
/H QUERY SYSTEM FOR INFORMATION RETRIEVAL IN A MAILBOX/

by

SONG HEE KIM

B. A., Ewha University, Seoul, Korea, 1976

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Approved by

:

-ftk^Aj^J§^(-
Major Professor

c 2.

Lb
ACKNOWLEDGEMENTS

A11507 311110

Cwsc
The author wishes to express her gratitude to Dr. Richard

f/AS A- McBride, Assistant Professor of Computing and Information

Sciences for his guidance and advice throughout this work.

Thanks are also due to the members of the advisory committee.

Dr. Elizabeth A. linger, Professor of Computing and

Information Sciences, and Dr. David A. Gustafson, Associate

Professor of Computing and Information Sciences for their

suggestions in preparation of this report.

The author's husband, Yong and her children Kihoon and

Jane deserve special thanks. Their love and understanding

and encouragement have become a great strength to get through

this work. The author also wishes to express her deep

thanks to her parents, Mr. Chang K. and Mrs. Sun H. Han,

Mr. Dong K. and Mrs. Eun S. Kim, for their assistance which

initiates and makes this study possible.

CONTENTS

CHAPTER 1 INTRODUCTION

1. 1 Background and Justification 1

1

.

2 Report Organization 4

CHAPTER 2 REVIEW OF THE LITERATURE

2. 1 Electronic Mailbox Systems 6

2. 1. 1 Terminologies 6

2. 1. 2 Basic Mailbox Facilities 9

2. 1. 2. 1 Creating Messages 10

2. 1. 2. 2 Receiving Messages 10

2. 1. 2. 3 Filtering and Retrieval 11

2. 1. 3 Mailbox System Structuring 11

2. 2 Query Language 13

2. 2. 1 Overview 13

2. 2. 2 Query Processing 15

2. 2. 3 Structured Query Language (SQL) 17

2. 3 Semantic Nets . 20

2. 4 Semantic Networks, Relational Databases,

and Query Languages 23

2. 5 Franz Lisp 23

2. 6 Related Work 25

2. 6. 1 Systems for Controlling

Group-Communication 25

2.6.2 A System for Managing

Structured Messages 27

2.6.3 Intelligent. Information-Sharing Systems ... 28

2. 6. 4 Comparison of QIRM with Related Work 30

CHAPTER 3 DESIGN

3. 1 Objectives 33

3. 2 The System Environment 33

3. 3 System Design . . 34

3. 3. 1 Overview 34

3. 3. 2 Database Preparation 37

3.3.2.1 The Lisp Notation and

Indexing Scheme 37

3. 3. 2. 2 Database Loading 42

3. 3. 2. 3 Efficiency Consideration 45

3. 3. 3 Query - User Input and Output 50

3* 3. 3. 1 Simple Queries . . 50

3. 3. 3. 2 Compound Queries 55

3. 3. 4 The Query Processor 58

3. 3. 4. 1 Matching 58

3. 3. 4. 2 Stream Implementation 60

3. 3. 4. 3 Simple Query and

Stream Implementation 62

3.3.4.4 Compound Query and

Stream Implementation 62

3.3.4.5 The Query Evaluator and

the Query Driver 66

3. 4 Summary £7

CHAPTER 4 CONCLUSIONS AND

POSSIBLE ENHANCEMENTS 69

BIBLIOGRAPHIES 72

APPENDIX A On-Line Manual

APPENDIX B Source Code Listing

LIST OF FIGURES

Figure Page

1. Message Structure 8

2. A Query Language System 16

3- Query, Manipulation,

and Definition Commands in SQL IS

4. A Simple Semantic Net 22

5. A Semantic Net Using IS-A Link 22

6. Framework of the QIRM System 36

7. A Semantic Network Showing the Structure

of the Database in the QIRM System 38

8. The Lisp Representation of the Database

Shown in Figure 7 41

9. Algorithm A for Loading a Database 44

10. Algorithm B for Loading a Database 46

11. Comparison of Loading Time of Algorithm A

with That of Algorithm B 49

12. Output Examples of QIRM 53

13. A Fragment of a Semantic Nets 59

14. A Query-Pattern processes a Stream of Entries. ... 61

15. A Query Processor consists of a Where-Processor

and a Select-Processor 61

16. The 'AND* Combination of

Two Compound-Query -Patterns 65

17. The ' OR ' Combination of

Two Compound-Query -Patterns 65

CHAPTER 1

INTRODUCTION

1. 1. BACKGROUND AND JUSTIFICATION

In recent years, there has been a substantial increase in

the number of individuals and organizations using electronic

mail facilities. Most electronic mail systems including

those of the Unix system provide the user with facilities to

create, send, receive, save and retrieve messages. The 4.

3

BSD Unix mail system provides the user with several methods

for accessing mail. Given the current usage of the Unix mail

facility, it is evident that the improvement and enhancement

of the Unix mail system is a matter of considerable

importance.

At. the simplest level, it would be desirable that a user

should be able to retrieve messages via the following message

items

:

Date of receipt

Date of sending

Sender 's identity

Recipient's identity

Subject of the message ,.

Words or a phrase in a message body.

The QIRM < Query system for Information Retrieval In a

Mailbox) system, which is designed by the author and

described in and implemented in the present work, relies on

searching for information in the headers or the bodies of

messages which have been already saved in the system mailbox

file. The QIRM system is capable of searching the complete

text of all messages for words or phrases specified by the

user- The retrieval functions of this system are flexible

enough to permit the user to categorize the desired

message<s). The requested information is retrieved

according to the fields and conditions specified.

A query language provides a convenient scheme for

retrieving information from databases. If we view the

mailbox as a repository of stored messages (i.e., as a

database file), we can employ queries expressed in some

'mail-query language' to extract information from the

mailbox.

In the present application. Lisp has been chosen as the

host language for implementing the mail query language. One

major factor which motivated this decision is the symbol

-

manipulation capabilities provided by Lisp. A central role

is played in QIRM's implementation by a semantic net data

structure which determines the correspondence between symbols

and the roles they play within a message. Lisp maintains all

of the properties and values together in a property list

associated with each atom. These property lists constitute a

simple kind of database. For an example of the use of

property lists, consider a database of information about the

messages in a mailbox. A property list associated with each

message (atom) could be used to cache its property values

with corresponding property names (e.g., sending date,

receiving date, sender's id-name, recipient's id-name,

status, subject, and message body) . The global variable

MAIL could be used to hold the list of all the messages in a

mailbox. By employing the various facilities provided by

Lisp, the data from a 'mailbox file' can be embodied in a

database by using the concept of 'semantic nets'.

In order to enhance the functionality of the mail system,

the messages which the system handles have to be interpreted

at least partially. In this way, users can query the message

system to find messages. The message system needs some

guidance if it is to interpret messages correctly. Such

guidance can be provided by superimposing some structure on

the messages. The breakup of the header into fields and the

interpretation of each field provide a suitable structure

which can be used for locating messages. Since the facility

allows the user to specify the partial contents of a

message, an additional structure based on the message

contents can be superimposed. This structure, which relies

on the various information fields of messages, can be

implemented by employing several concepts and techniques of

Artificial Intelligence such as frames, production rules,

inheritance [4 D , and semantic nets.

Even though QIRM is based on such primitive techniques of

artificial intelligence as semantic nets, property lists and

matching, the prototype system could be used as the first

stage in the design and development oi an intelligent system

for electronic mail handling. The approach which treats

messages according to their contents encourages the

integration of a message system with office functions

performed on messages. In addition, this approach allows the

integration of message and database facilities. Such

versatility is one of the goals of office automation [53.

1.2. REPORT ORGANIZATION

The rest of this report is organized into three main

chapters. Chapter 2 provides a review of the literature

dealing with the concepts employed in the present

implementation. A brief overview of electronic mailbox

systems is provided along with definitions of relevant terms.

Some notable aspects of query languages, semantic nets, and

the language used to implement the project are also

presented. At the end of that chapter, research work related

to this report ie summarized. Chapter 3 deals with the

design of the QIRM system. Along with the presentation of

the objectives of the system and the environment employed,

there are descriptions of how the database is constructed,

how the interface to the query system works, and how the

tasks of data searching, extraction, and output gener at ion

are performed. Chapter 4 offers concluding remarks and

suggests future extensions of this work.

There are two appendices. Appendix A is a manual

providing the syntax and user interface of this system.

Appendix B is a listing of the source code of the

implementation-

CHAPTER 2

REVIEW OF THE LITERATURE

2.1. ELECTRONIC MAILBOX SYSTEMS

This section consists of three parts. The first part

defines the terminology related to the concept of an

electronic mailbox system. In the second part of this

section, the basic mailbox facilities are briefly described.

Various approaches towards structuring mailbox facilities are

presented in the last part. One of these approaches forms

the basis for the implementation of the OIRM system.

2. 1. 1. Terminologies

There is some inconsistency in the use of terminology

such as Electronic Mail, Mailbox, Electronic Message

Systems. In fact, different people use each of these terms

to mean different things. Consequently, it is not possible

to provide clear cut, commonly accepted definitions for them.

Another problem is that the technology is moving so rapidly

that the concepts and terminology have to change quite often

just to keep pace. Nevertheless, in order to place some of

these terms in context, we shall define them by combining

definitions in several references C 1, 6, 10, 11, 20'3 based on

an office automation approach.

Message refers to a single letter from a sender to be

transferred via the system. It usually has two parts: an

•nv*lop» and oonttnti. The envelope contains information

needed by the system to get the message to the correct

mailbox and typically contains the name and address of the

mailbox to which the message is being sent. The contents can

be separated into two parts: a header and a body. Header

information contains predefined fields associated with the

messaging process such as 'subject', 'time sent', 'to' and

' status ' . A status -field contains such an information as

'Has the message been read or not? ' or ' Is the message old or

new?'. The system will request any essential envelope and

header information before sending a message. The message

body is free-format text. Some kind of word processing

facility is usually provided for the sender to input and edit

the body of the text at will (see Figure 1)

.

Electronic Mail is a collection of electronic text

messages to be transferred uni-directionally, via a

computer-assisted communication system, from an identified

sending party to one or more identified receiving parties. It

must be mentioned that the term is often used to refer to the

electronic distribution of complete documents, composed of

text, data, images and other forms of information.

Electronic mailbox systems or Electronic mail systems are

used to describe computer-operated message systems which hold

messages in mailboxes, thereby allowing the user to access

and send messages at times and places which the user chooses.

Mailbox is a term sometimes used to refer to a store of

messages, or to a program which provides users with access to

Message

Envelope

Contents

I

I Body
I

+

Figure 1. Message Structure

these messages. We shall use the term "mailbox" to refer to

a file of incoming messages. In the Unix system, mailboxes

are typically located in files corresponding to users * login

names existing in the directory " /usr/ spool /mail " . Along with

a mailbox, the system has the facility of stored, delayed

communication. Nondelayed systems do not provide storage

capacity. Therefore, they only support instantaneous

communication. Conventional telex and telephone systems, and

the direct terminal-to-terminal working on a multi-access

computer system are non-delayed mall systems. Store-and-

forward telex, telephone answering systems and electronic

mail systems are examples of delayed systems.

Electronic Message Systems (EMS) refers to the entire

range of electronic communication systems. EMS provides

communications service to users based on the transmission of

text, voice, image, or any combination of these three.

Thus, Facsimile, Video Conferencing, PABX -based telephone

systems. Voice mailbox systems. Telex, and Teletex are

examples of EMS. However, the term EMS is sometimes used to

specif icially refer to Electronic Mailbox Systems.

2.1.2. Basic Mailbox Facilities

All Electronic mail systems including those in the Unix

system have a wide range of basic facilities. Such

facilities can be categorized as follows.

2. 1. 2. 1. Creating Messages

An editing facility is required for creating messages.

The sophistication of this facility varies from system to

system. Some systems only allow editing within the current

line being input, while others, including Unix, provide more

comprehensive word processing facilities with sophisticated

features such as the ability to move paragraphs around.

2.1.2.2. Sending Messages

The capability to send a single message simultaneously to

several people is an important feature provided by an

electronic mailbox system. This is achieved by permitting

the specification of multiple addresses. Some systems

including Unix provide a more powerful version of this

facility by providing copies of distribution lists, already

filed away in the system, to be called up by using a short

abbreviation. This is a powerful feature since it allows

perhaps hundreds of copies to be sent by a user with no work

beyond that required to send just one copy.

2.1.2.2. Receiving Messages

Most electronic mailbox systems provide a scanning

facility for detecting waiting messages, and associated

facilities that allow the user to select the order for

accessing messages. Reply and forwarding facilities for

assisting mailbox owners are also provided. The reply

facility automatically completes the header information such

as 'to * and ' subject ' by copying the information from the

message being read. Forwarding allows a message to be sent

on to another mailbox user along with any annotation that the

sender vishes to add. Having read, replied to, or forwarded

a message, the recipient can either delete, file or leave the

message pending within his mailbox.

2.1.2.3. Filing and Retrieval

Some sort of message-filing capability is offered by most

mailbox systems. However, the size of the store may vary

from system to system, as may the index facility associated

with the file. Search and retrieval of information held in

these electronic files is usually undertaken using indexing

classifications. The Unix mail system allows a user to

retrieve information on message number, subject, and sender's

id.

2.1.3. Mailbox System Structuring

More formal applications can be carried out via mailbox

systems if additional facilities - mailbox structures - are

provided. Mailbox structures refer to rules which organize

mailbox messaging so that specific objectives for the

communication can be met. The rules can be imbedded in the

software and imposed automatically by a system. These can

also be applied and policed by the user of the system. CI, 6]

Mailbox communication can be structured by organizing

the information of messages [1, 6 3. Software can sort

communication into categories based on the content of

messages and the interest groups with self -selected

memberships, for instance, or can permit recipients to route

or filter messages by the information of messages such as

keyword, subject, and author.

Structures can act as an aid to making decisions, getting

agreement, and controlling work that is done via a mailbox

system CI, 63. Message summarizing or condensation can be

accomplished by structuring the form of inputs. Senders

might be required to adhere to length limitations, or to use

votes or other numeric estimates instead of full messages.

Summarizing can also be performed by human digesters who read

incoming items, discard irrelevant ones, and summarize others

before posting them.

In order to maintain ordered and useful communications,

it may be necessary to control the access to the available

facilities. A designated human leader or a software

structure can help to perform these tasks: allocation and

removal of mailboxes, allocation of basic facilities (e.g.,

' read only ' or 'read and write*), creation and control of

distribution list or activities. Social pressure can also

be used for this purpose - often group members collectively

censure an errant member. If pen names are used or anonymity

is maintained, individuals can vote to sanction or criticize

errant members without embarrassing themselves. [1 , 2, 4 3

The QIRM system is based on "structuring communications

by organizing the information of messages". Messages in the

mailbox file can be organized into a database. This allows

the retrieval of mail items via a user-freindly query

language. It is an obvious advantage to be able to search

12

for messages using particular keys and conditions specified

by the user. In the QIRM system,. the user can query the

retrieval system to find some specific information on

sender's id, subject, sending date, receiving date, message

number, status, recipient ' s id, and word or phrase in message

body. In order to answer a query with proper information,

the system imposes some structure on the messages. This

structure is known to the system and used for the

interpretation of the message.

2. 2. QUERY LANGUAGES

2. 2. 1. Overview

One of the main objectives of organizing a large quantity

of data in a computer storage is to be able to retrieve,

modify, or insert any subset of the data. The user

communicates his requests for information in the form of

queries. The computer receives the queries, analyzes them,

and proceeds to search and operate on the desired

information. When a database is organized, considerable

attention is given to the set of queries that will be

directed at it. This enables the choice of the most suitable

database organization for the query set. The study of

queries play an important role in database organizations for

information retrieval.

A query language provides a frame work for information

retrieval. The query language is typically a high-level,

13

non -procedural language. In that the user only telle the

system what information is required, rather than how it must

be retrieved. The query language must also be complete. This

implies that all legitimate data and data relationships are

accessible through the operators defined in the query

language. 1 193

A query language is a generalization of the predicate

calculus which is used to represent statements about the

relation between attributes and values, or between two

attributes which is used to identify a set (class) of

objects [213. The central feature is a quantifier function

which is able to express, in a simple manner, the

restrictions placed on a database-retrieval request by the

user.

The formal query language contains three types of

objects: designators, which name classes of objects in the

database ; propositions, which are formed from predicates with

designators as arguments; and commands, which initiate

actions [21 3. Thus, in order to obtain the subject and

sender's name of a message with status 'OLD', the following

query might be formulated.

PRINT Subject, Sender

WHERE Status = ' OLD *

'Subject' and 'Sender' are designators to specify what

information are needed for the answer; 'Status' and 'OLD' are

designators which are arguments of the predicate *»* ; and

"PRINT" is a command for specifying to the query analyzer the

form in vhich the resulting data should be presented or the

manipulation which nust be performed on the data [73.

2. 2. 2. Query Processing

After a query has been input by a user, it is worked on

by a query processor. The flow diagram shown in Figure 2

demonstrates how a query processor interfaces with a data

management system. The query processor receives a query from

the user, and then parses and translates the query. The

query processor utilizes information about the structure of

the database known as the database description. This

information is needed so that the parser can check the use of

attributes of relations, if a comparison is made between

attributes, and whether the domains are compatible, etc.

The next step involves the determination of a schedule for

processing the query. The set relationships among the data

items that are required for answering the given query are

determined during this stage. Optimization of the query may

also be attempted at this stage, since the speed with which

the query can be answered may depend on the choice made by

the query processor concerning the sequence of steps to be

taken by the system. The third step is the execution of the

scheduled operations which involves actually searching the

database and retrieving the desired data. The final step is

report generation, which involves producing the desired

output format for the specified data requested. C 153

--— --— "'

user input 1

< Query) 1

1

1

1

1

Query

Processor

1

Output

Database

Description

\

\
Data

Management
System

Database

Figure 2. Query language system

2.2.3. Structured Query Language (SQL)

The most widely used query language ±s probably SQL C13].

SQL is based on the relational tuple calculus which is a

notation for expressing the definition of a relation in terms

of tuples belonging to some existing tables. Structured

English Query Language (SEQUEL) is an older version of SQL

which was developed by Chamberlain et al._ of IBM as part of

the SYSTEM R research project. Although it is termed as a

query language, SQL permits updates as well as data

definition. Its facilities are summarized in Figure 3 [14: p

1103. SQL can be used both as a stand-alone language and

also as a data sublanguage embedded in PL/1 or COBOL. It is

available in many well-known relational database management

systems such as SYSTEM R, SQL/DS and DB2 £131.

Since data retrieval is the focus of interest of this

report, this section reviews in detail only the query portion

of SQL. In SQL the basic query construct is the SELECT-

FROM-WHERE command. This construct forms the basis for

retrieval.

Suppose that it is necessary to access the name of

employee number 43 from the table EMPLOYEES. The appropriate

command would be:

SELECT ENAME

FROM EMPLOYEES
t

WHERE ENO • 43

The SELECT clause specifies the names of the fields

(columns or attributes) that are to be selected - in this

17

Query Command

SELECT I Retrieve data from one or more tables

Data Manipulation Commands

INSERT

DELETE

Adds one or more rows into
existing table

Changes data in one or more rows
of a table

Removes one or more rows from a table

Data Definition Commands

CREATE TABLE

DROP TABLE

ALTER TABLE

CREATE INDEX

DROP INDEX

CREATE VIEW

DROP VIEW

Defines the structure of a new table
to SOL

Removes the definition of the table
from the system

Adds a new column to a table
definition

Allows a table to be indexed on
one or more columns

Removes the index from the system

Defines a user view of part of the db

Removes the view from the system

Figure 3. Query, Manipulation,

and Definition Commands in SQL

18

case one, but there can be several . The relation (table) to

be used is listed alter FROM. The WHERE clause contains a

predicate which allows logical operators (NOT, AND, OR),

standard comparison operators, IN, ALL and some other

operators. The attributes in the predicate of the WHERE

clause must be drawn from the tables of an appropriate FROM

clause.

It is possible to specify just which columns are wanted.

If all the details are needed an asterisk can be used

:

SELECT «

FROM EMPLOYEES

WHERE ENO 43

This query would give the whole record for employee 43.

Compound selections can be specified in the WHERE clause.

More than one table can be used in the selection. The first

scheme for doing this is to embed or nest a SELECT-FROM-WHERE

command inside the WHERE clause, so that some column value(s)

are matched with values selected from another table

:

SELECT columns chosen from table A

FROM records in table A

WHERE table A column SELECT table B column

FROM records in table B

WHERE condition

In effect, the query examines or extracts from table B a

set of records which match the 'condition' specified in the

nested WHERE clause. The value in some attribute column of

table B in these selected table B records is then matched

with a corresponding attribute in table A < "WHERE table A

19

column = "). Records from table A are selected where the

match occurs. The final result contains the 'attributes

chosen from this set of matching records'. The attribute

chosen for matching must exist in both tables. It might be

employee number for instance, or date.

SQL permits nested blocks to an arbitrary depth as long

as the desired result (the answer) comes from a single

relation. If, however, the result comes from two or more

relations, the subquery strategy does not work.

Consequently, it is necessary to join the relations together.

This joining method is the second scheme of using two tables

in a query.

The WHERE clause links the two tables by specifying the

columns that are to be matched.

SELECT columns (from table A & table B)

FROM table A, table B

WHERE column from A column from B

This is an implicit Join operation followed by a select. [12]

2.3. SEMANTIC NETS

The semantic net, developed by Quillian (1968) and

others, has been proposed as an explicit psychological model

of human associative memory. A semantic net consists of

nodes, which represent objects, concepts, or events, and

links between the nodes which represent the relations between

the objects. A basic set of primitives is chosen to

describe objects and relationships, and all descriptions are

constructed from these semantic primitives. The number and

type of primitives that form the basic vocabulary is

important because the choice of primitives will determine the

expressive power of the representation.

Let us suppose that we want to represent the fact that

'All poodles are dogs. ' in a semantic network. We can do

this by creating a simple net in which the nodes represent

the objects and the link, the 'is-a' (or 'subset') relation

between them (Figure 4)

.

If ' Benji ' is a particular poodle, and we want to add the

fact that dogs have tails, then we would add two nodes and

two links, one of the new links is a 'has-part' relation

(Figure 5). This representation enables us to deduce facts

that are not explicitly stated in the network, e.g. that

poodles have tails since they are dogs, and so does Benji

since he is a poodle. This feature is called property

inheritance. Care must be taken to separate generic

concepts (or objects) , such as poodles from a specific token

such as Benji, otherwise errors in deductions can result.

Linking can result in incorrect deductions if the generic and

specific nodes are intermingled, or if the inheritance

characteristics are not carefully isolated. [93

The semantic network representation is not a formal

mathematical system with unifying principles. Its 'use tends

to be rather ad hoc, with various researchers employing

different net interpretation schemes based on the same

general concepts. [213

21

I DOG I

4"

I is-a
I

I

I POODLE I

Figure 4. A Simple Semantic Net

hae-part * +

I DOG I >l TAIL I

+ + +

f-

is-a I

I

I POODLE I

is-a I

I

*- *

I BENJI I

Figure 5. A Semantic net using IS-A link

2.4. SEMANTIC NETWORKS, RELATIONAL DATABASES, AND QUERY

LANGUAGES

Database management systems typically incorporate a

database schema. The schema is actually expressed in terms

of a descriptive language called a data model. The data

model provides a set of constructs for describing aspects of

the database and is used by the database management system

for processing queries.

The semantic network model and the relational data model

could be used both for describing the data and for specifying

queries. In processing queries using the former scheme,

special algorithms can be employed to match the graph

corresponding to the query with the graph representing the

data £21]. For the case involving relational notation,

most queries can be viewed as taking an entity that meets

certain criteria, connecting it to an entity of another type

- perhaps through many relationships, and finally returning

some attributes of the resulting entity.

2. 5. FRANZ LISP

The language used for implementing the QIRM system is Franz

Lisp, a popular dialect of Lisp. The Lisp language which

was invented in the late 1950s has evolved in a number of
r

different directions. Consequently, unlike many other

languages, there is no such thing as standard Lisp. Among

the nost widely used dialects of Lisp today are MacLiep: a

version of Lisp developed at MIT, and InterLisp: developed

23

at Bolt, Beranek and Newman, and Xerox Palo Alto Research

Center. [3]

Franz Lisp was developed at the University of California

at Berkeley and is available under Berkeley Unix [3J. Its

roots are in a PDP-11 Lisp system which originally came from

Harvard. As it grew it adopted features of MacLisp and Lisp

Machine Lisp. Substantial compatibility with other Lisp

dialects (Interlisp, UCIlisp, CMUlisp) is achieved by means

of support packages and compiler switches. The Franz Lisp

system consists of an interpreter. Lisp, and an optimizing

compiler which is named Liszt. The kernel of Franz Lisp is

written almost entirely in the progrmming language C, with

much of the support written in < compiled) Lisp. For run-time

efficiency, small portions of the kernel are written in

assembly language. [16]

Franz Lisp is capable of running large Lisp programs in a

timesharing environment. It has facilities for arrays and

user defined structures, along with a user controlled reader

with character and word macro capabilities which gives the

Lisp programmer the ability to modify the way expressions are

read in by the interpreter. Through the use of read macro,

the user can designate special characters which act in

unusual ways. This gives the user the ability to establish

useful shorthand that simplify some programming tasks.

Also, Franz Lisp can interact directly with compiled Lisp, C,

Fortran, and Pascal code.

24

2.6. RELATED WORK

Much of the work which has been done on structuring

electronic mailbox communication involves quite different

approaches. Some articles which are representative of these

different methodologies include [23, [53 r and C4 3.

The followings describes portions of these works.

2. 6. 1. Systems for Controlling Group-Communication (SCGC) [23

It ie often easy to send a message to a large number of

people since systems are often designed to give the sender

too much control of the communication process, and the

receiver too little control. If the receiver is given more

control over the communication process, much of the

electronic mail which is not of interest to a person can be

greatly reduced. In order to accomplish this, a structure

must be imposed on the set of messages. Electronic mail

systems thus need to be more database oriented, like some of

the existing computer conference systems. Even though group-

communication system can cause information-overload problems,

it provides people an environment for meeting and exchanging

ideas much more freely than in a pure mail system. There

exist several design options for electronic message systems

to overcome the overload problems.

When a conference system complements a message system,

the flow of unwanted messages is greatly reduced. Instead of

delivering an unordered heap of messages, the system can

deliver a neatly structured database of incoming messages.

25

It permits the reader to decide which messages to read

immediately, which to save for another time, and which not to

read at all.

Another way of structuring messages is via comment trees.

A system can be designed to store relations between messages,

where one of them can be a comment or a reply to another

message. Thus, a set of messages which refer to each other

directly or indirectly (comment tree) can be identified

automatically by the system.

Also, the storage and retrieval of messages can be

controlled by such items as: keywords, subject, and author.

The system can be told to deliver messages according to user-

specifications involving these items, thus giving the reader

more control of what messages will be read. For example, a

user can read all messages on a certain subject before

continuing with a new subject.

A designated human leader for a computerized conference

can help a group to control its communication. A leader's

role includes editing a list of items or keywords for

clarity, or deleting or moving inappropriate items before

posting them (control by selection). The process of

summarizing discussions can also be performed by human

digesters. People in such roles abstract the discussions in

voluminous open conferences into write-protected conferences

containing only the abstracts (control by abstract writing).

26

2.6.2. A System for Managing Structured Messages (SMSM) [5]

Message systems transport the messages, but do not manage

them. Database management systems manage the information,

but do not have any notion of addresses. Integration of the

facilities of both systems provides a scheme for structuring

mailbox communication.

A system using such an approach manages messages as typed

objects which can be stored within a logical unit and

transferred between the units. Such a system provides the

manual functions which enables users to find and query

messages by selecting a message type and partially specifying

the contents of the messages in templates. A user can specify

message selection based on various combinations of items

internal to the messages.

Also, the system permits the specification of procedures

which are triggered by the presence of messages and which

automatically manipulate the messages. The automatic

procedures are specified by giving the system some indication

of the pattern or contents of the messages which are desired

and an indication of what the system should do with these

messages. Automatic procedures run regardless of whether the

user who specified the procedure is currently logged in.

Examples of these automatic functions include: coordination

of messages, i.e., act only when a related set of messages
t

has been assembled; modification and creation of messages;

filing messages; and forwarding received messages to other

stations according to their contents.

27

A uniform user interface which is based on ' specification

by example* can be provided to carry out all the manual and

automatic functions. Users query messages by partially

specify the contents of the messages in the template. The

automatic procedures are also specified by indicating what

messages are to be collected, and what is to be done with

them.

2. 6. 3. Intelligent Information -Sharing Systems [43

The problem of balancing the value of open communication

channels with the cost of information overload has been

expressed by many users of group-communication systems. A

technology that can increase the selectivity with which the

information is disseminated should be sought. A prototype

called Information Lens (ID has been developed using this

concept. This system employs user-interface design and

techniques from Artificial Intelligence such as frames,

production rules, and inheritance. These techniques help

people filter, sort, and prioritize messages that are

addressed to them. They also help users to find useful

message they would not otherwise have received, via a special

mailbox called * Anyone ' . Messages that have * Anyone ' as an

addressee are automatically delivered to a public mailbox.

Receivers can have interest profiles which automatically
i

retrieve messages from the public mailbox 'Anyone'.

Also, this system permits semi -structured templates to be

used by senders in message composition. These templates can

2l\

also be utilized by recipients to facilitate construction of

a set of rules for filtering and categorizing messages.

Three different approaches to automated message filtering

are employed in the Information Lens system. A cognitive

filtering approach works by characterizing the contents of a

message and the information needs of potential message

recipients and then using these representations to

intelligently match messages to receivers. Decisions are

based on distribution lists, and either a simple keyword

search or combinations of various conditions on fields. A

social filtering approach works by supporting the personal

and organizational interrelationships of individuals in a

community. It complements the cognitive approach by focusing

on the characteristics of a message's sender, in addition to

its topic. An economic filtering approach relies on various

kinds of cost-benefit assessments and explicit or implicit

pricing mechanisms. The length of a message, the number of

recipients, and the salary of a recipient are some of the

factors used to estimate its cost. The current version of

this system emphasizes the cognitive approach.

The Information Lens system is written in the Interlisp-D

programming environment using Loops, and runs on Xerox 1108

and 1109 processors connected by an Ethernet. It is built

on top of an existing electronic mail system. jjsers can

continue to send and receive their mail as usual, and have

the option of using centrally maintained distribution lists

and manually classifying messages into folders. The system

additionally provides following important optional

capabilities: (1) Structured message templates are available

for message composition; (2) Senders can include a special

mailbox named "Anyone" (which is a public information file

as) an addressee of a message; (3) Receivers can specify

rules to automatically filter and classify messages arriving

in their mailbox or the "Anyone" mailbox. Rules can move

messages to folders, delete messages, set "characteristics"

of messages based on other field values, or select messages

addressed to "Anyone".

2.6.4. Comparison of QIRM with related work

In the articles 121, [53, and C43, the authors presented

their ideas on desirable design options and implementation

strategies for structured mailbox systems. Some

considerations in formulating these strategies includes:

information overload [2, 43, information sharing [2, 5, 4],

communication filtering, sorting, and prioritizing [2, 5, 4],

the query service C5, 4], and intelligent database management

systems t 5, 43.

The features presented in £2], 15], [41, and the QIRM

could be compared in many aspects.

The scope of QIRM is different from that of the systems

illustrated in [23 (SCGC) , [53 < SMSM) , and [43 (ID. QIRM is

a information-retrieval system which is intended to access

messages in a user's mailbox. SCGC, SMSM, and IL are group-

communication-oriented mailbox systems for sharing

information. In the environments of SCGC, SMSM, and IL,

30

users can send, receive, delete, file messages as well as

retrieve them. The recipient using SCGC, SMSM, and IL can

query both global and local messages. In the QIRM, hovever,

a mail-receiver can query only messages that have arrived in

his own mailbox.

The QIRM differs from SMSM and IL in the methods of

specifying the queries. While the queries of SMSM and IL are

based on the use of semi -structured message templates <a

domain- calculus query), OIRM's query is specified in the way

similar to that of SOL <a tuple-calculus query). It should

be mentioned that IL provides very friendly and convenient

user-interfaces. Messages in IL are composed with a

display-oriented editor and templates that have pop-up menus

associated with the template fields.

SCGC, SMSM and IL provide both automatic and manual

facilities for structuring messages, while QIRM has a manual

function that categorizes messages temporarily according to

the use] query. Structuring on the message set is based on

information input by: the sender (SMSM, SCGC, IL), someone

else <e.g. a leader) (SCGC), the recipeint (SMSM, SCGC, IL,

QIRM), or automatically the system (SMSM, SCGC, IL). SMSM

and IL allow a recipient to specify rules for processing

messages. These rules are composed using the same templates

as those used for composing and quering messages. The
i

facility for user-specified rules is not employed in QIRM nor

SCGC.

Both QIRM and IL use several techniques from artificial

intelligence. To structure messages, the latter employes

frames, each of which contains messages with similar

contents. These frames are arranged into a network using the

frame -inheritance lattice. The messages in QIRM are

structured in a semantic network that consists of many

subsets, and each subset represents a message.

Even though the detailed architecture and techniques

employed in these systems are different each other, the basic

key ideas are found to be very similar : Messages can be

controlled and selected on the content of messages (e.g.,

author, topic, keyword) by a user ' s message-specification or

by the system function which automatically manipulate the

messages; In order to achieve such a structured

communucation, it is desirable to develop more database-

oriented and active mailbox systems.

CHAPTER 3

DESIGN

3. 1. OBJECTIVES

The objective of this work is to design and implement a

system vhich allows a user to categorize requests for

messages in his/her mailbox and to retrieve the information

according to the fields and conditions specified by the user.

By employing concepts and techniques of artificial

intelligence, the system can provide some insights for

developing an intelligent user-friendly UNIX mail facility.

Moreover, the project has the potential of reducing many of

the burdens and problems that current users of Unix mall have

to encounter during their use of this facility.

3.2. THE SYSTEM ENVIRONMENT

The prototype which is referred to as 'The OIRM System'

has been developed on a Digital Equipment Corporation VAX

11/780 minicomputer supported by the Berkeley 4. 3 BSD UNIX

operating system at Kansas State University and written in

Franz Lisp Opus 42.

33

3. 3. SYSTEH DESIGN

3. 3. 1. Overview

The diagram shown in Figure 6 presents the framework of

the 01 RM system. As can he seen, the system consists of four

major components. The following is a description of each of

these basic, components.

(1). DATABASE PREPARATION : Database preparation involves

the design of how the data are organized to be used and the

subsequent loading of data into the database from the input

file(s)

.

(2). USER INTERFACE : The user interacts with the system

through a query language. The entire retrieval design

process is accomplished through this interface.

< 3) . QUERY PROCESSOR : This processor processes a query

submitted by a user. The query is parsed, and the database

is searched for items that match the specific request.

Information about the organization of database is

incorporated within this processor itself.

(4). OUTPUT : The output, which is the result of the

searching operation performed by the query processor, is

selectively generated according to the user's query-

specification.

Processing by the QIRM system can be broadly divided
t

into four phases. In phase one the database is constructed

;

the data read from the data file<s) are converted into the

desired Lisp structure. The next phase is query processing

which involves scanning, and parsing the query submitted by a

34

user. The -third phase involves searching the database and

retrieving the requested data. The final phase is the output

generation. In this phase, the requested information is

displayed on the terminal in the format specified by the

user.

Having provided a basic background of the OIRM system,

in the following text each component is described in

considerable detail.

35

Database

Preparation

I

I

Database

USER

INTERFACE

(INPUT QUERY)

FIGURE 6. Framework of the QIRM SYSTEM

3.3.2. Database Preparation

3.3.2.1. The Lisp Notation and Indexing Scheme

The database in this system is based on the semantic

network formalism (See section 2.3.). The semantic networks

are augumented with an indexing scheme.

As expressed in Section 2.1.1., the contents of a message

in a Unix system mailbox consist of a header with various

fields and a text body. This structure can be used for

storing mailbox information into the database. Figure 7

presents a graphical description of the information that is

used to structure a database in QIRH. Each message has

seven properties which are 'sdate, rdate, from, to, subject,

status, body". A brief description of each field is now

given

:

'sdate' indicates the date of sending a message;

'rdate' indicates the date of receiving a message;

'from' indicates the message-sender's id-name;

'to' indicates the message-recipient's id-name;

'subject' indicates the subject of a message;

'status' indicates the status of a message such as 'Has this

message been read or not?' or 'Is this message old or new?';

'body' indicates the body of a message.

Bodyl is a node with two links, one to a node containing

the text portion of body, and the other to a node containing

control information about a message, namely, the number of

lines of text and the address of text in the mailbox file.

Rdatel is a node having four properties which are 'rd, rw.

37

I msg2 I I msg3 I I msgn I

IMSG2
I

I

I HSG3
I

I

MAIL

I I

I (tuitionl
I fees)

I

I I

*. «.

subject \

A-

I MSGN
I

I

I (due next Friday. I

I don't forget 1 I) I

/text

I mary I < I

, » to |

/

/

i status
I

I

msg 1

+ pos- *-

I bodyl I >l (25
* *linenum *

-A

/ body
/

2) I

-> I nancy

sdate/ \ rdate
/ \

V if

sdatel I 1 rdatel

1

1

Isd

1

1

1 sv

1

1

1 em

1

1

1 sy

1

1

Ird

1

1

I rw

1

1

1 rm

1

1

1 ry

* -J, 4/ vU * 4/ 4/
f » -»- »- * * — * f- t- * + *- - »-

31 t 1 wed 1 1 dec i 1 86 1 1 1 1 thu 1 1 Jan 1 1 87

Figure 7. A semantic network showing the structure of

the database in the QIRM system

rm, ry ' . The property links ' rd, rw, rm, ry ' Indicate the

day number , the weekday, the month, and the year of receiving

a message, respectively. Sdatel is a node containing four

properties which are 'sd, sw, sm, sy ' . The property links

'sd, sw, sm, sy ' indicate the day number, the weekday, the

month, the year of sending a message, respectively.

The format of the semantic network shown in Figure 7

suggests that the information about each of the individual

messages, like msgl, is clustered in a particular place. Any

fact that is associated with msgl is represented with an

arrow going in and out of the msgl node. Therefore, having

located msgl, it is possible to gain access to all the

information about it. This is an indexing scheme. If a

certain process in program requires information about the

subject of msgl, it would not be practical to linearly search

all the nodes in the database to find the fact. It is much

more plausible to have msgl point to the information

directly.

There are a variety of techniques that have been

developed for indexing patterns in a database. The technique

employed in this work takes advantage of Lisp property lists

in breaking up a large database into several small ones. As

shown in Figure 7, the database 'MAIL' is composed of many

records such as 'msgl, msg2, . .., msgn ' . In order for a

database to support several records at the same time, there

must be an index which keeps track of the records. The

capitalized record name (i.e. if a record name is 'msgl',

' MSG1 * becomes its capitalized name.) can be used as the name

33

of the property to index a record under. Thus, when a

record is added to the database, it is stored on a

' capitalized-record-name ' property list of 'MAIL*. When an

item is added to a record in the database, the system

identifies the record (a message-name) the item belongs to

and stores it on a list under some property name of the

record (a message). For example, suppose the system wants

to add an information such as 'The message subject is TUITION

FEES. ' to a record, say msgi , using this scheme. It can be

done by adding this item to the list stored under the

'subject' property of a record 'msgl' which is stored under

the 'MSGI ' property of the database 'MAIL' . When fetching

an information like the subject of messagel from the

database, the system first obtains the list under 'MSGI

'

property of 'MAIL'. Then, it gets the value under

'subject' property in this list.

From the above discussion, we can conclude that:

Semantic networks suggest a scheme of forward and backward

pointers that appears to make accessing information very

easy. Figure 8 shows how the attribute-value memory

structures in Figure 7 are represented in Lisp.

40

PROPERTY LIST

(MSG1 msgl)
(MSG2 msg2>
(MSG3 meg3)

msgl

(MSGN

(subject
(status
(to
(from
(body
(rdate
(sdate

msgn >

(tuition fees))

N >

nancy)

mary)

bodyl)

rdatel

)

sdatel))

(rd 1)

(rw thu)

<rm Jan >

(ry 87 >)

(sd 31)

< sw wed)

(sm dec)

(sy 86))

bodyl (text (due next frlday.
don ' t forget ! 1))

(pos-linenum (25 2)))

msgn

) >

Figure 8. The Lisp Representation of the Database
Shown in Figure 7

41

3. 3. 2. 2. Database Loading

After the data structure is defined, the database is

loaded by the database manager ; this manager consists of

several procedures. The database loading process involves

determining the source of the data, reading the data file,

constructing the database, and updating database file. The

question of which data file(s) should be loaded is critical

in terms of efficiency.

As shown in Figure 9, the QIRM system has been designed

to take one of two paths in determining which input file to

read. Which path is chosen by the database manager depends

upon the existence of an old mail database file (referred to

as 'old-db'). The old mail database file is arrived at by

concatenating the user ' s login -id and the string ' data ' . For

example, if ' songhee * is the user * s login -id, then ' old-db

'

file is named 'songheedata ' . That is, the database in

' songheedata ' is the one that had been constructed when QIRM

was called the last time by a user, 'songhee'

.

When a user Invokes the QIRM system, the database manager

checks whether an 'old-db' exists or not. If there is no

'old-db ' found, the database manager considers that it is the

first time that the user has employed the QIRM system. In

this case, the manager takes the user ' s mailbox as the only

data file and loads the data from the mailbox into a database

('path two' in Figure 9). However, if 'old-db' is found,

the manager uses both an *old-db* and a mailbox as data files

to reload data into a database. The reloading process

includes tfte reading of the two data files to compare a key

portion of each message in one file with that in another

file. This comparison is needed for the manager to identify

the messages deleted from, or added to the most recent

mailbox ('path one' in Figure 9) . Using the algorithm

(algorithm A) described above, the database manager

constructs a database end stores it into ' old-db ' , which will

be used as one of the input files for the next usage.

4 3

(path two)

I Yes (path one)

I

Read
&

Compare
Mailbox

With
'Old-Db'

I

I

I

DATABASE

Update

'Old-Db'

Query Processor

Figure 9. Algorithm A for loading a database

4 4

3. 3. 2. 3. Efficiency Consideration

For the purpose of efficient database loading process,

two algorithms (A and B) are compared by considering the time

complexity. Algorithm A was discussed in the previous

section and shown in Figure 9, while algorithm B is

illustrated in Figure 10.

In this argorithm B, a user ' s mailbox is taken as the

only data file. Whenever the system is invoked, a database

manager reads through a mailbox and constructs a database.

No physical database file exists in this algorithm.

Algorithm A uses several procedures to minimize the

regular user's waiting time for database -loading, by

distinguishing the first-time user from the regular user of

the system. In order for the text data in a mailbox to be

loaded into a database, the data should be organized and

converted to the desired format. But, such processes are

not required for loading the data from 'old-db' which have

been stored in the lisp format consistent with the database

structure. Therefore, once the database manager finds that

the key portion of a message, say msgN, in 'old-db' is the

same as that in mailbox, the whole information about msgN in

'old-db' can be reloaded into a database quickly and easily.

Algorithm A takes extra time for updating 'old-db' and

determining the identity of messages in two data fl'les. In

order to minimize the time for the latter, this algorithm

uses very small key-portions of messages for the comparison.

The performance of each algorithm was evaluated by

running it with a set of sample data which were saved into a

mailbox 'songhee' from the 14th of Jan 1987 to the 20th of

July 1987, and by measuring the user time which is needed to

load the whole data from the data file(s) into a database.

The data set includes various messages such as the local

messages < sent -received on ksuvaxl), UUCP messages, and the

messages from CSNET, BITNET, KSUVM, JUNET via CSNET, ARPANET,

and USENET. In each comparison, the key portion < i. e. the

first line of a message header containing a sender's id and

the date of receiving the message > of the last five messages

were modified for algorithm A, so that the system recognizes

them as new messages.

1 1

1 Read 1

1 Mailbox 1

1 1

1

1

—
(

1

1

1 1

t Query 1

1 Processor 1

1 1

Figure 10. Algorithm B for loading a database

4 6

For the purpose of predicting the loading times for large

sets of messages, the predicted loading times, T < second) , for

each algorithm were formulated by utilizing linear regression

method. Minimization of the sum of squares of the

deviations between the measured times and the linear

expression yields

:

T = 1.72 * 0.33N Algorithm A

T = -3.40 * 0.39N Algorithm B

where N denotes the number of messages. The correlation

coefficients for algorithm A and B were 0. 997 and 0. 999,

respectively, which represent good linearities of the

measured loading times in both cases.

As shown in Figure 11, algorithm A seems to be less

efficient than algorithm B for the small number (under 50) of

messages, but the difference is negligible. The time used for

database loading in both algorithms are almost identical for

fifty to one hundred messages. For a large set of data < more

than 100 messages) , however, algorithm A becomes more

efficient than algorithm B. The larger the data set, the

more loading time is saved by using algorithm A. For

example, a user with 360 messages can save more than 15% of

loading time which is required by algorithm B.

When we consider the complexity in terms of space,

algorithm B is superior to algorithm A. The space for 'old-

db' is not needed in algorithm B. Also, the source code for

algorithm B is shorter than that of algorithm A by 2937

bytes. However, for the QIRM with a heavy and direct

user-interface, it is obvious that the time efficiency is a

4 7

much more critical factor "than space efficiency in choosing

an algorithm. For this reason, algoritm A has been

chosen for loading a database in QIRM.

140

120

100-

o
UJ

80

o 60 -

<o
40

20

ALGORITHM B ,*

+' /D

ALGORITHM A

40

—

I

'
1

1

1
'

1
'

1
'

1 1
f"

80 120 160 200 240 280 320 360

NUMBER OF MESSAGES

Figure 11. Comparison of loading time of algorithm A with that of

algorithm B.

3. 3. 3. Queries - User Input and Output

As mentioned in chapter 1, the query language is very

useful for retrieving information from data bases. Even

though the query language is very different from Lisp, it is

convenient to describe the query language in terms of the

general framework of Lisp. It is described as a collection

of primitive elements, together with means of combination

that enable a user to combine simple elements to create more

complex elements and provides a means of abstraction that

enables users to regard complex elements as single conceptual

units. The mail -query language implemented in this project

has been designed taking advantage of above aspect in Lisp.

In order to illustrate the features of the query system

in the QIRM, this section shows how QIRM can be used to

manage the database which ie built from the information in a

mailbox. The language provides pattern -directed access to

the information.

3.3.3.1. Simple Queries

The mail-query language allows users to retrieve

information from the database by posing queries in response

to the system's SELECT-WHERE prompts.

The syntax of simple query is

SELECT (<field>* I «)

WHERE < <query-pattern>) I (

)

50

Some points concerning this query are

:

1. a. <field>* indicates the set of length one or more

which consists of elements of the form <field>

where

<field>, in turn, is made up of sdate, rdate,

from, to, subject, status, and body.

b. ' I ' indicates alteration, for example, ' A I B *

means a choice of A and B.

c. '•' is the shorthand of all fields.

2,

2.1. <query-pattern> has the following structure.

<predicate-operator> <propertyname> <propertyvalue>

where

a. <predicate-operator> can be <, >, <=, >=, or =.

b. <propertyname> can consist of sw, sd, sm, sy,

rw, rd, rm, ry, from, to, subject, status, and

text.

c. 1. <propertyvalue> can be the value to be

searched for in the named property of

messages.

2. If the property value consists of more than

one word, it should be parenthesized,

otherwise, it should not. A word indicates

a sequence of any characters except! blank.

2. 2. () indicates that 'no condition' is

specified for retrieving messages.

M

The input query specifies that one is looking for entries

in the database that match a certain pattern. Using the

matching operation that will be described in section

3.3.4.1., the query determines whether the desired pattern is

in the database and which records of the database contain it.

The system responds to a simple query by showing the values

of requested fields in all records found which meet the

criteria specified by the pattern.

A query * s response involves the output of data.

Sometimes the amount of data is very large, and it may be

unexpected by the user. In such a case, it is convenient to

tell the user the number of messages retrieved and output

only the first items, and then inform the user that there are

more data which can be supplied. The system gives the number

of additional reponse records and interrogates the user about

their disposition.

For example, to see all subjects of mail items which were

received on Wednesday, one can say

SELECT (subject)

WHERE (= rw wed).

The ClIRM system does not distinguish between upper and

lower case letters. Thus the above query could equally well

have been entered as
.*

SELECT < SUBJECT

)

WHERE <= rw WED).

The system would display the subjects of all the records on a

screen having the structures which satisfy the condition of

52

'WHERE* clause. Figure 12 shows an example of how the

output is displayed at the terminal and how the system

interacts with a user.

* * 3 message recalled 1 * *

msg4

subject : new arrival

2 messages lei t ! More? < y /n) n

SELECT (subject)

WHERE (> rw wed)

* * 1 message recalled I •*

msgl

subject : tuition fees

SELECT stop

** bye bye **

X

Figure 12. Output Examples of OIRM

During retrieval of information, the user may abort the

display of the remaining messages, and start on a new query.

That is, by choosing 'n' as the answer to the system's 'More?

(y/n)' question, the user can start a new dialogue. The

user can either continue retrieving information by specifying

hie choice of fields and conditions in response to the

system's new SELECT-WHERE prompts or exit the system by

SELECTing 'stop' command.

Another example is :

SELECT (sdate body)

WHERE <= subject (A.C.M. meeting))

The system would respond with the selected items from

messages which meet the conditions specified by the 'WHERE'

clause.

In this example, one of the output might be :

msglO

Date: Wed, 14, Jan 87 08:45:04 est

< ... the message body of A.C.M. meeting ... > "

If one wants to retrieve all the values of seven fields

of messages, an asterisk can be used:

SELECT <•)

WHERE (= subject meeting)

would give all of fields of each mail item whose subject

contains the word 'meeting'. Notice that a user can specify

either the exact subject of a message or a keyword of the

54

subject.

Thus, the simplest form of query which will display all

of the messages in the database in their entirety is:

SELECT < .

)

WHERE (

)

3. 3. 3. 2. Compound Queries

Simple queries form the primitive operations of the mafl-

query language. In order to form compound operation, this

query language provides a means of combination which mirror

the formulation of logical expressions. Here, logical

connectives, 'and' 'or' and 'not', could be considered as

operations built into the query language.

The syntax of a compound query with 'and' is

SELECT (<field>») I <•)

WHERE < and <compound-query-pattern>+ >

Some points concerning this query are:

1. <compound-query-pattern>*» indicates the set consisting of

two or more <cotnpound-query-pattern>s.

2. <compound-query-pattern> can be any of the following:

(and <compound-query-pattern>+ + >

(or <compound-query-pattern>+)

(not (<query-pattern>))

(<query-pattern>)

55

The compound query with * and * connective ie satisfied by all

sets of values for the property names that simultaneously

satisfy all of <compound - query- pattern>s.

The following is a compound query example which

illustrates the use of 'and':

SELECT < subject

)

WHERE (and < >= sm feb) (= to grads))

As the response of this query, the system shows all the

subjects of messages which were sent to the graduate students

from Feburary to December.

Another means of constructing compound queries is through

'or'. The syntax of this query is:

SELECT (<field>+) I <•>

WHERE (or <compound-query-pattern>* +)

This query is satisfied by all sets of values for the

property names that satisfy at least one of <compound-query-

pattern>s.

An example of a compound query using ' or ' is

;

SELECT (body)

WHERE (or (= text (unix system)) (= text (mail

box))

)

The result of this query is all the message bodies which

contain either the word 'unix system' or 'mail box'.

56

Queries can also be -formed with 'not'.

SELECT (<field>+) I (*)

WHERE (not (<query -pattern>))

is satisfied by all values of the property name that do not

satisfy query -pattern.

A query example formed with ' not ' is :

SELECT (from)

WHERE < not (= sm jan))

The result of this query is senders' id-names of all the

messages which were not sent in January.

Also, one can combine ' and ' , ' or ' , and ' not ' to specify

conditions in a WHERE clause as shown in the following

example

:

SELECT < subject body

)

WHERE (or (and (= sd 20 > (not (= sm jan)))

(= status r)

)

As the result of this query, the system shows a user the

subjects and text bodies of all the messages which either

were sent on the 20th of any month except January or have

already been read by the user.

3. 3. 4. The Query Processor

In this section, an overview of the query processor '

s

general structure is presented.

The query processor is organized around a central

operation called network-fragment matching. This section

begins by discussing network-fragment matching and how it

permits both simple and compound queries to be implemented.

This section also shows how the entire query interpreter

works by utilizing a function which classifies expressions.

3. 3. 4. 1. Matching

The mechanism used by this processor is based on matching

semantic network structures: a fragment of a semantic net is

structured to represent an object (a query-pattern which is

sought). This fragment is matched against the database for

the semantic net to see if such an object exists. Once

having found the object, variable nodes in the fragment are

bound to the values which they must possess in order to make

a match perfect.

Suppose we wish to retrieve the information based on the

following request indicating 'Show all subjects of messages

whose status is 'New':

SELECT < subject)

WHERE < = status N)

58

We construct the fragment as shown in Figure 13.

I msg? I > I N I

• •* » +

I

I

I subject
I

I

Figure 13. A Fragment of a Semantic Nets

This fragment is then matched against the database in a

search for a 'msg?' node that is connected to a node

containing 'N' by a 'status' link. If it is found, the node

to which the SELECTed field link (a subject link) points is

bound in a partial match and might be used to formulate a

query response such as:

' msgl

subject : tuition fees'.

Had no match been found, the answer would have been

'No message whose status is 'N' is found'.

59

3. 3. 4. 2. Stream Implementation

The testing of query patterns against network fragments

utilizes the notion of streams. A stream is simply a

sequence of data objects. A straight forward implementation

of streams can be done using lists in Lisp. With a single

fragment of a semantic net (a query pattern), the matching

process runs through the copy of database entries one by one.

This copy of the database entry list is given as an input

stream (stream A in figure 14) for the matching process.

Each entry is a message of the 'MAIL' database and contains

pointers to several nodes containing its property values.

For each database entry, the process which attempts the

matching generates either a symbol indicating that the match

has failed or the entry itself. The results for all of the

given database entries are collected into a stream, which is

passed through a filter to weed out the failures. The

result is a stream of all the database entries that contain

items matching the query pattern (see stream B in Figure 14).

In the QIRM system, a query takes a copy of all the

database entries as an input stream for a ' where-processor

'

and performs the network-fragment matching operation for

every entry in the stream as indicated in Figure 15. That

is, for the given input stream (stream I), the where-

processor generates a filtered new stream (stream II)

consisting of all entries which have items satisfying the

query condition. This filtered stream (II) is taken by a

' select -processor ' to generate the final output of the query.

stream A

< a copy of
database
entries

)

stream B
>

< a copy of
db entries,
filtered)

Figure 14. A query -pattern processes

a stream of entries.

etreaml
>

< a copy
of all

db
entries

)

WHERE-
PRQCESSQR

WHERE
i (conditions) I

stream II
>

<a filter-
atlon of
stream I)

I

SELECT-
PROCESSOR

SELECT
(fields)

final
output
stream

< a stream
of field-
values
associated
with db
entries of
stream II)

Figure 15. A query processor consists of **

a where -processor and a select -processor.

61

3. 3. 4. 3. Simple Query and Stream Implementation

To answer a simple query, the system uses the query with

an input stream consisting of copies of all database entries.

The output stream from the where-proceseor contains the

filtered entries. This stream of filtered database entries

is then used to generate a stream of copies of the SELECTed

field-values, and this is the stream that is finally printed

at the terminal.

3.3.4.4. Compound Queries and Stream Implementation

The real elegance of the stream implementation ie evident

when compound queries are considered. The processing of

compound queries makes use of the ability of the filter to

demand that a match be consistent with a specified network

fragment.

For example, to handle the 'and' of two compound-query-

patterns, such as

< and < = body (rules and inheritance))

< = to faculty))

< This query can be informally stated as: 'Find all messages

whose text bodies contain the phrase "rules and inheritance"

and whose receivers are faculty members. '.), the query

processor first finds all entries containing the fragment

that matches the following pattern: (= body (rules and

inheritance)). This produces a stream of entries, each of

whose body contains the phrase 'rules and inheritance'.

62

Having the new filtered stream, all entries that contain the

fragment matching the following are found among the entries

in the new stream : (= to faculty) . The ' and ' of two

compound-query-patterns (see section 3.3.3.2) can be viewed

as a series combination of the two component compound -query

-

patterns, as shown in Figure 16. The entries that pass

through the first compound-query-pattern are filtered, and

further filtered by the second compound-query-pattern.

Figure 17 shows the analogous method for computing the

' or ' of two compound-query-patterns as a parallel combination

of the two component corapound-query-patterns. The input

stream of entries is filtered separately by each compound-

query -pattern. The two resulting streams are then merged

(for example, by appending the streams and eliminating the

duplicated entries) to produce the output stream of

processing the 'or' clause.

From the stream-of -entries viewpoint, the ' not ' of some

query -pattern acts as a filter that removes all entries

having items specified in the query-pattern. For instance,

given the clause

< not (= from mary)

)

the system attempts, with the given database entries, to

produce the stream of entries consisting of network fragments

that satisfy (= from mary). Then, the system removes from

the input stream all entries for which such fragments exist.

The result is a stream consisting of only those entries in

which the binding for 'from* does not satisfy (= from mary).

63

For example, in processing the query

(and < = text (key finding))

(not < * from mary)))

the first clause will generate a stream of entries each of

whose body contains the phrase 'key finding ' . Taking ' and

'

with the not clause will filter the stream by removing all

entries in which the bindings for 'from' satisfy the

restriction that the message -sender ' s id -name is ' mary '

.

The queries containing '<', '>', ' <= ' , or *>-' as the

predicate operator can be implemented with a similar filter

on entry streams. The system uses each entry in the stream

to instantiate the property variable (referred to as

property -name) in the query pattern and then applies the Lisp

predicate. Then the system removes from the input stream all

entries for which the predicate fails.

&4

input
stream

of
entries

< AND A B)

output
stream

of
entries

Figure 16. The 'and' combination of

two compound -query -patterns

input
stream

of
entries

* >l A l-

I

+. -. — +.

I merge I

+ +

output
stream

>

of
entries

>| B I

Figure 17. The 'or ' combination of

two compound -query -patterns

65

3. 3. 4. 5. The Query Evaluator and the Query Driver

The function that coordinatee the matching operations is

called ' qeval ' , and it plays a role analogous to that of the

' eval ' function for Lisp. ' qeval ' takes as inputs a query

and a stream of a copy of the database entries. Its output

is a stream of selected field-values of the database entries,

corresponding to successful matches to the query pattern, as

indicated in Figure 15. Like 'eval', 'qeval' classifies the

different types of expressions < query-patterns) and

dispatches each to an appropriate function. There is a

function for each special form such as and, or, not, <, >,

<=, > = , and =.

The driver loop reads a user request from the terminal

which is specified following SELECT-WHERE prompts. The

SELECT and the WHERE clause indicate the SELECTed property

links and the condition of the messages in which a user wants

to retrieve, respectively. For each query, it calls qeval

with the WHERE clause and a stream that consists of a copy of

all of the database entries. This will produce the stream of

entries which are the result of all possible matches

performed by a * where-processor ' (refer Figure 15 and section

3.3.4.2). For each entry in this resulting stream, it

instantiates the SELECTed fields' values in the entry. This

stream of instantiated fields' values is then printed with

the associated message number.

3. 4. SUMMARY

OIRM is a prototype information retrieval system that is

designed to provide not only a functional enhancement to the

4.3 BSD Unix mail facility, but also some insight into the

incorporation of Artificial Intelligence techniques to the

Unix mail facility.

The database in QIRM is based on the semantic network

structure and also utilizes an indexing scheme. By

employing this approach, the entire database can be searched

very easily. The process for loading the data into a

database involves determining the data source, constructing a

database from the data file, and storing the database in a

file. The decision, concerning which file is used for the

source of the data, is based upon the existence of an old

mail database file. This approach distinguishes the first-

time user from the regular user of the system and minimizes

the latter's waiting time for loading a database.

The QIRM system increases the selectivity of information

retrieved by allowing the user to specify a request using the

mail -query language. The query language used in this system

consists of the simple query and the compound query. This

language provides a user-friendly interface and a pattern-

directed access to the messages. The query processor is

organized around the network-fragment matching'' and the

stream implementation. A query takes an input stream of

database entries and performs the matching operation for

every entry in the stream. As its output, the query

L.v

generates a new stream consisting of all SELECTed field

values associated with the messages which have structures

satisfying the query's WHERE condition.

CHAPTER 4

CONCLUSIONS AND POSSIBLE ENHANCEMENTS

The characteristics of the approach which is based on

structuring the mailbox by organizing the contents of

messages, have been illustrated through the description of

the QIRM prototype system. Also, a brief review of

electronic mailbox systems, concepts, and tools used in the

prototype has been provided.

The QIRM system provides a user friendly interface using

a mail-query language based on the tuple calculus, and

employes techniques from artificial intelligence. Users can

query messages by specifying the category of the message they

want to retreive. This approach provides an information

organization and dramatically increases the selectivity of

information retrieved.

Based upon the concepts and features of QIRM, it has been

demonstrated that the work on information retrieval systems

and database management systems is potentially relevant to

the design of structured electronic mail systems.

It is desirable that QIRM would be built directly on the

top of the existing Unix mail facilities. In this way,

users could continue to operate on their mail as usual, and

also access the messages in the more flexible ways which 01 RM

provides. Such a system could provide facilities for

updating each user's database file automatically, whenever a

message has arrived in or has been deleted from the mailbox.

With this automatic updating, the query system could maximize

both efficiency and the user friendliness by eliminating the

database-loading process which currently is needed before

the retrieval facilities of QIRM can be utilized.

Many facilities could be added to enhance the

intelligence of the system. For example, in order to perform

more intelligent interpretation of the messages, the system

could also allow user -specified rules which automatically

screen messages arriving in a user's mailbox. Also, this

mechanism could be used to sort messages into different

categories according to the individual user's preference.

These sorting facilities could examine the fields and body

presented in the mail and deduce the message classification

based on its set of rules. In addition, the system could

employ these rules to present the user with an overview of

the messages currently available; thus, a user could easily

pick what is of interest.

In the current Unix mail system, the bare login name is

used as a user-id, only when a message is sent to the person

on the same machine. For example, if one wants to send

messages to people on the Arpanet, a recipient ' s id has the

form " idGhost * . 'Id* is the login name of the recipient and

'host' is the name of the machine where the recipient can be

found on Arpanet. The way of specifying the user 's id

varies in a manner which depends on the type of network

involved. This mechanism raises one drawback of the QIRM

system : Since QIRM recognizes a bare login name and a login

70

name which ie a concatenation of the bare login name and the

strings (e.g. the names of systems) ae different user-id,

querying messages based on the user— id sometimes produces

unexpected output. Another drawback is that QIRM does not

provide an intelligent function of determining the identity

of an object (the partial property value). For example

' farmer * , * farmer 1
'

, and * farmers ' are recognized as

different objects whereas all three should be interpreted as

identical. Such a problem is caused by this system's search

procedure. In order to perform fast searching, this

procedure scans and recognizes an object not character by

character but word by word. (A word indicates a sequence of

any characters except blank. > Since it is more desirable to

develop a system which is both efficient and intelligent,

the way for accomplishing such a result should be sought.

71

BIBLIOGRAPHIES

til. P. A. Wilson, 'Structures for Mailbox System

Applications', Proceedings of the IFIP 6.5 Working Conference

on Computer-Based Message Services, May 1984, North Holland

Publications, 1984, pp 149 - 165.

[23. Jacob Palme, 'You Have 134 Unread Mail! Do You Want To

Read Them Now?', Proceedings of the IFIP 6.5 Working

Conference on Computer-Based Message Services, May 1984,

North Holland Publications, 1984, pp 175 - 184.

[33. Robert Wilenskey, 'Lisp Craft', W.W. Norton & Company,

1984.

[43. Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak,

Stephen A. Brobst, and Michael D. Cohen, 'Intelligent

Information-Sharing Systems', Communications of ACM, Vol. 30,

No. 5, May 1987, pp 390 - 402.

[53. Dennis Tsichritzis, Fausto A. Rabitti, Simon Glbbs,

Oscar Nierstrasz, and John Hogg, 'A System for Managing

Structured Messages', IEEE Transactions on Communications,

Vol. com-30. No. 1, Jan. 1982, pp 66 - 73.

[63. P. A. Wilson, 'Applications and Structures for Mailbox

System', Data Communications: The Wired Society, P. D.

English, Maidenhead Berks., England: Pergamon Infotech.,

1983, pp 73 - 94.

72

[73. Matthias Jarke, Jurgen Koch, and Joachim W. Schmidt,

'Introduction to Query Processing', Query Processing in

Database Systems, Springer- Verlag Berlin Heidelberg, 1985, pp

3 - 28.

[83. Gordon McCalla and Nick Cercone, 'Approaches to

Knowledge Representation', Computer, IEEE Computer Society,

Vol 16, No. 10, Oct 1983, pp 12 - 18.

C93. Ronald J. Brachman, 'What IS-A Is and Isn't: An

Analysis of Taxonomic Links in Semantic Networks', Computer,

IEEE Computer Society, Vol. 16, No. 10, Oct 1983, pp 30 - 36.

[10). Kurt Shoens and Craig Leres, 'Mail Reference Manual

Version 5.2', Apr. 1986.

[11]. Julian Newman, 'Contracts Made by Electronic Mail:

Legal Issues, Technology, and Services', Proceedings of the

IFIP 6. 5 Working Conference on Computer-Based Message

Services, May 1984, North Holland Publications, 1984, pp 237

- 246.

[12]. Chamberlin, D. D. et. al. , 'SEQUEL2: a unified

approach to data definition, manipulation and control', IBM

Journal Research and Development, Vol. 20, No. 6, Nov. 1976,

pp 560 - 575.

[13]. S. M. Deen, 'Principles and Practice of Database

Systems', MacMillan Publishers Ltd, 1985.

[14]. Alan Mayne and Michael B Wood, 'Introducing Relational

Database', NCC Publications, 1983.

[153. William D. Haseman and A. B. Whinston, 'Introduction

to Data Management', Richard D. Irwin Inc., 1977.

[163. John K. Foderaro, K. L. Sklover, and Kevin Layer, 'The

FRANZ LISP Manual', 1983.

[173. Elaine Rich, 'Artificial Intelligence', McGrow-Hill

Book Company, 1983.

[18]. J. A. Welch and P. A. Wilson, 'Electronic Mail Systems

- A Practical Evaluation Guide', NCC Publications, 1981.

[193. Jeffrey D. Ullman, 'Principles of Database systems'.

Computer Science Press, 1982.

[203. Peter Vervest, 'Electronic Mail and Message Handling*,

Quorum Books, 1985.

[213. Avron Barr and E. A. Feigenbaum, 'The Handbook of

Artificial Intelligence Volume I 8. II', HeurisTech Press,

1981.

(223. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, 'The

Design and Analysis of Computer Algorithms', Addison-Wesley

Publishing Company, 1974.

APPENDIX A

ON-LINE MANUAL

This appendix contains an on-line manual for the users.

It describee the user-interface of QIRM, and the syntax of

the mail -query language used by users for specifying

their request on retrieving messages.

QIRM(l) UNIX Manual QIRM(l)

NAME
QIRM - retrieve mail

SYNOPSIS
QIRM

DESCRIPTION
QIRM is a Query system for Information Retrieval in a
Mailbox (QIRM).
QIRM reads messages in a user * s mailbox < or messages in
both a mailbox and an old mail database file) and
constructs a database. An old mail database file
arrives at by concatenating a user's login-id and a

string 'data*. For example, if * mary ' is the user's
login -id, then old mall database file is named
'marydata'. The database in 'marydata' is the one
that had been constructed when QIRM was called the last
time by a user, ' mary '

.

After the database is constructed, QIRM asks the user
to categorize the messages which he/she wants to
retrieve. The user can sptecif y the fields and
conditions of such messages by posing queries in
response to the system's SELECT-WHERE prompts. The
system's response to the user's query involves the
numher of messages retrieved and the first item of the
messages, if there are more than one message recalled.
In such a case, QIRM gives the number of additional
response records and interrogates the user about their
disposition. That is, the user can either continue
accessing the remaining messages by choosing ' y * as the
answer to the system's ' More? < y/n >

' question or start a
new dialogue with the new SELECT-WHERE prompts. The
user can exit the system by SELECTing * stop ' command.

Simple Queries

The syntax of simple query is

SELECT (<field>+ I *)

WHERE (<query-pattern>) 1

Dec. 8, 1987

UNIX Manual QIRM< 1

>

Some points concerning this query are:

i- a. <field>+ indicates the set of length one or
more which consists of elements of the form
<field>
where, in turn, is made up of sdate, rdate,
form, to, subject, statue, and body indicating
the date of sending a message, the date of
receiving a message, the message -sender * s
login -id, the message- recipient * e log in -id,
the subject of a message, the status of a
message, and the body of a message,
respectively.

b. * I
* indicates alteration.

c. ' * ' is the shorthand of all fields.

2.

2.1. <query-pattern> has the following structure.

<predl cate- operator > <property> <propertyvalue>

where
a. <predicate- operator> can be <• >, <=, >=, =.

b. <property> can consist of sw, sd, sm, sy, rw,
rd, rm # ry, from, to, euhject, status, and
text.
'sw, sd, sm, sy* indicate the week day, the
day number, the month, the year of sending a
message, respectively. ' rw, rd, rm, ry

'

indicate the week day, the day number, the
month, the year of sending a message,
respectively. 'text' indicates a phrase or
words in a message body. (A word is a sequence
of any characters except blank.

>

c. 1 . <propertyvalue> can be the value to be
searhed for in the named property of
messages. In the case of the value for
' text ' property, either the exact
subject of a message or a word out of
the message -subject can be specified.

2. If the property value consists of more
than one word, it should be
parenthesized, otherwise, it should not.

2. 2. () indicates that ' no condition ' is specified
for retrieving messages.

QIRM<1> UNIX Manual QIRM<1>

3. Ij J RM does not distinguish between upper and lower
case letters.

Compound Cluer lee » «

The syntax of a compound query ie

SELECT < <field>«- > I (*)
WHERE < ANDGR- query > I < NOT- query

>

Some points concerning this query are

:

1

.

<ANDQR-query> has the following form

:

(and I or < compound -query-pattern> * *)

where
a. <compound-quer y- pattern > + + indicates the set
consisting of two or more <compound -query -

pattern>s.

h. <compound-query-pattern> can be any of the
following

:

(and <compoun d
-query-pattern>* *)

(or <compound -query -pattern > + +)

(not < <quer y-pattern>) >

(<query - pattern>)

2. <Not-query> has the following form

:

< not (<query-pattern>))

Dec. &, 1987

APPENDIX B

SOURCE CODE LISTING

This apipendix consists of two listings of the source code

for implementing QIRM. OIRM. 1 contains a main source

listing in Lisp, and ml.c comprises a source listing of

C function which is used to ohtain the name of a user's

mallhox

.

1 3: 54 1987 QIRM. I Page 1

This system function causes the Lisp system to
go through the transfer tables and reset al I

the appropriate links.

(sstatus translinK on)

Declare special variaoles for the compiler.

(declare (special inport oataport outport st number MAIL))

(declare (special dummyport idname chn change done))

In order to make 'reader' case-insens i t i ve i the
reader is modified to conform with UCI-Lisp syntax,

(c vttou c i lisp)

Set the syntax class of these characters to
syntaxclass in the current readtable.

(setsy nt ax
(set syntax
(set syntax
(set syn tax
(setsyntax
(setsyntax
(setsyntax

'/.
'/'
1 /"

'/[

'/]

'//

' vena rac ter I

' vcharacter)

' vchar acter)

' vcharacter)

' vcharacter)

' vcharacter I

'vcharacter)

MAIN FUNCTION OF the UIRM SYSTEM

This function begins witn calling a function
1 get-ma I I box f i I

e

1 to access a user's mailbox and check
If it's empty* a proper

terminal and a system i s ••

this function calls 'setup
source of input data and
a databa se

.

system finds any difference between the mail
current mailbox and the mail in 'old-db'j it

if the mailbox is empty.
message is printed at the
terminated. Otherwise»
-db' which determines the
loads the input data into
If the
in the
calls ' sav e-db- i n-f i I

e
' to update 'old-db'. 'Old-Ob'

is an old database file containing the database which
was constructed form the most previous mailbox.
Finally) 'query-driver' is called in order for

13: 54 1987 QlkM. I Page 3

(t (go mor e))))

I (= en -1) (return t))

(t (readc inport) (go more))))))

Tnis function saves the database in a file 'old-do'
in the list format of Lisp. The file is named
by concatenating the user's login-id and the string
' da ta ' .

(defun sa v e—do-i n-f i I e(

)

(declare (special outport))
(p rog (n I mname

)

(setq outport (out file (concat idname 'data)))
(setq n 1

)

(setq I (length MAIL))

I oop
(setq mname (concat 'msg n))

(pr i nc ' / (ou tpor t

)

(wrt-db (get mname 'rdatell
(wrt-db (get mname 'sdate))
(wrt-db (get mname 'to))
(wrt-db (get mname 'from))
(wrt-db (get mname 'pos- I i nenum))

(wrt-db (get mname 'text))
(wrt-db (get mname 'status))
(wrt-db (get mname 'subject))
(or i nc ' /) outpor t

)

(setq n (1+ n)

)

(cond ((> n I) (close outport))

(t (go I oop)) 1)

)

This function uses 'cfasl' to load a foreign
function 'ml.c' (written in 'CM into the lisp
system. Using the user-id returned from 'ml.c'»
this function obtains the user's mailbox-id in the
proper form through a subfunction 'id-string'.

(defun get-ma i I boxf i I e (

)

(declare (special ifll)

(cfasl 'ml.o '_ml 'ml "integer-function"!
(seta id (new-vector i -byte 20)1
(setq idname (id-string (ml id) "" id 0))

(seta inport (infile
(concat ' // usr

/

/spoo I //ma i I // idname))))

13: 54 1987 I KM . I Page <t

A function to transform the value returned from
'ml.c' to a desired format (a string).

(defun id-string(num name id i)

(cond
{ (= num) name

)

(t (id-string (1- num)
(concat name (ascii (vrefi-byte id i)))
io (1+ i)))))

This functioni firsti checks the existance of
'old-dD'. If 'old-do' found» it reads a msg

in 'old—db' comparing the key portion of the same
msg of mailbox ('line') with that of 'old-db'.
If two messages compared are identical) contents
of the message are added to the database 'MAIL'
and the result of the comparison is returned.

(defun co mp ar e (I i ne)

(progtdata p msgname)
(setq msgname (concat 'msg number))

loop
(setq data (read dataport))
(cond ((null data) (return 'end))

((equal line (car data))
(setq p (r ead-one-m sg)

)

(putprop msgname I i ne 'roate)
(putprop msgname (nth 1 data) 'sdatel
(putprop msgname (nth 2 data) 'to)
(putprop msgname (nth 3 data) 'from)
(putprop msgname (list p (cadr (nth <i

' pos-l i nenum)

(t

(putprop msgname
(putprop msgname
(putprop ms gname
I setq number (1 +

(setq MAIL (cons
(return *ok))
(setq change 1

)

(nth b data)
s t 'status)
(nth 7 data)
numb er)

)

msgname MAIL))

(go I oop)))))

data)))

•text)

'subject)

A function to read single msg (neader + body) in
•ol d-ob'

.

(defun r ead—one-ms g I

)

(p r og (I i ne)

again
(setq line (lineread inport t))

13:54 1987 Q I kM

.

Page b

(cond ((null I i ne)

(return (filepos inport)))

(t (it (eq (car line) 'status:)
(setq st line)) (go again)))))

A sud function of

the database in

' sa v e-db
old-db' •

-
i n-f i I e * to write

(defun wrt-db(data)
(proq I I i stdata)

(if I I i stp I car da ta))

then (patom "(" outport) (setq I istdata 1))

keep-wr i t i ng
(cond ((null data)

(if (= listdata 1) (patom ")" outport)))

((atom (car data)

)

(patom data outport) (terpri outport))

(t (patom (car data) outport) (terpri outport)
(setq data (cdr data)) (go keep-writing)))))

The function builds a database by reading mailbox as
an input file. After the contents of each message
are constructed into the database» the message name
is added to a global variable 'MAIL'.
'Line' is the first line of a ms g which was read
from 'mailbox' i 'num-line' is the number of lines
of the current header field*
'headerp' is a boolean variable to show the current
line is in the header part or in the Dody part
(1 : header 0: booylj 'mailnum' is a integer
indicating the msg number.

(defun build-ab(line num-line headerp mailnum)
(setq change 1

)

(progfa name position)

(setq name (concat 'msg mailnum))
I oop

(cond (header p

(setq
(c ond

1)

(

(I i ner ead i npor t

(not (nu II a)

)

(cond ((eq ' /

:

t))

(car (last (explode (car a)))))
(cond ((= num-line 1)

(add-db (car line) name
line))

(t (ado-db (caar line)
name line)

(setq num-line 1) I)

13:5<t 1987 UIRM. I Page 6

(se tq line a)

(go loop))
(t

(cond ((= num-l ine 1)

I se t q line
(appendl (list line)

(t (setq line
(appenal line a)))

(setq num-line <!» num-l ine))

a)))

)

(go I oop))))

(t (setq header p)

(setq position (Mlepos inport))
(cond ((• nun- line 1)

(add-db (car line) name line))
(t (add-dD Icaar line) name line)

(setq num-line 1)))
(go loop))))

(t (add-db *Pos-l inenum name
(list position (msg-body mailnum)))

(setq MAIL (cons name MAID)
(cond (I = done)

(setq line (lineread inport))
(setq heade rp 1

)

(setq mailnum (1+ mailnum))
(setq name (concat 'msg mailnum))
(go I oop)

)

)))))

A subfunction called
data to tne database,

by 'Duild-db' to add a line of

(defun add-db (field ma i I name 1st)
(ca seq field

(From (putprop mailname
(Date: (putprop mailname
(From: (putprop mailname
(To: (putprop mailname
(Status: (putprop mailname 1st 'status))
(Subject: (putprop mailname 1st 'subject))
(Pos-linenum (putprop mailname 1st ' pos- I

i

nenum)

)

(Text (putprop mailname (cdr 1st) 'text))
(Apparent I y-To : (putprop mailname 1st 'to))))

(cdr 1st) 'rdatel)
1st 'sdate))
1st 'f rom)

)

1st ' to)

)

'Msg-body' is a function to read the body of a msg
and add this oata to the database.
'k-one' is a sub-function to read one line of a msg
body and return it.

13:5'i 1987 QIRM. I Page 7

(defun msg-body (mailnun)

(pr og (one I i ne text char num-tex 1 1 i ne)

(setq num-textl ine 0)

text '
(

'
("")

))(setq
I oop

(setq
Icond

char
(

(t

(ty i p eek
(= done 1

)

(aod-ab
(return
(and (
(add-db
(a d d -d b

(r etur n

(if

inport)) (setq onel ine (r-one))

mailnum) text)•Text (concat 'msg
num-tex 1 1 i ne))

char 70) leq (car onel ine) 'From
'From (concat 'msg (1+ mailnum))
'Text (concat 'msg mailnum) text)
num- 1 ex t I i n e)

)

(not (null one I ine))

(setq text (appendl text oneline)))

(setq num-textl ine (1+ num- 1 ex 1 1 i ne))

(go I oop)))))

))

onel ine)

(defun r-one ()

(prog (c ch)
I op

(setq
(cond

ch
((

=

((>

((
=

((
=

(

t

(ty i pee K i npor t))

en 32) (readc inport) (go lop))

ch 32) (if (memq ch ' (40 41))

then (readc inpo r t

)

e I se
(setq c (appendl c (ratom
(go lop))

ch 10) (readc inport) (return c))

ch -1) (setq done 1) (return c))
(readc inport) (go lop)))))

inpo r t))))

tion of query system scans a user-
it to the query evaluator ' qeva I

'

a copy of a stream of entries of the

the evaluation is a stream of selected"
f database entries which contain items"
query. The final stream is

terminal by ' pr t-ou t pu t
' » 'prt-mail'

'printtext2't 'prtlist'.
nd 'prtmail' is the functions to print"
of user-selected fields at the

This ma in f unc
que ry » passes
toge th er with ;

da tabase •

Tne result of

field-values o

sat i sf y i ng the
pr i nted at the
' pr i nt text 1 ' i

'Prt-output' a

out pu t values
terminal*
* Pr i nt text 1' a

printing a mes
body with more
the body with

nd 'print tex t2

sage body: the
than 22 lines

are the functions for
former is for the text
and the latter is for

equal or less than 22 lines of text.

13:5<t 1987 QlkM. Page 6

(defun query-ar i ver (

)

(pr og (f d field q

)

mor e-qu ery
(t er pr j)

(princ "SELECT "

)

(setq field (read))

(if (and (listp field) (eq '» (car field))
(nul I (cdr field)))

tnen
(setq fd Mrdate sdate to from suoject status body))
else (setq fd (contents field (type-check field))))

(cond ((eq fd 'stop) (princ "*** oye bye **")
(return ' *))

((eq fd 'error)
(go mor e-que r y))

(t (princ "WHERE "

)

(setq q (r ead))

(if (null q) then (prt-output fd MAIL)
else (prt-output fd (qeval q MAIL)))

(no mor e-que r y)))))

(defun prt-output(field 1st)

(cond ((eq 'err or 1st)
(princ "** ERROk - Unknown expression **"))

(t I i f (- (length I st))

then (msg "**** No message Recalled! ***«")
(ter pr i) (ter pr i)

e I se

(nsg "**** " (length 1st)
" message Recalled! ****")

(terpri) (terpri)
(msg "£. " (car 1st)) (terpri)
(pr tmai I field 1st)))))

(defun pr tma i I (f ie I d 1st)
(proglfld m-num output field2 linenum)
(setq f ie I 02 field)
keep-pr i nt ing

(setq f Id (car f i eld2))

(setq m-num (car 1st))

(c ono ((eq fid ' body)

(if (null (get m-num 'text))
then (princ "** no message body found s^'*)

(ter pr i)

e I se
(setq linenum Inth 1 (get m-num ' p os- I i ne num))

)

(if (> linenum 22)
then
(printtextl (nth (get m-num 'pos-linenum))

I i n e num J

e I se

(printtext2 (nth (get m-num 'pos-linenum))

13:54 1987 UIK1.I Page 9

I i nenum))))

(eq fid 'sdate) Iprinc "sdate: "J
(princ (cdr (get m-num fid))) (terpri))

(eq fla 'rdate) (princ "rdate: ")

(princ (cdr (get m-num fid))) (terpri))

(setq output (get m-num
(cond ((null output)

(msg "** no " f I d

(

t

fid))

found »< '))

(if (atom (car output))
(pr i nc output)

(pr t I i st output))))

(terpr i)))

(setq f i e I 02 (cdr f i e Id2))

(if (nul I f i eld2

)

then (terpri)
(if (neq 1 (lengtn 1st))
then (msg (1- (length 1st))

" message left! More?(y//n)
(if (yes) then

(terpri)

(msg "£. " (cadr I st))

el se (setq I st • ()))

)

(terpri)
(setq I st (cdr 1st))
(setq f i e Id2 field))

(if (null 1st) (terpri) (go keep-printing))))

(defun pr i nt te xt 2 (no s linenum)
(f seek i npor t pos)

(terpri)
(prog (a)

I OOP
(setq a (readc inport))

(princ a

)

(cond [(eq a (asc I i 10))

(setq linenum (subl I inenum))
(if (= linenum) (return t) (go

t t (go loop)))))

oop)) J

(defun printtextltpos linenum)
(f seek i npor t pos)

(terpri)

n)

0)
(pr oq (

a

(setq
I oop

(setq a (r eadc
(princ a

)

(cond ((eq a

i nport))

(a sc i i 10)) (setq n

(setq I

i

nenum
(if (> I i nenum)

then (if (>= n 20)
then (pr i nc " MORE")

(if (eq I ty i) 10)

(addl n))

(subl I i nenum)

)

(go loop)

13:54 1987 QIRM.I Page 10

[t

(return t)

)

else (go I oop))

else (« linenum) (return
(go I oop) J)))

t) I go I oop))]

Idefun prtlist(lst)
(cond ((not (null 1st)) (princ (car

(pr tl ist (cdr 1st)))))

1st)) (ter pr i)

'Ves'i 'type-check', and 'contents' are utility
functions. 'Yes' returns 'true' if a user types
'y'. Otherwise, this function returns 'nil'.
'Contents' and 'type-check' are functions called by
'query-driver' to check the syntax of a user query.

(de f un y es ()

(if (equa I (r ead) 'y) t nil))

(defun t ype-c neck (exp)

(cond ((eq exp 'stop) 'stop)
((or (atom exp) (null exp))
(msg "** Unknown expression type —

'error)

(t exp))

)

**")

(oefun conten t s (expl exp2)
(cond ((eq 'error exp2) 'error)

((eq 'stop exp2) 'stop)
((null exp2) expl)

((memq (car exp2) (q-f i e I d- I i st))

(contents expl (cor exp2)))

(t (msg "** Unknown field — " exp2
'error))

)

**")

•Qeval ' takes a query and a stream of a copy of
database entries as inputs. It classifies the
different types of expressions ana dispatches to
an appropriate function for each.
'Check-domain' is called for integrity-checking
of property-values of user-queries.

(defun qevallq frame)
(if (atom q) 'error

(caseq (car q)

1 3: 54 1987 UIKM. I Page 11

(and

(or

(not
(
=

(<«

(> =

(<

(>

(t

(if (null (cddr
else (con jo i n

(if (nul I Icddr
else (disjoin

q)) then 'error
(cdr q I f r ame)))

q)) then 'error
(cdr q) f rame)))

(negate (cdr q) frame))
(equate (nth u (cdr q)) (nth 1 (cdr ql) frame))
(less-eq (check-domain (cor q)

(cadr q) (caddr q)) frame))
(greater-eq (check-domain (cdr q)

(cadr q) (caddr q)) frame))
(less (check-domain (cdr q) (cadr qMcaddr q))

(cadr q) (caddr q) frame))
(greater (check-domain (cdr q)

(cadr q)

(

caddr q))

(cadr q) (caddr q) frame))
'error))))

(defun ch eck-d oma i n (q property value)
(cond ((memq property ' (rm sm))

(if (memq value (month I i st)) q 'error))
((memq property '(rd sd ry sy)J

(if (numDerp value) q 'error))

((memq property ' (rw sw))
(if (memq value (weeklist)) q 'error))))

This function takes a property-name and an entry
(a message)) and returns the value of given
property of the message*

(defun get-property-value(property
(caseo property

(rw (nth 1 (get I 'rdatel))

(rm (nth 2 (get I ' r date)))

(r d (nth 3 (get I ' r da te)))

(ry (get_pname (implode (cddr

I)

(sw
(sm
(sd
(sy
(t

(exp I ode (n th

(nth 1 (get I

(nth 3 (get I

(nth 2 (get I

(nth 4 (get I

5 (get I

sdate)) 1

' sdate)))

'sdate)))

' sdate)))

(cdr (get I property)))

'rdate)))))))

))

'Equate' handles the query with '=' as its predicate
operator .

If the g i

\

calls 'atom-
given property ' textproperty is 'text'- then it

text-eauate' or 'list-text-equate'

13:54 1987 QIRM.I Page 12

according to the type of property-value which a user
specified in his query. That is> if the property-
value consists of more than one word* 'list—text-
equate' is called. Otherwise) 'atom-text-equate' is
called. A word indicates a sequence of any
characters except blanK.
If the given property is 'subjects ' sup jec t-equa te'
is called.
For the queries excluding those with 'text' or
'suoject' as their properties) 'o ther -equate ' is
called to handle a query with '='.

(defun equa te (prop er t y qvalue I)

(cond ((eq property 'text)
(if (at om qva I ue

)

(atom-text-equate qvalue I)

(list-text-equate qvalue 1)1)

((eq property 'subject)
(subject-equate property qvalue I)

((memq property
'(to from subject status rw rd sw
(other-equate property qvalue I))

(t 'er ror)))

r m sm r y sy))

(defun o th er -equate (p ty qvalue I)

(prog (frame prop-value)
(cond (1 eq pty ' sw) (setq qvalue (concat qvalue ")")))

< (eq p ty ' ry

)

(setq qvalue (get_pname (concat qvalue "")))))
I oop
(setq prop-value (get-property-value pty (car I)))
(cond (land (atom qvalue) (listp prop-value)

(or (memq qvalue prop-value)
(memq (concat qvalue ")")

p rop-val ue)))

(setq frame (cons (car I) frame)))
((and (atom prop-value)

(equal qvalue prop—value))
(setq frame (cons (car I) frame))))

(setq I (cdr I))
(if (null I) (return frame) (go loop))))

(defun sub jec t-equa te(pt y qvalue I)

(prog (frame prop-value)

I oop
(setq prop-value (get-property-value pty (car
(cond ((and (atom qvalue)

(or (memq ava I ue prop-value)
(memq (concat qvalue "»")
(memq (concat qvalue ".")

(setq frame (cons (car I) frame)))
((and (listp qvalue) (equal qvalue prop-value))

I)))

p rop-va I ue

)

prop-va I ue)

)

13: 54 1987 UlkM. I Page 13

(setq frame (cons (car I) frame))))

(setq I (cdr I)

)

(it (null I) (return frame) (go loop))))

(defun a tom-te xt-equa te

(

ova I ue 1st)

(progtframe prop-value found)
I oopl
(setq prop-value (get (car 1st) 'text))

Iprogl one list)
I oop2
(cono ((null prop-value) (setq founa 0))

((listp (car prop-value))
Isetq onelist (car prop-value))
(if (or (memq qvalue onelist)

(memq (concat qvalue '/>) onelist)
(memq (concat qvalue '/.) onelist)

t nen (setq f ound 1

)

else (setq prop-value (cdr prop-value))
(go I oop2)))

(t

(if (or (eq (car prop-value) qvalue)
(eq (car prop-value)

(conca t qvalue ' / *))

(eq I car p rop-va I ue

)

(c oncat qvalue ' / .)))

then (setq found 1

)

else (setq prop-value (cdr prop-value))
(go I oop2))))

)

(if (= found 1

)

then (setq frame (cons (car 1st) frame)))
(setq I st (cdr 1st))

(if (null 1st) (return frame) (go loopl))))

(defun I i s t-tex t-equate(qva I ue 1st)
Iprogl frame prop-value found)

I ood 1

(setq f ound)

(setq prop-value (get (car 1st) 'text))

(prog(q qatom old-prop onel ist)

(setq q qva I ue

)

I oop2
(setq qatom (car q))
(cond ((null prop-value) (setq found 0))

I (listp (car prop-value))

(setq onelist (car prop-value))
(if (or (memq qatom onelist)

(memq (concat qatom '/») onelist)
(memq (concat qatom '/•) onelist))

then (setq found
(confirm qvalue onelist prop—value 0))

else (setq prop-value (cdr prop—value))
(go I oop2 I))

13: 54 1987 UI kH. I Page 14

(t

(if (or (eq (car prop-value) qatom)
(eg (car prop-va I ue

)

(conca t qatom ' / »))

(eq (car prop-value)
(concat qatom '/•)))

then (if (= t ouno 0)

then (se t q f ound 1)

(setq old-prop prop-value))

(setq q (cor q))

(setq prop-value (cdr prop-value))
(if (null q) (setq found 2)

(go I oop2))

else (if (= f ound 1)

then (setq prop-value (cdr old—prop))
(se tq q q va I u e)

(setq f ound)

e I se

(setq prop-value (cdr prop-value)))

(go I oop2))))

)

(if (» found 2) then
(setq frame (cons (car 1st) frame)))

(setq I st (cdr 1st))

(if (null 1st) (return frame) (go loopl))))

(defun con f i r m(q va I ue onelist p-value f)

(proglword qatom oldp-value sameq)
(setq sameq qvalue)
I oop
(setq qatom (car sameq))

(cond ((null p-value) (return 0))

(t

(setq word (car onelist))
(if (or (eq word qatom)

(eq word (concat qatom '/i))
(eq word (concat qatom '/.)))

then (if (= f 0)

then
(setq olap-value p-value) (setq f 1))

(setq sameq (cdr sameq))
(setq onelist (cdr onelist))
(if (null onelist)
then (setq p-value (cdr p-value))

(setq onelist (car p-value)))

(if (null sameq) (return 2) (go loop)1
)

else (if (= f 1

)

then (setq p-value (cdr oldp-value))

(setq onelist (car p-value))
(if (null onelist)
then (setq p-value (cdr p-value))

(setq onelist (car p-value)))
(setq sameq qva I ue

)

(setq f)

else (setq onelist (cdr onelist))

13: 54 1987 QIKM. I Page 15

(if (null onelist)
t nen (se tq p-va I ue

(se tq one list
(go I oop)) 111)

(cdr
I car

va I ue) I

•va I ue))))

' Gr ' queries are dandled by 'disjoin' and
' merge 1". The output streams for the various
disjuncts of the 'or' are computed separately
and then mer ged

(defun d i s j o in (q- I i st frame)
(cond ((nul I q-l i st) ' ()

)

(t (mergel (qeval (car q-list) frame)
(disjoin (cdr q-list) frame)))))

(defun mergelllstl Ist2)
(cond ((or (eq Istl 'error) (eq Ist2 'error)) 'error)

((nul I I st2) Istl)

((memq (car I s t2) Istl) (mergel Istl (cdr Ist2)))

(t (cons (car Ist2)(mergel Istl (cdr Ist2)))))l

'And' queries are handled by this function.
'Conjoin' takes as inputs the conjuncts and a

stream of entries) and returns the stream of fi

tered entries.

(defun conjoin! q-list entries)
(cond ((eq entries 'error) 'error)

((null q-list) ent r i es)

(t (conjoin (cdr q-list)
(qeval (car q-list) entries)))))

'Not' queries are handled by '

Given a query and a stream of

a stream of entries which don 1

values satisfying the queries,

negate' function,
entries* it returns
t contain property-

(defun negatetq frame)
(diff frame (qeval (car q) t r ame)))

13: 54 1987 UIKM. I Page 16

loetun di (f (I stl I st2)
(cond ((eq I s 1 2 'error)

(Inn I I I st2) I stl
(t < d i f t (del (car

'error)

)

Ist2) I stl) (cdr Ist2)))))

(aefun de I (e I em 1st)
(cond ((nu II 1st) • ())

((eq elem (car 1st)) (del e I em (cdr 1st)))

(t (cons (car 1st) (eel elem (cdr 1st))))))

'Less' handles the query with '<' as its predicate"
operator. Given a queryi property-name and
property-value specified in the queryi and a
stream of entries, 'less' returns a filtered
stream of entries which contain p r ope r t y va I ues
satisfying the query-condition.
'Mw-less' is called for the query with sm, rim
rwi and sw as its property-name.
'Num-less' is for the query with rd, sd, and sy
as its property-name. 'St-less' is for the query"
w i th r y .

"

(defun lesslq pty value frame)
(if (eq q 'error) 'error
(cond ((memq pty ' I rm sm r » sw))

(mw-less pty frame (get-list2 pty value)))

((memq pty '
(r a sd sy))

(num-less pty value frame))
((eq pty ' r y)

(st-less pty
(get_pname (concat value "")) frame))

(t 'error))))

(defun mw-less (field frame 1st)
(cond ((nul I 1st) ' ()

)

(t (mergel (equatel field (car
(mw- less field fr ame

1st)
(cdr

frame)
1st))))

(defun num-less(field qvalue I)

(proq (frame prop— value)
I oop
(setq prop-value (get-property-value field (car I)))
(if (< prop-value qvalue)

(setq frame (cons (car I) frame)))

(setq I (cor I))
lit (null I) (return frame) (go loop))))

13:«><t 1987 0IR1.I Page 17

(defun s t- I ess ((i e I a qvalue I)

(prog (frame prop-value)
I OOP
(setq prop—value (get-property-value field (car I)))
(if (alphalessp prop-value avalue)

(setq frame (cons (car II frame)))

(setq I (cdr I))

(if (null I) (return frame) (go loop))))

'Less-eq' handles a query witn '< = ' as its predicate"
operator.

(defun less-eq (q entries)
(mergel (less q (car q) (caor q) entries)

(equate (nth q) (nth 1 q) entries)))

'Greater' is a function to handle the query with
'>' as its predicate operator. For the query with
'rm» sm> rw< and sw' as its predicate-name* 'mw-gr'
is called. The query having 'rdi sd , and sy' is

handled by a function< 'num-gr'. 'St— gr' takes care
of the query with 'ry'.

(defun greaterlq field value frame)
(if (eq q "error) 'error
(cond ((memq field Mrm sm rw sw))

(mw-gr field frame (get-lisfi field value)))
((memq field '(rd sd sy))

(num-gr field value frame))

((eq field • ry)

(st-gr field
(get_pname (concat value "")) frame))

(t 'error)))

)

(defun mw-gr (field frame 1st)
(cond ((null 1st) • ()

)

(t (mergel (equatel field (car 1st) frame)
(mw-gr field frame (cdr 1st))))))

(defun num-gr (field qvalue I)

(prog (frame prop-value)

13:5<i 1987 UIRP.I Page 16

I OOP
(setq prop-value (yet-pr ope r ty
(it (> prop-value qvalue)

(setq frame (cons (car I)

(setq I (cdr I)

)

(if (null I) (return frame) (go loop))

value field (car I)))

frame)))

))

Ids fun st-gr(field qvalue I)

(prog (frame prop— value)
I oop
(setq prop-value (get-property-value field (car
(if (and (not (alphalessp prop-value qvalue))

(not (equal prop-value qvalue)))
(setq frame (cons (car I) frame)))

(setq I (cdr I))

(if (null I) (return frame) (go loop))))

I)))

The query having •>«' as its predicate-operator
is handled by ' g r eate r-eq '

•

(defun greater-eq (q frame)
(mergel (greater q (car q) (cadr q) frame)

(equate (nth q) (nth 1 q) frame)))

'Get-list^' is a function called by a function)
Mess'. Given a property-name and a month or
week, 'get-list2' calls 'get-listl' to obtain
the list of months /week-name s which are less than
given month or week and returns the list.

(defun get-listl (element 1st)
(if (eq (car 1st) element) '()

(cons (car 1st) (get-listl element (cdr 1st)))))

(defun get-list2 (field value)
(cond ((memq field ' (r w sw)l

(get-listl value (weeklist)))
((memq field 'leu sm)

)

(get-listl value (monthlist)))))

'bet- I i st <t ' is function called by 'greater'.

13:54 1987 UIRM.I Page 19

Given a property-name and a month or week name?
this function calls 'get-list3' to obtain a list
of months/week name s which are greater than given
month/week name* and returns the list.

Idcfun get-list3 (element 1st)
(if (eq (car 1st) element) (cdr 1st)

(get-list3 element (cdr 1st))))

(defun get-list4 (field value)
(cond ((memq field '(rw sw))

(get-list3 value (weeklist)))
((memq field ' (rm sm)

)

(get-list3 value (mon th I i s t))))

)

'Equatel' is a subfunction called by 'mw-gr' or

'mw-less' to obtain a list of entries which
contains the given property-values (ovalue) under
the given properties (field) such as rw» rm» sw>
and sm.

(defun equateK field qvalue I)

(prog (frame prop-value)
(cond ((eq field 'sw)

(setq qvalue (concat qvalue ")"))))
I oop
(setq
(cond

prop-value (get-property-value field (car I)))
((eq prop-value qvalue)
(setq frame (cons (car I) frame))))

(setq I (cdr I)

)

(if (null I) (return frame) (go loop))))

(defun q-f i e I d-l i st(

)

Mrdate sdate subject status to from body))

(defun month list!)
1

(jan feb mar apr may jun Jul aug sep oct nov dec))

(defun weeklist!)
'(sun mon tue wed thu fri sat))

(trace (ureal I I

13:54 1987 QIRM. I Page 20

f or auto I oad i ng
(setq user -top- I eve I 'start)

Dec 8 14:03 19S7 Page 1

<f i nc I urie <ctype. h>
* i nc I ude <s t di ch>
include <pwd .h>
« i nc I u de <utmp.n>

char *my_name

;

cha r *ge t I oqi n() ;

struct passwd *getpwuid();
i nt i 1 j ;

m I (a)

cha r at] ;

{

my_name = getloginl);
if <my_name •« NULL I! s tr I en (my_name

)

struct passwd *pwent»
puent ge tpwu i d (ge tu i d(I)

;

my_natrie = pwent->pw_na me

j

0) {

j - o;
for (i=0; my_name[i J i i++)

a[j++] my_name[i J

;

r etur n (j)

;

A QUERY SYSTEM FOR INFORMATION RETRIEVAL IN A MAILBOX

by

SONG HEE KIM

B. A. , Ewha University, Seoul, Korea, 1976

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

19S8

ABSTRACT

An eletronic mailbox system can organize messages into a

database according to their contents and provide users with a

facility lor categorizing desired message(s) for retrieval.

The Query system for Information Retrieval in a Mailbox

(QIRM) has been designed based upon such concepts.

QIRM increases the selectivity of information retreived

by allowing users to specify their requests using a mail-

query language resembling SQL. Also, QIRM provides some

insights for developing an intelligent Unix mail facility by

employing several techniques of Artificial Intelligence such

as semantic networks, property lists, and matching. The

database in QIRM is based on the semantic network structure

and also utilizes an indexing scheme for the purpose of fast

searching. The mail-query language is based on the

tuple calculus and provides a user-friendly interface and a

pattern-directed access of the messages. The query

processor of QIRM employs the network -fragment -matching

mechanism and utilizes the stream of property lists.

