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Abstract 

A nano-material filter is an efficient device for improving indoor environmental quality 

(e.g. smoke reduction, air purification in buildings). Studying the effectiveness of nano-materials 

used in the device by computer simulation is challenging because very different size scales are 

involved. Therefore, numerical methods have to be developed to accommodate varying 

magnitudes of scales. In the current study, the simulation has been divided into three scales: 

macro-, micro- and nano-scale. The numerical schemes at each scale are targeted at a particular 

scale; however, the relationship of the general transport phenomena, physical mechanisms and 

properties among different scales are uniquely linked at the same time. 

The objective of the macro-scale simulation was to design and study a gas filter 

constructed with nano-material pellets. The filter was considered a packed-bed tube filled with 

manufactured nano-material pellets. Commercial computational fluid dynamics (CFD) packages 

were used along with the embedded programming macros. In the filtration process, we focused 

on the flow and species transport phenomena through the porous substrate. The 

mathematical/numerical models were built and tested based on the physical models used in the 

experimental setups for different materials that were tested. The results from the numerical 

models were validated and compared well to experimental data obtained from the pressure drop 

measurements and the adsorption (breakthrough) tests.  

In the micro-scale simulation, a modified immersed-boundary method (IBM) with the 

Zwikker-Kosten (ZK) porous model and the high-order schemes was validated and applied to 

simulate a representative porous unit that represented a periodic array of solid/porous cylinders. 

In the periodic unit, the solid cylinder case was used to validate the high-order schemes by 



 

 

comparing it to the results obtained from the commercial CFD software. The relationship 

between the pressure gradient and the porosity (Blake-Kozeny equation) was determined from 

this level and fed back to the macro-scale simulation, which provided a link between the two 

scales. In the porous cylinder case, both flow field and species transport were investigated with a 

porous model similar to the one used in the macro-scale. The species concentration change was 

calculated and found to be nonlinearly related to the adsorption coefficient. 

In the nano-scale simulation, a molecular dynamics (MD) simulation and a coupled 

molecular-continuum scheme were applied to solve the momentum and the mass transport 

problems at the molecular level at which the traditional continuum theory is no longer applicable. 

Both schemes were verified from the surface slip behavior study compared to the literature. The 

scale and shear effects in the Coutte flow were investigated, showing that in the micro-scale and 

macro-scale, the slip behavior could be neglected since it was only important in much smaller 

scales. The same hybrid scheme was then applied to a diffusion model with nano-pores 

constructed in the solid substrate. The adsorptions between various gases and the carbon 

substrate were simulated. The mass fluxes cross the fluid/solid interfaces were counted and both 

self-diffusivity and transport diffusivity were estimated and compared to their respective values 

found in the literature. The transport properties are closely related to the species transport (Fick’s 

law) in the macroscopic simulations. Linear concentration profiles in the channel were obtained 

based on those transport properties for various gases going through different sizes of nano-pores, 

which, as a connection to the continuum model, were to be used as boundary conditions in the 

continuum simulation. 
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Abstract 

A nano-material filter is an efficient device for improving indoor environmental quality 

(e.g. smoke reduction, air purification in buildings). Studying the effectiveness of nano-materials 

used in the device by computer simulation is challenging because very different size scales are 

involved. Therefore, numerical methods have to be developed to accommodate varying 

magnitudes of scales. In the current study, the simulation has been divided into three scales: 

macro-, micro- and nano-scale. The numerical schemes at each scale are targeted at a particular 

scale; however, the relationship of the general transport phenomena, physical mechanisms and 

properties among different scales are uniquely linked at the same time. 

The objective of the macro-scale simulation was to design and study a gas filter 

constructed with nano-material pellets. The filter was considered a packed-bed tube filled with 

manufactured nano-material pellets. Commercial computational fluid dynamics (CFD) packages 

were used along with the embedded programming macros. In the filtration process, we focused 

on the flow and species transport phenomena through the porous substrate. The 

mathematical/numerical models were built and tested based on the physical models used in the 

experimental setups for different materials that were tested. The results from the numerical 

models were validated and compared well to experimental data obtained from the pressure drop 

measurements and the adsorption (breakthrough) tests.  

In the micro-scale simulation, a modified immersed-boundary method (IBM) with the 

Zwikker-Kosten (ZK) porous model and the high-order schemes was validated and applied to 

simulate a representative porous unit that represented a periodic array of solid/porous cylinders. 

In the periodic unit, the solid cylinder case was used to validate the high-order schemes by 



 

 

comparing it to the results obtained from the commercial CFD software. The relationship 

between the pressure gradient and the porosity (Blake-Kozeny equation) was determined from 

this level and fed back to the macro-scale simulation, which provided a link between the two 

scales. In the porous cylinder case, both flow field and species transport were investigated with a 

porous model similar to the one used in the macro-scale. The species concentration change was 

calculated and found to be nonlinearly related to the adsorption coefficient. 

In the nano-scale simulation, a molecular dynamics (MD) simulation and a coupled 

molecular-continuum scheme were applied to solve the momentum and the mass transport 

problems at the molecular level at which the traditional continuum theory is no longer applicable. 

Both schemes were verified from the surface slip behavior study compared to the literature. The 

scale and shear effects in the Coutte flow were investigated, showing that in the micro-scale and 

macro-scale, the slip behavior could be neglected since it was only important in much smaller 

scales. The same hybrid scheme was then applied to a diffusion model with nano-pores 

constructed in the solid substrate. The adsorptions between various gases and the carbon 

substrate were simulated. The mass fluxes cross the fluid/solid interfaces were counted and both 

self-diffusivity and transport diffusivity were estimated and compared to their respective values 

found in the literature. The transport properties are closely related to the species transport (Fick’s 

law) in the macroscopic simulations. Linear concentration profiles in the channel were obtained 

based on those transport properties for various gases going through different sizes of nano-pores, 

which, as a connection to the continuum model, were to be used as boundary conditions in the 

continuum simulation. 
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CHAPTER 1 - Introduction 

This introduction discusses the background of the current research, the methods used to 

meet the objectives and the organization of this thesis.  

1.1 Research Background 

Indoor air environment (IAE) is an important subject that addresses both the health of 

occupants and their exposure to air pollution. IAE balances the indoor environmental quality 

(IEQ) and living comfort. The environmental variables affecting IAE are complex and include 

temperature, humidity, lighting, noise, and source control – air cleaning. The primary influences 

on IAE are the sources of released hazardous gases and toxic particles. However, identifying and 

removing these pollutants is very difficult, practically speaking, due to their physical/chemical 

properties. Thus, ventilation and filtration become critical maintaining IAE.  The efficiency of 

ventilation systems is limited since the energy costs are high and contaminants can not be 

eliminated only by exchanging indoor and outdoor air. Inadequate filtration can increase indoor 

pollutant levels by failing to “fresh” the indoor air with contaminants. Several air cleaning 

devices designed for specific pollutants are available on the market for controlling both 

particulate and gaseous pollutants. These could be used to improve the overall efficiency of 

efforts to control IAE. A number of mechanical purification/filtration devices are available that 

can remove contaminants and make the air clean. However, studies on the effectiveness of such 

devices in removing gaseous pollutants are not complete and have not been performed 

systematically. The packed-bed/packed-column filled with materials (such as carbon, fiber, etc) 

with adsorbing ability is a common experimental setup that can be used to evaluate the 



 

2 

performance of both the sorbents and the devices in a lab environment. The adsorption capability 

and the breakthrough time are two parameters that can and need to be rated. Also, the following 

conditions need to be measured and determined: 

· The air flow rate through the packed-bed 

· The design of the bed, especially the depth 

· The concentration of the pollutants 

· The physical and chemical characteristics of the pollutants and the sorbent 

· The environmental conditions including the temperature, humidity, etc. 

In those purifiers/filters, activated carbon has been used traditionally and effectively as 

the most common filtration material due to its adsorbing ability. Usually it is clustered as pellet, 

powder or condensed film. It can adsorb some pollutants, mostly hydrocarbons and non-polar 

gases, both in dry and humid conditions. One of the constraints of this type of adsorbent is that it 

is not efficient in removing low molecular weight gases and its effective lifetime is relatively 

short. In most cases, activated carbon is used to remove odor; however, the absence of odor 

alone does not guarantee good air quality. Because of the recent and rapid development of new 

nano-materials, those innovative nano-materials with high surface areas are expected to replace 

activated carbon in the filtration industry. The drawback of using nano-materials, however, 

comes from the limited knowledge of the materials including their capabilities, how the sorbents 

and the contaminants react, and the materials’ toxicity to humans and environment. Hence, the 

major objective of the current study was to use nano-materials in air purifiers/filters and test their 

performance with respect to improving indoor air quality. Figure 1-1 illustrates the concept that 



 

3 

informs this study, which aimed to combine the evaluation of the air filter with an investigation 

of the properties of the nano-material for the purpose of improving IAE. 

 

 

Figure 1-1 Nano-material air filters to improve indoor air environment. 

 

Computational fluid dynamics (CFD) has developed rapidly in recent decades and can be 

applied to numerous applications, especially those that cannot be modeled by experimentation. 

CFD tools and other numerical simulations were used to model filtration processes and transport 

phenomena as well as material properties so that the designs of filtration devices could be 

evaluated. CFD can also benefit the laboratory study of such devices. However, some 

information required by the CFD simulations, such as the model set up and material selection, 
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need to be obtained from the experiments. The results from the simulation are then calibrated and 

compared to the experimental data. A complete study needs to examine filter designs and 

materials in several scale lengths, which may be only accomplished by using computational 

methods. Finally, computer simulation can supplement laboratory studies with additional 

information economically. In the process of this study, we used both numerical simulation and 

experiment results to create a multi-scale platform that is able to cover flow and mass transport at 

very different scales for the current and future studies. 

1.2 Research Objectives and Methods 

The multi-scale simulation of the flow/species transport in a nano-material filter is a 

complicated problem that involves several levels of length scales. Also, a complete and 

successful system of theories to study the nano-material, especially using computer aided 

simulations, does not exist. In addition, this is a multidisciplinary project that requires 

backgrounds and experiences in engineering, physics and chemistry. Different computational 

methods have to be used to accommodate various scales. Hence the objectives for each scale 

need to differ as well. However, the relationship among different scales and how the information 

exchanges among them have to be explored. Based on the problem, the simulation was divided 

into three levels as illustrated in Fig. 1-2.  
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Figure 1-2 Multi-scale simulation: (from top to bottom) Macro – Micro – Nano. 

 

The objective for the first scale (macro-scale) was to design and study a gas filter 

constructed with nano-material pellets. The filter was a packed-bed tube filled with 

manufactured nano-material pellets. Commercial computational fluid dynamics (CFD) software 

and packages were used to run the simulation along with the use of the embedded programming 

macros. In the filtration process, we focused on the flow and species (concentration) transport 

phenomena through the porous substrate. The mathematical/numerical models were built and 
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tested based on the physical models that corresponded to the experimental setups. The results 

were then validated and compared to experimental data. The momentum transport (pressure drop) 

and the mass transport (breakthrough behavior) were both analyzed. 

The second scale (micro-scale) involved investigating the flow/species transport around 

and inside a group of nano-material pellets. To simplify the problem, we adapted a structural unit, 

which was a periodic array of circular cylinders, to study the flow field and the concentration 

change. A modified immersed-boundary method (IBM) along with high-order numerical 

schemes was used to solve the transport equations including the additional Zwikker-Kosten (ZK) 

porous models. A tandem cylinder system was studied first to validate the IBM scheme. In the 

solid/porous structural unit, both fluid/solid interaction (FSI) and fluid/porous interaction (FPI) 

problems were investigated. The species transport simulation was then carried out based on the 

flow field. Also, the results obtained from this scale provided information for the macro-scale.  

Down to the smallest scale (nano-scale), the diffusion through the nano-pellets surfaces 

was of interest. The fluid/solid interactions occurred between molecules. By using molecular 

dynamics (MD) simulation, which is a discrete model that is very different from the continuum 

theory, we calculated the macroscopic properties from a “nanoscopic” point of view while some 

mechanisms could only be captured in molecular scales. Also, to improve the efficiency and 

maintain accuracy, we applied a hybrid molecular-continuum scheme to this problem. The 

surface slip behavior and the diffusion/adsorption mechanisms were studied and this information 

was applied to macroscopic investigations. 

Based on the results from studying all three scales, we used a series of computational 

tools (such as immersed-boundary method, molecular dynamics simulation, commercial CFD 

software and packages) to build up a platform to simulate and test the designated filter 
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constructed with innovative nano-materials. The data we used, for building this platform, 

included momentum and mass transport phenomena, surface properties and mechanisms, and 

fluid/solid interactions. The objectives, numerical methods and the perspective results of three 

scales are listed in Table 1-1. 

 

 Objective Method Result 

Macro-scale Momentum/mass 

transport 

phenomena 

Commercial CFD 

software with 

programmed macro

Validated and 

compared with 

experimental data 

Micro-scale Fluid/solid 

interaction (FSI); 

Fluid/porous 

interaction (FPI) 

Immersed-boundary 

method (IBM); 

Porous model; 

High-order schemes

Validated and 

compared with 

macro-scale results 

Nano-scale Slip behavior; 

Diffusion 

Molecular dynamics 

simulation (MD); 

Hybrid scheme 

Validated and 

compared with 

literature and 

macroscopic results

Table 1-1 Summary of the multi-scale simulations. 

 

1.3 Organization of Thesis 

The organization of the thesis is shown in Fig. 1-3. Since the objectives and the 

numerical methods are very different for each scale, each chapter includes an introduction of the 

modeled problem, the numerical method used, and a discussion of the results and a conclusion.  
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Figure 1-3 Organization of the thesis. 

 

Chapter 2 is about the macro-scale simulation, which focuses on the flow and species 

transport through a packed-bed filter filled with nano-material pellets. Both momentum and mass 

transport phenomena with specific porous models were studied and explained in this chapter. 

The numerical model was built and the governing equations solved using commercial CFD 

software. The pressure drop and the breakthrough behavior were measured and compared to the 

experimental data, with good agreements achieved. 

Chapter 3 investigates the 2D fluid/solid and fluid/porous interactions in a group of nano-

material (porous) pellets, which is the micro-scale simulation. The structural arrangement of the 

pellets we constructed was a unit of a periodic array of solid/porous cylinders. The porous 

models implemented in a modified immersed-boundary method for the flow and species 

transport equations were validated and used for computation. Also several high-order numerical 
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schemes were tested to resolve the interface problems. The macroscopic characteristics were 

studied from a microscopic point of view and the link between macro- and micro- scales was 

established. 

In Chapter 4, the fluid/solid interactions on the surfaces are examined at the molecular 

level, for which the nano-scale simulation was carried out. The computational tools used in this 

level were very different from the other two since the continuum theory is not applicable. 

Molecular dynamics simulation and a hybrid molecular-continuum scheme were the discrete 

models we used to study the slip behavior on the solid surface and the diffusion of various gases 

into the nano-pores in the solid substrate. The collected information was analyzed and fed back 

to the macroscopic simulations. 

Finally our conclusions are discussed in Chapter 5. 
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CHAPTER 2 - Macro-Scale Simulation 

A computational fluid dynamics (CFD) technique for evaluating the performance of 

nano-material packed-bed filters was developed. The porous effects of the momentum and mass 

transport within the filter bed were simulated. For the momentum transport, an Ergun type of 

porous model was applied and the pressure drop across the packed-bed was simulated and 

compared with measurement. For the mass transport, a bulk adsorption model was developed to 

study the adsorption process (breakthrough behavior). Various types of porous materials and gas 

flows were tested in the filter system where mathematical/numerical models used in the porous 

substrate were implemented and validated by comparing with experimental data and analytical 

solutions under similar conditions. Generally good agreement was obtained between experiments 

and numerical predictions. 

2.1  Introduction 

Packed-bed filters have been used for decades to remove hazardous gases and vapors 

from contaminated air flows. Because of their relatively simple but robust structure, these filters 

have been utilized in different manufacturing industries. The purpose of the filtration is to 

remove the toxic gases by the porous sorbent. The fluid/solid interaction/adsorption is involved 

in this process. There have been numerous experimental investigations on the adsorption process 

occurring between the gas flow (e.g. water vapor or ammonia) and the granules (e.g. activated 

carbon, zeolite compounds) in the packed-bed column, e.g. Mangun et al. (1999), Lee et al. 

(2005), Park and Kim (2005), Qi et al. (2006), Long et al. (2008) and Ribeiro et al. (2008). The 

breakthrough behavior, which is the typical mechanism in the adsorption process, has been well 
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stated in those publications. Also, there exists a theoretical solution (Wheeler-Jonas Equation) 

that determines the breakthrough time (Jonas and Rehrmann, 1973; Lodewyckx et al. 2004), 

which could be used to compare with the experimental data. 

Numerical simulation is an efficient way to conduct parametric studies due to its low cost 

and efficiency. However, a complete study using the computational fluid dynamics (CFD) 

technique of gas filtration is very rare compared with the typical studies of the packed-bed 

reactors. To investigate the mass and heat transfer in the reactor, Nijemeisland and Dixon (2001, 

2004) reviewed the use of CFD as a design tool for fixed bed reactors. Their study presented the 

relationship between the local flow field and the local wall heat flux in a packed bed of spheres. 

CFD is used to obtain the detailed velocity and temperature fields. For the filtration problem in 

the current study, Arturo et al. (2002) used an Eulerian 2-D transient CFD model to describe the 

space-time evolution of clogging patterns developing in deep-bed filtration of the liquids. A local 

formulation of the macroscopic logarithmic filtration law is proposed, as well as a geometrical 

model for the effective specific surface area of momentum exchange. The comparison between 

the simulations and experiments showed that CFD is useful for the quantitative description of 

packed-bed clogging. Tung et al. (2004) studied the mechanism of the deep bed filtration for 

submicron and nano- particles suspension by means of a force analysis on the suspended 

particles flow path through order-packed granular filter beds. The flow fields through the filter 

beds were calculated using CFD. There has not been a complete study of both the momentum 

and mass transport through a packed-bed filter, especially those filled with nano-materials. 

Recently, nano-materials (usually made by clustering powders or pellets, e.g. zinc oxide 

(ZnO), magnesium oxide (MgO)) with high surface areas were proved to be more efficient than 

the traditional adsorbing filter media (Savage and Diallo, 2005). These materials have the 
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potential to enhance the present day science and technological applications. Hence, the 

adsorption process (breakthrough behavior) of these materials becomes an important subject. 

Existing knowledge of physical adsorption is not sufficient to predict the performance of nano-

materials due to their properties. One of the primary applications of this study is to utilize nano-

materials in filtration media to enhance indoor environmental quality. However, one of the 

difficulties of testing nano-materials is the unknown transport properties of the new materials, 

which require either unique experimental measurements or new theoretical models. 

At the present time, a platform that combines a series of experimental equipment and 

numerical models has been developed. Several test facilities (packed-beds) and related numerical 

models have been designed to evaluate the performance of novel nano-adsorbent materials for 

removing gas contamination. The current packed-bed model is capable of monitoring real time 

effects of concentration in the adsorption column. Various types of porous material (e.g. 

zirconium, activated carbon, zinc oxide, etc) were used as filter media to test the effectiveness of 

the system in data replication. Pressure drop measurements have been carried out to validate the 

function of the packed-bed system. Breakthrough analysis has been done to understand the 

adsorption kinetics in the filter bed. The results from CFD simulations were in agreement with 

the experimental data. Thus, the relationships between experiment and numerical simulations can 

be demonstrated. 

This chapter has three following parts: Section 2.2 presents the details of the numerical 

simulation and the experiment setup; Section 2.3 shows the results comparison and analysis with 

discussions including the pressure drop estimation and the breakthrough behavior investigation, 

with conclusions given in Section 2.4. 
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2.2  Model Description 

The CFD model has been developed to simulate the filtered flow with species transport in 

the packed-bed filter. The geometries of the physical models were based on the experimental 

setup. The transport equations for both flow and species were discretized and solved numerically. 

In the simulation, we assumed that the flow is incompressible and Newtonian. The packed-bed 

was filled with porous material pellets with equal size, thus the porous medium was assumed to 

be isotropic and homogeneous. The reaction between the fluid and the porous material was 

neglected in the species transport simulation since it is a relatively slow process. The heat 

generated from the adsorption procedure was not taken into account, either. In the numerical 

model for this study, new source terms were added to the momentum and mass transport 

equations in the porous medium to account for the flow resistance and adsorbing effects of the 

porous medium (see Fig. 2-1). The computational domain was divided into two zones: the fluid 

zone and the porous zone. The numerical models (with the porous models) were first validated 

by comparing the experimental results, and then applied to predicting the performance of the 

filter. Different tests with various filter medium and gas flows have been carried out for 

momentum and mass transport. 
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Figure 2-1 Transport equations used in the porous medium. 

 

A commercial CFD solver (FLUENT 6.3) is used to solve the equations. The governing 

equations for the flow are the Navier-Stokes equations for incompressible flow, including the 

continuity equation (Eq. 2.1) and the momentum equation (Eq. 2.2):  

0)( =⋅∇+
∂
∂ v

t
ρρ  ,                                                     (2.1) 

( ) ( ) ( ) Sgpvvv
t

++⋅∇+−∇=⋅∇+
∂
∂ ρτρρ ,                                 (2.2) 

where ρ is the density of the fluid (constant for homogeneous incompressible flow), vr  is the 

velocity vector, t  is the time, p is the pressure, τ  is the shear stress, gr  is the gravitational 

acceleration, and, S
r

 is the additional source term (to be defined later). Also, the standard k-

ε turbulence model is selected to include the turbulent flow effect.  
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For the packed-bed investigation, there exists an analytical approximation called the 

Ergun equation (Bird et al. 2002) to calculate the pressure drop per length and its relationship 

with the properties of the pellets. The Ergun equation is valid if the packing is statistically 

uniform and that the equivalent diameter of the pellets is much smaller than the diameter of the 

bed column ( Dd p << ). In this case, the Reynolds number ( μρUD=Re ) based on the 

incoming velocity and the diameter of the pipe is in the range of 1000, since low flow rates 

(which are typical in air filtration systems used in the indoor environment) are applied at the inlet. 

The general expression for the Ergun equation (Ergun, 1952) is: 

( ) ( ) 2
0303

2

2

175.11150 U
d

U
dL

p

pp ε
ερ

ε
εμ −

+
−

=
Δ  ,                          (2.3) 

where pΔ  is the pressure drop between the two ends of the packed bed, L is the depth of the bed, 

μ  is the viscosity of the flow, ρ  is the density of the flow, 0U  is the superficial flow velocity 

(defined as the ratio of the volumetric flow rate of the carrier gas to the cross-sectional area of 

the empty packed-bed cAQ / ), pd  is the equivalent diameter of the pellets, and, ε  is the void 

fraction of the packed bed (ratio between the volume of the void space and the total volume of 

the bed, defined as bedpellets VV /1−=ε ). For spherical pellets, pd  is the diameter of the sphere, 

and for other shapes, pd  can be calculated as the diameter of a sphere with equal volume. The 

first term on the right-hand-side of Eq. (2.3) is the Blake-Kozeny equation (Bird et al. 2002) 

representing pressure drop due to the viscous effect, while the second term is the Forchheimer 

component representing the inertial effect related to the second-order of velocity. Eq. (2.3) is 

usually applicable in a wide range of Reynolds numbers covering the flow from laminar to 

turbulent. To use the Ergun equation as a benchmark solution, it should be noted that the length 
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of the packed-bed needs to be long enough to avoid the entrance effect of the flow. 

The porous effect of an arbitrary packed-bed is simulated by empirically determining 

flow resistance in the substrate. In the transport equations, the flow resistance is modeled by an 

added momentum sink term on the right-hand-side of the momentum equations. In this study, we 

assumed that the porous media is homogeneous and isotropic. And this sink term was based on 

the extended Darcy’s law (Darcy, 1856) and in the format of the Ergun equation (Ergun, 1952):  

( )iRiRi uUCuCS 21 +−= ,                                        (2.4) 

where iS  is the component of the sink term, iu  is the flow velocity component, and, U  is the 

magnitude of the velocity. 1RC  and 2RC  are viscous and inertial loss coefficients, which are 

functions of flow and pellets properties and can be calculated as: 

α
μ

=1RC ,                                                        (2.5) 

and 

2
2

2
C
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ρ

= ,                                                      (2.6) 

where α is the permeability and 2C is the inertial resistance factor defined as: 

2
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where pd  (equivalent particle size, calculated from total mass of the pellets divided by their total 

volume, pelletpellet Vm / ) and ε  (void fraction) can be obtained from the properties of the pellets. 

As for the modified species transport equation (Eq. 2.9), the unsteady term, convection 

term, diffusion term and an additional source term are included. The source term (actually a sink 

in this case) represents the adsorbing ability of the porous substrate: 
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,                             (2.9) 

where C  represents the concentration of the contaminants, which is treated as a passive scalar, 

ju  is the velocity component obtained from the steady-state solution of the coupled momentum 

transport equations,  sD  is the diffusivity, and, cS  is the adsorbing sink term to be determined. 

And the linearized sink term is modeled as (Perry and Green, 1997): 

)(1
0 infc CCkSS −−=

ε
,                                       (2.10) 

where ε is the void fraction, 0S  is the surface area/volume ratio of the pellet (which is 6/dp if the 

pellet is considered a sphere), fk  is the mass transfer coefficient that depends on the contaminant 

material and porous material properties, and, inC  is the initial  concentration (also the final 

concentration after fully saturated) at the inlet. Combining Eqs. (2.9) and (2.10) and non-

dimensionalizing it by dividing inC , the species transport equation becomes: 
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Eq. (2.11) is solved simultaneously with Eqs. (2.1) and (2.2), and the discretized 
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computational scheme is second-order in time and space. The second-order upwind scheme is 

used for the convection terms, and the second-order central differencing for the diffusion terms. 

The coupling scheme between the velocity field and the pressure field was the SIMPLE 

algorithm. The passive scalar transport equation (Eq. 2.11) was implemented by using the 

programming macros enabled in the commercial solver using user-defined subroutines for the 

unsteady term, convection term, and the additional sink term. 

As with the model used in the momentum transport, the geometry was meshed by 

unstructured tetrahedral elements. The difference was in the adsorption model, where the porous 

substrate was arranged in the middle of the empty bed, leaving enough space for flow to be fully 

developed. 

In the numerical model, the computational domain is divided into a bulk fluid zone and a 

porous zone. The general no-slip condition is applied on all the solid walls. At the inlet, the 

velocity to be specified is determined based on the volumetric flow rate of the carrier gas and the 

diameter of the inlet tube. At the outlet vent, the pressure is specified based on the experimental 

value. For the dimensionless species transport simulation, at the inlet, the incoming boundary 

condition will be user-defined and explained later. 

2.3  Results and Discussion 

To validate the numerical model, and then perform various tests in the filter, the cases 

were arranged to study both flow and species transport, which are summarized in Table 2-1. 
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 Gas Pellet Transport Objective 

Pressure Drop Test Air Zirconium; 

Activated Carbon 

Flow 

(momentum) 

Pressure drop 

Adsorption Test Air w/ 

H2S 

Zinc Oxide 

(NanoActive ZnO) 

Species 

(mass) 

Breakthrough 

behavior 

Table 2-1 Testing setup. 

 

To validate the momentum transport model, pressure drop measurements were conducted 

(the pressure drop experiments were conducted by Dr. Steve Eckels’ group at Kansas State 

University), with the pure air flow and two kinds of porous material pellets: spherical shaped 

zirconium and the cylindrical activated carbon pellets. The surface-averaged pressure drop 

between the inlet and outlet of the filter was calculated and compared with the data from 

experiments. For the validation cases using zirconium pellets, the results were also compared 

with calculated solution from the Ergun equation. The later tests with activated carbon pellets 

were performed to test the model in a range of packed-beds with different sizes, especially those 

shorter beds since the porous substrate was only a thin layer in the adsorption test.  

For the adsorption tests (to test the behavior of breakthrough), the porous substrate was 

filled with ZnO (NanoActive) pellets to remove the H2S from the incoming gas flow. The 

breakthrough curve was the real time concentration change captured at the measuring point 

downstream in the filter. The concentration history data recorded at the upstream point from the 



 

20 

experiment was used as the incoming concentration required by the simulation from the 

beginning. Then, the simulation results were calibrated and compared with available 

experimental data. The breakthrough process and the saturation time could be estimated 

2.3.1 Results of the Pressure Drop Measurements 

The dry air (at room temperature of 23oC) was pumped into a cylindrical packed-bed 

(length L and diameter D) filled with porous material pellets including zirconium spheres and 

activated carbon pellets. For both types of the pellets, similar flow conditions were provided, as 

shown in Table 2-2. The packed-bed tubes used for zirconium and the activated carbon were not 

the same. The packed-bed used for zirconium tests was a fixed long tube. However, for the tests 

using activated carbon pellets, the total amount of mass for filtration was varied; thus, the length 

of the bed was different (the diameter of the bed was kept the same). The pellet properties used 

for porous effect estimation ( pd andε ) were calculated based on the mass and the volume 

mentioned in the last section. A volumetric flow rate meter was used to control the incoming air 

flow rate, which was in the range of 0.057 – 0.34 m3/min (2 – 12 ft3/hr). Polymer sieves were 

placed at both ends to prevent loss of bed granules. During the filtration process, the pressure 

drop ( pΔ ) between the two ends of the bed was monitored and recorded in real time. The 

numerical model included the inlet and outlet pipes and the packed-bed tube (porous substrate). 

The length for each pipe was 1.27 m (50 in) and the diameter was 4 mm. The geometry of the 

setup was generated and meshed with unstructured tetrahedral elements (the number of cells is 

around 274,558 after grid-resolution check) by using the grid generation package in the 

commercial flow solver for this study. Measured results with two pellet materials, zirconium and 

activated carbon, were compared with numerical simulation. 
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 Size of the bed 

(D (m) x L (m))

pd  (m) pρ  

(kg/m3)

ε  Flow condition 

Zirconium 0.02 x 0.87 0.005 6520 0.41 Air, 24oC,  

0.023-0.34 m3/min

5 – 12 ft3/hr 

Activated- 

Carbon 

0.037 x L (mass 

dependent) 

0.0047 984 0.4 Air, 24oC,  

0.057-0.34 m3/min

2 – 12 ft3/hr 

Table 2-2 Pellet properties and flow parameters in the pressure-drop measurements. 

 

First, the bed was saturated with air and filled with manufactured spherical zirconium 

pellets. The length of the packed-bed is around 0.87 m. Since the ratio between the length and 

the diameter of the bed (L/D) is very large (the entrance effect of the flow is ignored), the Ergun 

equation can be used as the benchmark solution. In this test, the total pressure drop (area-

averaged pressure difference between the two ends of the bed) was measured and compared with 

simulation. In Fig. 2-2, the numerical simulation results match the analytical solution from the 

Ergun equation very well. Also, they are in good agreement with the experimental data though 

there are some deviations in the low flow-rate cases. The reason is that for such a long bed, 

smaller pressure drops due to low flow rates are considerably more difficult to detect in the 

experiments.  
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Figure 2-2 Pressure drop results for spherical zirconium pellets: comparisons between 

numerical simulation, experiment and analytical solution. 

 

The tube filter material was then replaced with activated carbon pellets (commonly used 

as the filtration material in air purifiers) and tested under similar conditions as the zirconium 

tests, but with different lengths of shorter beds for different amounts of mass of the pellets, as the 

length of the bed is dependent on the total mass of the pellets. One purpose is to validate the 

model without having the Ergun equation as a benchmark. Since in a short packed-bed, the 

entrance effect cannot be neglected. Figure 2-3 shows good results in the pressure drop 
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compared to the experimental data. Especially, for the 21 mg mass test (more pellets, longer 

tube), the results from simulation and experiment are almost identical. However, there are some 

differences in the 4.2 mg mass test (fewer pellets, shorter tube) since the bed used in this test is 

the shortest; thus, the pressure drop is hard to accurately measure (due to its small value). These 

comparisons show that the numerical model established here is capable of predicting the 

filtration results in a wide range. 

 

 

Figure 2-3 Pressure drop results for activated carbon pellets: comparisons between 

numerical simulation and the experiment. 
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It is apparent, from the comparison between the simulation and the experiment, that the 

nano-structured materials (the activated carbon pellets) do not show any particular difference 

from the traditional materials (zirconium beads) in terms of their momentum transport behavior. 

The material properties of the porous medium that influence momentum transport at the current 

level are the macroscopic properties that have little to do with the nano-scale properties. 

2.3.2 Results of the Adsorption Tests 

In the adsorption tests, the main purpose was to evaluate the adsorbing ability of the 

nano-material (the adsorption experiments were conducted by NanoScale, Inc). Hence, only a 

thin layer (a short bed) of nano-material pellets was tested. Performance of air filtration sorbents 

is usually evaluated using a breakthrough method.  A schematic of a typical breakthrough setup 

is shown in Fig. 2-4 (a).   In this setup, an air stream was conditioned in a dryer and a humidifier 

to achieve the desired relative humidity level.  Then, the air was mixed with a controlled stream 

of pollutant to reach the needed concentration.  A fixed bed of tested material in a granulate form 

was placed in a test tube that allows for uniform flow distribution that minimizes wall channeling 

effects.  Figure 2-4(b) presents the test tube used by NanoScale, Inc.  The test tube was 30 mm in 

diameter, which for granulated adsorbents used (mesh 16-35, 0.5-1.2 mm) is sufficient to 

minimize wall effects.  Prior to the breakthrough test the test tube was filled with the adsorbent 

that formed a 10 mm thick bed.  This thickness was found to be sufficient to prevent bed 

channeling and premature pollutant breakthrough for superficial air velocity of 6 cm/s.  Air flow 

through the bed was in the downward direction in order to eliminate bed fluidization. 
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(a)                                                                       (b) 

Figure 2-4 (a) Schematic of the air filtration breakthrough apparatus; (b) Test tube used in 

the experiment. 

 

Adsorption performance is evaluated by monitoring toxic pollutant concentrations before 

and after passing through a fixed bed of tested material.  NanoScale’s breakthrough setup uses a 

GC-MS spectrometer (HP 5890 Series II gas chromatograph and HP 972 mass spectrometer) 

equipped with an automatic valve system and PC data acquisition workstation.  During the 

analysis, air upstream and downstream of the adsorbent bed was sampled and periodically (5-10 

minutes intervals) analyzed by the GC-MS spectrometer. A typical breakthrough test was 

conducted over a period of several hours until the toxic pollutant appears downstream of the 

filter.  Performance of tested materials was evaluated based on the overall shape of breakthrough 

curves (downstream pollutant concentration plotted as a function of time) and breakthrough 

times.  In this study, a set of breakthrough curves were obtained for granulated NanoActive ZnO 
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sorbent exposed to hydrogen sulfide (H2S).   

 The numerical model is an exact replica of the experimental conditions for comparison 

purposes. The geometry, based on the experimental setup and the simplified computational 

model with the same conditions, is shown in Fig. 2-5. Also, some of the flow and material 

properties can be found in Fig. 2-5(a). The porous medium (the monomer particles inside the 

packed-bed) is also assumed to be isotropic and homogenous.  

 

 

(a)                                                                            (b) 

Figure 2-5 Computational model used in the adsorption simulation: (a) physical model with 

dimension and parameters; (b) computational domain. 
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The local concentration of the flow with contaminant is assumed to have a negligible 

effect on the thermodynamic properties of the air, and hence, no effect on the predicted flow 

field. This assumption enabled the steady-state flow field solution to be fixed during the transient 

simulation of the species transport equation. In the simulation, the concentration changes of H2S 

in the two locations (upstream and downstream of the porous bed) were recorded and compared 

with the experimental data. 

The value of molecular diffusivity ( sD ) for H2S in air was estimated using the models of 

Chapman-Enskog (Bird et al. 2002) and Wilke-Lee (Wilke and Lee, 1955) in Perry’s Chemical 

Engineering Handbook (Perry and Green, 1997). Both models yielded a value very close to 0.19 

cm2/s. The diffusion processes inside the pores of NanoActive ZnO sorbent were evaluated in 

terms of effective diffusivity and calculated using a random pore model, frequently used to 

describe solid sorbents or catalysts.  The parameters used by the random pore model, mainly 

densities obtained by direct measurement and pore characteristics measured by the nitrogen 

adsorption method (Wakao and Smith, 1964; Froment and Bischoff, 1990), are presented in 

Table 2-3.  In the numerical simulation, the mass transfer coefficient, fk , is 0.0000284 m/s. 

Those measured material properties were used in the simulations. 
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ZnO (NanoActive) Properties Value 

Average particle diameter ( pd ) 0.5 – 1.2 mm 

Density ( pρ ) 5.25 g/cm3 

Void fraction (ε ) 0.58 

Specific surface area to volume ratio ( 0S ) 7059 

Average pore diameter for micro-pores 10.5 nm 

Simulated mass transport coefficient ( fk ) 0.0000284 m/s 

Table 2-3 Pellet properties in the adsorption test. 

 

The model used in the species transport equation was run simultaneously with the 

momentum transport equations. It was also computed transiently to demonstrate gradual 

saturation of the filter, which is responsible for the breakthrough, a process also known as 

percolation. 

As mentioned earlier, in the current simulation, the reaction and the heat of adsorption 

have not been taken into account (since those effects are so small that can be negligible), and a 

linearized adsorption model was used in the mass transport equation. First, the flow field was 

simulated. Figure 2-6 (a) illustrates the velocity field in the computational domain. The 

streamlines predict the direction of the flow and the color represents the magnitude of the 

velocity. It is apparent that the flow is slowed in the bed and becomes more laminar, especially 

in the thin porous zone, which is typical.  
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(a)                                                                         (b) 

Figure 2-6 Streamline colored by Velocity Magnitude and contour plot of the concentration 

in the filter. 

 

The local concentration of the H2S is assumed to have a negligible effect on the 

thermodynamic properties of the air, and hence, no effect on the calculated flow field. This 

assumption enables the steady-state flow field solution to be fixed during the transient (unsteady) 

simulation for the species transport. So, only species transport is actually solved based on the 

obtained flow field, which saves the computational time by avoiding the transient simulation for 
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the velocity field. An intermediate contour plot of the concentration in the filtration process is in 

Fig. 2-6 (b) where the color represents the magnitude of the concentration. Before entering the 

porous zone, the concentration stays constant in the inlet tube and the entrance zone of the bed. 

In the thin porous substrate, due to the adsorption, the concentration of  H2S is gradually reduced. 

This process continued until the porous sorbent was totally saturated.  

The breakthrough curve can be used to monitor this process by measuring the 

concentration change at two locations: upstream and downstream in the bed. The upstream 

location records the incoming concentration while the downstream one tracks the adsorption 

behavior. Figure 2-7 shows the concentration measurements at the above locations by simulation 

and experiment. It is noticed that the incoming concentration in the experiment is very difficult 

to be kept as a constant. In Fig. 2-7 (a), the incoming concentration in the simulation is kept as a 

constant, which is the averaged value from the data history of the experiment. By having the 

linearized sink term in the species transport equation, the concentration change from the 

numerical simulation at the downstream location (breakthrough curve) is very close to the 

experimental data. Initially, the concentration is almost zero since the gas flow has not reached 

that location yet. After more than an hour (the breakthrough time), the adsorption process begins 

and the concentration is accumulating until the porous substrate is fully saturated. The 

downstream concentration reaches the incoming value after 6 hours, which is a very slow 

process. Since the incoming concentration used in the simulation is lower than that in the 

experiment after 6 hours, the final concentration deems to be lower than the data captured in the 

experiment.  

To improve the results, the incoming concentration time history was modified by 

dividing it into three periods based on the experimental data: 1) 0-3 hrs, use a constant value by 
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averaging; 2) 3-6 hrs, use a linear correlation as a transition; 3) 6-12 hrs, use another constant 

value by averaging. By implementing this transient incoming concentration profile, the resulting 

concentration reached the final stage in the experiment (Fig. 2-7b). 

Based on the above results of the breakthrough tests, the numerical model is calibrated 

and validated by comparing with the experimental data. Hence, the CFD technique used in this 

study is proved to be sufficiently accurate. The porous models and the related numerical 

simulation treatments can possibly be further applied to modeling of filtration/adsorption 

processes with other materials and types of packed-bed filters. 

 

 

(a) 
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(b) 

Figure 2-7 The concentration change along the central line of the setup by using different 

source terms in the species transport equations. 

2.4  Summary of the Macro-Scale Simulation 

In this chapter, the flow/species going through a substrate of a packed-bed filter filled 

with nano-material pellets are simulated, which provides a platform to test and evaluate the 

design of such devices. Numerical models, which exactly followed the experimental setups, were 

developed to make use of CFD simulation. To simulate the porous/adsorbing effect, additional 

source terms were added to the momentum and mass transport equations. Various types of 

packed-bed and materials have been tested in this study. The numerical models were validated 

by comparing with both the analytical solution and the experimental data. The linearized sink 

terms added in the porous substrate were applicable in a range of materials and types of packed-
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beds. Good agreement was achieved for both the results of the pressure drop and the 

breakthrough behavior in the filtration process. Especially, the simulation results from the tests 

with nano-material pellets as the adsorbent were proved to be efficient and accurate. 
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CHAPTER 3 - Micro-Scale Simulation 

3.1 Flow in Porous Medium 

In a nano-material air filter, the air flow will go through the porous substrate. 

Consequently, the flow mechanisms and the adsorption process become interesting. This, 

therefore, involves the micro-scale simulation, which requires the momentum and mass transport 

in the porous medium be studied. In this chapter, the objectives of our study include both multi-

body fluid/solid and fluid/porous interactions. An illustration of the problem is shown in Fig. 3-1. 

 

 

Figure 3-1 Multi-body fluid/solid and fluid/porous interaction in porous medium: (a) a unit 

of porous material pellets (b) porous REV unit (c) to study the transport phenomena inside 

the pellets (d) the inside porous structure (e) solid REV unit. 
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As shown in Fig. 3-1, a group of nano-material (porous) pellets was first selected for 

constructing a unit (Fig. 3-1a). A 2D simplified numerical model (Fig. 3-1b) can be defined 

based on the concept above. So in this 2D porous unit, the flow and species transport phenomena 

could be explored with the use of porous models inside the cylinders. To answer the question 

about the transport in the pores, we looked inside those porous material pellets (Fig. 3-1c) and 

treated the pores as a Representative Elementary Volume (REV) as shown in Fig. 3-1(d). The 

gray areas are solid bodies, so the fluid will go though the pores. And this fluid/solid interaction 

problem could also be simplified as a 2D solid unit as shown in Fig. 3-1(e). Thus, the same 

geometry/structure with different transport models could represent and solve different scales of 

mechanisms. 

In this chapter, the numerical algorithms used in this scale including the immersed-

boundary method (IBM), the porous model (Zwikker-Kosten equation) and the high-order 

schemes (used on the interface) are explained in Section 3.2. The results and discussion in 

Section 3.3 are divided into two parts: 1) fluid/solid interactions in a tandem cylinders system as 

the validation case for the IBM and 2) fluid and species transport in a periodic array of 

solid/porous cylinders. A conclusion is presented in Section 3.4. 

3.2 Numerical Scheme and Algorithm 

3.2.1 Immersed-Boundary Method 

The concept of immersed-boundary methods (IBM) involves implementing a defined 

forcing term in the momentum transport equations in the vicinity of the solid boundary. It has 

been successfully used to study various fluid-structure interaction (FSI) problems. The 

advantages of using IBM are: 1) only a simple Cartesian grid is needed, 2) no moving grid is 
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required to simulate an object in motion, and 3) The shape/arrangement of the objects can be 

arbitrary. Peskin (1997) introduced this innovative method in his Ph. D. thesis for which the 

internal blood flow was simulated. Since then, several schemes for IBM have been developed, 

e.g. Saiki and Biringen (1996), Mohd-Yusof (1996), Yang and Balaras (2006), and Mittal et al. 

(2008). A review of the IBM was presented by Mittal and Iaccarino (2005). For our current study, 

a modified IBM with a direct compensation forcing term was used to compute the fluid flow. 

This computational algorithm was verified using numerous sets of data in the literature on flow 

over cylinders and spheres (Zhang and Zheng, 2007). 

The governing equations for the IBM are the continuity equation and the Navier-Stokes 

equations for incompressible flow. In our study, for numerical convenience, the equations 

mentioned above have been characterized with the free stream velocity (U), the diameter of the 

cylinder (D) and the density of the flow ( ρ ) to be dimensionless. Thus the time (t), the length 

scale (x), velocity scale (u) and the pressure term (p) can be characterized as: *t
D
Ut = , 

D
*xx = , 

U
*uu = , 2

*
U
pp
ρ

= . The non-dimensionalized continuity equation (Eq. 3.1) and the momentum 

equations (Eq. 3.2) for the current IBM (Zhang and Zheng, 2007) are: 

0=u⋅∇                                                                (3.1) 

and 

fuuuu
+∇+−∇∇⋅+

∂
∂ 21=

Re
p

t
 ,                                          (3.2) 

where Re is the Reynolds number defined as μρ /Re UD= (μ  is the dynamics viscosity of the 

flow), and, f is the body force representing the virtual boundary. 
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The external forcing term f is updated at each time step to establish the desired boundary 

velocity (v). It should be noted that this force is only applied in an internal layer adjunct to the IB 

while kept zero elsewhere. This force can be expressed as 

 )(1
Re
1 2 n

t
p uvuSf −

Δ
+∇−∇+= ,    (3.3) 

where the desired boundary velocity is on the internal layer as well. And, S is the convection 

term defined as: 

 u)u(S ∇⋅= .                                                         (3.4) 

The direct-forcing IB method used here follows the concept of the scheme explained in 

Mohd-Yusof (1996). The governing equations, Eqs. (3.1) and (3.2), are discretized using the first 

order time-marching, with a semi-implicit term for the diffusion terms and the Adams-Bashforth 

scheme for convection and central differencing for diffusion. An interpolation/extrapolation 

scheme (Saiki and Biringen, 1996) is used to interpolate the direct force. This force is then 

extrapolated back on the grid points inside the IB. 

The solving scheme involves a two-step, predictor-corrector procedure. The velocity 

predictor equation is: 

 ( )
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⎬
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⎨
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++∇+∇−⎟
⎠
⎞

⎜
⎝
⎛ −−Δ+= − fuuSSuu *2*1*

2
1

2
1

2
3 nnnn

Re
pt , (3.5) 

where the pressure estimation can be derived as: 

 ( )[ ]fuu −∇⋅⋅−∇=∇ nnp*2 .    (3.6) 

Then, with the following correction step, the real time velocity and pressure are given by: 

 φ−∇=+ *1 uun ,   (3.7) 

and 



 

 38

 φ+=+ *1 ppn ,   (3.8) 

where φ  is the solution of the modified Pressure Poisson Equation (PPE) to satisfy the continuity: 

 *2 u∇=∇ φ . (3.9) 

And both Eqs. (3.6) and (3.9) are solved using FISHPACK (Swarztrauber and Sweet, 1979). 

The stability condition for a two-dimensional problem is no more restrictive than an 

explicit scheme for a two-dimensional convection-diffusion equation: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

<
Revu

Reht
)(

2,
4

min 22

2

δ , (3.10) 

where h is the grid size. The first part in Eq. (3.10) is from diffusion, while the second part 

(Courant number) is related to convection. 

The computational scheme, including the interpolation/extrapolation procedure, is 

implemented on a staggered grid. Since the forcing is used to enforce the velocity on the 

boundary, the x-direction force is calculated on the u-grid and the y-direction force is calculated 

on the v-grid. Because the grid points involved in the interpolation/ extrapolation procedure can 

be applied to either the u-grid or the v-grid, there would be no discrepancies should exist among 

the staggered grid used in computing the governing equations and the grid used in the 

interpolation/extrapolation procedure.  

3.2.2 Porous Medium Model 

Darcy’s law has been widely used inside the porous medium to solve fluid mechanics and 

hydrology problems.  This law was first introduced by Henry Darcy based on hydraulic 

experimental data (Darcy, 1856), which determined the flow rate of water through the filters. 

Darcy's law is a simple proportional relationship between the instantaneous discharge rate 

through a porous medium, the viscosity of the fluid and the pressure drop over a given distance: 
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x
pKu
∂
∂

−=
μ

,                                                     (3.11) 

where u is the velocity of the flow,  xp ∂∂ /  is the pressure gradient in the flow direction, and, μ  

is the dynamic viscosity of the fluid. The coefficient K is called the permeability, which only 

depends on the geometry of the medium and describes the penetrating ability. Darcy’s law is the 

most recognized model and has been extended into other models for various perspectives. 

In three dimensions, for the case of an isotropic and homogeneous porous medium, Eq. 

(3.11) can be rewritten as: 

u
K

p μ
−=∇ .                                                     (3.12) 

To extend Darcy’s law in a more realistic format for the real fluid flow, the unsteady term, 

convection term and the diffusion term need to be considered in the porous medium. When Eq. 

(3.12) is combined with the Navier-Stokes (NS) equation and the porous structure in the medium 

considered, the NS equation can be extended as: 

uuuu
K

p
t ρ

με
ρ
ε

ε
−∇−=∇⋅+

∂
∂ )(1

,                                   (3.13) 

where the porosity ε  is defined as the void fraction of the total volume of the medium that is 

occupied by the void space.  

Several publications have examined the flow past porous bluff bodies. Bhattacharyya et 

al. (2006) investigated the flow field and solute transport around and through a porous cylinder 

in a range of Darcy numbers ( aD ) and Reynolds numbers (Re). The momentum and the mass 

transport equations for fluid through a porous cylinder are written as: 

u
u

uuuuu
ε

εεε
ε aa DD

p
t 150

75.1
Re

2
Re

)(1 2 −−∇+∇−=∇⋅+
∂
∂

,           (3.14) 
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and 

C
Sc

C
t
C 2

Re
2)(1

∇
⋅

=∇⋅+
∂
∂ u

ε
.                                    (3.15) 

Equation (3.14) includes the convection term, the diffusion term, the Darcy term and the 

Forchheimer term. C represents the dimensionless concentration. The Darcy number is defined 

as 2/ aKDa = and the Reynolds number as μρ /2Re Ua= , where a is the characteristic length. 

The Schmidt number, cS , is the ratio between the kinetic viscosity and the diffusivity.  

Bhattacharyya et al. (2006) performed a thorough study of this problem and their results 

compared well with the literature. However, the fluid/porous interface problem was not 

mentioned in their study. 

Chen et al. (2008, 2009) investigated the flow past a porous square/trapezoidal cylinder 

based on the stress-jump boundary conditions. In their study, the governing equation for flow 

inside the porous medium, when the viscous and inertial effects are considered, is expressed as: 

u
u

uuuuu
K

C
K

p
t

Fρεμεμε
ε
ρρ −−∇+∇−=⎟

⎠
⎞

⎜
⎝
⎛⋅∇+

∂
∂ 2* ,            (3.16) 

Eq. (3.16) is called the Darcy-Brinkman-Forchheimer extended model and FC  is the 

Forchheimer coefficient. Also *p  is the intrinsic average that can be calculated from the Dupuit-

Forchheimer relationship ( ε/* pp = ). At the interface between the homogeneous fluid and 

porous medium, the boundary conditions need to be determined to couple the two phases. The 

stress jump condition (Ochoa-Tapia and Whitaker, 1995 a, b) along with the velocity and stress 

boundary conditions can be summarized as: 



 

 41

011

Re11

fluidporous

interfaceporousfluid

2
1interfacefluidporous

=
∂
∂

−
∂
∂

==

+=
∂
∂

−
∂
∂

n
U

n
U

UUU

UU
Dan

U
n

U

nn

tt
tt

εε

ββ
ε

rrr
              (3.17) 

where tU  is the tangential velocity component, nU  is the normal velocity component, β  and 1β  

are the adjustable parameters. Hence, it is clear that this stress-jump boundary condition is 

strongly problem dependent and parameter dependent. Thus, in this study at the fluid/porous 

interface, we decided to use the numerically high-order scheme to smooth the discontinuity 

between the two phases. This will be explained in detail later. 

The Zwikker-Kosten (ZK) model (Zwikker and Kosten, 1949) is a linear and 

phenomenological model used to simulate the porous medium. It has been adapted previously for 

numerical calculations of linear sound interactions with porous materials (Wilson et al. 2006, 

2007; Xu et al. 2010). The original equation of motion for the ZK model in one direction is: 

u
t
uk

x
p s σ

ε
ρ

+
∂
∂

=
∂
∂

− ,                                            (3.18) 

where sk is the structure constant and σ is the resistance constant. Although Zwikker and Kosten 

allow these values to depend on frequency, they are normally assumed to be constant in time-

domain calculations. 

Wilson et al. (2006, 2007) first worked on the application of the ZK equation for time-

domain modeling of sound interaction with a porous surface. They also compared the ZK model 

with other sophisticated models and found good agreement between the rather simple ZK model 

and other more complex models. In their three-dimension model, for the case of a homogeneous 

and isotropic porous medium, Eq. (3.18) can be rewritten as: 
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For simplification, if we define porosity ε and structure constant sk  as unity ( 1== skε ), 

then Eq. (3.19) becomes: 

uu
sp

t
σρ −−∇=

∂
∂ .                                              (3.20) 

Adding the convection term and the diffusion term into Eq. (3.20) and 

nondimensionlizing it, we obtain the modified ZK equation: 

uuuuu σ−∇+−∇=∇⋅+
∂
∂ 2

Re
1)( p

t
,                              (3.21) 

where σ  is the dimensionless flow resistivity of the porous medium, non-dimensionalized 

by DU /ρ . The convection term and the diffusion term in Eq. (3.21) are omitted in the original 

ZK equation (Eq. 3.19) because the velocity is low in the porous medium; however, including 

them here enables the same Navier-Stokes equation solver to be used for Eq. (3.21). Additionally, 

we assume the effect of convection automatically becomes small when the velocity is low.  

Xu et al. (2010) investigated wind noise reduction by using a screened microphone using 

the modified ZK equation in Eq. (3.21). They compared their results for a single porous cylinder 

to the literature and also considered the interface problem by using the high-order scheme for 

both solid and porous cases. The high-order schemes will be explained in Section 3.2.3. In their 

study, the ZK equation has been solved and coupled with the immersed-boundary method. The 

similarity between Eqs. (3.2) and (3.21) is very clear. Thus, in our study, we could later use Eq. 

(3.2) for the outside fluid flow and use Eq. (3.21) inside the porous medium. The only difference 

is the additional source (force) term on the right-hand side. 



 

 43

3.2.3 High-Order Schemes 

Finite-difference methods approximate the solutions to differential equations by replacing 

derivative expressions with approximately equivalent difference quotients. By using Taylor 

expansion, different orders of the fixed stencil schemes could be reached. And it is accepted that 

when the stencil is wider, the scheme will be more accurate. However, in some complex 

problems with discontinuity, the fixed-stencil type schemes cannot eliminate the numerical 

oscillation. 

To replace the fixed stencil scheme, the adaptive stencil method has been proved to be 

capable of eliminating the discontinuity. The Essentially Non-Oscillatory (ENO) scheme was the 

first successful attempt to obtain a self-similar, uniformly high order accurate, yet essentially 

non-oscillatory, interpolation for piecewise smooth functions. ENO schemes were first 

introduced by Harten et al. (1987). Improved version of the ENO schemes, called Weighted 

ENO (WENO) schemes, were developed using a complex combination of all candidate stencils 

instead of just one as in the original ENO. Both ENO and WENO schemes have been applied 

successfully to simulate various applications, especially those having interfaces. The idea for 

both schemes includes a reconstruction procedure based on the local smoothness of the 

numerical solution to automatically achieve high-order accuracy and determine the non-

oscillatory property near discontinuities. The difference is that the ENO uses just one stencil for 

the reconstruction procedure while the WENO uses a convex combination of all the candidate 

stencils, each being assigned a nonlinear weight that depends on the local smoothness of the 

numerical solution based on that stencil. Hence, the WENO improves upon the ENO in 

robustness, smoothness of fluxes, steady state convergence, provable convergence properties, 

and the over-all efficiency.  
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The presence of porous media introduces a discontinuity in some flow variables or their 

derivatives around the flow/porous interface. Under these circumstances, most conventional 

finite difference schemes would generate some spurious numerical oscillations around the 

interface. However, accuracy at the interface between flow and porous media is a key issue in 

simulating such problems. The most widely used method for overcoming the unphysical 

oscillations and numerical instability is to apply high-order schemes, including the upwind 

scheme and the WENO scheme (Harten et al. 1987; Shu and Osher, 1988). High-order schemes 

have been used in simulation for viscous flow around steady and moving solid bodies (Cho et al. 

2007). But still have not been applied to simulating flow field in different media. In Xu et al. 

(2010), the high-order WENO scheme was adopted at the fluid/porous medium interfaces to 

compare the wind noise reduction between the unscreened microphone and the screened 

microphone under different frequencies of incoming wind turbulence. Their study was the first to 

prove that the WENO scheme efficiently and accurately smoothed the discontinuity between the 

fluid and the porous phases. 

Upwind schemes use an adaptive finite difference stencil to numerically simulate the 

direction of propagation of information. The 1st-order upwind scheme is considered to be too 

dissipative. Thus, our investigation includes 2nd- and 3rd-order upwind schemes. To understand 

the discretization in those schemes, the simplified 1D wave equation is considered as: 

0=
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+
∂
∂

x
ua
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u

.                                                    (3.22) 

For the 2nd-order upwind scheme, the discretization of the second term in Eq. (8) would 

be: 
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Similarly, for the skewed 3rd-order upwind scheme, the convective term becomes: 
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The WENO schemes were developed using a convex combination of all candidate 

stencils. The 5th-order WENO scheme has a more complicated structure and considers the same 

1D wave equation but in the conservation form: 
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The derivative of any flux q at location ix  is discretized as: 
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More details about the WENO scheme can be found in Shu and Osher (1988, 1989), Cho 

et al. (2007) and Xu et al. (2010). In our study, the high-order schemes are adapted to discretize 

all the convention terms in the momentum and species transport equations to generate a smooth 

region between the fluid and porous phases. 

3.3 Results and Discussion 

This section includes two parts: 1) multi-body fluid/solid interaction: uniform flow over a 

tandem cylinders system and 2) multi-body fluid/solid and fluid/porous interaction: uniform flow 

over a periodic array of circular cylinders. Section 3.3.1 uses the flow over a tandem cylinders 

system as a validation case for the immersed-boundary method (IBM) applied to multi-body FSI 

problem. Section 3.3.2 then shows the results of the solid/porous unit with the modified and 

extended IBM. 

 3.3.1 Flow over a Tandem Cylinder System 

3.3.1.1 Introduction 

Wake-structure interactions among tandem cylinders can be found in many engineering 

applications, such as arrays of tubes in heat exchangers, power lines, and off-shore engineering 
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structures. It is a complicated problem because the behavior of this nonlinear system depends on 

the parameter related to the tandem arrangement. This creates many nonlinear physical 

phenomena that are of interest to those who research fluid dynamics.  

The literature concerning flow over two stationary tandem cylinders includes 

experimental observations presented in Zdravkovich (1985), Zdravkovich (1997), Igarashi 

(1981), and Tanida et al. (1973) and numerical simulations from Li et al. (1991), Jester and 

Kallinderis (2003), Sharman et al. (2005), Deng et al. (2006) and Papaioannou et al. (2006, 

2008). Physical mechanisms involved in two tandem cylinders are very different from those in a 

single cylinder because the wakes that are shed from both cylinders are coupled and interact with 

each other. The vorticity field is significantly affected by the Reynolds number ( υ/Re UD= ) 

and the spacing between the two cylinders. As confirmed in the literature (Sharman et al., 2005) 

and this study, the Strouhal number ( UfDSt /= ) of the two tandem cylinders is not the same 

value as that of the single cylinder for the same Reynolds number. In addition, the Strouhal 

number is identical for both of the cylinders in the system. Compared with single stationary 

cylinder cases, which are mostly dominated by Reynolds numbers, the spacing effect of the 

tandem cylinders is another important factor. It has been found that by changing the distance 

between the two cylinders wake formation and coupling may vary. Most interestingly, there 

exists a critical spacing distance ( cS ) on the border of the vortex formation (VF) and vortex 

suppression (VS) regimes, which is marked by a sudden jump and discontinuity of the Strouhal 

number. For low Reynolds number laminar cases (in the range of 100s), the critical spacing is 

predicted by Li et al. (1991) to be between 3 and 4 and by Sharman et al. (2005) to be between 

3.75 and 4.   
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More details of the immersed-boundary method used for this case are explained in 

Section 3.3.1.2. In Section 3.3.1.3, the flow patterns of a system of two stationary cylinders at 

different spacing and the related Strouhal number effect are described. And the conclusions are 

made in Section 3.3.1.4. 

3.3.1.2 Numerical Simulation 

Direct numerical simulations based on an improved immersed-boundary method (IBM) 

with direct-forcing (Zhang and Zheng, 2007) are carried out to simulate the flow system. The 

non-dimensionalized governing equations and the numerical schemes of the IBM can be found in 

Section 3.2.1. 

When the immersed-boundary method is used, arbitrary shapes and motions of solid 

bodies can be effectively simulated by a proper construction of the boundary forcing term so that 

a simple, non-moving Cartesian grid can be used. The domain size selected for this study is 

6.254.38 × (non-dimensionalized by the cylinder diameter D ), as shown in Fig. 3-2. The 

upstream cylinder is located at 8, sufficiently away from the inlet boundary to eliminate the inlet 

effect. The distance between the two cylinders is defined as S  (also non-dimensionalized by the 

cylinder diameter D ). The outlet boundary is also far enough from the downstream cylinder to 

allow the vortex street to develop fully. The grid-size independence check (Zhang and Zheng, 

2007) determined that a grid size with 025.0=Δ=Δ yx  provides an acceptable grid resolution 

for all the computational cases at 100Re = . The boundary conditions are also shown in Fig. 3-2. 

For a stationary cylinder, the velocity on the surface is zero.  
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Figure 3-2 Computational domain of the tandem cylinders system. 

 

The computational scheme has been verified with numerous experimental and 

computational data (Zhang and Zheng, 2007). For example, for flow over a single oscillating 

cylinder, the computational results at various forcing frequencies were shown in Zheng and 

Zhang (2008), where both frequency lock-in and non-lock-in cases were identified using time 

histories and power spectra of lift and drag. Good agreements were achieved in comparison with 

Guilmineau and Queutey (2002), Ongoren and Rockwell (1988) and Williamson (1988), and 

Krishnasmoothy (2001).These examples have provided sufficient validations for the 

computational scheme used in our study. 

In order to justify the two-dimensional flow assumption in this study, we have tested a 

three-dimensional simulation at 100Re =  with a periodic boundary condition in the cylinder 

axial direction. We have found that the flow remains two-dimensional. We also increased the 

Reynolds number to 160, which is a case that was treated as two-dimensional tandem cylinders 
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in Papaioannou et al. (2006), and the three-dimensionality started to show. Oscillation of the 

downstream cylinder does not enhance the three-dimensional effect much. Therefore, it is 

expected that the Reynolds number for flow to become three-dimensional could be lower in a 

tandem cylinder system than that in a single cylinder system (where Re = 188.5, according to 

Williamson. 1996, with a possibility that oscillation could further reduce that Reynolds number. 

Considering the stabilizing and destabilizing effect of the downstream cylinder (Papaioannou et 

al. 2006), this Reynolds number may also vary with the separation distance between the two 

cylinders. Although for the purpose of this study we do not intend to determine this Reynolds 

number, based on our simulation this Reynolds number can possibly be below 160. And the case 

we study here at 100Re =  is still within a safe range for flow to be two-dimensional, hence 

formation due to instability in the axial direction is not considered. However, it would be 

interesting to explore the difference between the 2D and 3D simulations for either a single or a 

tandem cylinder system for higher Reynolds number using the current scheme but in 3D version. 

3.3.1.3 Results and Discussion 

Complicated flow patterns in a stationary tandem cylinder system have been 

demonstrated in the literature, e.g., Zdravkovich (1985), Zdravkovich (1997), Tanida et al. (1973) 

and Sharman et al. (2005). Basically, the flow patterns can be divided into two regimes by a 

“critical spacing” ( cS ). In the case of 100Re = , the value of cS  is between 3.75 and 4, 

according to Sharman et al. (2005). The different types of vortex streets are shown in the 

vorticity contours for 100Re =  in Fig. 3-3. When cSS <  ( 2=S  in Fig. 3- 3a), the flow is in a 

regime called the “vortex suppression regime” (VS), in which the wakes behind both cylinders 

are rather weak, and there is almost no vortex shedding, neither in-between nor behind the 

cylinders other than a low-frequency wavy flow pattern in the wake. The downstream cylinder is 
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so close to the upstream one that formation of vortices is hindered. The shear layer from the 

upstream cylinder does not have sufficient room to form shed vortices, although there is no 

precise relation between the vortex formation length in the wake of a single cylinder and the 

critical spacing of a tandem cylinder system (Papaioannou et al. 2006). The stabilized wake (in 

the sense of a Hopf bifurcation (Williamson, 1996) from the upstream cylinder, due to the 

closeness of the downstream cylinder, further stabilizes the wake from the second cylinder so 

that there is no clear vortex shedding even in the wake after the downstream cylinder. When 

approaching the critical spacing, the vortex shedding upstream to the second cylinder (shedding 

between two cylinders) is intermittent. After a transient period, at cSS =  ( 4=S  in Fig. 3- 3b), a 

synchronized vortex street is formed eventually behind the downstream cylinder, and a sudden 

jump in the Strouhal number ( UfDSt /= ) for the cylinder system occurs, although there is still 

no clear vortex shedding between the cylinders. It should be noted that this Strouhal number is 

for the entire tandem cylinder system and includes interference effects among the two cylinders 

and their wakes, which is not the same as that for a single cylinder. This sudden jump is 

indicative that the spacing is reaching the critical spacing. When cSS >  ( 6=S  in Fig. 3- 3c), 

the flow is in the ``vortex formation regime'' (VF), in which synchronized vortex shedding 

occurs and well developed vortices are shed from the upstream cylinder and re-attach themselves 

to the downstream one. The shedding vortices behind the first cylinder join those from the 

downstream cylinder to form a coupled vortex street in the wake of the tandem cylinder system. 
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(a) 

 

(b) 

 

(c) 

Figure 3-3 Vorticity contour plot for the stationary tandem cylinders system with different 

spacings: (a) S = 2; (b) S = 4; (c) S = 6. 

 

Figure 3-4 shows the computed Strouhal number versus the spacing distance at 100Re =  

and two other Reynolds numbers at 80 and 160 for comparison, which is used as the validation 

cases for the current numerical scheme. The reason to end at 160Re =  is because of three-

dimensionality at high Reynolds number flow stated in the previous section. On the other hand, 

at further lower Reynolds numbers, such as 50Re =  as we tested, the flow is on the verge of 

being a steady state with a long wake formation length for a single cylinder case. The possible 
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stabilizing effect of the downstream cylinder can make the flow even more stable and therefore 

the VF regime is large and no vortex shedding is shown in this regime. In our computation, the 

Strouhal number is calculated after the periodic vortex streets are formed and the solution 

converges to a state that shows periodic oscillations. The average surface pressure coefficient 

history, during the periods after a converged solution (80 or 160 depending on the frequency 

resolution needed) is established, is then used for spectral analysis to determine the Strouhal 

number. Our tS  values at 100Re =  fit between those reported by Sharman et al. (2005) and Li 

et al. (1991). The sudden jump of the Strouhal number occurs at 4=S  in all of the three data 

sets. For another Reynolds number of 80, we also repeated the same procedure and obtained the 

critical spacing around 5.5 as shown in Fig. 3-3, which agrees well with the result by Tanida et al. 

(1973), but is different from the value of 3.7 reported by Li et al. (1992). One of the reasons 

could be the resolutions of the grid mesh. As for the single cylinder case with 100Re = , a 

relatively coarse mesh was used by Li et al. (1992) that gave the value of tS  as 0.166, a bit lower 

than the usual value of 0.17 reported in the literature. Another reason could be due to different 

definitions of the critical spacing. There are several different ways of determining the critical 

spacing in the literature. We define the critical spacing by observing the sudden increase in the 

Strouhal number, which is the same definition as what used by Sharman et al. (2005). In Li et al. 

(1992) the wake length change as an indicator of separate flow regimes was used, while in 

Tanida et al. (1973) the interference drag was used as the criterion. 
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Figure 3-4 Strouhal number comparisons for different Reynolds numbers with literatures: 

Re = 80, 100 and 160. 

 

3.3.1.4 Summary 

In Section 3.3.1, a modified immersed-boundary method has been applied to simulate 

flow over a stationary tandem cylinder system. Three flow regimes occur according to the wake 

development stage behind the upstream cylinder: VS, critical and VF. Each depends on the 

spacing distance between the two cylinders. By comparing a series of calculated Strouhal 

number with the cited values in the literature, the numerical scheme was validated. And it will be 

applied to the multi-body fluid/solid interaction problem in the following section. 
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3.3.2 Flow over a Multi-Cylinder System 

Numerical simulations with an immersed-boundary method are presented for the 

incompressible flow past a periodic array of porous-medium cylinders. Fluid/porous-medium 

interactions are greatly influenced by the accuracy on the interface between the surface of the 

porous cylinder and the flow around it, because of the sudden change in the governing equations 

for the fluid and for the porous material. In order to retain the smoothness on the interface, 

momentum fluxes near the interface are discretized using several schemes, including the 2nd- and 

3rd-order upwind schemes and the 5th-order Weighted Essentially Non-Oscillatory (WENO) 

scheme. These schemes are combined with a direct-forcing immersed-boundary method to 

remove the discontinuity between the fluid and the porous material, and thus accuracy near the 

interface can be improved. Low and moderate Reynolds number flows, both outside and inside 

the porous cylinders, are computed simultaneously by solving a combined governing equation 

set for incompressible flow. The simulation is first validated using flow over an array of 

impermeable cylinders. The advantage of high-order schemes is then investigated by looking at 

the flow parameters near the interfaces between the porous cylinders and the outside flow. 

Species transport in flow with the porous-cylinder-array configuration is also studied. 

3.3.2.1 Introduction 

Flow past cylinders has been extensively investigated for decades. This fundamental 

problem can be applied to various industrial structures, such as off-shore constructions, heat 

exchangers, etc. Both experimental and numerical methods were used to study this problem. 

Different flow Reynolds numbers and cylinder shapes and their arrangements have been tested 

for various objectives. The reviews of flow over a single circular cylinder can be found in 

Williamson (1996) and Zdravkovich (1997). To study multi-body fluid/solid interactions, tandem 
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cylinder configurations have been studied (e.g. Papaioannou 2006a, 2006b, and Yang and Zheng, 

2010). Staggered cylinder bundles draw some attentions in recent years, as the complicated 

structures are challenging to simulate fluid/structure interactions (FSI). Rollet-Miet et al. (1999) 

used Large Eddy Simulation (LES) to study turbulent flow past a cylinder bank. The 

instantaneous flow field and Reynolds stress components were calculated. For fluid flowing 

through porous materials, multiple-cylinder structures can be viewed as a Representative 

Elementary Volume (REV) to study the fluid flow in micro-scales. In Kuwahara et al. (1998, 

2006), a square cylinder REV was used to study the macroscopic fluid transport phenomena 

from the microscopic approach in a range of Reynolds numbers and porosities. LES was also 

applied for high Reynolds number cases in that study. The correlation between the pressure 

gradient and the porous properties was analyzed and compared to the macroscopic analytical 

solution. The good agreement in the comparison proved the validity of using the REV approach 

to study flow in porous media. Other works in the literature studied the cylinder bundle problem 

for either heat exchangers or porous media, including Pedras et al. (2001), Roychowdhury et al. 

(2002), Nakayama et al. (2004), Moulinec et al. (2004), Liang and Papadakis (2007) and Teruel 

et al. (2007, 2009 a, b, c). 

While the staggered cylinder array has been confirmed to be an acceptable REV structure 

to study flow through porous media in the literature, the cylinders in their study were 

impermeable and treated as solid bodies. To simulate porous materials composed pellets, the 

porous effect in even smaller scales need to be included. For that purpose, in this study, we 

further model the cylinders as a porous medium with smaller pores. This concept of using the 

same REV with and without the porous model is illustrated in Fig. 3-1. The Darcy or extended 

Darcy type models can be used as the governing equations in the porous area. In the literature, 
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even the list of studies of flow past a single porous cylinder is much shorter than that for a solid 

cylinder. For example, Bhattacharyya et al. (2006) investigated numerically the flow through and 

around a porous cylinder, and compared the drag coefficient with the experimental data in flow 

of a low Reynolds number range (Re = 1 - 40). Another example is Chen et al. (2008, 2009) who 

studied the flow past a porous square/trapezoidal cylinder with different Reynolds numbers, 

Darcy numbers, and porosities. Wilson et al. (2006, 2007) applied a simplified and modified 

porous model, the Zwikker-Kosten (ZK) equation (Zwikker and Kosten, 1949), for time-domain 

modeling of sound propagation with a porous surface. Recently Xu et al. (2010) used the 

immersed-boundary (IB) method and the ZK equation to study the effect on wind noise reduction 

of porous windscreens of measurement microphones under different frequencies of incoming 

wind turbulence. In the current study, we extended the application of the ZK equation to a 

periodic array of porous cylinders to study momentum transport. We also developed a porous-

medium model to calculate mass transport through the array. 

The presence of porous media introduces a sudden change (or a discontinuity due to the 

phase change from bulk fluid to porous media) at the fluid/porous interface and also affects the 

numerical stability. Under these circumstances, most conventional finite difference schemes are 

challenged when used around the interfaces. The accuracy at the interface between the fluid flow 

and the porous medium is a key issue in simulating such problems (James and Davis, 2001; 

Goyeau et al. 2003). There have been two types of methods to overcome this discontinuity. One 

is to apply a stress-jump condition between the two media (Ochoa-Tapia and Whitaker, 1995 a, 

b). In this method, the adjustable parameters that account for the stress jump are critical and 

problem dependent. Another effective way is to apply higher-order schemes including the 2nd- 

and 3rd-order upwind schemes and the 5th-order Weighted Essentially Non-Oscillatory (WENO) 
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scheme (Harten et al. 1987; Shu and Osher, 1988, 1989). High-order schemes have been used in 

simulation for viscous flow around steady and moving solid bodies (Cho et al. 2007). Also in Xu 

et al. (2010), several high-order schemes were applied on the interfaces between the screened 

microphone and the outside flow and achieved very promising results. 

In the following sections, first, the computational schemes were validated by using the 

solid cylinder REV cases in comparison with the results from a commercial flow solver. Second, 

flow in the same REV but with the porous model for permeable cylinders is simulated. Different 

numerical schemes are tested on the fluid/porous interfaces. Then, species transport in the porous 

medium is studied; and finally conclusions are made. 

3.3.2.2 Numerical Schemes 

The geometry for both solid and porous REV is shown in Fig. 3-5 with a periodic array of 

circular cylinders. In the solid unit, all the cylinders are considered to be impermeable, while in 

the porous unit, the cylinders are porous. The geometry is determined by two lengths of the unit: 

the diameter of the cylinder (D) and the distance (H) between the adjacent centers of two 

cylinders. With this REV unit, the computational domain, including all the related boundary 

conditions, ensures the periodicity of flow in both the x- and y-directions. Under most 

circumstances of interest, flow inside porous media is of low speed, therefore laminar, low 

Reynolds number flows are considered in this study, where μρUD=Re , is based on the fluid 

density ρ , viscosity μ , cylinder diameter D, and the incoming stream velocity U. For the 

arrangement of the REV in this study, the porosity for the large structure (not inside the cylinder), 

defined as 2)/(1 HD−=φ , is selected as 0.61. 
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Figure 3-5 Computational domain of the unit structure. 

 

The concept of immersed-boundary method (IBM) is to implement a defined forcing term 

in the momentum transport equations in the vicinity of the solid boundary. It has been 

successfully used to study various fluid-structure interaction (FSI) problems. The advantages of 

using IB methods are primarily: 1) only simple Cartesian grid is needed; 2) no moving grid is 

required to simulate an object in motion; and 3) the shape/arrangement of the objects can be 

arbitrary. A review of the IB methods can be found in Mittal and Iaccarino (2005). In the current 

study, a modified immersed-boundary method with a direct compensation forcing term is used to 

compute the fluid flow. This computational algorithm has been verified using numerous sets of 

data in the literature on flow over cylinders and spheres (Zhang and Zheng, 2007). The non-

dimensional governing equations for the mass and momentum conservations (characterized by 

the incoming fluid velocity U and the density ρ ) for incompressible flow are expressed as: 

0=u⋅∇ ,                                                       (3.28) 

and 
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fuuuu
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∂
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Re
p

t
 ,                                  (3.29) 

where Re is the Reynolds number and f is the body force representing the virtual boundary or the 

porous medium effect, which will be defined later. 

To include the porous medium effect, Darcy’s law has been widely used to simulate the 

pressure loss ( p∇ ) in the porous medium. Assuming an isotropic medium, Darcy’s equation can 

be written as: 

u
K

p μ
−=∇ ,                                                    (3.30) 

where μ  is the viscosity and K is the permeability. 

There are several extended formats of Eq. (3.30). The Zwikker-Kosten (ZK) model has 

been used previously for numerical calculations of linear sound propagations in porous media 

(Wilson et al. 2006; Xu et al. 2010). A modified version of the ZK equation can be written as: 

uuuuu σ−∇+−∇=∇⋅+
∂
∂ 2

Re
1p

t
,                                 (3.31) 

where σ  is the dimensionless flow resistivity of the porous medium (non-dimensionalized by 

ρU/D). 

It is obvious that Eqs. (3.29) and (3.31) have similar format except for the additional 

source terms on the right-hand side. Hence in this study, inside the porous medium, a ZK type of 

source term is applied as the replacement of the forcing term in Eq. (3.29). The forcing term in 

the two equations can thus be combined as: 

⎩
⎨
⎧
−

=
medium porous inside           

medium porous outside                   0
u

f
σ

.                      (3.32) 
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After a periodically stable flow field has been obtained, a species transport equation for a 

passive scalar is solved. Similar to the momentum equation in a porous medium, a sink term is 

added in the species transport equation representing the adsorptive effect of the porous cylinders. 

Thus the species transport equation can be expressed as: 

cc SCDC
t
C

+∇=∇⋅+
∂
∂ 2u ,                                   (3.33) 

where C is the specie concentration, Dc is the species diffusion coefficient, and, Sc the additional 

sink term. 

The simple linearized sink term can be modeled as: 

⎩
⎨
⎧

−−
=

medium porous  theinside     )(
medium porous  theoutside                         0

in
c CC

S
α

 ,               (3.34) 

where α  is the adsorption coefficient and Cin is the final saturated concentration value of the 

species. 

The momentum and species transport equations are solved using finite difference 

schemes on a staggered Cartesian grid. A semi-implicit scheme with 2nd-order spatial 

differencing is used for the diffusion terms, with the normal direction diffusion terms using the 

Crank-Nicholson scheme. The convection terms in both momentum and species transport 

equations will be discussed later using different orders of schemes. The incompressibility 

condition is satisfied by solving a Poisson equation for pressure correction using FISHPACK 

(Swarztrauber and Sweet, 1979). The overall accuracy of the scheme is able to reach the second 

order in space. More detailed explanations on the IB solver can be found in Zhang and Zheng 

(2007). 
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As shown in Fig. 3-5, there are multiple fluid/porous interfaces in the REV unit. As stated 

previously, the sudden change between the fluid and the porous medium decreases simulation 

accuracy. To improve the accuracy near the interfaces, higher-order finite difference schemes are 

considered. The schemes tested here include the 2nd- and 3rd-order upwind schemes and the 5th-

order WENO scheme. 

Upwind schemes use an adaptive finite difference stencil to numerically simulate the 

direction of propagation of information. The 1st-order upwind scheme is too dissipative. Thus, 

our investigation includes 2nd-order upwind scheme, 3rd-order upwind scheme and 5th-order 

WENO scheme. The numerical details and the discretizations of those schemes can be found in 

Section 3.2.3. 

To produce the periodicity in this unit with a length L, periodic boundary conditions have 

to be enforced in both streamwise and spanwise directions (Patankar et al. 1977) respectively as:  

pjLpjpjLvjvjLuju Δ+=== ),(),0(  ),,(),0(   ),,(),0( ,               (3.35) 

and 

),()0,(  ),,()0,(   ),,()0,( LipipLivivLiuiu === .                      (3.36) 

For the species transport, the boundary condition at the inlet is chosen to be uniform. The 

top and bottom boundaries are symmetry, and at the outlet the normal derivatives are zero.  

After the grid-size independence check, the grid size, with dx = dy = 0.00625, has been 

chosen for a uniform Cartesian grid. The stability criterion is no more restrictive than that of an 

explicit scheme for a two-dimensional convection-diffusion equation as stated in Eq. (3.10).  
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3.3.2.3 Results and Discussion 

We test several different orders of numerical schemes, and the final selection will go to 

the scheme which shows the best results among all the cases. We first validate the high-order 

schemes by comparing the solid cylinder bundle results with the ones calculated using a 

commercial solver. Second, the porous cylinder unit cases are presented to emphasize the 

importance of using higher-order schemes. Finally, the results from the species transport will be 

discussed. 

For the solid cylinder cases, the fluid/solid interaction problem in this unique structure is 

already interesting and is selected to be the validation case before the porous model is involved. 

By using a commercial CFD solver, the boundary conditions are kept the same as in the IBM 

simulation, including the periodicity and the pressure drop in the streamwise direction. Also the 

grid resolution is the same between the two simulations. The 2nd-order upwind scheme is used to 

discretize the convection terms in the commercial solver. The results in Fig. 3-6(a) and Fig. 3-6(b) 

visually show that the velocity field obtained from the IBM simulation using the 5th–order 

WENO scheme and that from the commercial solver look very similar to each other (as the 

contour scale and levels are kept the same). Higher velocity appears in the narrow channel-like 

space between the neighbor cylinders. The periodic flow pattern is well represented. Although 

not shown here, the plots from other schemes look the same as the two shown here. 
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(a) 

 

(b) 

Figure 3-6 Solid cylinders unit: velocity magnitude contour plot (a) 5th-order WENO 

scheme in IBM; (b) FLUENT simulation (the color range and levels are the same for both 

cases). 
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To obtain more strict quantitative comparisons for the results, we select three locations 

for velocity profile comparisons: the outlet boundary, the top boundary, and along a line in the x-

direction which is 1/4 D distance from the bottom of the domain. Results from different schemes 

are displayed in Fig. 3-7 and compared with the commercial solver results. In all the locations, 

the results from 3rd-order upwind scheme and the 5th-order WENO scheme are very close to the 

commercial solver results, while the results from the two 2nd-order schemes are not. The 2nd-

order central difference scheme seems to be the least accurate. We thus decide that the 2nd-order 

schemes are not the right option even for the solid cylinder case. The 3rd-order upwind and the 

5th-order WENO schemes can be the candidates, with the latter showing the best result. 

 

 

(a) outlet 
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(b) top 

 

(c) bottom 

Figure 3-7 Solid cylinders unit: velocity profiles comparison between high-order schemes in 

IBM and FLUENT simulation at three different locations (a) at the outlet; (b) at the top 

boundary; (c) 1/4 D from the bottom boundary. 
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As mentioned in Section 3.3.2.1, the periodic array of solid cylinders is viewed as a 

representative elementary volume (REV) in a porous medium. The simulation of the flow 

passing the REV can be used as a microscopic representation of flow in the porous medium in 

order to estimate the macroscopic properties of the porous medium flow. In a macroscopic (or 

bulk) simulation, the pressure drop is frequently used as the parameter indicating the porous 

medium behavior. There is the Blake-Kozeny equation (Bird et al. 2002) which relates the 

pressure drop to the bulk porous medium properties, such as pore size and void fraction. This 

relationship should also be valid in the micro-scale REV. To demonstrate that point, a series of 

numerical simulations are performed for a range of porosities (φ ). We then process the 

microscopic numerical results to compare with the Ergun equation. 

The porosity is ranging from 0.5 to 0.8 approximately. Thus the arrangement will be 

different for each porosity case and the flow field will be changed (see Fig. 3-8). Since in this 

study, we concentrate on the low Reynolds number flow in the porous medium, the modified 

Darcy’s law for the laminar flow regime (in the streamwise direction) is in the following format 

(without the Forchheimer term for turbulent flow, recalled from Eq. 3.30): 

u
Kdx

dp μ
−= ,                                                  (3.37) 

where μ  is the flow viscosity (0.01 in this case for 100Re = , 1=ρ ) and K  is the permeability, 

which needs to be determined. 
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(a)                                                                         (b) 

 

                               (c)                                                                        (d) 

Figure 3-8 Solid cylinders unit with different porosities φ  (arrangements): (a) 54.0=φ ; (b) 

61.0=φ ; (c) 75.0=φ ; (d) 83.0=φ . 
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To determine the pressure drop (pressure gradient) in this study, the dimensionless 

pressure difference between the inlet and the outlet could be calculated as (Kuwahara et al. 1998): 

dypp
DHdx

dp
Hx

DH

D
x )(1 2/

2/
0 =

−

=∫ −
−

−=  .                        (3.38) 

The porosities and related pressure gradient calculation results are summarized in Table 3-1. 

 

φ   32)1( φφ−   dxdp /−  

0.54 1.3 1.82 

0.61 0.67 1.04 

0.75 0.15 0.21 

0.83 0.054 0.051 

Table 3-1 The relationship between the porosity and the pressure gradient. 

 

A coefficient of the correlation from current simulations between the dimensionless 

pressure gradient and 32)1( φφ− is around 142.8 (1.428/0.01, 0.01 is the viscosityμ since Re = 

100), which is very close to 144 for circular rods in Kuwahara et al. (1998). Therefore, for 

laminar flow going through this solid structural unit (a periodic array of impermeable cylinders), 

the pressure drop can be correlated with the porosity as: 

u
Ddx

dp
23

2)1(8.142
φ

φμ −
=− .                                       (3.39) 
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This relationship is plotted in Fig. 3-9. Equation (3.39) is very close to the empirical expression 

of the Blake-Kozeny equation (Bird et al. 2002), which is: 

u
Ddx

dp
23

2)1(150
φ

φμ −
=− .                                       (3.40) 

The only difference is the coefficient. Also this coefficient is dependent on the shape of the solid 

obstacle in the unit. 

 

 

Figure 3-9 Effect of porosity on pressure gradient. 
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By using the modified ZK equation (Eq. 3.31) inside the cylinders, flow through porous 

cylinders can be simulated. A range of flow resistivity values, σ, have been chosen from 0.01 to 

10000 indicating different levels of the porous effect. When the flow resistivity is small, the 

cylinders are very permeable, and when it is big, they can be treated almost like solid bodies. 

Hence, if the resistivity is 10000, the flow field should be similar to that of the solid case. This 

can be demonstrated in Fig. 3-10 where velocity magnitudes in three locations are plotted by 

using different orders of schemes. The results from the solid case are used as a benchmark 

solution for comparisons. The results of the 2nd–order upwind scheme appear to be a lot different 

from the results by using other schemes, especially in the bottom location where there are 

wiggles near the inlet, indicating highly unstable numerical results. The results obtained from 

3rd-order upwind scheme and the 5th-order WENO schemes are close to each other. The high 

resistivity results show again that the 2nd-order upwind scheme should not be used. Since the 

interface behavior is the key issue in the fluid/porous interaction study, the surface pressure 

coefficient ( pC ) distribution is used as the parameter for comparison.  
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(a) outlet 

 

(b) top 
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(c) bottom 

Figure 3-10 Porous cylinders unit: 10000=σ , velocity profiles comparison between 

different schemes at three locations (a) at the outlet; (b) at the top boundary; (c) 1/4 D from 

the bottom boundary. 

 

Figure 3-11 compares the pC  for the high-resistivity case around the center cylinder using 

different schemes along the solid cylinder case. The same conclusion is obtained from the results 

as that for the velocity profiles in Fig. 3-10 as discussed above. 
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Figure 3-11 Porous cylinders unit: 10000=σ , pressure coefficient comparison on the 

surface of the central cylinder. 

 

In the porous cylinder cases, when the flow resistivity is getting smaller, which means 

that the cylinders become more permeable, the differences between high-order schemes are more 

easily distinguished. In Fig. 3-12, the resistivity is 0.1, much smaller than the almost-solid case 

with 10000=σ . In the results from the 3rd–order upwind scheme, due to the numerical errors 

around the fluid/porous interfaces, the structures of the cylinders are almost indiscernible (Fig. 3-

12a), which means the accuracy on the fluid/porous interfaces is not sufficient to resolve the 
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boundaries. On the other hand, in Fig. 3-12(b) for the results of the 5th–order WENO scheme, the 

interfaces between the fluid and the porous cylinders are clearly shown, and the periodicity of the 

flow is well captured. Therefore, after all those tests, the 5th-order WENO scheme has been 

proved to be the one with the most accurate result. The above mentioned tests are summarized in 

Table 3-2. 

 

 

(a)                                                                                (b) 

Figure 3-12 Porous cylinders unit: 1.0=σ , velocity magnitude contour plot: (a) 3rd-order 

upwind scheme; (b) 5th-order WENO scheme. 

 

 

 

 

 



 

 76

 

  Solid 10000=σ  1.0=σ  

2nd-order  

central difference 

 

X 

 

X 

 

X 

2nd-order upwind √ X X 

3rd-order upwind √ √ X 

5th-order WENO √ √ √ 

 Table 3-2 Summary of the numerical schemes used for testing (X – not good; √-- good). 

 

Since 5th-order WENO scheme has been proved to be the most accurate scheme for both 

the solid and the porous cases, a complete series of cases with different flow resistivities is 

shown in Fig. 3-13. It is apparent that with smaller resistivities, it becomes easier for the flow to 

penetrate the fluid/porous interfaces, which is physically reasonable. On the other hand, for very 

high resistivities, it turns to be very close to be impermeable. Also by looking at those interfaces, 

no wiggles or highly dissipative results are noticed indicating the stability of the numerical 

scheme, which has been confirmed with the quantitative results previously. 
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                                (a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 3-13 The solid/porous cylinder units simulated by using 5th-order WENO scheme 

with different flow resistivities: (a) solid; (b) 10000=σ ; (c) 10=σ ; (d) 01.0=σ . 
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After obtaining good results from the flow field for both solid and porous cylinder arrays, 

the species transport equation is then solved with the 5th-order WENO scheme using the solved 

flow field. As in Eq. (3.34), the porous model for the species sink term is only applied inside the 

porous cylinders. In the species transport equation, Eq. (3.33), the species diffusion coefficient, 

DC, is selected as 0.001 for testing purposes. For the porous model in Eq. (3.34), the adsorption 

coefficient varies from 0.01 to 10000 to test its effect on species transport. In Fig. 3-14, contours 

of species concentration are displayed with different adsorption coefficient values. It shows for 

higher adsorption coefficient, the species concentration in between cylinders is higher, while for 

lower adsorption coefficient, the surface diffusion is more significant and there exist higher 

concentrations of species inside the cylinders. 

 

 

(a)                                                                                 (b) 

Figure 3-14 Species transport in the porous cylinder array with different adsorption 

coefficients: (a) 10000=α ; (b) 1=α . 
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In a similar way that we found the correlation between the porosity (φ ) and the pressure 

gradient ( dxdp / ) in the solid cylinder bundle system, in the porous case, a relationship between 

the adsorption coefficient (α ) and the concentration change between the inlet and outlet ( CΔ ) is 

also anticipated. However, there has not been any empirical correlation for this problem like the 

Blake-Kozeny equation for the momentum transport. To calculate the concentration change 

along the flow direction, an analogy of Eq. (3.38) is expressed as: 

dyCC
DH

C Hx

DH

D
x )(1 2/

2/
0 =

−

=∫ −
−

−=Δ .                                  (3.41) 

To test the adsorption coefficient effect, a series of simulations of different α  (0.01, 0.1, 

1, 10, 100, 10000) are carried out with the same porous cylinder REV at 609375.0=φ . Figure 3-

15 plots the calculated concentration change correlated with adsorption coefficient. When the 

adsorption coefficient increases, the concentration change becomes less since there is less mass 

adsorbed into the porous cylinders. However, the decrease of the concentration change does not 

linearly change with the adsorption coefficient. 
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Figure 3-15 Effect of adsorption coefficient on concentration change. 

 

3.3.2.4 Summary 

Section 3.3.2 presented a series of results from the numerical simulations for flow past a 

periodic array of both solid and porous cylinders. To maintain numerical accuracy on the 

interfaces between fluid and solid or porous cylinders, different orders of numerical schemes 

have been tested to discretize the momentum flux including the 2nd- and 3rd- order upwind 

schemes and the 5th-order WENO scheme. By using an REV representing an array of 

impermeable solid cylinders, the present models with different high-order schemes are validated 

showing the 5th-order WENO schemes is the most accurate scheme. The solid-cylinder REV 
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results are used to compare with the Blake-Kozeny equation for the bulk porous medium 

behavior. The results from the porous cylinders arrays with a range of flow resistivities showed 

that the 5th-order WENO scheme behaves the best from all the tests. The WENO scheme is then 

used to calculate the species transport with porous cylinder arrays. The results show that for the 

same geometric arrangement of the cylinder array and same species, the concentration 

distribution of the species is influenced by the adsorption coefficient of the porous cylinders. The 

concentration change between the inlet and outlet decreases with the increase of the adsorption 

coefficient. 

3.4 Summary of the Micro-Scale Simulation 

In the micro-scale simulation, the flow/species transport through a group of porous 

material pellets was investigated. The fluid/solid and fluid/porous interactions were the most 

interesting problems. A modified immersed-boundary method along with a Zwikker-Kosten 

porous model and several high-order discretization schemes were applied to different cases and 

setups. The simulation results from our investigation have led to the following conclusions: 

1. For the multi-body fluid/solid interaction study: uniform flow passing a tandem cylinder 

system 

• A modified direct-forcing immersed-boundary method was successfully applied to a 

tandem-cylinder system for low Reynolds number.  

• When the calculated values of the Strouhal number is compared to the experimental 

values in the literature, the agreement between the values exists for a range of 

Reynolds numbers. Thus, the numerical scheme has been validated. 

• The spacing between the tandem cylinders was found to play an important role in 

formatting the vortex shedding patterns and the flow regimes. 
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2. For the multi-body fluid/solid and fluid/porous interaction study: uniform flow passing a 

periodic array of circular cylinders 

• A modified immersed-boundary method was applied to simulate flow/species passing 

a periodic array of solid/porous cylinders. 

• The high-order schemes include 2nd-order upwind, 3rd-order upwind and 5th-order 

WENO schemes that have been tested on the interfaces of fluid/solid and fluid/porous 

phases to smooth the discontinuity. In the porous cases, the 5th-order WENO scheme 

was found to be the most accurate. 

• In the solid cylinders array, the numerical scheme was validated when the results for 

velocity profiles at different locations were compared to the ones obtained from 

commercial CFD software. 

• In the solid cylinders array, the macroscopic pressure-porosity relationship (Blake-

Kozeny equation) was studied in this microscopic structure and the results were very 

promising. These results link macro-scale simulations to the micro-scale simulations. 

• In the porous cylinders array, the modified Zwikker-Kosten equation was used as the 

porous model inside the cylinders. 

• In the porous cylinders array, when the 5th-order WENO scheme was used on the 

interface, the species transport simulation with porous model was carried out as well. 

The relationship between the concentration change and the adsorption coefficient was 

established and found to be not linear. 
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CHAPTER 4 - Nano-Scale Simulation 

Why can porous material remove toxic gases? Why does surface diffusion occur? These 

two questions, which have been investigated in the previous two scales, lead to postulating one 

cause: molecular motion and interaction. As with other questions examined in macroscopic 

research, using smaller scales provides a more detailed understanding of the causes of the above 

phenomena. In this chapter, discrete models and numerical simulations are used to examine the 

surface slip and diffusion mechanisms in the molecular level. The fluid/solid interactions (FSI) 

reach their final stages, which is the interaction of different types of molecules (see Fig. 4-1). 

 

 

Figure 4-1
 
Fluid/solid interaction (FSI) in the molecular level. 

 

In this chapter, Section 4.1 explains the specific characteristics of the simulation in this 

smallest scale, which is very different from the other two scales. The slip behavior on the solid 

surface is examined in Section 4.2 and the surface diffusion (adsorption) in Section 4.3. Section 

4.4 presents our conclusions. 
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4.1 Nano-Scale: “Is Everything Different or Just Smaller?” 

Flow through micro- and nano-scale structures is of fundamental interest to those 

designing biological and engineering devices and systems, such as micro-fabricated integrated 

circuits, carbon nanotubes and bio-sensors. Significant progress has been achieved in 

understanding flow on this scale and various applications have been developed based on that 

understanding (Gad-el-Hak, 2004; Squires and Quake, 2005). However, due to the limited 

knowledge of the microfluidics, many interesting phenomena that have puzzled researchers for a 

long time are still not understood. Numerical simulation of such a physical system is a preferable 

approach, because such simulation not only validates the experimental results but also provides 

information that goes beyond the limits of the experimental observation. Thus, Herwig (2002) 

posed this question: is everything different or just smaller?  

Actually in many micro-/nano- devices, the molecules are not far from the surfaces. The 

fluid molecules are attracted by the dense solid molecule clusters and can not move freely due to 

the interaction between fluid and solid. In addition, many physical properties, such as density 

and viscosity, would deviate from the bulk fluid properties. And surface mechanisms dominate 

in this regime, which leads to this principal problem: the continuum hypothesis breaks down at 

the nano-scale and simple no-slip boundary condition treatment is no longer applicable. The 

Navier-Stokes (NS) equations are based on the continuum approximation and the assumption of 

thermodynamic equilibrium, both of which rely on the formulation of local flow properties as an 

average of the fluid elements. Until the equilibrium is achieved, the gradients of those properties 

are in a linear relationship with the volumes. Thus, the stress varies linearly with strain and the 

heat flux is linearly related to the temperature gradient. A parameter called the Knudsen number, 

Kn = λ/L, where λ is the mean-free path and L is a characteristic macroscopic length (e.g. 
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the radius of a body in a fluid), can be used to categorize different regimes. When this parameter 

is used, the flow regime can be divided using this parameter as: 

a) 01.0<nK , continuum regime. NS equations and no-slip boundary conditions can be used 

well. 

b) 1.001.0 << nK , slip-flow regime. NS equations can still be used while the slip condition 

has to be applied on the boundary. 

c) 101.0 << nK , transient regime. The stress tensor tends to be substituted with the higher-

order model and higher-order slip models at the boundary are needed.  

d)   10>nK , atomistic regime. The continuum assumption fails. 

In this project, to study the surface mechanisms and properties within the thin layer 

adjacent to the boundary, we considered nK  to be greater than 10 (even though in the bulk fluid 

it is still small). So for the continuum region, we kept the NS equations, but at the boundary, we 

had to use a smaller scale simulation to capture the surface mechanisms. This project had two 

major aims: First, the slip behavior on the solid surface would be investigated by using the 

traditional molecular dynamics (MD) simulation and an innovative hybrid scheme in the 

molecular level. Second, the gas/solid interaction and diffusion aspect would be explored by 

using the same methods as well. The channel flow problem (Couette flow), without 

consideration for the surface roughness and curvature, was chosen for both studies. 

Since the macro-scale description through the NS equations is not adequate, MD 

simulation serving as a discrete model could be used in its place. MD simulations are used to 

model fluids (gas, liquid) characterized by the time and length scales of molecular motion 

(Frenkel and Smit, 1996). They compute the trajectories of particles interacting through classical 
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force fields. Koplik and Banavar (1995) reviewed MD methods on their use in this regard. 

Although MD simulation is able to provide accurate information in the surface-dominant nano-

scale region, it is computationally prohibitive for those problems with realistic sizes since nano-

scale flows are often part of larger-scale systems. In fact, full MD computing is too expensive for 

the whole domain in this multi-scale problem; however, only the region near the boundary needs 

to be simulated. The rest of the domain can be described using the continuum theories less costly.  

This means that the macro-scale flows determine the external conditions that influence the nano-

scale system, which in turn influences the larger scales by modifying its boundary conditions. In 

this way, we can not only obtain an accurate description from MD, but also utilize the efficiency 

of the continuum field, which is briefly illustrated in Fig. 4-2.  

 

 

Figure 4-2
 
Concept of the coupling scheme. 

 

The slip behavior is one of the surface properties that are important in micro-/nano-

fluidic devices. Figure 4-3 introduces the concept of the slip length in the nano-regime. In the 



 

 87

continuum regime, the common no-slip boundary condition is widely used for solid surfaces 

while this theory breaks down in smaller scales. Due to the molecular motion, a certain amount 

of slip exists on the surface, and this feature is characterized as slip length ( sL ). Hence in this 

study, we explored the slip behavior by using MD simulation and a hybrid molecular-continuum 

scheme. Both numerical schemes have been validated by comparing the results with literature. 

By changing the height of the channel in the Couette flow and the moving velocity on the wall, 

we varied the shearing conditions; thus, the effect on the slip length could be summarized.  

 

 

Figure 4-3
 
No-slip and slip boundary conditions. 

 

In the macro- and micro- scales, we simulated the flow/species transport in the nano-

material by using porous models to determine how the flow/species could penetrate the 

fluid/porous interface. The surface diffusion is an important problem that needs to be addressed 

to understand the transport phenomena and the surface mechanisms. Studying the diffusion into 

the micro-/nano-pores becomes an interesting topic, which could shed insight into the transport 

mechanisms involved in this smallest scale. As mentioned previously, the classical continuum 
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theory based on NS equations assumes that state variables do not vary appreciably on a length 

scale comparable to the molecular mean free path. However, significant fluctuations in fluid 

density have been observed in the direction normal to the solid wall both in experiments and in 

numerical simulations. Consequently, the effectiveness of the classical NS approach should also 

break down in the diffusion problem. Therefore, the objective of this study was to simulate 

Couette flow going through the constructed nano-pores on the solid surfaces (Fig. 4-4). Unlike 

the solid walls in the slip behavior study, several nano-pores are constructed by the molecules, 

leaving adequate space for the flow developed inside the pores. The transport diffusivity and the 

flux are calculated based on this simulation. The information would be useful in transport 

investigations and developing the porous models in the other two larger scales. 

 

 

Figure 4-4
 
Surface diffusion in nano-scale. 
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4.2 Slip Behavior on the Solid Surface 

The concept of slip length, related to surface velocity and shear rate, is often used to 

analyze the slip surface property for flow in micro- or nano-channels. In this study, a hybrid 

scheme that couples molecular dynamics simulation (used near the solid boundary to include the 

surface effect) and a continuum solution (to study the fluid mechanics) is validated and used for 

the study of slip length behavior in the Couette flow problem. By varying the height of the 

channel across multiple length scales, we investigate the effect of channel scale on surface slip 

length. In addition, by changing the velocity of the moving-solid wall, the influence of shear rate 

on the slip length in a certain range of the channel height is studied.  

The results show that within a certain range of the channel heights (size of the channel), 

the slip length is size-dependent. This upper bound of the channel height can vary with the shear 

rate. Under different magnitudes of moving velocities and channel heights, a relative slip length 

can be introduced which changes with channel height following an exponential function. 

4.2.1 Introduction 

Flow through micro- and nano-scale structures has fundamental applications in many 

engineering devices, such as micro-integrated circuits, carbon nano-tubes and bio-sensors. In 

many micro-fluidics devices, the fluid molecules are within a thin layer away from the solid 

surfaces. The surface properties in this region do not fall into the continuum hypothesis and the 

simple no-slip boundary condition for flow is no longer applicable. Instead, molecular dynamics 

(MD) simulations can be used as discrete simulation models in place of the Navier-Stokes (NS) 

simulation. MD simulations are used to model fluids (including gas and liquid) characterized by 

the time and length scales of molecular motion (Frenkel and Smit, 1996). They compute the 

Lagrangian trajectories of particles under the forcing fields calculated by Newton’s 2nd-law. The 
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review of MD simulation used for fluid mechanics problems can be found in Koplik and Banavar 

(1995) and Koumoutsakos (2005).  

Although MD simulation is sufficient to provide accurate information near the solid 

surfaces in nano-scale, it is computationally expensive for problems in realistic sizes since the 

surface mechanisms are part of a macro-scale system. In fact, only in the region very close to the 

boundary is MD simulations needed. The rest of the domain can still be simulated less costly by 

traditional continuum solvers. Therefore, a hybrid scheme that allows the two-way interactions 

between the MD and the continuum simulation can be very useful. The interactions between the 

two models are facilitated as that the macro-scale flow model determines the external forcing 

field that influences the nano-scale molecular behavior, while the boundary conditions needed by 

the continuum simulations can be obtained from the MD computation results. This hybrid 

molecular-continuum method has become an attractive topic for decades, e.g., the studies in 

Koumoutsakos (2005), Werder et al. (2005), O’Connell and Thompson (1995), 

Hadjiconstantinou and Patera (1997), Li et al. (1998), Flekkoy et al. (2000), Nie et al. (2004), 

Ren and E (2005), Cui et al. (2006) and Wang and He (2007). 

The model problem used in the current study is a multi-scale Couette flow problem that 

has an exact analytical solution in the continuum regime. The purpose is to investigate the slip 

properties on the solid surfaces within different channel scales and under different shearing 

conditions. The liquid/solid interface mechanisms have been intensively studied in, for example, 

Thompson and Robbins (1990), Koplik et al. (1989), Cieplak et al. (2001), Lichter et al. (2004, 

2007) and Martini et al. 2008 (a, b). The general boundary conditions (slip and no-slip) on the 

solid interfaces in the nano-scale were summarized in Thompson and Troian (1997). In the above 

literature, the concept of slip length was well established and developed. Recently, Xu and Li 
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(2007) and Yen et al. (2007) studied the channel size effect using hybrid schemes from various 

points of view. Xu and Li (2007) calculated the slip lengths under the same shear rate by fixing 

the size of the MD domain in the hybrid scheme. In Yen et al. (2007), they considered the 

relative slip lengths. 

In the current study, we investigate a wide range of cases of the channel flow problem by 

using either pure MD simulation or the hybrid molecular-continuum scheme. We focus on the 

influence of shear rate on the slip length that has not been investigated by previous research. The 

channel scale effect on slip length is investigated under different shear rates. 

In the following sections, we use a problem that has a simple analytical solution in the 

continuum regime, the Couette flow, as a model problem, so that there is no uncertainty in the 

continuum solution. We then carefully verify our MD solution in comparison with the MD 

solutions in the literature, although limited to no-thermal energy exchange between the fluid and 

the solid wall (Martini et al., 2008b). After that, we verify our hybrid method with the full MD 

simulation and with the literature data, where a detailed description of our hybrid method is 

provided, giving the parameter selections used in the algorithm, such as sizes of overlapped 

region and exchange layers, and iteration time steps within each iterative cycle. We also address 

the time-saving feature of the hybrid method in contrast to full MD simulation. Finally, we used 

this hybrid method for a wide range of velocity and channel height combinations to 

systematically study the effects of velocity, size, and shear rate that influence the behaviors of 

both absolute and relative slip length. The size-scale range reaches all the way to when the 

continuum assumption can be applicable. A logarithmic correlation between the relative slip 

length and channel size is sought based on the simulation results. 
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4.2.2 Numerical Schemes 

To investigate the slip properties on the fluid/solid interface, both MD simulation and a 

molecular-continuum coupling method were used. In this section, the numerical schemes of both 

methods will be explained in detail. 

4.2.2.1 Molecular Dynamics Simulation 

Molecular Dynamics (MD) simulation is a technique to compute the equilibrium and 

transport properties of a particle system, which can be used for a wide range of materials without 

considering the quantum effects. The theory of this method is:  First a certain number of particles 

are prepared as samples. Then the governing equations follow Newton’s 2nd-law. Until the macro 

properties of the system reach steady, statistic calculation can be carried out. The flow chart of a 

typical MD program can be concluded as in Fig. 4-5. 

 

 

Figure 4-5 Flow chart of a typical MD simulation process. 
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Since the Couette problem in the continuum regime has a linear velocity profile that is an 

analytical solution, we use it as a model problem for this study. In addition, in a region very 

close to a wall surface, very often the velocity can be considered a linear distribution, such as 

that of a viscous sublayer in the continuum regime. Even when the slip occurs, the statistically 

averaged velocity profile still follows the linear distribution. Furthermore, as the region of 

interest is in such a close vicinity of a solid wall that molecular behaviors need to be considered, 

the surface curvature effect in a macroscopic sense can be neglected and the flow there is 

justifiably assumed to be that over an infinite, flat plate. Therefore, the Couette flow model (Fig. 

4-6) is typical for near surface flow and has been commonly used as a model problem in the 

literature (Thompson and Troian, 1990; Nie et al. 2004; Cui et al. 2006; Wang and He, 2007; Xu 

and Li, 2007 and Yen et al. 2007). 

 

 

Figure 4-6 Computational domain of Couette flow by MD: the filled circles represent solid 

molecules of the wall material; the hollow circles are fluid molecules (Uw and Uw’ are the 

moving velocities of the solid walls).  
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The computational domain for a pure MD simulation of the Couette problem is in Fig. 4-

6. A general computation procedure of the MD simulation has been explained in Allen and 

Tieldsley (1989), Frenkel and Smit (1996) and Rapaport (2004). The truncated Lennard-Jones 

(LJ) intermolecular potential that calculates the interaction between molecules is used to 

compute the force. It is given by: 
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where r  is the distance between two molecules, ε  is the characteristic molecular energy scale, 

σ  is the characteristic molecular length scale, and, cr  is the cut-off length, equal to σ2.2 . The 

distance-dependent LJ potential includes both short-range repulsive forces and longer-range 

attractive forces. The parameters σ  and ε  are related to the stable equilibrium length and the 

maximum depth of the potential well. The liquid we select in this study is argon (due to its 

simple one-atom structure) with mass per molecule ( m ) as g241069.6 −× . The density ( ρ ) 

is 3/942.0 cmg . The values of the characteristic parameters are: cm8104.3 −×=σ , 

atomerg /10656.1 14−×=ε  ( Jerg 7101 −= ). The characteristic time scale is calculated as: 

sm 122 10161.2/ −×== εστ .                                        (4.2) 

The viscosity of liquid argon can then be determined as: 

smkg ⋅×== −− /109485.114.2 43ετσμ .                                 (4.3) 

Consequently, from the Newton’s 2nd-law, the expression of the acceleration of each 

molecule is: 
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where the right-hand side includes interactions between one molecule with all the other 

molecules, both fluid and solid molecules. 

In the channel flow problem, there are three kinds of interactions: fluid/fluid, solid/solid, 

fluid/solid. For fluid molecules, we use liquid argon in this study. The solid molecules compose 

two layers of FCC (Face-Centered Cubic) lattice to represent the wall of the channel. Equation 

(4.1) is valid for both solid and fluid molecules, except that different values are specified for 

related solid or fluid molecules. The solid molecule parameters are: density wρ , and two LJ 

parameters, wσ  and wε . The combinations of these parameters in the LJ potentials near the wall 

region indicate the effect of surface properties, which will be explained later. 

The Gear Predictor-Corrector algorithm is used in the current code for numerically 

updating the positions, velocities and accelerations of the molecules and the details can be found 

in Rapaport (2004). The position )( ttr δ+ , velocity )( ttu δ+ , and forces are evaluated at the end 

of each time step, tt δ+ . Then the predictions are corrected using a combination of the current 

and previous values for positions and velocities. The size of time step is determined 

as τδ 005.0=t , which is much smaller than the time scale in a usual continuum simulation. 

Initially, a random velocity distribution for all the fluid molecules is applied. As the 

upper wall is moving with a constant speed, the viscous shear stress drives the flow. Periodic 

boundary conditions are applied in the streamwise and spanwise directions. Since the 

temperature increases during the simulation due to the viscous effect from its initial value 

BkT /2.1 ε= , where Bk  is the Boltzmann constant, a velocity scale method is used (Allen and 

Tildesley, 1989) at every time step to maintain a constant temperature, which can also be used as 

a stability check for the computational scheme. The velocity scale method can be expressed as: 
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where 'T  is the actual temperature calculated from the real-time velocities, η  is the ratio 

between desired and actual temperatures, and, a  is the acceleration. We have tested other 

thermostat methods, including those by Andersen (1980), Berendsen et al. (1984), Nose-Hoover 

(Frenkel and Smit, 1996; Delgado-Buscalioni and Coveney, 2003; Lichter et al. 2007), and the 

Langevin method (Thompson and Troian, 1990; Cui et al. 2006; Wang and He, 2007; Xu and Li 

2007; Yen et al. 2007). After testing all these methods, very close results were obtained for both 

velocity profiles and slip lengths, as to what were obtained using the velocity scale method 

expressed in Eqs. (4.5–4.7). Although a conclusion that the velocity profile and slip length can 

be totally independent of the thermostat method used in the computation may need a more 

careful check when extended generally to other types of flow, it appears to be true at least for the 

Couette problem we study here.  

4.2.2.2 The Hybrid Scheme 

Figure 4-7 shows the schematic of the hybrid model. The continuum description (C) is 

used in the shadowed region that is homogeneous and has small velocity gradients and the 

atomistic description (P) is used in the dotted region around interface. In C → P, continuum 

solutions (obtained from NS equations) provide boundary conditions for MD simulations. Vice 

versa, in P → C, atomistic solutions provide boundary conditions for continuum simulations.  
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Figure 4-7 Regimes of the hybrid scheme. 

 

The major difficulties are to keep the consistencies at the MD-NS interfaces. The two 

descriptions in the overlapped region are coupled and must be consistent, i.e. the physical 

quantities, including density, momentum and energy, and their fluxes, must be continuous. The 

boundary conditions needed for the NS equations can be obtained straightforwardly by averaging 

the corresponding quantities from the particles over the chosen units and time intervals. However, 

the reverse problem, generating microscopic particle configurations from known macroscopic 

quantities, is non-trivial and must be non-unique. Specifically, when there is flux of particles 

going through the continuum and discrete interface, the problem is magnified. Finally, the time 

scale coupling is another problem since the time step for continuum simulation is usually several 

orders of magnitude larger than that in the MD simulation. 

Recently, several coupling schemes referring to the exchange of the information between 

the atomic domain and the continuum domain have been developed. Two main strategies are 

typically used to handle this process: 1) state-based coupling that involves the transfer of state 
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variables (e.g. density, temperature) (O’Connell and Thompson, 1995; Hadjiconstantinou and 

Patera, 1997; Hadjiconstantinou 1999; Li et al. 1998; Nie et al. 2004; Werder et al. 2005; Cui et 

al. 2006; Wang and He, 2007) 2) flux-based coupling that involves the transfer of the flux of 

mass, momentum and energy (Flekkoy et al, 2000; Delgado-Buscalioni and Coveney 2003). And 

there are other types of coupling schemes (Ren and E, 2005) as well. 

In this study, since the Couette flow has been chosen as the objective problem; the 

analytical solution, which is the linear velocity profile, can be easily obtained without actually 

solving the NS equations. The concept of the hybrid molecular-continuum scheme used in this 

study is illustrated in Fig. 4-8, which is similar to the method used in Xu and Li (2007). The 

domain, which is half of the whole channel divided by a symmetry line (it is symmetric since 

both walls are moving with the same speed but in opposite directions), is separated into three 

regions: MD (P) region, continuum (C) region and an overlapped region for information 

exchange between P and C. In the P region, the MD simulation is conducted and in the C region 

the analytical solution of the Couette flow is used. There exists an overlapped region between the 

two regions. In addition, there are two layers marked as P → C and C → P, in which the 

momentum and mass fluxes are exchanged to maintain conservation of momentum and mass of 

the whole system (which also requires putting the escaping fluid molecules back into P region). 

The thickness of the two layers is σ4 . The height of the P region ( cpH ) is σ20  while the total 

height of the channel ( H2 ) varies from σ120  to σ3200  to investigate the influence of the 

height on the boundary condition. The overlapped region is σ10 , which is half of the height of 

the P region and sufficiently large for the information exchange between the C and P regions. If 

this height was reduced, there would not be enough space for performing statistical averaging 

and exchanging momentum between the two regions. For large channels, this size of the 
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overlapped region is very small so that only a small amount of computational overhead is spent 

there. In the stream wise direction, the length of the domain ( L ) is σ20 , and the width is σ5  (W ) 

in the span wise direction.  

 

 

Figure 4-8 Computational domain and scheme of the hybrid method: the dashed-line area 

is the continuum region (C) and the circled-molecule area is the MD region (P). The 

overlapped region is bounded within two interfaces. And the molecules inside this region 

are driven by the external forcing field from Eq. (4.11)  

 

On the interface of P → C, firstly the MD simulation is run in the P region (including the 

overlapped part) for all the molecules for a sufficient period of time starting from their initial 

positions and velocities to a statistically stable state. This time period is usually in the range of 

τ100  to τ200 , varying in different cases. The statistical stability here means when the simulation 

time is prolonged further, the temperature maintains a constant and the time averaged values, 
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such as velocities, remain almost unchanged. The results are then averaged statistically on the 

interface to provide boundary conditions for the continuum solution. The mean velocity, pcu , is 

obtained at the center of the interface layer, which is used as the boundary condition for the 

linear analytical solution in the C region: 
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where pcN  is the number of molecules on the P → C layer. Thus the velocity profile in C region 

is calculated as: 
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The calculation of pcu  also needs to be performed for several iteration loops as explained later. 

As the P → C step is relatively straightforward, the trouble lies on the C → P interface. 

In order to keep the consistency of the transfer between the continuum quantities and molecular 

quantities in the overlapped region, there are three major issues to be resolved: 1) mass flux 

consistency, 2) momentum flux consistency, and 3) time marching. 

There are molecules escaping from the P domain to the C domain due to the random 

motion of molecules. This results in mass loss and decrease of the total number of molecules in 

the P region. In order to maintain mass and energy conservation, at each time step, we reflect the 

escaping molecules back into the domain at the interface boundary. However, this reflecting 

boundary condition is not needed on the wall boundary because there is no escaping of 

molecules through the solid wall. The dense structure of the solid wall molecules generates 
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sufficiently large repulsive forces that prohibit the liquid molecules from escaping through the 

solid wall. 

The MD simulation carried out in the P domain also needs a boundary condition on the 

upper boundary to drive the motion of the fluid molecules. This condition can be obtained from 

the results of the C region. The driving force ( 'iF ) is treated as an external force on the right-

hand-side of Eq. (4.4). Then the Newton’s 2nd-law in Eq. (4.4) is modified as: 
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where cpN  is the number of molecules on the C → P layer and 'iF  is calculated from the shear 

stress: 
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where pcu  is the same as in the P → C coupling, and, L  and W  are respectively the length and 

the width of the channel.  

Initially, this force is calculated using the shear rate on the moving wall until there is a 

slipping velocity on the P → C layer. It should be noted that this external forcing field should 

only be applied to the molecules in the C → P layer. 

The time-marching scheme consists of several steps. First, time marching is carried out 

for about τ100  to τ200  after the MD simulation reaches a statistically stable state from the 

initial state, at which the time averaged results for pcu  can be obtained on the P → C interface, 

as explained previously. Then the external forcing field on the C → P interface can be 
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established using Eq. (4.11). Once 'iF  is calculated, Eq. (4.10) is used again and so is Eq. (4.8) 

to obtain a new pcu . This process needs to go on for several cycles, so that pcu  and 'iF  are being 

updated in each computational cycle. For each cycle (except the first cycle starting from the 

initial state), the MD simulation using Eq. (4.10) advances τ50 , after which the statistic 

averaging is performed. Then the solution in the C region receives the boundary condition, pcu , 

to be used in Eq. (4.11). Also the external forcing field is updated by using the new shear stress 

value. This procedure is repeated, until the solution of the C region remains unchanged and the 

entire (C + P) domain has reached a linear velocity profile. The duration of the procedure is 

around several thousands of τ , again varying in different cases. During the time marching, the 

energy level, which is represented by the calculated temperature, is maintained the same by using 

the velocity scale method in Eqs. (4.5 - 4.7). 

4.2.3 Results and Discussion 

A snapshot of the channel flow problem in the molecular level by using pure MD 

simulation is shown in Fig. 4-9 using VMD (Visual Molecular Dynamics, visualization software 

developed by the theoretical and computational physics group in UIUC). In this 3D channel flow 

case in the atomistic scale, the gray particles are solid molecules while the green ones are fluid 

molecules. The visualization could help understand the problem directly and explain the physical 

model very well. 

To quantify the results, we first verify our schemes of pure MD computation and the 

hybrid scheme for the Couette flow problem in Section 4.2.3.1. Second, in Section 4.2.3.2, we 

present the slip length results (surface slip behavior) on the solid walls for both pure MD 

computation and the hybrid scheme and discuss the scale effect under different shear rates (γ& ) 
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and different wall speeds ( wU ). 

 

 

Figure 4-9 Channel flow simulated by MD and visualized by VMD. 

 

4.2.3.1 Verification of the MD and Hybrid Schemes 

The boundary condition at the interface between the fluid flow and the solid wall depends 

on several parameters: ρ , σ  and ε  of the fluid and wρ , wσ  and wε  of the solid. Thompson and 

Troian (1997) investigated the relationship between the two groups of parameters and the 

interface slip properties. For the no-slip boundary condition, the two groups of parameters follow 

the relation 1/ =ρρw , 1/ =σσ w , 6.0/ =εε w  (Group A). With increased density of the wall (by 

adding more solid molecules) and decreased characteristic length, 4/ =ρρw , 75.0/ =σσ w , 

6.0/ =εε w  (Group B), the slip boundary condition occurs. We simulated these two cases using 

the pure MD simulation code in a domain of σσσ 25520 ××  with a stationary bottom wall and a 
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moving upper wall. The moving speed of the upper wall was 10.1 −= στwU . A perfect agreement 

to the results of Thompson and Troian (1997), for both Group A and Group B, means that our 

MD simulation is able to predict the slip properties very well (see Fig. 4-10). In this sense, the 

verification is achieved by obtaining consistent results with the extensively cited results in 

Thompson and Troian (1997) and Yen et al. (2007). 

 

 

Figure 4-10 Velocity profile comparisons for Group A (no-slip boundary condition, 

1/ =ρρw , 1/ =σσ w , 6.0/ =εε w ) and Group B (slip boundary condition, 4/ =ρρw , 

75.0/ =σσ w , 6.0/ =εε w ) using pure MD simulations.  
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For verifying the hybrid scheme, we set up a case in a domain of σσσ 60520 ××  with 

the bottom wall moving at 10.1 −−= στwU  and the upper wall moving at the same speed in the 

opposite direction. Both the pure MD simulation and hybrid scheme were run. For the pure MD 

simulation, the entire channel with the height of H2  ( σ30=H ) was simulated, while for the 

hybrid scheme, only half of the domain (from 0 to H ) was considered. As shown in Fig. 4-11, 

using the fluid/solid interaction parameters for both Group A and B, the result from hybrid 

scheme matches that from the pure MD simulation very well. Also in the hybrid scheme, the 

overlapped region has identical solution from both the P region solution and the C region 

solution, which proves that the information exchange between the two regions is successful.  

 

 

(a) 
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(b) 

Figure 4-11 Velocity profiles comparisons under the moving velocity of the bottom 

wall 10.1 −−= στwU : (a) between pure MD simulation and the hybrid scheme for Group A 

( 1/ =ρρw , 1/ =σσ w , 6.0/ =εε w ) (b) between pure MD simulation and the hybrid scheme 

for both Group A and Group B ( 4/ =ρρw , 75.0/ =σσ w , 6.0/ =εε w ). 

 

4.2.3.2 Behaviors of Slip Length 

Once we have achieved the solid, though limited, verifications for the MD and hybrid 

scheme, we use them to investigate the slip length behavior for different channel sizes and shear 

rates. The hybrid scheme is used for the channel size from tens of σ  to hundreds ofσ . For small 
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channel size of several ofσ , only MD simulation is needed. The channel size scale effect is 

studied in a range that is from σ5  to σ1600  (for H ). We use pure MD simulation between σ5  

to σ40  and the hybrid scheme for the larger sizes. We selected the parameters of Group B 

( 4/ =ρρw , 75.0/ =σσ w , 6.0/ =εε w ) for fluid/solid potentials for both schemes. Four 

different velocities of wall motion are studied with the bottom wall of 10.1 −−= στwU , 10.2 −− στ , 

10.4 −− στ  and 10.8 −− στ .  

As the MD scheme was only partially used in the hybrid scheme, computational time was 

greatly reduced, especially for larger-size channels. For example, for a channel height of σ400 , 

the time used for the hybrid scheme was about 602s, while for the pure MD simulation, the time 

was1268s. The time saved is about half. For a channel height of σ800 , the time saved can be as 

much as two thirds. Therefore, the hybrid scheme is able to save a lot of computational time in 

simulation for large-size flow systems. 

The absolute slip length, sL , is a representative of the wall slip properties. In Martini et al. 

2008, it was defined as γ&/ss uL = , where the shear rate γ&  was measured by a fitted curve of the 

velocity profile and su  is the slip velocity in the first liquid layer adjacent to the solid wall.  

Figure 4.12 shows the absolute slip length versus the channel size with four moving 

velocities. For the same channel size, different moving velocities give different shear rates. It can 

be seen that higher shear rates result in larger slip lengths, which also shows in Fig. 2 of 

Thompson and Troian (1997). Under the same moving velocity, the slip length decreases as the 

channel height increases and the shear rate decreases (since HU w=γ& ). These trends are only 

significant when the channel height is small. Above a certain channel height, the slip length 

almost remains constant around σ5 , even with different shear rates. This asymptotic behavior 
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agrees with a conclusion of Xu and Li (2007) in which a constant shear rate was maintained. 

That is, for large H , the slip length becomes independent of H . However, the threshold channel 

height for the slip length to asymptotically reach constant increases with the shear rate: σ100  - 

10.1 −−= στwU , σ200  - 10.2 −−= στwU , σ300  - 10.4 −−= στwU  and σ400  - 10.8 −−= στwU .  

 

 

Figure 4-12 Absolute slip length (Ls) for different moving velocities from pure MD 

simulation and the hybrid scheme.  

 

This also shows that the effect of slip length is negligible in large-scale channels, because 

of the relative small value of the slip length (a few number ofσ ) in comparison to the large 

channel size (a few hundreds ofσ ). If we use σ500  as the limit, for the σ  value considered in 
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this study, this limit is in the range of a few tenths of micrometers. Although the size and shape 

of fluid molecules can significantly affect their surface behavior and the limit at which the fluid 

can be treated as a continuum, the results nevertheless provide evidences that the no-slip 

assumption can be used in the continuum flow regime, which is usually in the micrometer range 

or larger.  

To explain the relative scale effect, we use the relative slip length when the absolute slip 

length is re-scaled by the channel height ( H ). The results are plotted in Fig. 4-13 (a), which 

shows that the four curves in Fig. 4-12 seem to collapse to one curve, with a nominal threshold 

channel height for the relative slip length to be around σ100 . In the logarithmic plot Fig. 4-13 (b), 

the four curves of the relative slip length can be approximately fitted, to the channel height up to 

a few hundreds of σ , as  

79.1)/(447.1)/( +−= σHLogHLLog s .                                (4.12) 

For very large H , as the slip length asymptotes to a constant value, the slope of the 

logarithmic line becomes -1 and the second coefficient becomes 0.7:  

7.0)/()/( +−= σHLogHLLog s ,                                    (4.13) 

yielding an asymptotic value of sL  ~ σ5 , the same as obtained before.  

An exponential function is used to relate the relative slip length and the channel height in 

Yen et al. (2007) in the range of channel height from σ24  to σ400  . In Yen et al. (2007), the 

solid wall parameters are different from the present simulation. When the exponential function 

expression in Yen et al. (2007) is converted to a logarithmic expression, it can be expressed as 

79.0)/(033.1)/( +−= σHLogHLLog s ,                             (4.14) 

in which the coefficients are in a close range of those in Eqs. (4.12) and (4.13).  
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(a) 

 

(b) 

Figure 4-13 Relative slip length (Ls / H) for different moving velocities by using pure MD 

simulation and the hybrid scheme: (a) Ls / H versus H/σ; (b) Log (Ls/H) versus Log (H/σ). 
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With the fact that the results of a relatively wide range of shear rate and channel scale 

that all collapse to the same logarithmic curve, it is apparent that the two coefficients in the 

logarithmic relation (for small channels; for large channel, only one) are dependent on the 

material properties of the fluid and the solid wall. While seeking specific relations between these 

coefficients and the material properties is beyond the scope of the current study, the simple linear 

relation in Eq. (4.12) can be used as a guide for them to be determined by only a few data points, 

from either simulation or measurement with just a limited number of variations of channel 

heights, velocities, or shear rates. 

It should be noted that in the high shear limit, Martini et al. (2008b) showed that MD 

simulations must account for heat transfer to the solid wall whereas the solid wall is considered a 

flexible wall with the thermostat also applied to the wall molecules. The MD simulation 

presented in this study is limited to rigid walls only. The applicability of the hybrid method with 

heat transfer deserves future research. 

4.2.4 Summary of the Slip Behavior Study 

In Section 4.2, we used both pure molecular dynamics simulation and a hybrid 

molecular-continuum computation method to analyze the surface properties in a Couette flow. 

The numerical schemes for both methods are proved to be accurate by comparing the simulation 

results with the analytical solutions and the literature data. The simulated results provide 

evidences that the continuum theory can only be used in macro-scale systems (several 

micrometers and larger), though in general the size and shape of fluid molecules can 

significantly affect their surface behavior and thus the limit at which the fluid can be treated as a 

continuum. As the scale goes down to the nano-scale, the MD simulation has to be involved. The 

advantage of the hybrid molecular-continuum scheme is its efficiency to provide comparable 
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results to those of pure MD while reducing much computational time. Under different 

magnitudes of moving velocities and channel heights, the relative slip length changes following 

an exponential function of the channel height. The coefficients of the function depend on the 

fluid and wall materials. For large channels (greater than hundreds ofσ ), the no-slip assumption 

is valid on the solid surface because the slip length effect is negligible. For small channels, 

especially for heights less than tens ofσ , the slip property has to be considered. 

4.3 Surface Diffusion 

The surface diffusion, related to both the fluid and solid material properties and the flow 

rate, can be used as a parameter for estimating the adsorbing capacity of a porous nano-material. 

Consequently, our study attempted to determine how much the flow could penetrate the 

fluid/porous interfaces through the nano-pores. The transport of fluids through porous materials, 

especially, occurs mainly by diffusion. In this section, a molecular-continuum hybrid scheme is 

again used for the study of the diffusion in the representative Couette flow problem. The 

difference between the current diffusion investigation and the previous slip behaviors study is 

that there are several nano-pores constructed in the solid walls of the channel. From the results of 

the simulation, both the self diffusivities and the transport diffusivities were estimated. Also the 

macroscopic transport properties, such as pressure and mass flux, were calculated. By varying 

the velocity of the moving-solid wall, we investigated the effect of the shearing condition on the 

mass flux going through the pores. The relationship of the physical mechanisms and the transport 

phenomena (e.g. Fick’s law) were then linked among the different length scales.  
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4.3.1 Introduction 

Fluid transport with diffusion through micro-/nano- channels is found to be useful in 

many natural phenomena and industrial processes, including fluid transport or diffusion through 

nano-materials, molecular/atomistic transfer across nuclear pores or in the MEMS devices 

among other applications. Currently, nano-science/technology has been of fundamental and 

practical interest. And those nano-pores can be treated as nano-channels in the thin layers of the 

membranes. The transport phenomena of fluid in such small confined channels, usually in the 

size of ten molecular diameters or less, differs significantly from its bulk behaviors, which can 

be described with continuum theory. In this case, molecular dynamics (MD) simulation, rather 

than continuum methods, is better suited to study the phenomena. Activated carbon with its high 

surface area has been emerging as a promising candidate for an adsorbent due to not only its 

stable thermodynamic and mechanical properties but also its homogenous and isotropic porous 

distribution and relatively even pore size. In this section, we mainly focus on the characteristics 

of the permeation and the adsorption process between different gases and the carbon substrate 

under various shearing conditions. The investigation of the diffusion process of fluids through 

the pores of the nano-materials has become an interesting topic in recent decades. This 

investigation has been divided into two major areas: 1) the diffusivity estimation and 2) the 

transient diffusion rate. 

Two different pure-fluid diffusivities have been measured/calculated in experiments and 

simulations: self-diffusivity ( sD ) and transport diffusivity ( tD ). Self-diffusivity is the diffusion 

from the molecules into the bulk fluid. The transport diffusivity counts the transport from one 

phase to another and is related to concentration. The self-diffusion coefficient can be determined 

experimentally or by using MD simulations, which records the trajectories of the molecules. The 
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Stokes-Einstein relation can be used to obtain sD , which is shown in Section 4.3.2. The transport 

diffusivity is defined by Fick's law of diffusion, which relates the flux to the concentration 

gradient. The numerical way to obtain tD  is not as straightforward as the other. Basically, there 

are two methods for computing: non-equilibrium molecular dynamics (NEMD) techniques and 

equilibrium molecular dynamics (EMD) methods. A review of using molecular simulations to 

reach the macroscopic properties can be found in Sholl (2006). Other literature include Rowley 

and Painter (1997), who calculates the diffusion for Lennard-Jones fluid, and Ackerman et al. 

(2003), who estimated the diffusivities of Ar and Ne in carbon nanotubes. In the current study, 

we will not concentrate on calculating the value of the diffusivities but focus on the transient 

diffusion process. However, calculating the self-diffusivity could be used as a validation case to 

check the motion of the pure fluid molecules, which is explained later. 

Many recent molecular simulation studies have been carried out on the adsorption and 

transport of some fluids or their mixtures into various solid substrates or membranes. The 

macroscopic properties and mechanisms, such as pressure, temperature, diffusion model, and 

others, have been explored in an atomistic point of view. Generally, grand canonical Monte 

Carlo (GCMC) simulation is often adopted to simulate the equilibrium diffusion (Duran et al., 

2002), while molecular dynamics simulation (MD) is more preferable to study the non-

equilibrium transport properties. Also, some non-equilibrium molecular dynamics (NEMD) 

methods have recently been developed. These include the grand canonical molecular dynamics 

(GCMD) method, and especially the so-called dual-volume GCMD technique (DCV-GCMD) 

(Ford and Heffelfinger, 1998 a, b; Martin et al. 2001; Duran et al. 2002; Newsome and Sholl, 

2005, 2008; Huang et al. 2006, 2007; Want et al. 2006 a, b; Wu et al. 2008). And Huang et al. 

(2007) compared the results from the small scale discrete model to the continuum model solved 
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with Navier-Stokes equations and achieved promising results, which proved the accuracy of 

applying such molecular schemes to the diffusion problem. The previous work provides valuable 

insight into the transport of the fluids through a porous medium.  

In this work, we apply a hybrid scheme to a model problem of various gases transport 

through a carbon substrate with several pores in a channel flow under different shear rates. 

Instead of inserting and deleting particles from the control volumes used in the DCV-GCMD 

method, we kept the number of particles in the simulation system constant. The interactions 

between fluid/fluid, fluid/solid and solid/solid were all assumed to be under Lennard-Jones 

potentials, which made modeling relatively simple. The same as in the slip behavior study, the 

Couette flow using the hybrid scheme is still applied here. The only difference is that by 

constructing those nano-pores, we allowed the fluids to go through the substrate. Hence, the 

transient diffusion rate (flux) could be captured. 

The organization of the presentation is as follows: in Section 4.3.2, we introduce the 

numerical model and method. Since the hybrid scheme was validated in Section 4.2, it was 

directly applied to the new diffusion model; in Section 4.3.3, we first explain the natural 

diffusion by calculating the self-diffusivity of liquid argon and its structural distribution in the 

equilibrium bulk state and comparing it to experimental measurements. Then we present and 

discuss the surface diffusion including the mass flux calculation, the transport diffusivity 

estimation and the influence of the nano-scale simulation to the macroscopic transport theories. 

Finally, in Section 4.3.4, we present our conclusions. 
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4.3.2 Numerical Scheme 

The physical model used in this study was based on a channel flow problem with a multi-

layer carbon substrate as the solid wall that contained several nano-pores (Fig. 4-14). As defined 

in the Couette flow, the fluid was driven by the motion of the walls with defined speed. Because 

the hybrid scheme was used, the MD simulation performed on just the thin layer near the solid 

wall while the continuum linear theoretical solution was used in the bulk flow. Details about the 

Couette flow and the hybrid scheme are discussed in Section 4.2. In the slip behavior study, the 

slip length provides a boundary condition, which is needed for the macroscopic momentum 

transport. While in the diffusion simulation, the mass transport problem also requires a boundary 

condition, which is one of the objectives of the molecular dynamics simulation. The macroscopic 

mass transport equation is in the following form: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=
∂

∂
+

∂
∂

j
s

jj

j

x
CD

xx
Cu

t
C )(

 ,                                    (4.15) 

where C  is the concentration, ju  is the velocity component that can be obtained from 

momentum transport, and, sD is the diffusivity, which can be determined both experimentally 

and numerically. In the current simulation, we assume that the flow is steady-state and that the 

concentration change only occurs in the vertical direction. Thus Eq. (4.15) can be simplified and 

the concentration can be expressed after integration in the vertical direction as: 

bz
D
JzC

s

+=)( .                                               (4.16) 

where J  is the mass flux and b is a constant that requires a boundary condition , which is 

surface-property dependent and supplied by the molecular dynamics simulation.  
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In the molecular dynamics simulation, since the periodic boundary condition is also 

applied in the vertical direction, the loss of the molecules entering those nano-pores is 

compensated by inserting the same amount back to the MD region, which is the C → P interface 

(see the purple arrow in Fig. 4-14). And this loss is exactly how much adsorption by the solid 

substrate through the diffusion process. The constant b is thus obtained from this loss, which is 

the concentration boundary condition for the continuum simulation though it is a thin layer away 

from the real fluid/solid interface at a location of the P → C layer. Hence, the relationship of the 

mass transport between the nano-scale and the other two scales is established. Also, the nano-

scale diffusion simulation can provide more interface transport information, which is explained 

later. 

 

 

Figure 4-14 The concept of the diffusion model. 
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The interactions between fluid/fluid and fluid/solid molecules are modeled with the 

standard Lennard-Jones potential: 
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where the values of ijr (inter-molecule distance), ijσ (characteristic length scale)and ijε  

(characteristic energy scale) are listed for different types of gases/materials (Wu et al. 2008) in 

Table 4-1. The reduced cut-off length is σ2.2 . And Lorentz-Berthelot mixing rules (Allen and 

Tildesley, 1987) are used to obtain the fluid/solid interactions as: 
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and 

jjiiij εεε 2= .                                                 (4.19) 

 

 Ar H2 CO Carbon 

Characteristic length (σ , nm) 0.3542 0.296 0.376 0.34 

Characteristic energy ( κε / , K) 93.3 34.2 100.2 28 

Table 4-1 Lennard-Jones parameters for various gases/materials. 
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For the diffusion model, the nano-pores in the solid substrate were modeled as aligned 

slits (small channels), which are illustrated in Fig. 4-15. The gas flow was isothermal and the 

thermo effect and the heat transfer between the flow and the solid due to the shear was neglected.  

 

 

Figure 4-15 Computational domain of the diffusion simulation. 

 

The computational domain of the diffusion simulation is similar to the one used in the 

hybrid scheme for slip behavior study (see Fig. 4-8). The only difference is that in the solid 

substrate is the existence of regular arrays of channel-like nano-pores through which the fluid 

molecules can pass. The solid wall was constructed with multi-layers of carbon molecules and 

the distance (pore width) between the two columns ( LΔ ) ranged from σ2  to σ6 , which assured 

the fluid molecules could pass. The gaps between the two adjacent pore walls (Δ ) and between 

pore layers ( hΔ ) were kept as σ . There were 16 layers for the solid substrate, which meant that 

the length of the pore ( h ) was σ15 . And in the current domain, eight slip pores were constructed. 
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The dimension of the domain ( HWL ×× ) was selected as σσ 4010)188( ××Δ+Δ⋅ L . Thus, the 

simulation was dimensionless and characterized only by the material properties. It should be 

noted that the value of σ varies for different materials. Periodic boundary conditions were 

employed in all three directions. The same hybrid scheme was adapted in this diffusion problem 

for the coupling of the momentum of the fluid molecules. However, due to the diffusion into the 

nano-pores in the vertical direction (the fluid molecules could go through the channel-like pores), 

a number of molecules would be lost. This loss was compensated by inserting the same number 

of molecules back into the MD domain from the C → P interface. This procedure was carried 

out in a time period that varied from τ100  to τ400 , depending on the materials. 

As mentioned in Section 4.3.1, the diffusivity estimation was one of the two important 

features that needed to be addressed in the diffusion study. By using the current hybrid scheme, 

we were able to estimate both self-diffusivity and transport diffusivity. We calculated the self-

diffusivity using the Stokes-Einstein relation (Sholl, 2006) expressed as: 
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where t  and 0t  are two instantaneous times, and, )(tri  and )( 0tri  are the trajectories of the 

molecules at those two moments. The transport diffusivity ( tD ) is defined as the proportionality 

constant relating a macroscopic mass flux to a spatial density gradient in Fick’s law for mass 

transport. It relates the mass flux and the density change. The flux ( J ) for gas diffusion through 

the nano-pores is given by 
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where ρ is the density of gas, pΔ is the pressure gradient across each nano-pore, R is the gas 

constant as 11314.8 −−⋅ KmolJ , and, T and h are temperature and pore thickness respectively.  

Rearranging Eq. (4.21), we determined the transport diffusivity as: 

p
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)( ,                                              (4.22) 

where the mass flux J  and the pressure gradient pΔ  need to be obtained numerically from the 

simulation and where they are in a linear relationship. The molecular flux is transient and was 

calculated by measuring the net number of the particles as: 
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where iN is the total number of molecules travelling across the nano-pore (the number difference 

between the two ends of the channel-like pore) in a certain time period tnt δ⋅=Δ ,  xyA  the 

surface area of the interface, n the number of time steps in that period and tδ the MD simulation 

time step. 

We obtained the pressure using the Virial pressure (Lu et al. 2002) as: 
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where the three velocity components ( iu , iv  and iw ) and the inter-molecular force ( ijf ) are 

involved. Hence the pressure gradient pΔ is the difference between the two pressures calculated 

from the both ends of the pores. 
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4.3.3 Results and Discussion 

The first result pertained to the natural diffusion model, for which the self-diffusivity and 

the radial distribution function were calculated statistically. Second, in the surface diffusion 

simulation, the transient mass flux through those nano-pores in the solid wall and the pressure 

gradient were calculated along with the transport diffusivity. These results enabled an analysis of 

the diffusion process. 

4.3.3.1 Natural Diffusion 

Before simulating the fluid transport through the nano-pores, we needed to validate the 

natural diffusion properties of the bulk fluid. To do this, a system (as a cube) consisting of pure 

liquid argon molecules was used to perform the pure MD simulation and the model shown in Fig. 

4-14. The radial distribution function (RDF) was used as the parameter to verify the natural 

diffusion of the liquid argon fluid in the bulk flow, which is a structural correlation. It describes 

the spherically averaged local organization around any given molecule. The RDF is defined as: 

Trerg κφ /)()( −= ,                                               (4.25) 

where )(rφ  is the potential function (LJ potential here, see Eq. 4.17), κ is the Von Karman 

constant, and, T is the cited temperature. In the simulation, the RDF was calculated discretely 

based on the inter-molecular potential function. The details can be found in Rapaport (2004). 

For a certain density ( 3/374.1 cmg=ρ ) and temperature ( KT 90= ), the calculated RDF 

was picked to compare it to experimental results. In these simulations, the length and energy 

scales for liquid argon were very close to the values listed in Table 4-1; the time step was τ005.0 , 

which is the same as the time step used in the slip behavior study. Figure 4-16 shows the 

comparison of the radial distribution functions from the MD prediction and the experimental 
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measurement of Eisenstein and Gingrich (1942). One sees that the MD simulation successfully 

captured the properties of molecular distribution with respect to distance and the agreement 

between simulation results and experimental data is fairly good. 

 

 

Figure 4-16 Radial distribution function (RDF) of the pure liquid argon molecules. 

 

We calculated the self-diffusion constant using the Stokes-Einstein equation (Sholl, 

2006). By using Eq. (4.20), we calculated that the self-diffusivity of liquid argon ( ArsD , ) in the 

current study is scm /1035.2 25−× . The experimental measurement is scm /1043.2 25−× . The 

difference between them is under 3%. These two validating tests show that the current scheme 
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works well and can be used to predict the liquid transport properties through a nano-pore in the 

solid substrate. 

4.3.3.2 Surface Diffusion 

In the current model, the solid wall is moving under a constant speed 

( 11 2,1 −− −−= στστwU ), which drives the gas molecules through the channel. The velocity 

magnitude profile along the channel height for the Couette flow is linear, even in the molecular 

level, which was validated in Section 4.2. The velocity magnitude profiles in the diffusion model 

are shown in Fig. 4-17. 

 

 

Figure 4-17 The velocity magnitude profiles along the channel height in the diffusion model. 
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In the diffusion model, due to the nano-pores in the solid wall, the flow penetrating the 

interface resulted in a certain amount of slip. However, the surface diffusion is a slow process 

and the velocity going into the pores is much smaller than the shear velocity. Thus the overall 

velocity magnitude profiles were not influenced much. Only some fluctuations near the wall 

region were detected.  

Eight constructed nano-pores are used in the current diffusion model. We calculated the 

averaged pressures (in a time period and in each pore) at the fluid/solid interface using Eq. (4.24) 

and this distribution is shown in Fig. 4-18.  

 

 

Figure 4-18 The pressure calculated at the fluid/solid interface of each nano-pore. 
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When the periodic boundary condition is used in the flow direction, the pressure value 

does not vary much from one to another, and varies a little bit for the two pores at both ends of 

the channel. This also suggests that the computation reaches a relatively stable state since those 

macroscopic properties do not change much. 

After checking the process of the velocity and the pressure fields, we investigated the 

diffusion transport properties. As stated in Eq. (4.22), both the mass flux and the pressure need to 

be calculated before the transport diffusivity can be determined. This is required by the 

macroscopic transport theory but the value is difficult to be obtained for gas/nano-material 

adsorption. Figure 4-19 presents the linearly fitted results from Eq. (4.22) for tD  of H2 at two 

temperatures (273k and 300K). The pore width was chosen to be σ3 .  

 

Figure 4-19 Linearly fitted results for the transport diffusivities of hydrogen. 
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By comparing our calculation to Wu et al. (2008) under similar circumstances, we found 

that the average (from 8 pores) and corrected mass flux )(RThJ ⋅ is linearly proportional to the 

average pressure gradient along the pore. And the slope of this relationship is the transport 

diffusivity, which is sm /106.4 27−× under 273K and sm /109.4 27−×  under 300K. This indicates 

that the current simulation follows the Fick’s law exactly. Similarly, for other gases (changing 

the characteristic length and energy in the LJ potential), the same linear relationships can also be 

obtained. Thus, the transport diffusivity for different material under various conditions can be 

calculated. These calculations are listed in Table 4-2. As Table 4-2 shows, the transport 

diffusivity increases with temperature. 

 

710×tD  ( sm /2 ) 

273K 300K 

Gas 

Current 

study 

Wu et al., 

2008 

Current 

study 

Wu et al., 

2008 

H2 4.6 ‐‐‐‐  4.9 4.92 

CO 0.65 ‐‐‐‐  0.8 0.84 

Ar 0.59 ‐‐‐‐  0.74 ‐‐‐‐ 

 

Table 4-2 Transport diffusivities of various gases through the carbon substrate by 

diffusion at 273K and 300K. 
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The mass fluxes of three gases and various pore widths were calculated. As shown in Fig. 

4-20, they were all under 300K. Generally, with larger pores, the mass fluxes increase. However, 

among three gases, the increase of H2 is much faster than the other two gases because of 

hydrogen’s smaller molecular size. In another word, smaller molecules as H2 have faster 

diffusion rates during the adsorption process.  

 

 

Figure 4-20 Effect of pore width on diffusion flux of various gases. 

 

Equation (4.16) shows the linear concentration profile across the channel under the 

assumptions of the periodic flow used in the current simulations. Both the mass fluxes and the 

diffusivities either in the pores (near the interfaces) or in the bulk fluid can be determined using 



 

 129

the methods explained earlier. Thus, the coefficients required by Eq. (4.16) can be obtained. The 

concentration profiles for various gases and different pore size are presented in Fig. 4-21. In Fig. 

4-21 (a), the pore size was fixed at σ3 . And it is obvious that the concentration of H2 changes 

the fastest in the channel, which also suggests the similar conclusion that we obtained previously 

– H2 has largest diffusion rate. By using the same material (H2) but varying the pore size, Fig. 4-

21 (b) shows that wider pores allow more fluid molecules going through the solid substrate by 

having a larger flux (more steep concentration slope). 

 

 

(a) 
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(b) 

Figure 4-21 Concentration profiles along the channel: (a) influence from various gases; (b) 

influence from the pore size for H2. 

 

4.3.4 Summary of the Surface Diffusion Study 

In Section 4.3, the hybrid scheme introduced in Section 4.2 was applied to a diffusion 

problem, in which various gases pass through a carbon substrate in a channel. The physical 

model was also a Couette flow, but it had several constructed nano-pores in the solid wall. Both 

natural diffusion and surface diffusion were investigated. The self-diffusivity and the radial 

distribution function were used to validate the natural diffusion of the liquid argon as their values 

agreed with those in the experimental data. In the surface diffusion simulation, we calculated the 
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mass fluxes across the fluid/solid interface and the average pressure. Thus, the transport 

diffusivities for different gases were determined from the linear relationship between the mass 

flux and the pressure, which were in agreement with the values cited in the literature. Also, the 

concentration profiles along the channel were obtained from the molecular level simulations. The 

influences of both the gas material property and the nano-pore size were studied. 

4.4 Summary of the Nano-Scale Simulation 

In the nano-scale simulation, the continuum theory-based simulations are no longer 

applicable. Thus, the atomistic models become more accurate and efficient for capturing the 

physical properties, especially the surface mechanisms in the molecular level. The molecular 

dynamics (MD) simulation and an innovative hybrid scheme have been used to simulate the slip 

behavior and the diffusion on the fluid/solid interfaces. The following conclusions can be 

reached with respect to both of these aspects: 

• A model of the Couette flow problem was used to study the transport phenomena and the 

surface mechanisms in the nano-scale. 

• The MD scheme and the hybrid scheme were validated when the velocity profiles were 

compared to those in the literature. The information exchange between the atomistic and 

the continuum regimes in the hybrid scheme was, therefore, successful. 

• By changing the channel height and the moving velocity, we can calculate both the 

absolute and relative slip lengths. We found that the slip length becomes more important 

in smaller channels. 
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• We established a diffusion model for interactions between gases and carbon solid 

substrates. By constructing nano-pores in a carbon substrate, we captured the diffusion 

process from the fluid into the solid. 

• Computational results of self-diffusivity and radial distribution function were used to 

validate the molecular diffusion model. 

• Mass fluxes and pressure were calculated and used to determine the transport diffusivities 

for various gases, which agreed well with the values in the literature. 

• The macroscopic concentration profiles were obtained from the molecular simulation. 
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CHAPTER 5 - Conclusion 

The conclusions for each scale of simulation have been summarized previously. In this 

chapter, the overall achievements of this thesis and their relations are illustrated in Fig. 5-1. 

 

 

Figure 5-1 Conclusions of the multi-scale simulation. 

 

In the macro-scale simulation, by using the porous models in the governing equations of 

the momentum and mass transport, we calculated the pressure drop and the breakthrough curves 

and compared them to those given for packed-bed and adsorption experiments. The agreement 
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we found among these data sets proves the capability and accuracy of the numerical model, 

which can, therefore, be used for future tests on various materials. 

In the micro-scale simulation, a modified immersed-boundary method (IBM) with the 

Zwikker-Kosten (ZK) porous model and the high-order schemes was applied to simulate a 

periodic array of solid/porous cylinders. First a tandem impermeable cylinder system was tested 

to validate the IBM scheme. Second in the periodic unit, the solid case (treated as a 

Representative Elementary Volume, REV) was used to validate the high-order schemes by 

comparing it to results obtained with commercial CFD software. Also, the relationship between 

the pressure gradient and the porosity (Blake-Kozeny equation) could be determined from this 

level and fed back to the macro-scale simulation, which provided a link between two scales. The 

porous cylinders case was used to find the most accurate scheme, which is the 5th-order WENO 

scheme. And the flow fields in the porous medium have been studied. Based on this scheme, the 

species transport problem was also investigated with a porous model similar to the one used in 

the macro-scale. And the concentration change with different adsorption coefficient was not 

linear. 

In the nano-scale simulation, the discrete molecular dynamics (MD) simulation and a 

coupled molecular-continuum scheme were applied to solve the momentum and the mass 

transport problems at the molecular level, a level for which the traditional continuum theory is no 

longer applicable. Both schemes have been verified from the surface slip behavior study when 

they are compared to what was found in the literature. Then the scale and the shear effect in the 

Coutte flow were investigated, showing that in the micro-/macroscopic investigations, the slip 

behavior could be neglected since it is only important in smaller scales. Later, the same hybrid 

scheme was applied to a diffusion model, which still used the same flow but had several nano-
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pores constructed in the solid substrate. The interactions/adsorption between various gases and 

the carbon substrate were simulated. The mass fluxes cross the fluid/solid interfaces were 

counted and both self-diffusivity and transport diffusivity were estimated and compared to their 

respective values found in literature. Those transport properties are closely related to the species 

transport (Fick’s law) in the macroscopic simulations. Finally, linear concentration profiles in the 

channel were obtained based on those transport properties for various gases going through 

different sizes of nano-pores. 

Consequently, in the current study, we successfully built up a platform to study the nano-

material filter device systematically from different scales of simulations. Various numerical 

methods and tools were tested and, were proved to be effective and efficient. The transport 

phenomena and the physical mechanisms were investigated and were shown to provide 

information that would be useful for the design of filtration devices and for understanding the 

behaviors of innovative nano-materials. 
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