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Abstract 

The effect of blur/clarity contrast on selective attention was investigated in terms of how unique 

blur and/or clarity guides attention.  Visual blur has previously been suggested to be processed 

preattentively using a dual-task paradigm (Loschky et al., 2014).  Experiments 1 and 2 used 

rotated L and T visual search tasks with blur/clarity contrast being manipulated such that it was 

non-predictive of the target’s location.  Each experiment was preceded by a legibility control 

study such that blurred and clear letters had similar accuracy and reaction times.  This allowed 

for the results to be interpreted as changes in attention rather than difficulty identifying the letters 

because they were blurry.  Results suggest that when non-predictive of target location, unique 

blur plays a passive role in selective attention in which it is ignored, neither capturing nor 

repelling attention to its spatial location, whereas unique clarity captures attention.  The findings 

provide insight to the role that blur/clarity contrast plays in guiding visual attention, which can 

be implemented in visual software to help guide selective attention to critical regions of interest 

displayed on a computer screen. 
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Chapter 1 - The Effect of Blur on Visual Selective Attention 

In film, one technique that directors use to guide their audience’s attention is to use depth 

of field to focus in on objects or people of interest making them appear clearly and thereby 

blurring other areas of less relevance in the scene at other distances.  In Figure 1 below there is a 

simplified version of this technique to provide an example of how blur/clarity contrast guides 

attention.  When viewing the short clip (2 seconds), answer these two questions: 1) At the 

beginning of the clip do you first look at the L or the T? 2) At the end of the clip, which are you 

looking at?  

 

 

Figure 1. KSU Blur/Clarity Guidance Example.  Peterson (2016) 

https://youtu.be/_m8Bs8HeIQ4.  

This brief clip should demonstrate that the visual clarity of the scene can guide your 

selective attention to look first to the T and end on the L.  Several interesting questions emerge 

from this simple demonstration related to blur and how it either captures, repels, or is ignored by 

selective attention when it is a unique item.  According to Treisman and Gelade (1980), features 

such as orientation, spatial frequencies, and color, among others, have been argued to be 

preattentive features that can be processed in parallel without attention.  A recent finding from 

Loschky et al. (2014), in which blur detection was unaffected by cognitive load, suggests that 

blur is preattentively processed.  Visual blur is also largely avoided by eye movements (Khan, 

Dinet, & Konik, 2011; Loschky & McConkie, 2002).  This seems to then make blur unique 

among preattentively processed stimulus features.  Specifically, features that are preattentively 

processed have generally been shown to capture attention (Joseph, Chun, & Nakayama, 1997), 

leading to pop out when unique (Treisman & Gelade, 1980).  Yet, blur when task irrelevant is 

often ignored even when unique (Enns & MacDonald, 2012). 

https://youtu.be/_m8Bs8HeIQ4
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 Preattentive versus Attentive Processing in Visual Search 

According to Treisman and Gelade’s (1980) feature integration theory (FIT), a 

preattentive feature can be processed in parallel, namely simultaneously across the visual field, 

with other preattentive features.  According to FIT, preattentive features have specialized 

populations of cells in the brain that can process the visual stimuli without attention being 

needed.  Visual search has previously been used to provide evidence of such preattentive features 

(Treisman & Gelade, 1980).  This can be shown in a feature search task, which is when a 

specific feature such as color or a line orientation differs significantly from all other features 

displayed, for example a red square target amongst green square distractors.  In such feature 

search tasks, as set size increases, the red square will continue to pop out as observed by reaction 

times (RT).  As set size increases, the RT x set size slope should remain approximately constant 

(e.g., < 10 msec/item) (Treisman & Gelade, 1980).  However, when viewing objects in the real-

world environment, they are usually not made up of only one single feature, but are complex 

objects made up from multiple features, thus attention is required to find the object of interest 

when it is not alone.  For example, finding your car in a parking lot full of other cars will require 

an attentive search when the other cars share features of your car such as the color or shape and 

no single feature is unique to your car.  Instead, a combination of correct features is required to 

make up your car and attention is required to bind those features together to identify your car 

amongst the other cars. 

The attention stage is required when more than one feature needs to be bound to create an 

object in order to identify it.  When the RT x set size slope does increase (e.g., 20-30 msec/item), 

then it is taken to suggest that attention is required to find the target (Wolfe, 2007).  Treisman 

and Gelade (1980) would argue that this is because attention is required to bind separate features 

together to find the target.  This is found in conjunction searches, where at least two features are 

necessary to uniquely identify a target, because those same features are shared amongst the 

distractors, but not in the same combination.  For example, the target may be a red O amongst 

red Xs and green Os as distractors (Wolfe, Cave, & Franzel, 1989).  With such conjunction 

searches, it has typically been found that as set size increases, the RT also increases suggesting 

serial processes requiring attention (e.g., Treisman & Gelade, 1980; Wolfe et al., 1989).   
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The difference seen between feature and conjunction searches is how the search is 

performed.  If it is a feature search, it can be accomplished with parallel processing across the 

field of view.  Whereas in a conjunction search, attention is required and a serial process occurs 

to find the target or determine its absence.  An alternative explanation to how a difficult 

conjunction visual search is performed is through a resource limited parallel process, in which 

less relevant items are not fully processed as the perceptual load of a given task increases (Lavie, 

1995).  Moving forward, we will focus on the two stage attentional model.  While this implies 

that two separate processes are occurring and is in line with Treisman and Gelade (1980), Wolfe 

(1989) has suggested that the parallel and serial processes are not as separate as argued by 

Treisman and Gelade.  Wolfe (2007) argues that the parallel processes can feed into serial 

processing, thus they may not be two separate systems.  A serial process is when one or a small 

number of items are processed at one time and when the target is not present there, attention 

must be moved to a new location to process other items.  When attention is required to move, it 

takes time (Posner, 1980).  Thus, when set size increases and attention is required, the number of 

items that need to be attended increases, so the RT will increase.  In general, when serial 

processing is occurring, the RT x set size slopes for target-absent versus -present trials have a 2:1 

ratio (Wolfe, 1989).   

 Another serial search task is a spatial configuration search, where features are searched 

amongst the target and distractors, but the features’ spatial relationships to one another differ 

between the target and distractors.  A well-established spatial configuration search is a rotated L 

versus T search task (Wolfe et al., 1989; Egeth & Dagenbach, 1991; Jiang & Chun, 2001).  Egeth 

and Dagenbach (1991) provided evidence that an L and T search task may be processed in 

parallel if the letters are not rotated, whereas if the letters are rotated, then the task is processed 

serially.  Chun and Jiang (1998) used an L and T task which was still serially processed when the 

T target was only rotated 90° to the left or right from the upright position, and the L distractors 

had four rotations (0° upright, 90°, 180°, and 270°).  Adding further difficulty to the rotated L 

and T task, Jiang and Chun (2001) made the distractor Ls look more T-like by offsetting the lines 

to bring one line closer to the center of the other line, making the L appear more T-like.  Similar 

stimuli to Jiang and Chun (2001) will be used in Experiment 2 as well as its pilot. 
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 Attentional Capture 

 Preattentive features have been argued to involuntarily guide attention suggesting that a 

feature is capturing selective attention to its location (Wolfe, 2007).  In a feature search, the 

target having one unique feature (a singleton) makes it highly salient (Itti & Koch, 2001).  Itti 

and Koch (2001) argue that the degree to which something is salient in a search task, depends on 

the feature differences between the target and its distractors.  A red square among green squares 

is highly saliently because it has a unique color feature which is easily distinguishable from its 

distractors, and having a homogenous set of distractors will also increase the target’s pop out 

(Wolfe & Horowitz, 2004).  Therefore, it is not only the features of the target that makes it 

salient, but the features of the surrounding distractors also influence the saliency of the target.  If 

the target was amongst a more heterogeneous set of distractors, such as a red square amongst 

green, blue, orange, yellow, and purple squares, then the saliency of the target would be reduced 

(Wolfe & Horowitz, 2004).  The saliency of the target decreases in heterogeneous distractor sets 

because there are more initial low-level features being included in a feature map, which will 

eventually result in a saliency map where the most salient item will capture selective attention in 

a winner-take-all fashion (Itti & Koch, 2001).  In the case of the red square among green squares 

the distractors are all green, which together allows for the red target singleton to be highly salient 

and be the winner by capturing selective attention. 

 When a target has a unique preattentive feature it can be considered a singleton.  

Singletons typically involuntarily pop out by capturing attention, such as in a feature search 

(Treisman & Gelade, 1980).  Theeuwes et al. (1998) using the Oculomotor Capture paradigm 

had participants perform a visual search task and were instructed to identify the color singleton 

target.  When the color singleton target was simultaneously presented with a new object that 

suddenly onset, then selective attention was captured and an eye movement went to the location 

of the abrupt onset distractor on approximately half of the trials.  Theeuwes et al. (1998) showed 

that attention could be captured by an abrupt onset of a new object even when it was, according 

to their definition, task-irrelevant, therefore the abrupt onset was never located at the target nor 

helpful in making a correct answer.  Furthermore, not only was covert attention captured (i.e., 

attention at a separate location from the point of fixation), but eye movements (overt attention) 

were also frequently made to the sudden onset distractor.  However, it makes sense that overt 

attention would follow covert attention because a precursor to making an eye movement to a 
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location is that covert attention first be moved to that location (Corbetta, 1998; Corbetta et al., 

1998; Deubel & Schneider, 1996; Hoffman & Subramanian, 1995).  Theeuwes et al. (1998) 

found overt attention captured to onset distractors on ~50% of trials, which is similar to a 

number of other studies that have found capture rates that have ranged from 5-40% (Belopolsky, 

Kramer, & Theeuwes, 2008; Boot et al., 2005; Irwin, Colcombe, Kramer, & Hahn, 2000; 

Kramer, Hahn, Irwin, & Theeuwes, 2000).  

Theeuwes (1991) showed that attentional capture can occur to an abrupt onset or offset’s 

spatial location when non-predictive of the target’s location, namely the abrupt onset and offsets 

occurred at all locations equally often (regardless of whether a distractor or target was there).  

Yantis and Jonides (1984) have also shown an abrupt onset will capture attention.  However, 

Yantis (2000) argued that attention is not always captured by singletons when they are not task-

relevant.  Instead, top-down processes can override bottom-up attentional capture such as from 

an abrupt onset, if there is enough time for the top-down process to implement a goal-orientation 

for detecting a target.  This was also supported by Theeuwes et al. (1998) in Experiment 2 where 

they cued covert attention to go to the location of the target prior to the abrupt onset occurring.  

Once covert attention was already placed at the target’s location, the abrupt onset no longer 

captured attention in the same manner as when the abrupt onset of a new object and color target 

singleton appeared simultaneously in Experiment 1 (Theeuwes et al., 1998).  However, Yantis 

and Egeth (1999) have shown that singletons that are non-predictive of a target’s location do not 

necessarily capture attention, even when salient.  They found evidence of capture of selective 

attention to non-predictive target locations only for singletons that varied by features on a 

prothetic dimension, namely a dimension with quantifiable directionality such as size (i.e., 

varying degrees of size) or luminance (i.e., varying degrees of brightness).  However, they did 

not find capture to non-predictive target locations for singletons that varied by features on a 

metathetic dimension, namely qualitative feature differences such as color (e.g., red target versus 

blue distractors).  In the current experiments, the term task-irrelevant will be used in line with 

Yantis and Egeth (1999), to refer to singletons that are non-predictive of the target’s location, 
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because the singletons are distributed equally across all locations in the display (whether target 

or distractor).1  

 

 Effects of Blur On Attention 

As with Theeuwes’ (1991) findings that both abrupt onsets and offsets will capture 

selective attention, so too can unique blur and clarity be thought as being the opposite sides of 

the same coin capturing selective attention when unique.  Typical visual search findings support 

that unique items pop out (Triesman & Gelade, 1980).  In a typical feature search such as for a 

red square target amongst green square distractors, the red square will pop out, but it is also 

expected that a green square target amongst red square distractors would also pop out.  

Therefore, it is simply a matter of uniqueness in the search display capturing attention to the 

most salient item (Itti & Koch, 2001).  As noted above, Loschky et al. (2014) have provided 

evidence that visual blur is another preattentive feature by showing that blur detection was 

unaffected by cognitive load.  One may expect then that both unique blur and clarity would 

produce similar outcomes to other preattentive features, namely that when unique, both blur and 

clarity should capture attention, just as unique color (red among green, or green among red) or an 

abrupt onset or offset would capture selective attention.  

However, blur may not capture attention in a similar fashion as found with other 

preattentive features.  The counterpart to blur is visual clarity, which does appear to capture 

attention like other preattentive features when unique, as shown in a number of eye movement 

studies (Enns & MacDonald, 2012; Khan, Dinet, & Konik, 2011; Loschky & McConkie, 2002; 

Smith & Tadmore, 2012).  Enns and MacDonald (2012) tracked participants’ eyes while they 

viewed images in preparation for a new/old recognition test, and unknown to the participants, the 

images were manipulated to have a region on the left or right side that was sharpened or blurred 

compared to the rest of the image.  The authors found that regions of sharper clarity were looked 

at earlier, longer, and more often than regions that were blurred.  Similarly, Khan, Dinet, and 

                                                 

1 Yantis and Egeth (1999) refer to singletons that are non-predictive of a target’s location as task-irrelevant, whereas 

Theeuwes et al. (1998) refer to singletons that never occur at the target location as task-irrelevant.  Yantis and Egeth 

refer to this type of task-irrelevant singleton as unpredictive (or one might say, anti-predictive) of the target location, 

because ideally it should be actively ignored.   
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Konik (2011) tracked participants’ eyes while they freely viewed images that were manipulated 

to either have the entire image presented clearly or the entire image blurred except for one 

selected sharp region.  When the entire image was clear, gaze was distributed throughout the 

image, whereas gaze was found to be directed at the sharper region in an image that was 

otherwise blurred.  However, unlike in the Enns and MacDonald (2012) study, in the Khan et al. 

(2011) study, an issue is that there was no uniquely blurred region on a clear background to 

compare with the results of the uniquely clear region.  Smith and Tadmore (2012) found results 

similar to the previous two studies discussed (Enns & MacDonald, 2012; Khan, Dinet, & Konik, 

2011).  Participants fixated the center of the screen, and then were presented with a 3 x 3 grid of 

images missing the central image (i.e., 8 total images), and were simply instructed to freely view 

the images, which were shown for five seconds.  Importantly, all 8 images were different 

versions of the same base image that had varying levels of blur, from no blur to considerable 

blur.  They found that images with no or very little blur were fixated first, and that viewers spent 

the most time looking at the clearer images.  While presenting images with varying levels of blur 

is helpful in identifying how gaze behavior changes with different levels of blur, there is an issue 

that the no-blur images may have captured attention because they were singletons.  More 

specifically, the no-blur images may have captured attention because they were unique by being 

the only images with higher spatial frequencies.  As with the Khan et al. (2011) study, it would 

have been beneficial to have a single image that was blurred and the other images presented 

clearly.  It is unclear how blur may be responded to in that type of a situation.  It might capture 

attention by being a singleton amongst clear images.    

Conversely, blur might instead repel attention from its spatial location if blur is being 

avoided.  Loschky and McConkie (2002) provided evidence that blur may be avoided.  They 

used a gaze-contingent multiresolutional display in which a circular region centered on the 

viewer’s point of gaze was shown clearly (a moving window), and outside of the window, the 

image was shown blurred.  They then varied the size of the window of clarity, and varied the 

degree of blur outside the window.  They found that during visual search, with relatively high 

levels of blur, as window size decreased, saccades became shorter compared to the unblurred 

condition.  The results suggested that having high levels of blur in the visual periphery reduces 

the likelihood of competing objects to be selected for attention compared to objects inside the 

clear window.  These findings suggest blur may lose in a winner-takes-all type competition 
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against clear objects.  If so, then if Smith and Tadmore (2012) and Khan et al. (2011) had 

included a blurred image singleton as previously suggested, one might not find attention captured 

by the singleton, but instead, the one blurred image might be the last image fixated, which would 

suggest that blur repels attention.   

There is evidence to suggest a third alternative effect, or in this case a lack of an effect, of 

blur on selective attention.  The results from Enns and MacDonald (2012) were previously 

discussed to support the idea that in the presence of blur, unique clarity captures attention.  

However, is the reason that unique clarity is capturing attention simply the result of blur 

repelling attention from blurred spatial locations (Loschky & McConkie, 2002)?  There is 

evidence from Enns and MacDonald (2012) inconsistent with the latter idea.  In their Experiment 

3, they showed that participants were equally likely to look at a region of an image whether it 

was uniquely blurred or when the entire image was uniformly blurred.  This does not suggest that 

active avoidance of blur is occurring, but instead that blur is simply being ignored rather than 

capturing or repelling selective attention.  If blur were being actively avoided by repelling 

selective attention from its spatial location, then the uniquely blurred region would have had 

fewer eye movements to its region compared to when the entire image was uniformly blurred.  

Therefore, based on the existing literature, it seems possible that unique blur may capture 

attention (like color singletons or onsets and offsets), repel attention, or simply be ignored by 

selective attention. 

 

 Research Questions 

 Experiment 1 investigated if visual blur would capture, repel, or be ignored by selective 

attention?  Experiment 2 investigated the same question as Experiment 1, but attempted to 

amplify the effects found in Experiment 1 through set size manipulations (4 vs. 8), and by 

increasing distractor difficulty by making the L distractors appear more T-like, and by presenting 

the search items further in the visual periphery. 
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 Hypotheses 

The effects of blur and clarity on selective attention could potentially work in at least 

three different ways, each of which is stated in terms of an alternative competing hypothesis 

below and illustrated in Figure 2. 

1) Blur captures: Attention is drawn to contrast between clarity and blur, and this contrast is 

maximized for either blur or clear singletons.   

2) Blur repels: Blur only repels attention in contrast to clarity, and clarity only captures 

attention in contrast to blur. 

3) Blur is ignored: Blur is ignored by attention regardless of whether there is blur/clarity 

contrast or not, and unique clarity captures attention only in contrast to blur. 

These three alternative hypotheses regarding the blur/clarity relationship to selective 

attention can be tested by comparing visual search RTs in conditions with either blurred or clear 

singletons and all-blurred and all-clear arrays. 

 

 Generalized Graphical Representations of Predicted Model Hypotheses 

 

Figure 2. Generalized hypothesized reaction times based on predicted average number of items 

searched.  Across all hypotheses (A-C), when there is no blur/clarity contrast (the all-blur and 

all-clear conditions), random search is predicted to occur for the target, producing a baseline 

search time.  All three hypotheses make essentially the same predictions for the clear conditions, 

such that clear singleton items capture attention producing faster target singleton detection RTs, 

and clear singleton distractor RTs are predicted to be slightly slower because attention will first 

be moved to the distractor, increasing the average number of items searched compared to random 

search.  The three hypotheses differ in terms of the predicted RTs for the blurred singleton target 

and blurred singleton distractor conditions: A) Blur Captures predicts identical results for the 
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clear and blur singleton conditions which will capture attention, otherwise random search will 

follow until the target is found.  B) Blur Repels predicts that blur singleton items will be the last 

item searched, thus producing longer RTs for the blurred target singletons, but shorter RTs when 

a blurred distractor singleton is present due to a reduction in set size relative to random search.  

C) Blur Ignored predicts that when there is a blur singleton, it neither repels nor captures 

attention resulting in purely random search.  Note: In the predictions for the Blur Captures 

hypothesis, and the predictions for the all-blur versus all-clear conditions, the predictions for the 

blur conditions have been ever-so-slightly lowered on the graph so as not to overlap with the 

clear conditions.  However, this is only for the ease of visually presenting those predictions.   

 

 Quantitative Models Predicting the Hypothesized Average Items Searched 

For both Experiments 1 and 2, the predicted models for the three hypotheses shown in 

Figure 2 were calculated based on the number of items that would, on average, be required to be 

attended before finding the target for a given condition.  The calculations were made based on 

six assumptions. 

 

 Assumptions of the Quantitative Models 

 Below are the assumptions used in modeling the three alternative competing hypotheses.  

Note that these assumptions are almost certainly overly simplified.  However, the value of these 

simplified assumptions is that they allow for the general relationships between conditions in each 

of the three hypotheses to take form quantitatively.   

1. Search (for the rotated T among rotated Ls) is serial with one or a few items processed at 

a time.   

2. When there is no blur/clarity contrast, therefore no attentional guidance, search for the 

target is random. 

3. A unique item that captures attention will have the highest probability of being the first 

item attended. 

4. A unique item that repels attention will have the highest probability of being the last item 

attended. 

5. A unique item that is ignored by attention will be included in random search. 
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6. There is perfect memory for previously searched items.2 

Each of the hypothesized search RT averages were calculated by summing the probability 

of each item in an array needing to be searched given that the target was or was not found on the 

previous item (see Table 1).  This average made the simplifying assumption that at least one item 

must be attended in order to find the target, so the smallest search average would be one, 

whereas the largest search average would equal the set size (See Appendix A for detailed 

calculations). 

 

Table 1 

Predictions for Experiment 1 & 2 for each Condition’s Average Number of Items Searched 

 

Note. SS = Set Size.  Clarity refers to whether the target was presented clearly or blurred.  

Condition refers to the relative distance from the unique item to the target (e.g., Blurred Far 

means the item farthest from the target is the only item blurred), and includes the All-conditions 

where no unique items are present. 

  

                                                 

2 Again, this assumption is certainly overly simplified, and adopted only to more easily quantify the hypothesized 

relationships between conditions. 
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Chapter 2 - Pilot Experiment 1 

 Method 

Experiment 1 was preceded by a legibility control study done to verify that blurred and 

clear letters had similar accuracy and reaction times.  Such a result in Pilot Experiment 1 would 

allow for the results in Experiment 1 to be interpreted as changes in selective attention rather 

than difficulty identifying the letters because they were blurry.  

 

 Participants 

There were 37 participants from Kansas State University’s (KSU) undergraduate research 

pool (25 females, mean age = 19.6).  Participants’ vision was tested and was 20/30 or better.  All 

participants were naïve at the beginning of the pilot.  All participants gave their informed consent 

and participated for class credit. 

 

 Apparatus and Stimuli 

Stimuli were presented on 17-inch Samsung SyncMaster 957 MBS monitors set to a 

refresh rate of 85 Hz, and 1024 x 768 pixels.  Using chin rests, participants’ eyes were 53.34 cm 

from the monitors for 37.8° x 28.7° of visual angle.  The monitors were calibrated using 

Spyder3Elite photometer, with a luminance maximum of 91.3 cd/m2 and a minimum of 0.33 

cd/m2 with a gamma of 2.2.  Participants made responses on Cedrus model RB-834 response 

pads.  Figure 3 displays the 16 images: 4 clear L images with four rotations (0 upright, 90, 180, 

270), 4 blurred L images with same rotations, and 4 clear T and 4 blurred T images with the 

same rotations.  All images were created in Microsoft Paint.  The clear L images were 24 pixels 

(0.89° of visual angle) for the horizontal line and 44 pixels (1.65° of visual angle) for the vertical 

line length of an upright L.  Both lines have a width of 4 pixels (0.15° of visual angle).  The clear 

T images were 33 pixels (1.23° of visual angle) for the horizontal line and 44 pixels (1.65° of 

visual angle) for the vertical line length of an upright T.  Both lines have a width of 4 pixels 

(0.15° of visual angle).  The blurred images were created by using low-pass filtering in 

MATLAB which produced L and T images with a spatial frequency cut-off value of 0.25 cpd.  

The blurred images were then standardized to have the same mean and standard deviation 

luminance values as the clear letters using Mathworks MATLAB 2014b, with image processing 
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toolbox (ver. 9.1).  The letters, fixation cross, and background all had a mean luminance value of 

127.  The images were placed at five potential locations along a centered invisible circle set to a 

radius of 3° degrees of visual angle.  The letters appeared at the following locations on the circle: 

0° (top), 72°, 144°, 216°, and 288°.   

 

 

Figure 3. Images of the L and T blur/clear letter rotations.  Row 1 clear L rotated (0, 90, 180, and 

270).  Row 2 blurred L with same rotations.  Row 3 clear T with same rotations as the L letters.  

Row 4 displays the blurred T letters with the same rotations as the other letters displayed. 

 

 Design 

The experiment was a 2 (Letter: L vs. T) x 2 (Clarity: Clear vs. Blurred) within-subjects 

design.  The following manipulations were all counterbalanced during the experiment: presence 

of single T or single L, blur or clear, and the five locations where the letter was presented.  

However, due to a systematic error in the data set creation, the location was incorrectly 

counterbalanced, though consistently across all participants (see Appendix B).  There were 20 

blocks which each had 20 trials.  All 400 trials were randomized across each participant’s 

experimental session.  The rotation of each letter was randomized on each trial.  The dependent 

variables were accuracy for the identification task and RT.   
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 Procedure 

Participants first read and gave their informed consent, then their visual acuity was tested 

using the Freiburg Visual Acuity and Contrast Test (FrACT) (Bach, 1996; Bach, 2007).  

Participants then read instructions to the experiment.  Figure 4 shows a trial schematic.   

 

Figure 4. Trial schematic. 

As shown in the Figure 4 trial schematic, the trials began with a fixation cross at the 

center of the screen, and participants hit the next button on the response pad to initiate the trial.  

A blank neutral gray screen was presented for 506 msec, followed by a single L or T letter for 

153 msec to prevent eye movements to the letter while present.  The response screen then 

appeared on the screen, asking, “What letter did you see?” (L and T options below), and 

remained until the response.  The participant pushed the left response button to indicate an L or 

the right response button to indicate a T.  Participants were allowed to quit or take a break at any 

time during the experiment, and every 100 trials the participants took a required break.  There 

were a total of 400 trials.  After finishing the experiment, participants read through a debriefing 

form and were thanked for their participation. 
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 Pilot Experiment 1 Results 

 Prior to cleaning any of the data the overall accuracy across all trials was 96%.  The data 

was then cleaned by first removing all reaction times < 150 msec or > 10 seconds.  This resulted 

in one trial being removed from 14800 trials (0.007% of all trials).   

 The analyses of accuracy were conducted with the R statistical software (version x64 

3.1.1) to run a multilevel logistic regression for binary data.  Prior to analyzing the models, the 

categorical Letter and Clarity variables were effect coded as Letter (L = +1, T = -1) and Clarity 

(Blurred +1, Clear -1).  From the analyses, the best model was Accuracy ~ Letter + Clarity + 

Letter x Clarity + Log10(Trial) + (1|Participant) (BIC = 4495.8) compared to the second best 

model which included the random effect of (Letter|Participant) (BIC = 4510.4) (See Appendix C 

for all models with BIC values).  Table 2 displays the parameter estimates for the fixed effects 

and random effects variance from the best model.   

Table 2 

Parameter Estimates for Accuracy ~ Letter + Clarity + Letter x Clarity + Log10(Trial) + 

(1|Participant) Model 

Fixed Effects Estimates Std Error z-value p(z) 

Random 

Effects 

Variance 

Intercept 4.018 0.291 13.83  < 0.001 0.881 

Letter(L) 0.207 0.044 4.71 < 0.001   

Clarity(Blurred) -0.034 0.044 -0.78 0.438   

Log10(Trial) -0.177 0.108 -1.64 0.102   

Letter(L) x Clarity(Blurred) 0.015 0.044 0.33 0.739   

Note. Model was performed using effect coding [(Letter: L = +1, T = -1)(Clarity: Blurred = +1, 

Clear = -1)]. 

 Figure 5 displays the mean transformed accuracy values back to proportion from logit 

space for the clear and blurred Ls and Ts at the end of the experiment.  There was a significant 

main effect for Letter, suggesting that Ls were slightly, but statistically significantly easier to 

identify than Ts.  No other fixed effects were significant, indicating that Ls were slightly easier 

to identify than Ts.  However, much more importantly, it did not matter if they were presented 

clearly or blurred and this did not significantly change throughout the experiment.   
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Figure 5. The mean accuracy for each letter presented clearly or blurred.  Error bars = 95% CI 

after being transformed back from logit, therefore the error bars are asymmetrical, having 

slightly longer negative error bars. 

 Prior to analyzing the data for reaction times, there was further cleaning of the data such 

that all of the incorrect responses were removed.  From the 14,799 total trials, 563 trials were 

removed due to being incorrect responses (4% of trials) for a total of 14,236 trials.   

 The analyses were conducted using a linear multilevel model with effect coding in JMP 

Pro 12.  The model analyzed was Log10(RT) ~ Letter + Clarity + Letter x Clarity + Log10(Trial) 

+ (Letter + Clarity + Letter x Clarity + Log10(Trial)|Participant) with R2 = .33, adjusted R2 = .33, 

RMSE = 0.11.  Table 3 displays the parameter estimates for the model.   
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Table 3 

Parameter Estimates from Log10(RT) ~ Letter + Clarity + Letter x Clarity + Log10(Trial) + 

(Letter + Clarity + Letter x Clarity + Log10(Trial)|Participant) 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 2.868 0.020 60.93 140.60 <.001 

Letter(L) -0.009 0.002 35.98 -4.42 <.001 

Clarity(Blurred) 0.001 0.001 35.76 0.68 0.504 

Letter(L) x Clarity(Blurred) -0.002 0.001 35.78 -2.01 0.052 

Log10(Trial) -0.073 0.008 35.97 -9.20 <.001 

Note. Model was performed using effect coding [(Letter: L = +1, T = -1) (Clarity: Blurred = +1, 

Clear = -1)]. DFDen = degrees of freedom used in the denominator. 

 Table 4 presents the Log10(RT) marginal means (M) with within-subject standard 

deviations (SD), and the untransformed RT (RT*) geometric means (GM) with geometric within-

subject standard deviations (GSD) for the clear and blurred Ls and Ts in milliseconds (msec).  

Figure 6 displays the Log10(RT) M and standard error of the means (SEM) for Clarity x Letter in 

msec with RT* GM on secondary y-axis.  The linear multilevel model, Log10(RT) ~ Letter + 

Clarity + Letter x Clarity + Log10(Trial) + (Letter + Clarity + Letter x Clarity + 

Log10(Trial)|Participant) was analyzed for significant main effects and an interaction.  There was 

a significant main effect for Log10(Trial), F(1, 36.0) = 84.64, p <.001, indicating that participants 

responded faster as they progressed through the experiment.  There was a significant main effect 

for Letter, F(1, 36.0) = 19.52, p < .001, with Ls significantly faster to identify than Ts.  Most 

importantly, there was no significant main effect for Clarity, F(1, 35.8) = 0.46, p = .504, 

indicating that blurred and clear letters were identified at similar rates.  There was also no 

significant interaction effect between Letter x Clarity, F(1, 35.8) = 4.05, p = .052, indicating that 

one letter was not identified faster or slower than the other letters because of a specific clarity 

level.  Nevertheless, two planned contrasts compared the levels of Clarity for each Letter.  

Neither the contrast between the blurred and clear Ls, t(35.8) = -0.79, p = .432, nor the contrast 

between the blurred and clear Ts, t(35.8) = 1.81, p = .074 were significantly different.  

Importantly, these results showed that within each letter, neither the accuracy nor the Log10(RT)s 

were significantly different when presented as clear or blurred, thus legibility was controlled for.  

Therefore, any differences in RTs for Experiment 1 should be minimally affected by the blurred 

letters being more difficult to identify.   
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Table 4 

Letter x Clarity: Log10(RT) M with SD and RT* GM with GSDs 

Letter Clarity 
Log10(RT) Log10(RT) RT* RT* RT* 

M SD GM -1 GSD +1 GSD 

L Blurred 2.699 0.105 500 392 637 

L Clear 2.701 0.106 502 393 642 

T Blurred 2.721 0.121 526 398 694 

T Clear 2.717 0.122 521 394 690 

Note. RT* = Untransformed Reaction Time.  M = Marginal Means.  GM = Geometric Mean.  SD 

= Within-subject Standard Deviation.  GSD = Geometric within-subject Standard Deviation.  

RT* has asymmetrical -1 and +1 GSDs because of the positive skew of the RT data when 

untransformed.  

  

 

Figure 6. The Log10(RT) marginal means for each letter presented clearly or blurred with +/- 1 

SEM bars.  RT* GMs are also presented on the secondary y-axis. 
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Chapter 3 - Experiment 1 

 Method  

 Experiment 1 investigated whether unique blur and clarity’s influence on selective 

attention would be to capture, repel, or be ignored.  This was accomplished through a rotated L 

versus T search task where Clarity was manipulated to be non-predictive of target location in 

order to measure its influence on selective attention as measured by effects on RT.  Changes in 

RTs can be interpreted as changes in guiding selective attention rather than legibility based on 

the results of Pilot Experiment 1.  

 

 Participants 

There were 57 participants from Kansas State University’s (KSU) undergraduate research 

pool (47 females, mean age = 19.1).  Participants’ vision was tested and was 20/30 or better.  All 

participants were naïve at the beginning of the experiment.  No participant was in both the 

Experiment 1 pilot and Experiment 1.  All participants gave their informed consent and 

participated for class credit. 

 

 Apparatus and Stimuli 

All the apparatus and stimuli were the same as in Pilot Experiment 1.  However, as 

shown in Figure 7, there were five letters simultaneously present along a centered invisible circle 

set to a radius of 3° degrees of visual angle.  The letters appeared at five locations of the circle at 

0° (top), 72°, 144°, 216°, and 288° on each trial.  The center-to-center letter distances were used 

to calculate a Bouma’s constant of 0.59, which indicated that crowding should not have 

influenced the search task (Bouma, 1970). 

 

 Design 

The experiment used a 2 (Clarity: Blur vs. Clear) x 4 (Condition: All, Far, Mid, & Target) 

within-subject design.  Figure 7 provides examples of the conditions.  Counterbalancing of the 

320 trials resulted in a number of different nested variables, including target present/absent (160 

trials each), target clear/blurred (80 trials each) appearing equally often at each of the five 
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locations.  This resulted in 16 trials for each target present that was either clear or blurred and at 

one of the five locations.  The same counterbalancing was done for the target absent trials in 

which an L distractor was clear/blurred at one of the five locations.  The rotations of the letters 

were randomized on each trial.  The dependent variable was correct RT for the target 

present/absent task.   

 

Figure 7. Examples of the clarity manipulation conditions are A). All-blurred, B). All-clear, C). 

Blurred Target Singleton, D). Clear Target Singleton, E). Blurred Far Distractor Singleton, and 

F). Clear Far Distractor Singleton.  There were also unique clear mid distractor singletons, 

though they are not shown due to similarity to the far distractor singleton conditions. 

 

 Procedure 

Participants first read and gave their informed consent, then their visual acuity was tested 

using the Freiburg Visual Acuity and Contrast Test (FrACT) (Bach, 1996; Bach, 2007).  

Participants then read instructions to the experiment.  The experiment had 320 trials.  Figure 8 

shows a trial schematic.   
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Figure 8. Trial schematic. 

As shown in the Figure 8 trial schematic, the experiment started with a fixation cross at 

the center of the screen, and participants hit the “NEXT” button on the response pad to begin the 

trial.  A blank neutral gray screen was presented for 506 msec, followed by five letters for 153 

msec to prevent eye movements to the letters.  The response screen then replaced the letters on 

the screen, asking, “Was there a T present?” (Yes and No options below), and remained until the 

response.  The participant pushed the “YES” (right) or “NO” (left) button on the response pad.  

Participants were allowed to quit or take a break at any time during the experiment, and every 80 

trials the participants took a required break.  There were a total of 320 trials.  After finishing the 

experiment, participants read through a debriefing form and were then thanked for their 

participation. 

 

 Experiment 1 Results 

 Due to computer errors in recording of data, data from three participants were lost.  The 

data was then filtered to select for only singleton and all blur/clear manipulation trials that were 

relevant to the analyses, with the filtered trials being fillers that were necessary to include in the 

stimulus set in order to ensure that blur/clarity was non-informative about the identity of the 
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target.  This resulted in 14,820 trials being removed from 18,239, leaving 3,419 trials.  Prior to 

cleaning the selected data, the overall accuracy across all trials was 83%.  The data was then 

cleaned by first removing all RTs that were < 150 msec or > 10 seconds (2 trials), and all 

incorrect responses were removed (589 trials).  

 The following analyses are all completed using Log10(RT) because of the non-normal 

distribution of the raw reaction time data.  Three linear multilevel models with effect coding in 

JMP Pro 12 were performed to determine the best approach at explaining the variance within the 

data.  Table 5 displays the parameter estimates for the best model analyzed, Log10(RT) ~ Clarity 

+ Condition + Clarity x Condition + Log10(Trial) + (Clarity + Condition + Clarity x Condition + 

Log10(Trial)|Participant) with R2 = .47, adjusted R2 = .47, RMSE = 0.12, BIC = -3618.8.3   

Table 5 

Parameter Estimates from Log10(RT) ~ Clarity + Condition + Clarity x Condition + Log10(Trial) 

+ (Clarity + Condition + Clarity x Condition + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 3.188 0.031 56.55 103.90 <.001 

Clarity[Blurred] 0.001 0.003 52.66 0.41 0.680 

Condition [All] -0.003 0.004 280.80 -0.66 0.507 

Condition [Far] 0.007 0.004 114.93 2.07 0.041 

Condition [Mid] 0.016 0.004 117.91 4.44 <.001 

Condition [Blurred] x  

Condition [All] 
0.008 0.005 272.39 1.78 0.076 

Clarity[Blurred] x Condition [Far] -0.003 0.004 130.04 -0.70 0.483 

Clarity[Blurred] x Condition [Mid] -0.019 0.004 133.01 -4.75 <.001 

Log10[Trial] -0.154 0.014 43.99 -11.32 <.001 

Note. Model was performed using effect coding [(Clarity: Blurred = +1, Clear = -1) (Condition: 

All = ‘+1,0,0’, Far = ‘0,+1,0’, Mid = ‘0,0,+1’, Target  = ‘-1,-1,-1’)].  DFDen = degrees of 

freedom used in the denominator.  

Table 6 displays the Log10(RT) M with within-subject SD, and the RT* GM with within-

subject GSD for Clarity x Condition in msec.  Figure 9 shows the Log10(RT) M and SEM for 

                                                 

3 The two other models were Raw(RT) ~ Clarity + Condition + Clarity x Condition + (Clarity + Condition + Clarity 

x Condition|Participant) with R2 = .21, adjusted R2 = .21, RMSE = 335.85 [no BIC because Raw(RT) instead of 

Log(RT)], and Log(RT) ~ Clarity + Condition + Clarity x Condition (Clarity + Condition + Clarity x 

Condition|Participant) with R2 = .28, adjusted R2 = .28, RMSE = 0.13, BIC = -2963.6. 



 

23 

Clarity x Condition in msec with RT* as a secondary y-axis.  The linear multilevel model, 

Log10(RT) ~ Clarity + Condition + Clarity x Condition + Log10(Trial) + (Clarity + Condition + 

Clarity x Condition + Log10(Trial)|Participant) was analyzed for significant main effects and an 

interaction.  There was a significant main effect for Log10(Trial), F(1, 44.0) = 128.20, p <.001, 

indicating that participants responded faster as they progressed through the experiment.  

Importantly, there was not a significant main effect for Clarity, F(1, 52.7) = 0.17, p = .680, 

suggesting that blurred and clear conditions were responded to at a similar rate.  However, there 

were significant differences for Condition, F(3, 156.4) = 11.30, p < .001, and most importantly 

for the interaction between Clarity x Condition, F(3, 170.8) = 8.63, p < .001, which is further 

investigated with post hoc comparisons using the Tukey HSD test (see Table 7).  The exact 

nature of this interaction allows us to test between the three alternative competing hypotheses 

shown in Figure 2. 

Table 6  

Clarity x Condition: Log10(RT) M with SD and RT* GM with GSDs 

Clarity Condition 
Log10(RT) Log10(RT) RT* RT* RT* 

M SD GM -1 GSD +1 GSD 

Blurred All 2.873 0.121 747 566 986 

Blurred Far 2.867 0.127 736 550 985 

Blurred Mid 2.866 0.122 734 554 973 

Blurred Target 2.862 0.103 728 574 923 

Clear All 2.846 0.104 702 553 891 

Clear Far 2.867 0.126 737 551 985 

Clear Mid 2.908 0.140 809 586 1117 

Clear Target 2.831 0.112 677 523 877 

Note. RT* = Untransformed Reaction Time.  M = Marginal Means.  GM = Geometric Mean.  SD 

= Within-subject Standard Deviation.  GSD = Geometric within-subject Standard Deviation.  

RT* has asymmetrical -1 and +1 GSDs because of the positive skew of the RT data when 

untransformed.  
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Table 7  

Tukey HSD Comparisons for Clarity x Condition Interaction with Log10(RT) 

Level (Clarity x Condition) Letters Least Sq Mean Std Error Lower 95% Upper 95% 

Clear,Mid A 2.90 0.012 2.872 2.921 

Clear,Far AB 2.87 0.012 2.848 2.896 

Blurred,All AB 2.87 0.013 2.844 2.896 

Blurred,Far B 2.87 0.012 2.845 2.893 

Blurred,Mid B 2.86 0.012 2.837 2.885 

Blurred,Target BC 2.86 0.013 2.832 2.883 

Clear,All BC 2.85 0.013 2.825 2.877 

Clear,Target C 2.83 0.013 2.803 2.854 

Note. Levels not connected by same letter are significantly different (α = 0.05, Q = 3.07). 

As shown in Table 7 and Figure 9, the all-blurred and all-clear conditions were not 

significantly different, suggesting legibility was controlled.  This was as predicted, because when 

unique clarity/blur is absent then there would be a lack of guidance for selective attention, 

producing random search.  The all-blurred and all-clear conditions therefore serve as the baseline 

for the singleton conditions that may influence selective attention.  Comparing Figure 2 with 

Figure 9, there is strong evidence in support of the Blur Ignored hypothesis.  Importantly, the 

blurred target condition did not significantly differ from any of the other blur conditions.  

Conversely, the all-clear condition did not significantly differ from the clear target and far 

distractor singleton conditions, but did significantly differ from the mid distractor condition.  

Nevertheless, the clear target singleton did significantly differ from both clear distractor 

conditions.  The results are therefore providing some support for both clarity capturing and being 

ignored by selective attention.  The blurred and clear target singletons did not significantly differ, 

suggesting they have similar influences on selective attention, thus providing some support for 

the blur captures hypothesis.  However, because both target singleton conditions did not differ 

from their respective all-(blurred/clear) conditions, the results can also be interpreted as neither 

unique clarity nor unique blur guiding selective attention, which is most consistent with the Blur 

Ignored hypothesis.  Thus, it appears that the manipulation was not strong enough or lacked the 

necessary power for the analyses.  However, based only on the blur conditions, which is critical 

for distinguishing between the three hypotheses (see Figure 2), the Blur Ignored hypothesis is 

most strongly supported.   
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Figure 9. The Log10(RT) M for Condition x Clarity with +/- 1 SEM bars.  Secondary y-axis 

presents RT* values in msec distributed on a logarithmic scale. 

 Three models, one for each predicted hypothesis, were used to test which hypothesis 

explained the data best using linear multilevel modeling.  Each model had a similar structure 

such that Log10(RT) was predicted by the main effects of one of the quantitative prediction 

hypotheses with Log10(Trial).  The slopes of the quantitative prediction hypothesis selected with 

the Log10(Trial) were then also allowed to vary across each participant.  Table 8 displays the 

parameter estimates for the best model.  All three models had the same R2 = .45, adjusted R2 = 

.45, RMSE = 0.12, but differ based on BIC values.  BIC values that differ from 2-4 points can be 

accepted as moderate support for the lower model being the better model, while a difference of 

~7 is strong and 10+ is very strong evidence that the lower model can be accepted as the better 

model and reject the model with the higher BIC value.  The best model was with Blur Ignored, 

BIC = -3715.3, which is 15.7 points lower and thus strongly accepted as the better model 

compared to Blur Captures, BIC = -3699.6, and is even more strongly accepted than Blur Repels, 

BIC = -3689.1.  Likelihood ratios reveal that Blur Ignored is 2,566 and 488,942 times more 

likely to have produced the observed reaction times compared to the Blur Captures and Blur 

Repels hypotheses, respectively.  
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Table 8  

Parameter Estimates Log10(RT) ~ Hypothesis (Blur Ignored) + Log10(Trial) + (Hypothesis (Blur 

Ignored) + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 3.128 0.032 66.17 97.04 <.001 

Hypothesis 3 - Blur Ignored 0.022 0.003 56.04 6.94 <.001 

Log10(Trial) -0.155 0.014 44.35 -11.24 <.001 

Note. DFDen = degrees of freedom used in the denominator.  

 

 Discussion 

The results from Experiment 1 suggest that the pilot control study was successful at 

obtaining a level of blur that was equally legible whether presented clearly or blurred.  This is 

based on the all-blurred and all-clear conditions not being significantly different from one 

another.  This result also suggests that when all letters were presented in the same level of 

Clarity a random search was performed to find the target without guidance.   

The main findings were that none of the blurred conditions differed from one another, 

while the clear target singleton was responded to faster than the clear distractor singletons, but 

not the all-clear condition.  Other than the clear target singleton not being significantly faster 

than the all-clear condition, this is exactly what the Blur Ignored hypothesis predicts, which was 

also the most supported hypothesis based on the model analyses across all three predicted 

hypotheses.   

The three prediction hypotheses’ most obvious difference is between the clear and 

blurred target singleton conditions and how they differ from their respective all-(blurred/clear) 

conditions.  The Blur Repels hypothesis was not supported because the blur target singleton was 

not statistically slower in RT from either the clear target singleton or the all-blurred conditions, 

both of which would be predicted to differ from it, as shown in Figure 2.  The Blur Captures 

hypothesis had some support based mostly on the blurred and clear target singletons not 

significantly differing in RTs, as predicted in Figure 2.  While the clear and blurred target 

singletons did not significantly differ from the all-clear and all-blurred conditions, there did 

appear to be a general trend toward clear singleton capture, as shown in Figure 9.   
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The above raises some questions that were further investigated in Experiment 2.  

Specifically, the key issue was whether the clear and blurred target singletons are either 

capturing or not influencing selective attention.  A plausible approach to clarifying this issue is to 

amplify the difficulty of the search task, which should make any type of attentional guidance 

more apparent in the RT data. 
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Chapter 4 - Pilot Experiment 2 

 Method 

 As with Pilot Experiment 1, we carried out Pilot Experiment 2 in order to control for 

legibility issues after changing the letter stimuli to have the L distractors appear more T-like.  

Again, the blurred and clear letters had similar accuracy and reaction times, thus, similarly to 

Experiment 1, allowing Experiment 2’s results to be interpreted as changes in attention, not 

difficulty identifying the blurred letters.   

 

 Participants 

There were 32 participants from Kansas State University’s (KSU) undergraduate research 

pool (24 females, mean age = 18.5).  Participants’ vision was tested and was 20/30 or better.  All 

participants were naïve at the beginning of the pilot.  All participants gave their informed consent 

and participated for class credit. 

 

 Apparatus and Stimuli 

All apparatus was the same as in the Experiment 1 pilot study.  As shown in Figure 10, 

the stimuli were changed to make the L distractors appear more T-like (Jiang & Chun, 2001).  

The clear L and T images’ vertical and horizontal lines were 44 pixels (1.65° of visual angle) in 

length.  Both lines have a width of 4 pixels (0.15° of visual angle).  The images were blurred 

using the same methods as explained in the Experiment 1 pilot study.  There are two set sizes (4 

& 8) for Experiment 2, and the locations of the letters for both set sizes did not overlap, resulting 

in 12 potential locations along a centered invisible circle set to a radius of 9° degrees of visual 

angle.  When the set size was four, the images appeared from the top of the circle at 22.5°, 

112.5°, 202.5°, and 292.5°.  When the set size was eight, the images appeared from the top of the 

circle at 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. 
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Figure 10. Images of the L and T blurred/clear letter rotations.  Row 1 clear L rotated (0, 90, 

180, and 270).  Row 2 blurred L with same rotations.  Row 3 clear T with same rotations as the 

Ls.  Row 4 displays the blurred Ts with the same rotations as above. 

 

 Design 

The experimental design was identical to Experiment 1’s pilot study.  There was a 2 

(Letter: L vs. T) x 2 (Clarity: Clear vs. Blurred) within-subjects design.  The counterbalancing of 

Letter, Clarity, and the 12 potential locations a letter could be presented at, resulted in 48 trials 

per block, and six blocks, resulting in 288 total trials.  All 288 trials were then randomized across 

each participant’s experimental session.  The dependent variables were accuracy for the 

identification task and RT.   

 

 Procedure 

Participants first read and gave their informed consent, then their visual acuity was tested 

using the Freiburg Visual Acuity and Contrast Test (FrACT) (Bach, 1996; Bach, 2007).  

Participants then read instructions to the experiment.  This was then followed by another 

instruction screen showing the participants examples of what the T targets looked like presented 

clearly and blurred as well as the L distractors.  The trials began by having the participants 

observe a fixation cross at the center of the screen.  Once their eyes were focused on the middle 
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of the fixation cross they hit the next button on the response pad.  The fixation cross was then 

removed from the screen and a blank neutral gray screen was presented for 506 msec followed 

by the presentation of a single L or T letter which remained present until a response was made.  

There was no response screen that appeared.  Once the participant had pushed the left response 

button to indicate they saw an L, or the right response button to indicate they saw a T, there was 

a blank neutral gray screen presented for 1000 msec, before the next trial.  Participants were 

allowed to quit or take a break at any time during the experiment; also every 72 trials the 

participants received a built in mandatory break with a total of 288 trials.  After finishing the 

experiment, participants read through a debriefing form and were then thanked for their 

participation. 

 

 Pilot Experiment 2 Results 

 The analyses were conducted on 32 participants, however prior to the analyses, data from 

nine other participants were lost due to computer error in recording the participants’ results.  

Prior to cleaning any of the data, the overall accuracy across all trials was 95%.  The data was 

then cleaned by first removing all reaction times < 150 msec or > 10 seconds.  This resulted in 

13 trials being removed from 9216 trials (0.1% of all trials). 

 The analyses of accuracy were conducted with the R statistical software (version x64 

3.1.1) to run a multilevel logistic regression for binary data.  Prior to analyzing the models, the 

categorical variables Letter and Clarity were effect coded such that Letter (L = +1, T = -1) and 

Clarity (Blurred = +1, Clear = -1).  Table 9 displays the parameter estimates for the fixed effects 

and random effects variance from the best model.  From the analyses, the best model was 

Accuracy ~ Letter + Clarity + Letter x Clarity + Log10(Trial) + (1|Participant) (BIC = 3370.5) 

compared to the second best model which included the random effect of (Letter|Participant) (BIC 

= 3377.6) (See Appendix D for all models with BIC values).   
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Table 9  

Parameter Estimates for Accuracy ~ Letter + Clarity + Letter x Clarity + Log10(Trial) + 

(1|Participant) Model 

Fixed Effects Estimates Std Error z-value p(z) 

Random 

Effects 

Variance 

Intercept 3.521 0.317 11.11 <.001 1.201 

Letter(L) -0.048 0.049 -0.98 0.325   

Clarity(Blurred) 0.051 0.049 1.05 0.294   

Log10(Trial) -0.045 0.118 -0.38 0.705   

Letter(L) x Clarity(Blurred) 0.066 0.049 1.36 0.174   

Note. Model was performed using effect coding [(Letter: L = +1, T = -1) (Clarity: Blurred = +1, 

Clear = -1)]. 

 Figure 11 displays the mean transformed accuracy values back to proportion from logit 

space for the clear and blurred Ls and Ts at the end of the experiment.  There were no significant 

main effects or interactions for Letter or Clarity.  Most importantly, this suggests that level of 

Clarity had no influence on accuracy in identifying the letters.   

 

 

Figure 11. The mean accuracy for each letter presented clearly or blurred.  Error bars = 95% CI 

after being transformed back from logit, therefore the error bars are asymmetrical, having 

slightly longer negative error bars. 
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 Prior to analyzing the data for reaction times there was further cleaning of the data such 

that all of the incorrect responses were removed.  From the 9203 total trials, 461 trials were 

removed due to being incorrect responses (5% of trials).  

 The analyses were conducted using a linear multilevel model with effect coding in JMP 

Pro 12.  Table 10 displays the parameter estimates for the model.  The model analyzed was the 

same as Experiment 1 pilot study, Log10(RT) ~ Letter + Clarity + Letter x Clarity + Log10(Trial) 

+ (Letter + Clarity + Letter x Clarity + Log10(Trial)|Participant) with R2 = .23, adjusted R2 = .22, 

RMSE = 0.12.   

Table 10  

Parameter Estimates from Log10(RT) ~ Letter + Clarity + Letter x Clarity + Log10(Trial) + 

(Letter + Clarity + Letter x Clarity + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 2.991 0.020 46.31 147.53 <.001 

Letter(L) 0.003 0.003 31.08 1.05 0.301 

Clarity(Blurred) -0.001 0.002 29.04 -0.87 0.391 

Letter(L) x Clarity(Blurred) -0.005 0.002 31.25 -3.24 0.003 

Log10(Trial) -0.062 0.009 30.66 -7.04 <.001 

Note. Model was performed using effect coding [(Letter: L = +1, T = -1)(Clarity: Blurred = +1, 

Clear = -1)]. DFDen = degrees of freedom used in the denominator.  

 Table 11 presents the Log10(RT) M with within-subject SD, and the RT* GM with within-

subject GSD for the clear and blurred Ls and Ts in msec.  Figure 12 displays the Log10(RT) M 

and SEM for Clarity x Letter in msec with RT* GM on secondary y-axis.  As in the Experiment 1 

pilot study, the linear multilevel model, Log10(RT) ~ Letter + Clarity + Letter x Clarity + 

Log10(Trial) + (Letter + Clarity + Letter x Clarity + Log10(Trial)|Participant) was analyzed for 

significant main effects and an interaction.  There was a significant main effect for Log10(Trial), 

F(1, 30.7) = 49.61, p <.001, indicating that participants responded faster as they progressed 

through the experiment.  There was no significant main effect for Letter, F(1, 31.1) = 1.11, p = 

.301, with Ls identified at similar rates to Ts.  There was no significant main effect for Clarity, 

F(1, 29.0) = 0.76, p = .391, indicating blurred and clear letters are identified at similar rates.  

There was a significant interaction effect between Letter x Clarity, F(1, 31.25) = 10.47, p =.003, 

therefore one letter was identified faster or slower than at least one of the letters at a specific 

Clarity level.   
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Table 11  

Letter x Clarity: Log10(RT) M with SD and RT* GM with GSDs 

Letter Clarity 
Log10(RT) Log10(RT) RT* RT* RT* 

M SD GM -1 GSD +1 GSD 

L Blurred 2.863 0.116 729 558 952 

L Clear 2.875 0.113 749 577 972 

T Blurred 2.866 0.124 734 551 977 

T Clear 2.857 0.119 720 548 947 

Note. RT* = Untransformed Reaction Time.  M = Marginal Means.  GM = Geometric Mean.  SD 

= Within-subject Standard Deviation.  GSD = Geometric within-subject Standard Deviation.  

RT* has -1 and +1 GSD because of the positive skew of the RT data when untransformed.  

Two planned contrasts compared the RTs for the levels of Clarity for each Letter.  The 

first contrast found a significant difference between the RTs for clear and blurred Ls, t(31.25) = 

2.92, p = .005, with the blurred Ls slightly faster.  The second contrast found no significant 

difference in RT between the clear and blurred Ts, t(31.25) = 1.70, p = .094.  These results 

showed there was no significant accuracy difference between the Ls and Ts.  Clear and blurred 

Ls did significantly differ on Log10(RT) with the blurred Ls being responded to faster than the 

clear Ls.  Importantly, the blurred and clear Ts did not significantly differ (14 msec).  This is 

important because in Experiment 2, only the Ts were used as the target for each search.  Also, 

while the Ls did significantly differ, they differed by 20 msec.  This difference should have a 

very minimal effect on the results for Experiment 2 with Ls being distractors.  Therefore, 

legibility was controlled for between the clear and blurred letters.  Results from Experiment 2 

should not be based on whether or not a blurred target was harder to identify than a clear target.   
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Figure 12. The Log10(RT) marginal means for each letter presented clearly or blurred with +/- 1 

SEM bars.  RT* GMs are also presented on the secondary y-axis. 
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Chapter 5 - Experiment 2 

 Method 

 Several changes were made to Experiment 2 in order to amplify the effect blur and clarity 

might have on selective attention.  In general, more difficult tasks require more attention.  Thus, 

in Experiment 2, there are two set sizes (4 & 8), given that set size is a fundamental variable used 

to manipulate task difficulty in visual search paradigms.  Similarly, the L distractors were made 

to look more T-like to further increase the task difficulty.  The letters were moved further into 

the visual periphery to 9° eccentricity, which allowed them to maintain reasonable inter-item 

distance, but also served to make the task more difficult.  Finally, the task was changed to 

indicate the direction the target was pointing (left vs. right pointing T), thus allowing a target to 

be present on every trial.  This allowed for greater statistical power with fewer trials than in 

Experiment 1.   

 

 Participants 

There were 53 participants from Kansas State University’s (KSU) undergraduate research 

pool (30 females, mean age = 19.6).  Participants’ vision was tested and was 20/30 or better.  All 

participants were naïve at the beginning of the experiment.  All participants gave their informed 

consent and participated for class credit. 

 

 Apparatus and Stimuli 

 All the apparatus was the same as the previous studies.  The same letter images from the 

Experiment 2 pilot study were used here.  Figure 13 displays the two set sizes (4 & 8), and both 

placed the letters around the same invisible circle set to a radius of 9° degrees of visual angle as 

the Experiment 2 pilot study.  The set size of four letters had a Bouma’s constant of 1.21, while 

the set size of eight letters had a Bouma’s constant of 0.58 indicating that crowding should not 

have influenced either set size during the search task (Bouma, 1970).  To increase participants’ 

accuracy, participants also completed accuracy cards (Appendix E).  The accuracy cards asked 

participants to write their name on the card and fill out their cumulative accuracy score at each 

mandatory break and at the end of the experiment, and then turn them in to the experimenter at 
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the end of the experiment.  This was done to increase participants’ level of effort, thus allowing 

more of their RT data to be analyzed.  

 

 

Figure 13. A) Example set size of four, Blurred Target Singleton, and B) set size of eight, Clear 

Target Singleton example.  

 

 Design 

 The rotated L and T visual search was a within-subject design based on two set sizes.  

The set size of four was a 2 (Clarity: Blur vs. Clear) x 4 (Condition: All, Far, Mid, & Target) 

design.  The set size of eight was a 2 (Clarity: Blur vs. Clear) x 6 (Condition: All, Far, Far-Mid, 

Mid, Near, & Target) design.  All participants completed both set sizes, which were 

counterbalanced such that the first or last 80 trials were the set size of four trials, while the 

remaining 288 trials were for the set size of eight, for a total of 368 trials.  The difference in the 

number of trials for the set sizes of four and eight is explained below. 

Within the set size of four, the trials were counterbalanced for target orientation (left vs. 

right), target clarity (blur vs. clear), and target location (1 of 4 locations).  Nested within each of 

these targets are five permutations of the three distractors’ clarity (blur vs. clear).  The five 

permutations are made up from the All, Target Singleton, and three Distractor Singleton 

conditions (1 Far & 2 Mid).  The rotation of the letters was randomized on each trial.   

Within the set size of eight, the trials were counterbalanced for target orientation (left vs. 

right), target clarity (blur vs. clear), and target location (1 of 8 locations).  Nested within each of 

these targets are nine permutations of the seven distractors’ clarity (blur vs. clear).  The nine 

permutations are made up from the All, Target Singleton, and seven Distractor Singleton 
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conditions (2 Near, 2 Mid, 2 Far-Mid, & 1 Far).  The rotation of the letters was randomized on 

each trial.  The dependent variable was correct trial RT for the target orientation task.  Because 

of the different set sizes, the number of trials required to counterbalance the targets’ clarity, 

orientation, and location, as well as keeping Clarity non-predictive of target location, there were 

288 trials in the set size of eight versus 80 trials for the set size of four. 

 

 Procedure 

Participants first read and gave their informed consent, then their visual acuity was tested 

using the Freiburg Visual Acuity and Contrast Test (FrACT) (Bach, 1996; Bach, 2007).  The 

experiment started with an instruction screen to inform the participants how to complete their 

task and fill out their accuracy score cards.  Figure 14 shows a trial schematic. 

 

Figure 14. Trial schematic.   

As shown in Figure 14 trial schematic, the participants saw a fixation cross at the center 

of the screen and hit the “NEXT” button on the response pad to begin the trial.  A blank neutral 

gray screen was presented for 506 msec, followed by the letters either as a set size of four or 

eight, which remained present until the participant pushed either the left (T pointing left) or right 

(T pointing right) response button on the response pad.  A feedback screen was shown informing 
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them whether they were correct or incorrect for 1000 msec.  Participants were allowed to quit or 

take a break at any time during the experiment, and every 92 trials the participants took a 

mandatory break.  There were a total of 368 trials.  At each break screen, participants were given 

additional feedback by being shown their current cumulative accuracy percentage.  If accuracy 

was < 80%, then the participants were encouraged to “Try harder”; if > 80%, then they were told 

“Good job.”  After finishing the experiment, the participants were told their overall cumulative 

accuracy score and then read through a debriefing form and turned in their accuracy cards to the 

experimenter.  They were then thanked for their participation. 

 

 Experiment 2 Results 

 The analyses were conducted on 53 participants, however prior to the analyses three other 

participants were excluded for having accuracy scores < 60%.  Prior to cleaning the data, the 

overall accuracy across all trials was 90%.  The data were then cleaned, removing all reaction 

times that were < 150 msec or > 10 seconds (120 trials), and incorrect responses (1862 trials).  

Overall, 1982 trials were removed from 19504, resulting in 10% of all the data trials being 

removed. 

 The following analyses were all completed using Log10(RT).  The data was collected 

using two set sizes (4 & 8).  A linear multilevel model with effect coding in JMP Pro 12 was 

performed to determine if there was a main effect for Set Size.  The model was Log10(RT) was 

predicted by Set Size and Log10(Trial) as main effects.  The slopes of the Set Size and 

Log10(Trial) were also allowed to vary across participants.  The model had an R2 = .26, adjusted 

R2 = .26, RMSE = 0.22.  There was a significant main effect for set size, F(1, 50.9) = 320.61, p 

<.001.  Therefore, all following analyses are conducted split by the two set sizes. 

 

 Set Size 4 Analyses: 

 As in Experiment 1, the following analyses were all completed using Log10(RT).  Three 

linear multilevel models with effect coding in JMP Pro 12 were performed to determine the best 

approach at explaining the variance within the data.  Table 12 displays the parameter estimates 

for the best model analyzed, which was the same structure as in Experiment 1, Log10(RT) ~ 

Clarity + Condition + Clarity x Condition + Log10(Trial) + (Clarity + Condition + Clarity x 
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Condition+ Log10(Trial)|Participant) with R2 = .38, adjusted R2 = .38, RMSE = 0.16, BIC = -

2635.3.4  

Table 12  

Parameter Estimates from the Set Size 4: Log10(RT) ~ Clarity + Condition + Clarity x Condition 

+ Log10(Trial) + (Clarity + Condition + Clarity x Condition + Log10(Trial)|Participant) Model 

Fixed Effects 
Estimate

s 
Std Error DFDen t Ratio p-value 

Intercept 3.448 0.036 36.00 95.99 <.001 

Clarity[Blurred] 0.004 0.002 59.04 1.56 0.124 

Condition[All] 0.009 0.005 191.48 1.92 0.057 

Condition[Far] -0.004 0.005 195.97 -0.78 0.435 

Condition[Mid] 0.014 0.004 80.92 3.47 0.001 

Clarity[Blurred] x Condition[All] -0.001 0.006 186.21 -0.09 0.928 

Clarity[Blurred] x Condition[Far] -0.015 0.006 189.87 -2.57 0.011 

Clarity[Blurred] x Condition[Mid] -0.009 0.005 102.15 -1.76 0.082 

Log10[Trial] -0.147 0.015 29.80 -9.77 <.001 

Note. Model was performed using effect coding [(Clarity; Blurred = +1, Clear = -1) (Condition; 

All = ‘+1,0,0’, Far = ‘0,+1,0’, Mid = ‘0,0,+1’, Target  = ‘-1,-1,-1’)].  DFDen = degrees of 

freedom used in the denominator.  

Table 13 displays the Log10(RT) M with within-subject SD, and the RT* GM with within-

subject GSD for Clarity x Condition in msec.  Figure 15 shows the Log10(RT) M and SEM for 

Clarity x Condition in msec with RT* as a secondary y-axis.  The linear multilevel model, 

Log10(RT) ~ Clarity + Condition + Clarity x Condition + Log10(Trial) + (Clarity + Condition + 

Clarity x Condition + Log10(Trial)|Participant) was analyzed, and results were the same as found 

in Experiment 1.  Participants made quicker responses as they moved through the experiment, 

Log10(Trial), F(1, 29.8) = 95.55, p <.001.  There was no significant main effect for Clarity, F(1, 

59.0) = 2.44, p = .124, indicating that, overall, the blur and clear conditions had similar rates of 

response, supporting legibility being controlled.  Again, both Condition had a significant main 

effect, F(3, 141.9) = 8.13, p < .001, and the interaction of Clarity x Condition, F(3, 154.0) = 

                                                 

4 The two other models were Raw(RT) ~ Clarity + Condition + Clarity x Condition + (Clarity + Condition + Clarity 

x Condition|Participant) with R2 = .27, adjusted R2 = .27, RMSE = 731.03 [no BIC because Raw(RT) instead of 

Log(RT)], and Log(RT) ~ Clarity + Condition + Clarity x Condition + (Clarity + Condition + Clarity x 

Condition|Participant) with R2 = .33, adjusted R2 = .33, RMSE = 0.17, BIC = -2392.1. 
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6.69, p < .001, which is further investigated with post hoc comparisons using the Tukey HSD 

test (see Table 14).  As in Experiment 1, the nature of this interaction is what allows us to test 

between the three alternative competing hypotheses shown in Figure 2. 

Table 13 

Clarity x Condition: Log10(RT) M with SD and RT* GM with GSDs 

Clarity Condition 
Log10(RT) Log10(RT) RT* RT* RT* 

M SD GM -1 GSD +1 GSD 

Blurred All 3.163 0.167 1456 992 2138 

Blurred Far 3.142 0.163 1388 953 2020 

Blurred Mid 3.163 0.173 1456 977 2170 

Blurred Target 3.161 0.150 1449 1026 2046 

Clear All 3.162 0.163 1453 998 2114 

Clear Far 3.161 0.153 1450 1020 2059 

Clear Mid 3.170 0.159 1479 1025 2133 

Clear Target 3.109 0.181 1285 848 1949 

Note. RT* = Untransformed Reaction Time.  M = Marginal Means.  GM = Geometric Mean.  SD 

= Within-subject Standard Deviation.  GSD = Geometric within-subject Standard Deviation.  

RT* has asymmetrical -1 and +1 GSDs because of the positive skew of the RT data when 

untransformed.  

 

Table 14 

Tukey HSD Comparisons for Set Size 4: Clarity x Condition Interaction with Log10(RT) 

Level (Clarity x Condition) Letters Least Sq Mean Std Error Lower 95% Upper 95% 

Clear,Mid A 3.17 0.017 3.139 3.206 

Blurred,All AB 3.17 0.018 3.131 3.201 

Blurred,Mid AB 3.16 0.017 3.129 3.196 

Blurred,Target AB 3.16 0.018 3.127 3.197 

Clear,Far AB 3.16 0.018 3.126 3.196 

Clear,All AB 3.16 0.018 3.125 3.195 

Blurred,Far BC 3.14 0.018 3.103 3.174 

Clear,Target C 3.11 0.018 3.072 3.142 

Note. Levels not connected by same letter are significantly different (α = 0.05, Q = 3.07). 

As shown in Table 14 and Figure 15, and replicating Experiment 1, the all-blurred and 

all-clear conditions were not significantly different, thus showing that blurring the letters did not 

alter the search for the T target based on legibility.  This finding also further supports the idea 
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that random search occurs in the absence of a unique blurred or clear letter to possibly influence 

selective attention.  Thus, the all-blurred and all-clear conditions again serve as the baseline for 

the singleton conditions that may influence selective attention.  As can be seen by comparing 

Figure 2 with Figure 15, there is strong support for the Blur Ignored hypothesis.  First, we 

replicated the finding from Experiment 1 that none of the blur conditions significantly differed 

from one another, suggesting selective attention ignores unique blur.  Importantly, the clear 

target singleton was responded to faster than any other clear conditions, providing stronger 

evidence than in Experiment 1 that clarity captured attention to its spatial location.  However, 

being captured to a distractor appeared to have little effect on the reaction time, while being 

captured to the target did.  Most importantly, the blurred and clear target singletons did 

significantly differ, which was not found in Experiment 1; unique clarity captured selective 

attention while unique blur had longer RTs that were similar to the all-blurred condition, and 

thus did not capture attention.  Overall, these results mostly support the hypothesis that blur is 

ignored by selective attention while unique clarity captures attention.   
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Figure 15. The Log10(RT) M for Condition x Clarity with +/- 1 SEM bars.  Secondary y-axis 

presents RT* values in msec distributed on a logarithmic scale. 

 As in Experiment 1, a model for each quantitatively predicted hypothesis was compared 

using linear multilevel modeling.  Each model had a similar structure to that in Experiment 1.  

The Blurred Ignored and Blur Repels hypotheses’ models both had the same R2 = .38, adjusted 

R2 = .38, and RMSE = 0.16, however Blur Captures slightly differed with R2 = .37, adjusted R2 = 

.36, and RMSE = 0.17.  The main difference between the models was again in their BIC values, 

which strongly supports that Blur Ignored (BIC = -2746.6) is the better model, being 7.6 points 

lower than the Blur Repels model (BIC = -2739.0) and 35.8 points lower than the Blur Captures 

model (BIC = -2710.8).  Table 15 displays the parameter estimates for the Blur Ignored model. 

The likelihood ratios show that Blur Ignored is 45 and 59,411,597 times more likely to have 

produced the reaction times than the Blur Repels and Blur Captures hypotheses, respectively. 
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Table 15  

Parameter Estimates Log10(RT) ~ Hypothesis (Blur Ignored) + Log10(Trial) + (Hypothesis (Blur 

Ignored) + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 3.374 0.039 50.82 86.88 <.001 

Hypothesis 3 - Blur Ignored 0.031 0.006 51.75 4.82 <.001 

Log10(Trial) -0.147 0.015 29.91 -9.86 <.001 

Note. DFDen = degrees of freedom used in the denominator.  

 

 Set Size 8 Analyses: 

 As in Experiment 1 and Experiment 2’s set size of four, the following analyses are all 

completed using Log10(RT).  Three linear multilevel models were effect coded in JMP Pro 12 to 

determine the best model, which again was Log10(RT) ~ Clarity + Condition + Clarity x 

Condition + Log10(Trial) + (Clarity + Condition + Clarity x Condition + Log10(Trial)|Participant) 

with R2 = .21, adjusted R2 = .21, RMSE = 0.23, BIC = -1097.6.5  Table 16 displays the parameter 

estimates for the best model analyzed.   

 

                                                 

5 The two other models were Raw(RT) ~ Clarity + Condition + Clarity x Condition + (Clarity + Condition + Clarity 

x Condition|Participant) with R2 = .14, adjusted R2 = .13, RMSE = 1354.36 [no BIC because Raw(RT) instead of 

Log(RT)], and Log(RT) ~ Clarity + Condition + Clarity x Condition + (Clarity + Condition + Clarity x 

Condition|Participant) with R2 = .15, adjusted R2 = .15, RMSE = 0.23, BIC = -450.8. 
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Table 16  

Parameter Estimates from the Set Size 8: Log10(RT) ~ Clarity + Condition + Clarity x Condition 

+ Log10(Trial) + (Clarity + Condition + Clarity x Condition + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 3.619 0.072 51.16 50.38 <.001 

Clarity[Blurred] 0.004 0.002 53.91 1.90 0.062 

Condition[All] 0.008 0.005 463.34 1.43 0.153 

Condition[Far] 0.016 0.005 452.76 3.06 0.002 

Condition[Far-Mid] 0.022 0.004 168.72 5.40 <.001 

Condition[Mid] 0.017 0.004 167.08 4.02 <.001 

Condition[Near] -0.008 0.004 166.92 -2.00 0.047 

Clarity[Blurred] x Condition[All] -0.006 0.006 341.90 -0.98 0.330 

Clarity[Blurred] x Condition[Far] -0.012 0.006 334.38 -1.99 0.048 

Clarity[Blurred] x Condition[Far-Mid] -0.011 0.005 167.23 -2.16 0.032 

Clarity[Blurred] x Condition[Mid] -0.003 0.005 165.52 -0.51 0.610 

Clarity[Blurred] x Condition[Near] -0.011 0.005 165.69 -2.11 0.036 

Log10[Trial] -0.130 0.032 47.24 -4.06 <.001 

Note. Model was performed using effect coding [(Clarity: Blurred = +1, Clear = -1) (Condition: 

All = ‘+1,0,0,0,0’, Far = ‘0,+1,0,0,0’, Far-Mid = ‘0,0,+1,0,0’, Mid = ‘0,0,0,+1,0’, Near = 

‘0,0,0,0,+1’, Target  = ‘-1,-1,-1,-1,-1’)].  DFDen = degrees of freedom used in the denominator. 

VIF = variance inflation factor. 

Table 17 displays the Log10(RT) M with within-subject SD, and the RT* GM with within-

subject GSD for Clarity x Condition in msec.  Figure 16 shows the Log10(RT) M and SEM for 

Clarity x Condition in msec with RT* as a secondary y-axis.  The linear multilevel model, 

Log10(RT) ~ Clarity + Condition + Clarity x Condition + Log10(Trial) + (Clarity + Condition + 

Clarity x Condition + Log10(Trial)|Participant) was analyzed for significant main effects and an 

interaction.  The findings replicated both Experiment 1 and Experiment 2’s set size of four 

results with a significant main effect for Log10(Trial), F(1, 47.2) = 16.46, p <.001, indicating that 

participants responded faster as they progressed through the experiment.  Again, there was no 

significant main effect for Clarity, F(1, 53.9) = 3.62, p = .062,  providing evidence for blurred 

letters’ legibility not being an issue as the two Clarity conditions were responded to at similar 

rates.  Also, there was a significant difference between the Condition conditions F(5, 244.6) = 

27.40, p < .001, signifying at least one difference between All, Far, Far-Mid, Mid, Near, and 

Target.  Once more there was a significant interaction for Clarity x Condition, F(5, 222.4) = 
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10.31, p < .001, which was further investigated with post hoc comparisons using the Tukey HSD 

test (see Table 18).  Importantly, the nature of this interaction allows us to test the three 

alternative competing hypotheses shown in Figure 2. 

Table 17  

Clarity x Condition: Log10(RT) M with SD and RT* GM with GSDs 

Clarity Condition 
Log10(RT) Log10(RT) RT* RT* RT* 

M SD GM -1 GSD +1 GSD 

Blurred All 3.340 0.223 2188 1309 3657 

Blurred Far 3.333 0.227 2153 1275 3633 

Blurred Far-Mid 3.341 0.231 2193 1289 3732 

Blurred Mid 3.344 0.233 2210 1293 3779 

Blurred Near 3.313 0.242 2054 1176 3587 

Blurred Target 3.319 0.214 2084 1272 3414 

Clear All 3.341 0.233 2194 1283 3752 

Clear Far 3.352 0.229 2251 1328 3814 

Clear Far-Mid 3.356 0.222 2272 1364 3784 

Clear Mid 3.341 0.231 2195 1289 3738 

Clear Near 3.328 0.228 2129 1258 3603 

Clear Target 3.229 0.240 1693 975 2939 

Note. RT* = Untransformed Reaction Time.  M = Marginal Means.  GM = Geometric Mean.  SD 

= Within-subject Standard Deviation.  GSD = Geometric within-subject Standard Deviation.  

RT* has -1 and +1 GSD because of the positive skew of the RT data when untransformed.  
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Table 18 

Tukey HSD Comparisons for Set Size 8: Clarity x Condition Interaction with Log10(RT) 

Level (Clarity x Condition) Letters Least Sq Mean Std Error Lower 95% Upper 95% 

Clear,Far-Mid A 3.36 0.015 3.333 3.393 

Clear,Far AB 3.36 0.016 3.326 3.390 

Blurred,Mid AB 3.35 0.015 3.322 3.382 

Blurred,Far-Mid ABC 3.35 0.015 3.319 3.379 

Clear,Mid ABC 3.35 0.015 3.318 3.379 

Clear,All ABC 3.34 0.016 3.311 3.375 

Blurred,Far ABC 3.34 0.016 3.310 3.374 

Blurred,All ABC 3.34 0.016 3.307 3.371 

Clear,Near ABC 3.33 0.015 3.302 3.362 

Blurred,Target BC 3.33 0.016 3.294 3.358 

Blurred,Near C 3.32 0.015 3.289 3.349 

Clear,Target D 3.23 0.016 3.200 3.264 

Note. Levels not connected by same letter are significantly different (α = 0.05, Q = 3.07). 

As presented in Table 18 and shown in Figure 16, and replicating both Experiment 1 and 

Experiment 2’s set size of four, the all-blurred and all-clear conditions are not significantly 

different.  This further supports a lack of legibility effects and a lack of attentional guidance with 

undifferentiated stimuli, suggesting random search.  Thus, the all-blurred and all-clear conditions 

again serve as the baseline for the singleton conditions that may influence selective attention.  By 

comparing both Figure 2 and Figure 16, we see the strongest evidence yet in support of the Blur 

Ignored hypothesis and the strongest rejection of the Blur Repels and Blur Captures hypotheses.  

Most importantly, the blurred target singleton and all-blurred conditions did not significantly 

differ from any of the other blur conditions, providing evidence that blur did not influence 

selective attention.  However, the blurred near distractor was significantly faster than the blurred 

mid distractor.  It is unclear why this occurred other than perhaps some capture to the distractors 

adjacent to the blurred singleton.  This would result in the blurred near distractor capturing 

selective attention toward a distractor and the target.  Having one of the adjacent items being the 

target may have resulted in the faster RT, but this was not predicted by any of the hypotheses.  

The clear conditions’ results replicated and strengthened the conclusions from the set size of four 

findings, with the clear target singleton being responded to significantly faster than all other clear 

conditions, which did not significantly differ amongst themselves, suggesting that unique clarity 

is capturing selective attention.  However, capture to a distractor does not influence the RT as 
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greatly as capture to the target.  Most importantly, the blurred target singleton’s RT was 

significantly slower than the clear target singletons, which immediately rejects the Blur Capture 

hypothesis and because the blurred target singleton had a similar RT with all-blurred this rejects 

the Blur Repels hypothesis, leaving and supporting the Blur Ignored hypothesis.  

 

Figure 16. The Log10(RT) M for Condition x Clarity with +/- 1 SEM bars.  Secondary y-axis 

presents RT* values in msec distributed on a logarithmic scale. 

 Once more, as in Experiment 1 and Experiment 2’s set size of four, a model for each 

predicted hypothesis was used to test which hypothesis explained the data best using linear 

multilevel modeling and the same equation structure as before.  Table 19 displays the parameter 

estimates for the best model, which was again Hypothesis #3 Blur Ignored.  The analyses 

showed that, in terms of R2, there is little if any differences between Hypothesis #3 Blur Ignored, 

with R2 = .20, adjusted R2 = .20, RMSE = 0.23, and the other two hypotheses models (Blur 

Repels and Blur Captures), which each had an R2 = .19, adjusted R2 = .19, and RMSE = 0.23.  

Importantly, however, the BIC values for each model again strongly supported the Blur Ignored 

model (BIC = -1318.4), which had a value 92 points lower than the Blur Repels model (BIC = -

1226.4) and 140.2 points lower than the Blur Captures model (BIC = -1178.2).  The likelihood 
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ratios strongly support that Blur Ignored is 9.5 x 1019 and 2.8 x 1030 times more likely to have 

produced the reaction times than Blur Repels and Blur Captures, respectively.  These results are 

critically important as they provided evidence that unique blur is not influencing the guidance of 

selective attention. 

Table 19  

Parameter Estimates Log10(RT) ~ Hypothesis (Blur Ignored) + Log10(Trial) + (Hypothesis (Blur 

Ignored) + Log10(Trial)|Participant) Model 

Fixed Effects Estimates Std Error DFDen t Ratio p-value 

Intercept 3.493 0.074 58.39 47.04 <.001 

Hypothesis 3 - Blur Ignored 0.029 0.004 51.49 6.77 <.001 

Log10(Trial) -0.131 0.032 47.24 -4.07 0.002 

Note. DFDen = degrees of freedom used in the denominator.  

 

 Discussion 

 The results of Experiment 2 again found no effects of legibility, and provided even 

stronger evidence for the Blur Ignored hypothesis, which was largely supported by the 

comparison from the Tukey’s HSD and model fits analyses at both set sizes.  Experiment 2’s 

support of the Blur Ignored hypothesis replicated, strengthened, and greatly clarified the results 

of Experiment 1.  The influence the blur/clarity manipulation had on finding the target was 

greatly amplified compared to Experiment 1, by making the task more difficult having two set 

sizes (4 & 8), by making the L distractors appear more T-like, and increasing the number of 

analyzed trials by having a target orientation identification task, instead of target present versus 

absent task.  Across both set sizes, the blur conditions all had similar RTs that did not 

statistically differ from one another, except for near and mid distractor conditions with the set 

size of eight.  The clear target singleton was responded to much quicker such that it was faster 

than all other clear conditions, which did not significantly differ amongst themselves, and from 

all the blurred conditions, as predicted by Blur Ignored.  Blur Captures is the easiest competing 

hypothesis to reject simply because the clear target singleton was responded to faster than the 

blurred target singleton.  Blur Repels is also rejected because the blurred target singleton did not 

significantly differ from the all-blurred condition.  Therefore, unique blur appears not to have 

guided selective attention, but unique clarity very strongly did.  
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Chapter 6 - General Discussion 

The current study provided evidence that unique blur is ignored by selective attention.  In 

order to draw this conclusion, both experiments were preceded by control studies, which 

accounted for legibility issues such that differences in RTs were not caused by one level of 

clarity (Blurred vs. Clear) being harder to identify than the other.  Experiments 1 and 2 used 

rotated L versus T visual search tasks while manipulating blur and clarity in a way that was non-

predictive for finding the target.  This allowed us to measure RTs to provide evidence of how 

clarity and blur may guide selective attention.  Specifically, faster RTs to the non-predictively 

blurred or clear targets would indicate the capture of attention by blur or clarity, while slower 

RTs to the non-predictively blurred targets would suggest that blur repels selective attention, and 

a lack of change in RTs due to blur or clarity would suggest no influence on selective attention 

(i.e., ignored).  The results of both experiments most strongly supported the hypothesis that 

clarity captures attention, but blur is ignored.  

Results from both experiments suggest that blur is ignored by selective attention based on 

the comparison of three quantitative prediction models through linear multilevel modeling, 

which generated BIC values and likelihood ratios to compare the models, and a priori planned 

comparisons of the Clarity x Condition interaction.  The Blur Ignored prediction model 

explained the data better than the Blur Captures and Blur Repels prediction models.  The general 

findings were that while unique clarity captures attention, blur neither captures, nor repels, thus 

is ignored by selective attention resulting in similar search times to conditions without guidance. 

The Blur Captures hypothesis was weakly supported in Experiment 1 because the clear 

and blurred target singletons did not significantly differ from one another.  However, in 

Experiment 2, which amplified the attentional effect by increasing task difficulty and 

manipulating set size, there were large and meaningful differences between the clear and blurred 

singleton targets, thus rejecting the Blur Captures hypothesis.  Furthermore, the Experiment 2 

results showed the blurred target singleton condition had similar RTs to the all-clear and all-

blurred conditions whereas the clear target singleton’s RT was significantly faster than all three 

of those conditions.  This strongly suggests that the unique clarity is capturing selective attention 

while unique blur does not, which clearly rejects the Blur Captures hypothesis.  This asymmetry 

in the results for unique blur versus clear items is in contrast to findings for the effects of color 

singleton pop out, in which, for example, a red square amongst green squares will pop out in a 
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similar manner to a green square amongst red squares.  In Experiments 1 and 2 the clear and 

blurred letters were manipulated such that they were non-predictive of the target’s location.  

Interestingly, Theeuwes (1991) used a non-predictive approach with unique onset and offsets 

which found capture by both.  However, Boot (2005) showed that onsets, but not offsets will 

capture covert attention when completely unpredictive (i.e., anti-predictive) of target location.  

The results from Experiment 2 are similar to the findings of Boot (2005), but used the non-

predictive approach similar to Theeuwes (1991).  Thus it seems that, by analogy to the 

onset/offset results of Theeuwes, blur and clarity when unique should have captured selective 

attention, though this was very clearly not the case as only unique clarity captured selective 

attention.  Instead, the current findings are similar to Yantis and Egeth’s (1999), where they 

found that size and luminance singletons captured attention even when non-predictive of the 

target’s location.  Both size and luminance varied on prothetic feature dimensions, suggesting 

that the blur/clear manipulation may also be varying on a prothetic dimension, which is biased 

toward the capture of selective attention to unique high spatial frequencies (clear) items and not 

unique low spatial frequencies (blur) when this information is non-predictive of target location.  

However, this is only speculative, since determining whether spatial frequency information 

varies on a prothetic or metathetic dimension was not the purpose of the study . 

Previous eye tracking research has found when there is a uniquely clear region of an 

image, eye movements tend to be attracted to that location over other regions that are blurred 

(Enns & MacDonald, 2012; Khan, Dinet, & Konik, 2011; Loschky & McConkie, 2002; Smith & 

Tadmore, 2012).  If unique clarity is capturing selective attention, then there must be blur 

surrounding the clarity to create the contrast.  This raises the question, then, of whether the 

capture by unique clarity is actually a result of blur repelling selective attention to the uniquely 

clear item, or of the uniquely clear item independently capturing selective attention, or both.  

Enns and MacDonald (2012, Exp. 3) found evidence to support the claim that blur was not 

repelling attention.  The current study extends those findings with Experiment 2, in which the 

clear target singletons’ RTs were faster than the all-clear condition, with the only change 

between those two conditions being the addition of blur to the distractors in the clear target 

singleton condition.  If those results were due to blur repelling attention, then one would expect 

that the blurred target singleton condition should have had the largest RTs since as the only 

blurred item, it would be attended to last.  Thus, if unique blur was repelling attention, it should 
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have produced a longer RT of a similar magnitude to the shorter RT for the clear target 

singletons, as shown in Figure 2, “Blur Repels.”  However, no such results were found in either 

Experiments 1 or 2, allowing us to reject the Blur Repels hypothesis.   

By rejecting the Blur Captures and Blur Repels hypotheses, our only remaining 

hypothesis is Blur Ignored.  Evidence in favor of this hypothesis combined 1) a null effect for 

unique blur compared to the all-blurred condition, combined with 2) a positive effect for unique 

clarity compared to the all-clear condition.  Additional support came from comparisons of the 

BIC values and likelihood ratios for the three quantitative prediction models, in which the Blur 

Ignored models had the lowest BIC values and high likelihoods of producing the observed 

reaction times, which strongly supported rejecting the alternative models (Blur Captures & Blur 

Repels).   

Importantly, there is other evidence in the literature that blur can take on an active role in 

guiding attention.  In Enns and MacDonald’s (2012) Experiment 4, they manipulated viewers’ 

goal-orientation by having participants search for a unique deviation in image quality such that 

blur became task-relevant, with the result that unique blur was detected faster than uniquely clear 

regions.  This finding is showing that blur can be used to guide selective attention, if goal-

orientation is aligned with blur by being made task-relevant.  This suggests that while blur 

typically serves a passive role in selective attention guidance, it can be used to guide attention if 

top-down goal-orientation processes switch its role from passive to active.  Future research using 

a similar experimental design to that of Experiment 2 but manipulating goal-orientation of task-

relevancy may be able to further provide evidence of blur’s function in guiding attention.   

Another logical future step to this line of research would be to include eye tracking with a 

similar design to Experiment 2.  Eyetracking would allow earlier measures of how the 

blur/clarity manipulations guide selective attention, such as the latency to first fixate a uniquely 

blurred or clear target or distractor as compared to the same targets and distractors in the all-

blurred and all-clear conditions.  By extending the research from covert to overt attention, the 

eye movement results could then be used to explain the RT results in finer detail.   

The results from the current study are most in line with the findings from Enns and 

MacDonald’s (2012) Experiment 3, in which they found that uniquely clear regions of an image 

captured attention, but uniquely blurred regions did not, with the uniquely blurred regions not 

differing from a uniformly blurred image.  Similarly, in the current study, the blurred singleton 
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conditions did not differ from the all-blurred conditions.  However, the current study goes 

beyond the Enns and MacDonald (2012) study in a number of important ways.  First, the current 

study used a standard rotated L versus T visual search task, which is well-known to strongly 

invoke serial search (Wolfe et al., 1989; Egeth & Dagenbach, 1991; Jiang & Chun, 2001; Enns & 

MacDonald, 2012).  Because of this, it was possible to quantitatively model the hypotheses in 

terms of a serial self-terminating search process influenced by non-informative feature-based 

capture, here by blur versus clarity.  The quantitative models for the alternative competing 

hypotheses could then be tested using multilevel modeling and a priori planned comparisons.  

Second, the blur/clarity manipulation was carefully counterbalanced to occur equally often at all 

peripheral locations, making it non-predictive of target location.  Importantly, the current study 

also controlled for legibility issues, which would otherwise leave open the question of whether 

the results were due to attentional guidance versus difficulties in blurred letter identification.  

Finally, the current study brought the effects of blur/clarity on attentional selection into the 

standard visual search literature, which is the gold standard for talking about attentional 

guidance, with a paradigm that can be used in further studies.  

There are some limitations to both experiments.  Experiment 1 had L and T letters which 

differed in the length of their horizontal and vertical lines, which may explain why the Ls were 

slightly easier and faster to identify than the Ts in the Pilot Experiment 1 results.  This was 

addressed in Experiment 2 by using the T-like L distractors, which were composed of equal 

length line segments, and also produced a more difficult serial search, as desired.  However, 

while the task was certainly a serial search there was additional error variance added into the RTs 

due to the difficulty of making the decision between target or distractor items.  This is not ideal 

as it produces more variability than needed when deciding if the target was pointed to the left or 

right.  It may have been better to use a typical L, instead of the T-like L as the distractor for 

Experiment 2, as this may have resulted in cleaner RT differences related to the blur/clarity 

manipulation.   

The results from Experiments 1 and 2 provide insight to the role that blur/clarity contrast 

plays in guiding visual attention, which can have numerous applications.  Blur/clarity contrast 

has already been used by filmmakers for some time to direct viewers’ attention in film by 

varying the depth of field of the camera, focusing on a key region of interest, and thereby 

blurring the rest of the scene, as shown earlier in Video 1.  However, blur/clarity contrast can be 
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used more generally in computer displays to help direct the user’s attention to critical 

information.  For example, should a marketing team place an ad online they may want to quickly 

blur the screen leaving only the ad in focus for a very brief time, then present the screen entirely 

clear.  This quick blur should direct the viewer to the ad on the screen.  In a more serious case, a 

computer can notify its user that a harmful or critical event is going to occur by guiding the 

user’s attention in a similar fashion as the marketing ad to a region on the screen to help resolve 

the issue.  This understanding of blur/clarity contrast and attention could also be applied to 

machine vision by including blur/clarity contrast in visual saliency models (Itti & Koch, 2001; 

Vincent, Troscianko, & Gilchrist, 2007), making them even more similar to our own visual 

system.  This could be done by including the asymmetric bias toward uniquely clear regions in 

saliency algorithms that predict where the most salient item/region is located.  Given that 

blur/clarity contrast is measured in terms of spatial frequency content, such algorithms would 

need to calculate where there are differences in the range of available spatial frequencies, and 

pick the area that is most locally unique in terms of having higher spatial frequencies.   

 

 Conclusion 

 Both Experiments 1 and 2 investigated the role that blur/clarity contrast plays in guiding 

visual selective attention.  The experiments used rotated L and T visual search tasks in which 

blur and clarity were manipulated but non-predictive of the target location.  Importantly, the 

effects of blur/clarity contrast on selective attention could be measured through reaction times, 

because each experiment was preceded by a pilot study to control for legibility.  The results 

indicated that unique clarity captures attention, while unique blur is ignored.  The current study’s 

findings confirm and extend those of Enns and MacDonald (2012), but in a much more fine-

grained, robust, and controlled manner, while testing three alternative competing hypotheses 

(Blur Captures, Blur Repels, and Blur Ignored).  The results are, in fact, counter-intuitive, but 

clear and robustly supported.  Future research will use similar methods, but measure eye 

movements to investigate blur/clarity contrast’s influence on guiding selective overt attention, 

and also investigate how blur’s influence on attention may become active when goal-orientation 

makes it task-relevant. 
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Appendix A - Search Sets 

 When calculating the average number of items searched for each predicted hypotheses’ 

conditions there are four separate sets of probabilities that need to be calculated: Random, 

Capture, Repel Target, and Repel Distractor searches.  Random search set occurs when there is 

no guidance such as with the all-blurred and all-clear conditions as well as the blurred singletons 

for the Blur Ignored hypothesis.  Capture search set occurs when there is a unique singleton that 

captures attention for the first item looked at such as any clear singleton condition as well as 

blurred singletons for the Blur Captures hypothesis.  The Repel Target search set only occurs for 

the blurred target singleton condition for the Blur Repels hypothesis.  The Repel Distractor 

search set only occurs for blurred distractor singleton conditions for the Blur Repels hypothesis.   

Experiment 1: Set Size 5 

 To calculate the average items searched (AIS) for a condition without guidance (random 

search) the following equation can be used: AIS = P(IS1) + P(IS2) + P(IS3) + P(IS4) + P(IS5), 

where (P) is probability and (IS) is item searched.  To calculate the probability of an IS, first you 

have to take into account the chance that the item will need to be searched.  P(I1) for any 

experiment and set size is simply 1 because there must be a first item searched in order to find 

the target.  The probability of needing to search a second item is based on the probability that the 

first item searched was not the target, but a distractor (D), therefore P(IS2) = P(IS2 | IS1D).  

Table 20 displays the equations for each items probability equation, with the values filled in, and 

probabilities calculated. 
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Experiment 1: Set Size 5 

Table 20 

Random Search Set 

Item Probability of each item being searched Probability with Set Size 5 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 4/5) 0.8 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 4/5 * 3/4) 0.6 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 4/5 * 3/4 * 2/3) 0.4 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * IS4D) P(IS5) = P(1 | 4/5 * 3/4 * 2/3 * 1/2) 0.2 

    

Note. Terms in the table are Probability (P), Item Searched (IS), and Distractor (D).  Easiest way 

to read IS1D would be to say item searched 1 was a distractor, which means the first item 

searched was a distractor.   

 Once the probability for each item being searched in a set size has been calculated, then 

the AIS can be calculated, where AIS = P(IS1) + P(IS2) + P(IS3) + P(IS4) + P(IS5) = 1 + 0.8 + 

0.6 + 0.4 + 0.2 = 3.  Therefore, with a set size of five, when there is no guidance (random search) 

the average number of items searched will be three items such as with the all blur and all-clear 

conditions across all three predicted hypotheses as well as with the blurred singleton conditions 

for the Blur Ignored hypothesis.  This changes when there is guidance such as when there is a 

unique item that captures attention.   

Table 21  

Capture Search Set 

Item Probability of each item being searched Probability with Set Size 5 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 3/4) 0.75 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 3/4 * 2/3) 0.5 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * IS4D) P(IS5) = P(1 | 1 * 3/4 * 2/3 * 1/2) 0.25 

Note. Terms in the table are Probability (P), Item Searched (IS), and Distractor (D).  Easiest way 

to read IS1D would be to say item searched 1 was a distractor, which really means the first item 

search was a distractor.   

 The Capture search set allows for two types of conditions’ AIS to be calculated.  The first 

is the target singletons when they capture attention this will always result in the first item 

searched resulting in finding the target (Assumption 2).  The second condition group is the 
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distractor singletons when they capture attention.  The first item capturing attention is not the 

target, therefore the first and second items must be searched as can be seen above in Table 21 by 

having both P(IS1) and P(IS2)’s probability equal to one.  Since the first item was not the target 

the remaining items are either all-clear or all-blurred and a random search will then proceed until 

the target is found.   

 The Repel Target search set is only needed for the blurred target singleton condition for 

the Blur Repels hypothesis.  Table 22 displays the Repel Target search set equations and 

probabilities.  The probability of looking at all five items is one because the target is the unique 

item that is blurred and when blur repels attention, then it should be the last item searched 

(Assumption 3).   

Table 22  

Repel Target Search Set 

Item Probability of each item being searched Probability with Set Size 5 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 1) 1 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 1 * 1) 1 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * IS4D) P(IS5) = P(1 | 1 * 1 * 1 * 1) 1 

    

Note. Terms in the table are Probability (P), Item Searched (IS), and Distractor (D).  Easiest way 

to read IS1D would be to say item searched 1 was a distractor, which really means the first item 

search was a distractor.   

 The Repel Distractor search set is only needed for the blurred distractor singleton 

condition for the Blur Repels hypothesis.  Table 23 displays the Repel Distractor search set 

equations and probabilities.  The probability of looking at each item is based on a smaller set size 

(SS – 1) because the blurred item is a distractor and based on Assumption 3 this item should be 

the last item looked at.  Therefore, a random search will take place based on the unique item 

being removed because the target will be found before needing to look at the blurred distractor 

singleton.   
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Table 23  

Repel Distractor Search Set 

Item Probability of each item being searched Probability with Set Size 5 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 3/4) 0.75 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 3/4 * 2/3) 0.5 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 3/4 * 2/3 * 1/2) 0.25 

Note. Terms in the table are Probability (P), Item Searched (IS), and Distractor (D).  Easiest way 

to read IS1D would be to say item searched 1 was a distractor, which really means the first item 

search was a distractor.   

Through these probability search sets all of the conditions for each predicted hypothesis 

can be calculated based on a set size of five.  Experiment 2 also uses the same four probability 

search sets, but they vary in the number of items that can be searched.  The following are the 

four probability tables for each of the set sizes for Experiment 2. 

  

 Experiment 2: Set Size 4 

Table 24  

Random Search Set 

Item Probability of each item being searched Probability with Set Size 4   Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 3/4) 0.75 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 3/4 * 2/3) 0.5 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 3/4 * 2/3 * 1/2) 0.25 

 

Table 25 

Capture Search Set 

Item Probability of each item being searched Probability with Set Size 4  Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 2/3) 0.67 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 2/3 * 1/2) 0.33 
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Table 26 

Repel Target Search Set 

Item Probability of each item being searched Probability with Set Size 4 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 1) 1 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 1 * 1) 1 

 

Table 27  

Repel Distractor Search Set 

Item Probability of each item being searched Probability with Set Size 4 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 2/3) 0.67 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 2/3 * 1/2) 0.33 

 

 Experiment 2: Set Size 8 

Table 28 

Random Search Set 

Item Probability of each item being searched Probability with Set Size 8 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 7/8) 0.875 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 7/8 * 6/7) 0.75 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 7/8 * 6/7 * 5/6) 0.625 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * P(IS5) = P(1 | 7/8 * 6/7 * 5/6 * 0.5 

                   IS4D)                   4/5)  
6 P(IS6) = P(IS6 | IS1D * IS2D * IS3D * P(IS6) = P(1 | 7/8 * 6/7 * 5/6 * 0.375 

                   IS4D * IS5D)                   4/5 * 3/4)  
7 P(IS7) = P(IS7 | IS1D * IS2D * IS3D * P(IS7) = P(1 | 7/8 * 6/7 * 5/6 * 0.25 

                   IS4D * IS5D * IS6D)                   4/5 * 3/4 * 2/3)  
8 P(IS8) = P(IS8 | IS1D * IS2D * IS3D * P(IS8) = P(1 | 7/8 * 6/7 * 5/6 * 0.125 

                   IS4D * IS5D * IS6D * IS7D)                   4/5 * 3/4 * 2/3 * 1/2)  
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Table 29 

Capture Search Set 

Item Probability of each item being searched Probability with Set Size 8 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 6/7) 0.857 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 6/7 * 5/6) 0.714 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * P(IS5) = P(1 | 1 * 6/7 * 5/6 * 0.571 

                   IS4D)                   4/5)  
6 P(IS6) = P(IS6 | IS1D * IS2D * IS3D * P(IS6) = P(1 | 1 * 6/7 * 5/6 * 0.429 

                   IS4D * IS5D)                   4/5 * 3/4)  
7 P(IS7) = P(IS7 | IS1D * IS2D * IS3D * P(IS7) = P(1 | 1 * 6/7 * 5/6 * 0.286 

                   IS4D * IS5D * IS6D)                   4/5 * 3/4 * 2/3)  
8 P(IS8) = P(IS8 | IS1D * IS2D * IS3D * P(IS8) = P(1 | 1 * 6/7 * 5/6 * 0.143 

                   IS4D * IS5D * IS6D * IS7D)                   4/5 * 3/4 * 2/3 * 1/2)  
 

Table 30  

Repel Target Search Set 

Item Probability of each item being searched Probability with Set Size 8 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 1) 1 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 1 * 1) 1 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 1 * 1 * 1) 1 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * P(IS5) = P(1 | 1 * 1 * 1 * 1 

                   IS4D)                   1)  
6 P(IS6) = P(IS6 | IS1D * IS2D * IS3D * P(IS6) = P(1 | 1 * 1 * 1 * 1 

                   IS4D * IS5D)                   1 * 1)  
7 P(IS7) = P(IS7 | IS1D * IS2D * IS3D * P(IS7) = P(1 | 1 * 1 * 1 * 1 

                   IS4D * IS5D * IS6D)                   1 * 1 * 1)  
8 P(IS8) = P(IS8 | IS1D * IS2D * IS3D * P(IS8) = P(1 | 1 * 1 * 1 * 1 

                   IS4D * IS5D * IS6D * IS7D)                   1 * 1 * 1 * 1)  
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Table 31  

Repel Distractor Search Set 

Item Probability of each item being searched Probability with Set Size 8 Probability 

1 P(IS1) = 1 P(IS1) = 1 1 

2 P(IS2) = P(IS2 | IS1D) P(IS2) = P(1 | 6/7) 0.857 

3 P(IS3) = P(IS3 | IS1D * IS2D) P(IS3) = P(1 | 6/7 * 5/6) 0.714 

4 P(IS4) = P(IS4 | IS1D * IS2D * IS3D) P(IS4) = P(1 | 6/7 * 5/6 * 4/5) 0.571 

5 P(IS5) = P(IS5 | IS1D * IS2D * IS3D * P(IS5) = P(1 | 6/7 * 5/6 * 4/5 *  

                   IS4D)                   3/4) 0.429 

6 P(IS6) = P(IS6 | IS1D * IS2D * IS3D * P(IS6) = P(1 | 6/7 * 5/6 * 4/5 *  

                   IS4D * IS5D)                   3/4 * 2/3) 0.286 

7 P(IS7) = P(IS7 | IS1D * IS2D * IS3D * P(IS7) = P(1 | 6/7 * 5/6 * 4/5 *  

                   IS4D * IS5D * IS6D)                   3/4 * 2/3 * 1/2) 0.143 
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Appendix B - Pilot Experiment 1 Counterbalancing Error 

Experiment 1 Pilot study’s counterbalancing error for position of letter location (See Table 32).  

This error was systematic across all participants with the same distribution of trials for each 

position.  While the number of trials for each position is off, the counterbalancing between letter 

and clarity is still correct.   

Table 32  

Counterbalancing Error for Position of Letter Location 

      Position     

Letter Clarity 1 2 3 4 5 

L 

L 

Clear 23 20 18 19 20 

Blur 20 14 22 24 20 

T 

T 

Clear 20 21 23 19 17 

Blur 17 25 17 18 23 
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Appendix C - Pilot Experiment 1 Random Effect Structures for Accuracy 

Table 33  

Comparisons of Random Effect Structures for Accuracy in Pilot Experiment 1 

Note. * Indicates the random effect structure selected for the final model.  *** Indicates a failure 

to converge. 

 

  

Random Effects Structure BIC 

1 | Participant 4495.8* 

Letter | Participant 4510.4 

Clarity | Participant 4514.7 

Letter + Clarity | Participant 4538.8 

Letter + Clarity + Letter x Clarity | Participant 4577.1 

Letter + Clarity + Log(Trial) | Participant 4568.7*** 

Letter + Clarity + Letter x Clarity + Log(Trial) | Participant 4616.2*** 
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Appendix D - Pilot Experiment 2 Random Effect Structures for Accuracy 

Table 34  

Comparisons of Random Effect Structures for Accuracy in Pilot Experiment 2 

Random Effects Structure BIC 

1 | Participant 3370.5* 

Letter | Participant 3377.6 

Clarity | Participant 3401.6 

Letter + Clarity | Participant 3432.9 

Letter + Clarity + Letter x Clarity | Participant 3432.9*** 

Letter + Clarity + Log(Trial) | Participant 3384.5 

Letter + Clarity + Letter x Clarity + Log(Trial) | Participant 3422.2*** 

Note. * Indicates the random effect structure selected for the final model.  *** Indicates a failure 

to converge.   
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Appendix E - Accuracy Card 

 

Figure 17. Accuracy Card. 

 

 

 


