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ABSTRACT 

 

Dynamic viscoelastic and intrinsic viscosity properties of native xanthan, deacetylated 

xanthan, guar, and their mixtures in dilute solutions were investigated by using an oscillating 

capillary rheometer. Influence of mixing temperature, deacetylation, and salt concentration on 

xanthan conformation and interaction with guar were studied in order to provide additional 

evidence that can be used to elucidate the mechanism of the intermolecular interaction between 

the two biopolymers, and build up a more detailed rheological understanding of molecular 

interactions between xanthan and guar gum in dilute solutions.   

Synergistic interaction was found at mixing temperatures of 25 and 80 °C, but a stronger 

synergistic interaction was observed at mixing temperature of 80 °C. The differences in viscosity 

and elasticity measurements between the two mixing temperatures could be attributed to the 

degree of disordering of xanthan. For both mixing temperatures, the relative viscosity and 

elasticity of xanthan and guar blends were higher than the relative viscosity and elasticity 

calculated for blends assuming no interaction, indicating that intermolecular binding occurred 

between galactomannans backbone and disordered segments of xanthan.  

 Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native 

xanthan. The intrinsic viscosities of deacetylated xanthan-guar mixtures were higher than those 

calculated from the weight averages of the two individually, whereas the intrinsic viscosities of 

native xanthan-guar mixtures were lower than those calculated from weight averages of the two 

individually, demonstrating that intermolecular binding occurred between xanthan and guar gum. 

Synergistic interaction for both native xanthan-guar mixtures and deacetylated xanthan-

guar mixtures in the dilute regime was observed in water and 2 mM NaCl but not in 40 mM



NaCl. The results suggest that intermolecular interaction has occurred between xanthan and guar 

mixtures in water and 2 mM NaCl, but may not occur in 40 mM NaCl and mutual 

incompatibility may take place. These results also suggest that degree of disordering of xanthan 

played a critical role in xanthan-guar interaction and may explain the differences in viscosity, 

elasticity, and intrinsic viscosity measurements between 2 and 40 mM NaCl, and hence, the 

intermolecular interaction occurred between the backbone of guar gum and the disordered 

segments of xanthan. 
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ABSTRACT 

 

Dynamic viscoelastic and intrinsic viscosity properties of native xanthan, deacetylated 

xanthan, guar, and their mixtures in dilute solutions were investigated by using an oscillating 

capillary rheometer. Influence of mixing temperature, deacetylation, and salt concentration on 

xanthan conformation and interaction with guar were studied in order to provide additional 

evidence that can be used to elucidate the mechanism of the intermolecular interaction between 

the two biopolymers, and build up a more detailed rheological understanding of molecular 

interactions between xanthan and guar gum in dilute solutions. 

Synergistic interaction was found at mixing temperatures of 25 and 80 °C, but a stronger 

synergistic interaction was observed at mixing temperature of 80 °C. The differences in viscosity 

and elasticity measurements between the two mixing temperatures could be attributed to the 

degree of disordering of xanthan. For both mixing temperatures, the relative viscosity and 

elasticity of xanthan and guar blends were higher than the relative viscosity and elasticity 

calculated for blends assuming no interaction, indicating that intermolecular binding occurred 

between galactomannans backbone and disordered segments of xanthan.  

 Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native 

xanthan. The intrinsic viscosities of deacetylated xanthan-guar mixtures were higher than those 

calculated from the weight averages of the two individually, whereas the intrinsic viscosities of 

native xanthan-guar mixtures were lower than those calculated from weight averages of the two 

individually, demonstrating that intermolecular binding occurred between xanthan and guar gum. 

Synergistic interaction for both native xanthan-guar mixtures and deacetylated xanthan-

guar mixtures in the dilute regime was observed in water and 2 mM NaCl but not in 40 mM



NaCl. The results suggest that intermolecular interaction has occurred between xanthan and guar 

mixtures in water and 2 mM NaCl, but may not occur in 40 mM NaCl and mutual 

incompatibility may take place. These results also suggest that degree of disordering of xanthan 

played a critical role in xanthan-guar interaction and may explain the differences in viscosity, 

elasticity, and intrinsic viscosity measurements between 2 and 40 mM NaCl, and hence, the 

intermolecular interaction occurred between the backbone of guar gum and the disordered 

segments of xanthan. 
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Introduction 
 

 
 Engineered food materials are mainly structured by a complex assembly of various food 

ingredients such as proteins, polysaccharides, lipids, sugars, emulsifiers, minerals, and water 

(Kilara, 1995). Food proteins and polysaccharides play a key role in the structure and 

stabilization of food systems through their gelling, thickening, and surface-stabilizing functional 

properties (Tolstoguzov, 1991). During manufacturing, intrinsic properties of individual 

components, as well as interactions between the different components determine the final 

structure, texture, and stability of food materials. Because texture and stability are major criteria 

of food quality, scientists and food industry are primarily concerned in identifying such 

interactions in order to provide optimum food quality, design new and attractive food, and food 

ingredients structure (Sanchez et al., 1997). 

The phase behavior of biopolymer-biopolymer-water systems plays an important role in 

surface and colloid chemistry. For solutions containing two different biopolymers, the phase 

behavior can be divided into three types depending on the nature of the biopolymers (Williams & 

Phillips, 1995; Schmitt et al, 1998): 

1. Compatibility- the phase behavior results in complete miscibility and the formation of a 

single homogenous phase.  

2. Incompatibility- the phase behavior results in the formation of two liquid polymer layers 

with each layer enriched in one or other of the polymers. The interactions between the 

biopolymers are repulsive in nature and the system forms two phases, each of them 

enriched with one biopolymer. This kind of phase behavior is usually named 

thermodynamic incompatibility or segregative phase separation.  
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3. Polymer association- the phase behavior results in co-precipitation of the polymers in the 

form of a solid coacervate or in some instances to the formation of a gel. The interactions 

are attractive and the system exhibits a two-phase region with the two biopolymers 

concentrated in one phase. This type of phase separation is known as complex 

coacevation or associative phase separation.  

In dilute solutions, the individual polymer coils or rods are separate and free to move 

independently, and their intermolecular interactions are negligible (Roa, 1999).  Thus, polymer-

polymer interactions can be detected by the increase in solution viscosity. Methods based on 

viscosity measurements are sensitive and useful methods to investigate polymer-polymer 

interactions in dilute solutions.  More sophisticated rheometers such as Vilastic 3 have the ability 

to measure the viscoelastic characteristics of biopolymers in very dilute solutions. 

Synergistic polysaccharide-polysaccharide interactions are attractive in the food industry 

because they  impart novel and improved texture and rheological characteristics to food products 

and reduce polymers costs (Williams & Phillips, 2000). A synergistic interaction occurs between 

xanthan gum and galactomannans in solutions to result in enhanced viscosity or gelation (Dea & 

Morrison, 1975; Dea, Morris, Rees, Welsh, Barnes, & Price, 1977; Morris, Rees, Young, 

Walkinshaw, & Darke, 1977).  

Although the interactions between xanthan and galactomannans have been intensively 

studied, the nature of the intermolecular binding mechanism is still controversial, and different 

models have been proposed. In the literature, much work has been accomplished on the gelling 

properties of the xanthan-guar mixtures. Studying of the xanthan-guar interactions in dilute 

solutions has been studied to a lesser extent.  Additionally, the high demand for hydrocolloids in 

the food industry, specifically beverages, requires a comprehensive understanding to the 
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rheological behavior of these biopolymers in dilute solution systems. Therefore, the main 

objective of this study was to investigate the interactions between xanthan and guar gum in dilute 

solutions in order to provide additional evidence that can be used to elucidate the mechanism of 

the intermolecular interaction between the two biopolymers, and build up a more detailed 

rheological understanding of molecular interactions between xanthan and guar gum in dilute 

solutions. To achieve this goal, a sophisticated rheometer was used and a series of experiments 

were conducted. Thus, the dissertation was divided into four main chapters: 

Chapter 1 is the literature review which provides an elaborate background on models 

describing xanthan-guar interactions, and rheology.  

In chapter 2, dynamic viscoelastic and intrinsic viscosity properties of xanthan, guar, and 

xanthan-guar mixtures in dilute aqueous solutions were investigated by using an oscillating 

capillary rheometer. Influence of mixing temperature (25 and 80 °C) on xanthan conformation 

and synergistic interaction with guar in dilute aqueous solutions was studied.  

Chapter 3 investigates the effects of xanthan deacetylation on the viscoelastic properties 

and intrinsic viscosity of xanthan and xanthan-guar mixtures in dilute aqueous solutions. 

Experimental data of deacetylated xanthan-guar mixtures were compared to those for native 

xanthan-guar mixtures. 

In chapter 4, the role of NaCl concentration (0, 2, and 40 mM NaCl) on xanthan 

conformation (deacetylated xanthan and native xanthan) and the intermolecular binding with 

guar gum in dilute solutions was investigated.  
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                                               Chapter 1 

Literature Review 

 

1.1. Food Hydrocolloids 

 The term ‘hydrocolloids’ refers to a range of polysaccharides and proteins (Williams & 

Phillips, 2000). Food hydrocolloids, or more commonly food gums, are usually polysaccharides 

consisting of long chain of sugar-building units. Because gums dissolve or disperse in water, 

they are used primarily to thicken and/or gel aqueous solutions and otherwise to modify and/or 

control the flow properties and textures of liquid food and beverage products and the 

deformation properties of semisolid foods (Whistler & BeMiller, 1999). Because of their ability 

to thicken aqueous solutions, hydrocolloids offer many other functions in food and beverages 

including stabilizing, emulsifying, suspending particulates, foaming, controlling crystallization, 

syneresis inhibitors, binding, coating, and encapsulation (Dziezak, 1991; Sanderson, 1996; 

BeMiller & Whistler, 1996).  

Hydrocolloids have been extensively used in the beverage industry. The total market for 

non-alcoholic beverages in 2001 in the United States was approximately $80 billion (Zammer, 

2002). The functional beverages segment accounted for approximately $ 5.5 billion.  In 

beverages that contain fruit pulp, hydrocolloids slow the rate at which the pulp settles. Anionic 

hydrocolloids such as xanthan can also prevent a phenomenon called “ hard packing” in which 

the pulp settles out and forms a layer that is a very hard to redisperse into the beverage by 

shaking the container. In carbonated beverages and powdered drink mixes, the addition of a 

hydrocolloid at use level of 0.05-0.15% can provide texture and mouthfeel to a low-calorie 
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beverage that nutritive sweeteners impart to full-calorie beverages. A dilute hydrocolloid 

solution mimics the Newtonian behavior of a 15% sugar solution (Hoefler, 2004).  

 Hydrocolloids are usually used in low concentration at usage level less than 1% to 

accomplish the expected purposes in foods and have a significant influence on the textural and 

organoleptic properties. Hydrocolloid selection is dictated by the functional characteristics 

required but is inevitably influenced by price and security of supply. Numerous hydrocolloid 

products have been developed for use in ready-made meals, novelty foods and low-fat products, 

which led to an increased demand for hydrocolloids. The world market of hydrocolloids has 

become huge to reach sales of $4.4 billions with a total volume of about 260,000 tons (Williams 

& Phillips, 2000).  

The chemical structure of hydrocolloids is either nonionic (neutral) or anionic. 

Hydrocolloids are generally classified according to their source but can be classified based on the 

major monosaccharide component. Most of the food hydrocolloids are obtained from land plants, 

seaweeds, and bacterial and synthetic sources (Table 1.1). 
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Table1.1. Source of commercially important hydrocolloids. 

Source Hydrocolloid 
Botanical  
 Trees 

        cellulose 
 Tree gum extrudates 

        gum Arabic, gum karaya, gum ghatti, gum tragacanth 
 Plants 

                    starch, pectin, cellulose 
 Seeds 

        guar gum, locust bean gum, tara gum, tamarind gum 
 Tubers 

                    konjac mannan 
Algal  
 Red seaweeds 

       agar, carrageenan 
 Brown seaweeds 

                   alginate 
Microbial  

       xanthan gum, curdlan, dextran, gellan gum, cellulose 
Animal  

                   gelatin, caseinate, whey protein, chitosan 
Source: Williams and Phillips (2000) 

 

1.2. Xanthan Gum 

1.2.1. Structure 

Xanthan gum is an anionic heteropolysaccharide produced by the microorganism 

Xanthomonas campestris. Xanthan’s primary structure (Fig.1.1) consist of repeated 

pentasaccharide units formed by two glucose units, two mannose units, and one glucuronic acid 

unit, in the molar ratio 2.8:2.0:2.0. Xanthan’s backbone consists of (1→4) β-D-glucopyranosyl 

units. The chemical structure of the main chain is identical to that the chemical structure of 

cellulose. The backbone is substituted at C-3 on every other glucose residue with a trisaccharide 

sidechain. The trisaccharide chain consists of a D-glucuronic acid unit between two D-mannose 

units. Approximately half of the terminal D-mannose unit contain a pyruvic acid residue linked 
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via keto group to the 4 and 6 positions, with an unknown distribution. The D-mannose linked to 

the main chain contains an acetyl group at position O-6 (Garcia-Ochoa et al., 2000).  

 

Acetate

Pyruvate 

Fig. 1.1. Chemical structure of xanthan (Hoefler, 2004). 

The trisaccharide side chains are closely aligned with the polymer backbone causing a 

single, double, or triple helix stiff chain. The resulting stiff chain interacts with other polymer 

molecules to form a complex (Morris et al., 1977; Milas & Rinaudo, 1979).  The molecular 

weight distribution of xanthan ranges from 2 x 106 to 20 x 106, depending on the association 

between chains, forming aggregates of many individual chains. The variations in the 

fermentation conditions can influence the structure and molecular weight distribution of xanthan 

produced (Garcia-Ochoa et al., 2000). 

The secondary structure of xanthan undergoes a thermally induced conformational 

change from a stiff, ordered helical conformation, where the side chains are folded-down and 

associated with the backbone by non-covalent interactions at lower temperature, to a more 
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flexible, disordered structure, where the side chains are project away from the backbone (Fig. 1.2 

(a) & (b)). This conformational transition depends on ionic strength, nature of electrolyte, pH, 

and acetyl and pyruvate constituent contents (Holzwarth, 1976; Morris et al., 1977, Baradossi & 

Brant 1982, Paoletti et al., 1983, Norton et al., 1984).  

Rochefort & Middleman (1987) reported that in distilled water at 25 °C, the backbone is 

disordered (or partially ordered in the form of a randomly broken helix) but highly extended due 

to the electrostatic repulsions from the charged groups on the sidechains. Due to the highly 

extended structure, the molecules may align and associate (due to hydrogen bonding) to form a 

weakly structured material. Therefore, as the temperature increased, a transition to coil-like 

configuration occurs, which causes a dissociation of the molecules and a subsequent change in 

the rheological properties (Rochefort & Middleman, 1987). When salt is added to the xanthan 

solution at 25 °C, a disorder-order transition occurs in which the backbone takes on a helical 

conformation and the charged trisaccharide sidechains collapse down onto the backbone (due to 

charge screening effects) and stabilize the ordered conformation (Muller et al., 1986).   

The structure detail of xanthan’s ordered structure, single or double stranded, and the 

mechanism of transition still remains controversial. Electron microscopy  (Milas et al., 1988), 

optical rotation (Norton et al., 1984), scanning tunneling microscopy (Gunning et al., 1993) 

studies suggested that the ordered form of xanthan is a single helix. However, there is growing 

evidence that favors the double-stranded model based on viscometry (Sato et al., 1984a), light 

scattering (Baradossi & Brant, 1982), electron microscopy (Holzwarth & Prestridge, 1977; 

Stokke et al., 1986), calorimetry (Paoletti et al., 1983), and combined viscometry and light 

scattering  (Sato et al., 1984b; Liu et al., 1987; Liu & Norisuye, 1988).  X-ray diffraction studies 

suggested that xanthan forms a single-stranded 5-fold helix (Moorhouse et al., 1977).  
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Fig.1.2. Xanthan order-disorder transition. (a) Helix-coil transition; (b) helix-dimerized 
expanded coil (Morris, 1995). 
 

1.2.2. Properties of Xanthan Solutions 
 

Xanthan gum is very soluble in both cold and hot water due to the polyelectrolyte nature 

of xanthan molecule. Xanthan solutions are highly viscous even at low concentrations. Xanthan 

solutions exhibit a pseudoplastic, or shear thinning behavior. Xanthan’s viscosity depends on 

temperature, gum concentration, salt concentration, and pH (Garcia-Ochoa et al., 2000).  

Viscosity of xanthan solutions depends on both measurement temperature and dissolution 

temperature (Garcia-Ochoa et al., 2000). The viscosity decreases as the measurement 

temperature increases.  This behavior is fully reversible between 10 and 80°C. Athough, the 

viscosity decreases as the dissolution temperature is increased up to 40°C. Between 40 and 60°C, 

the viscosity increases as the temperature is increased. At temperatures above 60°C, the viscosity 

decreases as the temperature is increased. This unique behavior is associated with the 
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conformational changes (order-disorder transition) of the xanthan molecule (Garcia-Ochoa et al., 

2000). Xanthan conformation shifts from an ordered state at low-dissolution temperature to a 

disordered state at high dissolution temperature (Milas & Rinaudo, 1979; Garcia-Ochoa & Casas, 

1994). The order-disorder transition related to a helix-coil transition of the backbone with 

simultaneous release of the lateral chains followed by progressive decrease of the rigidity of the 

(1→4) β-D-glucan chain as the temperature increases between 40 and 60 °C (Milas & Rinaudo, 

1979). The transition temperature varies depending on the salt concentration, independently of 

the polymer concentration (Milas & Rinaudo, 1979). The transition temperature has been 

reported to be around 55°C in distilled water, and increases with the ionic strength (Norton et al., 

1984). Norton et al. (1984) suggested that the helix-coil transition may not take place over a 

narrow range of temperature, but may be an incremental process taking place a temperature 

range as wide as 70 °C.  Using DSC measurements, Williams et al. (1991) reported that the 

exothermic peak corresponding to the order-disorder conformational transition for xanthan had a 

midpoint temperature of 51 °C in water and 84 °C in 0.04M NaCl solution.  

The viscosity increases significantly as xanthan concentration is increased. This behavior 

is attributed to the polymer intermolecular interaction and entanglement which increase the 

effective macromolecule dimensions and molecular weight. Xanthan viscosity is influenced by 

salt concentration. At low polymer concentration the viscosity decreases slightly when a small 

amount of salt is added to the solution (Garcia-Ochoa et al., 2000). This can be related to the 

reduction in molecular dimensions resulting from diminished intermolecular electrostatic forces 

(Smith & Pace, 1982). Although, viscosity increases at higher xanthan concentration or when a 

large amount of salt is added. This behavior is probably due to the increased interaction between 

the polymer molecules (Smith & Pace, 1982; Milas et al., 1985). Kang & Pettit (1993) reported 
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that viscosity of xanthan solutions is independent of the salt concentration when the salt 

concentration more than 0.1% (w/v). 

Viscosity of xanthan solutions is independent of pH changes between pH 1 and 13. At pH 

9 or higher, xanthan is gradually deacetylated (Tako & Nakamura, 1984), whereas at pH less 

than 3 xanthan loses the pyruvic acid acetyl groups (Bradshaw et al., 1983) 

Xanthan has pyruvate and acetyl substituents on the mannose units in the side chain 

(Callet et al., 1987). The extent of pyruvate and acetyl substituents depends on the Xanthomonas 

strain, fermentation conditions and post-fermentation process (Rinaudo, 2004). The acetyl 

groups in xanthan are shown to control the interaction between xanthan and other 

polysaccharides such as galactomannans (Tako & Nakamura, 1984; Lopes et al., 1992). Removal 

of pyruvate substituents raises the midpoint temperature of the conformational transition by 

reducing electrostatic repulsion between chain segments. Acetate substituents, however, appear 

to contribute to the stability of the ordered structure (Smith et al., 1981), and their removal 

lowers Tm. 

 The role of acetal and acyl groups in determining the solution viscosity of xanthan was 

investigated by Bradshaw et al (1983). Viscosity measurements indicated that the pyruvic acid 

acetal and o-acetyl contents of xanthan do not affect solution viscosity. The viscosities of native, 

pyruvate-free and pyruvate/acetate-free xanthan solutions (0.3% w/v) were similar at shear rates 

8.8 –88.3 s–1 in both distilled water and 1% KCl.  At the xanthan concentration range 0.2-1.5%, 

the viscosities of native and pyruvate-free xanthan at 10 s–1 were similar. The viscosity increase 

on addition of 1% KCl to salt-free xanthan solutions was independent of pyruvic acid acetal 

substitution. They suggested that xanthan samples with various pyruvic acid acetal and o-acetal 

 11
 



 

contents, prepared under different fermentation conditions should not normally be used for 

assessing the role of theses groups to solution viscosity.  

Tako & Nakamura (1984) studied the dynamic viscoelasticity of deacetylated xanthan in 

aqueous media at various concentrations. The flow properties of deacetylated xanthan solutions 

exhibited pseudoplastic behavior at concentrations below 0.1% but to plastic behavior above 

0.3%.  The apparent viscosity of deacetylated xanthan decreased with increasing temperature at 

concentrations range 0.1 to 0.5%, however, viscosity decreased gradually at 1.0%.  Deacetylated 

xanthan showed a higher dynamic viscoelasticity comparing to native xanthan at high 

concentrations. Dynamic viscosity and elasticity of deacetylated xanthan showed lower values 

than those of native xanthan below 0.3%, whereas higher values were observed above 0.5% 

solution.  The higher values at high concentration may be due to the formation of more intense 

intermolecular association than with native xanthan. The dynamic viscoelasticity of deacetylated 

xanthan decreased with increasing temperature at various concentrations and by addition of urea 

(4.0M).  The researchers suggested that acetate groups, which attached to the inner mannose 

residues of the side chains, contribute to the intramolecular association with the backbone. The 

side chains become more flexible after deacetylation, therefore the intermolecular association 

between the side chains increases with the increase in concentration, and side chains are more 

liable to associate with galactomannan. 

 The influence of acetyl and pyruvate groups on the conformational properties (Dentini et 

al., 1984) and the viscosity (Callet et al., 1987) of xanthan in dilute aqueous solutions was 

investigated. Dentini et al. (1984) investigated the Ca 2+ -induced conformational changes of 

native and modified xanthan at the same molecular weight using circular dichroism and 

isothermal microcalorimetric techniques. Both techniques indicated that the acetyl groups 
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stabilize the ordered conformation of xanthan, which can be induced by increasing the ionic 

strength of the dilute aqueous solution, whereas pyruvate groups had a strong destabilizing effect 

on the ordered conformation, which is likely due to the unfavorable electrostatic repulsion. The 

order of thermal stability of the ordered forms was found to be pyruvate-free xanthan > native 

xanthan > acetyl and pyruvate-free xanthan > acetyl-free xanthan in both water and Ca(ClO4)2 

(Dentini et al., 1984). Callet et al (1987) further studied the effect of acetyl and pyruvate groups 

on the rheological properties of xanthan in dilute solution depending on viscosity and optical 

rotation measurements. Acetyl-free, pyruvate-free, and acetyl and pyruvate-free xanthans were 

prepared by chemical hydrolysis and the viscosities of the different xanthan solutions studied as 

a function of xanthan concentration (0.02% w/v in 0.1M NaCl) and molecular weight. 

Conformational transitions of native and modified xanthans were determined by measuring 

optical rotation as a function of temperature. Values of midpoint transition (Tm) indicated that 

ordered conformation of acetyl-free xanthan (lower Tm) is less stable than native xanthan 

whereas the pyruvate-free xanthan has an opposite effect and Tm increases with pyruvate 

hydrolysis, which is in agreement with those of Holzwarth & Ogletree (1979) and Rinaudo et al., 

(1983). The acetyl groups stabilize the ordered conformation of xanthan, whereas the 

electrostatic repulsion of the pyruvate groups was destabilizes it. The viscosity measurements 

showed that acetyl and pyruvate residues have no influence either on the xanthan dilute solution 

viscosity or on intrinsic viscosity at a given molecular weight (Callet et al., 1987).  

 Shatwell et al. (1990) used a intrinsic viscosity al low shear rates (0-20 s-1) and light 

scattering measurements to characterize native and modified xanthan, and to study the effect of 

the different degrees of substitution on chain stiffness and solution behavior. Values obtained 
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from light scattering measurements indicated that the inherent stiffness of the xanthan 

macromolecule is not greatly influenced by the pattern of acyl substitution.  

1.2.3. Applications 

Xanthan is very commonly used in the food industry because of its unique physical, 

chemical and functional properties. Xanthan gum can be beneficially used in a wide variety of 

products such as salad dressings, chocolate syrup, relishes, tomato sauces, dry mixes and 

beverages, candies, gravies, and dairy products (BeMiller & Whistler, 1996; Dziezak, 1991). 

Xanthan can be used in baked goods as water binder, stabilizer in dressings, and pulp 

suspensioner at concentration ranges from (0.1 - 0.2%), (0.2 - 0.3%), and (0.02 - 0.06%) 

respectively (Trudso, 1988). 

1.3. Guar Gum 

3.1. Structure 

Guar gum (Fig.1.3) is a neutral water-soluble polysaccharide obtained from the seed of 

the guar plant, Cyanaposis tetragonolobus, and has the general structure of galactomannans. 

Guaran, the functional polysaccharide in guar gum consists of main chain (1→4)-linked β-D-

mannopyranosyl units substituted at O-6 by single-unit side-chains of α-D-galactopyranose.  The 

ratio of mannose to galactose is approximately 1.6:1, depending on the source and method of 

extraction (Dea & Morrison, 1975).  

 

Fig. 1.3. Chemical structure of guar gum (Hoefler, 2004). 
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1.3.2. Properties of Guar Gum Solutions  

Guar gum dissolves in polar solvents that form strong hydrogen bonds. The rate of guar 

gum dissolution and viscosity development generally increases with decreasing particle size, 

decreasing pH, and increasing temperature. Guar gum derivatives, such as hydroxylpropylguar 

gum, are more soluble and hydrate faster than guar gum. Dissolution rates are decreased in the 

presence of dissolved salts and other water-binding materials such as sucrose (Maier et al., 

1993).  

Guar gum solutions show pseudoplastic or shear thinning behavior. Degree of 

pesudoplasticity of guar solutions increases with concentration and molecular weight. Guar gum 

solutions do not exhibit yield stress properties (Elfak et al., 1979; McCleary et al., 1981; 

McCleary et al., 1984). Guar gum provides thickening and increasing viscosity in aqueous 

solutions due to its large hydrodynamic volume and the nature of specific intermolecular 

interactions (Maier et al., 1993). Guar solution viscosities increase proportionally with increases 

in guar gum concentration (Morris et al., 1981; Robinson et al., 1982). In solutions, guar gum 

exists as random-coil polymer (Robinson et al., 1982). However, its rheological properties have 

been found to depart from those typical ‘random coil’ polysaccharides (Morris et al., 1981). 

Double-logarithmic plot of ‘zero shear’ specific viscosity of guar against degree of space-

occupancy(c[η]) showed an abrupt change in slope and the onset of the concentrated solutions 

behavior started at lower values of c[η]∼ 2.5, in comparison with c[η]∼  4 for most other 

disordered coils. This anomalous behavior has been rationalized in terms of intermolecular 

associations (hyperentanglement) between unsubstituted regions of mannan chains, in addition to 

normal topological entanglement (Morris et al., 1981; Goycoolea et al., 1995). 
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 Guar gum tolerate salt well (Maier et al., 1993; Whistler and BeMiller, 1999). Guar gum 

is soluble in salt solutions that contain up to 70% by weight of monovalent cation salts. Guar’s 

salt tolerance decreases for divalent cations. At high concentrations of calcium ions, guar 

precipitates from solutions (Maier et al., 1993).  

Guar gum is reasonably stable under an acidic environment. Wang et al. (2000) 

investigated the stability of guar galactomannan in acidic conditions using dilute polymer 

solutions of 25, 37 and 50°C. The lowest pH values at which guar remained stable were found to 

be 2.0, 3.0 and 3.5, respectively, at these temperatures. The viscosity of fully hydrated guar gum 

solutions at acidic pH was slightly lower than at neutral pH even when no degradation occurred. 

1.3.3 Applications 

 Guar gum provides economical thickening for a wide variety of food products (Whistler 

& BeMiller, 1999). Guar has been extensively applied in dairy products, prepared meals, bakery 

products, sauces, and pet food. In ice cream and other related dairy products, guar used as a 

stabilizer. Guar gum prime functions are to bind water, prevent ice crystal growth, improve 

mouthfeel, reduce the chewiness produced by a combination of carrageenan and locust bean 

gum, and slow meltdown. Guar gum reduces syneresis in processed cheese. Because of its high 

viscosity, heat stability, and low cost, guar gum extensively used in canned and intermediate-

moisture pet foods. In bakery products such as specialty breads, cakes, and doughnuts, guar 

improves mixing and recipe tolerance, and shelf life through moisture retention. Guar gum 

prevents syneresis in frozen foods and pie fillings and controls spreadability in prepared icings 

(Whistler & BeMiller, 1999).  
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1.4. Models Describing the Interaction of Xanthan with Galactomannans 
 

A synergistic interaction occurs between xanthan gum and galactomannans such as guar, 

locust bean gum (LBG), and tara gum. The interaction results in enhanced viscosity or gelation. 

Rocks (1971) first reported the synergistic interaction between galactomannans and xanthan. 

Although a few researchers (Kovacs, 1973; Schorsch et al., 1995) have invoked the concept of 

incompatibility to explain the gelation mechanism between xanthan and galactomannans, there is 

a considerable body of evidence that supports intermolecular binding between xanthan and 

galactomannans (McCleary & Neukom, 1982; Cairns et al., 1986; Cairns et al., 1987; Cheetham 

et al., 1986; Cheetham & Mashimba, 1988, 1991; Cheetham & Punruckrong, 1989; Foster & 

Morris, 1994; Goycoolea et al., 1994). To date, the intermolecular binding mechanism between 

xanthan and galactomannans is still controversial, and different models have been proposed.  

1.4.1. Unilever (Original) Model: interaction between ordered xanthan and galactomannans 

 The first model was projected by Morris et al. (1977) and Dea et al. (1977) who proposed 

the intermolecular binding concept rather than mutual exclusion to explain the gelation 

mechanism between xanthan and galactomannans. The authors proposed that the synergistic 

interaction between xanthan and galactomannan is based on a cooperative interaction, depending 

on the fine structure of the galactomannan. The intermolecular binding involves binding of 

unsubstituted regions (smooth regions) of the galactomannan to the ordered xanthan helical 

structure (Fig.1.4). The gel strength of galactomannan-xanthan mixture increased as the 

galactose content of the galactomannan decreased.  Morris et al. (1977), from Unilever’s 

Colworth laboratory, first proposed that gel network is formed by interaction between 

unsubstituted regions of the galactomannans backbone and the surface of the xanthan 5-fold 

helix.   Dea et al. (1977) reported that xanthan-LBG gelation is thermally reversible, and show 
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sharp melting and setting behavior over a narrow range of temperature. Gel setting increased as 

the total polysaccharide increased, and showed a less dependence on the mixing ratio of the two 

polymers.  Substitution of tara gum for LBG substantially formed a weaker gels, but did not 

significantly alter the gelation temperature, whereas LBG with reduced galactose content 

resulted in much stronger gels, and guar did not gel at all. Optical rotation measurements (Dea et 

al., 1977) for xanthan and galactomannans showed maintenance and stabilization of xanthan 

native conformation in the mixed gels with either tara gum or LBG, and in the presence of guar  

gum. The order-disorder transition for xanthan was still evident in the synergistic system, but 

shifted to higher temperature by 10 °C, thus suggesting stabilization of the xanthan helix by 

interaction with galactomannan.  
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of the backbone of this galactomannan was composed of regions of alternate galactosyl 

substitution and was capable of participation in interaction with xanthan. Therefore, they 

suggested that the interaction involve the ordered xanthan and sequences along the mannan 

backbone where the galactosyl units are located on one side only. The modified model does not 

require long unsubstituted regions along the backbone in order to interact with xanthan, but 

rather regions where the galactosyl units are sited on one side of the mannan backbone.  
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Cairns et al. (1986 & 1987) found that mixing of xanthan solution in the helical 

conformation with LBG solution at room temperature did not form gelation and the x-ray fiber 

diffraction patterns showed reflections characteristic of xanthan alone with no evidence of LBG 

crystallization or LBG-xanthan co-crystallization. Gelation occurred only when heated to 95 °C 

which is above the xanthan helix-coil transition temperature and cooled to room temperature. 

The x-ray fiber diffraction patterns of the gels formed from heated samples were different from 

the cold-mixed samples, providing evidence for xanthan-LBG interaction. In order to determine 

whether heating merely enhanced mixing or was necessary to denature the xanthan helix, 

xanthan was mixed with LBG in the presence of sufficient calcium chloride to shift xanthan 

transition temperature to above 100 °C. When xanthan-LBG mixtures containing calcium 

chloride were heated to 95 °C and cooled to room temperature, no gelation occurred.   Therefore, 

suggesting that denaturation of xanthan helix is necessary in order to intermolecular binding and 

gelation to occur (Fig. 1.6).  
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which the positions of the xanthan side-chains are staggered, could explain the observed repeat 

distance of 0.52nm. The exact junction zone stoichiometry was not obtained, and several 

galactomannans molecules may be sandwiched between xanthan backbones.   

This model was further supported by enzymatic studies (McCleary & Neukom, 1982), gel 

permission studies (Cheetham & others, 1986), gel melting points and/or optical rotation studies 

(Cheetham & Mashimba, 1988 & 1991). Cheetham et al. (1986) and Cheetham & Mashimba 

(1988 & 1991) proposed that the interaction occurs between the disordered segments of the 

xanthan chains and galactomannan. Cheetham & Mashimba (1988) argued that even in the 

presence of salt where xanthan is in the ordered conformation, there are still disordered regions 

of xanthan that available to interact with galactomannan. Xanthan molecules in the presence of 

salt is not as single, largely-disordered chains as in water, but partly as coaxial or side by side 

helices attached by some single-chain regions which have disordered side chains. Once the 

interaction occurred, additional salt restored the ordered conformation in the non-junction zones 

segments of the xanthan chains and locked the junction zones in place. Optical rotation 

experiments showed that partially dialyzed xanthan against distilled water had less negative 

rotation than fully dialyzed xanthan, indicating that fully dialyzed xanthan is more disordered. 

The fully dialyzed xanthan formed a gel at room temperature, whereas the partially dialyzed did 

not. These results demonstrated that disordering xanthan side chains is critical for strong 

interaction with LBG to form a gel.  LBG must be added when the disordered xanthan 

conformation is available for interaction, and prior to xanthan chains can self-associate. They 

reported that salt enhanced xanthan-xanthan interactions via pyruvate (Smith et al., 1981), side-

by-side dimerization (Morris et al., 1983) or limited double-helix formation. Pyruvate-free 

xanthan did not form gel in cold water or even on heating and cooling. Acetate-free xanthan 
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formed gel with LBG when heated and cooled. These results suggested that pyruvate destabilizes 

the ordered conformation of xanthan (Holzwarth, 1979), whereas acetate stabilizes the molecule 

(Smith et al., 1981; Tako & Nakamura, 1984). 

To further elucidate the mechanism of gel formation between xanthan and LBG, 

Cheetham & Mashimba (1991) conducted optical rotation studies to provide further evidence 

supports the proposal that intermolecular binding to form gel junction zones involves xanthan in 

the disordered conformation rather than in the ordered, helical form. In water, optical rotation 

measurements before heating indicated that xanthan-LBG mixture in water was less negative 

than that of xanthan alone. After heating to 60 °C, the optical rotation measurements were 

identical to that of xanthan alone. The results were interpreted as xanthan at room temperature is 

induced to take up the disordered conformation in the presence of LBG. Heating xanthan in 

presence of LBG and cooling to 25 °C left xanthan with greater amount of the disordered 

conformation than before heating. These results were maintained on prolonged storage and even 

after refrigeration. The xanthan-LBG junction zones were locked the polysaccharide chains in 

their appropriate conformations, and the chain regions that were not involved in the junction-

zone formation returned to the more ordered conformation on cooling. In the presence of salt, 

fewer regions of xanthan were induced into a more disordered conformation as salt stabilized the 

ordered conformation and form junction zones with LBG.  

Zhan et al. (1993), using optical rotation and rheological studies, investigated the effect 

of mixing temperature upon gelation of xanthan-LBG mixtures. The researchers reported that 

melting temperatures of gels (Tg) remained constant and were independent of ionic strength, 

whereas the helix-coil transition temperature (Tm) for xanthan alone increased as the ionic 

strength increased. When xanthan-LBG solutions were mixed below, above and between both Tg 
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and Tm, gelation occurred to all mixing temperatures, even when mixing temperature was under 

Tm. Storage modulus (G') was greater than the loss modulus (G") at all mixing temperatures. At a 

certain ionic strength, increasing mixing temperature led to a significant increase in the G' which 

is attributed to the degree of disordering of the xanthan molecule at the mixing temperature. 

Based on these conclusions, the researchers suggested that the nature of the gelation determined 

by the level of disorder induced in xanthan before mixing and the level of interaction between 

xanthan and LBG would increase as the level of disorder induced in xanthan molecules 

increased. The order-disorder transition for xanthan was an equilibrium process and the degree of 

disordering was dependent on the temperature of the xanthan sample relative to Tm. Addition of 

LBG perturbed the helix-coil equilibrium process and acted as a denaturant for the xanthan helix. 

Thus, a favorable xanthan-LBG interaction would drive the xanthan coil-helix process to create 

more disordered xanthan.  These results supported previous studies (Cairns et al., 1986, 1987) 

and rejected that gelation can be explained by two separate mechanisms (Williams et al., 1991; 

Mannion et al., 1992). Therefore, the researchers suggested a one single mechanism in which 

intermolecular binding occurred between galactomannan and the disordered segments of the 

xanthan chains for both hot setting and cold setting gels.  

1.4.3. Tako Model: Interaction between xanthan side chains and galactomannans 

The third model was proposed by Tako et al. (1984), Tako et al. (1985), and Tako (1991) 

in which the intermolecular binding occurs between the side chains of xanthan in the helical 

form and backbone of the galactomannans as in a lock and key effect (Fig. 1.7).  
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Fig. 1.7. Possible binding sites for D-mannose-specific interaction between deacetylated xanthan 
(X) and locust bean gum (L). Dotted lines refer to hydrogen bonding and the broken line to 
electrostatic attraction (Tako, 1991).  
 

The researchers suggested that the side chains of the xanthan inserted into adjacent 

unsubstituted regions of the galactomannan backbone, which adopted an extended two fold 

ribbon-like conformation, aligning parallel or antiparallel. In this mechanism, hydrogen bonding 

played a major role in the interaction and one xanthan chain can associate with two or more 

backbone of the galactomannan. The hemiacetyl oxygen atom of the inner mannose of the side 

chain of xanthan interacted with the OH-2 of mannosyl unit of the backbone of the 

galactomannan via hydrogen bonds. The cation K+ which associated with the carboxyl oxygen 

atom on the glucuronic acid residue of the intermediate side-chain of the xanthan took place in 

the interaction with the hemiacetyl oxygen atom of the mannan backbone via an electrostatic 

attraction. Deacetylation of xanthan strongly increased the synergistic interaction with 

galactomannans at high concentration (0.2%) as revealed by dynamic viscoelasticity 

measurements. The side chains of xanthan become more flexible after deacetylation, thus the 
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intermolecular association between the side chains increased as the concentration increased, and 

the side chains were liable to interact with galactomannan. In this model the precise 

conformation in which xanthan interacts with galactomannans is unknown and results do not 

agree with X-ray studies. 

1.4.4. Mutual Incompatibility  

 Doublier & Llamas (1991) studied the interaction of xanthan with LBG and guar gum 

using rheological techniques. They found that xanthan gum, even when present in very low 

proportions (1% of the total), has a pronounced influence on the rheological properties. Because 

this influence was the same for both guar gum and LBG, they pointed out that current models 

could not be used to explain interaction between xanthan and galactomannans. Therefore, they 

suggested an alternative explanation based on incompatibility and volume exclusion.  

 Shatwell et al (1991) studied the interaction between xanthan and guar gum using 

rheological and chiroptical studies. Oscillatory-shear measurements were determined upon 

mixed systems consisting of 0.5% (w/w) xanthan and 1.0% (w/w) guar gum in de-ionized water. 

Xanthan-guar mixtures had rheological properties of an entangled network rather than a gel, 

although low acetyl xanthan samples showed more gel-like characteristics, indicating weak 

intermolecular association. The enhanced viscosity of xanthan-guar mixture was due solely to 

the presence of topological entanglements and not to a more specific intermolecular interaction.  

They made the point that precipitation of one or both polymers at low temperatures as a result of 

mutual incompatibility could not be ruled out. Furthermore, they suggested that weak interaction 

might occur between xanthan molecules themselves, since this process would also be favored 

following deacetylation. Evidence from both rheological and chiroptical results indicated a 

possible weak interaction between some low-acetyl xanthans and guar. However, the nature of 
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this interaction whether to be molecular or thermodynamic in origin is still controversial and in 

active dispute.  

 Polarization microscopy has been used to study the structure of 1:1 xanthan-

galactomannan (guar gum and LBG) mixtures in aqueous solution with total concentration 

ranging from 0.5 to 4% (Schorsch et al., 1995).  Both xanthan solutions and xanthan-

galactomannan mixtures exhibited birefringence areas but were more anisotropic than with 

xanthan gum alone. The results suggested that xanthan molecules organized themselves as liquid 

crystalline mesophases in definite enriched xanthan areas resulting from a concentration of 

xanthan inside these birefringent zones. Upon heating, this anisotropy disappeared at a 

temperature well bellow the helix-coil transition temperature of xanthan molecules, and the 

ordered helical structure of xanthan still existed, suggesting that xanthan molecules are no longer 

concentrated in specific areas but more evenly distributed in the medium. Therefore, the authors 

suggested that the concept of mutual incompatibility between the polysaccharides could be 

favored for the formation of a mixed network.  

1.4.5. Other Studies 

 Mannion et al. (1992) suggested that gelation between xanthan and galactomannan may 

occur at temperatures below Tm and can be explained by two different mechanisms. Mannion et 

al. (1992) conducted rheological and ultracentrifugation studies on heated and unheated mixtures 

of xanthan with LBG, and temperature fractions of LBG with different mannose:galactose ratios.  

Solutions were mixed at room temperature in 0.1M NaCl. Synergistic interaction occurred 

between xanthan and LBG at room temperature, resulting in G' four times higher than that of 

xanthan alone. The maximum synergy occurred with mixtures containing 1:1 ratio and the 

interactions were independent of the galactomannan mannose:galactose ratio. Under such 
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temperature and ionic strength xanthan molecules are in the helical conformation as confirmed 

by Morris et al. (1977), and Norton et al. (1984).  Thus the authors suggested that xanthan 

entirely interacted with LBG in the helical conformation, supporting the original model (Dea et 

al., 1977 and Morris et al., 1977).  They also found that gelation occurred when mixtures heated 

to 60 °C (less than Tm for xanthan at 0.1M NaCl) and cooled to room temperature, where other 

workers (Cairns et al., 1986) found no gelation. The increase in G' by heating at temperatures 

below Tm was attributed to heating the mixtures above the melting temperature may allow more 

complete mixing and the input of the energy would facilitate interactions which are not possible 

for unheated mixtures.  They concluded that xanthan and galactomannans interacted by two 

different mechanisms. One takes place at room temperature where the interaction with ordered 

xanthan gives weaker elastic gels with little dependence on the galactose content of the 

galactomannan. The second requires heating of the polysaccharide mixture and the interaction 

with denatured segments of the xanthan gives a stronger gel which is highly dependent on the 

side chains of the galactomannan.  

Lopes et al (1992) studied the synergistic interaction between xanthan and guar gum 

using low shear viscosity measurements as a function of temperature. At a total polymer 

concentration of 0.5g/L in 0.02 M NaCl, a small synergistic effect was observed when the two 

polysaccharides were mixed, but a much stronger interaction was noted in the absence of salts. 

Gelation was observed for temperatures lower than 15°C for native-guar mixture (weight 

ratio1/1) in 0.02M NaCl and at 22-24°C for the same mixture in water. For a mixture of 

deacetylated xanthan and guar gum, gelation was observed at a temperature below 26°C in water. 

They concluded that there is a stronger interaction between deacetylated xanthan and guar gum 
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than native xanthan and guar gum because of enhanced deacetylated xanthan-guar gum backbone 

association as a result of removing the acetyl group from the side chain. 

1.5. Rheology of Solutions 
 Rheology is the science of the deformation and flow of matter (Rao, 1999; Steffe, 1992).  

Rheological properties of food materials over a wide range of phase behavior can be expressed in 

terms of viscous, elastic, and viscoelastic functions. In terms of fluid and solid phases, viscous 

functions are used to relate stress with shear rate in liquid systems, whereas elastic functions are 

related to the appropriate stress function to strain in solids. Viscoelastic properties cover 

materials that exhibit both viscous and elastic properties (Rao, 1999).  

1.5.1. Viscosity 

 When applying force on a volume of material, a displacement or deformation occurs (Fig. 

1.8). The force per unit cross-sectional area is known as the stress (σ), and has units of Pascal 

(Pa), and the resulting fractional increase (or decrease) in height is known as the strain (ε), and 

this parameter is dimensionless (Morris, 1995).  The rate at which this deformation is made 

(strain rate) has units of reciprocal time (s-1). Strain is the relative deformation of materials when 

a stress is applied. When a material encounters a shear stress, a shear strain is observed. If two 

plates of area A, separated by fluid-filled distance H, are moved at velocity V by a force F 

relative to each other, Newton’s law states that the shear stress (the force divided by area parallel 

to the force, or F/A) is proportional to the shear strain rate V/H (Hoefler, 2004). The 

proportionality constant is known as the viscosity (η). The effect of (shear strain) is quantified by 

the displacement the displacement per unit height (D/H), and the rate of this effect (strain rate) is 

velocity per unit height (V/H). The viscosity is the internal friction of the fluid or its tendency to 

resist the flow and is defined by 
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η = shear stress/ strain rate                 (1) 

The preferred units for viscosity are Pa s or mPa s.  

 

Fig. 1.8. Diagram showing a small cubical volume in shear. The displacement D due to 
deformation (Hoefler, 2004).  
 

1.5.2. Viscoelasticity  

All materials has viscoelastic behavior, but the viscous or elastic component may 

dominate depending on the situation. Methods to determine linear viscoelastic materials 

functions can be divided into static methods and dynamic methods (Steffe, 1996). Dynamic 

testing involves an application of an oscillatory shear stress and static methods involve creep or 

stress relaxation. Dynamic testing is a common method for studying the viscoelastic behavior of 

foods.  

In dynamic tests, materials are subjected to deformation which varies harmonically with 

time (Fig. 1.9). When small-amplitude oscillatory shear test is used, the sample is subjected to a 

sinusoidal shear strain, γ, and the resulting shear stress,σ, is measured. The strain is a function of 

time defined as: 

γ = γ° sin (ωt)                             (2) 
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where γ° is the amplitude of the shear strain, and ω is the frequency. The input strain varies with 

the amplitude and frequency. With a small strain amplitude, the resulting shear stress is defined 

as 

σ = σ° sin(ωt -δ)                (3) 

where σ° is the amplitude of shear stress and δ is the phase lag or phase shift. By decomposing 

the stress wave into two waves of the same frequency, two dynamic moduli, the storage 

modulus, G′, and the loss modulus, G″, are introduced: 

σ = G′ γ + (G″/ω) γ.                  (4) 

 The complex modulus, G*, can be obtained by taking the complex ratio of the shear stress σ°  to 

the shear strain γ°. The storage modulus, G′, and the loss modulus, G″, are the real and the 

imaginary component of the complex rigidity modulus, G*, respectively: 

G* = σ°/γ°  = G′ + iG″ = ((G′)2 + (G″)2)1/2             (5) 

Similarly the complex viscosity, η*, can be written as: 

η* = G*/ω = η′- iη″ = ((η′)2 + (η″)2)1/2                        (6) 

where η′ is the viscous component (viscosity),  η″ is the elastic component (elasticity) and i is an 

imaginary number. The complex viscosity is related to the complex modulus by 

η* = G*/iω                  (7) 

or  

η′= G′/ω and η″= G″/ω                (8) 

Another function used to describe the viscoelastic behavior is the tangent of the phase 

shift (tan delta) which is a function of frequency: 

tan (δ) = G″/G′ =  η′/η″                (9) 
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If a material is an ideal elastic material (Hookean solid), the stress and strain are in phase 

and δ = 0. Hence, G″ and η′ are equal to 0 because there is no viscous dissipation of energy. If a 

material is an ideal viscous substance (an ideal Newtonian), the stress and strain are 90 degrees 

out of phase and δ = π/2. Hence, G′ and η″ are zero because the material does not store energy.  

 

Fig. 1.9. Sinusoidal deformation of a cubical volume of fluid. The Sinusoidal time-varying shear 
rate and shear stress differ in phase by the angle phi (www.Vilastic.com). 

The Deborah number (NDe), a dimensionless number, can be used to measure the degree 

of viscoelasticity.  If NDe  << 1, the stress is proportional to the viscosity times the shear rate and 

the materials behave as a viscous liquid. On the contrary, if NDe >> 1, the stress is proportional to 

the modulus of rigidity times the strain and the materials behave like an elastic solid. Material 

will show viscoelastic behavior if NDe =1. (Steffe, 1996).  

Deborah number is defined as: 

De = t D/to                 (10)  

where t D is  time of the deformation (relaxation)  and to is time of observation. The time  t D for 

liquids is very small and is very large for solids. Small Deborah numbers (t D < to) mean liquid-

like behavior and we can see the material flowing, while large numbers (t D > to) mean solid-like 

behavior (Rao, 1999). 

1.5.3. Fluids Flow Behavior 

Fluids flow behavior can be divided into Newtonian and Non-Newtonian 

1.5.3.1. Newtonian Behavior 
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In Newtonian fluids, the flow behavior is independent on the shear rate and shear 

histories, only dependent on both the temperature and composition (Rao 1977a, b). Typical 

Newtonian foods (Rao, 1999) are those containing compounds of low molecular weight (e.g. 

sugars) and that do not contain large concentrations of either dissolved polymers (e.g. pectins, 

proteins, starches) or insoluble solids. Some examples of Newtonian foods include water, milk, 

filtered juices, sugar syrups, honeys, carbonated beverages, and edible oils (Rao, 1999). 

1.5.3.2. Non-Newtonian Behavior 

Non-Newtonian flow behavior can be divided into time independent and time dependent. 

Time independent flow behavior may depend only on shear rate and not on the duration of shear, 

whereas time dependent flow behavior depends also on the duration of shear (Rao, 1999). 

1.5.3.2.1. Time Independent 

Shear-Thinning Behavior- Shear-thinning fluids are also referred to as pseudoplastic. With shear-

thinning fluids, the curve (Fig. 1.10) begins at the origin of the shear stress-shear rate plot but in 

concave upward; that is, an increasing shear rate gives a less than proportional increase in shear 

stress (Rao, 1999). The viscosity (Fig. 1.11) of the fluids decreases with increasing shear rate 

(Steffe, 1996). This type of fluids can be reversible (Howard, 1991).  The reason for shear-

thinning may be due to breakdown of structural units in a food due to the hydrodynamic forces 

generated during shear (Rao, 1999). Most non-Newtonian foods exhibit shear-thinning behavior, 

including many salad dressings and some concentrated fruit juices. 

Shear-Thickening Behavior- This type of behavior is also known as dilatant. In shear-thickening 

behavior, the curve (Fig. 1.10) also begins at the origin of the shear stress-shear rate plot but in 

concave downward; the increasing shear stress gives a less than proportional increase in shear 

rate (Rao, 1999). The viscosity (Fig. 1.11) of a fluid increases with increasing the shear rate 
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(Steffe, 1996). The reason for the shear-thickening fluids may due to the increase in the size of 

the structural units as a result of shear. A typical example of shear-thickening is partially 

gelatinized starch dispersions (Rao, 1999).  

Yield Stress- The flow of some materials do not begin until a threshold value of stress; yield 

stress, is exceeded (Rao, 1999). Steffe (1996) defined the yield stress as the minimum shear 

stress that required to initiate flow. Bingham plastic and Herschel-Bulkley models (Fig. 1.10) are 

examples of yield stress. When the shear rate-shear stress data follow a straight line with a yield 

stress, the food is considered to follow Bingham plastic model. Examples of foods that have 

shear-thinning with yield stress behavior include tomato concentrates, tomato ketchup, mustard, 

and mayonnaise.  

 

Fig. 1.10. Curves for typical time-independent fluids (Steffe, 1996). 
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Fig. 1.11. Apparent viscosity of time-independent fluids (Steffe, 1996). 

1.5.3.2.2. Time-Dependent Behavior 

 Time-dependent flow behavior can be divided into thixotropic and antithixotropic 

(rheopectic) (Fig. 1.12).  

Thixotropic Behavior- Foods that exhibit time-dependent shear-thinning behavior are called to 

have a thixotropic flow behavior (Rao, 1999). In thixotropic behavior, the viscosity decreases as 

a function of time at a constant temperature and shear rate (Rao, 1977a). When the 

hydrodynamic forces during shear are sufficiently high, the interparticle linkages are broken, 

resulting in reduction in the size of the structural units which means lower resistance to flow 

during shear (Mewis, 1979). Foods that exhibit thixotropic behavior are usually heterogeneous 

systems containing a dispersed phase (Rao, 1999). Common examples of foods containing this 

type of behavior are salad dressings and soft cheeses.  

Antithixotropic Behavior- Time-dependent shear-thickening behavior is called antithixotropic 

behavior (Rao, 1999). In antithixotropic behavior, the viscosity increases as a function of time in 

antithixotropic behavior (Rao, 1977a).  

 

                       Fig. 1.12. Time-dependent behavior of fluids (Steffe, 1996). 
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1.5.4. Concentration Regimes 
 

The concentration regimes can be divided into dilute (C< C*), semi-dilute (C* < C< C‡), 

and concentrated (C>C*) solutions (Tirrell, 1994). The viscosity of polymer solutions shows a 

marked increase at critical polymer concentration, commonly referred to as C*, corresponding to 

the transition from the dilute region to the semi-dilute region.   At low concentrations (C < C*), 

the polymer chains are not in contact with each other and moving independently without 

interpenetration, the polymer coils have infinite dilution radii, and the viscosity is relativity low 

(Fig.1.13). At the overlap threshold concentration (C = C*), the coils begin to overlap without 

contraction. In the semi-dilute region, the coils contact each other and interpenetration occurs, 

and polymer chains reach minimum dimensions at a concentration C‡ that is independent of the 

molecular weight (Rao, 1999). 

 
Fig. 1.13. Polymer chain entanglement in dispersions (Macosko, 1994). 

  

Morris et al., (1981) studied the concentration dependence of specific viscosity for many 

random-coil polysaccharide solutions.  From the double logarithmic plots of ηsp against C, a 

pronounced increase was observed above a specific critical or coil overlap concentration (C*) 

(Fig. 1.13).   
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Fig. 1.14. Plot of log c[η] (coil overlap parameter) vs. log ηsp (specific viscosity) for random-coil 
polysaccharide solutions (Morris et al., 1981).  

 
This behavior was attributed to the transition from a dilute regime, in which individual 

polymer molecules were isolated coils, to a concentrated regime, in which the total 

hydrodynamic volume of the individual chains exceeded the volume of the solution. Thus, C* 

marks the onset of significant coil overlap and interpretation (Morris et al., 1981). Intrinsic 

viscosity varies with coil dimensions for random-coil polymer solutions, and the hydrodynamic 

volume is proportional to [η] and molecular weight (Mr). Because the total number of coils is 

proportional to C/[η], the degree of occupancy of space can be assessed by the dimensionless 

coil-overlap parameter (C[η]) (Morris et al., 1981). For random-coil polysaccharide solutions 

except for galactomannans, Morris et al.  (1981) reported that the slope of double logarithmic 

plots of ηsp against C[η] was close to 1.4 in a dilute regime, whereas, in the concentrated regime, 
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the slope increased to 3.3. The C* transition occurred at a value of C[η] close to 4, and the 

specific viscosity at this degree of coil overlap was invariably close to 10.  LBG and guar gum 

biopolymers were found to deviate from the above observations.  The C* transition occurred at a 

lower value of the coil overlap parameter C[η] = 2.5, and the viscosity showed a higher 

dependence on concentration with slope of 5.1 instead of 3.3 (Morris et al., 1981). These 

deviations were attributed to specific intermolecular associations (hyperentanglements) between 

regular and rigid chain sequences in addition to the simple process of interpretation (Rao, 1999). 

Launay et al. (1986) suggested that there could be two transitions before the onset of high 

concentration-viscosity behavior, instead of one transition as suggested by Morris et al. (1981),    

1.5.5. Intrinsic Viscosity 

Intrinsic viscosity, denoted as [η], is a useful experimental parameter in the studies of 

dilute solutions. It is the volume occupied by the individual polymer molecules in isolation 

(Richardson and Kasapis, 1998). In dilute solutions, the polymer chains are separate, and the [η] 

of a polymer in solution depends only on the dimensions of the polymer chain. Because the [η] 

indicates the hydrodynamic volume of the polymer molecule and is related to the molecular 

weight and to the radius of gyration, [η] provides deep insights on the molecular characteristics 

of a biopolymer (Rao, 1999). Dilute solution viscosity data can be used to determine the [η] as 

the zero concentration-limit of specific viscosity (ηsp) divided by concentration (C): 

 
 
[η] = lim (ηsp /C)                                                                                                             (11) 
            C → 0 

 

Where the quantity (ηsp /C) is defined as the reduced viscosity; specific viscosity (ηsp) = (η-ηs)/ 

ηs  = ηrel  -1; relative viscosity (ηrel) = η/ ηs and η and ηs is the apparent viscosities of the solution 
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and the solvent, respectively. Huggins (1942) (2) and Kraemer’s (1938) (3) equations are 

common methods used for determining the [η] of food gums from experimental dilute solution 

viscosity data. 

ηsp /c = [η] + k′ [η]2c                                                                                                      (12) 

ln (ηrel )/c = [η] + k″ [η]2c                                                                                              (13) 

where k′ and k″ are constants known as Huggin’s and Kraemer’s constants. The extrapolations to 

zero concentration may be done by plotting ηsp /c versus c and ln (ηrel)/c versus c which would 

result in straight lines, respectively.  The extrapolation to [η] is usually done when the ηrel values 

are between 1.2 and 2.0 and the experimental values of ηsp in the range 0.2 to 1.0. The Huggins 

constant k′, 0.3 in good solvents and 1.0 in theta solvents, indicates the polymer-polymer 

interaction. The high values are reflects the existence of association between macromolecules 

(Rao, 1999). 

For a flexible-chain polyelectrolyte (charged polymers), Fuoss & Strauss (1948) 

proposed an empirical expression: 

ηsp /c = [η] / (1+Βc1/2)             (14) 

where, Β is a constant that accounts for the interaction of polyelectrolytes. By plotting (C/ηsp) 

vs. C1/2 a linear relationship was found with an intercept of 1/[η] and slope of Β/ [η]. 

Tanglertpaibul & Rao (1987) determined the intrinsic viscosity from the relative viscosity by 

using the expression: 

ηrel = 1 + [η] c                       (15) 

 The [η] was obtained from the slope of ηrel vs. C plot, which gave straight lines with linear 

regression correlation coefficients in the range 0.99 to 1.0.  Chou & Kokini (1987) suggested a 
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similar method for polyelectrolyte, in which the interactions between macromolecules in dilute 

solutions are not existent and the second term of the Huggins equation is negligible; therefore, a 

plot of ηsp vs. C is linear. 
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Abstract 
 
 Dynamic viscoelastic and intrinsic viscosity properties of xanthan, guar, and xanthan-

guar blends in dilute aqueous solutions were investigated by using an oscillating capillary 

rheometer. Influence of mixing temperature on xanthan conformation and interaction with guar 

is discussed. Synergistic interaction occurred at mixing temperatures of 25 and 80 °C, but a 

stronger synergistic interaction was observed at mixing temperature 80 °C. The viscous 

component for all gum solutions was greater than that of the elastic component, which indicated 

a liquid-like behavior in the dilute regime for the polysaccharide solutions. For both mixing 

temperatures, the relative viscosities and elasticities of xanthan and guar blends were higher than 

the relative viscosities and elasticities calculated for blends assuming no interaction. The 

intrinsic viscosities of xanthan and xanthan-guar blends were higher at 80 ºC than at 25 ºC. The 

intrinsic viscosities of xanthan and guar blends were lower than those calculated from the weight 

averages of the two, and significantly decreased as the xanthan fraction decreased, indicating that 

xanthan was crucial in controlling the blend viscosity, and that the molecular binding occurred 

between xanthan and guar.  

Keywords: Xanthan, guar, synergistic interaction, viscoelastic, intrinsic viscosity, mixing 

temperature.   
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2.1. Introduction 

Synergistic polysaccharide-polysaccharide interactions are attractive in the food industry 

because they  impart novel and improved texture and rheological characteristics to food products 

and reduce polymers costs (Williams & Phillips, 2000). A synergistic interaction occurs between 

xanthan gum and galactomannans in solutions to result in enhanced viscosity or gelation (Dea & 

Morrison, 1975; Dea, Morris, Rees, Welsh, Barnes, & Price, 1977; Morris, Rees, Young, 

Walkinshaw, & Darke, 1977).  

The synergistic interaction between xanthan and galactomannans was first reported by 

Rocks (1971), who pointed out that xanthan gum formed thermoreversible gels when mixed with 

locust bean gum (LBG), but not with guar gum. Although a few researchers (Kovacs, 1973; 

Schorsch, Garnier, & Doublier, 1995) have invoked the concept of incompatibility to explain the 

gelation mechanism between xanthan and galactomannans, there is a considerable body of 

evidence that supports intermolecular binding between xanthan and galactomannans (McCleary 

& Neukom, 1982; Cairns, Miles, & Morris, 1986; Cairns, Miles, Morris, & Brownsey, 1987; 

Cheetham, McCleary, Teng, Lum, & Maryanto, 1986; Cheetham & Mashimba, 1988, 1991; 

Cheetham & Punruckrong, 1989; Foster & Morris, 1994; Goycoolea, Foster, Richardson, Morris, 

& Gidley, 1994). To date, the intermolecular binding mechanism between xanthan and 

galactomannans is still controversial, and different models have been proposed.  

The original model proposed a synergistic interaction between xanthan gum and 

galactomannans, based on a cooperative interaction, depending on the fine structure of the 

galactomannans.  The intermolecular binding occurs between the ordered (helix) xanthan and 

unsubstituted or poorly substituted regions of the galactomannan backbone (Dea et al., 1977; 

Morris et al., 1977). The synergistic interaction is strongly dependant on the amount of galactose 
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content (Dea & Morrison, 1975) and its distribution to involve the regions of galactomannans 

backbone, where the galactose units are substituted on one side (McCleary, 1979). 

 Tako, Asato, & Nakamura (1984) and Tako (1991) proposed a different model in which 

the intermolecular interaction occurred between the side chains of xanthan and backbone of the 

galactomannans. They suggested that the side chains of the xanthan are inserted into adjacent 

unsubstituted regions of the galactomannan backbone, which adopted an extended, two-fold, 

ribbon-like conformation. 

 An alternative model was proposed by Cairns et al. (1986) and Cairns et al. (1987) in 

which intermolecular binding occurred between the disordered xanthan and galactomannans, and 

disordering of xanthan helical structure is necessary for gelation. They proposed that xanthan has 

a disordered, extended, two-fold, cellulose-like conformation, rather than a five-fold helix, when 

interacting with galactomannan. Cheetham et al. (1986) and Cheetham & Mashimba (1988, 

1991) proposed that the interaction occurs between the disordered segments of the xanthan 

chains and galactomannan.  

Mannion et al. (1992) suggested that xanthan and galactomannans gelation can be 

explained by two different mechanisms. One takes place at room temperature, at which the 

interaction with ordered xanthan gives weaker elastic gels with little dependence on the galactose 

content of the galactomannan. The second mechanism requires heating of the polysaccharide 

mixture, and the interaction with heat-disordered segments of the xanthan gives a stronger gel 

that is highly dependent on the side chains of the galactomannan. Zhan, Ridout, Brownsey, & 

Morris (1993) argued that gelation between xanthan and LBG can be explained only by a single 

mechanism. In agreement with Cheetham et al. (1986) and Cheetham & Mashimba (1988, 1991), 

they suggested that intermolecular binding involves binding of disordered segments of the 
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xanthan chain to LBG chains in hot mixing, in which the preparation temperature is higher than 

the transition temperature of xanthan, and in cold mixing, in which preparation temperature is 

lower, The authors also suggested that the extent of disorder induced in xanthan before mixing is 

the main factor in the interaction.  

  In all these studies, the extent of interaction between xanthan and galactomannan was 

indicated by the gel strengths, and the authors have used relatively high polymer concentrations 

(> 0.1%). In dilute solutions, the individual polymer coils or rods are separate and free to move 

independently, and their intermolecular interactions are negligible.  Thus, polymer-polymer 

interactions can be detected by the increase in solution viscosity and elasticity. In the present 

study, synergistic interaction between xanthan and guar was investigated in dilute aqueous 

solutions. An oscillatory capillary rheometer was used to determine viscoelastic parameters for 

polysaccharides solutions. The influence of mixing temperature on xanthan conformation and 

synergistic interaction with guar gum is discussed. 

 

2.2. Materials and Methods 

2.2.1. Materials  

Xanthan gum and guar gum were purchased from Sigma (Sigma-Aldrich, St. Louis, MO).  

2.2.2. Stock solutions preparation  

The stock solutions of xanthan gum (0.1%, w/v) and guar gum (0.2%, w/v) were prepared 

by thoroughly dispersing the required amount of gum in deionized distilled water. The gum 

solutions were continuously stirred with a magnetic stirrer for 3 h at ambient temperature and 

heated for 30 min at 90 oC in a water bath to completely hydrate the gums. Guar gum was 

centrifuged at 3500g for 1 h to remove the insoluble molecules. The solutions were dialyzed 
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against deionized distilled water for 3 d by using a dialyzing tube (Snakeskin TM Pleated 

Dialysis Tubing, Pierce, Rockford, IL), which was designed to let through compounds with a 

molecular weight of 10 kDa or less.  Stock solutions were refrigerated at 4 °C to minimize 

bacterial growth.  

2.2.3. Preparation of mixed solutions of xanthan and guar gum 

To study the interaction between the polysaccharides in dilute domain, the xanthan gum 

solution was diluted with deionized distilled water to a final concentration of 0.025%, whereas 

the guar solution was diluted to 0.075%. At these concentrations, we found that xanthan and guar 

gums are in the dilute domain.  The gums were blended at the following ratios: 100% 

xanthan:0%Guar, 80% xanthan:20% guar, 60% xanthan:40% guar, 40% xanthan:60% guar, 20% 

xanthan:80% guar, and 0% xanthan:100% guar. Freshly prepared xanthan and guar solutions 

were mixed at 25 and 80 °C.  For blends mixed at 80 °C, the appropriate amounts of the 

polysaccharide solutions were separately placed in beakers and heated at 80 °C for 30 min in a 

water bath and were stirred with a magnetic stirrer for 3 min. For blends mixed at 25 °C, the 

appropriate amounts of freshly prepared xanthan and guar solutions at 25 °C were stirred for 3 

min. The concentration of xanthan and guar solutions was confirmed by the phenol-sulfuric 

method (Dubois, Giles, Hamilton, Rebers, & Smith, 1956). 

2.2.4. Molecular weight determination of polysaccharides  

The molecular weight of xanthan (Mw = 2.65 x 106) and guar (Mw = 1.45 x 106) was 

determined by high performance size-exclusion chromatography (HPSEC) coupled on line with 

a multiangle laser light scattering detector (MALLS) and a refractive index detector. The 

MALLS detector was a DAWN DSP-F laser photometer from Wyatt Technology Corp. (Santa 

Barbara, CA, USA). The Wyatt optilab DPS interferometric refractometer with a measuring 
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wavelength of 633 nm was used.  A PL aquagel-OH  Mixed 8µm column was used. A sample 

volume of 100 µm/ ml was injected at flow rate of 1ml/min using 100 mM NaCl as the mobile 

phase at a temperature of 30 °C. The dn/dc used for xanthan was 0.145 and for guar was 0.13. 

The collected data were analyzed using Astra software version 4.70.07.  

2.2.5. Density measurement 

The densities of the polysaccharide solutions were determined with a standardized 10-mL 

pycnometer. The mass of the solution was calculated from the weight difference between the 

empty pycnometer (Kmax®, Kimble Glass Inc, Vineland, NJ) and the filled vessel. The 

picnometer filled with each respective gum solution was incubated at 20 oC for 1 h (Equatherm, 

Lab-Line Instruments Inc, Melrose Park, IL) to equilibrate the sample before density 

determinations (Yaseen, Herald, Aramouni, & Alavi, 2005). 

2.2.6. Rheological properties 

The viscous (η') and elastic (η") components of the polysaccharide solutions and their 

blends were measured as a function of oscillating shear rate by using an oscillating capillary 

rheometer (Viscoelasticity Analyzer, Vilastic 3, Vilastic Scientific, Inc, Austin, TX). The 

instrument and theory of measurement have been described elsewhere (Thurston, 1960, 1976). 

The Viscoelasticity Analyzer is based on the principles of generating oscillatory flow at a 

selected frequency within a straight, cylindrical, stainless steel tube (0.0504 cm radius and 6.038 

cm length). The Vilastic instrument produces an oscillatory flow in a capillary and measures the 

pressure and volumetric flow rate, allowing the determination of both viscous and elastic 

components of a fluid sample. 

The complex coefficient of viscosity (η*) consists of viscous (η') and elastic (η") components, 

and is defined as: 
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η* = η' - iη"                                                                                                                     (1) 

where i is an imaginary number. The η' and η" are related to dissipated and recovered energy, 

respectively. Similarly complex rigidity (G*) is defined as: 

G* = G′ + iG″                                                                                                                  (2) 

Where G′ is the storage modulus and G″ is the loss modulus. The complex coefficient of 

viscosity is related to the complex rigidity modulus by 

η* = G*/ iω                                                                                                                      (3) 

or η' = G″/ ω and η" = G′/ ω 

where the radian frequency ω = 2πf , f is the frequency in Hertz.  

The η' and η" of dilute solutions of xanthan and guar were determined in the shear-rate 

range 0.8 to 30s-1 at a frequency of 2 Hz. Morris & Taylor (1982) reported that oral perception of 

solution viscosity correlated well with viscosity measurements at 10s-1. Thus, all η' and η" 

measurements were statistically assessed at 10s-1. Rheological measurements were carried out at 

20 oC ± 0.1 by using a temperature-controlled circulating water bath (Haake DC5, Gebr. Haake 

GmbH, Karlsruhe, Germany). The Viscoelasticity Analyzer was calibrated with deionized 

distilled water at 20 oC before the verification procedure to further ensure that the rheometer was 

operating at optimum accuracy.  

2.2.7. Intrinsic viscosity determination 

Intrinsic viscosity, denoted as [η], is a useful experimental parameter in the study of 

dilute solutions. Intrinsic viscosity is a measure of the hydrodynamic volume occupied by the 

individual polymer molecules in isolation (Richardson & Kasapis, 1998). In dilute solutions, the 

polymer chains are separate, and the [η] of a polymer in solution depends only on the 

dimensions of the polymer chain. Because [η] indicates the hydrodynamic volume of the 
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polymer molecule and is related to the molecular weight, it provides deep insights on the 

molecular characteristics of a biopolymer (Rao, 1999). 

One approach to determine the [η] is through extrapolation to infinite dilution according 

to the Huggins (1942) and Kraemer (1938) empirical expressions below: 

[ ] [ ]η
η η

sp

C
k' C= + 2                                                                                                                 (4) 

[ ] [ ]lnη
η ηrel

C
C= + ′′k  2                                      (5) 

where the specific viscosity (ηsp) = (η-ηs)/ ηs  = ηrel  -1, the relative viscosity (ηrel) = η/ ηs, and η 

and ηs are the apparent viscosities of the solution and the solvent, respectively. The 

extrapolations to zero concentration are done by plotting ηsp /C versus C or ln (ηrel)/C versus C, 

which would result in straight lines, respectively. Tanglertpaibul & Rao (1987) determined the 

intrinsic viscosity from the relative viscosity by using the expression: 

[ ]η ηrel 1= + C                                                                                                                        (6) 

The [η] was obtained from the slope of ηrel vs. C plot, which gave straight lines with linear 

regression correlation coefficients in the range 0.99 to 1.0.  Chou & Kokini (1987) suggested a 

similar method for polyelectrolyte, in which the interactions between macromolecules in dilute 

solutions are not existent and the second term of the Huggins equation is negligible; therefore, a 

plot of ηsp vs. C is linear. 

In this study, the [η] was determined for each solution by measuring relative viscosities 

of polysaccharides solutions within the range 1.2 <ηrel < 2.0 at γ = 10s-1. The intercept of ηsp /C 

vs. C plot in the dilute region gave the first estimation of [η] for guar gum, whereas the slope of 

ηrel vs. C plot gave the first estimation of [η] for xanthan and xanthan-guar blends. 
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2. 2.8. Statistical analysis 

A two-way factorial design was used for study of rheological properties. Three 

replications and two subsamples were performed. The analysis of variance (ANOVA) and 

general linear models procedure (GLM) were conducted with Statistical Analysis System (2002-

2003) (version 9.1, SAS Institute, Inc., Cary, NC). Comparisons among treatments were 

analyzed by using Fisher’s least significant difference (LSD), with a significance level of P < 

0.05.  

2.3. Results and Discussion 

2.3.1. Flow Properties of Polysaccharides 

The η' and η" behavior as a function of shear rate of xanthan, guar, and their mixtures at 

25 and 80 ºC in water are shown in Figs. 2.1 through 2.4. In general, at both temperatures, no 

shear-rate viscosity dependence was observed over a range of shear rates up to 10 s-1 for xanthan 

and for xanthan:guar ratios of  4:1, 3:2, 2:3; Newtonian behavior was reached in the same range. 

At shear rates in excess of 10s-1, a pseudoplastic behavior was exhibited.  Guar gum and a 

xanthan:guar ratio of 1:4 had no shear rate dependence over the whole range. Guar viscosity 

remained constant over the same range of shear rate. The guar behavior was consistent with η' 

results previously obtained for galactomannans over a larger range of shear rates (10< γ < 350 s-

1) (Bresolin, Sander, Reicher, Sierakowski, Rinaudo, & Ganter, 1997). Shear-rate elasticity 

dependence was observed in the same range of shear rate, except for guar and xanthan:guar at a 

ratio of 1:4. At 80 ºC (Fig. 2.4), guar elasticity was too low to be detected accurately by the  

viscoelastic analyzer. For all shear rates studied, the η' for polysaccharides was higher than the 

η", indicating that the polysaccharide solutions were in the dilute regime. Steffe (1996) reported 

that dilute solutions exhibited η' values larger than η" values over the entire frequency range. 
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Fig. 2.1. Viscosity of xanthan, guar, and their mixtures against shear rate in water at mixing 
temperature 25˚C. Xanthan:Guar ratio: ( ) xanthan, (-) guar, (■) 4:1, (▲) 3:2, (×) 2:3, (+) 
1:4. 
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Fig. 2.2. Elasticity of xanthan, guar, and their mixtures against shear rate in water at mixing 
temperature 25˚C. Xanthan:Guar ratio: ( ) xanthan, (-) guar, (■) 4:1, (▲) 3:2, (×) 2:3, (+) 
1:4. 
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Fig. 2.3. Viscosity of xanthan, guar, and their mixtures against shear rate in water at mixing 
temperature 80˚C. Xanthan:Guar ratio: ( ) xanthan, (-) guar, (■) 4:1, (▲) 3:2, (×) 2:3, (+) 
1:4. 
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Fig. 2.4. Elasticity of xanthan, guar, and their mixtures against shear rate in water at mixing 
temperature 80˚C. Xanthan:Guar ratio: ( ) xanthan,  (■) 4:1, (▲) 3:2, (×) 2:3, (+) 1:4. 
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2.3.2. Dynamics of Polysaccharides Interactions 

Figs. 2.1 through 2.4 depict the dynamic rheological parameters of xanthan, guar, and 

their blends as a function of shear rate. The synergistic interaction in the dilute domain was 

indicated by both η' and η" measurements. Synergistic interaction between xanthan and guar was 

observed at both mixing temperatures, but the synergistic effect was much stronger at the 80 ºC 

mixing temperature. Significant differences (p < 0.05) were found in η' and η" measurements 

between the two mixing temperatures (Table 2.1).  This is in agreement with previous studies in 

which hot-mixed blends showed stronger η' synergistic interactions in aqueous solutions 

(Goycoolea et al., 1994; Morris VJ, 1996; Wang, Wang, & Sun, 2002). Xanthan η' and η" were 

higher at 80 ºC because it was above the order-disorder temperature of xanthan (51 ºC) in water 

(Williams, Day, Landon, Phillips, & Nishinari, 1991), which is consistent with previous results 

found by Dea et al. (1977).  At a mixing temperature of 25 ºC, the η' synergistic interaction was 

only noted at a xanthan:guar ratio of 4:1, whereas η" synergistic interaction was observed at 

xanthan:guar ratios of 4:1 and 3:2. On the other hand, at a mixing temperature of 80 ºC, the η' 

synergistic interaction was noted at xanthan:guar ratios of 4:1 and 3:2, whereas the η" synergistic 

interaction was observed at all mixing ratios except for xanthan:guar ratio 1:4. Wang et al. 

(2002) reported that the η' synergistic interaction was only noted in a cold mixing at a 

xanthan:guar ratio of 2:3 and below a shear rate of 20 s-1, and in hot mixing at xanthan:guar 

ratios of 1:4 and 3:2.   

Fig. 2.5 shows the relative viscosity behavior of xanthan and guar blends in water at both 

mixing temperatures (25 and 80 ºC). At both mixing temperatures, the relative viscosities of 

xanthan and guar blends were higher than the relative viscosities calculated for blends assuming 
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no interaction. These results show the effect of xanthan conformation on the increase of 

viscosity, reflecting that intermolecular interaction has occurred between xanthan and guar 

blends. These results are consistent with previous studies (Lopes, Andrade, Milas, & Rinaudo, 

1992; Bresolin et al., 1997) that showed viscosities of xanthan and guar blends in water were 

higher than the calculated values assuming no interaction for xanthan and guar blends, 

supporting the intermolecular interaction. When xanthan and guar were blended at a mixing 

temperature of 25 ºC, a smaller synergistic interaction was observed with the maximum 

xanthan:guar ratio of 4:1; at a mixing temperature of 80 ºC, a stronger synergy was noted and the 

maximum synergistic interaction was obtained at a ratio of 3:2. The plot of the η" component of 

xanthan-guar blends against polysaccharide ratio is shown in Fig. 2.6.  For both mixing 

temperatures, the η" differs with the xanthan:guar ratio. A stronger η" synergy was observed for 

mixing at 80 ºC. The maximum synergistic interaction was noted at a xanthan:guar ratio of 3:2 

for blends mixed at 80 ºC and at 4:1 for blends mixed at 25 ºC.   

 Our results show the influence of xanthan conformation on the increase of η' and η", 

which are supposed to reflect intermolecular binding. In aqueous solutions, the structure of 

xanthan undergoes an ‘order-disorder’ transition from helix to coil structure. This conformational 

transition depends on temperature, ionic strength of solutions, nature of electrolyte, pH, and 

acetyl and pyruvate constituent contents (Holzwarth 1976; Morris et al., 1977; Baradossi & 

Brant, 1982; Paoletti, Cesàro, & Delben, 1983). Xanthan gum is in the disordered conformation 

at both mixing temperatures. 
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Table 2.1. Effect of mixing temperature on the dynamic viscoelastic parameters for xanthan, 
guar, and their blends measured at γ = 10s-1.  

η' (mP. s) η" (mP. s) Xanthan:Guar(%) 
25˚C 80˚C 

 
25˚C 80˚C 

100:0 6.78a ± 0.15 7.94b ± 0.22 3.55a  ± 0.11 4.42b ± 0.21 

80:20 7.05a ± 0.05 8.14b ± 0.21 3.99a  ± 0.21 5.34b ± 0.41 

60:40 6.57a ± 0.06 8.72b ± 0.28 3.77a  ± 0.28 6.89b ± 0.35 

40:60 6.09a ± 0.17 7.44b ± 0.38 2.99a  ± 0.09 4.84b ± 0.27 

20:80 4.71a ± 0.06 5.79b ± 0.56 1.58a ± 0.02 2.93b ± 0.25 

0:100 3.24a ± 0.14 3.24a ± 0.02 

 

0.16a ± 0.03 ***

a, b Means followed by the same letters in the same row are not significantly different (P < 0.05). 

Results are expressed as means ± SD for three replications. 
*** Considered not detectable elasticity. 
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Fig. 2.5. Relative viscosity of xanthan, guar, and their mixtures in water: ( ) mixing at 25˚C; 
(▲) mixing at 80˚C; (---) values calculated for mixtures assuming no interaction. 
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Fig. 2.6. Elasticity of xanthan, guar, and their blends in water: ( ) mixing at 25˚C; (▲) mixing at 
80˚C; (---) values calculated for mixtures assuming no interaction. 
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Optical-rotation studies (Lecourtier, Chauveteau, & Muller, 1986; Milas & Rinaudo, 1986; 

Cheetham & Mashimba, 1988, 1991) have confirmed that xanthan is in the disordered 

conformation in water at room temperature. Electrostatic repulsions that involve glucuronate and 

pyruvate in the side chains are poorly shielded, thus favoring the disordered conformation 

(Cheetham & Mashimba, 1991). The increased η' and η" at the mixing temperature of 25 ºC, 

support a conclusion that the intermolecular interaction between xanthan and guar may have 

occurred (Morris VJ 1996; Cairns et al., 1986; Cairns et al., 1987; Cheetham & Mashimba, 1988, 

1991; Zhan et al., 1993; Foster & Morris, 1994; Goycoolea et al., 1994). Mixing the polymers at 

80 ºC substantially enhanced the molecular associations between xanthan and guar, as indicated 

by the increase of the η' and η" values. Heating xanthan above the order-disorder transition 

temperature (51 ºC) of xanthan in aqueous water (Williams et al., 1991) further disordered 

xanthan, to a degree higher than that of disordering xanthan at the mixing temperature of 25 ºC. 

Cheetham & Mashimba (1991) showed that heating xanthan and cooling to 25 ºC left xanthan 

with a greater amount of the disordered conformation. Thus, the highly disordered xanthan was 

capable of directly interacting with guar to form heterotypic structures and a higher synergistic 

interaction (Zhan et al., 1993; Goycoolea et al., 1994; Morris, Brownsey, & Ridout, 1994; Morris 

E.R., 1996; Morris V.J., 1996).   Because the synergistic interaction was stronger at the mixing 

temperature of 80 ºC, our results suggest that the degree of disordering of xanthan is critical in 

xanthan-guar interaction in water, which may explain the differences in η' and η" measurements 

at both mixing temperatures. These results support previous studies (Cheetham & Mashimba, 

1988, 1991; Zhan et al., 1993) in which intermolecular binding occurs between galactomannans 

and disordered segments of xanthan. 

2.3.3. Intrinsic Viscosities of Polysaccharides  
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Xanthan and some of xanthan-guar blends did not follow the Huggins equation at high 

dilution series, whereas the Huggins equation successfully fit the guar solutions. For neutral 

polysaccharide such as guar, the Huggins plot has an advantage of giving linear plots (Morris, 

1995).  Plots of the reduced viscosity (ηsp /C) against the concentration of xanthan and some of 

the xanthan-guar blends resulted in a nonlinear relationship at low xanthan and low xanthan-guar 

blend concentrations. Also, the Fuoss empirical equation (Fuoss & Strauss, 1948) that was 

suggested for a flexible-chain polyelectrolyte did not show the typical viscosity-concentration 

relationship of flexible polyelectrolytes for xanthan alone. Thus, it was impossible to determine 

the [η] by extrapolation of experimental data, which prompted the use of the slope model 

(Tanglertpaibul & Rao, 1987) to determine the [η] by plotting ηrel vs. C (equation 6). Figures 2.7 

and 2.8 show relative viscosity as a function of concentration for xanthan, guar, and their 

mixtures at mixing temperatures of 25 and 80 ºC, respectively. Straight-line relationships with 

large linear regression coefficients were obtained for xanthan and xanthan-guar blends in the 

relative viscosity range of 1.2 to 2.  Similar results were found by Higiro, Herald, & Alavi 

(2006). Intrinsic viscosities of xanthan, guar, and their blends in water at both mixing 

temperatures are shown in Table 2.2. Intrinsic viscosity of polymers is dependent on their 

molecular weight and chain dimension (Flory, 1953). In dilute solutions, the polymer chains are 

separate, and thus [η] of a polymer in solution depends only on the dimensions of the polymer 

chain (Rao, 1999).  
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Fig. 2.7. Relative viscosities of xanthan, guar, and their mixtures against concentration in water 
at mixing temperature 25˚C. Xanthan:Guar ratio: ( ) xanthan, (-) guar, (+) 4:1, (×) 3:2, , (▲) 
2:3, (■) 1:4. 
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Fig. 2.8. Relative viscosities of xanthan, guar, and their mixtures against concentration in water 
at mixing temperature 80˚C. Xanthan:Guar ratio: ( ) xanthan, (-) guar, (+) 4:1, (×) 3:2, , (▲) 
2:3, (■) 1:4. 
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Table 2.2 Effect of mixing temperature on the intrinsic viscosity and slope of the double 
logarithmic plot of ηsp against c[η] for xanthan, guar, and their blends in the dilute domain  

 Mixing at 25˚C Mixing at 80˚C 
Xanthan:Guar(%) [η] (dL/g) Slope 

 
[η] (dL/g) Slope 

100:0 155.7a ± 9.3 1.38d ± 0.02  173.0a ± 6.0 1.32a ± 0.02 

80:20 82.2b ± 2.7 1.50b ± 0.01  134.8b ± 4.7 1.68b ± 0.02 

60:40 63.1c ± 1.7 1.44c ± 0.02  82.7c ± 5.9 1.55c ± 0.02 

40:60 56.9c ± 7.2 1.55b ± 0.02  55.5d ± 2.2 1.51d ± 0.02 

20:80 32.8d ± 2.8 1.68a ± 0.04  38.8e ± 2.5 1.60e ± 0.02 

0:100 12.0e ± 2.1 1.44cd ± 0.06  11.5f ± 0.5 1.44f ± 0.01 

a, b,c,d,e Means followed by the same letters in the same column are not significantly different (P < 0.05). 

Results are expressed as means ± SD for three replications.  

 

The [η] of xanthan in water with mixing at 25 and 80 ºC was 154 and 173 dl/g, 

respectively, whereas that of guar was 12 and 11.5 dl/g. Xanthan and guar intrinsic viscosities in 

water were comparable to those reported by Launay, Cuvelier, & Martinez-Reyes (1984, 1997).  

Xanthan gum had a much higher [η] than guar, which can be attributed to the significant 

difference in their chain stiffness. Xanthan had a stronger chain stiffness which increased its 

chain dimensions. The stiff xanthan in water had a larger chain dimension than the flexible 

random coil conformation of guar, thus a higher [η].  

The intermolecular binding between xanthan and guar as a result of xanthan 

conformation can be further supported by the intrinsic viscosities of xanthan and guar blends 

(Fig. 2.9). At both mixing temperatures, the intrinsic viscosities were lower than those calculated 

from weight averages of the two individually (Wang, 2001), indicating that molecular binding 
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occurred between xanthan and guar. The intrinsic viscosities decreased as the xanthan fraction 

decreased in the blends. The intrinsic viscosities of xanthan-guar blends at a mixing temperature 

of 80 ºC were higher than those at a mixing temperature of 25 ºC, which could be attributed to 

the increased chain dimensions of xanthan.  Heating xanthan to 80 ºC would further disorder 

xanthan and increase its chain dimensions, thus a higher [η]. Because xanthan plays a crucial 

role in controlling the viscosity of xanthan-guar blends, the dramatic decrease of the intrinsic 

viscosities of their blends can be attributed to the conformational change of xanthan from a 

helical form to a more flexible form because of binding.  Xanthan conformation change 

outweighed the increase of [η] due to binding; thus, the dramatic decrease of the intrinsic 

viscosities of the blends was observed (Wang, 2001). These results are in agreement with 

previous studies in which the intermolecular binding between xanthan and galactomannan 

occurred (McCleary & Neukom, 1982; Cairns et al., 1986; Cairns et al., 1987; Cheetham et al., 

1986; Cheetham & Mashimba, 1988, 1991; Cheetham & Punruckrong, 1989; Foster & Morris, 

1994; Goycoolea et al., 1994; Wang, 2001).  
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Fig. 2.9. Plots of intrinsic viscosities against xanthan:guar ratio. (▲) xanthan:guar blends mixed 
at 80˚C, ( ) xanthan:guar blends mixed at 25˚C, (---) intrinsic viscosity calculated from the 
weight averages of the two individuals, assuming no interaction. 

 

2.3.4. Coil Overlap Parameter of Polysaccharides 

Morris, Cutler, Ross-Murphy, Ress, & Price (1981) studied the concentration dependence 

of ηsp for many random-coil polysaccharide solutions.  From the double logarithmic plots of ηsp 

against C, a pronounced increase was observed above a specific critical or coil overlap 

concentration (C*).  This behavior was attributed to the transition from a dilute regime, in which 

individual polymer molecules were isolated coils, to a concentrated regime, in which the total 

hydrodynamic volume of the individual chains exceeded the volume of the solution. Thus, C* 

marks the onset of significant coil overlap (Morris et al., 1981). Intrinsic viscosity varies with 

coil dimensions for random-coil polymer solutions, and the hydrodynamic volume is 

proportional to [η] and molecular weight (Mr). Because the total number of coils is proportional 
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to C/[η], the degree of occupancy of space can be assessed by the dimensionless coil-overlap 

parameter (C[η]) (Morris et al., 1981). 

 To estimate the coil-overlap parameter for xanthan, guar, and their blends, a double 

logarithmic plot of ηsp against C[η] was obtained (Figs. 2.10 & 2.11). As the concentration of 

polysaccharides increased, no change in the slope was obtained, indicating that xanthan, guar, 

and their blends were in the dilute domain. The plots of xanthan and xanthan-guar blends were 

significantly shifted to the right when the blends were heated to 80 ºC, whereas the plots of guar 

solutions changed slightly with temperature. Doublier & Launay (1981) reported that master 

curves of galactomannans solutions were independent of temperature because the intrinsic 

viscosity of galactomannans did not vary with temperature.  Xanthan and guar solutions in the 

dilute domain exhibited a very similar behavior to those reported by Morris et al. (1981). For 

random-coil polysaccharide solutions except for galactomannans, Morris et al.  (1981) reported 

that the slope of double logarithmic plots of ηsp against C[η] was close to 1.4 in a dilute regime, 

whereas, in the concentrated regime, the slope increased to 3.3± 0.3. The C* transition occurred 

at a value of C[η] close to 4, and the ηsp at this degree of coil overlap was invariably close to 10. 

For LBG and guar gum, the C* transition occurred at a lower degree of occupancy (C[η] close to 

2.5) (Morris et al., 1981). As shown in Table 2.2, the slope of a double logarithmic plot of ηsp 

against C[η] for xanthan was 1.38 and 1.32 at 25 and 80ºC, respectively,  and for guar was 1.44 

for both temperatures. Cuvelier & Launay (1986) found the limit of the dilute domain for 

xanthan at C* = 0.03 g/dl, and the chains begin to overlap at a very low concentration of C* = 

0.028 g/dl and c[η] = 1.4. 
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Fig. 2.10. Double logarithmic plot of specific viscosity(ηsp) against coil-overlap parameter (c[η]) 
for xanthan, guar, and their blends at mixing temperature 25˚C. Xanthan:Guar ratio: ( ) xanthan, 
(-) guar, (■) 4:1, (▲) 3:2, (×) 2:3,  (+) 1:4. 
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Fig. 2.11. Double logarithmic plot of specific viscosity(ηsp) against coil-overlap parameter (c[η]) 
for xanthan, guar and their blends at mixing temperature 80˚C. Xanthan:Guar ratio: ( ) xanthan, 
(-) guar, (■) 4:1, (▲) 3:2, (×) 2:3,  (+) 1:4. 
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Launay et al. (1997) showed that the double logarithmic plot for galactomannans gave a slope of 

1.43 and C[η]  of 0.76 in the dilute domain. Our results showed that the slopes of xanthan and 

guar were lower than those reported by Morris et al. (1981), Cuvelier & Launay (1986), and 

Launay et al. (1997), demonstrating that both xanthan (0.025%) and guar gum (0.075%) were in 

the dilute domain (C < C*). The slope of xanthan and guar blends ranged from 1.43 to 1.68 at the 

mixing temperature of 25 ºC, and ranged from 1.51 to 1.7 at the mixing temperature of 80 ºC. 

These slopes were relatively higher than slopes of either xanthan or guar alone, and this possibly 

could be attributed to the intermolecular binding between xanthan and guar gum.  
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2. 4. Conclusion 

Synergistic interaction between xanthan and guar in water has been found at both mixing 

temperatures in dilute domain; a stronger synergistic interaction was noted at a 80 ºC mixing 

temperature. The η' for all gum solutions was always greater than the η", which indicates liquid-

like behavior in the dilute regime for the polysaccharide solutions. The differences in η' and η" 

measurements between the two mixing temperatures could be attributed to the degree of 

disordering of xanthan. For both mixing temperatures, the relative viscosity and η" of xanthan 

and guar blends were higher than the relative viscosity and η" calculated for blends assuming no 

interaction, indicating that intermolecular binding occurred between galactomannans backbone 

and disordered segments of xanthan. The intrinsic viscosities of xanthan and xanthan-guar blends 

were higher at 80 ºC than at 25 ºC. Double logarithmic plots of ηsp against C[η] showed only 

trends in dilute solutions. The slopes of the double logarithmic plots of ηsp against C[η] of the 

blends were significantly higher than the slopes of either xanthan or guar alone. 
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Abstract 

An oscillating capillary rheometer was used to investigate the effects of xanthan deacetylation on 

the viscoelastic properties and intrinsic viscosity of xanthan and guar mixtures in dilute aqueous 

solutions. Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native 

xanthan did. No gels were observed for all xanthan-guar mixtures. Native xanthan-guar mixtures 

exhibited a liquid-like behavior, whereas deacetylated xanthan-guar mixtures exhibited a gel-like 

behavior. The relative viscosity and elasticity of deacetylated xanthan-guar mixtures were much 

stronger than those for native xanthan-guar mixtures.  The intrinsic viscosities of deacetylated 

xanthan-guar mixtures were higher than those calculated from the weight averages of the two 

individually, whereas the intrinsic viscosities of native xanthan-guar mixtures were lower than 

those calculated from weight averages of the two individually, demonstrating that intermolecular 

binding occurred between xanthan and guar gum in dilute aqueous solutions.  

 

Keywords: Xanthan-guar mixtures, synergistic interaction, viscoelastic properties, intrinsic 

viscosity, deacetylation 
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3.1. Introduction 

Synergistic polysaccharide-polysaccharide interactions are attractive in the food industry 

because they  impart novel and improved texture and rheological characteristics to food 

products, and they reduce polymers costs (Williams & Phillips, 2000). Many researchers have 

observed synergistic interaction between xanthan gum and galactomannans in solutions that 

resulted in enhanced viscosity or gelation (Rocks, 1971; Dea & Morrison, 1975; Dea, Morris, 

Rees, Welsh, Barnes, & Price, 1977; Morris, Rees, Young, Walkinshaw, & Darke, 1977). 

Although a few researchers (Kovacs, 1973; Schorsch, Garnier, & Doublier, 1995) have invoked 

the concept of mutual incompatibility to explain the interaction mechanism between xanthan and 

galactomannans, there is increasing evidence that supports intermolecular binding between 

xanthan and galactomannans (Morris, 1996). To date, the intermolecular binding mechanism 

between xanthan and galactomannans is still controversial, and different models have been 

proposed (Dea et al., 1977; Morris et al., 1977; McCleary, 1979; Tako, Asato, & Nakamura, 

1984; Tako, 1991; Cairns, Miles, & Morris, 1986; Cairns, Miles, Morris, & Brownsey, 1987; 

Cheetham, McCleary, Teng, Lum, & Maryanto, 1986; Cheetham & Mashimba, 1988, 1991; 

Mannion, Melia, Launay, Cuvelier, Hill, Harding, & Mitchell. 1992; Zhan, Ridout, Brownsey, & 

Morris 1993).  

Xanthan gum is an anionic heteropolysaccharide produced by the microorganism 

Xanthomonas campestris. Xanthan’s main backbone consists of (1→4) β-D-glucopyranosyl units 

substituted at C-3 on every other glucose residue with a charged trisaccharide sidechain (Jansson, 

Kennark, & Lindberg, 1975).  The trisaccharide chain consists of a D-glucuronic acid unit 

between two D-mannose units. Approximately one-half of the terminal D-mannose unit contains 

a pyruvic acid residue linked via keto groups to the 4 and 6 positions, with an unknown 
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distribution. The D-mannose linked to the main chain contains an acetyl group at position O-6 

(Garcia-Ochoa, Santos, Casas, & Gomez, 2000).  The acetate and pyruvate contents are variable 

on the side chain, and depend on the bacterial strains and on the fermentation conditions used to 

produce the gum. In aqueous solutions, the secondary structure of xanthan undergoes an‘order-

disorder’ transition from helix to coil structure. This conformational transition depends on 

temperature, ionic strength of solutions, nature of electrolyte, pH, and acetyl and pyruvate 

constituent contents (Holzwarth, 1976; Morris et al., 1977; Baradossi & Brant, 1982; Paoletti, 

Cesàro, & Delben, 1983; Norton, Goodall, Frangou, Morris, & Rees, 1984).  

Guar gum is obtained from the seed of the guar plant, Cyanaposis tetragonolobus, and 

has the general structure of galactomannans. Guar consists of a main chain (1→4) β-D-

mannopyranosyl unit substituted at O-6 by single-unit side-chains of α-D-galactopyranose.  The 

ratio of mannose to galactose is approximately 1.6:1, depending on the source and method of 

extraction used to isolate the gum (Dea & Morrison, 1975).  

Tako & Nakamura (1985) reported an enhanced synergistic interaction between 

deacetylated xanthan and guar gum. They investigated the rheological properties of a series of 

aqueous mixtures of xanthan and guar gum at a concentration of 0.2% of total gum. A slight 

synergistic increase in dynamic modulus was observed in the mixture with native xanthan, but 

the synergistic interaction was much stronger with deacetylated xanthan, indicating that the 

intermolecular interaction resulted from deacetylation of xanthan. The maximum dynamic 

modulus was achieved when the ratio of xanthan to guar gum was 2:1. The researchers 

concluded that the side chains of the guar gum molecule prevented the insertion of the charged 

trisaccharide side-chains of the xanthan molecule into the backbone of the guar gum molecule. 
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They proposed that an increase in the flexibility of the xanthan molecule upon deacetylation may 

facilitate the molecular interaction between xanthan sidechains and galactomannans backbone.  

Shatwell, Sutherland, Ross-Murphy, & Dea, (1991) conducted rheological and chiroptical 

studies on a range of xanthan with various amounts of acetyl and pyruvic acid substitution. 

Oscillatory-shear measurements were determined upon mixed systems consisting of 0.5% (w/w) 

xanthan and 1.0% (w/w) guar gum in de-ionized water. The enhanced viscosity of xanthan-guar 

mixture was due solely to the presence of topological entanglements and not to a more specific 

intermolecular interaction. Evidence from both rheological and chiroptical results indicated a 

possible weak interaction between some low-acetyl xanthans and guar, but the nature of this 

interaction, whether molecular or thermodynamic in origin, is still controversial. 

To date, much work has been accomplished on the gelling properties of the 

polysaccharides. The polysaccharide interactions in dilute solutions have been studied to a lesser 

extent. In dilute solutions, the individual polymer coils or rods are separate and free to move 

independently, and their intermolecular interactions are negligible.  Thus, polymer-polymer 

interactions can be detected by the increase in solution viscosity and elasticity. The objective of 

this study was to investigate the effect of xanthan acyl substituents on the interactions between 

xanthan and guar gum in dilute aqueous solutions. An oscillatory capillary rheometer was used 

to determine dynamic viscoelastic properties for the polysaccharide solutions. Intrinsic viscosity 

and viscoelastic measurements were used to characterize the synergistic interaction between the 

polymers.  

3.2. Materials and Methods 

3.2.1.  Materials 
Xanthan gum and guar gum were purchased from Sigma (Sigma-Aldrich, St. Louis, MO).  
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3.2.2. Preparation of deacetylated xanthan 

 Deacetylation of xanthan was achieved by dissolving 0.2% (w/v) of native xanthan in 

deionized distilled water, and adding 0.025 M KOH and 0.1% (w/v) KCl for 2.5 h at room 

temperature under an atmosphere of nitrogen. The alkali solution was neutralized with 0.05 M 

HCl to pH 6.5. The solution was dialyzed against deionized distilled water for 3d by using a 

dialyzing tube (Snakeskin TM Pleated Dialysis Tubing, Pierce, Rockford, Ill., U.S.A.), and the 

deacetylated xanthan was recovered by lyophilization (Sloneker & Jeanes, 1962).  

3.2.3. Stock solutions preparation  

The stock solutions of deacetylated xanthan (0.1%, w/v), native xanthan  (0.1%, w/v) and 

guar gum (0.2%, w/v) were prepared by thoroughly dispersing the required amount of gum in 

deionized distilled water. The gum solutions were continuously stirred with a magnetic stirrer for 

3 h at ambient temperature and heated for 30 min at 90 oC in a water bath to completely hydrate 

the gums. Guar gum was centrifuged at 3500 g for 1 h to remove the insoluble particles. The 

solutions were dialyzed against deionized distilled water for 3 d by using a dialyzing tube 

(Snakeskin TM Pleated Dialysis Tubing, Pierce, Rockford, Ill., U.S.A.), with a molecular weight 

cutoff of 10 kDa.  Stock solutions were refrigerated at 4 °C to minimize bacterial growth.  

3.2.4. Preparation of mixed solutions of xanthan and guar gum 

To study the interaction between the polysaccharides in the dilute domain, the 

deacetylated and native xanthan gum solutions were diluted with deionized distilled water to a 

final concentration of 0.025%, whereas the guar solution was diluted to 0.075%. The gums were 

blended at the following ratios: 100% xanthan:0%Guar, 80% xanthan:20% guar, 60% 

xanthan:40% guar, 40% xanthan:60% guar, 20% xanthan:80% guar, and 0% xanthan:100% guar. 

Freshly prepared xanthan and guar solutions were mixed at 25 °C, and  were stirred with a 
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magnetic stirrer for 3 min. The concentration of xanthan and guar solutions was confirmed by the 

phenol-sulfuric method (Dubois, Giles, Hamilton, Rebers, & Smith, 1956). 

3.2.5. Determination of acetyl and pyruvate contents 

The acetyl and pyruvate contents of native xanthan and deacetylated xanthan were 

determined by the hydroxamic acid (McComb & McCready, 1957) and the 2,4-

dinitrophenylhydrazine (Sloneker & Orentas, 1962) methods, respectively.  

3.2.6. Molecular weight determination of polysaccharides   

The molecular weights of deacetylated xanthan, native xanthan, and guar gum were 

determined by high performance size-exclusion chromatography (HPSEC), coupled on line with 

a multiangle laser light scattering detector (MALLS) and a refractive index detector. The 

MALLS detector was a DAWN DSP laser photometer from Wyatt Technology Corp. (Santa 

Barbara, Calif., U.S.A.) and the refractive index detector a Wyatt optilab DPS interferometric 

refractometer.  A PL aquagel-OH mixed 8 µm column (Polymer Labs, Amherst, M.A., U.S.A.) 

was used. A sample volume of 100 µm/ mL was injected at flow rate of 1ml/min using 100 mM 

NaCl as the mobile phase at a temperature of 30 °C. The dn/dc used for xanthan was 0.145 and 

for guar was 0.13. The data were analyzed by using Astra software version 4.5 (Wyatt 

Technology Corp., Santa Barbara, Calif., U.S.A.). 

3.2.7. Density determination of polysaccharides 

The densities of the polysaccharide solutions were determined with a standardized 10-mL 

pycnometer. The mass of the solution was calculated from the weight difference between the 

empty pycnometer (Kmax®, Kimble Glass Inc, Vineland, N.J., U.S.A.) and the filled vessel. The 

pycnometer filled with each respective polysaccharide solution was incubated at 20 oC for 1 h 
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(Equatherm, Lab-Line Instruments Inc, Melrose Park, Ill. U.S.A.) to equilibrate the sample 

before density determinations (Yaseen, Herald, Aramouni, & Alavi, 2005). 

3.2.8. Determination of rheological measurements 

The viscous (η') and elastic (η") components of the polysaccharide solutions and their 

mixtures were measured as a function of oscillating shear rate by using an oscillating capillary 

rheometer (Viscoelasticity Analyzer, Vilastic 3, Vilastic Scientific, Inc, Austin, Tex., U.S.A.). 

The instrument and theory of measurement are described elsewhere (Thurston, 1960, 1976). The 

Viscoelasticity Analyzer is based on the principles of generating oscillatory flow at a selected 

frequency within a straight, cylindrical, stainless steel tube (0.0504 cm radius and 6.038 cm 

length). The Vilastic instrument produces an oscillatory flow in a capillary, and measures the 

pressure and volumetric flow rate, allowing the determination of both viscous and elastic 

components of a fluid sample. 

The complex coefficient of viscosity (η*) consists of viscous (η') and elastic (η") components, 

and is defined as: 

η* = η' - iη"                                                                                                                     (1) 

where i is an imaginary number. The η' and η" are related to dissipated and recovered energy, 

respectively. Similarly, complex rigidity (G*) is defined as: 

G* = G′ + iG″                                                                                                                  (2) 

Where G′ is the storage modulus and G″ is the loss modulus. The complex coefficient of 

viscosity is related to the complex rigidity modulus by 

η* = G*/ iω                                                                                                                      (3) 

or η' = G″/ ω and η" = G′/ ω 

where the radian frequency ω = 2πf , and f is the frequency in Hertz.  
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The η' and η" of dilute solutions of xanthan and guar were determined in the shear-rate 

range 0.8 to 30s-1 at a frequency of 2 Hz. Morris and Taylor (1982) reported that oral perception 

of solution viscosity correlated well with viscosity measurements at 10s-1. Thus, all η' and η" 

measurements were statistically assessed at 10s-1. Rheological measurements were carried out at 

20 oC ± 0.1 by using a temperature-controlled circulating water bath (Haake DC5, Gebr. Haake 

GmbH, Karlsruhe, Germany). The Viscoelasticity Analyzer was calibrated with deionized 

distilled water at 20 oC before the verification procedure to further ensure that the rheometer was 

operating at optimum accuracy.  

3.2.9.  Intrinsic viscosity determination 

Intrinsic viscosity, denoted as [η], is a useful experimental parameter in the study of 

dilute solutions. Intrinsic viscosity is a measure of the hydrodynamic volume occupied by the 

individual polymer molecules in isolation (Richardson & Kasapis, 1998). In dilute solutions, the 

polymer chains are separate, and the [η] of a polymer in solution depends only on the 

dimensions of the polymer chain. Because [η] indicates the hydrodynamic volume of the 

polymer molecule and is related to the molecular weight, it provides deep insights on the 

molecular characteristics of a biopolymer (Rao,1999). 

One approach to determine the intrinsic viscosity is through extrapolation to infinite 

dilution, according to the Huggins (1942) empirical expression: 

[ ] [ ]η
η η

sp

C
k' C= + 2                                                                                                               (4)  

where the specific viscosity (ηsp) = (η-ηs)/ ηs  = ηrel  -1, the relative viscosity (ηrel) = η/ ηs, and η 

and ηs are the apparent viscosities of the solution and the solvent, respectively. The 

extrapolations to zero concentration are usually determined by plotting ηsp /C versus C or ln 
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(ηrel)/C versus C, which would result in straight lines, respectively. Tanglertpaibul and Rao 

(1987) determined the intrinsic viscosity from the relative viscosity by using the expression: 

[ ]η ηrel 1= + C                                                                                                                     (5) 

The [η] was obtained from the slope of ηrel vs. C plot, which gave straight lines, with linear 

regression correlation coefficients in the range 0.99 to 1.0.  Chou and Kokini (1987) suggested a 

similar method for polyelectrolyte, in which the interactions between macromolecules in dilute 

solutions are not existent, and the second term of the Huggins equation is negligible; therefore, a 

plot of ηsp vs. C is linear.  

In this study, the [η] was determined for each solution by measuring relative viscosities 

of polysaccharides solutions within the range 1.2 <ηrel < 2.0 at γ = 10s-1. The intercept of ηsp /C 

vs. C plot in the dilute region gave the first estimation of [η] for guar gum, whereas the slope of 

ηrel vs. C plot gave the first estimation of [η] for xanthan and xanthan-guar mixtures. 

  3.2.10. Statistical analysis 

A two-way factorial design was used for the study of rheological properties. For all 

polysaccharides samples, three replications and two subsamples were performed. The analysis of 

variance (ANOVA) and general linear models procedure (GLM) were conducted with Statistical 

Analysis System (2002-2003) (version 9.1, SAS Institute, Inc., Cary, N.C., U.S.A.). 

Comparisons among treatments were analyzed by using Fisher’s least significant difference 

(LSD), with a significance level of P < 0.05.  

 

3.3. Results and Discussion 

3.3.1. Characterization of polysaccharides 
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 Values of acetyl and pyruvate contents, and weight average molecular weights for the 

polysaccharides, are given in Table 3.1. The molecular weights of native xanthan (2.65 x 106) 

and deacetylated xanthan (2.4 x 106) were much larger than that of guar gum (1.45 x 106). Some 

reduction in molecular weight of native xanthan occurred due to the chemical modification. The 

acetate and pyruvate contents of native xanthan were 3.53 and 0.9%, respectively. Deacetylation 

of xanthan removed approximately 91% of the acetate content, but it did not affect the pyruvate 

content of xanthan.   

 

Table 3.1. Chemical composition of native xanthan, deacetylated xanthan, and guar gum. 
Polysaccharide Acetate (%) Pyruvate (%) Molecular weight 

Native xanthan 3.51 0.9 2.65 x 106

Deacetylated xanthan 0.32 0.9 2.36 x 106

Guar --- --- 1.45 x 106

 
 

3.3.2. Dynamics of polysaccharides interactions 

Figures 3.1a & b and 3.2 a & b show the changes in η' and η" as a function of shear rate 

for native xanthan, deacetylated xanthan, guar, and their mixtures in water. Over the entire range 

of shear rates, both deacetylated xanthan and native xanthan exhibited a pseudoplastic behavior. 

For xanthan-guar mixtures, shear-rate dependence was observed for all mixtures, except for 

xanthan:guar at a ratio of 1:4. No shear-rate dependence was observed over the entire range of 

shear rates for guar gum. The guar behavior is consistent with viscosity results previously 

obtained for galactomannans over a larger range of shear rates (10< γ <350 s-1) (Bresolin, 

Sander, Reicher, Sierakowski, Rinaudo, & Ganter, 1997).  No gels were formed for any of the 
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xanthan-guar mixtures. For all shear rates studied, the η' of native xanthan and all native 

xanthan-guar mixtures was higher than the η", indicating liquid-like behavior in the dilute 

regime, whereas η' of deacetylated xanthan and deacetylated xanthan-guar mixtures was lower 

than the η", except for deacetylated xanthan-guar mixture at ratio of 1:4, indicating gel-like 

behavior in the dilute regime. 
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Fig. 3.1. Viscosity of xanthan, guar, and their mixtures as function of shear rate. (a) deacetylated 
xanthan-guar mixtures, (b) native xanthan-guar mixtures.   Xanthan:Guar ratio: ( ) xanthan, (●) 
guar, (■) 4:1, (▲) 3:2, (×) 2:3, (+) 1:4. 
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Fig. 3.2. Elasticity of xanthan, guar, and their mixtures as function of shear rate. (a) deacetylated 
xanthan-guar mixtures, (b) native xanthan-guar mixtures.   Xanthan:Guar ratio: ( ) xanthan, (●) 
guar, (■) 4:1, (▲) 3:2, (×) 2:3, (+) 1:4. 
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The η' and η" values of polysaccharides at shear rate 10 s-1 are given in Table 3.2.  

Significant differences (P < 0.05) were found between the native xanthan-guar mixtures and 

deacetylated xanthan-guar mixtures. Deacetylated xanthan-guar mixtures exhibited significantly 

larger η' and η" values than did native xanthan-guar mixtures. No significant difference in η' and 

η" for guar gum was found. 

 
Table 3.2. Effect of deacetylation on the viscosity (η') and elasticity (η") parameters† for native 
and deacetylated xanthan, guar, and their mixtures measured at γ = 10s-1.  

η' (mP. s) η" (mP. s) Xanthan:Guar(%) 
Native 
xanthan:guar 

Deacetylated 
xanthan:guar 

 
Native 
xanthan:guar 

Deacetylated 
xanthan:guar 

100:0 6.78a ± 0.15 8.93b± 0.92 3.55a  ± 0.11 4.23a ± 0.68 

80:20 7.05a ± 0.05 12.16b ± 1.54 3.99a  ± 0.21 30.96b ± 2.66 

60:40 6.57a ± 0.06 11.81b ± 0.46 3.77a  ± 0.28 20.75b ± 2.25 

40:60 6.09a ± 0.17 10.0b ± 0.15 2.99a  ± 0.09 12.46b ± 0.57 

20:80 4.71a ± 0.06 6.27b ± 0.49 1.58a ± 0.02 4.08b± 0.52 

0:100 3.24a ± 0.14 3.24a ± 0.14 

 

0.16a ± 0.03 0.16a ± 0.03 

a, b  Means followed by the same letters in the same row for η' or η" are not significantly different (P < 

0.05).  
†Results are expressed as means ± SD for three replications.  

 

The ηrel of deacetylated and native xanthan, guar, and their mixtures were plotted as a 

function of the mixing ratio in water, allowing the influence of deacetylation on the 

intermolecular interaction to be determined (Fig. 3.3). The ηrel of deacetylated xanthan-guar 

mixtures and native xanthan-guar mixtures differed with respect to the polysaccharide ratio, and 

the maximum synergy was observed at the ratio of 4:1. The relative viscosities of the 
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polysaccharide mixtures were higher than the relative viscosities calculated for mixtures 

assuming no interaction, reflecting that intermolecular interaction occurred between xanthan and 

guar mixtures. These results are consistent with previous studies (Lopes, Andrade, Milas, & 

Rinaudo, 1992; Bresolin et al., 1997) that showed viscosity of xanthan and guar blends in water 

was higher than the calculated value assuming no interaction for xanthan and guar mixtures, 

which support the hypothesis of intermolecular interaction. The synergistic interaction in dilute 

aqueous solutions was further supported by elasticity measurements. Figure 3.4 shows the η" of 

deacetylated xanthan, native xanthan, guar, and their mixtures against polysaccharide ratio.  In 

the mixtures with native xanthan, a small synergistic increase in η" was observed, whereas the 

η" synergistic interaction was significantly enhanced in the mixtures with deacetylated xanthan. 

The maximum synergistic interaction was noted at a xanthan:guar ratio of 3:2. 

 Our results demonstrated the influence of deacetylation on the increase of η' and η", 

which may reflect intermolecular binding between the polysaccharides. Tako & Nakamura 

(1984) and Smith et al. (1981) reported that acetate stabilizes the ordered conformation of 

xanthan, whereas pyruvate destabilizes the conformation (Holzwarth, 1976) due to the increasing 

electrostatic repulsions between the side chains. 
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Fig. 3.3. Relative viscosity of xanthan, guar, and their mixtures against xanthan fraction. ( ) 
deacetylated xanthan-guar mixtures; (▲) native xanthan-guar mixtures; (---) values calculated for 
mixtures assuming no interaction. 
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Fig. 3.4. Elasticity of xanthan, guar, and their mixtures. ( ) deacetylated xanthan-guar mixtures; 
(▲) native xanthan-guar mixtures; (---) values calculated for mixtures assuming no interaction. 
 

 95
 



 

Our results are in agreement with the findings of Tako & Nakamura (1985), who suggested a 

stronger interaction between deacetylated xanthan molecules than between native xanthan 

molecules. Removing the hydrophobic acetyl group from the side chain of xanthan significantly 

enhanced the synergistic interaction with guar gum in dilute aqueous solutions. The ηrel of 

deacetylated xanthan-guar mixtures was much stronger than the relative viscosity of native 

xanthan-guar mixtures. Deacetylation of xanthan strongly enhanced the synergistic interaction, 

possibly due to destabilizing the helical structure of xanthan and increasing xanthan chain 

flexibility, thus facilitating the formation of heterotypic junctions with guar gum. Foster & 

Morris (1994) reported that interaction of deacetylated xanthan with either carob or konjac 

mannan in dilute solutions resulted in a pronounced increase in viscosity measurements, 

suggesting that deacetylation favors intermolecular binding due to destabilization of the helical 

structure of xanthan. 

3.3.3. Intrinsic viscosities of polysaccharides  

Intrinsic viscosity of polymers is dependent on their molecular weight and chain 

dimension (Flory, 1953). In dilute solutions, the polymer chains are separate, so [η] of a polymer 

in solution depends only on the dimensions of the polymer chain (Rao, 1999). The 

intermolecular binding between xanthan and guar was further supported by the intrinsic 

viscosities of xanthan and guar mixtures (Fig. 3.5). The intrinsic viscosities of deacetylated 

xanthan-guar mixtures were higher than those calculated from the weight averages of the two 

individually, whereas the intrinsic viscosities of native xanthan-guar mixtures were lower than 

those calculated from weight averages of the two individually, demonstrating that intermolecular 

binding may have occurred between xanthan and guar.  
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Fig. 3.5. Plots of intrinsic viscosities against xanthan fraction. ( ) deacetylated xanthan-guar 
mixtures; (▲) native xanthan-guar mixtures; (---) intrinsic viscosity calculated from the weight 
averages of the two individuals, assuming no interaction. 
 
 

 

These results are consistent with a previous study conducted by Wang, Wang, & Sun 

(2002).  The strong intermolecular binding between deacetylated xanthan and guar can be 

attributed to the increased chain flexibility of deacetylated xanthan, which may befacilitated by 

the interaction with guar gum. The intrinsic viscosities of native xanthan-guar mixtures 

decreased as the xanthan fraction decreased in the mixtures. The intrinsic viscosities of native 

xanthan-guar mixtures were lower than those calculated from weight averages of the two 

individually. Because xanthan plays a crucial role in controlling the viscosity of xanthan-guar 

mixtures, the dramatic decrease in the intrinsic viscosities of their mixtures may be attributed to 
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the conformational change of xanthan from a helical form to a more flexible form due to binding 

of guar to xanthan. Xanthan conformation change outweighed the increase in intrinsic viscosity 

due to this binding; thus, the dramatic decrease in the intrinsic viscosities of the mixtures was 

observed. These results suggest that conformational change of deacetylated xanthan may not 

predominate in controlling the intrinsic viscosity, and that deacetylated xanthan may require to 

be in a specific conformation to bind guar. 

The ηrel as a function of concentration for deacetylated xanthan, native xanthan, guar, and their 

mixtures is shown in Figs. 3.6 a & b.  Straight-line relationships with large linear regression 

coefficients were obtained for xanthan and xanthan-guar mixtures in the ηrel range of 1.2 to 2.  

Similar results were found by Higiro, Herald, & Alavi (2006). Native and deacetylated xanthan, 

and some of xanthan-guar mixtures, did not follow the Huggins equation at high dilution series, 

whereas the Huggins equation successfully fit the guar solutions. For neutral polysaccharide such 

as guar, the Huggins plot has an advantage of giving linear plots (Morris, 1995).  Plots of the 

reduced viscosity (ηsp /C) against the concentration of xanthan and some of the xanthan-guar 

mixtures resulted in a nonlinear relationship at low xanthan and low xanthan-guar mixture 

concentrations. Also, the Fuoss empirical equation (Fuoss & Strauss, 1948) that was suggested 

for a flexible-chain polyelectrolyte did not show the typical viscosity-concentration relationship 

of flexible polyelectrolytes for xanthan alone, was in agreement with Wang et al. (2002). Thus, 

this model was not successfully implemented to determine the intrinsic viscosity by extrapolation 

of experimental data, which prompted the use of the slope model (Tanglertpaibul & Rao, 1987) 

to determine the [η] by plotting relative viscosity vs. C (equation 5). Table 3.2 shows the values 

of the intrinsic viscosities of deacetylated xanthan, native xanthan, guar, and their mixtures. 

Xanthan and guar intrinsic viscosities were comparable to those reported by Launay, Cuvelier, & 
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Martinez-Reyes (1984, 1997). The [η] of deacetylated xanthan was higher than the [η] of native 

xanthan. Deacetylated xanthan had a [η] of 163 dl/g, whereas the [η] of native xanthan was 

154dl/g, but the difference was not statistically significant (P > 0.05). This is consistent with 

Callet, Milas, & Rinaudo (1987), who reported that acetyl and pyruvate contents have no 

influence on the intrinsic viscosity of xanthan in dilute solution. The [η] of guar gum was 12 

dl/g. Deacetylated and native xanthan had a much higher [η] than guar gum, which may be 

attributed to the significant difference in their chain stiffness. Xanthan may have a stronger chain 

stiffness than the flexible, random coil conformation of guar, which may increase the chain 

dimensions, thus, a higher [η].  
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Fig. 3.6. Relative viscosities of xanthan, guar, and their mixtures as function of concentration. (a) 
deacetylated xanthan-guar mixtures, (b) native xanthan-guar mixtures.   Xanthan:Guar ratio: (●) 
xanthan, ( )guar, (+) 4:1, (×) 3:2, , (▲) 2:3, (■) 1:4. 
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3.3.4. Coil overlap parameter of polysaccharides 

In dilute solutions, the individual polymer coils are separate from each other and are free 

to move independently. With increasing concentrations, the coils start to overlap and 

interpenetrate one another. The transition from dilute solutions to concentrated solutions is 

usually accompanied by a pronounced change in the concentration dependence of solution 

viscosity (Morris, Cutler, Ross-Murphy, Ress, & Price, 1981; Morris, 1995). The corresponding 

concentration is called critical, or coil overlap, concentration (C*). For random-coil 

polysaccharide solutions, except galactomannans, Morris and others  (1981) reported that the 

slope of double logarithmic plots of ηsp against C[η] was close to 1.4 in a dilute regime, whereas, 

in the concentrated regime, the slope increased to 3.3. The C* transition occurred at a value of 

C[η] close to 4, and the ηsp at this degree of coil overlap was invariably close to 10. Guar gum 

was found to deviate from the above observations.  The C* transition occurred at a smaller value 

of the coil-overlap parameter, C[η] = 2.5, and the viscosity showed a higher dependence on 

concentration with, a slope of 5.1 instead of 3.3 (Morris et al., 1981). In this study, all the 

polysaccharides systems were studied in dilute solutions. As shown in Fig. 3.7 a & b, no change 

in the slope of a double logarithmic plot of ηsp against the coil-overlap parameter (C[η]) 

occurred, indicating that no molecular entanglements were obtained, and that xanthan 

(deacetylated and native), guar, and their mixtures were in the dilute domain. As shown in Table 

3.3, the slope of a double logarithmic plot of ηsp against C[η] for native xanthan and deacetylated 

xanthan was 1.38 and 1.32, respectively, and for guar was 1.44. Our results showed that the 

slopes of xanthan and guar were lower than those reported by Morris et al. (1981), Cuvelier & 

Launay (1986), and Launay et al. (1997), demonstrating that both xanthan (0.025%) and guar 

gum (0.075%) were in the dilute domain (C < C*). The slopes for deacetylated xanthan and 
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deacetylated xanthan-guar mixtures were lower than those for native xanthan and native xanthan-

guar mixtures, indicating more flexible xanthan due to the deacetylation. 
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Fig. 3.7. Double logarithmic plot of specific viscosity (ηsp) against coil-overlap parameter (c[η]) 
for xanthan, guar, and their mixtures. (a) deacetylated xanthan-guar mixtures, (b) native xanthan-
guar mixtures.   Xanthan:Guar ratio: (●) xanthan, ( ) guar, (■) 4:1, (▲) 3:2, (×) 2:3,  (+) 1:4. 
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Table 3.3. Effect of deacetylation on the intrinsic viscosity and slope† of the double logarithmic 
plot of ηsp against c[η] for native xanthan, deacetylated xanthan, guar, and their mixtures in the 
dilute domain. 

[η] (dL/g) Slope  
 

Xanthan:Guar(%) 
Native 
xanthan:guar 

Deacetylated 
xanthan:guar 

 
Native 
xanthan:guar 

Deacetylated 
xanthan:guar 

100:0 155.7a ± 9.3 163.0a ± 5.0 1.38a ± 0.02 1.32b ± 0.05 

80:20 82.2a ± 2.7 187.4b ± 5.8 1.50a ± 0.01 1.22b ± 0.03 

60:40 63.1a ± 1.7 135.3b ± 5.9 1.44a ± 0.02 1.36b ± 0.06 

40:60 56.9a ± 7.2 87.9b ± 7.3 1.55a ± 0.02 1.43b ± 0.07 

20:80 32.8a ± 2.8 46.1b ± 2.8 1.68a ± 0.04 1.33b ± 0.02 

0:100 12.0a ± 2.1 12.0a ± 2.1 

 

1.44a ± 0.06 1.44a ± 0.06 

a, b Means followed by the same letters in the same row are not significantly different (P < 0.05). 
†Results are expressed as means ± SD for three replications 
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3.4. Conclusion 

 Synergistic interactions for both native xanthan-guar mixtures and deacetylated xanthan-

guar mixtures in the dilute aqueous solutions were observed. Destabilizing the helical structure 

of xanthan, due to deacetylation, played a significant role in its interaction with guar. 

Deacetylation of xanthan strongly enhanced the synergistic interaction with guar because it 

destabilized the helical structure and increased chain flexibility of xanthan. Intermolecular 

binding occurred between xanthan and guar gum in dilute aqueous solutions, as indicated by 

viscosity and elasticity measurements. 
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Abstract 
 

An oscillating capillary rheometer was used to investigate the dynamic viscoelastic and 

intrinsic viscosity properties of deacetylated xanthan, native xanthan, guar gum, and xanthan-

guar mixtures in dilute solutions. Influence of ionic strength on xanthan conformation and 

interaction with guar was elaborated. As the salt concentration increased, a significant (P < 0.05) 

decrease in viscosity (η') and elasticity (η") values was observed for both native xanthan-guar 

mixtures and deacetylated xanthan-guar mixtures. In water and 2 mM NaCl solution, the relative 

viscosity and η" of both native xanthan-guar mixtures and deacetylated xanthan-guar mixtures 

were much higher than of those calculated for mixtures assuming no interaction, whereas no 

pronounced increase was found for polysaccharide mixtures in 40 mM NaCl. The intrinsic 

viscosities of deacetylated xanthan-guar mixtures in water and 2 mM NaCl were higher, whereas 

the intrinsic viscosities of native xanthan-guar mixtures were lower than those calculated from 

the weight averages of the two individually, assuming no interaction. These results demonstrated 

that intermolecular interaction has occurred between xanthan and guar mixtures in water and 2 

mM NaCl, but may not occur in 40 mM NaCl, and mutual incompatibility may occur. The 

results suggest that the degree of disordering of xanthan played a critical role in xanthan-guar 

interaction and may explain the differences in η', η", and intrinsic viscosity measurements 

between 2 and 40 mM NaCl. 

 

Keywords: deacetylated and native Xanthan, guar, synergistic interaction, ionic strength, 

viscoelastic, intrinsic viscosity. 
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4.1. Introduction 

Xanthan gum is an anionic heteropolysaccharide produced by the microorganism 

Xanthomonas campestris. Xanthan’s main backbone consists of (1→4) β-D-glucopyranosyl units 

and is substituted at C-3 on every other glucose residue with a charged trisaccharide sidechain 

(Jansson, Kennark, & Lindberg, 1975). The trisaccharide chain consists of a D-glucuronic acid 

unit between two D-mannose units. Approximately one-half of the terminal D-mannose unit 

contains a pyruvic acid residue linked via keto group to the 4 and 6 positions, with an unknown 

distribution. The D-mannose linked to the main chain contains an acetyl group at position O-6 

(Garcia-Ochoa, Santos, Casas, & Gomez, 2000). In aqueous solutions, the structure of xanthan 

undergoes a thermally induced transition from an ordered (helical) to a disordered conformation. 

This conformational transition depends on ionic strength, nature of electrolyte, pH, and acetyl 

and pyruvate constituent contents (Holzwarth 1976; Morris, Rees, Young, Walkinshaw, & 

Darke, 1977; Baradossi & Brant, 1982; Paoletti, Cesàro, & Delben, 1983; Norton, Goodall, 

Frangou, Morris, & Rees, 1984). At high temperature and low ionic strength, xanthan exists in 

solutions as a disordered structure, but reduction in temperature and/or addition of salts induces 

an ordered structure (Norton et al., 1984).  In distilled water at 25 °C, the backbone of xanthan is 

disordered (or partly ordered in the form of a randomly broken helix) but highly extended due to 

the electrostatic repulsions from the charged groups on the sidechains (Rochefort & Middleman, 

1987). Because the structure is highly extended, the molecules may align and associate via 

hydrogen bonding to form a weakly structured material. Rochefort & Middleman (1987) 

reported that, as the temperature increased, a transition to coil-like configuration occurs, which 

causes a dissociation of the molecules and a subsequent change in the rheological properties 

(Rochefort & Middleman, 1987). When salt is added to the solution at 25 °C, a disorder-order 
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transition occurs in which the backbone takes on a helical conformation, and the charged 

trisaccharide sidechains collapse down onto the backbone (due to charge screening effects) and 

stabilize the ordered conformation (Muller, Anhourrache, Lecourtier, & Chauveteau, 1986).   

Guar gum is obtained from the seed of the guar plant, Cyanaposis tetragonolobus, and 

has the general structure of galactomannans. Guar consists of a main chain (1→4) β-D-

mannopyranosyl unit substituted at O-6 by single-unit side-chains of α-D-galactopyranose.  The 

ratio of mannose to galactose is approximately 1.6:1, depending on the source and method of 

extraction (Dea & Morrison, 1975).  

A synergistic interaction occurs between xanthan gum and galactomannans in solutions, 

which results in enhanced viscosity or gelation (Dea & Morrison, 1975; Dea, Morris, Rees, 

Welsh, Barnes, & Price, 1977; Morris et al., 1977). Rocks (1971) first reported the synergistic 

interaction between xanthan and galactomannans. The author pointed out that xanthan gum 

formed thermoreversible gels when mixed with locust bean gum (LBG), but not with guar gum. 

Although a few researchers (Kovacs, 1973; Schorsch, Garnier, & Doublier, 1995) invoked the 

concept of incompatibility to explain the gelation mechanism between xanthan and 

galactomannans, there is a considerable body of evidence that supports the theory of 

intermolecular binding between xanthan and galactomannans (McCleary & Neukom, 1982; 

Cairns, Miles, & Morris, 1986; Cairns, Miles, Morris, & Brownsey, 1987; Cheetham, McCleary, 

Teng, Lum, & Maryanto, 1986; Cheetham & Mashimba, 1988, 1991; Cheetham & Punruckrong, 

1989; Foster & Morris, 1994; Goycoolea, Foster, Richardson, Morris, & Gidley, 1994).  

To date, the intermolecular binding mechanism between xanthan and galactomannans is 

still controversial, and different models have been proposed. The first model was proposed by 

Dea et al.  (1977) and Morris et al. (1977), who reported the synergistic interaction between 
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xanthan and galactomannans, based on a cooperative interaction, depending on the fine structure 

of the galactomannans.  The intermolecular binding may occur between the ordered xanthan and 

unsubstituted or poorly substituted regions of the galactomannan backbone (Dea et al., 1977; 

Morris et al., 1977). The synergistic interaction is strongly dependent on the amount of galactose 

content (Dea & Morrison, 1975) and galactose distribution to the regions of galactomannans 

backbone, where the galactose units are substituted on one side (McCleary, 1979). 

 Tako, Asato, & Nakamura (1984) and Tako (1991) proposed a different model, in which 

the intermolecular interaction occurs between the side chains of xanthan and the backbone of the 

galactomannans. The authors suggested that the side chains of the xanthan are inserted into 

adjacent unsubstituted regions of the galactomannan backbone, which adopts an extended, two-

fold, ribbon-like conformation. 

 The third model was proposed by Cairns et al. (1986) and Cairns et al. (1987), in which 

intermolecular binding may occur between the disordered xanthan and galactomannans, and 

disordering of xanthan helical structure is necessary for gelation. They proposed that xanthan has 

a disordered, extended, two-fold, cellulose-like conformation, rather than a five-fold helix, when 

interacting with galactomannan. Cheetham et al. (1986) and Cheetham & Mashimba (1988, 

1991) proposed that the interaction occurs between the disordered segments of the xanthan 

chains and galactomannan.  

Mannion et al. (1992) suggested that xanthan and galactomannans gelation can be 

explained by two different mechanisms. One takes place at room temperature, at which the 

interaction with ordered xanthan gives weaker elastic gels with little dependence on the galactose 

content of the galactomannan. The second mechanism requires heating of the polysaccharide 

mixture, and the interaction with heat-disordered segments of the xanthan gives a stronger gel 
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that is highly dependent on the side chains of the galactomannan. Zhan, Ridout, Brownsey, & 

Morris (1993) argued that gelation between xanthan and LBG can be explained only by a single 

mechanism. In agreement with Cheetham et al. (1986) and Cheetham & Mashimba (1988, 1991), 

they suggested that intermolecular binding involves binding of disordered segments of the 

xanthan chain to LBG chains in hot mixing, in which the preparation temperature is higher than 

the transition temperature of xanthan, and in cold mixing, in which preparation temperature is 

lower, The authors also suggested that the extent of disorder induced in xanthan before mixing is 

the main factor in the interaction.  

To date, much work has been accomplished on the gelling properties of the 

polysaccharides. The polysaccharide interactions in dilute solutions have been studied to a lesser 

extent. The objective of this study was to investigate the effect of ionic strength on xanthan 

conformation and interaction with guar gum in dilute solutions to characterize the interaction 

mechanism. Intrinsic viscosity and dynamic viscoelastic measurements were used to characterize 

the synergistic interaction and intermolecular binding for the polysaccharide mixtures.  

4.2. Materials and Methods 

4.2.1.  Materials   

Xanthan gum and guar gum were purchased from Sigma (Sigma-Aldrich, St. Louis, Mo., 

U.S.A.).  

4.2.2. Preparation of deacetylated xanthan 

 Deacetylation of xanthan was achieved by dissolving 0.2% (w/v) of native xanthan in 

deionized distilled water, and adding 0.025 M KOH and 0.1% (w/v) KCl for 2.5 h at room 

temperature under an atmosphere of nitrogen. The alkali solution was neutralized with 0.05 M 

HCl to pH 6.5. The solution was dialyzed against deionized distilled water for 3 d by using a 
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dialyzing tube (Snakeskin TM Pleated Dialysis Tubing, Pierce, Rockford, Ill., U.S.A.), and the 

deacetylated xanthan was recovered by lyophilization (Sloneker & Jeanes, 1962).  

4.2.3. Stock solutions preparation  

The stock solutions of deacetylated xanthan (0.1%, w/v), native xanthan  (0.1%, w/v) and 

guar gum (0.2%, w/v) were prepared by thoroughly dispersing the required amount of gum in 

deionized distilled water. The gum solutions were continuously stirred with a magnetic stirrer for 

3 h at ambient temperature and were heated for 30 min at 90 oC in a water bath to completely 

hydrate the gums. Guar gum was centrifuged at 3500 g for 1 h to remove the insoluble particles. 

The solutions were dialyzed against deionized distilled water for 3 d by using a dialyzing tube 

(Snakeskin TM Pleated Dialysis Tubing, Pierce, Rockford, Ill., U.S.A.), with a molecular weight 

cutoff of 10 kDa.  Stock solutions were refrigerated at 4 °C to minimize bacterial growth.  

4.2.4. Preparation of mixed solutions of xanthan and guar gum 

To study the interaction between the polysaccharides in dilute domain, the deacetylated 

and native xanthan gum solutions were diluted with deionized distilled water to a final 

concentration of 0.025%, whereas the guar solution was diluted to 0.075%. The gums were 

blended at the following ratios: 100% xanthan:0% guar, 80% xanthan:20% guar, 60% 

xanthan:40% guar, 40% xanthan:60% guar, 20% xanthan:80% guar, and 0% xanthan:100% guar. 

Freshly prepared xanthan (deacetylated or native) and guar solutions were mixed at 25 °C, and  

were stirred with a magnetic stirrer for 3 min. To study the effect of salt on the polysaccharides 

and their interactions, the appropriate amounts of sodium chloride were added to the diluted 

solutions of deacetylated xanthan, native xanthan, and guar gum, and were completely dissolved 

to obtain final concentrations of 2 and 40 mM NaCl.  The concentration of each solution was 

confirmed by the phenol-sulfuric method (Dubois, Giles, Hamilton, Rebers, & Smith, 1956). 
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4.2.5. Determination of acetyl and pyruvate contents 

The acetyl and pyruvate contents of native xanthan and deacetylated xanthan were 

determined by the hydroxamic acid (McComb & McCready, 1957) and the 2,4-

dinitrophenylhydrazine (Sloneker & Orentas, 1962) methods, respectively.  

4.2.6. Molecular weight determination of polysaccharides  

The molecular weights of deacetylated xanthan, native xanthan, and guar gum were 

determined by high performance size-exclusion chromatography (HPSEC), coupled on-line with 

a multi-angle laser light scattering detector (MALLS) and a refractive index detector. The 

MALLS detector was a DAWN DSP laser photometer from Wyatt Technology Corp. (Santa 

Barbara, Calif., U.S.A.) and the refractive index detector was  a Wyatt optilab DPS 

interferometric refractometer.  A PL aquagel-OH mixed 8-µm column (Polymer Labs, Amherst, 

Mass., U.S.A.) was used. A sample volume of 100 µm/ mL was injected at a flow rate of 

1ml/min, using 100 mM NaCl as the mobile phase, at a temperature of 30 °C. The dn/dc used for 

xanthan was 0.145 and for guar was 0.13. The data were analyzed by using Astra software 

version 4.5 (Wyatt Technology Corp., Santa Barbara, Calif., U.S.A.). 

4.2.7. Density measurement 

The densities of the polysaccharide solutions were determined with a standardized 10-mL 

pycnometer (Kmax®, Kimble Glass Inc, Vineland, N.J., U.S.A.). The mass of the solution was 

calculated from the weight difference between the empty pycnometer and the filled vessel. The 

pycnometer was filled with each respective polysaccharide solution was incubated at 20 oC for 1 

h (Equatherm, Lab-Line Instruments Inc, Melrose Park, Ill., U.S.A.) to equilibrate the sample 

before density determinations (Yaseen, Herald, Aramouni, & Alavi, 2005). 

4.2.8. Rheological properties 
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The viscous (η') and elastic (η") components of the polysaccharide solutions and their 

mixtures were measured as a function of oscillating shear rate by using an oscillating capillary 

rheometer (Viscoelasticity Analyzer, Vilastic 3, Vilastic Scientific, Inc, Austin, Tex., U.S.A.). 

The instrument and theory of measurement are described elsewhere (Thurston, 1960, 1976). The 

Viscoelasticity Analyzer is based on the principles of generating oscillatory flow at a selected 

frequency within a straight, cylindrical, stainless steel tube (0.0504 cm radius and 6.038 cm 

length). The Vilastic instrument produces an oscillatory flow in a capillary, and measures the 

pressure and volumetric flow rate, allowing the determination of both viscous and elastic 

components of a fluid sample. 

The complex coefficient of viscosity (η*) consists of viscous (η') and elastic (η") components, 

and is defined as: 

η* = η' - iη"                                                                                                                     (1) 

where i is an imaginary number. The η' and η" are related to dissipated and recovered energy, 

respectively. Similarly, complex rigidity (G*) is defined as: 

G* = G′ + iG″                                                                                                                  (2) 

where G′ is the storage modulus and G″ is the loss modulus. The complex coefficient of 

viscosity is related to the complex rigidity modulus by 

η* = G*/ iω                                                                                                                      (3) 

or η' = G″/ ω and η" = G′/ ω 

where the radian frequency ω = 2πf , and f is the frequency in Hertz.  

The η' and η" of dilute solutions of xanthan and guar were determined in the shear-rate 

range 0.8 to 30s-1 at a frequency of 2 Hz. Morris and Taylor (1982) reported that oral perception 

of solution viscosity correlated well with viscosity measurements at 10s-1. Thus, all η' and η" 
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measurements were statistically assessed at 10s-1. Rheological measurements were carried out at 

20 oC ± 0.1 by using a temperature-controlled circulating water bath (Haake DC5, Gebr. Haake 

GmbH, Karlsruhe, Germany). The Viscoelasticity Analyzer was calibrated with deionized 

distilled water at 20 oC before the verification procedure to further ensure that the rheometer was 

operating at optimum accuracy.  

4.2.9.  Intrinsic viscosity determination 

Intrinsic viscosity, denoted as [η], is a useful experimental parameter in the study of 

dilute solutions. Intrinsic viscosity is a measure of the hydrodynamic volume occupied by the 

individual polymer molecules in isolation (Richardson & Kasapis, 1998). In dilute solutions, the 

polymer chains are separate, and the [η] of a polymer in solution depends only on the 

dimensions of the polymer chain. Because [η] indicates the hydrodynamic volume of the 

polymer molecule and is related to the molecular weight, it provides deep insights into the 

molecular characteristics of a biopolymer (Rao, 1999). 

One approach to determine the intrinsic viscosity is through extrapolation to infinite 

dilution, according to the Huggins (1942) empirical expression: 

[ ] [ ]η
η η

sp

C
k' C= + 2                                                                                                               (4)  

where the specific viscosity (ηsp) = (η-ηs)/ ηs  = ηrel  -1, the relative viscosity (ηrel) = η/ ηs, and η 

and ηs are the apparent viscosities of the solution and the solvent, respectively. The 

extrapolations to zero concentration are usually determined by plotting ηsp /C versus C or ln 

(ηrel)/C versus C, which would result in straight lines, respectively. Tanglertpaibul and Rao 

(1987) determined the intrinsic viscosity from the relative viscosity by using the expression: 

[ ]η ηrel 1= + C                                                                                                                     (5) 
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The [η] was obtained from the slope of ηrel vs. C plot, which gave straight lines, with linear 

regression correlation coefficients in the range 0.99 to 1.0.  Chou and Kokini (1987) suggested a 

similar method for polyelectrolytes, in which the interactions between macromolecules in dilute 

solutions are not existent, and the second term of the Huggins equation is negligible; therefore, a 

plot of ηsp vs. C is linear.  

In this study, the [η] was determined for each solution by measuring relative viscosities 

of polysaccharides solutions within the range 1.2 <ηrel < 2.0 at γ = 10s-1. The intercept of ηsp /C 

vs. C plot in the dilute domain gave the first estimation of [η] for guar gum, whereas the slope of 

ηrel vs. C plot gave the first estimation of [η] for xanthan and xanthan-guar mixtures. 

4.2.10. Statistical analysis 

A two-way factorial design was used for the study of rheological properties. For all 

polysaccharides samples, three replications were performed. The analysis of variance (ANOVA) 

and general linear models procedure (GLM) were conducted with Statistical Analysis System 

(2002-2003) (version 9.1, SAS Institute, Inc., Cary, N.C., U.S.A.). Comparisons among 

treatments were analyzed by using Fisher’s least significant difference (LSD), with a 

significance level of P < 0.05.  

 

4.3. Results and Discussion 

4.3.1. Interaction of polysaccharides 

 To evaluate the synergistic/ non synergistic effect of the xanthan-guar mixtures in dilute 

solutions, the ηrel of polysaccharides and their mixtures were plotted as a function of xanthan 

fraction at γ = 10 s-1 (Fig. 4.1a & b). Fig. 4.1a shows the ηrel behavior of native xanthan, guar, 

and their mixtures in water, 2 and 40 mM NaCl at γ = 10 s-1 and 25°C. Fig. 4.1b depicts ηrel 
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behavior of deacetylated xanthan, guar, and their mixtures. In water and 2 mM NaCl, the relative 

viscosities of both native xanthan-guar mixtures and deacetylated xanthan-guar mixtures were 

much higher than the relative viscosities calculated for mixtures assuming no interaction, 

whereas no pronounced increase was found for polysaccharide mixtures in 40 mM NaCl. Such 

deviations from the values calculated for mixtures assuming no interaction may be explained in 

terms of specific molecular interactions between xanthan and guar gum. In  
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Fig. 4.1. Relative viscosity (ηrel) against xanthan fraction for (a) native xanthan-guar mixtures 
and (b) deacetylated xanthan-guar mixtures. ( ) water; (▲) 2 mM NaCl; (■) 40 mM NaCl; (---) 
values calculated for mixtures assuming no interaction.  
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the 2 mM NaCl, a smaller synergistic interaction was observed, whereas a stronger synergy in 

the absence of salt was noted. No synergistic interaction was found in 40 mM NaCl. The ηrel of 

native xanthan-guar mixtures and deacetylated xanthan-guar mixtures varied with respect to 

polysaccharide ratio. The maximum viscosity synergistic interaction for native xanthan-guar 

mixtures was observed at a ratio of 3:2, whereas the maximum viscosity synergistic interaction 

for deacetylated xanthan-guar mixtures was obtained at a ratio of 4:1. These results show the 

influence of xanthan conformation on the increase of viscosity for the polysaccharide mixtures, 

reflecting that intermolecular interaction occurred between xanthan and guar mixtures in water 

and 2 mM NaCl, but not in 40 mM NaCl solution. 

The viscosity measurements in dilute solutions were further supported by η" 

measurements determined by capillary viscometry (Fig. 4.2a & b). Fig. 4.2a & b depict the η" 

behavior as a function of mixing ratio of native xanthan-guar mixtures and deacetylated xanthan-

guar mixtures, respectively, in water and 2 and 40 mM NaCl at γ = 10 s-1. There was a very 

pronounced increase in η" for both native xanthan-guar mixtures and deacetylated xanthan-guar 

mixtures in water and 2 mm NaCl, whereas the η" of the polysaccharide mixtures was 

diminished in 40 mM NaCl, confirming the viscosity measurements. 
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Fig. 4.2. Elasticity (η") against xanthan fraction for (a) native xanthan-guar mixtures and (b) 
deacetylated xanthan-guar mixtures. ( ) water; (▲) 2 mM NaCl; (■) 40 mM NaCl; (---) values 
calculated for mixtures assuming no interaction. 
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To further characterize the intermolecular interaction between the polysaccharides in water and 

salt solutions, the η' and η" values in dilute solutions at γ = 10 s-1 were statistically analyzed 

(Table 4.1).  As shown in Table 4.1, significant differences (P < 0.05) in η' and η" values were 

found between water and salt solutions for the native xanthan-guar mixtures and for the 

deacetylated xanthan-guar mixtures. As the salt concentration increased, a significant (P < 0.05) 

decrease in η' and η" values was observed for both native xanthan-guar mixtures and 

deacetylated xanthan-guar mixtures. The η' of native xanthan significantly decreased as the salt 

concentration increased, whereas no significant difference was found in the η" values between 2 

and 40 mM NaCl. The η' and η" values of deacetylated xanthan significantly decreased in salts, 

compared with values in water solutions, but no significant decrease was found between 2 and 40 

mM NaCl. The decrease in η' and η" values in salt exhibited a typical polyelectrolyte behavior.  

This decrease with the addition of salt was due to the charge screening for electrostatic 

repulsions of the trisaccharide sidechains (Muller et al., 1986; Rochefort & Middleman, 1987). 

The charge screening led to a more compact conformation and caused a reduction in 

hydrodynamic size of the molecule (Rochefort & Middleman, 1987), hence lowering the 

viscosities and elasticities.  In contrast, guar gum, which is a neutral polysaccharide, exhibited no 

significant difference in η' and η" values between water and salt solutions.  

In aqueous solutions, the structure of xanthan undergoes an ‘order-disorder’ transition 

from helix to coil structure. This conformational transition depends on temperature, ionic 

strength of solutions, nature of electrolyte, pH, and acetate and pyruvate contents (Holzwarth 

1976; Morris et al., 1977; Baradossi & Brant, 1982;  
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Table 4.1. Effect of ionic strength on the dynamic viscoelastic parameters of native xanthan-guar blends and deacetylated xanthan-
guar blends measured at 20 °C and 10 s-1.  

Viscosity (mP. s)  Elasticity (mP. s)  Native Xanthan:Guar 
(%) 0 mM NaCl 2 mM NaCl 40 mM NaCl 

 
0 mM NaCl 2 mM NaCl 40 mM NaCl 

100:0 6.78a ± 0.15 3.33b ± 0.11 3.11c ± 0.03 3.55a ± 0.11 1.03b ± 0.08 0.86b ± 0.01 
80:20 7.05a ± 0.05 3.92b ± 0.18 3.23c ± 0.06 3.99a ± 0.21 1.54b ± 0.25 0.90c ± 0.02 
60:40 6.57a ± 0.06 3.94b ± 0.18 3.34c ± 0.03 3.77a ± 0.28 1.47b ± 0.32 0.94c ± 0.01 
40:60 6.09a ± 0.17 3.72b ± 0.04 3.44c ± 0.04 2.99a ± 0.09 0.99b ± 0.07 0.84b ± 0.05 
20:80 4.71a ± 0.06 3.64b ± 0.18 3.20c ± 0.22 1.58a ± 0.02 0.78b ± 0.09 0.48c ± 0.04 
0:100 3.24a ± 0.14 

 
3.16ab ± 0.14 
 

3.04b ± 0.03 
 

0.16a ± 0.03 
 

0.14a ± 0.02 
 

0.12a ± 0.02 
 Deacetylated Xanthan:Guar 

(%) 
100:0 8.93a ± 0.92 3.25b ± 0.06 2.56b ± 0.05 4.23a ± 0.68 0.54b ± 0.06 0.31b ± 0.03 
80:20 12.16a ± 1.54 7.97b ± 0.23 2.88c ± 0.09 30.96a ± 2.66 20.13b ± 2.88 0.49c ± 0.03 
60:40 11.81a ± 0.46 6.88b ± 0.51 3.04c ± 0.05 20.75a ± 2.25 6.41a ± 1.35 0.56c ± 0.05 
40:60 10.0a ± 0.15 6.11b ± 0.31 3.37c ± 0.01 12.46a ± 0.57 4.03b ± 0.85 0.67c ± 0.01 
20:80 6.27a ± 0.49 4.81b ± 0.29 3.17c ± 0.15 4.08a ± 0.52 1.78b ± 0.44 0.47b ± 0.06 
0:100 3.24a ± 0.14 3.16a ± 0.14 3.04a ± 0.03 

 

0.16a ± 0.03 0.14a ± 0.02 0.12a ± 0.02 

 
a, b, c Means followed by the same letters in the same row are not significantly different (P ≤ 0.05) 
Results are expressed as means ± SD for three replications 
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Cesàro, & Delben, 1983; Norton et al., 1984). Our results show the influence of xanthan 

conformation on the increase of η' and η" in water and 2 mM NaCl, reflecting that 

intermolecular binding between xanthan (native and deacetylated) and guar has occurred in 

dilute solutions. Xanthan is in the disordered conformation in distilled, deionized water at 25 °C, 

whereas, in salt at 25 °C, xanthan starts to takes on an ordered conformation due to charge 

screening effects. In distilled water at 25 °C, the backbone of xanthan is disordered, but highly 

extended, due to the electrostatic repulsions from the charged groups on the trisaccharide 

sidechains (Rochefort & Middleman, 1987). Because the structure is highly extended, the 

molecules may align and associate by hydrogen bonding to form a weakly structured material.   

Therefore, as the temperature increases, a transition to coil-like configuration occurs, which 

causes a dissociation of the molecules and a subsequent change in the rheological properties 

(Rochefort & Middleman, 1987). When salt is added to the solution at 25 °C, a disorder-order 

transition occurs in which the backbone takes on a helical conformation, and the charged 

trisaccharide sidechains collapse down onto the backbone (due to charge screening effects) and 

stabilize the ordered conformation (Muller et al., 1986). Mixing the polysaccharides in 40 mM 

NaCl substantially diminished the molecular associations between xanthan and guar gum, as 

indicated by the pronounced decreases in the η' and η" values. The η' and η" differences in 

water, 2 mM NaCl, and 40 mM NaCl can be explained in terms of disordering degree of xanthan 

structure. In water, xanthan is in the disordered conformation. Optical-rotation studies 

(Lecourtier, Chauveteau, & Muller, 1986; Milas & Rinaudo, 1986; Cheetham & Mashimba, 

1988, 1991) have confirmed that xanthan is in the disordered conformation in water at room 

temperature. Electrostatic repulsions that involve glucuronate and pyruvate in the side chains are 

poorly shielded, thus favoring the disordered conformation (Cheetham & Mashimba, 1991).  In 2 
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mM NaCl, xanthan is partly ordered, whereas the molecule is completely ordered in 40 mM 

NaCl. Muller et al., (1986), using optical rotation studies, noted a sharp transition in xanthan 

structure at 10 mM NaCl. Norton et al., (1984) reported that a complete conformational ordering 

would occur at 25 °C only for salt concentrations in excess of 35 mM. Rochefort & Middleman 

(1987) observed a gradual transition in the shear viscosity of a 250-ppm xanthan solution, 

confirming the idea of co-existence of ordered and disordered regions in a single chain. They 

concluded that a complete ordered conformation can be obtained for salt concentrations > 10 

mM NaCl. Thus, the highly disordered xanthan was capable of directly interacting with guar to 

form heterotypic structures and a higher synergistic interaction (Zhan et al., 1993; Goycoolea et 

al., 1994; Morris, Brownsey, & Ridout, 1994; Morris E.R., 1996; Morris V.J., 1996).    

Because the synergistic interaction decreased as the salt concentration increased, our 

results suggest that the degree of disordering of xanthan is critical in xanthan-guar interaction, 

which may explain the differences in η' and η" measurements between 2 and 40 mM NaCl. 

These results support previous studies (Cheetham & Mashimba, 1988, 1991; Zhan et al., 1993) 

proposing that intermolecular binding occurred between galactomannans and disordered 

segments of xanthan.  

4.3.2. Intrinsic viscosities of polysaccharides  

The intermolecular binding between xanthan and guar was further supported by the 

intrinsic viscosities of xanthan and guar mixtures (Fig. 4.3a & b). Fig. 4.3a & b  
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Fig. 4.3. Plots of intrinsic viscosities against xanthan fraction. (a) native xanthan-guar mixtures 
and (b) deacetylated xanthan-guar mixtures. ( ) water; (▲) 2 mM NaCl; (■) 40 mM NaCl; (---) 
values calculated for mixtures assuming no interaction. 
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depict the intrinsic viscosities against the percentage of xanthan fraction at different ionic 

strengths for native xanthan-guar mixtures and deacetylated xanthan-guar mixtures, respectively. 

The intrinsic viscosities of deacetylated xanthan-guar mixtures in water and 2 mM NaCl were 

higher than those calculated from the weight averages of the two individually assuming no 

interaction, whereas the intrinsic viscosities of native xanthan-guar mixtures were lower than 

those calculated from weight averages of the two individually, demonstrating that intermolecular 

interaction occurred between xanthan and guar gum in water and 2 mM NaCl. If no interaction 

existed between the two polymers in the mixtures, a linear relationship between intrinsic 

viscosity and xanthan fraction would be observed, and the intrinsic viscosities for the mixtures 

would be only the weight averages of the two polymers. Instead, the intrinsic viscosities of the 

mixtures was out of linearity, suggesting that specific attraction forces were present between the 

xanthan and guar molecules in water and 2 mM NaCl. In 40 mM NaCl, however, a linear 

relationship was found between the intrinsic viscosities and xanthan fraction for both 

deacetylated xanthan-guar mixtures and native xanthan-guar mixtures, suggesting that the 

intrinsic viscosities of the mixtures were only the weight averages of the two polymers, and that 

no specific interaction forces were present between the two polymer molecules that would 

encourage aggregation.  The ordered, helical structure of xanthan was stabilized in 40 mM NaCl; 

thus, the interaction between xanthan and guar gum diminished. The results suggest that the 

intermolecular binding between xanthan and guar gum may not occur in 40 mM NaCl, and 

mutual incompatibility may take place under these conditions. These results are in agreement 

with a previous study conducted by Wang, Wang, & Sun (2002). The discrepancy in the intrinsic 

viscosities behavior of both deacetylated xanthan-guar mixtures and native xanthan-guar 

mixtures in water and salts solutions can be explained again in terms of disordering degree of 
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xanthan structure. In 2 mM NaCl, xanthan is partly ordered, whereas the molecule is completely 

ordered in 40 mM NaCl. 

Intrinsic viscosity of polymers is dependent on their molecular weight and chain 

dimension (Flory, 1953). In dilute solutions, the polymer chains are separate, so [η] of a polymer 

in solution depends only on the dimensions of the polymer chain (Rao, 1999). The strong 

intermolecular binding between deacetylated xanthan and guar can be attributed to the increased 

chain flexibility of deacetylated xanthan, which may facilitate the interaction with guar gum. The 

intrinsic viscosities of native xanthan-guar mixtures increased as the xanthan fraction increased 

in the mixtures. The intrinsic viscosities of native xanthan-guar mixtures were lower than those 

calculated from weight averages of the two individually. Because xanthan plays a crucial role in 

controlling the viscosity of xanthan-guar mixtures, the decrease in intrinsic viscosities of their 

mixtures can be attributed to the conformational change of xanthan from a helical form to a more 

flexible form because of binding.  Xanthan conformation change outweighed the increase of 

intrinsic viscosity due to binding; thus, the dramatic decrease of the intrinsic viscosities of the 

mixtures was observed. These results suggests that conformational change of deacetylated 

xanthan may not predominate in controlling the intrinsic viscosity, and that deacetylated xanthan 

may be in an exact conformation to bind guar. 

Table 4.2 shows the values of the intrinsic viscosities of deacetylated xanthan, native 

xanthan, guar, and their mixtures in water and salt solutions. The [η] of deacetylated and native 

xanthan decreased significantly (p < 0.05) as the salt concentration increased, showing a typical 

behavior of polyelectrolytes. The charge  
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Table 4.2. Effect of ionic strength on the intrinsic viscosity of native xanthan-guar blends and 
deacetylated xanthan-guar blends measured at 20 °C and 10 s-1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

[η] (dL/g)    
Native Xanthan:Guar 

(%) 
0 mM NaCl 2 mM NaCl 40 mM NaCl 

100:0 155.7a ± 9.3 92.9b ± 2.7 73.2c ± 1.1 
80:20 82.2a ± 2.8 66.0b ± 1.3 56.1c ± 2.2 
60:40 63.3a ± 1.4 54.3b ± 0.9 45.3c ± 1.8 
40:60 56.9a ± 7.2 39.8b ± 1.4 36.0b ± 1.5 
20:80 32.8a ± 2.86 29.2ab ± 0.7 25.0b ± 2.5 
0:100 12.0a ± 2.1 11.9a ± 0.6 11.7a ± 0.6 

Deacetylated Xanthan:Guar 
(%) 

   

100:0 163.0a ± 5.0 90.6b ± 2.3 56.7c ± 3.3 
80:20 187.4a ± 5.8 126.6b ± 5.2 47.2c ± 2.5 
60:40 135.0a ± 7.3 85.2b ± 1.4 38.7c ± 0.8 
40:60 88.0a ± 5.6 55.8b ± 1.1 32.7c ± 0.2 
20:80 46.1a ± 2.8 36.4b ± 2.2 23.4c ± 1.6 
0:100 12.0a ± 2.1 11.9a ± 0.6 11.7a ± 0.6 

a, b, c Means followed by the same letters in the same row are not significantly different (P ≤ 0.05) 

Results are expressed as means ± SD for three replications 

 

screening for electrostatic repulsions of the trisaccharide sidechains from NaCl led to a more 

compact conformation and caused a significant reduction in hydrodynamic size of the molecule. 

Thus, the  [η] was decreased.  On the other hand, salt exhibited little effect on the [η] guar gum 

due to the nonionic nature of guar. The [η] of guar gum decreased slightly with no significant 

difference as the salt concentration increased.  

  The [η] of deacetylated xanthan in water was higher than the [η] of native xanthan. 

Deacetylated xanthan had a [η] of 163 dl/g, whereas the [η] of native xanthan was 154dl/g; 

however, the difference not statistically significant (P > 0.05). This is consistent with findings 

reported by Callet, Milas, & Rinaudo (1987), who showed that acetyl and pyruvate contents have 
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no influence on the intrinsic viscosity of xanthan in dilute solution. The [η] of guar gum was 12 

dl/g. Deacetylated and native xanthan had a much higher [η] than guar gum, which can be 

attributed to the significant difference in their chain stiffness. Xanthan has a stronger chain 

stiffness than the flexible random-coil conformation of guar, which may increase the chain 

dimensions, resulting in a higher [η]. 

 4.3.3. Coil overlap parameter of polysaccharides 

In dilute solutions, the individual polymers coils are separate from each other and are free 

to move independently. With increasing concentrations, the coils start to overlap and 

interpenetrate one another. The transition from dilute solutions to concentrated solutions is 

usually accompanied by a pronounced change in the concentration dependence of solution 

viscosity (Morris, Cutler, Ross-Murphy, Ress, & Price, 1981; Morris, 1995). The corresponding 

concentration is called critical or coil-overlap concentration (C*). For random-coil 

polysaccharide solutions except for galactomannans, Morris et al.  (1981) reported that the slope 

of double logarithmic plots of ηsp against C[η] was close to 1.4 in a dilute regime, whereas, in 

the concentrated regime, the slope increased to 3.3. The C* transition occurred at a value of C[η] 

close to 4, and the ηsp at this degree of coil overlap was invariably close to 10. Guar gum was 

found to deviate from those observations.  The C* transition of guar occurred at a lower value of 

the coil-overlap parameter C[η] = 2.5, and the viscosity showed a higher dependence on 

concentration, with a slope of 5.1 instead of 3.3 (Morris et al., 1981). 

 In this study, all the polysaccharides systems were studied in the dilute regime. Fig. 4.4a 

& b and Fig. 4.5a & b show the double logarithmic plot of ηsp against coil-overlap parameter 

(C[η]) for native xanthan-guar mixtures and deacetylated xanthan-guar mixtures in 2 and 40 mM 

NaCl, respectively. There was no change in the slope of the double logarithmic plot of ηsp 
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against C[η], indicating that no molecular entanglements were obtained, and polysaccharide 

mixtures in 2 and 40 mM NaCl were in the dilute domain. The slope values of the double 

logarithmic plot of ηsp against C[η] are given in Table 4.3. As shown in Table 4.3, the slope of 

native xanthan and deacetylated xanthan in salt solutions significantly decreased, comparing with 

the slope  in water solutions, whereas no significant change was observed for guar solutions.  

Our results showed that the slopes of xanthan and guar were lower than those reported by Morris 

et al. (1981), Cuvelier & Launay (1986), and Launay, Cuvelier, & Martinez-Reyes (1997), 

demonstrating that both xanthan (0.025%) and guar gum (0.075%) were in the dilute domain (C 

< C*). The slopes for deacetylated xanthan and deacetylated xanthan-guar mixtures were lower 

than those for native xanthan and native xanthan-guar mixtures, indicating more flexible xanthan 

due to the deacetylation. 
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Fig. 4.4. Double logarithmic plot of specific viscosity (ηsp) against coil-overlap parameter (c[η]) 
in 2 mM NaCl for  (a) deacetylated xanthan-guar mixtures, (b) native xanthan-guar mixtures.   
Xanthan:Guar ratio: ( ) xanthan, (●) guar, (■) 4:1, (▲) 3:2, (×) 2:3,  (+) 1:4. 
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Fig. 4.5. Double logarithmic plot of specific viscosity (ηsp) against coil-overlap parameter (c[η]) 
in 40 mM NaCl for  (a) deacetylated xanthan-guar mixtures, (b) native xanthan-guar mixtures.   
Xanthan:Guar ratio: ( ) xanthan, (●) guar, (■) 4:1, (▲) 3:2, (×) 2:3,  (+) 1:4. 
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Table 4.3. Effect of ionic strength on the slope of native xanthan-guar blends and deacetylated 
xanthan-guar blends measured at 20 °C and 10 s-1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slope    
Native Xanthan:Guar 

(%) 
0 mM NaCl 2 mM NaCl 40 mM NaCl 

100:0 1.38a ± 0.02 1.17b ± 0.03 1.11b ± 0.03 
80:20 1.51a ± 0.01 1.17a ± 0.04 1.20a ± 0.02 
60:40 1.34a ± 0.16 1.28a ± 0.02 1.27a ± 0.02 
40:60 1.55a ± 0.02 1.38b ± 0.02 1.36b ± 0.02 
20:80 1.69a ± 0.02 1.31b ± 0.04 1.33b ± 0.08 
0:100 1.44a ± 0.06 1.41a ± 0.01 1.39a ± 0.01 

Deacetylated Xanthan:Guar 
(%) 

   

100:0 1.32a ± 0.05 1.09b ± 0.03 1.17c ± 0.02 
80:20 1.22ab ± 0.03 1.25a ± 0.05 1.18b ± 0.03 
60:40 1.33ab ± 0.03 1.38a ± 0.02 1.28b ± 0.03 
40:60 1.43a ± 0.07 1.36b ± 0.04 1.33b ± 0.03 
20:80 1.35ab ± 0.06 1.41a ± 0.04 1.32b ± 0.02 
0:100 1.44a ± 0.06 1.41a ± 0.01 1.39a ± 0.01 

a, b, c Means followed by the same letters in the same row are not significantly different (P ≤ 0.05) 

Results are expressed as means ± SD for three replications 
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4.4. Conclusion 
 

Synergistic interactions for both native xanthan-guar mixtures and deacetylated xanthan-

guar mixtures in the dilute regime were observed in water and 2 mM NaCl, but not in 40 mM 

NaCl. A stronger synergistic interaction was noted for deacetylated xanthan-guar mixtures. The 

results suggest that intermolecular interaction has occurred between xanthan and guar mixtures 

in water and 2 mM NaCl, but may not occur in 40 mM NaCl, and mutual incompatibility may 

occur. The results suggest that the degree of disordering of xanthan played a critical role in 

xanthan-guar interaction and may explain the differences in η', η", and [η] measurements 

between 2 and 40 mM NaCl, and hence, the intermolecular interaction that occurred between the 

backbone of guar gum and the disordered segments of xanthan. 
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Future Recommendations 
 

 
Although rheological methods provided an absolute evidence for the intermolecular 

interaction between xanthan and guar gum in dilute solutions, the interaction between the two 

polysaccharides in dilute solutions can be further studied by other analytical methods. 

 Light scattering methods can be used to study the interaction between the two 

polysaccharides. Preliminary work revealed that high performance size-exclusion 

chromatography (HPSEC), coupled on line with a multiangle laser light scattering detector 

(MALLS) and a refractive index detector can be a useful method to characterize xanthan-guar 

interaction. However, much attention needs to be paid to the sample aging of the 

polysaccharides. Xanthan’s molecular weight significantly increased as the sample age increased 

due to polymer aggregations.   

 Xanthan-guar interaction can be investigated by using atomic force microscopy (AFM) 

technique. AFM can be used to characterize the conformations of individual macromolecules of 

xanthan and guar gum and to provide images of xanthan-gaur mixture structure in dilute 

solution.  

 Combinations of xanthan-guar gum can be applied to food systems to improve texture 

and stability of finished products. The xanthan-guar system can be used in milk-juice beverages 

to prevent casein micelles from clumping together and precipitation. Chocolate and flavored 

milks are examples where this system can be applied to suspend cocoa powder. In low-calorie 

beverages such as soda, a combination of xanthan-guar gum can be used to improve texture and 

mouthfeel without adding any significant calories. In beverages that contain fruit pulp, xanthan-

guar gum system can be used to slow the rate at which the pulp settles.  
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