 7.8566 7.9753 

0.3 4.8233 5.2091 5.5596 5.8797 6.1734 6.4436 6.6928 6.9230 7.1357 7.3322 7.5137 7.6810 7.8347 7.9753 8.1031 

 
 
 

   σ1* 

σ2* 
 



394 

 

 
 
 
 
 
 
Table A-2: Ultimate confined strength to unconfined strength ratio for f’ c = 3.9 ksi 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 4.4819 4.7318 4.9351 5.1101 5.2656 5.4063 5.5355 5.6552 5.7670 5.8721 5.9712 6.0651 6.1544 6.2394 6.3206 

0.04 4.7318 5.0412 5.2854 5.4880 5.6642 5.8217 5.9649 6.0969 6.2196 6.3345 6.4427 6.5450 6.6422 6.7347 6.8230 

0.06 4.9351 5.2854 5.5802 5.8187 6.0197 6.1962 6.3548 6.4998 6.6337 6.7587 6.8759 6.9865 7.0914 7.1911 7.2862 

0.08 5.1101 5.4880 5.8187 6.1005 6.3333 6.5323 6.7083 6.8674 7.0134 7.1488 7.2753 7.3943 7.5068 7.6136 7.7154 

0.1 5.2656 5.6642 6.0197 6.3333 6.6037 6.8308 7.0273 7.2024 7.3616 7.5081 7.6443 7.7720 7.8923 8.0062 8.1145 

0.12 5.4063 5.8217 6.1962 6.5323 6.8308 7.0908 7.3125 7.5063 7.6802 7.8389 7.9855 8.1222 8.2506 8.3718 8.4868 

0.14 5.5355 5.9649 6.3548 6.7083 7.0273 7.3125 7.5631 7.7795 7.9704 8.1427 8.3007 8.4471 8.5840 8.7128 8.8346 

0.16 5.6552 6.0969 6.4998 6.8674 7.2024 7.5063 7.7795 8.0215 8.2328 8.4208 8.5913 8.7483 8.8942 9.0310 9.1599 

0.18 5.7670 6.2196 6.6337 7.0134 7.3616 7.6802 7.9704 8.2328 8.4670 8.6733 8.8582 9.0269 9.1827 9.3279 9.4644 

0.2 5.8721 6.3345 6.7587 7.1488 7.5081 7.8389 8.1427 8.4208 8.6733 8.9002 9.1018 9.2837 9.4503 9.6048 9.7492 

0.22 5.9712 6.4427 6.8759 7.2753 7.6443 7.9855 8.3007 8.5913 8.8582 9.1018 9.3219 9.5190 9.6978 9.8624 10.0154 

0.24 6.0651 6.5450 6.9865 7.3943 7.7720 8.1222 8.4471 8.7483 9.0269 9.2837 9.5190 9.7328 9.9255 10.1014 10.2638 

0.26 6.1544 6.6422 7.0914 7.5068 7.8923 8.2506 8.5840 8.8942 9.1827 9.4503 9.6978 9.9255 10.1334 10.3220 10.4948 

0.28 6.2394 6.7347 7.1911 7.6136 8.0062 8.3718 8.7128 9.0310 9.3279 9.6048 9.8624 10.1014 10.3220 10.5243 10.7080 

0.3 6.3206 6.8230 7.2862 7.7154 8.1145 8.4868 8.8346 9.1599 9.4644 9.7492 10.0154 10.2638 10.4948 10.7080 10.9060 

 
 
 

   σ1* 

σ2* 
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Table A-3: Ultimate confined strength to unconfined strength ratio for f’ c = 4.4 ksi (used by Mander et al. (1988)) 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 5.0255 5.2550 5.4259 5.5656 5.6849 5.7895 5.8829 5.9674 6.0444 6.1152 6.1806 6.2412 6.2976 6.3502 6.3993 

0.04 5.2550 5.5622 5.7791 5.9460 6.0845 6.2040 6.3096 6.4044 6.4906 6.5695 6.6423 6.7098 6.7728 6.8315 6.8866 

0.06 5.4259 5.7791 6.0569 6.2623 6.4247 6.5613 6.6803 6.7860 6.8815 6.9686 7.0487 7.1230 7.1920 7.2566 7.3171 

0.08 5.5656 5.9460 6.2623 6.5164 6.7112 6.8688 7.0030 7.1209 7.2263 7.3218 7.4094 7.4903 7.5654 7.6355 7.7012 

0.1 5.6849 6.0845 6.4247 6.7112 6.9456 7.1307 7.2834 7.4150 7.5313 7.6359 7.7312 7.8188 7.9000 7.9756 8.0464 

0.12 5.7895 6.2040 6.5613 6.8688 7.1307 7.3486 7.5248 7.6726 7.8012 7.9157 8.0193 8.1140 8.2013 8.2825 8.3582 

0.14 5.8829 6.3096 6.6803 7.0030 7.2834 7.5248 7.7283 7.8964 8.0394 8.1650 8.2775 8.3797 8.4735 8.5604 8.6413 

0.16 5.9674 6.4044 6.7860 7.1209 7.4150 7.6726 7.8964 8.0875 8.2480 8.3864 8.5089 8.6193 8.7200 8.8127 8.8989 

0.18 6.0444 6.4906 6.8815 7.2263 7.5313 7.8012 8.0394 8.2480 8.4282 8.5818 8.7156 8.8350 8.9431 9.0422 9.1338 

0.2 6.1152 6.5695 6.9686 7.3218 7.6359 7.9157 8.1650 8.3864 8.5818 8.7522 8.8994 9.0289 9.1451 9.2510 9.3483 

0.22 6.1806 6.6423 7.0487 7.4094 7.7312 8.0193 8.2775 8.5089 8.7156 8.8994 9.0610 9.2022 9.3276 9.4408 9.5443 

0.24 6.2412 6.7098 7.1230 7.4903 7.8188 8.1140 8.3797 8.6193 8.8350 9.0289 9.2022 9.3560 9.4916 9.6130 9.7231 

0.26 6.2976 6.7728 7.1920 7.5654 7.9000 8.2013 8.4735 8.7200 8.9431 9.1451 9.3276 9.4916 9.6383 9.7687 9.8861 

0.28 6.3502 6.8315 7.2566 7.6355 7.9756 8.2825 8.5604 8.8127 9.0422 9.2510 9.4408 9.6130 9.7687 9.9087 10.0343 

0.3 6.3993 6.8866 7.3171 7.7012 8.0464 8.3582 8.6413 8.8989 9.1338 9.3483 9.5443 9.7231 9.8861 10.0343 10.1683 

 
 
 
 
 
 
 

   σ1* 
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Table A-4: Ultimate confined strength to unconfined strength ratio for f’ c = 5.2 ksi 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 5.9070 6.1647 6.3409 6.4785 6.5923 6.6891 6.7730 6.8467 6.9120 6.9700 7.0217 7.0679 7.1091 7.1458 7.1783 

0.04 6.1647 6.5586 6.8072 6.9847 7.1258 7.2436 7.3448 7.4332 7.5113 7.5810 7.6435 7.6996 7.7502 7.7959 7.8370 

0.06 6.3409 6.8072 7.1633 7.4023 7.5789 7.7215 7.8417 7.9458 8.0373 8.1187 8.1917 8.2574 8.3170 8.3710 8.4201 

0.08 6.4785 6.9847 7.4023 7.7279 7.9573 8.1317 8.2746 8.3962 8.5020 8.5957 8.6794 8.7548 8.8231 8.8853 8.9420 

0.1 6.5923 7.1258 7.5789 7.9573 8.2579 8.4780 8.6495 8.7917 8.9137 9.0206 9.1157 9.2010 9.2782 9.3485 9.4126 

0.12 6.6891 7.2436 7.7215 8.1317 8.4780 8.7576 8.9688 9.1369 9.2778 9.3996 9.5070 9.6028 9.6893 9.7678 9.8395 

0.14 6.7730 7.3448 7.8417 8.2746 8.6495 8.9688 9.2303 9.4332 9.5975 9.7367 9.8579 9.9652 10.0615 10.1486 10.2280 

0.16 6.8467 7.4332 7.9458 8.3962 8.7917 9.1369 9.4332 9.6790 9.8740 10.0344 10.1716 10.2917 10.3987 10.4951 10.5826 

0.18 6.9120 7.5113 8.0373 8.5020 8.9137 9.2778 9.5975 9.8740 10.1061 10.2937 10.4501 10.5850 10.7039 10.8102 10.9063 

0.2 6.9700 7.5810 8.1187 8.5957 9.0206 9.3996 9.7367 10.0344 10.2937 10.5135 10.6941 10.8465 10.9790 11.0964 11.2019 

0.22 7.0217 7.6435 8.1917 8.6794 9.1157 9.5070 9.8579 10.1716 10.4501 10.6941 10.9029 11.0770 11.2255 11.3555 11.4713 

0.24 7.0679 7.6996 8.2574 8.7548 9.2010 9.6028 9.9652 10.2917 10.5850 10.8465 11.0770 11.2759 11.4438 11.5885 11.7159 

0.26 7.1091 7.7502 8.3170 8.8231 9.2782 9.6893 10.0615 10.3987 10.7039 10.9790 11.2255 11.4438 11.6338 11.7959 11.9367 

0.28 7.1458 7.7959 8.3710 8.8853 9.3485 9.7678 10.1486 10.4951 10.8102 11.0964 11.3555 11.5885 11.7959 11.9776 12.1342 

0.3 7.1783 7.8370 8.4201 8.9420 9.4126 9.8395 10.2280 10.5826 10.9063 11.2019 11.4713 11.7159 11.9367 12.1342 12.3084 

 

   σ1* 

σ2* 
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Table A-5: Ultimate confined strength to unconfined strength ratio for f’ c = 3.3 ksi (using Scickert and Winkler (1977)) 

 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 3.7369 3.9076 4.0347 4.1385 4.2272 4.3050 4.3745 4.4373 4.4946 4.5472 4.5958 4.6408 4.6827 4.7218 4.7584 

0.04 3.9076 4.1360 4.2973 4.4214 4.5244 4.6133 4.6918 4.7623 4.8263 4.8850 4.9391 4.9894 5.0361 5.0799 5.1208 

0.06 4.0347 4.2973 4.5039 4.6566 4.7773 4.8789 4.9674 5.0460 5.1170 5.1818 5.2414 5.2966 5.3479 5.3959 5.4410 

0.08 4.1385 4.4214 4.6566 4.8456 4.9904 5.1076 5.2074 5.2950 5.3734 5.4445 5.5096 5.5697 5.6255 5.6777 5.7266 

0.1 4.2272 4.5244 4.7773 4.9904 5.1647 5.3023 5.4159 5.5137 5.6002 5.6780 5.7489 5.8140 5.8744 5.9306 5.9832 

0.12 4.3050 4.6133 4.8789 5.1076 5.3023 5.4643 5.5954 5.7053 5.8009 5.8861 5.9631 6.0335 6.0984 6.1588 6.2151 

0.14 4.3745 4.6918 4.9674 5.2074 5.4159 5.5954 5.7467 5.8717 5.9780 6.0714 6.1551 6.2311 6.3009 6.3654 6.4256 

0.16 4.4373 4.7623 5.0460 5.2950 5.5137 5.7053 5.8717 6.0138 6.1332 6.2361 6.3271 6.4092 6.4841 6.5531 6.6171 

0.18 4.4946 4.8263 5.1170 5.3734 5.6002 5.8009 5.9780 6.1332 6.2671 6.3813 6.4809 6.5696 6.6500 6.7237 6.7918 

0.2 4.5472 4.8850 5.1818 5.4445 5.6780 5.8861 6.0714 6.2361 6.3813 6.5081 6.6175 6.7138 6.8003 6.8789 6.9513 

0.22 4.5958 4.9391 5.2414 5.5096 5.7489 5.9631 6.1551 6.3271 6.4809 6.6175 6.7377 6.8427 6.9359 7.0201 7.0970 

0.24 4.6408 4.9894 5.2966 5.5697 5.8140 6.0335 6.2311 6.4092 6.5696 6.7138 6.8427 6.9571 7.0579 7.1481 7.2300 

0.26 4.6827 5.0361 5.3479 5.6255 5.8744 6.0984 6.3009 6.4841 6.6500 6.8003 6.9359 7.0579 7.1669 7.2639 7.3512 

0.28 4.7218 5.0799 5.3959 5.6777 5.9306 6.1588 6.3654 6.5531 6.7237 6.8789 7.0201 7.1481 7.2639 7.3681 7.4614 

0.3 4.7584 5.1208 5.4410 5.7266 5.9832 6.2151 6.4256 6.6171 6.7918 6.9513 7.0970 7.2300 7.3512 7.4614 7.5611 

 
 
 
 
 

   σ1* 

σ2* 
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Table A-6: Ultimate confined strength to unconfined strength ratio for f’ c = 3.9 ksi (using Scickert and Winkler (1977)) 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 4.4163 4.6181 4.7683 4.8909 4.9958 5.0877 5.1698 5.2441 5.3118 5.3740 5.4314 5.4846 5.5342 5.5804 5.6236 

0.04 4.6181 4.8880 5.0786 5.2253 5.3470 5.4520 5.5448 5.6281 5.7038 5.7732 5.8372 5.8965 5.9518 6.0035 6.0519 

0.06 4.7683 5.0786 5.3228 5.5032 5.6460 5.7660 5.8705 5.9635 6.0474 6.1239 6.1944 6.2596 6.3203 6.3770 6.4302 

0.08 4.8909 5.2253 5.5032 5.7266 5.8977 6.0362 6.1542 6.2577 6.3504 6.4344 6.5113 6.5824 6.6484 6.7100 6.7677 

0.1 4.9958 5.3470 5.6460 5.8977 6.1038 6.2664 6.4006 6.5162 6.6184 6.7104 6.7941 6.8711 6.9424 7.0089 7.0711 

0.12 5.0877 5.4520 5.7660 6.0362 6.2664 6.4578 6.6127 6.7426 6.8557 6.9563 7.0473 7.1305 7.2072 7.2785 7.3452 

0.14 5.1698 5.5448 5.8705 6.1542 6.4006 6.6127 6.7916 6.9392 7.0650 7.1753 7.2742 7.3640 7.4465 7.5228 7.5939 

0.16 5.2441 5.6281 5.9635 6.2577 6.5162 6.7426 6.9392 7.1072 7.2483 7.3699 7.4775 7.5745 7.6630 7.7445 7.8202 

0.18 5.3118 5.7038 6.0474 6.3504 6.6184 6.8557 7.0650 7.2483 7.4066 7.5416 7.6592 7.7641 7.8591 7.9462 8.0267 

0.2 5.3740 5.7732 6.1239 6.4344 6.7104 6.9563 7.1753 7.3699 7.5416 7.6913 7.8207 7.9345 8.0367 8.1297 8.2152 

0.22 5.4314 5.8372 6.1944 6.5113 6.7941 7.0473 7.2742 7.4775 7.6592 7.8207 7.9628 8.0868 8.1970 8.2964 8.3874 

0.24 5.4846 5.8965 6.2596 6.5824 6.8711 7.1305 7.3640 7.5745 7.7641 7.9345 8.0868 8.2220 8.3412 8.4478 8.5446 

0.26 5.5342 5.9518 6.3203 6.6484 6.9424 7.2072 7.4465 7.6630 7.8591 8.0367 8.1970 8.3412 8.4700 8.5846 8.6878 

0.28 5.5804 6.0035 6.3770 6.7100 7.0089 7.2785 7.5228 7.7445 7.9462 8.1297 8.2964 8.4478 8.5846 8.7077 8.8175 

0.3 5.6236 6.0519 6.4302 6.7677 7.0711 7.3452 7.5939 7.8202 8.0267 8.2152 8.3874 8.5446 8.6878 8.8175 8.9358 

  

   σ1* 

σ2* 
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Table A-7: Ultimate confined strength to unconfined strength ratio for f’ c = 5.2 ksi (using Scickert and Winkler (1977)) 

 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 5.8885 6.1574 6.3577 6.5213 6.6610 6.7836 6.8931 6.9921 7.0823 7.1652 7.2418 7.3128 7.3788 7.4405 7.4980 

0.04 6.1574 6.5173 6.7715 6.9671 7.1294 7.2694 7.3931 7.5042 7.6051 7.6976 7.7829 7.8620 7.9357 8.0046 8.0692 

0.06 6.3577 6.7715 7.0970 7.3376 7.5279 7.6880 7.8274 7.9513 8.0632 8.1652 8.2592 8.3461 8.4270 8.5027 8.5736 

0.08 6.5213 6.9671 7.3376 7.6354 7.8636 8.0483 8.2056 8.3437 8.4672 8.5792 8.6818 8.7765 8.8645 8.9467 9.0237 

0.1 6.6610 7.1294 7.5279 7.8636 8.1384 8.3552 8.5342 8.6883 8.8246 8.9472 9.0588 9.1615 9.2566 9.3452 9.4281 

0.12 6.7836 7.2694 7.6880 8.0483 8.3552 8.6105 8.8169 8.9902 9.1409 9.2750 9.3963 9.5073 9.6096 9.7047 9.7935 

0.14 6.8931 7.3931 7.8274 8.2056 8.5342 8.8169 9.0554 9.2523 9.4200 9.5671 9.6989 9.8187 9.9286 10.0304 10.1251 

0.16 6.9921 7.5042 7.9513 8.3437 8.6883 8.9902 9.2523 9.4763 9.6644 9.8265 9.9700 10.0994 10.2174 10.3261 10.4270 

0.18 7.0823 7.6051 8.0632 8.4672 8.8246 9.1409 9.4200 9.6644 9.8755 10.0554 10.2123 10.3522 10.4789 10.5949 10.7023 

0.2 7.1652 7.6976 8.1652 8.5792 8.9472 9.2750 9.5671 9.8265 10.0554 10.2551 10.4276 10.5793 10.7155 10.8396 10.9536 

0.22 7.2418 7.7829 8.2592 8.6818 9.0588 9.3963 9.6989 9.9700 10.2123 10.4276 10.6170 10.7824 10.9293 11.0619 11.1832 

0.24 7.3128 7.8620 8.3461 8.7765 9.1615 9.5073 9.8187 10.0994 10.3522 10.5793 10.7824 10.9627 11.1216 11.2637 11.3928 

0.26 7.3788 7.9357 8.4270 8.8645 9.2566 9.6096 9.9286 10.2174 10.4789 10.7155 10.9293 11.1216 11.2934 11.4462 11.5838 

0.28 7.4405 8.0046 8.5027 8.9467 9.3452 9.7047 10.0304 10.3261 10.5949 10.8396 11.0619 11.2637 11.4462 11.6103 11.7574 

0.3 7.4980 8.0692 8.5736 9.0237 9.4281 9.7935 10.1251 10.4270 10.7023 10.9536 11.1832 11.3928 11.5838 11.7574 11.9144 

 

   σ1* 

σ2* 
 


