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CHAPTER I. BACKGROUND

Introduction

The purpose of this report is to discuss and Investigate an estimation
procedure for cases involving models which are nonlinear in the parameters.

The Gauss-Newton procedure will be the procedure to be discussed.

General Model: The general model to relate a set of n observed values

of the random variable y to values of p mathematical wvariables and p parameters

has the form
f(yi‘§17§3ei) =0 , 41i=12,...,n (i—l)
where ¥; < ith component of Y' = (yl,yz,...,yn);
Ei = (xil’xiZ""’xip) = ith vector of observations on the set of
mathematical variables;
g' = (51,82,...,8p) = yector of pa?ameter values;
€, = i-th component of the "error" vector, g' = (el,sz,...,an);

designates some known functional form.

A general term for ¢ is the error structure for the model. The error
structure will generally be composed of a vector but it is possible for it
to be an array. The error structure deserves special attention since the way
it enters the functional form of the model can affect the ease of the esti-
mation process. For example, consider an enzyme kinetic model,

Yy = e(xil + eil)/(p + Xy + 512) s i=1,2,...,n .

Note that the error structure enters the model in a non-additive form, it
does not enter with simple addition. This type of model is difficult to
analyze. Therefore, this report will consider only models with additive

error structure.



General Model with Additive Error Structure: Consider the model,

y; = f(ﬁﬁxil + g(gi) . 1i=1,2,...,n (1-2)
where f = known functional form;
g = known linear functional form.

A special case of (1-2) is the General Linear Model:
v, =)

351

or, in matrix notationm,

= (1-3)
xijﬁj + ey 5 i=1,2,...,n

Y=X8+¢e . (1-3a)
The name linear comes from the fact that the functional form of the model is
linear in the unknown parameters B. The mathematical variables, Ei’ can enter
the model in any fashion as long as they do not affect the linearity of B.
For example, consider the model, | |
¥y =-leil + B, log X, + Byx ax., + 8, sinx,, +e;
51 enters the model in many ways, but B is always linear. To contrast

this, consider the model,

¥y < leil + exP(BZXiZ) + € s i=1,2,...,n .

In this case both gi_and B enter in a nonlinear fashion. The first model can
be analyzed with linear methods but the second model cannot.

The last model definition is for a Nonlinear Model with Additive Error
Structure. Consider the model of (1-2),

».

but with f redefined as,

f = known functional form, but nonlinear with respect to at least one Bi'



Techniques for Estimation, Linear Models

Consider the general linear model (1-3). There are three widely used
techniques of estimating the unknown parameters B:

1) Least-squares;

2) Gauss-Markov, Best Linear-Unbiased Estimates;

3) Maximum Likelihood.
The exact derivation of these three techniques will not be discussed here,
but can be found in Grayhill (1961), or Searle (1971). It will be sufficient
to note that under the assumption that ¢ is distributed multivariate normal
with mean vector 0 and covariance structure 021, the three techniques give
the same results.

While the techniques do give the same results, the least-squares method
is the most commonly used. Consider the general linear model (1-3). The

B

's can be estimated from the observed responses, Yi» and associated inputs

3

1j*
¥i - fggi,g) where f(gi,g) is the computed response for a given xij’

X i=1,2,...,n; j =1,2,...,p. This process examines the differences
i=1,2,,..,n; j=1,2,...,Pp. The sums of squares of these differences,

the error sum of squares,
t 2
QX,B) = i__z_l G0 - £X,8)) @a-5)

is a p variable function of B and is minimized with respect to 8. The mini-
mization process is done by taking the p partial derivatives of Q and setting
them equal to zero. The resulting set of p linear equations is the set of
normal equations, and the normal equations are linear in the Bi's. In
matrix notation, consider the general linear model (1-3a), the normal

equations are:



X'x)p=xy , (1-6)

and from this set of equations, point estimates for g and 02 can be calculated.

g = X'0)7K'Y (1-7)

@ a - X&'/ @) ; (1-8)

@'Y - BX'Y)/ (n-p) ;

ESS/ (n-p) .

These estimates can be shown to have several optimum properties, Graybill
(1961), Searle (1971); including independence, sufficiency, and completeness.
Additionally, hypothesis testing and confidence intervals are easy to apply
from the least squafes approach. To look at hypothesis testing from an
{ntuitive approach, the Principle of Conditional Error is ideal. 1In this

manner, the hypothesis to be tested is:

H:-H8=h wvs. H: HB #h, - (1-9)

wﬁere H is a k by p matrix and h is a kxl vector, both specified by the null
hypothesis.— The restricfed ﬁodel is férmed such that B is restricted to
values ;ssigned under Hb' Normal equations are formed for this new model
and a restricted E_is calculated. Also the-Error Sums of Squares for the

restricted case, ESSr, is calculated by (1-8). The test statistic for this

hypothesis is: N
w = (ESSr - ESS)/(p—q)02 . (1-10)

where p is the number of Bi's in the original model and q is the number of
Bi's in the restricted model. The critical point for w is the o percentage
point of the F-distribution, with (p-q,n-p) degrees of freedom, where a is

the type I error rate desired. An equivalent formula for w is:



- = — ~ 62
w= (88 - h)" (&' TH) IS - h)/(qa) . 1-11)
Confidence intervals can be found by an expansion of the hypothesis testing

method. Confidence intervals are given by:

%

PUBEQR £ (5, (-p)) (G°L' X' L)) =1 -0,

where £ is specified by the experimenter. An example follows:

Example 1, Linear Model Analyzed

Consider the model

Yy ® Byt Byxy, ¥Bx,te, 3 1=12,....n (1-12)

where the ai's are NID(O,oz).

It is desired that the following data be fitted by (1-12), a hypothesis
about B tested, and confidence intervals calculated for 8.

Data:

¥yt 12.1 5.5 4.6 4.5 10.8 4.9 6.0 4.2 5.3 6.7 4.0 6.1

x .870 .202 .,203 .198 .730 .510 .205 .670 .205 .211 .203 .264

il:

X 1.69 1.17 1.17 1.21 1.63 1.59 1.14 1.92 1.22 1.71 1.11 1.37

12°

Normal Equations:

112 4.531 16.981 74.7
4.531 2.388 7.453 33.2144
16.981 7.0153 24.864 82 108.93

™ o
Lo =)
]

Estimate B:



418 2,66 -3.61] | 74.7 7.8881
B= 'X) X'y = | 2.66 4.13 -2.98| | 33.2144| = [11.0737
-3.61 -2.98  3.34| |108.93 -4.1303

Estimate 02:

o2 = (1.7) = (538.55 - 507.13)/9 = 3.49

As an example of hypothesis testing, consider,

HO: BO - 262 =0 s B0 = 8,00 wvs. Ha: not Ha .

In matrix notation,

1 0 0 8.0
H= 3 h= s n=12; p=3; q=2.
1 0 -2 0
Then,
8.1404 -2.9003| |-0.1119 N
w= (1.10) = [-0.1119  16.487] el
~2.9003  1.0646] |16.487 | (2)(3:49)

41.29 and F(2,9) = 4.26 , (a = 0.05).

Since w is greater than F, the hypothesis Ho would be rejected.
This example illustrates application of some mathematical results which
are much more difficult to derive for nonlinear models. The remaining dis-

cussion deal with problems encountered and techniques for solving them.

Transformations and Rudimentary Nonlinear Estimation

An Additivity Transformation transforms a general model to a linear
model with additive error structure. This type of transformation is useful
for some nonlinear models and some models which do not have additive error
structure. If such an additivity transformation exists, it should be

utilized since the transformed model can be analyzed with linear model



techniques which are based on exact small sample theory. If a particular
model does not fit the linear models' assumptions, then large sample asymtotic
theory is the only alternative.

Consider the model

b i exp(BO + leil + Bzxzigli + ei) . i=1,2,...,n.

If a natural log transformation is used, then,

ny, = BO+leﬂ+ BZxZixli+Ei , 1i=1,2,...,n,

and both an additive error structure and a model linear in the parameters is
achieved.

Another model to consider is,

¥ = xg_+ € i=1,2,...,n.
This presents a problem. The model already exists with an additive error
structure, so the model cannot be transformed to a linear model. This means
nonlinear techniques will have to be used to analyze the model. Here is an
example of how the error structure affects the ease of estimation. If the
error structure was multiplicative and distributed log normal, then a log
transformation would work as an additivity transformation.

A rudimentary estimation technique is a technique which is crude in its
theoretical background and practical application. One such rudimentary

technique for nonlinear estimation will be illustrated using the model

yi = (lei)/(xi + 82) + Ei 3 i = 1,2,--0,1'1 . (1-13)

The procedure is:
1) select an initial value of 52’ the parameter which '"causes" the

nonlinearity;



2) estimate Bl from the linear models techniques described earlier;
3) calculate the residual sum of squares;
4) vary the value of 82; and estimate Bl again;
5) calculate the residual sums of squares and compare with the last
value to determine the directi;n of correction for 62;
6) continue iterations until a desired degree of accuracy is achieved.
The residual sum of squares will decrease if B is approaching.the
"correct" value. This technique will be applied to (1-13) with the data
x,: 1 2 3 4 5

Yi; 3.5 5.0 .6.0 6.7 7.1

The process will be stopped when 82 is estimated to the nearest 0.01. The

results are summarized in Table 1.1.

Table 1.1. Search Procedure

Iteration Bl BZ Residual 5.8. Comments
1 5.66 0 B.3720 Initial guess
2 8.05 1 0.6325
3 10.03 2 0.0294
4 11.84 3 0.4594 B> too large
5 9.65 1.8 0.0121 B2 in correct direction
6 G.45 1.7 0.0196 B> too small
7 9.74 1.85 0.0127 85 too large
8 5.66 1.81 0.01197
9 9.68 1.82

0.01199 stop

The process stopped at the ninth iteration since the residual sum of
squares for three values of 82 had a minimum at the middle point. The final
estimated model would be:

¥y = (9.66 xi)/("i + 1.81) .



The rudimentary process gave estimates but it was quite cumbersome
and difficult to use. It illustrates the need for general procedures
which, during an iteration, indicate the direction and distance for the
correction for a new estimate of a parameter. The procedures should also
handle more than 2 or 3 parameters and be somewhat independent of the form
of the model. Finally, the nonlinear procedures should have a rule to stop
the procedure. A procedure which fulfills such considerations will be

explored and examined.
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CHAPTER II. THE GAUSS-NEWTON (OR LINEARIZATION) PROCESS

Introduction

An iterative estimation procedure is a procedure whereby estimates for
the parameters are not arrived at by solving a single set of normal equations,
but they are arrived at in a repetitive procedure, using the same mathematical
operation each time. This method takes current values of the parameters and
tries to move toward a "better" solution, in the sense that Q, the error sum
of squares, is reduced. Each repetition of the procedure is called an

iteration.

The General Gauss-Newton Process

One iterative estimation procedure is called Linearization, or Taylor
Series, or the Gauss-Newton, process. It utilizes the results of linear
least squares in each iteration. The model being considered is the Nonlinear
Model with Additive Error Structure. §0 is a p by 1 vector of initial
guesses of the parameter vector B. An initial guess is to be improved in
an iterative manner as follows. Consider the Taylor Series expansion of

£(X,8). Let

3 i - l,z,.-.,n,, (2—1)

ERLB) = £X8) + Zaitay 3

1=1
which is the Taylor Series truncated after the first term of the expansion.

zoji is the first partial derivative, with respect to Bj’ of f(gi,g) evaluated

. Th i i - . .
at §° e expansion is about §0, so Yoj = Bj Boj' With this expansion,

the model now becomes,

vy - £(;,8) = 121 YosZose T € 3 1=12,...m, (2-2)
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where Zo is the n by P matrix of zoij’ Y is an nx]l vector of observed
values, and f(§,§0) is the n by 1 vector of functional values evaluated at

Eo with known values of zi.(i = 1,2,...,n). Since y is the difference
' a
between the true parameter vector and the initial guesses, then y is the

best approximation of this difference. The best updated estimate of 8,

Y

ﬁi’ comes from Y, = B

8, - B,, which implies g, = B + Y . Now B, can undergo

the same process to obtain another set of new estimates, §2. In general,

Bor1 Bt Y,

v =1 '
B+ @272 - £(X,8)) (2-4)

where m=1,2,... is the number of the current iteration.
The stopping rule approximates a test for convergence. An example of a
stopping rule is:

Stop if I(B <38 ’ j=1:29--°spv

@t)j " Bay)/ s
holds for all j ,

where ¢ is some predetermined value, usually small. The procedure is not

completely fool-proof, (Draper and Smith (1966)). Problems which may cause

difficulties are:

1) The solution may converse slowly or take many iterations to
stablized even though the error sum of squares decreases
consistently;

2) The solution may oscillate widely, increasing and decreasing the
error sum of squares, but the solution may stabilize;

3)‘ The solution may diverge, increasing the sum of squares without

bound.
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The Modified Gauss-Newton Process

To combat the drawbacks of the Generalized Gauss-Newton Process, Hartley

(1961) modified the process. For his modifications he made several assumptions.

1)

2)

3)

The following derivatives exist:

(a) fhggi,g) is the first partial derivative with respect to Bh,
evaluated at Ei;
(b) fh kqgk,g) is the mixed partial derivative with respect to
Bh and Bk’ evaluated at §i;
{c) thgi,g) is the first partial derivative of Q(Ei,g), (1-5), with
respect to Bh;
(d) Qh k(gi B) is the mixed partial derivative of Q(§i,§), (1-5),
»
with respect to Bh and Bk;

t2 L8 &85 &8 .

For any non-trivial set of uj, u=1,2,..,p, with,zju§ >0,

t 2

IS u £ .87 > 0,

1=1 j=1 13
for all B in the bounded convex set S of the parametér space. This
assumption guarantees the nonsingularity of the Z'Z matrix.
Let @ = 1imit over s€ of Q(X,B8), where s® is the compliment of 8§,
then assume that there exists a vector §O in S such that,

Q(X;8,) < Q .

This assumption assures convergence of the solution.
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In addition to the above assumptions, Hartley made a change in the

procedure. The updated estimate of §, B is now defined as:

“mt+l’
Bt =t A Xy - @-5)
The method of determining A is:

1) Define a function H(A):

HQ\) = QX B, + Ayy)

AR
2) Determine A to be the value which minimizes H(A). An approximation

to the minimum may be obtained by fitting a parabola through H{0),

H(®), H(1), and using the minimum of the parabola, i.e.,

b=
]
N =

+ 3 (H(0) - H())/ (@A) - 2HG) + HO)) .

The rest of the procedure remains unchanged.

Differences between the General and Modified Gauss-Newton Procedures

The actual application of either procedure is the same except for the
one change in procedure made by Hartley and assumption number 3. rThese two
changes guarantee convergence in areas where the generalized procedure would
not. If assumption 3 is not violated, then 0 < A < 1, but if assumption 3
is violated then A can become larger than 1. In the latter case, the
generalized procedure would converge to a local minima, but the modified
procedure may "step-over" this local minima and being the estimates into
ﬁhe convex bounded set S, but this does not necessarily occur. If Bm does
belong to S, with an upper bound, call it Q, to the Error Sum of Squares,

Q(X,8), then 0 < A < 1. This means
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Q(X,8,,,) = Q(X,8)) 1if A =0;
QX,B ) ZQX,B) 4if r>0,

50 Boud

eralized process does not make assumption 3 and it does not restrict Q(X,ﬁm),

lies on the interior of S and the process continues. Since the gen-

the process can diverge or oscillate widely. Divergence occurs when the
solution approaches the minimal vector, the value of g which minimize
Q(X,B). An iteration may "push" the solution past the minimal vector. If
the new solution is now geometrically further away from the minimal wvector,
then the next iteration may "push" even further past the minimal vector.
This leads to divergence; an increasing Q(X,B). If the Q(X,B8) slowly con-
verges with oscillation of the estimates, then the process will eventually
converge. This is caused by a mild case of the divergence situation. The
iterations do not push the solution further away from the minimal vector, but
they push almost the same distance. Hartley (1961) shows that the solution
vector in the modified procedure is limited by the least-squares solution
and the solution is unique.

One problem with both procedure is the choice of the initial parameter
vector Bo' If assumption 3 is violated, the modified version will sometimes
converge to a local minima and the generalized version will always converge
to a local minima. Hartley and Booker (1965) suggest searching the parameter
space in a wide grid. Presumably this means that if an experimeﬁter has
doubts about the initial estimates, then several processes can be done with
different initial estimates. If different final estimates are found, then
the set with the smallest Error Sum of Squares should be used. Finally, if
the processes all turn up similar final estimates, then Q(X,B) is a fairly

stable function and the results can be used with some confidence.
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CHAPTER III. NUMERICAL APPLICATIONS

Introduction

Both the generalized and modified procedures were programmed in APL
for the I.B.M. 370/158. Numerical examples were run to illustrate usage of

the procedures and their differences.

Program Descriptions

For clarity in wmaking comparisons, both of the main programs use like
names for variables which have the same function, but this does not affect
the program usage. There are two main programs, GN and MOD GN, and three
subprograms, DIFF, FUNC, and H. Copies of these routines can be found in
the Appendix.

GN (Program number 2, Appendix): This is the generalized Gauss-Newton
procedure. It follows the algorithm described in Chapter II, and it uses
two subprograms, FUNC and DIFF. There are five inicial input steps:

1) 3 ﬁalues: number of parameters to be estimated,

number of mathematical variables,
number of observations;

2) dependent variable vector;

3) observed value array of mathematical variables;

4) initial values of parameters, (note, 0 is an illegal initial value);

5) number of iterations per step, (NIT),

The sixth input is used in conjunction with the number of iterations. The
program does not have a test for divergence, so there will be NIT iterations

and then an option for NIT more iterations. This allows the usef to stop a
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run if the residual sum of squares is diverging by entering an N for No
or a Y for Yes when asked if more iterations are desired. There are three
lines of output per iteration:-

1) iteration number;

2) residual (error) sum of squares;

3) vector of current parameter estimates.

MOD GN (Program 1, Appendix): This is the modified Gauss-Newton procedure
described in Chapter II. The two subroutines, FUNC and DIFF are used in their
original definition, and another routine H is used. The input is identical
to input for GN, and output is identical with one additional; namely the
scalar multiplier X, which is outputed on the line after the residual sum
of squares.

FUNC (Program number 4, Appendix): This is a user written routine which
supplies the functional values for a given parameter vector and a given
observed mathematical variable array. Program number 4 was actually the

routine used for Example 1.

DIFF (Program number 3, Appendix): This is a user written routine which
provides the matrix of partial derivatives, Z. The i-th column is the partial
derivative of the function with respect to the i-th parameter. Program

number 3 is an example, and was actually used for Example 1.

H (Program number 5, Appendix): This is not user written. It used by
MODGN for the sums of squares function for given dependent vector, parameter
vector, and observed mathematical variable array. H uses FUNC and is used

for calculating A.
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Example 1, Fertilizer

Consider a fertilizer experiment where six responses of wheat yield
have been measured corresponding to six rates of fertilizer application.
The model considered is:

¥ = L+B exp(Kxi) + ¢ I = 1.2, w0

i ]

The following data were analyzed:

The initial parameters were guessed to be:
L = 580 : B = -180 ’ K=-,160 .
Example No. 1, Gauss-Newton Program, in the Appendix, shows the computer

printout and the results are summarized in Table 3.1.

Table 3.1
Iteration Res. S5.S. L B K
0 27376.61865 580.000 -180.000 -.160
1 14585.83999 490.418 -121.114 -.223
2 13778.76184 528.693 -163.786 -.185
3 13407.53547 515.917 -148.537 -.207
4 13393.81272 525.637 -157.748 -.196
5 13390.53578 522.019 =155.445 -.201
6 13390.17003 523.807 -157.540 -.199
7 13390.10676 523.082 -156.685 -.1999
8 13390.09559 523.399 -157.058 -.1996
9 13390.09357 523.265 -156.901 -.1997

To contrast the generalized and modified versions, the same model, data, and
initial parameter values were used in a modified run, (See Example No. I,
Modified Gauss-Newton Program, Appendix). The results are summarized in

Table 3.2.
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Table 3.2
Iteration Res. §5.5. - A L B K
0 27376.62 1.00 580.00 -180.00 -.1600
1 14590.57 0.95 495,20 ~124.26 -.2197
2 13638.93 0.90 - 525.08 -159.41 =,.1905
3 13394.54 0.96 519.36 -152.42 -.2036
4 13390.33 0.73 523.26 -156.9%4 -.1995
5 13390.09 0.98 523.23 -156.86 -.1997
6 13390.09 523.31 -156.95 -1.997

The contrast between the two procedures can be observed from the two
tables. Both procedures arrived at the same sclution, but the modified pro-
cedure took three less iterations than the generalized procedure. Number of
iterations are not quite so important now, since the computer is readily
available. The important point is the treatment of the residual sum of
squares. Note that the reduction is faster while the estimate values are not

so drastically affected. This is the important idea to guard against divergence.

Example 2, Steam

Consider a physics model which represents a possible relationship
between pressure and temperature in saturated steam. The model under con-

sideration is:

8, x,/(B, + x,) ;
~ 2 X3 By T %y ] ~
Yi = Bl 10 + Si H i= 1,2,..-,14 »

The following data were analyzed:
x; (in degrees Centigrade):
10 20 30 40 50 60

70 80 85 90 95 100 105
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¥y (pressure):

4.14 8.52 16.31 32.18 64.62 98.76 151.13
224.74  341.35 423.36 522,78 674.32 782.04 920.01 .
For comparison, both procedures were run with identical input. The iﬁitial
estimates were found by examination of the data. When X, = o, ¥y = Bl, s0
from the data a guess of Bl = 4 was made. Using this estimate and two more
observations, the other starting values were estimated to be 82 = 5 and

83 = 150. The results are summarized in Tables 3.3 and 3.4 for the generalized

and modified versions, respectively.

Table 3.3. (Generalized)

Iteration Res. S.S8S. Bl BZ 63
0 566161.9986 4.,0000 5.0000 150.0000
1 2803.0458 8.5253 9.9407 407.2510
2 2301.6771 5.0257 8.3977 282.4967
3 1720.4980 5.2625 8.5587 294.5511
4 1718.2108 5.2674 8.5652 295.0012

Table 3.4. (Modified)

Iteration Res. S5.85. A Bl 82 83
0 566161.9986 1.0000 4.0000 5.0000 150.0000
1 2687.7815 0.9892 8.4763 9.8872 404.4627 -
2 1942.5688 0.6472 6.2481 8.9393 326.4159
3 1720.5250 0.9018 5.3480 8.5971 297.7571
4 1718.2108 5.2681 8.5659 295.0423

In this case the sum of square function behaved so well, that the modified
procedure did not converge faster. Since this was the case, initial esti-

mates were chosen "badly," to examine what happens in this situation.
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§; = [2 2 75] was used. This choice was extremely bad. The generalized
procedure diverged so badly that the machine computations went out of bounds.
The modified procedure converged, after 23 iterations to a local minima,

', = [39.67 - 4869.21 -. 390489.51] with residual sum of squares 55616.94.

=23
This clearly shows that when assumption 3 is violated, there are problems

with the estimation process.
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CHAPTER IV. INFERENCE

Introduction

Confidence intervals and regions, and hypothesis testing are very useful
tools in modeling. Through these techniques, a parametér in a model can be
examined for its contribution to the model. For example consider the
linear model case,

Y=XBg+¢.
A possible hypothesis of interest might be to examine 82 to see if it con-
tributes to the model:

H : 82 =0 vs. H_: 82 £0.

I1f Hb is not rejected, then X, might not provide useful information. If a
nonlinear case is to be considered, the parameters do not always correspond

to an information variable. Consider the steam example of Chapter III,

B, x./(B, + x.)
_ 2 71" 3 i _
¥y = Bl 10 + CPE 1=1,2,c00514 .

If a hypothesis of the form,

H: B, =1 s, Ha: Bl $#1,

were tested, there the form of the model and not a specific information
variable could be tested.

The theory and application are not as developed as some of the estima-
tion procedures, but Bard (1974) and DeBruin (1971) have done some work in

this area.

Confidence Regions

Bard (1974) showed that for the nonlinear case, an adaptation of linear

confidence regions will work. The procedure is to select n points of B to

~

satisfy



22

8 - B'2'2(8 - B) = po” F (p,n-p) = &, (4-1)

where Z is the matrix of derivatives used in the Taylor's expansion, p is

-~

the number of parameters, 02 is given by (1-8), and Fa(p,n-p) is the a-th

percentile point of the F distribution with p and n-p degrees of freedom.

The resulting figure will be ellipsoidal. The procedure is summarized below.

1)

2)

3)

4)

5)

Scale the parameter space by units of standard deviations of the

elements of Z'"Z = C., Let D be a p by p diagonal matrix with

diagonal elements of C—l.

%

Transform the parameters to y = D (B - B), which implies selection

of points in p space satisfying

5 2

1
' D Z'ZD'E‘u=d

Let U be a p by p matrix whose columns are the characteristic wvec-

b

. 1
tors of H = D22'ZD%. The characteristic roots of H appear on the

diagonal of U'HU.
Now the area can be transformed to a unit circle, or p-dimensional
sphereoid, so the points, t, can be chosen on the axes and then

¥

transformed back to the ellipsoid. Let y = d U(U'l + U)”t, and

chose t .at the end points of the axes of the sphereoid. There are

p2 + p = p(p~-1) + 2p points to chose, 2p points at the ends of

the axes for the spheroid, and p(p-1) points symetrically between

the axes.

to transform back to the confidence region (limit values of B), use:
B=B+Q

Q=4d nli U(U'HU)_!E

LY
8 = g%+ dp? uquruny £, 5 u=1,2,...,p(pH)



23

This procedure gives exact regions but thc confidence coefficients are
approximate. The region is simultaneously true for all Bi’ therefore pro-
jection from the region to the i-th axis gives a conservative confidence

interval for Bi.

Hypothesis Testing, Principle of Conditional Error

The principle of conditional error was the basis for DeBruin's (1971)

dissertation. Consider the null hypothesis:

H: g,(8) =g,8) =...=g (® =0, (4-2)

where r is the rank of X. The principle of conditional error states that the
sum of squares due to Ho’ SSHO, is equal to the residual sum of squares for
the restricted model, ESSr, minus the residual sumlof squares for the unre-
stricted model, ESS.

DeBruin examined three test statistics for (4-3),

Tl = 52/62 i | (4-4)
o e

_TZ = §°/ra” ;

T3 = (n—p)Szlrm;2 .

‘where 52 = (ESSI - ESS). He also showed that T1 had an asymptotic Chi-Square
distribution, T2 was distributed approximately F(r,n), and T3 was distributed
approximately F(r,n-p). After simulation of the enzyme kinetic model and

the application of the three test statistics, DeBruin concluded that T3
behaved the best. This method of hypothesis testing would usually require

two, or more, evaluations of the nonlinear estimation procedure to get the

necessary restricted sum of square.
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CHAPTER V, CONCLUDING REMARKS

Modeling has long been an effective tool in statistics. Linear
modeling is the usual form of modeling applied, and since it is based on
exact small sample theory, it is good to use. Sometimes linear wodels
cannot do the job. When this happens, nonlinear techniques are used, but
only if an additivity transformation does not exist. Some popular
nonlinear techniques are the Method of Steepest Descent [Draper and Smith
(1966)], Marquardt's Compromise [Marquardt (1963)], and the Modified Gauss-
Newton [Hartley (1961)].

The Modified Gauss-Newton has been shown to guarantee convergence
under some assumptions and it has been shown to give a unique solution.
Problems encountered with this technique are choice of initial parameter
estimates and convergence to local minima. This procedure has enjoyed some
success and is available in a computer package offered through I.B.M.'s
sharing library or through Stilson's NONLIN routine (1976).

To help with modeling problems, inference techniques have been developed.
Bard (1974) illustrates an extension of linear theory to nonlinear cases,
and DeBruin (1971) has researched the Principle of Conditional Error for

the nonlinear case.
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APPENDIX
Referenced from Chapter III

Program No. 1 -- This is the APL program. MOD GN, Modified

Gauss-Newton procedure.

Program No. 2 -- This is the APL program GN, Gauss-Newton

procedure, generalized.

Program No. 3 -- This is the APL program DIFF, provides

matrix of derivatives, user written.

Program No. 4 -- This is the APL program FUNC, provides the

functional values, user written,

Program No. 5 -- This is the APL program H, the sum of squares

function.

: Hartley's Fertilizer; Program: Gauss-Newton. This is an

example of the generalized routine doing the analysis.

: Hartley's Fertilizer; Program: Modified Gauss-Newton. This

is an example of the modified procedure in analysis.



A CHAPTER 3; PROGRAM NO. 1

vMODGNLUIV
vV MODGHN )
[11] "INPUT: NO. PARMS, NO. IND. VAR., NO. ORS.'
[2] N+ .
[al VINPUT: DEPENDENT VARIABLE VECTOR'
(4] Y«(nlL3l,1)pl0 i
[5] VINPUT: INDEPENT VARIABLE ARRAY'
[6] X<(#[3]1,8021)p0
[7] '"INPUT: INITIAL GUESS OF PARMS.'
(8] B«(il11,1)p0
[9] Z<(N(31,7[13)p1
[10] 'IN¥PUT: NO. ITERATIONS PER STEP!
[11] XOIT<[ -
(12] DELTA<N[11p0.001
[13]1 DELTA<,DELTA
[14] LAMBDA<« 1 1 plE™ 27
[15] KIT+0
[16]1 ‘'ouTPUT: ITERATION NO., RES. S.S., LAMBDA!
[17] GNTWO:LIM+KIT+HOIT
(18] GHONE:' !
[19] YD+«Y-B FUNC X
[20] RSS+(QYD)+ xYD
[21] 1KIT;R55; LAJBDA
[22] 'CURRENT PARMS: ';(,B)
[23] KIT<KIP+1
[2u] B DIFF X
[25] ZP<y§2Z
[26] GAMMA<(B(ZP+.%x2))+.xZP+,.x¥D
[27] HO<H 0
[28] Hi1<H 1
[29] LAMBDA«(0.5)+((0,25)x((HO-H1)+((H1+70)-2x¥% 0.5)))
[30]1 -+(LAMBDA<1)/GHTRE
[31] LAMBDA+1
[32] GNTRE:BA«B+(LAMBDAxGAMMA)
[33] +((+/(((,(8(BA-B)))+(,(®B)))=DELTA))=0)/GNEND
[3u4] B<BA
[35] -(KIT<LIM)/GNONE
[36] YINPUT: MORE ITERATIONS? (¥Y/N)!'
(371 MIT<[
[38] +(NIT-'Y')/GNTWO
[39] GrzEY '
[40] YD+V BA FUNC X
[41] RSS«(RYD)+.%x¥D
(42] '"FINAL RESULTS:

[43] '  ITERATIONS = '";KIT
[uw] ' PARAMETERS = ';(,BA)
[u5] ' RES. 5.5. = ';(,RS85)



A CHAPTER 33 PROGRAM NO, 2

vanrnlv

v AN
11 'INPUT: NO. PARM3, RO. IND. VAR., NO. OBES.!
[21 <0
[aj '"INPUT: DRPENDTUNT VARIABLE VECTOR!
[u] Y«(N[(3],1)p0
[51 "INPUT: IADEPENT VARIABLE ARRAY!
[6] X<(yr3l,nf21)en
(71 YINPUT: INITIAL GRUESS OF PARMS.'
rsl B+(N[1]1,1)pl
(9] Z<(N[3]1,8[11)p1
[10] ‘'IwPUT: NO. ITERATIONS PER STEP!
[(11] roIT<D
[12])] DFRLTA<«N[1]1p0.001
[13] DFLTA« ,DTLTA
[14] XIT<o0
(151 s FUNC: USZR WRITTEN

[16] =~ SUPPLITS FUNARTIONAL VALUTS

[17] wm DIFF: USFR WRITTEN

[18]1 FORMS 2 MATRIX

[19] = MATRIX OF PARTIAL DIFFTRUNTIALS.

f20] 2R7WO:LITM<KIT+NOIT
[21] cvoirms '

(221 YDp«y-B FUNC X

(231 RSS<(Q8YD)+.xYD

{24] 'ITERATION: 'i;KIT

[25] 'RRS5, 5.5.: ' RSS

[26] V'CURRFNT PARMS: ';(,R)
[27] KIT+«XI7+1

[28]1 7B DIFF X

[29] ZP<«§{2Z

[30] BA«B+(B(ZP+.%xZ))+.%x2P+.xYD
[(31] >((+/(((,(8(BA-B)))+ (,(Q83)))=2DTLTA))}=0)/CNEND
[32]1 B+BA

[33] =+ (KIT<LIMY/GNOVE

[34] ‘'INPUT: MORF ITERATIONS? (Y/N)'
[35] MIT<[

[36] >(HIT='Y')/0NTHO

(371 GNEND:'FINAL RESULTS: !
ragsl] ITRRATTIONS = ' ;KIT
f3sl] PARMS = '3;(,BA)

(40l YD«Y-BA FUNC X

[41] RSS«(/YD)+.x¥YD

(u2]1 FES, 8.8, = "3RE5



[1]
r21
[3]
(4]
(5]
(6]

f1]
[21
[3l
4]

1]
(2]
[3]
(4]
[s]

CIAPTRER 33 PROGRAM NO. 3

voIrFi0lv

Y B DIFF X
n USRR WRITTTN
a FORMS MATRIX OF PARTIAL DERIVATIVRES
p I TH COLUMY IAS DFR, W.,R.,T. ITH PARM,
20;1]1+1
Z0:2]+(2,718281828u459045)*x(B3[3;11xX
2[;3]*‘8[2;1]7‘(1}’))‘( .Z[;QJ)

CHAPTRRE 3; PROGRAM NO. 4

vrUNcLOlve
VvV F«3 FUNT X
A [/STR WRITTREN
p PROVIDTS PUNCTIONAL VALUR FOR TURRENT
a PARAYTTER TSTIMATES.

FeB[13;11+R[231]1%(2,718281828459045)*(R[3;11xX)

v

CHAPTER 3; PROGRAM NO. S

vR[O]IV

v Q+«” L
A
BL<B+(LxGAMMA)
F1<BL PUNC X
FD+Y-F1
Q«({FD)+.xFD

29



A FXAMPLE RO, 1:
A PROGRAM: GAUSS-NEWTON

oN
INPUT: NO. PARMS, %O, IND, VAR., NO., OBS.
.

3 1 8§
INPUT: DRPSNDTNT VARTABLE VERTOR
0.

127 151 379 421 460 426
INPYT: INDRPRENT VARIABL® ARRAY
(s

s T3 "1 1 3 5
INPUT: INITIAL GURSS OF PARMS.
O:

580 ~180 ~,160
INPUT: NO., ITERATIONS PER STEP
I

5

ITERATION: 0
RES. 5.8.:

27376.61865
CURRENT PARMS: G580
ITERATION: 1
R7ZS, §.5.:

14585,83999
CURRENT PARMS: 490,41766823 ~121,1135077
ITERRAPION: 2
RES., §5.5.:

13778,76184
CJRRZNT PARMS: 528.6931634 ~163,7855205
ITRRATION: 3
ARS., 5.8.:

13407 ,53547
TURRENT PARMS: 515,9166641 ~148,5372768
ITERATION: &

RES, §,5.:

13393,81272
CURRTNT PARM5: 525.6374671 ~159.,7481189
INPUT: MORT ITERATIONS? (Y/N)

HARTLREY'S FERTILIZIR

T0,223115794

T0,1850563037

T0,2068142273

T0.1964706932
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a TXAMPL® NO. 1 7ONT,.

¥

ITRRATION: 5
RES. §.5.:
13390.53578
CURRENT PARMS: 522,0188398

ITERATION: 6
R%S. §.5.:
13390.,17003
CURRENT PARMS: 523,8065332

ITERATION: 7
R%S., 5.5.:
13390.10676
CURR®ENT PARMS: 523,0822019

ITTRATION: B8
RES. 5.5.:
13390.098559
CURRZHNT DPARMS 523,.,39289402
FINAL RESULTS:
ITRRATTIONS = 9

i1

T155,4449678 0,2010284034

T157,.5393606 ~0,199080187

~156,.6852673 _0.1999131286

T157,057892 " 0,1995586171

PARM5 = 523,2654373 ~156,9006384 ~0,199709681H

RES., 5,5, =
13390,09357



A RXAMPLE NO, 1:
A PROGRAM:

MoDGR
INPUT NO. PARMS, NO. IND., VAR,,
BH

3 1 5]
IYPUT: DRPENDPENT VARIARBLFE VECTOR
M:

127 151 379 421

460 426

LAMBDA

INPUT: INDZPINT VARIABLT ARRAY
0:
s 7371 1 3 5
INPUT: INITIAL GUFSS OF PARMS.
[1:
580 180 ~.160
INPUT: NO. ITERATIONS PER STEP
0:
10
oUTPUT: ITERATION NO., RES. S.5.,
0

27376.61865
1.0000000007 27
CURRENT PARMS: 580 180

1
14590,57124
0,9465676858
CURRTNT PARMS: 495,2042596
2
13638,93004
0.9032855026
CURRENT PARMS: 525,07B3865
3
13394 ,54389
0.9658452u445
CURRENT PARMS: 519,.3629237
b
13390.32512
0.7331797808
CURRENT PARMS: 523,2579101
*5
13390,0947
0.9762112072

CURRTNT PARMS: 523,2278u57

FINAL RFESULTS:
ITERATTONS = B
PARAMETERS = 523,305171

RZS. 13390,09313

;g.S.

T124,2599493

T159 . 4127u47u

“152,4211883

T156,9351206

T156,8574421

T156,9477255

NO. OBS.

HARTLEY'S FRRTILIZER
MODIFIED GAUSS-NEWTON

T0,219743371

T0.1905301221

T0,2035945252

T0,1994577839

T0,1997459928

T0,1996631588
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ABSTRACT

Linear modeling techniques have been available for some time. Estimation
techniques and inference procedures are generally well-known and relatively
easy to apply. However, there are cases where the desired model is not
linear in the parameters. This report was concerned with this topic.

Nonlinear models can sometimes be handled by transformations, but
this requires an assumption about the error structure. To analyze a
nonlinear model, the least squares procedure called Gauss-Newton was ini-
tially studied. To further study nonlinear cases, Hartley's Modified
Gauss-Newton procedure was examined and compared with the original version.
IBM's 370/158 version of APL was used to apply both procedures to the
computer, and two examples were given.

The final section of this report, dealt with an introduction to non-
linear inference. Two types of inference are examined, Bard's Confidence

Regions and DeBruin's Principle of Conditional Error.



