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Abstract

The genetic potential of plant traits remains unexplored due to challenges in available

phenotyping methods. Deep learning could be used to build automatic tools for identifying,

localizing and quantifying plant features based on agricultural images. This dissertation

describes the development and evaluation of state-of-the-art deep learning approaches for

several plant phenotyping tasks, including characterization of rice root anatomy based on

microscopic root cross-section images, estimation of sorghum stomatal density and area based

on microscopic images of leaf surfaces, and estimation of the chalkiness in rice exposed to

high night temperature based on images of rice grains.

For the root anatomy task, anatomical traits such as root, stele and late metaxylem were

identified using a deep learning model based on Faster Region-based Convolutional Neural

Network (Faster R-CNN) with the pre-trained VGG-16 as backbone. The model was trained

on root cross-section images of roots, where the traits of interest were manually annotated

as rectangular bounding boxes using the LabelImg tool. The traits were also predicted as

rectangular bounding boxes, which were compared with the ground truth bounding boxes

in terms of intersection over union metric to evaluate the detection accuracy. The predicted

bounding boxes were subsequently used to estimate root and stele diameter, as well as

late metaxylem count and average diameter. Experimental results showed that the trained

models can accurately detect and quantify anatomical features, and are robust to image

variations. It was also observed that using the pre-trained VGG-16 network enabled the

training of accurate models with a relatively small number of annotated images, making this

approach very attractive in terms of adaptations to new tasks.

For estimating sorghum stomatal density and area, a deep learning approach for instance

segmentation was used, specifically a Mask Region-based Convolutional Neural Network

(Mask R-CNN), which produces pixel-level annotations of stomata objects. The pre-trained



ResNet-101 network was used as the backbone of the model in combination with the feature

pyramid network (FPN) that enables the model to identify objects at different scales. The

Mask R-CNN model was trained on microscopic leaf surface images, where the stomata

objects have been manually labeled at pixel level using the VGG Image Annotator tool. The

predicted stomata masks were counted, and subsequently used to estimate the stomatal area.

Experimental results showed a strong correlation between the predicted counts/stomatal area

and the corresponding manually produced values. Furthermore, as for the root anatomy task,

this study showed that very accurate results can be obtained with a relatively small number

of annotated images.

Working on the root anatomy detection and stomatal segmentation tasks showed that

manually annotating data, in terms of bounding boxes and especially pixel-level masks, can

be a tedious and time-consuming job, even when a relatively small number of annotated

images are used for training. To address this challenge, for the task of estimating chalkiness

based on images of rice grains exposed to high night temperatures, a weakly supervised

approach was used, specifically, an approach based on Gradient-weighted Class Activation

Mapping (Grad-CAM). Instead of performing pixel-level segmentation of the chalkiness in

rice images, the weakly supervised approach makes use of high-level annotations of images as

chalky or not-chalky. A convolutional neural network (e.g., ResNet-101) for binary classifi-

cation is trained to distinguish between chalky and not-chalky images, and subsequently the

gradients of the chalky class are used to determine a heatmap corresponding to the chalkiness

area and also a chalkiness score for a grain. Experimental results on both polished and un-

polished rice grains using standard instance classification and segmentation metrics showed

that Grad-CAM can accurately identify chalky grains and detect the chalkiness area. The

results also showed that the models trained on polished rice cannot be transferred between

polished and unpolished rice, suggesting that new models need to be trained and fine-tuned

for other types of rice grains and possibly images taken under different conditions.

In conclusion, this dissertation first contributes to the field of deep learning by introducing

new and challenging tasks that require adaptations of existing deep learning models. It also

contributes to the field of agricultural image analysis and plant phenotyping by introducing



fully automated high-throughput tools for identifying, localizing and quantifying plant traits

that are of significant importance to breeding programs. All the datasets and models trained

in this dissertation have been made publicly available to enable the deep learning community

to use them and further advance the state-of-the-art on the challenging tasks addressed in

this dissertation. The resulting tools have also been made publicly available as web servers

to enable the plant breeding community to use them on images collected for tasks similar to

those addressed here.

Future work will focus on the adaptation of the models used in this dissertation to other

similar tasks, and also on the development of similar models for other tasks relevant to the

plant breeding community, to the agriculture community at large.
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Abstract

The genetic potential of plant traits remains unexplored due to challenges in available

phenotyping methods. Deep learning could be used to build automatic tools for identifying,

localizing and quantifying plant features based on agricultural images. This dissertation

describes the development and evaluation of state-of-the-art deep learning approaches for

several plant phenotyping tasks, including characterization of rice root anatomy based on

microscopic root cross-section images, estimation of sorghum stomatal density and area based

on microscopic images of leaf surfaces, and estimation of the chalkiness in rice exposed to

high night temperature based on images of rice grains.

For the root anatomy task, anatomical traits such as root, stele and late metaxylem were

identified using a deep learning model based on Faster Region-based Convolutional Neural

Network (Faster R-CNN) with the pre-trained VGG-16 as backbone. The model was trained

on root cross-section images of roots, where the traits of interest were manually annotated

as rectangular bounding boxes using the LabelImg tool. The traits were also predicted as

rectangular bounding boxes, which were compared with the ground truth bounding boxes

in terms of intersection over union metric to evaluate the detection accuracy. The predicted

bounding boxes were subsequently used to estimate root and stele diameter, as well as

late metaxylem count and average diameter. Experimental results showed that the trained

models can accurately detect and quantify anatomical features, and are robust to image

variations. It was also observed that using the pre-trained VGG-16 network enabled the

training of accurate models with a relatively small number of annotated images, making this

approach very attractive in terms of adaptations to new tasks.

For estimating sorghum stomatal density and area, a deep learning approach for instance

segmentation was used, specifically a Mask Region-based Convolutional Neural Network

(Mask R-CNN), which produces pixel-level annotations of stomata objects. The pre-trained



ResNet-101 network was used as the backbone of the model in combination with the feature

pyramid network (FPN) that enables the model to identify objects at different scales. The

Mask R-CNN model was trained on microscopic leaf surface images, where the stomata

objects have been manually labeled at pixel level using the VGG Image Annotator tool. The

predicted stomata masks were counted, and subsequently used to estimate the stomatal area.

Experimental results showed a strong correlation between the predicted counts/stomatal area

and the corresponding manually produced values. Furthermore, as for the root anatomy task,

this study showed that very accurate results can be obtained with a relatively small number

of annotated images.

Working on the root anatomy detection and stomatal segmentation tasks showed that

manually annotating data, in terms of bounding boxes and especially pixel-level masks, can

be a tedious and time-consuming job, even when a relatively small number of annotated

images are used for training. To address this challenge, for the task of estimating chalkiness

based on images of rice grains exposed to high night temperatures, a weakly supervised

approach was used, specifically, an approach based on Gradient-weighted Class Activation

Mapping (Grad-CAM). Instead of performing pixel-level segmentation of the chalkiness in

rice images, the weakly supervised approach makes use of high-level annotations of images as

chalky or not-chalky. A convolutional neural network (e.g., ResNet-101) for binary classifi-

cation is trained to distinguish between chalky and not-chalky images, and subsequently the

gradients of the chalky class are used to determine a heatmap corresponding to the chalkiness

area and also a chalkiness score for a grain. Experimental results on both polished and un-

polished rice grains using standard instance classification and segmentation metrics showed

that Grad-CAM can accurately identify chalky grains and detect the chalkiness area. The

results also showed that the models trained on polished rice cannot be transferred between

polished and unpolished rice, suggesting that new models need to be trained and fine-tuned

for other types of rice grains and possibly images taken under different conditions.

In conclusion, this dissertation first contributes to the field of deep learning by introducing

new and challenging tasks that require adaptations of existing deep learning models. It also

contributes to the field of agricultural image analysis and plant phenotyping by introducing



fully automated high-throughput tools for identifying, localizing and quantifying plant traits

that are of significant importance to breeding programs. All the datasets and models trained

in this dissertation have been made publicly available to enable the deep learning community

to use them and further advance the state-of-the-art on the challenging tasks addressed in

this dissertation. The resulting tools have also been made publicly available as web servers

to enable the plant breeding community to use them on images collected for tasks similar to

those addressed here.

Future work will focus on the adaptation of the models used in this dissertation to other

similar tasks, and also on the development of similar models for other tasks relevant to the

plant breeding community, to the agriculture community at large.
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Chapter 1

Introduction

Object detection and segmentation are two fundamental tasks in deep learning and com-

puter vision. They have many real-life applications in domains such as autonomous driving,

healthcare monitoring, video surveillance, anomaly detection, or robot vision. In crop sci-

ence, object detection and segmentation are used for plant phenotyping, a process of measur-

ing and analyzing observable plant characteristics. Usually, plant phenotyping is done using

manual low-throughput methods or traditional computer vision tool kits. However, manual

methods are slow, laborious and expensive, while tool kits face several challenges. The first

challenge relates to the fact that existing computer vision tools come with a range of inherent

biases and limitations (e.g., assumptions of artificial plant growth conditions), with none of

the techniques currently available clearly standing out as a promising “blanket fit” approach

(Clark et al., 2011; Durham Brooks et al., 2010; Sozzani et al., 2014).The second challenge

comes from the fact that existing tools are not fully automated and require significant human

effort to produce accurate results. The third challenge is that, in the current genomics era,

phenotyping of traits has been identified as a substantial bottleneck compared to generating

large genome sequence datasets (Hudson, 2008). To derive extensive benefit from the ge-

netic progress achieved, deep learning tools that facilitate high-throughput phenotyping are

needed.
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Deep learning is an area of machine learning focused on (deep) multi-layer artificial neu-

ral networks, which can learn non-linear dependencies, and implicitly capture complex and

diverse patterns in the input data (Goodfellow et al., 2016). Deep learning has been suc-

cessfully used in many application domains, including computer vision, natural language

processing, speech recognition, autonomous driving, among others (LeCun et al., 2015). In

recent years, applications of advanced deep learning techniques to challenging problems in

crop analysis have led to state-of-the-art results that outperform the results of traditional

machine learning and image analysis techniques (Kamilaris and Prenafeta-Boldú, 2018).

Among many successful applications of deep learning techniques in bioinformatics and com-

putational biology, deep learning techniques have expanded the ability to accurately predict

a plant phenotype (Mohanty et al., 2016). Such achievements have enabled researchers to

capture a wide range of genetic diversity, a task which has been hardly possible in the past,

given the amount of time and effort involved in manual analysis (Singh et al., 2016). Thus,

this research aims to contribute to the plant phenotyping area and focuses on developing and

applying deep learning approaches to identify, localizing, measuring the plant characteristics.

More specifically, this research focuses on the analysis of agricultural plant images and

aims to build automated tools for crop physiology and plant breeding, and ultimately for

farmers that may need to extract phenotype data from agricultural images.

An agricultural image is a general concept identifiable in many different formats and

obtained using a variety of image acquisition tools, such as common scanners, microscopes,

x-ray scanning, etc. While all image types and formats can be useful for agricultural image

analysis, this research is focused on common scanner and microscopic images. The reason for

focusing on images acquired by those types of equipment as opposed to x-ray or other more

sophisticated equipment include: 1) the cost of image acquisition can be expensive for more

sophisticated tools; 2) employ the most common formats to ensure broader applicability of

the tools not just by science labs, but also by regular users that may not have access to

high-end image acquisition technologies; 3) create pipelines that can be easily deployed and

2



used by larger groups; 4) minimize the overall pipeline development and usage time).

Leveraging images acquired using common scanners and microscopic images, this research

aims to address the following problems using deep learning approaches:

1. Identify, localize, and quantify objects of interest in agricultural images.

2. Develop pipelines that can perform high-throughput automated analysis of agricultural

images acquired using common imaging equipment.

3. Deploy user-friendly deep learning tools as web servers for the research community and

general public.

The specific contributions of this dissertation are the following:

• Chapter 2: Proposed an approach for performing root anatomy based on root cross-

section image analysis using Faster R-CNN deep learning networks (Wang et al., 2019).

Aboveground plant efficiency has improved significantly in recent years, and the im-

provement has led to a steady increase in global food production. The improvement of

belowground plant efficiency has potential to further increase food production. How-

ever, belowground plant roots are harder to study, due to inherent challenges presented

by root phenotyping. Several tools for identifying root anatomical features in root

cross-section images have been proposed. However, the existing tools are not fully au-

tomated and require significant human effort to produce accurate results. To address

this limitation, we use a fully automated approach, specifically, the Faster Region-based

Convolutional Neural Network (Faster R-CNN), to identify anatomical traits in root

cross-section images. By training Faster R-CNN models on root cross-section images,

we can detect objects such as root, stele and late metaxylem, and predict rectangular

bounding boxes around such objects. Subsequently, the bounding boxes can be used

to estimate the root diameter, stele diameter, late metaxylem number, and average

diameter. Experimental evaluation using standard object detection metrics, such as

3



intersection-over-union and mean average precision, has shown that the Faster R-CNN

models trained on rice root cross-section images can accurately detect root, stele and

late metaxylem objects. Furthermore, the results have shown that the measurements

estimated based on predicted bounding boxes have small root mean square error when

compared with the corresponding ground truth values, suggesting that Faster R-CNN

can be used to accurately detect anatomical features.

• Chapter 3: Proposed an approach for finding the stomatal density and area in sorghum

leaf images using Mask R-CNN deep networks (Bheemanahalli et al., 2021).

Stomatal density (SD) and stomatal complex area (SCA) are important traits that reg-

ulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum

bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits

remains unexplored due to challenges in available phenotyping methods. Identifying

loci that control stomatal traits is fundamental to designing strategies to breed sorghum

with optimized stomatal regulation. We implemented both classical and deep learning

methods to characterize genetic diversity in 311 grain sorghum accessions for stom-

atal traits at two different field environments. Nearly 12,000 images collected from

abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stom-

atal traits. The study demonstrated significant agreement between manual and deep

learning methods for predicting SD and SCA.

• Chapter 4: Proposed a deep learning based high-throughput phenotyping of chalkiness

in rice exposed to high night temperature (Wang et al., 2022).

Rice is a major staple food crop for more than half the world’s population. As the

global population is expected to reach 9.7 billion by 2050, increasing the production of

high-quality rice is needed to meet the soaring demand. However, global environmental

changes, especially increasingly high temperatures, can affect grain yield and quality.

Heat stress is one of the major causes of an increased proportion of chalkiness in rice,
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which compromises quality and, in turn, reduces the market value. Researchers have

identified 140 quantitative trait loci linked to chalkiness mapped across 12 chromosomes

of the rice genome. However, the available genetic information quantified by employ-

ing advances in genetics has not been adequately exploited due to a lack of a reliable,

rapid and high-throughput phenotyping tool to capture chalkiness. To derive extensive

benefit from the genetic progress achieved, tools that facilitate high-throughput phe-

notyping of rice chalkiness are needed. We use a fully automated approach based on

convolutional neural networks (CNNs) augmented with Gradient-weighted Class Ac-

tivation Mapping (Grad-CAM) to detect chalkiness in rice grain images. Specifically,

we train a CNN model to distinguish between chalky and non-chalky grains and sub-

sequently use Grad-CAM to identify the area of a grain that is indicative of the chalky

class. The area identified by the Grad-CAM approach takes the form of a smooth

heatmap that can be used to quantify the degree of chalkiness. Experimental results

on both polished and unpolished rice grains using standard instance classification and

segmentation metrics have shown that the Grad-CAM approach can accurately iden-

tify chalky grains and detect the chalkiness area. We have successfully demonstrated

the application of a Grad-CAM based tool to accurately capture high night temper-

ature induced chalkiness in rice. The models trained will be made publicly available.

They are easy-to-use, scalable and can be readily incorporated into ongoing rice breed-

ing programs, without rice researchers requiring computer science or machine learning

expertise.
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Chapter 2

Root anatomy based on root

cross-section image analysis with deep

learning

Abstract: Aboveground plant efficiency has improved significantly in recent years, and the

improvement has led to a steady increase in global food production. The improvement of

belowground plant efficiency has potential to further increase food production. However,

belowground plant roots are harder to study, due to inherent challenges presented by root

phenotyping. Several tools for identifying root anatomical features in root cross-section

images have been proposed. However, the existing tools are not fully automated and require

significant human effort to produce accurate results. To address this limitation, we use a fully

automated approach, specifically, the Faster Region-based Convolutional Neural Network

(Faster R-CNN), to identify anatomical traits in root cross-section images. By training

Faster R-CNN models on root cross-section images, we can detect objects such as root,

stele and late metaxylem, and predict rectangular bounding boxes around such objects.

Subsequently, the bounding boxes can be used to estimate the root diameter, stele diameter,

late metaxylem number, and average diameter. Experimental evaluation using standard
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object detection metrics, such as intersection-over-union and mean average precision, has

shown that the Faster R-CNN models trained on rice root cross-section images can accurately

detect root, stele and late metaxylem objects. Furthermore, the results have shown that the

measurements estimated based on predicted bounding boxes have small root mean square

error when compared with the corresponding ground truth values, suggesting that Faster R-

CNN can be used to accurately detect anatomical features. Finally, a comparison with Mask

R-CNN, an instance segmentation approach, has shown that the Faster R-CNN network

produces overall better results given a small training set. A webserver for performing root

anatomy using the Faster R-CNN models trained on rice images, and a link to a GitHub

repository containing a copy of the Faster R-CNN code are made available to the research

community. The labeled images used for training and evaluating the Faster R-CNN models

are also available from the GitHub repository.

Keywords: Image Analysis, Deep Learning, Object Detection, Faster R-CNN, Root

Anatomy

2.1 Introduction

The crop scientific community has made significant strides in increasing global food produc-

tion through advances in genetics and management, with majority of the progress achieved

by improving aboveground plant efficiency (Araus et al., 2008; Bishopp and Lynch, 2015;

Khush, 2013). The belowground plant roots, which provide water and nutrients for plant

growth, are relatively less investigated. This is primarily because of the difficulty in accessing

the roots, and the complexity of phenotyping root biology and function (Jung and Mccouch,

2013; Schmidt and Gaudin, 2017). Hence, root potential has largely been untapped in crop

improvement programs (Jung and Mccouch, 2013; Schmidt and Gaudin, 2017). Over the

past decade, different root phenotyping approaches have been developed for studying root

architecture, including basket method for root angle (Uga et al., 2013), rhizotron method
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for tracking root branching, architecture and growth dynamics (Bucksch et al., 2014), shov-

elomics, a.k.a., root crown phenotyping (Colombi et al., 2015), among others. Recent ad-

vances in magnetic resonance imaging and X-ray computed tomography detection systems

have provided the opportunity to investigate root growth dynamics in intact plants at high

temporal frequency (Mooney et al., 2012; Pfeifer et al., 2015; Schulz et al., 2013; Topp et al.,

2013; van Dusschoten et al., 2016). However, each of these techniques comes with a range

of inherent biases or limitations (such as artificial plant growth conditions), with none of

the techniques currently available clearly standing out as a promising “blanket fit” approach

(Clark et al., 2011; Durham Brooks et al., 2010; Sozzani et al., 2014). Recent non-destructive

technologies, such as X-ray computed tomography, are extremely expensive, and thus beyond

the reach of common crop improvement programs, in addition to not having the bandwidth

to capture large genetic diversity.

Machine learning, in general, and deep neural networks (a.k.a., deep learning), in partic-

ular, are expanding the ability to accurately predict a plant phenotype (Aich and Stavness,

2017; Dobrescu et al., 2017; Kamilaris and Prenafeta-Boldú, 2018; Khan et al., 2018; Namin

et al., 2017; Pound et al., 2017a; Singh et al., 2016; Tardieu et al., 2017; Ubbens and Stavness,

2017). These technological advances have enabled researchers to capture a wide range of ge-

netic diversity, a task which has been hardly possible in the past, given the amount of time

and effort involved in manual analysis. Several recent studies have used deep learning ap-

proaches for identifying and quantifying aboveground plant traits, such as the number of

leaves in rosette plants, based on high-resolution RBF images (Aich and Stavness, 2017;

Dobrescu et al., 2017; Ubbens and Stavness, 2017). Other investigations have focused on

identifying plant diseases (Mohanty et al., 2016) or on stress phenotyping (Singh et al., 2016).

Furthermore, several prior studies have focused on data-driven approaches and tools for

belowground plant phenotyping, including identifying and quantifying root morphological

parameters, such as changes in root architecture, or branching and growth (Betegón-Putze

et al., 2018; Delory et al., 2018; Pound et al., 2017b; Reeb et al., 2018). Such approaches
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rely on standard image analysis techniques as opposed to state-of-the-art deep learning.

Both root morphological and anatomical traits are important in relation to the efficiency

of soil moisture absorption by the root system. Large genetic variation in root related traits

has positioned rice to uptake water and increase yields under a range of ecological conditions,

including flooded and dryland conditions (Gowda et al., 2011). Root anatomical traits such

as nodal root diameter (RD) (Henry et al., 2012), late metaxylem diameter (LMXD) and

number (LMXN) (Comas et al., 2013; Lynch et al., 2014; Richards and Passioura, 1989), and

stele diameter (SD) and its proportion to root diameter (SD:RD) (Kadam et al., 2015) have

been proposed as key traits for optimized acquisition of water and productivity under water-

limited conditions (Henry et al., 2012). Thin SD:RD has been used as a surrogate measure

of cortex tissue area/width, which helps in the improvement of water flow and retention in

vascular tissue (Kadam et al., 2015; Rieger and Litvin, 1999). Late metaxylem number and

diameter along the root influence the hydraulic conductivity (Kadam et al., 2015; Richards

and Passioura, 1989). These parameters mentioned above help to determine effective water

use throughout the crop growth period (Lynch et al., 2014; Wasson et al., 2012).

Innovations in image acquisition technologies have made it possible to gather relatively

large sets of root cross-section images, enabling studies on root anatomy. Several approaches

and tools for quantifying root anatomical variation based on cross-section images have been

proposed in recent years (Burton et al., 2012; Chopin et al., 2015; Lartaud et al., 2015).

However, the existing tools are only partially automated, as they require user input and fine-

tuning of the parameters for each specific image or for a batch of images. Fully automated

tools exist for the analysis of hypocotyl cross-sections (i.e., the region in between seed leaves

and roots) in the context of secondary growth (Hall et al., 2016; Sankar et al., 2014), but

they are not directly applicable to the analysis of root cross-section images. Thus, there is

a pressing need for automated root cross-section image analysis tools that can be used to

perform root anatomy at a low cost.

To address this limitation, we have taken advantage of recent advances in deep learning
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and image analysis, and used a modern, fully-automated deep learning approach, the Faster

R-CNN network (Ren et al., 2015), to identify and quantify root anatomical parameters

indicative of physiological and genetic responses of root anatomical plasticity in field crops.

Specifically, as a proof-of-concept, we have focused on the following parameters: root di-

ameter (RD), stele diameter (SD), late metaxylem diameter (LMXD) and late metaxylem

number (LMXN), which were found important in relation to water-deficit stress in our prior

work (Kadam et al., 2015, 2017). A graphical illustration of these parameters is shown in

Figure 2.1.

Figure 2.1: Root anatomical traits. (Top) Root cross-section with highlighted root diameter
and stele. Image taken at 50x magnification. (Bottom) Enlarged stele with highlighted stele
diameter, and late metaxylem diameter. The late metaxylem number is also a trait of interest.
The image was taken at 100x magnification.

The existing Faster R-CNN model was trained on rice root cross-section images. The

trained model was used to detect objects of interest in a root cross-section image (i.e.,

root, stele and late metaxylem), together with their corresponding bounding boxes. Subse-

quently, the bounding boxes were used to estimate anatomical parameters such as RD, SD,

LMXD, LMXN. The Faster R-CNN model generalizes well to unseen images, thus eliminat-

ing the need for the end-user to hand-draw a stele border or manually choose or correct the
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metaxylem cells, tasks that are time-consuming, and also prone to noise and errors.

To summarize, our main contributions are as follows:

• We have used the Faster R-CNN network trained on root cross-section images to detect

root, stele and late metaxylem objects, and their corresponding bounding boxes.

• We have investigated the Faster R-CNN model with respect to the number of instances

needed to accurately detect objects of interest, and their corresponding bounding boxes.

• We have evaluated the ability of the predicted bounding boxes to produce accurate

estimates for anatomical properties, and performed error analysis to identify sources

of errors.

• We have compared the results of the Faster R-CNN network (an object detection

model) with results obtained using Mask R-CNN network (an instance segmentation

model), and showed that the Faster R-CNN model produces better results overall,

given a small training set.

• We have identified advantages and disadvantages of Faster R-CNN approach for root

anatomy by comparison with existing approaches for this task.

2.2 Related work on root anatomy

There are several approaches and tools for quantifying root anatomical variation based on

cross-section images (Burton et al., 2012; Chopin et al., 2015; Lartaud et al., 2015). Ap-

proaches in this category can be roughly categorized as manual, semi-automated, and auto-

mated approaches. Manual analysis of root images relies heavily on subjective assessments,

and is suitable only for low throughput analysis. ImageJ (Schneider et al., 2012) is an image

analysis tool that has been extensively used to manually identify and quantify root anatomi-

cal traits (Kadam et al., 2015, 2017; Yamauchi et al., 2013), given that it enables researchers
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to mark objects of interest and obtain their measurements. In particular, the ImageJ soft-

ware was used to acquire the ground truth (in terms of quantitative annotations) for the

images used in this study, specifically, RD, SD, LMXD and LMXN measurements.

Semi-automated tools require user feedback to tune parameters for individual images in

order to get accurate results. RootScan (Burton et al., 2012) and PHIV-RootCell (Lartaud

et al., 2015) are semi-automated tools that identify and quantify anatomical root traits.

RootScan was originally designed for analyzing maize root cross-section images. The analy-

sis of each image involves several steps. RootScan starts by isolating the cross-section from

the background using a global thresholding technique (Otsu, 1979). Subsequently, the stele

is segmented based on the contrast between pixel intensities within and outside the stele.

Different cells within the stele (e.g., late metaxylem) are classified based on their area ac-

cording to background knowledge on root anatomy for a particular species. RootScan can

detect several types of objects (including lucunae, metaxylem and protoxylem), and also a

broad range of parameters for each detected object. After each step, the user has to “ap-

prove” the automated detection or alternatively correct it, before moving to the next step.

The tool can be run on a set of images in batch mode, but the user still needs to provide

input for each step of the analysis for each image, as explained above.

The PHIV-RootCell tool for root anatomy is built using the ImageJ software (Schneider

et al., 2012), and provides options for selecting regions of interest (ROI) such as root, stele,

xylem, and for measuring properties of these regions. It was designed for analyzing rice

root cross-section images. Similar to RootScan, domain knowledge is used to identify ROIs.

The PHIV-RootCell tool uploads and analyzes one image at a time, and does not have an

option for batch uploading or processing. Furthermore, it requires user’s supervision at each

segmentation and classification step (Lartaud et al., 2015). For example, it requires the user

to validate the root selection, stele selection, central metaxylem selection, among others.

As opposed to semi-automated tools that require user feedback, a fully automated ap-

proach should involve “a single click” and should produce accurate results without any
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human intervention during the testing and evaluation phases. However, human input and

supervision in the form of background knowledge or labeled training examples may be pro-

vided during the training phase. In this sense, RootAnalyzer (Chopin et al., 2015) is an

automated tool, which incorporates background knowledge about root anatomy. The first

step in RootAnalyzer is aimed at performing image segmentation to distinguish between

root pixels (corresponding to boundaries of individual root cells) and background pixels. To

achieve this, RootAnalyzer utilizes a local thresholding technique to analyze each pixel’s in-

tensity by comparing it with the mean pixel intensity in a small square neighborhood around

that pixel (defined by a width parameter, W ). Subsequently, RootAnalyzer constructs a dif-

ference image, and classifies pixels as root or background pixels based on a threshold, T ,

used on the difference image. The next step is focused on detecting root cells and closing

small leaks in cell boundaries, using an interpolation approach. Finally, cells are classified in

different categories, such as stele cells, cortex cells, epidermal cells, etc. based on size, shape,

and position. Two thresholds are used to classify cells as small or large: a threshold, As, for

small cells, and a threshold, Al, for large cells. Furthermore, stele cells are classified based

on an additional threshold, N , on the maximum distance from a cell to any of its nearest

neighbor cells. The RootAnalyzer tool can be used for both single image processing and

batch processing. Single image processing allows the user to adjust and tune parameters,

and also to interact with the tool at each stage of the segmentation and classification. Batch

processing requires the user to provide the parameters to be used with a specific batch of

plant images. Similar to RootScan, RootAnalyzer outputs a table of area measurements and

counts for regions of interest. This tool was designed for wheat and was shown to work also

for maize (Chopin et al., 2015).
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2.3 Methods

While there are many anatomical traits that can be identified, and measured or counted

(e.g., RootScan outputs more than 20 anatomical parameters), as a proof-of-concept, we

have focused on measuring the root diameter (RD), stele diameter (SD), and late metaxylem

diameter (LMXD), and counting the number of late metaxylem inside the stele (LMXN).

Our choice was motivated by studies by Kadam et al. Kadam et al. (2015, 2017), who

showed the importance of these traits in relation to water-deficit stress, and provided the

ground truth dataset for our study. The tasks that we target can be achieved with modern

object detection techniques, such as Faster R-CNN (Ren et al., 2015) or Mask R-CNN (He

et al., 2017), as described below. In addition to the traits of interest (RD, SD, LMXD and

LMXN), other traits can be estimated based on the objects detected with our trained models

(e.g., stele area, average area of the late metaxylem). Furthermore, Faster R-CNN or Mask

R-CNN models can be trained to detect other objects (e.g., protoxylem objects), and their

parameters, if data annotated with such objects becomes available.

2.3.1 Overview of the approach

We have used Faster R-CNN, a network for object detection, to detect objects of interest

(i.e., root, stele, late metaxylem), and subsequently mark each object with a bounding box.

More precisely, we have trained a Faster R-CNN model to identify the root and stele within a

cross-section image, and another Faster R-CNN model to identify the late metaxylem within

the stele region of a cross-section. Given the bounding box of an object, identified by the

Faster R-CNN models trained on root cross-section images, we have calculated its diameter

by averaging the width and height of the bounding box. The count of late metaxylem was

obtained by counting the number of late metaxylem objects detected by the Faster R-CNN

network.

The Faster R-CNN model architecture is shown in Figure 2.2. As can be seen, the
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Figure 2.2: Faster R-CNN model architecture (Ren et al., 2015), which has two main
components: 1) a region proposal network (RPN), which identifies regions that may contain
objects of interest and their approximate location; and 2) a Fast R-CNN network, which
classifies objects as root or stele, and refines their location, defined using bounding boxes.
The two components share the convolutional layers of the pre-trained VGG-16 Simonyan
and Zisserman (2014a).

Faster R-CNN has two main components. The first component consists of a Region Proposal

Network (RPN), which identifies Regions of Interest (i.e., regions that may contain objects of

interest), and also their location. The second component consists of a Fast R-CNN (Girshick,

2015), which classifies the identified regions (i.e., objects) into different classes (e.g., root and

stele), and also refines the location parameters to generate an accurate bounding box for each

detected object. The two components share the convolutional layers of the VGG-16 network

(Simonyan and Zisserman, 2014a), which is used as the backbone of the Faster R-CNN model.

More details on convolutional neural networks, VGG-16 and Faster R-CNN approach, which

we used to detect objects and generate bounding boxes, are provided below.

In addition to the Faster R-CNN network, which focuses on object detection, we have
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also explored the Mask R-CNN network, which performs more precise instance segmentation.

More precisely, Mask R-CNN identifies the pixels belonging to objects of interest (in our

case, root, stele and LMX). It does this by enhancing the Faster R-CNN with additional

convolutional layers trained to predict instance masks for RoIs, in parallel with the object

classification and bounding box regression tasks. The resulting segmentation masks identified

by Mask R-CNN are used to estimate the area of the objects, and subsequently the area is

used to estimate the diameter of the objects.

2.3.2 Convolutional neural networks and VGG-16

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are widely used in image anal-

ysis. While originally designed for image classification, the features extracted by CNNs are

informative for other image analysis tasks, including object detection. A CNN consists of

convolutional layers followed by non-linear activations, pooling layers and fully connected

layers, as seen in Figure 2.3 (which shows a specific CNN architecture called VGG-16 (Si-

monyan and Zisserman, 2014a)).

A convolutional layer employs a sliding window approach to apply a set of filters (low-

dimensional tensors) to the input image. The convolution operation captures local dependen-

cies in the original image, and it produces a feature map. Different filters produce different

feature maps, consisting of different features of the original image (e.g., edges, corners, etc.).

A convolution layer is generally followed by a non-linear activation function, such as the Rec-

tified Linear Unit (i.e., ReLU), applied element-wise to generate a rectified feature map. The

ReLU activation replaces all the negative pixels in a feature map with zero values. A pooling

layer is used to reduce the dimensionality of the rectified feature map. Intuitively, the pooling

operation retains the most important information in a feature map by taking the maximum

or the average pixel in each local neighborhood of the feature map. As a consequence, the

feature map becomes invariant to scale and translation (LeCun et al., 2015).

After a sequence of convolutional layers (together with non-linear activations) and pooling
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Figure 2.3: VGG-16. The original VGG-16 architecture consists of 13 convolution+ReLU
layers, five pooling layers, and three fully connected layers. A convolution+ReLU layer pro-
duces a feature map, while a pooling layer reduces the dimensionality of the feature map.
The last fully connected layer uses a softmax activation function to predict one of the 1000
categories. The dimensions corresponding to each layer are also shown.

layers, a CNN has one or more fully connected layers. In a fully connected layer, all neurons

are connected to all neurons in the subsequent layer. The first fully connected layer is

connected to the last downsized feature map. The fully connected layers are used to further

reduce the dimensionality and to capture non-linear dependencies between features (LeCun

et al., 2015). The last fully connected layer uses a softmax activation function, and has as

many output neurons as the number of targeted classes.

There are several pre-trained CNN architectures available, including VGG-16 (Simonyan

and Zisserman, 2014a), shown in Figure 2.3. A VGG type network, trained on 1.3 million

images with 1000 categories, had the second best top-5 error (specifically, 7.3%) in ILSVRC

(ImageNet Large Scale Visual Recognition Competition) in 2014. Furthermore, VGG-16

was used with good results in the original Faster R-CNN study (Ren et al., 2015), which

motivated us to use it also in our study. As can be seen in Figure 2.3, VGG-16 has 13

convolutional+ReLU layers, 5 pooling layers, and 3 fully connected layers. The dimensions
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corresponding to each layer are also shown in Figure 2.3.

2.3.3 Region proposal network (RPN)

As mentioned above, the region proposal network identifies regions that could potentially

contain objects of interest, based on the last feature map of the pre-trained convolutional

neural network that is part of the model, in our case VGG-16 (Simonyan and Zisserman,

2014a). More specifically, using a sliding window approach, k regions are generated for each

location in the feature map. These regions, are represented as boxes called anchors. The

anchors are all centered in the middle of their corresponding sliding window, and differ in

terms of scale and aspect ratio (Ren et al., 2015), to cover a wide variety of objects. The

region proposal network is trained to classify an anchor (represented as a lower-dimensional

vector) as containing an object of interest or not (i.e., it outputs an “objectness” score),

and also to approximate the four coordinates of the object (a.k.a., location parameters).

The ground truth used to train the model consists of bounding boxes provided by human

annotators. If an anchor has high overlap with a ground truth bounding box, then it is

likely that the anchor box includes an object of interest, and it is labeled as positive with

respect to the object versus no object classification task. Similarly, if an anchor has small

overlap with a ground truth bounding box, it is labeled as negative. Anchors that don’t have

high or small overlap with a ground truth bounding box are not used to train the model.

During training, the positive and negative anchors are passed as input to two fully connected

layers corresponding to the classification of anchors as containing object or no object, and

to the regression of location parameters (i.e., four bounding box coordinates), respectively.

Corresponding to the k anchors from a location, the RPN network outputs 2k scores and 4k

coordinates.

18



2.3.4 Fast R-CNN

Anchors for which the RPN network predicts high “objectness” scores are passed to the

last two layers (corresponding to object classification and location parameter refinement,

respectively) of a network that resembles the original Fast R-CNN network (Girshick, 2015),

except for how the proposed regions are generated. Specifically, in the original Fast R-CNN,

the regions were generated from the original image using an external region proposal method

(e.g., selective search).

As opposed to the original Fast R-CNN (Girshick, 2015), in the Fast R-CNN compo-

nent of the Faster R-CNN model, the external region proposal method is replaced by an

internal RPN trained to identify regions of interest (Ren et al., 2015). Highly overlapping

regions, potentially corresponding to the same object, can be filtered using a non-maximum

suppression (NMS) threshold. A pooling layer is used to extract feature vectors of fixed

length for the regions of the interest proposed by RPN. Subsequently, the feature vectors

are provided as input to two fully connected layers, corresponding to the classification of the

object detected and the regression of its location, respectively.

The object classification layer in Fast R-CNN uses the softmax activation, while the

location regression layer uses linear regression over the coordinates defining the location as

a bounding box. All parameters of the network are trained together using a multi-task loss

(Girshick, 2015).

Mask R-CNN network

Mask R-CNN is a network for instance segmentation, which identifies masks enclosing the

pixels that belong to instances of an object of interest, e.g., it identifies masks for instances of

root, stele or LMX objects. Mask R-CNN extends the Faster R-CNN network by including

additional convolutional layers trained for the task of predicting instance masks for RoIs,

in parallel with the tasks performed by Faster R-CNN, specifically object classification and

bounding box regression tasks. Another innovation in Mask R-CNN is to use a Feature
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Pyramid Network (FPN) (Lin et al., 2017) to enable the identification of objects at different

scales. Finally, Mask R-CNN replaces the RoI Pool layer in Faster R-CNN, which extracts a

fixed-length feature vector from a feature map, with a RoI Align layer, which performs pixel-

to-pixel alignment between network input and output, to enable the generation of precise

instance masks.

Faster R-CNN and Mask R-CNN implementation and training

The original, publicly available implementation of the Faster R-CNN network Ren (2015)

uses MATLAB as the programming language, and Caffe Jia) as the backend deep learning

framework. Chen and Gupta Chen and Gupta (2017) provided an implementation of the

Faster R-CNN network, which uses Python as the programming language and TensorFlow

TensorFlow) as the backend deep learning framework. This publicly available implementa-

tion Chen (2017), allows the user to train a model from scratch and also to reuse one of

several pre-trained models as the backbone of the network. In particular, the user can select

the VGG-16 network, pre-trained on the ImageNet dataset with 1000 categories.

We used the Python/TensorFlow implementation of the Faster R-CNN network, with

the pre-trained VGG-16 model as its backbone, and trained the network to identify objects

such as root, stele and late metaxylem. More precisely, the parameters of the VGG-16

convolutional layers, which are shared by the Fast R-CNN and RPN networks in Faster R-

CNN, were initialized using the pre-trained VGG-16 network. As many image features are

highly transferable between different datasets, this initialization based on VGG-16 allowed

us to train accurate models from a relatively small number of root cross-section labeled

images. In our preliminary experimentation, we found that it is difficult to accurately detect

late metaxylem at the same time with root and stele. To address this issue, we trained a

Faster R-CNN model to detect root and stele from background (i.e., everything else in the

image), and another Faster R-CNN model to detect late metaxylem from background. To

achieve this, we changed the output layer of the original Faster R-CNN network to reflect
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our classes (corresponding to the objects detected).

Given that the RPN and Fast R-CNN networks share 13 convolutional layers (initialized

based on VGG-16), they were co-trained using an iterative process that alternates between

fine-tuning the RPN and fine-tuning the Fast R-CNN network (with fixed proposed regions

produced by RPN) (Ren et al., 2015). All the model parameters were updated using stochas-

tic gradient descent (SGD).

For Mask R-CNN, we used a popular implementation (Matterport-Inc., 2017), based on

Python 3, Keras, and TensorFlow. This implementation has the pre-trained ResNet101 (He

et al., 2016) network as its default backbone. We trained three separate models to detect

objects (root, stele, and LMX, respectively), and identify objects’ masks (pixel-level segmen-

tation). We changed the output layer of the original Mask R-CNN network to reflect our

classes (corresponding to the objects detected). The parameters of the ResNet convolutional

layers were initialized using the pre-trained ResNet network. Feature maps produced by

ResNet were provided as input to the RPN network, which produced RoIs. The RoIs were

subsequently provided as input to the Fast R-CNN network, extended with a component

for predicting a segmentation mask for an object instance at the pixel level. Similar to the

Faster R-CNN training, training of the Mask R-CNN network was based on an iterative pro-

cess that alternates between fine-tuning the RPN and fine-tuning the extended Fast R-CNN

network.

2.4 Dataset

Twenty-five accessions of Oryza species were grown in plastic pots (25 cm in height; 26

and 20 cm diameter at the top and bottom, respectively), filled with 6 kg of clay loam

soil. Three replications per each accession were maintained under well-watered conditions

and roots were sampled 60 days after sowing, to ensure fully mature roots. The roots were

harvested and washed thoroughly. To obtain the cross-section images used in this study,
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root samples stored in 40% alcohol were hand sectioned with a razor blade using a dissection

microscope. For each of the 25 rice accessions, and for each of the three biological replicates,

root samples from root-shoot junction and 6 cm from the root tip were obtained. Images of

root sections were acquired with the Axioplan 2 compound microscope (Zeiss, Germany) at

50x and 100x magnification. Specifically, for each accession and each replicate, 2-3 images

were taken at root-shoot junction, and 2-3 images at 6 cm from the tip of the root, at 50x and

100x magnification. Thus, an image may have two versions: a 50× magnification version,

which captures the whole root diameter (top image in Figure 2.1), and a 100× magnification

version, which captures only the stele diameter (bottom image in Figure 2.1). However,

not all 50× images have a 100× correspondent. Precisely, there are 388 images at 50×

magnification, and 339 images at 100× magnification.

For each root image, we manually measured root anatomical parameters, such as root

cross-section diameter, stele diameter, late metaxylem average diameter and late metaxylem

number, using the ImageJ software (Schneider et al., 2012). Specifically, root diameters

were estimated using the 50× magnification images. The stele diameter, and late metaxylem

average diameter and count were estimated using the 100× magnification images, if available

(otherwise, the 50× magnification images were used). The manual measurements and counts

constitute our ground truth to which we compared the measurements produced based on the

bounding boxes detected by our trained Faster R-CNN models. Statistics about the dataset,

including the minimum, maximum, average and standard deviation for RD, SD, LMXD and

LMXN, are presented in Table 2.1.

Statistics RD SD LMXD LMXN
Min 354 115 15 1
Max 1352 419 65 12
Avg ± std 869± 194 216 ± 55 36 ± 8 5.4 ± 1.8

Table 2.1: Ground Truth Statistics: minimum (Min), maximum (Max), and average to-
gether with standard deviation (Avg ± std) are shown for the ground truth measurements
of RD, SD, LMXD (expressed in micrometers, µm) and LMXN (which is the count of late
metaxylem objects).
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In addition to measuring root anatomical parameters, each 50× magnification image was

also manually labeled by independent annotators with bounding boxes that represent root,

stele, and late metaxylem, respectively, and each 100× magnification image was labeled with

boxes that represent late metaxylem.

We used the LabelImg tool (Tzutalin, 2015) to perform the bounding box labeling. This

tool produces annotations in the Pascal Visual Object Classes (VOC) XML format (Evering-

ham et al., 2015), a standard format used for annotating images with rectangular bounding

boxes corresponding to objects. An example of a root cross-section image annotated using

the LabelImg tool (zoomed in on stele) is shown in Figure 2.4 (a), where each target object

is marked using four coordinates, which determine a bounding box. The bounding boxes

annotated with the LabelImg tool in the 50× and 100× magnification images constitute the

ground truth to which we compared the bounding boxes of the objects detected by our mod-

els. Corresponding to the ground truth image in Figure 2.4 (a) annotated with LabelImg,

Figure 2.4 (b) shows the bounding box annotations produced by our models.

(a) (b)

stele

LMX

stele

LMX

Figure 2.4: Objects of interests as bounding boxes: (a) Ground truth image annotated using
LabelImg, where each object is marked using four coordinates, which determine a bounding
box. (b) The annotation of the same image by the root/stele and late metaxilem models,
where the detected objects are also shown using bounding boxes.

To produce ground truth data for Mask R-CNN, we used the VGG Image Annotator

(VIA) tool (Dutta et al., 2017) with 50x magnification images. Specifically, we enclosed

instances of objects of interest within polygons. The pixels contained in a polygon represent
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the ground truth mask corresponding to an object instance. An example of a root cross-

section image annotated using the VIA tool (zoomed in on stele) is shown in Figure 2.5 (a),

where each target object is marked with a polygon representing a mask. Corresponding to

the ground truth annotated with VIA tool, Figure 2.4 (b) shows the masks produced by our

stele and LMX Mask R-CNN models, respectively.

(a) (b)

LMX

stele

LMX

stele stele

Figure 2.5: Objects of interests as polygons/masks: (a) Ground truth stele object and
LMX objects annotated using the VIA tool: the objects are marked using polygons, enclosing
masks. (b) The annotation of the same objects by our models, where the detected stele and
LMX objects are masked.

We would like to emphasize that the 50× magnification images contain all the anatomical

features that we target in this study, and are sufficient for training the proposed deep learning

models. However, for the Faster R-CNN network, we also trained models on the 100×

magnification images, independently, to understand how much the identification of the LMX

objects and their measurements may be improved by using images with a higher resolution.

In general, any resolution can be used for training, as long as all the features that need to

be identified are contained in the image.
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2.5 Experimental setup

2.5.1 Training, development and test datasets

We performed a set of experiments using 5-fold cross-validation. Specifically, we split the set

of 50×magnification images into five folds, based on accessions, such that each fold contained

5 accessions out of the 25 accessions available. The exact number of 50× magnification

images (instances) in each fold is shown in Table 2.2. For each fold, Table 2.2 also shows

the number of corresponding 100× magnification images (instances) available (as mentioned

before, not every 50× magnification image has a corresponding 100× magnification image).

In each 5-fold cross-validation experiment, four folds were used for training, and the fifth

fold was used for test. To tune hyper-parameters, we used one of the training folds as the

development dataset. The results reported represent averages over the 5 folds. The reason

for splitting the set of images based on accessions was to avoid using images from the same

plant or the same replicate both in the training and test datasets.

Table 2.2: Number of instances in each of the 5 folds used to perform cross-validation for
the 50× and 100× magnification images, respectively. The total number of instances in the
dataset is also shown.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total
Instances (50×) 71 79 86 77 75 388
Instances (100×) 62 60 80 69 68 339

2.5.2 Evaluation metrics

We used three standard metrics in our evaluation, driven by preliminary observations. First,

given that there exist exactly one root and one stele in an image, we observed that these

objects are always detected in the 50× magnification images. We used the Intersection-

over-Union (IoU) metric to measure how well the predicted bounding boxes overlap with

the ground truth bounding boxes. Second, given that the number of LMX objects varies

between 1 and 12, and these objects are relatively small, the corresponding object detection
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models are prone to both false positive and false negative mistakes. Thus, we used mean

average precision (mAP), a standard metric in object detection, to evaluate the ability of our

models to accurately identify the LMX objects. Both IoU and mAP metrics range between

0 and 1, and higher values are better. Finally, we used the root mean square error (RMSE)

and relative root mean square error (rRMSE) (i.e., percentage error) metrics to measure the

ability of the Faster R-CNN/Mask R-CNN networks to detect objects and corresponding

bounding boxes that lead to root/stele/LMX diameter measurements and LMX counts close

to those available as ground truth. For RMSE and rRMSE, smaller values are better.

2.5.3 Hyper-parameter tuning

Deep learning models, in general, and the Faster R-CNN/Mask R-CNN models, in partic-

ular, have many tunable hyper-parameters. We tuned several hyper-parameters shown to

affect the performance of the Faster R-CNN models Zhang et al. (2016), and used the values

suggested by Ren et al. Ren et al. (2015) for the other hyper-parameters. More specifically,

we tuned the IoU threshold used in the RPN network to identify anchors that could poten-

tially include an object of interest (i.e., positive instances/anchors). Furthermore, we tuned

the non-maximum suppression (NMS) threshold which is used to filter region proposals pro-

duced by the trained RPN network (specifically, if two proposals have IoU larger than the

NMS threshold, the two proposals will be considered to represent the same object). At last,

we tuned the fraction of positive instances in a mini-batch.

The specific values that we used to tune the IoU threshold were 0.4, 0.5 and 0.6; the values

used to tune the NMS threshold were 0.6, 0.7 and 0.8; and the values used to tune the fraction

of positive instances in a mini-batch were 1:5 and 1:4. To observe the variation of performance

with the tuned parameters, and select the values that gave the best performance, we trained

a model corresponding to a particular combination of parameters on three training folds, and

evaluated the performance of the model on the development fold. The performance of the

models for root and stele detection was measured using the IoU metric (by comparing the
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predicted bounding boxes with the ground truth bounding boxes), while the performance

of the models for LMX detection was measured using the mAP metric (by comparing the

detected LMX objects with the ground truth LMX objects) to ensure that the Faster R-CNN

models can accurately detect all the LMX objects.

Our tuning process revealed that the performance did not vary significantly with the

parameters for our object detection tasks. However, the best combination of parameters for

the root/stele models consisted of the following values: 0.4 for the IoU threshold, 0.8 for

the NMS threshold and 1:4 for the fraction of positive anchors in a mini-batch. The best

combination of parameters for the LMX models was: 0.5 for the IoU threshold, 0.8 for the

NMS threshold, and 1:4 for the fraction of positive anchors in a mini-batch. We used these

combinations of values for the root/stele and LMX models, respectively, in our experiments

described in the next section.

Based on our observation that Faster R-CNN performance does not vary significantly

with the model hyper-parameters, we used the default values for the Mask R-CNN models.

2.6 Results

In this section, we present and discuss the results of our experiments using the Faster R-

CNN models trained on rice root cross-section images. We also compare the results of the

Faster R-CNN models with the results of the Mask R-CNN models. Finally, we outline time

requirements for Faster R-CNN and discuss the availability of the Faster R-CNN model for

root anatomy as a tool.

2.6.1 Performance of Faster R-CNN with the number of training

instances

As opposed to the existing tools for identifying anatomical parameters in root cross-section

images, which incorporate background knowledge about the root anatomy of a particular
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species and the types of images used, the automated Faster R-CNN approach is easily gener-

alizable to various species and types of images, given that a representative set of annotated

images is provided as training data. Under the assumption that data annotation is expensive

and laborious, we aim to understand how many images are necessary for good performance

on roots from a particular species. Intuitively, the number of required images should be rel-

atively small, given that our model relies on a VGG-16 network pre-trained to detect a large

number of objects, generally more complex than root, stele and late metaxylem objects.

To validate our intuition, we have performed an experiment where we varied the number of

images used for training, while keeping the number of test images fixed. Specifically, we used

5, 10, 25, 50, 75, 100, 150, 200, 250, and all available training images in a split, respectively,

to train models for detecting the root, stele and LMX in an image. The 50× magnification

images were used to train the models for root/stele/LMX. The 100× magnification images

were also used to train models for LMX, with the goal of understanding the benefits provided

by higher resolution images. The trained models were subsequently used to detect root, stele,

and LMX objects in test images.

The performance of the models was measured by comparing the predicted objects with

the ground truth objects. We used the IoU metric to evaluate the predicted bounding boxes

for root/stele by comparison with the corresponding ground truth bounding boxes. We used

the mAP metric to measure the ability of the models to accurately detect LMX objects.

The variation of performance with the number of training images is shown in Figure 2.6 for

root/stele (Left plot) and LMX (Right plot).

For models trained on the 50× magnification images, the performance increases with the

number of training images. Furthermore, the left plot in the figure shows that the IoU values

for both root and stele objects are around 0.95, when all the training images are used, and

that the root bounding boxes are slightly better than the stele bounding boxes. Similarly,

the LMX objects are detected with high accuracy, as shown in the right plot of Figure 2.6,

where the mAP values are close to 0.9 consistently for models trained with smaller or larger
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Figure 2.6: Variation of the Faster R-CNN performance with the number of training images
for root/stele detection model (Left plot), and for the LMX detection model (Right plot), re-
spectively. We used 50× magnification images to detect root and stele objects, and both 50×
and 100× magnification images to detect LMX. The performance of the root/stele detection
model was measured using the IoU metric (which shows how accurately the predicted bound-
ing boxes match the ground truth), while the performance of the LMX detection model was
measured using the mAP metric (which shows how accurately LMX objects were detected).
The plots show average values over 5 splits together with standard deviation.

number of 100× magnification images. Similar performance is obtained with the models

trained from all 50× magnification images. The plots for both root/stele and LMX also

show that generally the variance decreases with the size of the data. The slow decrease in

performance that is observed sometimes between two training set sizes can be explained by

the addition of some inconsistently labeled images present in the original dataset. Examples

of inconsistently labeled images as shown in Figure 2.7. Overall, these results support our

hypothesis that only a small number of labeled images is needed to learn accurate models

for the problem at hand.

2.6.2 Evaluation of Faster R-CNN performance using RMSE/rRMSE

The Faster R-CNN models trained on root images were used to detect root/stele/LMX ob-

jects in the test data. Subsequently, the detected objects were further used to calculate RD,

SD, LMXD and LMXN. To evaluate the models in terms of their ability to produce accurate

root/stele/LMX diameter and LMX number, we have used the RMSE error computed by
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(a) LMXN=4 (b) LMXN=3

(c) LMXN=4 (d) LMXN=3

(e) LMXN=12 (f) LMXN=11

Figure 2.7: Examples of inconsistent human annotations that are included in our ground
truth dataset. Specifically, image (a) was manually labeled as having LMXN=4 (the smaller
LMX was included in the count), while image (b) was labeled as having LMXN=3 (the smaller
LMX was not included in the count although it has size comparable with the smaller LMX
counted in (a)). Our models consistently identified 4 LMX objects in both (a) and (b) images.
Similarly, image (c) was incorrectly labeled manually as having LMXN=4, while the similar
image in (d) was properly labeled as having LMXN=3. Our models correctly identified 3
LMX objects in both (c) and (d) images. Finally, images (e) and (f) show a larger number
of LMX which have variable size, but it is not very clear which LMX were counted by the
human annotator and which were not counted to get the 12 and 11 counts, respectively. Our
models identified 7 LMX objects in image (e) and 10 LMX objects in image (f).
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comparing the measurement/count estimates obtained from the predicted bounding boxes

with the ground truth measurements/counts. The RD and SD measurements were evaluated

based on models trained/tested with the 50×magnification images, while LMXD and LMXN

were evaluated based on models trained/tested with 50× and 100× magnification images,

respectively. Intuitively, the LMXD/LMXN results obtained with the models trained on the

100× magnification images should be more accurate, as those images have higher resolution.

The RMSE/rRMSE results of the experiments corresponding to the five splits, together with

the average over the five splits, are shown in Table 2.3. In addition, Table 2.3 shows the ex-

pected human error estimated by performing an additional manual annotation using ImageJ

(similar to how the original ground truth annotation was done), and comparing the second

manual annotation against the first manual annotation.

Table 2.3: Faster R-CNN Results: RMSE (µm) and rRMSE (i.e., percentage error) results
for root diameter (RD), stele diameter (SD), late metaxylem diameter (LMXD) and late
metaxylem number (LMXN) for 5 splits, together with the average over the 5 splits, and
also the estimates for the human error. The number of 50× magnification images used in
these experiments is 388, while the number of 100× magnification images is 339. For each
measurement, the magnification of the images used to train the model that produced that
measurement (i.e., 50× or 100×) is also shown.

Split
RD(50×) SD(50×) LMXD(50×) LMXD(100×) LMXN(50×) LMXN (100×)

RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE

Split 1 62.77 6.78 21.93 9.16 3.67 9.50 2.45 6.54 0.81 22.34 1.37 24.55
Split 2 32.18 3.94 17.54 8.32 3.77 10.53 3.13 8.18 0.71 16.55 0.45 9.17
Split 3 61.19 6.90 21.96 9.16 3.53 9.07 3.22 7.87 0.91 17.35 0.83 15.53
Split 4 33.12 3.74 20.01 9.18 3.58 11.70 3.56 10.34 1.90 30.98 0.63 11.33
Split 5 43.67 3.26 20.94 10.26 2.43 7.51 1.61 4.61 0.74 16.39 0.25 5.02

Average 46.59 4.92 20.39 9.21 3.40 9.66 2.79 7.51 1.02 20.72 0.71 13.12
Human 48.14 5.46 25.17 11.29 3.39 9.13 3.39 9.13 0.21 3.89 0.21 3.89
error

As can be seen from Table 2.3, the average RMSE error for RD over the 5 splits is

46.59µm, while the average rRMSE is 4.92%. Given that root diameter for the images in our

dataset varies between 354µm and 1352µm (see Table 2.1), and that the RMSE estimate

for human error for RD is 48.14µm (with the corresponding rRMSE being 5.46%), these

results suggest that the Faster R-CNN models trained on rice images can accurately learn
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to predict RD. Similarly, the average RMSE error for SD over the five splits is 20.39µm

and the corresponding rRMSE is 9.21%, while the stele diameter varies between 115µm and

419µm. As for RD, the RMSE/rRMSE errors for the SD predictions are smaller than the

estimates for human error, which are 25.17µm and 11.29%, respectively. As opposed to

root and stele, the LMXD is significantly smaller, varying between 15µm and 65µm. In

this case, the average RMSE error is 3.40µm and 2.79µm for models trained using 50× and

100× magnification images, respectively. The rRMSE for the model trained on the 50×

magnification images is 9.66%, and decreases to 7.51% for the model trained on the 100×

magnification images. Compared with the SD estimates for human error (which are based on

the 100× magnification images, when available, or the 50× magnification images, otherwise),

the results of the models trained on the 50× magnification images are slightly worse (rRMSE

is 9.66% versus 9.13%), while the results of the models trained on the 100× magnification

images are slightly better (7.51% versus 9.13%).

In terms of LMXN, the ground truth numbers vary between 1 and 12, with an average

of 5 LMX objects per image. The average RMSE error for LMXN is 1.02 for models trained

on 50× magnification images and 0.71 for models trained on 100× magnification images.

Correspondingly, the rRMSE is 20.70% for models trained on 50× magnification images,

and down to 13.12% for models trained on 100× magnification images. While the Faster

R-CNN models trained with the 100× magnification images reduce the rRMSE error by

approximately 7.5%, their average error is still higher than the estimate for human error by

approximately 10%, showing that these models could be further improved with more training

data.

We performed error analysis to gain insights into the usefulness of these results in practice.

Specifically, we analyzed images where our models made mistakes in terms of LMXN, and ob-

served that some of those images were annotated in an inconsistent way by the human anno-

tators, as can be seen in Figure 2.7, where some smaller LMX objects are sometimes counted

and other times not counted. This observation is not surprising, as human annotators are
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prone to mistakes and inconsistencies. As opposed to that, the automated Faster R-CNN

models produce more consistent results (i.e., consistently count or not count a smaller LMX).

More training images are necessary to learn well in the presence of noise/inconsistencies.

Nevertheless, our results suggest that the Faster R-CNN approach to root anatomy has the

potential to replace the labor-intensive manual annotations of root cross-section images.

2.6.3 Comparison of Faster R-CNN with Mask R-CNN

While the results obtained using Faster R-CNN models suggest that these models can be

used to replace labor-intensive manual annotations, intuitively, Mask R-CNN models can

potentially improve the results further, as they perform precise instance segmentation at

pixel level. To verify this intuition, we used 50x magnification images to train Mask R-

CNN models for root, stele and LMX, respectively, and further used the models to identify

object masks in the corresponding test images. We used the results of the LMX Mask R-

CNN models to count the number of LMX in an image. The masks were used to estimate

the area of each object. Finally, assuming round objects, the area was used to estimate

the diameter of root, stele and LMX, respectively. We evaluated the performance on each

split using the RMSE/rRMSE metrics, and compared the average RMSE/rRMSE values

obtained with Mask R-CNN models over five splits, against the average RMSE/rRMSE

values obtained with Faster R-CNN. Table 2.4 shows the average RMSE/rRMSE results of

the Mask R-CNN and Faster R-CNN models. In addition, Table 2.4 shows the expected

human error (estimated as before). The Mask R-CNN network produces better results for

RD. Specifically, the rRMSE value obtained with the Mask R-CNN network is 4.14%, while

the rRMSE value obtained with the Faster R-CNN value is 4.92% (and the human error is

5.46%). However, for the other measurements, SD, LMXD and LMXN, the results of the

Faster R-CNN network are better. For example, the rRMSE value produced by Faster R-

CNN for SD is 9.21% and the corresponding value with Mask R-CNN is 10.34%. While this

result is counter-intuitive, there are several possible explanations for the observed behavior.
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First, we used the VIA tool (Dutta et al., 2017) to annotate objects of interest as polygons.

The polygon annotation is more labor-intensive than the bounding box annotation and also

more prone to inconsistencies in annotation, especially for the smaller objects, as it is hard to

mark the smaller objects very precisely as polygons. Second, to estimate the diameter from

the area, we assume that all objects are round, although this not always the case. Finally,

the Mask R-CNN network is an extension of the Faster R-CNN network, and thus has more

parameters that need to be estimated. A larger training set may be needed to improve the

results, and potentially some hyper-parameter tuning.

Table 2.4: Mask R-CNN versus Faster R-CNN Results: average RMSE (µm) and rRMSE
(i.e., percentage error) results for root diameter (RD), stele diameter (SD), late metaxylem
diameter (LMXD) and late metaxylem number (LMXN) over 5 splits. In addition, the
estimates for the human error are also included. The results are obtained using the 388 50×
magnification images.

Approach
RD(50×) SD(50×) LMXD(50×) LMXN(50×)

RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE

Mask R-CNN 36.74 4.14 23.02 10.34 8.35 22.56 1.50 27.64
Faster R-CNN 46.59 4.92 20.39 9.21 3.40 9.66 1.02 20.72
Human error 48.14 5.46 25.17 11.29 3.39 9.13 0.21 3.89

2.6.4 Faster R-CNN robustness to image variations

We further studied the ability of the Faster R-CNN models to “adapt” to other types of

root cross-section images. To do this we identified 14 images that have been used to demon-

strate RootAnalyzer and 10 images that have been used to demonstrate PHIV-RootCell.

In addition, we also searched the Web for root cross-section images, and identified 15 more

images from rice, 9 images from maize, and 9 images labeled as monocot root cross-section

images. Together, our dataset of external images consists of 57 heterogeneous images, which

came from different species, were taken with different imaging technologies under different

conditions, had different sizes and resolutions, different backgrounds, different luminosity,

etc. We randomly split each category of images into training/validation and test subsets.

Specifically, 42 images were used for training/validation and 15 images were used for test.

34



We initially used the Split 1 models (trained on 50× magnification images) to identify RD,

SD, LMXD and LMXN traits for the external test images. Subsequently, we fine-tuned the

Split 1 models with the external training images, and used the fine-tuned models to identify

the RD, SD, LMXD and LMXN traits for the external test images. The results of these

experiments are shown in Table 2.5.

Table 2.5: Faster R-CNN model robustness to image variations. The training and test
internal images correspond to the training and test subsets of Split 1. The external images
are collected from the Web. We used RMSE(µm)/rRMSE(%) to compare models trained on
internal images with models trained on internal and external images in terms of their ability
to detect RD/SD/LMX objects (and derived their diameter) in a variety of images.

Experiment
RD (50x) SD (50x) LMXD (100x) LMXN (100x)

RMSE rRMSE RMSE rRMSE RMSE rRMSE RMSE rRMSE
Train on internal images
Test on external images

480.99 57.14 301.46 100.28 45.02 91.04 3.78 53.96

Train on internal/external images
Test on external images

24.85 2.95 13.67 4.55 3.85 7.79 0.58 8.25

Train on internal images
Test on internal images

62.77 6.78 21.93 9.14 3.67 9.50 0.81 22.34

Train on internal/external images
Test on internal images

59.79 6.46 20.18 8.41 2.84 7.56 0.96 17.46

As can be seen in the table, out-of-the-box, the Faster R-CNN models trained on our

original rice images were not very accurate on the external images. In fact, the original

models could not even detect the root in 4 out of 15 images, and could not detect the stele

in 7 out of 15 images, due to the differences between the external images and our internal

images used for training (if an object was not detected, a 0 diameter was assigned to it).

However, the fine-tuned models significantly improved the results of the original models, with

rRMSE dropping from 57.14% to 2.95% for RD, from 100.28% to 4.55% for SD, from 91.04%

to 7.79% for LMXD, and from 53.96% to 8.25% for LMXN. We emphasize that the high

errors of the original models are generally due to the models not being able to detect some

objects at all (although the error for the objects detected was relatively small). These results

show that the Faster R-CNN models fine-tuned with a small number of images (specifically,

42) can learn to predict the new types of images accurately.

To ensure that the performance of the fine-tuned models was not worse than the perfor-

mance of the original models on our internal images, we also tested the fine-tuned models
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on the test fold corresponding to Split 1 (which was used for training). We recorded both

the results of the original models and the results of the fine-tuned models in Table 2.5 (the

last two rows, respectively). As can be seen, the results on our internal images improved

slightly when using the fine-tuned models, as those models are more robust to variations.

Specifically, rRMSE dropped from 6.78% to 6.46% for RD, from 9.14% to 8.41% for SD, from

9.50% to 7.56% for LMXD, and from 22.34% to 17.46% for LMXN. It is also interesting to

note that the results of the models on the external images are better than the overall results

on the internal images. One possible reason for this may be that the images found online

are generally clearer images, used to illustrate root anatomy, despite the fact that they are

different from our internal images.

2.7 Discussion

Given the experimental results presented in the previous section, we now discuss advantages

and disadvantages of the Faster R-CNN approach by comparison with the existing approaches

for root anatomy. We also discuss the potential of the Faster R-CNN network as a tool for

practical annotation of cross-section root images.

2.7.1 Advantages and disadvantages of the Faster R-CNN ap-

proach

While a direct comparison between the Faster R-CNN model (trained on rice root cross-

section images) and existing approaches (e.g., RootScan and RootAnalyzer) is not possible,

given that each approach is trained on different species, in this section, we first outline sev-

eral advantages of the Faster R-CNN model by comparison with existing models (similar

advantages can be also observed for Mask R-CNN), and then emphasize several disadvan-

tages.

Regarding the advantages, the following points can be made:
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(1) For an existing tool, it is hard to find parameters that are universally good for a set of

images. For example, for a given set of parameters, the segmentation result from the

RootAnalyzer in Figure 2.8 shows that the parameters are appropriate for the left rice

image (a) where the LMX are reasonably well identified, but not appropriate for the

right rice image (b) where no LMX is identified. As opposed to that, our experiments

have shown that the performance of the Faster R-CNN model does not vary much

with hyper-parameters. Once a model is properly trained, it performs accurately on a

variety of images.

(a) (b)

Figure 2.8: RootAnalyzer Annotations: With the same set of parameters, in the left image
the stele border (orange), endodermis (green) and late-metaxylem (purple) are detected rea-
sonably well, while in the right image, only half of the stele border is detected. Given that
the tool fails to properly detect the stele border, it also fails to detect the late metaxylem.

(2) Plant samples used for imaging are grown in different conditions, for example in hy-

droponic (water based nutrient supply) or in soil, and root cross-section images are

collected using different techniques (e.g., hand sectioning or sectioning using tools like

vibratomes). Plant growing conditions or image acquisition differences lead to differ-

ences in image’s color, contrast and brightness. As opposed to other tools, the Faster

R-CNN model is not very sensitive to the light conditions or to the structure of the

root cross-section images (including the epidermis thickness, epidermis transparency,

and distorted cross-sections), assuming the models are trained with a variety of root
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cross-section images.

(3) Each existing tool is designed based on certain pre-determined image characteristics,

and may not work on images that do not exhibit those characteristics. For example,

RootAnalyzer assumes a clear cell boundary and does not work for images that contain

a solid boundary where the cells are not clearly identifiable. The Faster R-CNN models

simply reflect the broad characteristics of the images that they are trained on, instead of

being built based on pre-determined characteristics. No specific background knowledge

is provided, except for what is inferred automatically from training images.

(4) Each tool is designed for a particular species, and incorporates background knowledge

for that particular species. As different species may have different root anatomy, a

tool designed for a species may not work for other species. For example, RootAnalyzer

is designed to automatically analyze maize and wheat root cross-section images, and

“may work” for other species (Chopin et al., 2015). However, the Faster R-CNN model

can be easily adapted to other species, assuming some annotated training images from

those species are provided. No other background knowledge is required. Along the

same lines, the Faster R-CNN model can be easily adapted to images with different

resolutions, assuming those images include the features of interest.

While the Faster R-CNN model presents several advantages as compared to existing ap-

proaches that incorporate background knowledge, it also has some disadvantages, as outlined

below:

• We found that smaller LMX objects are not detected by the Faster R-CNN models,

most probably due to inconsistencies in the training data, as illustrated in Figure 2.7.

To better handle noise and improve the performance, more training data might be

needed. Alternatively, more consistent ground truth should be provided.

• While the bounding boxes which mark detected objects can produce accurate results,

they are not always perfectly enclosing the detected object, as it can be seen in Figure
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2.4. Thus, the diameter measurements can be sometimes slightly biased, and could

potentially be improved. Unfortunately, we found that the Mask R-CNN models,

which can more precisely mask objects of interest, do not always provide better results

possibly due to the fact that polygon annotations are time consuming, imperfect and

potentially inconsistent.

• The Faster R-CNN models can only detect objects that can be marked with a bounding

box. For other types of objects (e.g., aerenchyma), Mask R-CNN models are more

appropriate.

2.7.2 Faster R-CNN approach as a tool for root anatomy

The Faster R-CNN model trained on our images can be used as a tool from a terminal or

through a web-based application, which is also mobile friendly. The web-based application

is publicly available Wang (2019b). This site is linked to a GitHub repository that contains

the source code, the pre-trained Faster R-CNN models and the ground truth data. The

web-based application is user-friendly and does not require any programming skills. It can

be run with one of our sample images displayed on the site, or with an image uploaded by

the user.

2.7.3 Time requirements

In terms of time/image requirements, our experiments have shown that accurate Faster

R-CNN models can be trained from scratch with 150 to 250 images. The average time

for labeling an image with LabelImg is approximately 2 minutes. The average time for

training a model on an EC2 p2-xlarge instance available from Amazon Web Services (AWS)

is approximately 10 hours, and does not require any human intervention during that time.

Once the model is trained, the average time to annotate a new image is less than one second

(using an EC2 p2-xlarge instance). If using our webserver (hosted on a local machine), the
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running time for annotating a new image is approximately 9 seconds, as this includes the time

to setup the virtual environment, the time to retrieve the input image from the server, the

time to perform the annotation, and the time to download the image to the user’s browser.

Given these time requirements, assuming that a relatively large number of images need to

be annotated for genetically diverse mapping populations (on the order of thousands), the

human time can be potentially reduced from days or weeks (the time would take to manually

annotate all images) to hours (the time may take to manually label images for training) or

minutes (the time for automatically annotating images with our tool).

Furthermore, the human time for labeling images for training could be dramatically

reduced to less than an hour, if one is fine-tuning the Faster R-CNN model trained on our

images as opposed to training a model from scratch.

2.8 Conclusions

In this paper, we trained Faster R-CNN models on rice root cross-section images and used the

trained model to perform root anatomy. The Faster R-CNN approach to root anatomy is fully

automated and does not need any background knowledge, except for the implicit knowledge

in images that the model is trained on. More specifically, we trained Faster R-CNN models to

detect root, stele and LMX objects, and to predict bounding boxes for each detected object.

Subsequently, the bounding boxes were used to obtain anatomical properties, specifically,

root diameter, stele diameter, LMX diameter and LMX number. The Faster R-CNN models

used had VGG-16 as a backbone, to take advantage of the extensive training of the VGG-16

network, and were fine-tuned on root cross-section images.

As part of future work, we plan to thoroughly study domain adaptation approaches

that allow the transfer of knowledge from the trained rice Faster R-CNN models to models

for other plant species (or for other traits), without labeling a large number of images

from the other species of interest. We also aim to improve the Mask R-CNN models by
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preparing more consistent ground truth annotations, larger training datasets and performing

hyper-parameter tuning to understand the variation of the performance with the model

hyper-parameters. Finally, we have focused mostly on performance in this research, as the

bottleneck in the root anatomy pipeline lies in the image acquisition step, rather than the

network training/inference steps. However, it is of interest to explore efficient approaches,

such as MobileNet (Howard et al., 2017) and its variants, and NasNet (Zoph et al., 2018),

and compare them with Faster R-CNN/Mask R-CNN models, both in terms of efficiency

and performance.

The image datasets used in this study is available on GitHub Wang (2019a).
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Chapter 3

Classical phenotyping and deep

learning concur on genetic control of

stomatal density and area in sorghum

Abstract: Stomatal density (SD) and stomatal complex area (SCA) are important traits

that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum

bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains

unexplored due to challenges in available phenotyping methods. Identifying loci that control

stomatal traits is fundamental to designing strategies to breed sorghum with optimized stom-

atal regulation. We implemented both classical and deep learning methods to characterize

genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field

environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf sur-

faces revealed substantial variation in stomatal traits. Our study demonstrated significant

accuracy between manual and deep learning methods in predicting SD and SCA.
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3.1 Introduction

Stomatal characteristics, including SD and SCA have been studied using manual low through-

put methods in crops exposed to different environments (Gitz and Baker, 2009). However,

the genetic architecture controlling stomatal traits and their responses to different envi-

ronments is not known in sorghum. In addition, the diversity in stomatal traits is largely

unexplored or utilized in breeding programs due to a cumbersome phenotyping protocol,

which requires substantial investment of resources. For example, manual phenotyping of

stomatal count involves obtaining stomatal imprints, imaging of the specimen, and manual

counting of stomatal numbers, with the latter requiring most time and effort (Fetter et al.,

2019; Sakoda et al., 2019). Sorghum is generally grown in arid and semi-arid regions, and

hence its productivity depends on timing and amount of rainfall. This poses a crucial chal-

lenge to sorghum grown in USA, Sub-Saharan Africa, India, and other regions in the world

(Leff et al., 2004). Despite their adaptation to arid conditions, sorghum hybrids are shown to

be susceptible to harsh environments during different stages of the crop growth (Tack et al.,

2017). Given that C4 crops including sorghum have evolved and adapted to hot and arid

conditions (Osborne and Freckleton, 2009), they provide an excellent opportunity to inves-

tigate natural variability in SD and area under field conditions. To date, there has not been

an attempt to map the genetic loci associated with stomatal traits using the grain sorghum

association panel (SAP). Thus, we hypothesized that integration of physiology, deep learn-

ing, and genomic approaches would help us understand the genetic architecture of stomatal

traits in grain sorghum.

In this study, we characterized the genetic variation for stomatal traits using SAP in

two environments in Kansas, USA. Additionally, we integrated the high-throughput deep

learning tools and classical phenotyping methods to map genomic regions associated with

stomatal number and area. Specific objectives were to (1) develop, test, and validate a fully

automated deep learning tool for high-throughput phenotyping of Ab and Ad SD and SCA

on a diversity panel; (2) comparative assessment of the stomatal traits obtained with deep
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learning (predicted) and manual methods;

The ultimate goal of this study was to characterized the genetic variation for stomatal

traits using SAP in two environments in Kansas, USA. Towards this goal, we integrated

the high-throughput deep learning tools and classical phenotyping methods to map genomic

regions associated with stomatal number and area. Specific objectives were to (1) develop,

test, and validate a fully automated deep learning tool for high-throughput phenotyping of

Ab and Ad SD and SCA on a diversity panel; (2) comparative assessment of the stomatal

traits obtained with deep learning (predicted) and manual methods.

3.2 Related work

In the current genomic era, phenotyping of traits has been identified as a substantial bot-

tleneck compared to generating large genome sequence datasets (Hudson, 2008). Recently,

several computer vision-based automated phenotyping tools have been developed to over-

come this challenge by automated detection of stomata, including Cascade object detec-

tion algorithm (Duarte et al., 2017; Higaki et al., 2014; Jayakody et al., 2017; Laga et al.,

2014), AlexNet-based deep convolutional neural network (Fetter et al., 2019) and You Only

Look Once (Casado and Heras, 2018). Several approaches and tools for quantifying stom-

atal variations based on images have been proposed (Dittberner et al., 2018; Sakoda et al.,

2019). However, previous methods have followed the object detection approach instead of

the more precise semantic object segmentation. To address this limitation, we trained the

Mask Region-based Convolutional Neural Network (Mask R-CNN) algorithm to automati-

cally predict labels for future images, to segment the stomata in an image to identify and

count stomata, and to determine the SCA.

44



3.3 Methodology

3.3.1 Mask R-CNN model

We used a fully automated deep learning method, called Mask R-CNN, to perform stomata

instance segmentation for each input image, i.e. to identify the pixels corresponding to

stomata in an image. Mask R-CNN (Figure 3.1 C) is an extension of the Faster R-CNN

approach (Ren et al., 2015). Similar to the Faster R-CNN network, Mask R-CNN can be

trained to detect objects of interest (e.g., stomata) in an image and to localize the objects

detected using bounding boxes. In addition, Mask R-CNN generates a precise segmentation

mask for each object instance. The Faster R-CNN network has two main components,

which share a backbone feature extractor CNN, such as ResNet (He et al., 2016). The first

component, called a Region Proposal Network (RPN), uses the last feature map produced by

the backbone CNN to identify regions of interest (RoI), i.e. fragments of the image (called

anchors) that may contain target objects and initial approximate bounding boxes for those

objects. The second component consists of fully connected layers that classify RoI proposed

by the RPN network into specific categories (an object classification task) and refine the

corresponding bounding box coordinates (a bounding box regression task). Mask R-CNN

extends the Faster R-CNN network by including additional convolutional layers trained to

predict instance masks for RoI (an instance segmentation task), in parallel with the object

classification and bounding box regression tasks. Furthermore, Mask R-CNN uses a Feature

Pyramid Network (Lin et al., 2017) together with ResNet as the architectural backbone to

enable the identification of objects at different scales. It also replaces the RoI Pool layer

in Faster R-CNN, which extracts a fixed-length feature vector from a feature map, with a

RoI Align layer, which performs pixel-to-pixel alignment between network input and output,

to enable the generation of precise instance masks. We used the implementation of Mask

R-CNN, available at https://github.com/matterport/Mask RCNN, with ResNet101 as the

backbone network (together with FPN). We changed the original Mask RCNN architecture
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Figure 3.1: Schematic overview of the study. A, Phenotyping of the SAP for SD and
SCA in two environments (Env. 1—Manhattan and Env. 2—Hays) for two years (Exp. 1
in 2017 and Exp. 2 in 2018). B, Mask R-CNN models trained for predicting Ab and Ad
stomatal number and complex area. Train and validate (val) images indicate the number of
images used for training and validating the Mask R-CNN model trained. C, Mask R-CNN, a
deep learning framework for stomata instance segmentation and stomata count. The network
architecture contains convolutional layers (left) and fully connected layers (right), shown as
rectangular cuboids in the figure. The size of each cuboid indicates the dimensionality of the
corresponding layer. The connections between layers are represented through arrows.

to customize it to our categories (stomata and background) used for the object classification

and instance segmentation tasks.

3.3.2 Phenotypic data analyses

All the phenotypic traits collected were analyzed using analysis of variance (ANOVA) to test

the effect of genotype (G), environment (E), and their interaction using GenStat (18th Edi-

tion, http://www.vsni.co.uk). The PCA was performed in XLSTAT. The chart.Correlation

() function within the R package “Performance Analytics” was used to generate the correla-

tion scatter plot. The H2 of all the measured traits was estimated considering the proportion

of phenotypic variance that is due to the genetic variance.
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3.3.3 Data collection

The SAP consisting of 311 accessions was assembled from 25 countries representing major

sorghum growing regions of the world (Casa et al., 2008; Morris et al., 2013). The SAP

consisted of five grain sorghum races, (namely caudatum, bicolor, guinea, durra, and kafir),

intermediate races, converted lines, and elite accessions of historical and geographic impor-

tance (Harlan and Wet, 1972). In experiment 1 (Exp. 1 in 2017), the SAP was grown in

two different environments (Env. 1: Kansas State University, North Farm, Manhattan and

Env. 2: Agricultural Research Centre at Hays, Kansas) in a randomized block design with

two replications per accession per environment. All 311 accessions were planted in a single

row plot of 6.1-m long, with 0.7-m spacing between rows. Approximately 50 seeds were

sown per row for each accession. Three representative plants in the middle of the row, for

each accession, were tagged for studying the natural variation in SD, SCA and SinLA. All

measurements were recorded 62 d after planting in both environments (Env. 1 and 2). In

experiment 2 (Exp. 2 in 2018), to reconfirm the expression of the trait, candidate acces-

sions carrying the contrasting allelic haplotypes for Ab SD with similar SCA were planted

in the same environments (Env. 1 and Env. 2) in 2018. Sixty-eight days after planting, we

measured gs, the effective quantum yield (QY) of PS II, including the SD, SCA, and SinLA.

The crop management and protocol for obtaining stomatal imprints and other data were the

same across both experiments as detailed below. A schematic overview of the experiments

in the study are visualized in Figure 3.1 A. Specifically, the figure shows information about

phenotyping of SAP for SD and SCA in two environments (Env. 1 - Manhattan and Env.

2 - Hays) for two years (Exp. 1 in 2017 and Exp. 2 in 2018). More details about the

experiments are found in (Bheemanahalli et al., 2021).
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3.4 Stomatal density

To capture the natural variation in stomatal number and SCA, the Ab and Ad leaf surfaces

were carefully smeared with a thin layer of transparent nail polish in the mid-por- tion of

the fully opened leaf. Care was taken to identify the second leaf from the top that was

fully open and completely developed, from which the imprints were obtained. After 3–5

min, thin imprints (≈ 25 × 17 mm2) were peeled off from both the leaf surfaces using tape

(Scotch Transparent Clear Tape), and mounted on glass slides (≈ 75×25 mm2) following the

procedure of Rowland-Bamford et al (Rowland-Bamford et al., 1990). Three random field

of view images per slide were captured at magnification using the compound microscope

(Olympus BX51 with DP 70 camera). From each image, the number of stomata was counted

and divided by 0.24mm2 (area of each field) to estimate SD. In brief, number of stomata (N)

was manually counted per field of view (S = πr2, r = view radius) and SD was estimated

as N/S (N = number of stomata mm−2), as described in another study (Drake et al., 2013).

A total of 11,196 images (311 accessions × 3 plants × 2 environments × 2 leaf surfaces × 3

images per slide) were used to record stomatal traits. Three leaves that we used for taking

stomata imprints were harvested separately to determine the SinLA, using a leaf area meter

(LI-3000; LI-COR, Lincoln, Nebraska, USA). Later, stomatal number per leaf was estimated

to normalize the density on a whole leaf area basis, using the Ad and Ab SD per mm2.

3.5 Experimental setup

The pretrained Mask R-CNN network was fine-tuned on datasets of increasingly larger

sizes (specifically, 20, 50, 100, 200, and 300 images) and validated on a separate dataset

consisting of 300 images. Using the training and validation loss curves, we selected the

model trained on 300 images (280 images from Exp. 1 and 20 images from Exp. 2)

to perform the stomata instance segmentation on the remaining images (i.e. images not

included in the training and validation subsets), and subsequently produced the predic-
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tions (i.e. deep learning dataset) used in this study. All images used for training and

validation had stomata labeled using the VGG Image Annotator (1.0.6) tool, available at

http://www.robots.ox.ac.uk/∼vgg/software/via/. The number of stomata in an image was

obtained from the segmentation result and used to calculate SD, which was compared to the

density obtained based on manual counting. Subsequently, the instance masks were used to

calculate SCA, and the results were validated based on 50 images where stomatal area was

manually measured using ImageJ (https://imagej.nih.gov/ij/). Finally, SCA was calculated

for all images from Exp. 1 and Exp. 2 using the predicted stomata masks. The experimental

design is summarized in Figure 3.1 B. Evaluation is performed in terms of root mean square

error (RMSE) and correlation coefficient of model predictions by comparison with the man-

ual annotated data. Evaluation is performed on the whole dataset, with the exception of

training and validation subsets.

3.6 Results

To extract SD and SCA, in addition to manual counting of stomata on 11,196 images, we

used the deep learning tool that we developed, specifically, the Mask R-CNN model (He

et al., 2017), to extract SD and SCA automatically. The Mask R-CNN model was developed

by experimenting with datasets of different sizes and identifies, classifies, and counts the

number of stomata and measures SCA of all stomata in an image. Figure 3.2 shows the a

comparison of the models trains with different dataset sizes and illustrate the process used

to select the final model (A & B). Specifically, Figure 3.2 A shows the training loss graph

obtained as described in what follows. Models were trained on our images by fine-tuning a

Mask R-CNN model (with ResNet101 as the backbone network) pre-trained on the COCO

dataset, using a learning rate of 0.001, and weight decay of 0.0001. We selected 20, 50, 100,

200, and 300 images, respectively, from the combined data of Env. 1 (2017 dataset) and

Env. 2 (2018 dataset) as training data. We also selected 300 images from Env. 1 and Env.
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2 as validation data. We trained models on 20, 50, 100, 200 and 300 images, respectively,

to identify the number of images needed to produce accurate models. The x-axis shows the

number of epochs a model is trained, while the y-axis shows the loss at each epoch. Given

that we are interested in identifying accurate masks for stomata, the mask loss of the network

on the training data is plotted. The graph shows that the mask training loss decreases when

the number of the epochs increases. The graph also shows that the loss is smaller when

the number of images used for training is smaller, suggesting that the models learned from

smaller numbers of images may overfit the training data.

Figure 3.2 B shows the validation loss graph. Specifically, the graph shows the mask

validation loss corresponding to the models trained with 20, 50, 100, 200, and 300 images,

respectively. All models were validated with the same validation data consisting of 300 im-

ages. The graph shows that the validation loss decreases with an increase in the number of

images used to train the models, and increases when the number of images used is small. In

particular, for the model trained with 20 images, the validation loss substantially increases

while the training loss decreases, suggesting overfitting. The validation loss for the model

trained on 300 images is slightly better than the one for the model trained on 200 images.

The graph also shows that for all models, the validation loss first decreases with the number

of epochs, and then slightly increases after approximately 300 epochs. Based on this observa-

tion, we fixed the number of epochs to 300 in the models that are used to estimate the RMSE

and correlation coefficient. Furthermore, the number of training and validation images used

in the final model was 300 and 300, respectively, given the observed lowest validation loss.

A strong correlation was observed between the human measured and predicted values

of the images in our dataset with r = 0.98 and Root Mean Square Error (RMSE) = 1.76

as shown in Figure 3.2 C and D, respectively. Specifically, Figure 3.2 C shows the RMSE

graph: The x-axis represents the number of epochs on which a model is trained, while the

y-axis shows the loss at each epoch. The RMSE is calculated based on the combined Env. 1

and Env. 2 dataset, from which we removed the 300 training and 300 300 validation images.

50



Figure 3.2: Comparison of models trained with different dataset sizes. (A) Comparison of
training loss curves of models trained with different dataset sizes, and (B) the corresponding
validation loss curves. (C) Graph showing the root mean square errors (RMSE) correspond-
ing to models trained with different dataset sizes (the RMSE is obtained by comparing the
manually annotated data with the predicted data on the whole dataset, excluding the train-
ing and validation data). (D) The correlation coefficient of models trained with different
dataset sizes (obtained by comparing manually annotated data with predicted data on the
whole dataset, excluding the training and validation data).
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Figure 3.3: ANOVA and variation in phenotypic traits using classical phenotyping and deep
learning methods in SAP in environments 1 and 2.

The graph shows that the models trained with 200 and 300 images have similar RMSE, and

they have substantially smaller error than the model trained with 20, 50 and 100 images.

Finally, Figure 3.2 D shows the correlation coefficient graph: The x-axis represents the

number of the training images used to train each model, while the y-axis shows the cor-

responding correlation coefficient for each model. The correlation coefficient is calculated

based on the combined Env. 1 and Env. 2 dataset, from which we removed the 300 training

and 300 validation images. The graph shows that the model trained with 300 images has

the best correlation coefficient, followed by the model trained with 200 images.

As can be seen from Figure 3.2 C & D, the model trained with 300 images and validated

with 300 additional images gave the lowest error and the highest correlation coefficient, and

was hence later considered to explore the genetic diversity in the SD and SCA (Figure 3.3).

A comparison between manual (observed; Figure 3.4, A and B) and automated (predic-

tion; Figure 3.4, C and D) stomata counts recorded a significant positive association between

methods for Ab (R2 = 0.96 and R2 = 0.96; Figure 3.4, E and G) and Ad SD (R2 = 0.97

and R2 = 0.96; Figure 3.4, F and H) in Env. 1 and Env. 2, respectively. The broad-sense

heritability (H2) values of the Ab (0.72) and Ad (0.72) SD were the same between methods
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Figure 3.4: Results of SD (per image) following manual and deep learning methods.
Comparison of ground-truth images (A and B) and deep learning segmentation results (C
and D, predicted stomata highlighted in colors). Relationship of the SD obtained from manual
count with predicted count obtained from the deep learning method (E and G-Ab; F and H-
Ad). SAP was characterized in two environments (Env. 1 and Env. 2). A total of 11,196
(in Exp. 1) and 828 (Exp. 2) images were used to manually count stomata and generate the
observational ground-truth SD data. The same sets of images were used to predict the SD
with the deep learning method, as illustrated in Figure 1. A-D, bars = 100 µm.

(Figure 3.3).

There was a strong relationship between the predicted and human measured SCA for

Ab (R2 = 0.91) and Ad (R2 = 0.90) leaf surfaces (Figure 3.5 A). Based on this strong

relationship between the manual and predicted values for Ab and Ad SCA, the predicted

data on the entire diversity panel were considered for further analysis (Figure 3.5).

3.7 Conclusions

Considerable evidence in field crops has shown the importance of stomatal characteristics

and their association with photosynthesis and productivity (Farquhar and Sharkey, 1982),

including rice (Bertolino et al., 2019; Buckley et al., 2020; Ohsumi et al., 2007), barley

(Hughes et al., 2017), wheat(Dunn et al., 2019), and sorghum(Muchow and Sinclair, 1989).

Previous studies have characterized the stomatal traits manually, either from a single en-
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Figure 3.5: Relationship of observed SCA (µm2) with the corresponding data ob-
tained using deep learning method (A). SCA was predicted using the deep learning
approach on the entire SAP grown in Env. 1 and Env. 2 in 2017. Panels “B and
C” show the distribution (Env. 1-blue line, dark gray bars; Env. 2-red line, light gray
bars; intermediate gray bars indicate the overlap between the environments) of Ab and
Ad stomata complex area, respectively. The vertical dotted lines on the histograms
show population mean values in Env. 1 (blue) and Env. 2 (red). Values represent
the positive percentage change in mean phenotypic value with respect to Env. 1 =
[(mean trait value of Env. 1 - mean trait value of Env. 2)/mean trait value of Env. 1] ×
100.

vironment or under controlled environments using limited genetic diversity, due to chal-

lenges associated with phenotyping. Phenotyping of diversity panels for stomatal traits

following the classical approach is cumbersome, with reproducibility of results from large-

scale studies posing a substantial bottleneck (Furbank and Tester, 2011; Hudson, 2008).

To bridge this knowledge gap, we characterized the genetic diversity in sorghum stomatal

traits from two different environments by developing and integrating deep learning-based

high-throughput phenotyping. We targeted the middle portion of the second fully devel-

oped leaf from the top, which is known to have the highest SD at the 14 leaves stage in

sorghum, to collect stomatal imprints (Liang et al., 1975). The integration of the automated

deep learning method (https://github. com/matterport/Mask RCNN) helped overcome the

time-consuming manual method of stomata counting and stomata complex area measure-

ment, both in terms of speed and accuracy. Following the classical manual phenotyping

approach, it took approximately 150 working days (≈ 3 min × 11, 196 images) to obtain

the SD, while it took ≈ 7 days to obtain both SD and SCA by adopting the deep learning
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method. A web server for detecting and counting stomata using our best model is available

at https://rootanatomy.cs.ksu.edu/html stomata/. Our work has the potential to contribute

to stomata-targeted breeding as it can help uncover the molecular mechanisms that control

stomatal regulation in sorghum to enhance adaptation under arid conditions with minimal

to no yield penalty.
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Chapter 4

Deep learning based high-throughput

phenotyping of chalkiness in rice

exposed to high night temperature

Background: Rice is a major staple food crop for more than half the world’s population.

As the global population is expected to reach 9.7 billion by 2050, increasing the production

of high-quality rice is needed to meet the soaring demand. However, global environmental

changes, especially increasingly high temperatures, can affect grain yield and quality. Heat

stress is one of the major causes of an increased proportion of chalkiness in rice, which

compromises quality and, in turn, reduces the market value. Researchers have identified 140

quantitative trait loci linked to chalkiness mapped across 12 chromosomes of the rice genome.

However, the available genetic information quantified by employing advances in genetics

has not been adequately exploited due to a lack of a reliable, rapid and high-throughput

phenotyping tool to capture chalkiness. To derive extensive benefit from the genetic progress

achieved, tools that facilitate high-throughput phenotyping of rice chalkiness are needed.

Results: We use a fully automated approach based on convolutional neural networks

(CNNs) augmented with Gradient-weighted Class Activation Mapping (Grad-CAM) to de-
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tect chalkiness in rice grain images. Specifically, we train a CNN model to distinguish

between chalky and non-chalky grains and subsequently use Grad-CAM to identify the area

of a grain that is indicative of the chalky class. The area identified by the Grad-CAM

approach takes the form of a smooth heatmap that can be used to quantify the degree of

chalkiness. Experimental results on both polished and unpolished rice grains using standard

instance classification and segmentation metrics have shown that the Grad-CAM approach

can accurately identify chalky grains and detect the chalkiness area.

Conclusions: We have successfully demonstrated the application of a Grad-CAM based

tool to accurately capture high night temperature induced chalkiness in rice. The models

trained will be made publicly available. They are easy-to-use, scalable and can be readily in-

corporated into ongoing rice breeding programs, without rice researchers requiring computer

science or machine learning expertise.

4.1 Background

Rice (Oryza sativa) is a staple food crop for nearly half the world population (Federation,

2020). In 2019, the world produced over 750 million tonnes of rice (N.A., a), which placed rice

as the third highest amongst cereals, only trailing wheat (Triticum Aestivum) (765 million

tonnes) and maize (Zea Mays) (1.1 billion tonnes). As the global population is expected to

reach 9.7 billion by 2050 (N.A., c), agricultural production must be doubled in order to meet

this demand (N.A., b). As of 2008, rice yields are increasing on average by 1% annually and,

at this rate, the production will only increase by 42% by 2050 which falls well short of the

desired target (Ray et al., 2013).

In addition to the required increase in production, climate variability threatens future

rice grain yields and quality attributes (Dabi and Khanna, 2018; Stuecker et al., 2018). Tem-

peratures above 33◦C during anthesis can cause significant spikelet sterility (Bheemanahalli

et al., 2016; Jagadish et al., 2007, 2008, 2010). It is predicted that approximately 16% of
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the global harvested area of rice will be exposed to at least five days of elevated temper-

ature during the reproductive period by 2030s (Gourdji et al., 2013). In addition to yield

losses, heat stress during the grain-filling period is shown to increase grain chalkiness in rice

(Lisle et al., 2000; Lyman et al., 2013; Shi et al., 2017). Disaggregating the mean increase

in global temperature has resulted in identifying a more rapid increase in the average mini-

mum night temperature than the average maximum day temperature (Wang et al., 2017a).

High night temperature stress during the grain-filling period can lead to severe yield and

quality penalties, primarily driven by increased night respiration (Bahuguna et al., 2017;

Impa et al., 2021; Sadok and Jagadish, 2020). An increased rate of night respiration during

grain-filling ultimately impairs grain yield and grain quality through reduction in 1000 grain

weight, grain width, reduced sink strength with lowered sucrose and starch synthase activity

resulting in reduced grain starch content, and an increase in rice chalkiness (Bahuguna et al.,

2017; Impa et al., 2021; Lanning et al., 2011; Shi et al., 2017).

Chalkiness is an undesirable trait and an increased proportion of chalk leads to linear

decrease in market value of rice (Lyman et al., 2013). In addition, high levels of chalk leads

to increased breakage during milling and degrades cooking properties, which can affect rice’s

palatability (Ashida et al., 2009; Fitzgerald et al., 2009; Lisle et al., 2000; Lyman et al., 2013).

Chalkiness in grains is the visual appearance of loosely packed starch granules (Ashida et al.,

2009; Shi et al., 2017). The poor packaging of starch granules leads to larger air pockets

within the grain. The air pockets prevent reflection, giving the grains an opaque appearance

(Tashiro and Wardlaw, 1991). Three different processes have been considered to explain the

cause of increased chalkiness under heat stress: 1) a reduced source potential or a shortened

grain-filling duration inhibits the plant’s ability to provide a sufficient amount of assimilates

to the seed, 2) reduced activity of starch metabolism enzymes, which are used to convert

sugars to starch, and 3) hormonal imbalance between ABA and ethylene as a high ABA-to-

ethylene ratio is vital during grain-filling (Jagadish et al., 2015). Physiologically, the level

of chalkiness is dependent on the source-sink relationships, with the primary tillers in rice
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having greater advantage of accessing the carbon pool compared to later formed tillers. We

tested the hypothesis that, under higher night temperatures, increased carbon loss due to

higher respiration would lead to different levels of grain chalkiness among the tillers with the

least chalkiness from primary panicles and the highest chalkiness in the later formed tillers.

Regardless of the cause or differential chalkiness among tillers, the ability to quickly and

accurately identify and quantify the chalkiness in rice is extremely important to help not

only to understand the cause of chalkiness, but also to breed for heat tolerant nutritional

rice varieties.

Traditional grain phenotyping has been performed by manual inspection (Komyshev

et al., 2017). As such, it is subjective, inefficient, tedious, and error-prone despite the fact

that it is performed by a highly skilled workforce (Elmasry et al., 2019). Over the past

decade, interest has grown in applying image-based phenotyping to provide quantitative

measurements of plant-environment interactions with a higher accuracy and lower labor-

cost than previously possible (Walter et al., 2015).

In particular, several automated approaches for rice grain chalkiness classification, seg-

mentation and/or quantification have been developed. For example, the K-means clustering

approach performs instance segmentation (i.e., identifies the pixels that belong to each in-

stance of an object of interest, in our case “chalkiness”) by grouping pixels based on their

values (Sethy et al., 2018). One advantage of the K-means clustering approach is that it

works in an unsupervised manner and does not require manually labeled ground truth (Alfred

and Lun, 2019). However, one disadvantage is that it involves extensive parameter tuning

to identify good clusters corresponding to objects of interest in an image. Furthermore, the

final clusters depend on the initial centroids and the algorithm needs to be run several times

with different initial centroids to achieve good results (N.A., d).

In addition to the K-means clustering approach, threshold based approaches have been

used for chalkiness identification and quantification. For example, a multi-threshold ap-

proach based on maximum entropy was used for chalky area calculation (Yao et al., 2009),
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and another threshold-based approach was used to detect broken, chalky and spotted rice

grains (Payman et al., 2018). However, such approaches need extensive fine-tuning to iden-

tity the right thresholds and are not easily transferable to seeds of different types or to

images taken under different conditions. Support vector machine (SVM) approaches have

been used to classify grains according to the location of the chalkiness (Sun et al., 2014), and

to estimate rice quality by detecting broken, chalky, damaged and spotted grains in red rice

based on infrared images (Chen et al., 2019). Similar to the threshold-based approaches, the

SVM classifiers are not easily transferable to images containing different types of seeds or

taken under different illumination conditions. Furthermore, they require informative image

features to be identified and provided as inputs to produce accurate results. Rice chalki-

ness has also been addressed using specially designed imaging instruments. For example,

Armstrong et al. used a single-kernel near-infrared (SKNIR) tube instrument and a silicon-

based light-emitting diode (SiLED) high-speed sorter to classify single rice grains based on

the percentage of chalkiness (Armstrong et al., 2019). Unfortunately, the single-kernel ap-

proach is limited in scope and cannot be used to develop a high-throughput phenotyping

method. More recently, volume based quantification technologies, such as X-ray microcom-

puted tomography, have been used to quantify rice chalkiness (Su and Xiao, 2020). However,

such technologies are extremely expensive and, thus, are beyond the reach of routine crop

improvement programs and for traders and millers who regularly estimate chalkiness and

establish a fair market price.

In recent years, the use of deep learning approaches for image classification and segmen-

tation crop science tasks, different from chalkiness classification and segmentation, have led

to state-of-the-art high-throughput tools that outperform the results from traditional ma-

chine learning and image analysis techniques (Jones et al., 2017; Tardieu et al., 2017), thus

enabling researchers to capture a wide range of genetic diversity (Singh et al., 2016). To

the best of our knowledge, deep learning approaches have not been used to detect chalkiness

despite the fact that they have been used to address other challenging problems in crop
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science. To fill the gap, we investigated modern deep learning techniques to create a tool

that facilitates high-throughput phenotyping of rice chalkiness to support genetic mapping

studies and enable

development of rice varieties with minimal chalkiness under current and future warming

scenarios. One possible solution to rapidly and accurately phenotype chalkiness is provided

by Mask R-CNN (He et al., 2017). Mask R-CNN is a widely used instance detection and

segmentation approach, which employs a convolutional neural network (CNN) as its back-

bone architecture. One limitation of the Mask R-CNN approach is that it requires pixel-level

ground truth with respect to the concept of interest, in our case, chalkiness. Acquiring pixel-

level ground truth is laborious and expensive (Xiao et al., 2019). Furthermore, the Mask

R-CNN segmentation approach labels the pixels of a rice grain as chalky or non-chalky, while

sometimes it maybe preferred to characterize the pixels based on the chalkiness intensity,

i.e., on a continuous scale as opposed to a binary scale.

To address the limitations of the Mask R-CNN approach, we framed the problem of

detecting chalkiness as a binary classification problem (i.e., a grain is chalky or non-chalky),

and used CNNs combined with class activation mapping, specifically Grad-CAM (Rs et al.,

2019), to identify the chalkiness area in an image. Grad-CAM works on top of a CNN model

for image classification. It makes use of the gradients of a target category to produce a

heatmap that identifies the discriminative regions for the target category (i.e., regions that

explain the CNN model prediction) and implicitly localizes the category in the input image.

By framing the problem as an image classification task, Grad-CAM can help reduce the

laborious pixel-level labeling task to a relatively simpler image labeling task, i.e., an image

is labeled as chalky or non-chalky. Furthermore, the heatmaps produced by Grad-CAM

have soft boundaries showing different degrees of chalkiness intensity. The values of the

pixels in a heatmap can be used to calculate a chalkiness intensity score corresponding to an

image. Similar approaches to segmentation have been used in other application domains (Li

et al., 2019; Schumacher et al., 2020; Vinogradova et al., 2020; Wang et al., 2017b; Yang et al.,
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2020), including in the agriculture domain for segmentation of remote sensing imagery (Wang

et al., 2020). Such approaches are generally called weakly supervised semantic segmentation

approaches, given that they only require image-level labels as opposed to pixel-level labels.

The Grad-CAM based approach to rice chalkiness detection has the potential to help rice

phenomics catch up with the developments in rice genomics (Yang et al., 2013) as well as

help implementing new advances in achieving the target of nutritious food production goals

by 2050 (of Public Information, 2009). To summarize, the contributions of this research are:

• We proposed to use a weakly supervised approach, Grad-CAM, to classify rice grains

as chalky or non-chalky and subsequently detect the chalkiness area in chalky grains.

• We experimented with the Grad-CAM approach (with a variety of CNN networks as

backbone) on polished rice seeds and evaluated the performance using both instance

classification and segmentation metrics as well as time and memory requirements.

• We compared the weakly supervised Grad-CAM approach with the Mask R-CNN seg-

mentation approach on polished seeds and studied its transferability to unpolished rice

seeds (i.e., to rice seeds that have not been polished after the removal of the husk).

• We tested the applicability of the tool in determining the level of chalkiness in rice

plants exposed to high night temperature (HNT) and quantified the differential level

of chalkiness among tillers within a plant exposed to HNT stress.

4.2 Methods and materials

4.2.1 Deep learning methods for rice chalkiness segmentation

We address the rice chalkiness segmentation problem using a weakly supervised Grad-CAM

approach, which requires binary (chalky or non-chalky) image-level labels as opposed to

more expensive pixel-level labels.
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Figure 4.1: Model Architecture. (a) A backbone CNN (e.g., ResNet-101) is trained to
classify (resized) input grain images as chalky or non-chalky. ResNet-101 has four main
groups of convolution layers, shown as Layer1, Layer2, Layer3, and Layer4, consisting of 3,
4, 23 and 3 bottleneck blocks, respectively. (b) Each bottleneck block starts and ends with a
1× 1 convolution layer, and has a 3 × 3 layer in the middle. The number of filters in each
layer is shown after the kernel dimension. (c) Grad-CAM uses the gradients of the chalky
category to compute a weight for each feature map in a convolution layer. The weighted
average of the features maps, transformed using the ReLU activation, is used as the heatmap
for the current image at inference time.

Overview of the approach. The Grad-CAM approach includes two main components:

(i) a deep CNN network (e.g., VGG or ResNet) that is trained to classify seed images into

two classes, chalky or non-chalky; and (ii) a class activation mapping component, which

generates a rice chalkiness heatmap as a weighted average of the feature maps corresponding

to a specific layer in the CNN network. The chalkiness heatmap can be further used to

calculate a chalkiness score, which quantifies the degree of chalkiness in each individual

grain, and to estimate the chalkiness area for each grain. An overview of the approach is

shown in Figure 4.1. Details for the components of the model are provided below.

CNNs. Models based on CNNs have been successfully used for many image classification

and segmentation tasks (Goodfellow et al., 2016; LeCun et al., 1989, 2015). A CNN consists

of convolutional layers (which apply filters to produce feature maps), followed by non-linear
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activations (such as Rectified Linear Unit, or ReLU), pooling layers (used to reduce the

dimensionality), and fully connected layers (that capture non-linear dependencies between

features). The last fully connected layer in a classification network generally uses a softmax

activation function and has as many output neurons as the number of target classes (in our

case, two classes - chalky and non-chalky).

The ImageNet competition (where a dataset with 1.2 million images in 1000 categories

was provided to participants) has led to many popular architectures, including highly com-

petitive architectures in terms of performance, as well as cost-effective architectures designed

to be run efficiently on low-cost platforms generally present in embedded systems (Rus-

sakovsky et al., 2015). We anticipate that our rice chalkiness detection models could be

useful in both environments with rich computational resources and also environments with

more limited resources. Thus, given the trade-off between model performance (i.e., accu-

racy) and model complexity (e.g., number of parameters, memory and time requirements),

we consider a variety of networks (and variants) published between 2012 and 2019 including

AlexNet (Krizhevsky et al., 2012), Very Deep Convolutional Networks (VGG) (Simonyan and

Zisserman, 2014b), Deep Residual Networks (ResNet)(He et al., 2016), SqueezeNet (Iandola

et al., 2016), Densely Connected Convolutional Networks (DenseNet) (Huang et al., 2017),

and EfficientNet(Tan and Le, 2019).

Grad-CAM approach. The Grad-CAM approach was originally proposed by Selvaraju

et al. Selvaraju et al. (2019) in the context of understanding the predictions of a CNN

model. In recent years, this approach and its variants have been frequently used for weakly

supervised object localization (Zhou et al., 2016). Given a trained CNN model and an

input image at inference time, the Grad-CAM approach uses the gradients of a category

of interest (specifically, the corresponding logit provided as input to the softmax function)

to compute a category-specific weight for each feature map in a selected convolution layer.

Formally, let fk (with k = 1, . . . , K) be a feature map in a particular convolutional layer,

which consists of a total of K feature maps. Let yc be the logit (i.e., input to the softmax
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function) of the class of interest, c (e.g., chalky). Grad-CAM averages the gradients of yc

with respect to all N pixels fk
ij of the features map fk to calculate a weight wc

k representing

the importance of the feature map fk. Specifically, wc
k =

1

N

∑
i,j

∂yc

∂fk
i,j

. The feature maps

fk of the selected convolutional layer are averaged into one final heatmap for the category

of interest, c, according to the importance weights wk
c , i.e., Hc = F

(∑
k

wk
c f

k

)
, where

F is a non-linear activation function. Traditionally, ReLU has been used as the activation

function to cancel the effect of the negative values while emphasizing areas that positively

contribute to the category c. The heatmap, Hc, is resized to the original input size using

linear interpolation. The resized heatmap, Hc
final, can be used to identify the discriminative

regions for the category of interest, c, and implicitly to localize the category in the input

image. The last convolutional layer was originally used by Selvaraju et al. (Selvaraju et al.,

2019), under the assumption that the last layer captures the best trade-off between high-level

semantic features and spatial information. However, in this study, we experimented with a

variety of convolutional layers, from lower level convolutional layers (more general) to higher

level convolutional layers (more specific), to identify sets of features maps that best capture

chalkiness.

Application of Grad-CAM to rice chalkiness detection. We used the Grad-CAM

approach to generate chalkiness heatmaps for rice grain images. The heatmaps show the

concept of chalkiness using soft boundaries through a color gradient. This representation is

very appropriate for localizing the concept of chalkiness, which exhibits different levels of

intensity and, thus, has inherently soft boundaries that separate the chalky area from the

non-chalky area. The heatmap, Hchalky
final , corresponding to a particular convolutional layer

(determined using validation data) is the final rice chalkiness heatmap and can be used to

visualize the area of a seed that is discriminative with respect to chalkiness. This heatmap

can further be converted into a chalkiness score corresponding to a rice grain as follows:

ChalkyScore =
1

Z

∑
i

∑
j

(Hchalky
final ∩ GrainArea), where Z represents the total number of

pixels in the GrainArea in the original image. The resulting chalkiness score has a numerical
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value between 0 and 1, where 0 means that the grain shows no chalkiness and 1 means

that the grain has severe chalkiness all over its surface. Finally, the heatmap is used to

create a binary mask for the chalkiness area using a threshold on the intensity of the pixels

(determined based on validation data). The masked area can be used to estimate the area

of the chalkiness as a percentage of the total grain area. The numeric scores, including the

chalkiness score and the chalkiness area, obtained from large mapping populations can be

used in determining the genetic control of chalkiness in rice.

Baseline approach - Mask R-CNN. Mask R-CNN is an object instance segmentation

approach, i.e., an approach that identifies instances of given objects in an image (in our

case, the chalkiness concept) and labels their pixels accordingly. Mask R-CNN extends an

object detection approach, specifically Faster R-CNN (Ren et al., 2015), to perform instance

segmentation. The Faster R-CNN network first identifies Regions of Interest (ROI, i.e.,

regions that may contain objects of interest) and their locations (represented as bounding

box coordinates) using a Region Proposal Network (RPN). Subsequently, the Faster R-CNN

network classifies the identified regions (corresponding to objects) into different classes (e.g.,

chalkiness and background) and also refines the location parameters to generate an accu-

rate bounding box for each detected object. In addition to the object classification and

the bounding box regression components of the Faster R-CNN, the Mask R-CNN network

has a component for predicting instance masks for ROIs (i.e., identifying all pixels that be-

long to an object of interest). One advantage of the Mask R-CNN approach is that it is

specifically trained to perform instance segmentation and, thus, produces a precise mask for

objects of interest. The main disadvantage of the Mask R-CNN baseline, as compared to the

weakly supervised Grad-CAM approach, is that it requires expensive pixel-level annotation

for training.We compared the weakly supervised Grad-CAM approach to chalkiness segmen-

tation with Mask R-CNN in terms of performance and also time and memory requirements.
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4.2.2 High night temperature stress experiment

In this section, we describe plant materials and the biological experiment that generated the

data (i.e., rice grains) used in this study.

Plant materials. Six genotypes (CO-39, IR-22, IR1561, Oryzica, WAS-174, and Kati) with

contrasting chlorophyll index responses to a 14-day drought stress initiated at the agronomic

panicle-initiation stage were used in this study (Šebela et al., 2019). The experiment was

carried out in controlled environment chambers (Conviron Model CMP 3244, Winnipeg,

MB) at the Department of Agronomy, Kansas State University, Manhattan, KS, USA.

Crop husbandry and high night temperature stress imposition. Seeds obtained from

the Germplasm Resources Information Network (GRIN) database were sown at a depth of

2 cm in pots (1.6-L, 24 cm tall and 10 cm diameter at the top, MT49 Mini-Treepot) filled

with farm soil. Seedlings were thinned to one per pot at the three-leaf stage. Controlled-

release Osmocote (Scotts, Marysville, OH, USA) fertilizer (19% N, 6% P2O5, and 12%K2O)

was applied (5 g per pot) before sowing along with 0.5 g of Scotts Micromax micronutrient

(Hummert International, Topeka, KS) at the three-leaf stage. The plants were well-watered

throughout the experiment, and a 1-cm water layer was maintained in the trays holding the

pots. Seventy-two plants were grown with at least 12 plants per genotype wherein 6 plants

were used for control and the remainder for HNT. Plants were grown in controlled environ-

ment chambers maintained at control temperatures of 30/21◦C (maximum day/minimum

night temperatures; actual inside the chamber: 32.6◦C [SD±1.0]/21.1◦C [SD±0.3]) and rel-

ative humidity (RH) of 70% until treatment imposition. Both control and HNT chambers

were maintained at a photoperiod of 11/13 h (light/dark; lights were turned on from 0700 to

1800 h, with a dark period from 1800 to 0700 h) with a light intensity of 850 µmol m−2s−1

above the crop canopy. Temperature and RH were recorded every 15 min using HOBO UX

100-011 temperature/RH data loggers (Onset Computer Corp., Bourne, Massachusetts) in

all growth chambers. At the onset of the first spikelet opening, the main tiller, primary

tillers and other tillers of the flowering genotype were tagged and readied for treatment
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imposition. The same approach was followed for all six genotypes and replicates. Tagged

replicate plants were moved to HNT (30/28◦C) chambers and equal numbers of plants were

similarly tagged and maintained in control conditions. Six independent plants for each

genotype were subjected to HNT stress (30/28◦C- day/night temperatures; actual: 31.8◦C

[SD±0.8]/27.9◦C [SD±0.1]) after initiation of flowering on the main tiller until maturity to

determine the impact of HNT on chalkiness while the other six plants were maintained under

control conditions.

Data Collection. At physiological maturity, the plants were harvested from both the con-

trol and HNT treatments. The panicles were separated into main panicles (the panicle on the

main tiller), two primary panicles (tillers that followed the main panicle), and other remain-

ing panicles for each plant from each treatment and hand threshed separately. Subsequently,

the grains were de-husked using the Kett, Automatic Rice Husker TR-250.

In addition to the unpolished grains, polished grains were also used in the initial model

development and testing, as polished grains are easier to analyze and label with respect

to chalkiness and could potentially be beneficial in terms of knowledge transfer to unpol-

ished rice. The polished grains were obtained from Rice Research and Extension Center

in Stuttgart Arkansas, University of Arkansas for preliminary testing and to establish the

model. The polished rice grains composed of both medium and long grain rice. For each

grain size, there are three degrees of grain chalkiness (roughly estimated by a domain expert):

low, medium, and high chalkiness. Thus, based on grain size and degree of chalkiness, the

grains were grouped into six categories: 1) long grain, low chalkiness; 2) long grain, medium

chalkiness; 3) long grain, high chalkiness; 4) medium grain, low chalkiness; 5) medium grain,

medium chalkiness; and 6) medium grain, high chalkiness.

4.2.3 Rice grain image acquisition and processing

Image acquisition. Both polished and unpolished grain samples were arrange in trans-

parent 90 mm Petri-plates with three Petri-plates for each sample. A sample corresponds
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to a size/chalkiness combination in the case of polished rice and a genotype/tiller/condition

combination in the case of unpolished rice. Three replicates (i.e., sets of grains to be used in

one scan) were randomly selected (without replacement) for each sample. The grains were

scanned using an Epson Perfection V800 photo scanner attached to a computer (see Sup-

plementary Figure S1). Images were scanned at a resolution of 800 dots per inch (dpi) and

saved in the TIFF (.tif) file format for further image analysis. A total of 18 (i.e., 3× 2× 3)

images were acquired for polished rice, and 108 (i.e., 3 × 6 × 3 × 2) images for unpolished

rice. The scanned images included all borders of the three Petri-plates but not excessive

blank area outside of the dishes, as shown in Supplementary Figure S2.

Image preprocessing. Each scanned image (for both polished and unpolished rice grans)

had size of approximately 6000× 6000 pixels. This size is extremely large for deep learning

approaches, which require GPU acceleration (He et al., 2018). Furthermore, as we aim to

perform chalkiness detection at grain level using a weakly supervised approach, we need

images that contain individual seeds. To reduce the size of the images and to enable grain

level labeling and analysis, we resorted to cropping individual grains from the original Petri-

plate images (which contain approximately 25-30 rice grains per plate). The following steps,

illustrated in Figure 4.2, were used to crop individual grain images: (i) we first converted

original images from .tif to .jpg format; (ii) converted RGB images to grayscale images; (iii)

performed canny edge detection; (iv) identified bounding boxes corresponding to individual

seeds; (v) extracted ROIs defined by the bounding boxes and saved each ROI/grain as an

image into a file with unique file name.

The total number of individual seeds extracted from the images containing Petri-plates

with polished rice grains was 1645 out of the total of 1654 grains in the original set of 18

images. Nine seeds got truncated and were removed from the dataset. The exact number

of polished seeds in each image and the corresponding number of extracted seed images

are shown in Supplementary Table T1 in columns 4 (Grains original) and 5 (Grains used),

respectively. Similarly, the total number of individual seeds extracted from the images
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Figure 4.2: Image preprocessing. Steps used to crop individual rice seeds from the original
scanned images, each with approximately 25-30 seeds. Five steps (i. to v.) are depicted below
each image that illustrate the action achieved in each respective step.

containing Petri-plates with unpolished rice grains was 13,101 out of the total of 13,149

seeds in the original set of 108 high resolution images. In this case, 48 seeds got truncated

and were not included in the final set. The exact number of unpolished seeds in each of the

108 images and the corresponding number of individual seed images extracted are shown in

Supplementary Table T2 in columns 5 (Grains original) and 6 (Grains used), respectively.

4.2.4 Image annotation and benchmark datasets

Ground truth labeling. Two types of manual annotations were performed and used as

ground truth in our study, as shown in Figure 4.3. First, for the Grad-CAM weakly su-

pervised approach to chalkiness segmentation, we labeled each rice grain image as chalky

or non-chalky. The labeling was done based on visual inspection of the images by a do-

main expert. Second, to train Mask R-CNN models, which inherently perform instance

segmentation, and to evaluate the ability of the Grad-CAM approach to accurately detect

70



Figure 4.3: Manual annotations. (a) Image-level annotation: each seed is labeled as chalky
or non-chalky (technically, the label was created by dragging each rice seed image into chalky
or non-chalky folder, respectively). (b) Specific chalkiness annotation: chalkiness area is
marked with polygons using VGG Image Annotator (each red dot in the image represents a
click). The dark white opaque region in panel “a” is the chalk portion while the non-chalky
region is translucent.

the chalkiness area in a rice grain, we manually marked the chalkiness area using polygons.

The polygon annotation was performed by a domain expert using the VGG Image Annotator

(Dutta and Zisserman, 2019), a web-based manual annotation software. Compared to the

image-level labeling (i.e., chalky/non-chalky), the polygon annotation is significantly more

expensive, as it requires 10 to 100 clicks to draw the polygons, given the irregular shape of

the chalkiness area.

Out of 1645 polished grains used in our study, 660 grains were labeled as chalky and

985 seeds were labeled as non-chalky. The exact numbers of chalky and non-chalky seeds in

each of the eighteen high-resolution images with polished rice are shown in Supplementary

Table T1 in columns 6 (Chalky) and 7 (Non-chalky), respectively. To be able to evaluate

segmentation performance and to compare the Grad-CAM approach with Mask R-CNN, we

also labeled the 660 chalky grains in terms of chalkiness area (represented as a polygon).

Similarly, out of 13,101 unpolished grains, 4085 grains were labeled as chalky and 9016

grains were labeled as non-chalky. The exact numbers of chalky and non-chalky grains in
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each of the 108 high-resolution images of unpolished rice are shown in Supplementary Table

T2 in columns 7 (Chalky) and 8 (Non-chalky), respectively. We note that many of the 36

possible genotype/tiller/condition combinations have a small number of chalky grains (or do

no have any chalky grain at all). Specifically, 12 combinations corresponding to genotypes

CO-39 and Kati contain 4085 chalky grains and 1299 non-chalky grains, while the remaining

24 combinations contain 151 chalky grains and 7717 non-chalky grains. Thus, we used only

the 12 chalky prevalent combinations for training, tuning and evaluating the models designed

in this study. Twenty chalky grain images from each of these 12 combinations (for a total

of 240 images) were used as test set. To estimate the chalkiness segmentation performance

on unpolished rice, the 240 test images were labelled also in terms of chalkiness area using

polygons. We did not label all the chalky images in terms of chalkiness area due to the cost

associated with this annotation. The number of images labeled as chalky and non-chalky,

and also the number of chalky images annotated in terms of chalkiness area are summarized

in Table 4.1.

Table 4.1: Statistics on manual image annotation, specifically, the number of images labeled
as chalky and non-chalky, and also the number of chalky images annotated in terms of chalky
area, for polished images, and unpolished images from 12 chalky combinations, respectively.

Set of seeds Chalky Non-chalky Total Chalky Area
Polished 660 995 1,645 660
Unpolished (12) 3,934 1,299 5,233 240

Training, development and test datasets. To train, fine-tune and evaluate our models,

we created training, development and test datasets for both polished and unpolished (12)

grain images. In the case of polished grain images, for each grain size and chalkiness degree

combination, we used one of the three replicates for testing while the other two replicates

were split between training and development subsets. In the case of unpolished seed images,

for each genotype, tiller and condition combinations, we used one of the three replicates for

testing and the other two replicates were split between training and development subsets.

The specific distribution of chalky/non-chalky grain images in the training/development/test
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Table 4.2: Distribution over Training/Development/Test subsets

Set of seeds
Training Development Test

Total
Chalky Non-chalky Chalky Non-chalky Chalky Non-chalky

Polished 326 497 168 243 166 245 1,645
Unpolished (12) 1,856 830 483 229 1,595 240 5,233

subsets is shown in Table 4.2. It should be noted that our splitting process ensures that the

training/development/test subsets contain all types of grains considered and there is no

grain that belongs to at least two subsets. We used the training subsets to train the models

(both Grad-CAM networks for binary chalky/non-chalky classification and the Mask R-CNN

networks for chalkiness segmentation). We used the development subsets to fine-tune hyper-

parameters for the models. Finally, the performance of the models is evaluated on the test

subsets. The subsets are made publicly available to ensure reproducibility and to enable

further progress in this area.

4.2.5 Experimental Setup

In this subsection, we state several research questions that we aim to address and describe

the experiments performed to answer these questions. We also discuss the metrics used to

evaluate the models trained in our experiments and the hyper-parameters that were fine-

tuned to obtain the most accurate models.

Research Questions. We aim to answer the following research questions (RQ):

RQ1 Among different CNN networks used as the backbone in the Grad-CAM models for

polished rice, what network is the best overall in terms of chalky/non-chalky classifi-

cation performance versus time and memory requirements? Also, what network is the

best overall in terms of chalkiness segmentation?

RQ2 How does the Grad-CAM weakly supervised approach to chalkiness segmentation com-

pare with the Mask R-CNN segmentation approach to chalkiness detection in polished

rice?
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RQ3 What is the performance of the Grad-CAM models for unpolished rice? What is the

performance of the polished rice models when used to make predictions on unpolished

rice? Does the performance improve if we fine-tune the polished rice models with

unpolished rice?

Experiments. To answer RQ1, we trained Grad-CAM models with several CNN networks

as backbone, including variants of AlexNet, DenseNet, ResNet, SqueezeNet, VGG and Ef-

ficientNet pre-trained on ImageNet. We compared the models in terms of classification

performance, memory and time requirements. We also identified the best model/network for

each type of architecture. Subsequently, we study the variation of those best models with

respect to the layer used to generate the heatmaps and the threshold used to binarize the

heatmaps when calculating the average Intersection-over-Union (IoU). The goal is to identify

the best overall layer and threshold for each type of network. The best models (with the

best layer and threshold) are used to evaluate the localization accuracy, both quantitatively

and qualitatively, for chalkiness detection in polished rice. To answer RQ2, we also trained

Mask R-CNN models (with the default ResNet-101 as backbone) and compared them with

the best weakly supervised Grad-CAM approach. Finally, to answer RQ3, we first trained

and evaluated a Grad-CAM model (with ResNet-101 as backbone) on unpolished rice. We

compared the performance of the resulting model with the performance of a model trained

on polished rice and also with the performance of the polished rice model fine-tuned on

unpolished rice.

Evaluation metrics. We evaluated the performance of the Grad-CAM approach along two

main dimensions. First, we evaluated the ability of the approach to correctly classify seeds

as chalky and non-chalky using standard classification metrics such as accuracy, precision,

recall and F1 measure. Second, we evaluated the ability of the approach to perform chalkiness

segmentation (i.e., the ability to identify the chalky area in the chalky seed images) using

standard segmentation metrics. Specifically, we calculated average IoU (Shelhamer et al.,

2016), as well as localization accuracy and ground truth known (GT-known) localization
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Figure 4.4: Calculating the IoU between binarized ground truth and prediction: (a) chalky
seed; (b) corresponding ground truth chalkiness area; (c) binarized ground truth area; (d) pre-
dicted chalkiness area; (e) corresponding predicted binarized area; (f) intersection between
the binerized ground truth (c) and prediction (e): the number of white pixels in the intersec-
tion is 5167; (g) union between the binarized ground truth (c) and prediction (e): the number
of white pixels in the union is 6370; (h) Calculation of IoU.

accuracy (Russakovsky et al., 2015) for the chalky class. Figure 4.4 illustrates the process

of calculating IoU between the ground truth mask for the chalkiness area and the predicted

chalkiness mask. As opposed to classification accuracy, which considers a prediction to be

correct if it exactly matches the ground truth label, the localization accuracy considers a

prediction to be correct if both the image label and the location of the detected object are

correct. For the location of the object to be correct, the object mask needs to have more than

0.5 overlap with the ground truth mask. The overlap is measured as the IoU. In our case,

we calculated the localization accuracy for the chalky class as the fraction of seed images

for which the predicted mask for the chalky area has more than 50% IoU with the ground-

truth mask. We also calculated the GT-known localization accuracy, which eliminates the

influence of the classification results, as it considers a prediction to be correct when the IoU

between the ground truth mask and estimated mask (in our case, for the chalky class seed

images) is 0.5 or more.

Hyper-parameter tuning. Deep learning models, in general, and the ResNet, VGG,
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SqueezeNet, DenseNet EfficientNet networks, in particular, have many configurable hyper-

parameters. We tuned several hyper-parameters shown to affect the performance of all

models. More specifically, we tuned the batch size used in gradient descent to control the

number of rice seeds processed before updating the internal model weights. Furthermore,

we tuned the learning rate which controls how much we are adjusting the network weights

with respect to the gradient of the loss function. The specific values that we used to tune

the batch size were 16, 32 and 64. The values used to tune the learning rate were 0.1,

0.01, 0.001, 0.0001 and 0.00001. For each network, the best combination of parameters was

selected based on the F1 score observed on the validation subset. Each model was run for 200

epochs and the best number of epochs for a model was also selected based on the validation

subset. Overall, our hyper-parameter tuning process revealed that the performance did not

vary too much with the parameters considered. All the models were trained on Amazon Web

Services (AWS) p3.2xlarge instances.

As opposed to the models used as backbone for the Grad-CAM approach, the Mask R-

CNN network with ResNet-101 as backbone, could only be trained with a batch size of 8

images on AWS p3.2xlarge instances. The same learning rate values as for the CNN networks

were used for tuning. However, this network was trained for a total of 600 epochs, as opposed

to just 200 epochs for the other models. No other hyper-parameters specific to Mask R-CNN

network were fine-tuned.

4.3 Results and discussion

4.3.1 Chalkiness classification and detection in polished rice using

Grad-CAM models

Chalkiness classification in polished rice. Table 4.3 shows classification results for a

variety of network architectures (and variants within one type of architecture) that were

used as backbone for the Grad-CAM models. Specifically, we experimented with variants of
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the DenseNet, ResNet, SqueezeNet, VGG, and EfficientNet architectures. All the variants

that we used have models pre-trained on ImageNet, which allowed us to perform knowl-

edge transfer and train weakly supervised models for chalkiness detection with a relatively

small number of chalky/non-chalky seed images. Only models that we could train on AWS

p3.2xlarge instances were included in the table to allow for a fair comparison in terms of

training time. Each model is trained and fine-tuned on the training and development subsets

consisting of polished rice seed images. Performance is reported in terms of overall accuracy

and also precision, recall and F1 measure for both the chalky and non-chalky classes. The

best results for one type of architecture are highlighted with bold font. For each model

included in Table 4.3, Table 4.4 shows the training time (seconds), number of parameters,

and size (MB) of the models versus the classification accuracy of the model.

As can be seen from Table 4.3, the overall classification accuracy varies from 93.67%

(for EfficientNetB2 and EfficientNetB5) to 95.61% (for DenseNet-121). The DenseNet-121

model, which has the highest classification accuracy, also has the highest F1 measure for

both chalky and non-chalky classes, although there is at least one competitive variant for

each architecture type, e.g., ResNet-101 for ResNet, SqueezeNet-1.0 for SqeezeNet, VGG-16

for VGG, and EfficientNetB4 for EfficientNet. Furthermore, the DenseNet-121 model has

a relatively small size (28 MB) and average training time (approximately 1500 seconds).

Surprisingly, the SqueezeNet architecture, which is highly competitive in terms of perfor-

mance, has the smallest size (3.0/2.9 MB for SqueezeNet-1.0/SqueezeNet-1.1, respectively)

and smallest training time (approximately 500 seconds). The VGG models have the largest

size (more than 500 MB) and relatively large training time (in the range of 2400 to 3000

seconds), and the best EfficientNet variant (EfficientNetB4) has moderate size (approxi-

mately 140 MB) but relatively large training time (approximately 3500 seconds). Finally,

the ResNet-101 variant, which is the best in the ResNet group, has moderate size (170 MB)

and training time (close to 1700 seconds). Based on these results, we selected one model for

each type of architecture and used those selected models for further analysis.
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Table 4.3: Classification results on polished rice with various networks as backbone in the
weakly supervised Grad-CAM approach. The number following a network’s name denotes
the number of layers in the network (as in DenseNet-121 or ResNet-101) or the version of
the network (as in SqueezeNet-1.0 or EfficientNetB0). Performance is reported in terms of
Accuracy (Acc.), Precision (Pre.), Recall (Rec.) and F1 measure (F1). Precision, Recall
and F1 measure values are reported separately for the Chalky and Non-Chalky classes. All
models are trained/tuned/evaluated on the same training/development/test splits. The results
reported are obtained on the test set. The best performance for each type of model for each
metric is highlighted using bold font.

Model Acc.(%)
Chalky Non-Chalky

Pre. (%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)
DenseNet-121 95.61 94.58 94.58 94.58 96.31 96.31 96.31
DenseNet-161 95.12 92.44 95.78 94.08 97.06 94.67 95.85
DenseNet-169 94.63 92.86 93.98 93.41 95.87 95.08 95.47

ResNet-18 94.63 94.44 92.17 93.29 94.76 96.31 95.53
ResNet-34 94.15 93.29 92.17 92.73 94.72 95.49 95.10
ResNet-50 94.88 95.03 92.17 93.58 94.78 96.72 95.74
ResNet-101 95.12 93.45 94.58 94.01 96.28 95.49 95.88
ResNet-152 94.88 93.94 93.37 93.66 95.51 95.90 95.71

SqueezeNet-1.0 95.12 93.45 94.58 94.01 96.28 95.49 95.88
SqueezeNet-1.1 94.39 91.33 95.18 93.22 96.62 93.85 95.22

VGG-11 94.88 93.94 93.37 93.66 95.51 95.90 95.71
VGG-13 94.39 92.31 93.98 93.13 95.85 94.67 95.26
VGG-16 95.12 92.94 95.18 94.05 96.67 95.08 95.87
VGG-19 94.15 90.34 95.78 92.98 97.01 93.03 94.98

EfficientNetB0 95.13 93.98 93.98 93.98 95.92 95.92 95.92
EfficientNetB1 95.13 94.51 93.37 93.94 95.55 96.33 95.93
EfficientNetB2 93.67 90.23 94.58 92.35 96.20 93.06 94.61
EfficientNetB3 95.13 95.06 92.77 93.90 95.18 96.73 95.95
EfficientNetB4 95.38 96.82 91.57 94.12 94.49 97.96 96.19
EfficientNetB5 93.67 91.67 92.77 92.22 95.06 94.29 94.67
EfficientNetB6 94.16 92.77 92.77 92.77 95.10 95.10 95.10

Chalkiness detection in polished rice. To produce accurate detection of chalkiness

area, we first studied the variation of the average IoU with respect to the layer used to

generate the heatmaps and the threshold, T , used to binarize the heatmaps when calcu-

lating the IoU. The best layer/threshold combination was selected independently for each

type of network using both qualitative and quantitative evaluations. Based on preliminary

visual inspection of the heatmaps, we observed that heatmaps corresponding to lower level

layers in a network result in better approximations of the chalkiness area, possibly because
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Table 4.4: Classification networks: training time and model size. The number following a
network’s name denotes the number of layers in the network (as in DenseNet-121 or ResNet-
101) or the version of the network (as in SqueezeNet-1.0 or EfficientNetB0). All models are
trained on AWS p3.2xlarge instances. The training time it took to train each model for 200
epochs is reported in seconds (sec). Model complexity is reported as the number of trainable
parameters of the model, as well as the size of the model in MB. The accuracy of each model
is also shown, and the best accuracy (Acc.) obtained for each type of model is highlighted in
bold font.

Model
Training

time (sec)
Number of
parameters

Size
(MB)

Acc.
(%)

DenseNet-121 1522.88 6955906 28.4 95.61
DenseNet-161 2157.04 26,476,418 107.1 95.12
DenseNet-169 1306.20 12,487,810 50.9 94.63

ResNet-18 546.77 11,177,536 44.8 94.63
ResNet-34 719.41 21,285,696 85.3 94.15
ResNet-50 1011.85 23,512,128 94.4 94.88
ResNet-101 1668.41 42,504,256 170.6 95.12
ResNet-152 2172.97 58,147,904 233.4 94.88

SqueezeNet-1.0 533.15 736,450 3.0 95.12
SqueezeNet-1.1 481.53 723,522 2.9 94.39

VGG-11 2382.44 128,774,530 515.1 94.88
VGG-13 2641.00 128,959,042 515.9 94.39
VGG-16 2745.00 134,268,738 537.1 95.12
VGG-19 3079.89 139,578,434 558.4 94.15

EfficientNetB0 1198.53 4,052,126 33.0 95.13
EfficientNetB1 2243.48 6,577,794 53.4 95.13
EfficientNetB2 1882.26 7,771,380 62.9 93.67
EfficientNetB3 2696.21 10,786,602 87.1 95.13
EfficientNetB4 3476.74 17,677,402 142.3 95.38
EfficientNetB5 3584.68 28,517,618 229.1 93.67
EfficientNetB6 4946.95 40,964,746 328.3 94.16
Mask R-CNN 14863.00 42,504,256 255.9 N/A

the progressive down-sampling along the convolutional layers of the backbone CNN makes

it hard to precisely recover the chalkiness information from the higher level feature maps

(Souibgui and Kessentini, 2020). Therefore, for each type of network, we evaluated a lower-

level layer (e.g., layer1 2 conv2 for ResNet-101), two intermediate layers (e.g., layer2 0 conv2

and layer3 1 conv2 for ResNet-101), and one high-level layer (e.g., layer4 1 conv3 for ResNet-

101). The threshold, T , varied from 10% to 80% in increments of 10. We focused our analysis

on ResNet-101 moving forward as this network produced the best segmentation results over-
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all. Table 4.5 shows the variation of performance (i.e., average IoU over the set of chalky

seed images) with the layer and the threshold for ResNet-101.

Table 4.5: Variation of the Average IoU (%) with the layer used to generate the heatmaps
and the threshold T used to binarize the heatmaps (e.g., T = 20% means that only pixels
with values at least 20% of the max pixel value in the image are included in the binary
mask). The layers were sampled to include a low-level layer (layer1 2 conv2), a high-level
layer (layer4 1 conv3) and two intermediate layers (layer2 0 conv2 and layer3 1 conv2) that
showed good results based on a qualitative inspection of the maps. The threshold T is varied
from 20% to 80% in increments of 10. The best result and the corresponding layer and
threshold are highlighted in bold font.

Layer T=20% T=30% T=40% T=50% T=60% T=70% T=80%
layer1 2 conv2 0.20 9.90 18.41 26.08 37.53 18.55 18.55

layer2 0 conv2 3.81 19.86 31.53 44.90 68.11 18.55 18.55
layer3 1 conv2 1.77 9.59 18.92 28.22 41.59 18.55 18.55
layer4 1 conv3 0.15 10.26 15.43 21.10 29.68 18.55 18.55

As shown in Table 4.5 , we obtained better performance with a lower-intermediate layer

(layer2 0 conv2) as opposed to a higher layer as reported in other studies (Selvaraju et al.,

2019; ?), and a threshold of T = 60% of the highest pixel value, which is larger than the

standard T = 15% (Selvaraju et al., 2019) or T = 20% (Zhou et al., 2016) thresholds

frequently used in prior studies. Similar results were obtained with the other networks.

To gain more insights into the heatmap layer and threshold, Figure 4.5 shows qualitative

and quantitative results obtained with Grad-CAM using ResNet-101 as backbone for 10

sample seed images in the test dataset when considering three thresholds (20%, 40%, 60%)

and four convolution layers. As can be seen in the figure, seeds with a larger chalky area (e.g.,

seeds 6 and 10) are less sensitive to the layer chosen, i.e., several layers produce heatmaps

with high IoU scores. However, for seeds with a smaller or narrow chalky area, the results are

more sensitive to the layer selected and the best results are obtained with the intermediate

layer, layer2 0 conv2. Another observation that can be made from Figure 4.5 is that, overall,

the lower layers tend to have sharper boundaries as opposed to the higher levels that have

softer boundaries, making it harder to find a good threshold. This may be due to the fact that

higher levels in the network correspond to lower dimensional feature maps, which no longer
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Figure 4.5: Examples of Grad-CAM (ResNet-101) heatmaps for 10 sample chalky seed
images (5 on the left side and 5 on the right side). For each seed, heatmaps correspond-
ing to the following four layers are shown: (1) ResNet101 layer1 2 conv2; (2) ResNet101
layer2 0 conv2; (3) ResNet101 layer3 1 conv2; (4) ResNet101 layer4 1 conv3. The IoU val-
ues obtained for three thresholds T (20%, 40% and 60%, respectively) are shown under each
heatmap.
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Figure 4.6: Examples of Grad-CAM heatmaps and corresponding binarized chalkiness
masks. (a) Five sample chalky seed images; (b1) SqueezeNet-1.0 Heatmaps; (b2) SqueezeNet-
1.0 Masks; (c1) DenseNet-121 Heatmaps; (c2) DenseNet-121 Masks; (d1) ResNet-101
Heatmaps; (d2) ResNet-101 Masks; (e1) VGG-19 Heatmaps; (e2) VGG-19 Masks; (f1) Effi-
cientNetB4 Heatmaps; (f2) EfficientNetB4 Masks; (g1) Mask R-CNN Original Masks ; (g2)
Mask R-CNN Binary Masks.

preserve boundary details when interpolated back to higher dimensions. Figures S3, S4, S5

show similar quantitative and qualitative results produced by SqueezeNet-1.0, DenseNet-121

and VGG-16 networks, respectively, on the same 10 seeds shown in Figure 4.5. Despite the

good classification results obtained with these networks, the heatmaps show lighter colors

and softer boundaries for the chalkiness area and overall poor chalkiness detection results

as compared with the results of ResNet-101. A better understanding regarding this can be

gained from Figure 4.6 which shows a side-by-side comparison of the heatmaps produced by

different networks and the corresponding binarized chalkiness masks. The masks obtained

with Mask R-CNN are also shown.

The same conclusions regarding the superiority of ResNet-101 for chalkiness segmentation

are supported by a quantitative evaluation of the networks in terms of localization metrics

computed over the whole test set. The results of this evaluation are shown in Table 4.6 for the

best performing models for each type of architecture considered as backbone (DenseNet-121,

ResNet-101, SqueezeNet-1.0, VGG-19, and EfficientNetB4). For each network, the specific
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convolution layer and the threshold used to produce the results are shown in the last two

columns of the table, respectively. The results obtained with the Mask R-CNN network,

which has ResNet101 as its backbone, are also shown in Table 4.6. As can be seen, the

best results are obtained using the ResNet-101 network (for all metrics considered), while

the next best results are obtained with DenseNet-121. Among the weakly supervised Grad-

CAM networks, the ones that have SqueezeNet-1.0 and VGG-16 as backbones, produce the

worse results. The results of the Mask R-CNN network are extremely poor when compared

with the results of the Grad-CAM with ResNet-101, DenseNet-121 and EfficientNetB4 back-

bones, but they are better than those of the Grad-CAM with SqueezeNet-1.0 and VGG-16

as backbones. This shows that the weakly supervised approach is more effective for the

chalkiness detection/segmentation problem in addition to being less laborious in terms of

data labeling, as compared to the Mask R-CNN segmentation approach.

4.3.2 Chalkiness Classification and Detection in Unpolished Rice

Another objective of this study is to explore the applicability of the Grad-CAM approach to

unpolished rice seeds and to study the transferability of the models trained on polished rice

to unpolished rice (as unpolished rice seeds can be harder to annotate manually). This is

important as researchers working on large breeding populations involving hundreds of lines

do not obtain large sample sizes and would not have access to polish a small amount of

seeds, which requires models that can effectively operate on unpolished seeds. To address

this objective, we performed experiments with three models that use ResNet-101 as their

backbone: 1) a model trained on polished seed images, called polished model; 2) a model

trained on unpolished seed images, called unpolished model; and 3) a model originally trained

on polished seed images and subsequently fine-tuned on unpolished seed images, called mixed

model. All models were evaluated on the 240 seed images in the unpolished test set, which

were manually annotated in terms of chalkiness area. These images belong to one of the

12 combinations corresponding to the Kati and CO-39 genotypes, i.e., unpolished(12) set.
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Table 4.6: Chalkiness segmentation: results of the weakly supervised Grad-CAM approach
with the best performing classification models as backbone. The results of Mask R-CNN with
ResNet-101 as backbone are also shown. Only the 166 chalky seed images in the test set
were used for chalkiness segmentation evaluation. Performance is reported using the follow-
ing metrics (as applicable): Ground-Truth Localization Accuracy (GT-known Loc. Acc.),
which represents the fraction of ground-truth chalky seed images with IoU ≥ 0.5; Localiza-
tion Accuracy (Loc. Acc.), which represents the fraction of ground-truth chalky images, with
IoU ≥ 0.5, correctly predicted by the model; Average IoU (Avg. IoU), which represents the
average IoU for the set of chalky seed images. To calculate the IoU, the mask of the predicted
chalkiness is obtained using a threshold T = 60% of the maximum pixel intensity. The last
two columns show the layer that was used for generating the heatmap and the threshold used
to binarize the heatmap when calculating IoU, respectively.

Model
GT-known
Loc. Acc. (%)

Loc. Acc. (%)
Avg. IoU

(%)
Layer T (%)

Grad-CAM
(DenseNet-121)

51.20 = 085/166 51.20 = 085/166 47.44

features
denseblock2
denselayer7
conv2

60

Grad-CAM
(ResNet-101)

84.34 = 140/166 83.13 = 138/166 68.11
layer2 0
conv2

60

Grad-CAM
(SqueezeNet-1.0)

7.83 = 013/166 7.83 = 013/166 20.25
features 4
expand1x1

60

Grad-CAM
(VGG-16)

7.23 = 012/166 7.23 = 012/166 24.92
features
module 5

60

Grad-CAM
(EfficientNetB4)

28.92 = 048/166 28.92 = 048/166 35.40
stem
conv

50

Mask R-CNN
(ResNet-101)

18.67 = 031/166 N/A 29.63 N/A N/A

The training and developments sets used to train the unpolished and mixed models belong

to the unpolished(12) set as well (see Table 4.2). Classification results for the three models

are shown in Table 4.7, while segmentation results are shown in Table 4.8. As can be seen

in Table 4.7, the mixed model performs the best overall in terms of classification metrics,

although the unpolished model has similar performance for the chalky class. However, as

Table 4.8 shows, the unpolished model is by far the most accurate in terms of segmentation

metrics, while the polished model is the worst.

To visually illustrate the output of each model, Figure 4.7 shows the chalkiness prediction

masks of the polished, unpolished and mixed models for four unpolished seeds. The polished
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Figure 4.7: Examples of chalkiness binary masks for four unpolished rice grains. The
binary masks obtained from the Grad-CAM heatmaps (with ResNet-101 as backbone) using a
threshold T = 60% are shown form the polished, unpolished and mixed models, respectively,
by comparison with the ground truth binary mask.
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Table 4.7: Classification results on unpolished rice when ResNet-101 is used as backbone in
the weakly supervised Grad-CAM approach. Three models are evaluated: 1) polished model
trained on polished rice images; 2) unpolished model trained on Unpolished (12); 3) mixed
model, obtained by further training the polished model using the Unpolished (12) images.
Performance is reported in terms of Accuracy (Acc.), Precision (Pre.), Recall (Rec.) and F1
measure (F1). Precision, Recall and F1 measure values are reported separately for the Chalky
and Non-Chalky classes. All three models are evaluated on the test subset corresponding to
the Unpolished (12) rice images. The best performance for each type of model for each metric
is highlighted using bold font.

ResNet-101 Acc.(%)
Chalky Non-Chalky

Pre. (%) Rec.(%) F1(%) Pre.(%) Rec.(%) F1(%)
polished 63.01 0.00 0.00 0.00 63.01 100.00 77.31
unpolished 83.43 98.50 82.19 89.61 43.65 91.67 59.14
mixed 84.20 98.08 83.45 90.18 44.77 89.17 59.61

model largely over-estimates the chalkiness area given the opaque nature of the unpolished

seeds, as opposed to the translucent appearance of the polished seeds. The mixed model

improves the masks but not as much as the unpolished model that is trained specifically

on unpolished rice seeds. Together, these results suggest that not much knowledge can be

transferred directly from the polished images to unpolished images, as the appearance of the

chalkiness is different between polished and unpolished seeds. The results can be improved

with the mixed model which fine-tunes the polished models on unpolished rice, although

the fine-tuned models still lag behind the models trained directly on unpolished rice. Hence,

models developed using polished or unpolished grains needs to be used based on the objective

with poor transferability across these two categories.

4.3.3 Answers to the research questions and error analysis

To answer RQ1, we evaluated several CNN architectures in terms of classification accuracy,

memory and time requirements, and also chalkiness detection performance in polished rice.

While the architectures studied have comparable classification performance, the ResNet-101

network was found to be superior with respect to chalkiness detection in polished rice, and has

relatively small memory and time requirements. Furthermore, we compared the best weakly
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Table 4.8: Chalkiness segmentation results of the weakly supervised Grad-CAM approach
with ResNet-101 as backbone on unpolished rice. Only 240 chalky seed images in the Unpol-
ished (12) test set were used for chalkiness segmentation evaluation. Performance is reported
using the following metrics: Ground-Truth Localization Accuracy (GT-known Loc. Acc.),
which represents the fraction of ground-truth chalky seed images with IoU ≥ 0.5; Localiza-
tion Accuracy (Loc. Acc.), which represents the fraction of ground-truth chalky images, with
IoU ≥ 0.5, correctly predicted by the model; Average IoU (Avg. IoU), which represents the
average IoU for the set of chalky seed images. To calculate the IoU, the mask of the predicted
chalkiness is obtained using a threshold T = 60% of the maximum pixel intensity. The last
two columns show the layer that was used for generating the heatmap and the threshold used
to binarize the heatmap when calculating IoU, respectively.
Grad-CAM
(ResNet-101)

GT-known
Loc. Acc. (%)

Loc. Acc. (%)
Avg. IoU

(%)
Layer T (%)

polished model
7.92 = 019/240 0 = 00/240 26.79

layer2 0
conv2

60

unpolished model
63.75 = 153/240 63.75 = 153/240 51.76

layer2 0
conv2

60

mixed model 20.42 = 049/240 20.42 = 049/240 29.91
layer2 3
conv2

60

supervised Grad-CAM models with the Mask R-CNN segmentation model to answer RQ2

and found that the Grad-CAM models performed better than Mask R-CNN, which needs

more expensive pixel level annotation. Overall, the chalkiness detection results obtained for

polished rice are remarkably good, with an average IoU of 68.11%, GT-known accuracy of

83.34% and localization accuracy of 83.13%. Finally, to answer RQ3, we used Grad-CAM

models trained on polished rice, unpolished rice, and a mix of polished and unpolished rice

and evaluated them on unpolished rice. When studying the transferability of the models

trained on polished rice to unpolished rice, we found that fine-tuning on unpolished rice is

necessary. In fact, models trained directly on the unpolished rice performed the best in our

study. More specifically, our evaluation on unpolished rice grain images showed that the best

model trained directly with unpolished rice had an average IoU of 51.76%, while both the

GT-known accuracy and the localization accuracy were 63.75%. It is not surprising that the

models perform better on polished rice as chalkiness is easier to detect after the interfering

aluerone layer is removed through milling
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While the use of the Grad-CAM approach for rice chalkiness segmentation was extremely

successful, one challenge that we encountered was the tuning of the layer to be used for gen-

erating the heatmaps as well as the threshold for producing the binary masks for chalkiness

area. Our goal was to find a good overall layer and a good overall threshold for a model

to avoid the pitfall of tuning the threshold for each type of rice seed. Our analysis showed

that a lower layer generally results in better chalkiness detection. One explanation for this

is that higher levels undergo more extensive down-sampling (through successive applications

of pooling layers) and this causes loss of information that cannot be recovered in the chalk-

iness heatmaps. Regarding the threshold for binarization, our results showed that a higher

threshold (e.g., T = 60%) produces better overall results.

Error analysis of the polished models revealed several sources of errors that lead to

disagreement between model predictions and ground truth annotations. Such sources are

illustrated in Figure 4.8 and include: (a) inconsistencies in the way chalkiness is manually

annotated due to the soft/fuzzy boundaries of chalkiness (as opposed to binary chalky versus

non-chalky boundaries); (b) scratches or marks (referred to as noise) on the chalkiness area

are interpreted as non-chalkiness and lead to mismatches with the ground truth annotations

in terms of IoU metric; (c) irregular chalkiness shapes also make it hard to annotate chalkiness

very precisely; (d) abrasion stains that are recognized as chalkiness (white dots on the right

in the figure) despite the fact that the Grad-CAM model uses deeper feature maps that

presumably miss some “details”; (e) irregular shape and fuzzy boundaries affect the ground

truth annotations and consequently the predictions in unpolished rice as well. Despite such

errors, we found that the best Grad-CAM model for unpolished rice, trained on the Kati

and CO-39 genotypes, can generalize well to unpolished rice grains from the other genotypes

included in the biological experiment. Supplementary Figure S6 shows the prediction results

of the unpolished model on 12 rice grains randomly selected from the genotypes not used in

the training, together with their manual annotations.
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Figure 4.8: Sources of errors for the Grad-CAM models. Images (a)-(d) correspond to
polished rice, while image (e) corresponds to unpolished rice. The sources of error can be
summarized as: (a) Inconsistencies in the way chalkiness is manually annotated, due to
the white gradient nature of chalkiness; (b) Scratches or marks (referred as noise) on the
chalkiness area can be interpreted as non-chalkiness; (c) Irregular chalkiness shape makes it
hard to annotate chalkiness very precisely; (d) Abrasion stains can be recognized as chalkiness
(white dots on the right in the figure); (e) Irregular shape and fuzzy boundaries affect the
ground truth annotations and the predictions in unpolished rice as well.
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4.3.4 Tool availability and time requirements

In terms of time requirements, our experiments showed the average time for training a

ResNet-101 model on an EC2 p3-2xlarge instance available from AWS is 1668.41 seconds,

as shown in Table 4.4, and no human intervention is required during that time. Once

the model is trained, the average time to predict the label of a new image and create a

chalkiness heatmap is less than one second using an EC2 p2-xlarge instance. Given these

time requirements and assuming that a relatively large number of images, on the order of

thousands, need to be annotated for genetic mapping studies, our models could be extremely

cost-effective and help save significant human efforts and time that would otherwise be

invested in the manual annotation.

4.3.5 Development of rice with less chalk under future hotter cli-

mate

Quantifying rice chalkiness rapidly and accurately continues to be a limitation for capturing

the degree of chalkiness across a wide range of genetic backgrounds due to the lack of a

high throughput phenotyping tool. Developing such a tool is important and timely as the

proportion of chalky grains are bound to increase under warming scenarios, particularly with

increasing night temperatures (Impa et al., 2021; Shi et al., 2013). We used the tool developed

based on Grad-CAM to determine the percent chalkiness area and the chalkiness score for

each of the 13,101 unpolished rice grains extracted from the original scanned images. As

opposed to the chalkiness area, which is obtained based on a binary map, the chalkiness score

considers the intensity of chalkiness for each pixel, with red indicating greater proportion

of chalk per pixel and blue indicating the least proportion of chalk per pixel (Figures 4.5

and 4.6). Subsequently, we aggregated the percent chalkiness and the chalkiness score per

sample (i.e., for each combination genotype/tiller/treatment). Using the aggregates, we

analyzed differences between genotypes, tiller and treatment in terms of chalkiness in three

90



scenarios. In scenario 1, where the chalkiness was determined using the coarse chalky versus

non-chalky classification of the grains, analysis based on the number of grains with and

without chalk resulted in a poor analytical resolution and failed to detect any differences

or significant interaction effects (Table T3). In scenario 2, analysis based on the proportion

of area of chalkiness determined from the Grad-CAM binarized heatmaps improved the

prediction power where apart from genotype (G) main effect, the interaction effects of HNT

treatment (T) *G, G* panicle type (P), and T*G*P interaction effects were significant (Table

4.9). This finding indicated that the approach was able to detect the differential proportion

of chalkiness in different tillers across genotypes under HNT exposure during grain-filling.

Using this approach, genotypic differences in the proportion of accumulation of chalkiness

were observed with IR1561 and WAS-174 which recorded an increase of chalkiness in grains

in primary and other panicles as compared to main tiller under HNT, while the same was

reduced in IR-22 and Kati and was not affected in CO-39 and Oryzica (Table 4.9). Percent

change in proportion of chalkiness under HNT in primary and other panicles compared

to main panicle ranged from -0.89% in IR1561 to 122% in WAS-174. Grains from both

primary and other panicles recorded an increase in proportion of chalkiness by 63 and 122%,

respectively, compared to main panicle under HNT in WAS-174 (Table 4.9). In scenario

3, the chalkiness score was calculated using the pixel intensity in the chalkiness heatmaps

produced by Grad-CAM and analysis of variance for chalkiness score revealed a significant

effect of G, T*G, G*P and T*G*P further indicating an improvement in prediction potential

for chalkiness among genotypes, treatments and tiller types (Table 4.9).

Similar to proportion of chalkiness area, chalkiness score showed an increase under HNT

compared to control in IR1561 and WAS-174 in primary and other panicles, while the same

was reduced in IR-22 and Kati (Table 4.9). Among the genotypes, WAS-174 recorded highest

percent increase in chalkiness score under HNT in grains from primary (74%) and other

panicles (59%) compared to main panicle (Table 4.9). In contrast, Oryzica recorded an

increase in chalkiness score under HNT in grains from primary (46%) and other panicles
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(99%) compared to main panicle. Genotypes like CO-39, IR1561 and IR-22 showed minimal

changes in chalkiness score between tillers under HNT (Table 4.9). In summary, identifying

and using such germplasm (for example, CO-39 and Oryzica) with minimal chalkiness even

under HNT will help develop rice varieties that can sustain quality under future warming

scenarios without having a negative impact of economic revenue of the rice farmers. In

addition, the ability to obtain the level of chalkiness in less than one second per image and

in batch mode allows these models to be used efficiently as a high-throughput phenotyping

tool for capturing chalkiness in large breeding populations and to efficiently incorporate

genetics leading to low grain chalkiness into ongoing global rice breeding programs.

4.4 Conclusions

In this study, we presented the application of a high throughput deep learning tool to detect

the chalkiness area in polished and unpolished rice grains. To avoid the need for cumbersome

pixel-level annotation, we used a weakly supervised segmentation approach, Grad-CAM,

which addresses the problem as a binary classification task and subsequently uses the gra-

dients of the grain chalk to produce a chalkiness heatmap. Experimental results showed

that it is possible to use the Grad-CAM model with ResNet-101 as a backbone to generate

accurate chalkiness heatmaps for both polished and unpolished rice grains. However, the

analysis also showed that detecting rice chalkiness is easier in polished rice as compared to

unpolished rice and that the polished models are not directly transferable to unpolished rice.

Our study shows that weakly supervised deep learning models can be used to assist research

in both phenotyping and rice quality control in several ways: (i) perform high-throughput

rice seed image analysis to identify chalky seeds and generate chalkiness maps, (ii) replace

the expensive error-prone human annotations with rapid and continuous annotations with-

out compromising the accuracy, and (iii) provide quantitative measures for chalkiness area.

We successfully demonstrated the application of this tool in accurately capturing the HNT
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induced differential level of chalkiness in different tillers in rice. The models trained in this

study are made publicly available. Being already trained, they will be easy-to-use, scalable

and can be readily utilized in ongoing rice breeding programs, without requiring researchers

to have computer science or machine learning expertise.
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Additional Files

Additional file 1: Fig. S1. Steps for rice chalk seed image scanning.

Additional file 2: Fig. S2. Image scan of rice seeds.

Additional file 3: Table T1. Polished rice seeds statistics.

Additional file 4: Table T2. Unpolished rice seeds statistics.

Additional file 5: Fig. S3. Examples of Grad-CAM/SqueezeNet-

1.0 heatmaps.

Additional file 6: Fig. S4. Examples of Grad-CAM/DenseNet-121

heatmaps.

Additional file 7: Fig. S5. Examples of Grad-CAM/VGG-19

heatmaps.

Additional file 8: Fig. S6. Examples of predictions on unpolished

rice.

Additional file 9: Table T3. Number of grains with and without

chalk.

Availability of data and materials

The datasets generated and analysed during the current study are available on GitHub,

https://github.com/cwang16/Phenotyping-of-Chalkiness-in-Rice.
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Main panicle Primary panicle Other panicle
Chalkiness
(% area)

CNT HNT CNT HNT CNT HNT

CO-39 7.54 8.17 6.95 7.73 8.00 7.19
±0.8 ±1.0 ±0.6 ±0.3 ±1.8 ±1.1

IR1561 13.35 16.22 8.21 16.37 8.52 12.35
±2.5 ±3.0 ±0.2 ±2.4 ±1.1 ±1.2

IR-22 8.02 6.33 9.36 5.27 5.89 5.30
±0.8 ±0.5 ±2.2 ±0.5 ±0.9 ±0.6

Kati 7.39 7.44 13.56 10.34 14.32 10.70
±0.7 ±0.4 ±1.2 ±2.5 ±1.9 ±2.5

Oryzica 10.61 10.75 5.32 5.64 5.05 4.83
±1.4 ±1.8 ±0.5 ±0.6 ±0.6 ±1.4

WAS-174 7.25 5.76 5.91 9.39 4.44 12.81
±2.0 ±1.7 ±0.4 ±2.6 ±0.8 ±1.4

Chalkiness
score

CNT HNT CTN HNT CTN HNT

CO-39 0.07518 0.06827 0.07157 0.07780 0.07449 0.07119
±0.008 ±0.009 ±0.004 ±0.003 ±0.016 ±0.010

IR1561 0.10415 0.12933 0.07026 0.14653 0.07006 0.11615
±0.015 ±0.026 ±0.002 ±0.032 ±0.006 ±0.012

IR-22 0.07276 0.06294 0.09692 0.05694 0.05916 0.05686
±0.003 ±0.006 ±0.017 ±0.006 ±0.012 ±0.007

Kati 0.09238 0.09252 0.17087 0.13309 0.16940 0.13586
±0.009 ±0.002 ±0.017 ±0.032 ±0.018 ±0.029

Oryzica 0.14890 0.16370 0.08302 0.08862 0.07928 0.08246
±0.024 ±0.029 ±0.011 ±0.006 ±0.014 ±0.026

WAS-174 0.09386 0.07700 0.08449 0.13393 0.06039 0.18932
±0.024 ±0.023 ±0.005 ±0.038 ±0.011 ±0.018

Table 4.9: Percentage chalkiness area and chalkiness score were obtained for individual
seeds randomly selected across treatments and genotypes. A three-way analysis of variance
for these traits (Chalkiness Area (%) and Score) were performed under completely random-
ized design (CRD) using PROC GLM procedure in SAS. Means were separated using HSD
(Tukey’s Studentized Range ) test at p=0.05. Table includes mean and ± SEM for three
way comparison. Chalkiness area (%) was significantly affected by genotype (G) (p < 0.001),
treatment (T) x G (p < 0.001) and G x panicle type (P) (p < 0.001) and T x G x P
(p < 0.001) interaction effects. Chalkiness score was significantly affected by G (p < 0.001),
T x G (p < 0.016), G x P (p < 0.001) and T x G x P (p = 0.03) interaction effects.
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Figure S1: Steps for rice chalk seed image scanning using Epson Perfection V800 photo
scanner.

Image 1: Showing the materials required: Rice seeds (dehusked), Epson perfection V800

photo scanner attached with the computer, Petri-dishes, non-metal forceps, a black sheet of

paper (A4).

Steps for image scanning of both polished and unpolished grains

• Place the transparent Petri-dishes on the scanner away from the edges of the scanner,

but not touching each other (See image 2)

• Spread the rice seeds in the middle of the Petri-dishes (See image 3)

• Place the black sheet of paper over dishes and shut the scanner lid

• Open the computer and scanner

• Click the scanner software desktop icon
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Scanner setting (See image 4)

• Start Epson Scan and select Professional Mode as the Mode setting

• Select these settings under the Original section:

– Document Type setting = “Reflective”

– Select the Document source = “Document Table”

– Select Auto Exposure type = “Photo.”

• Select these settings in the Destination section:

– Select the image type = “24-bit Color”

– Set resolution dpi as - 800 and click OK (do not change the dpi, keep this as

constant across scans)

• Select these settings in the Adjustments section:

– Check Unsharp Mask

– Uncheck all other options.

• Click ‘PREVIEW’ to see the scan

• If the dishes are all within the scan area and all of the rice grains are away from the

edges of the dishes, then continue to the next step. If not, readjust the location of

dishes and/or rice and click preview again. (See image 5)

• Using the mouse, left click and drag to create a box around the Petri-dishes in the scan

preview. This will set the scanning area for the final scan. Should include all borders

of the Petri-dishes but not excessive blank area outside of the dishes. (See image 6)

• Return to the Main window and Click ‘SCAN’.
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• In the Location, setting, click on “Other” and then Browse... to select folder location

the images should be saved. (See image 7)

• In the File Name section type file name in Prefix and set start number to 1. Start

Number will automatically increase with each scan.

• In the Image Format Section, choose file type TIFF (*.tif)

• In the bottom section:

– Uncheck “Overwrite any files with the same name.”

– Check “Show this dialog box before next scan.”

– Check “Open image folder after scanning”

– Check “Show Add Page dialog after scanning”

• Click OK.

• After scan, return rice back to packets and begin again at the top of the page until the

number of replications has been reached, or begin on next sample.
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Figure S2: Image scan of rice seeds spread on three Petri dishes covered with a black
background. The seeds on the three dishes correspond to one size/chalkiness combination for
polished rice, and one genotype/tiller/condition for unpolished rice, respectively. Three such
images were obtained for each combination resulting in three replicates, each with different
seeds.
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Table T1: Polished rice grains statistics. For each combination of grain size (column 1),
chalkiness degree (column 2) and replicate (column 3), the total number of grains in the cor-
responding high resolution image and the number of grains used in the analysis are shown in
columns 4 and 5, respectively. Columns 6 and 7 show the number of (used) grains annotated
as chalky and non-chalky, respectively.
Grain size Chalkiness degree Replicate Grains original Grains used Chalky Non-chalky

long low 1 76 76 27 49
long low 2 96 96 27 69
long low 3 88 88 25 63
long medium 1 96 96 21 75
long medium 2 102 102 31 71
long medium 3 85 85 23 62
long high 1 87 81 61 20
long high 2 91 91 73 18
long high 3 88 88 65 23

medium low 1 90 90 21 69
medium low 2 97 97 17 80
medium low 3 80 80 17 63
medium medium 1 106 106 25 81
medium medium 2 105 105 33 72
medium medium 3 99 99 24 75
medium high 1 66 66 46 20
medium high 2 100 100 61 39
medium high 3 102 99 63 36

Total 1654 1645 660 985
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Table T2: Unpolished rice grains statistics. For each combination of genotype (column 1),
tiller (column 2), condition (column 3) and replicate (column 4), the total number of grains
in the corresponding high resolution image and the number of grains used in the analysis are
shown in columns 5 and 6, respectively. Columns 7 and 8 show the number of (used) grains
annotated as chalky and non-chalky, respectively.
Genotype Tiller Condition Replicate Grains original Grains used Chalky Non-chalky

Kati

Main

CNT 1 139 138 122 16
CNT 2 160 160 101 59
CNT 3 95 95 63 32
HNT 1 169 165 158 7
HNT 2 161 160 139 21
HNT 3 152 147 119 28

Primary

CNT 1 152 152 121 31
CNT 2 137 137 92 45
CNT 3 150 150 117 33
HNT 1 148 148 145 3
HNT 2 146 146 122 24
HNT 3 149 149 136 13

Other

CNT 1 133 133 115 18
CNT 2 136 136 88 48
CNT 3 132 132 79 53
HNT 1 154 152 145 7
HNT 2 166 166 132 34
HNT 3 148 148 138 10

CO-39

Main

CNT 1 166 166 104 62
CNT 2 86 86 5 81
CNT 3 125 123 98 25
HNT 1 164 164 155 9
HNT 2 89 89 13 76
HNT 3 186 186 130 56

Primary

CNT 1 167 167 128 39
CNT 2 150 148 48 100
CNT 3 145 145 106 39
HNT 1 148 148 138 10
HNT 2 149 148 99 49
HNT 3 155 150 118 32

Other

CNT 1 150 150 134 16
CNT 2 152 151 117 34
CNT 3 154 154 110 44
HNT 1 152 152 130 22
HNT 2 147 147 55 92
HNT 3 145 145 114 31
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Table T2: Continued
Genotype Tiller Condition Replicate Grains original Grains used Chalky Non-chalky

IR-22

Main

CNT 1 97 97 0 97
CNT 2 86 86 0 86
HNT 1 97 96 0 96
HNT 2 50 50 0 50
HNT 3 43 43 0 43

Primary

CNT 1 133 133 1 132
CNT 2 156 155 0 155
HNT 1 152 152 1 151
HNT 2 90 90 0 90
HNT 3 95 95 1 94

Other

CNT 1 155 155 0 155
CNT 2 150 150 0 150
CNT 3 105 104 0 104
HNT 1 152 152 1 151
HNT 2 152 150 0 150
HNT 3 148 148 0 148

IR-1561

Main

CNT 1 124 124 0 124
CNT 2 97 97 0 97
CNT 3 116 116 1 115
HNT 1 92 92 1 91
HNT 2 85 85 0 85
HNT 3 26 26 1 25

Primary

CNT 1 152 151 0 151
CNT 2 148 148 0 148
CNT 3 149 149 0 149
HNT 1 104 103 3 100
HNT 2 161 157 1 156
HNT 3 21 21 0 21

Other

CNT 1 151 151 0 151
CNT 2 143 142 0 142
CNT 3 148 148 0 148
HNT 1 160 160 24 136
HNT 2 151 151 1 150
HNT 3 146 146 1 145
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Table T2: Continued
Genotype Tiller Condition Replicate Grains original Grains used Chalky Non-chalky

WAS-174

Main

CNT 1 116 115 6 109
CNT 2 180 180 0 180
CNT 3 195 194 0 194
HNT 1 127 127 6 121
HNT 2 120 120 3 117
HNT 3 155 155 0 155

Primary

CNT 1 145 145 6 139
CNT 2 159 154 0 154
CNT 3 152 150 0 150
HNT 1 156 156 4 152
HNT 2 152 149 15 134
HNT 3 157 157 2 155

Other

CNT 1 157 157 4 153
CNT 2 150 150 0 150
CNT 3 141 141 1 140
HNT 1 155 155 9 146
HNT 2 141 141 3 138
HNT 3 153 153 0 153

Oryzica

Main

CNT 1 54 54 3 51
CNT 2 40 40 0 40
CNT 3 55 55 0 55
HNT 1 25 25 6 19
HNT 2 52 52 0 52
HNT 3 64 64 0 64

Primary

CNT 1 77 77 3 74
CNT 2 59 59 1 58
CNT 3 71 71 0 71
HNT 1 32 32 12 20
HNT 2 100 100 2 98
HNT 3 89 89 1 88

Other

CNT 1 141 141 8 133
CNT 2 89 89 0 89
CNT 3 68 68 0 68
HNT 1 34 34 15 19
HNT 2 41 41 2 39
HNT 3 55 55 2 53
Total 13149 13101 4085 9016
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Figure S3: Examples of Grad-CAM (SqueezeNet-1.0) heatmaps for 10 sample chalky seed
images (5 on the left side and 5 on the right side). For each seed, heatmaps corre-
sponding to the following four layers are shown: (1) squeezenet1 0 features 3 expand1x1;
(2) squeezenet1 0 features 4 expand1x1; (3) squeezenet1 0 features 8 expand1x1; (4)
squeezenet1 0 features 12 expand1x1. The IoU values obtained for three thresholds T (20%,
40% and 60%, respectively) are shown under each heatmap.
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Figure S4: Examples of Grad-CAM (DenseNet-121) heatmaps for 10 sample chalky seed
images (5 on the left side and 5 on the right side). For each seed, heatmaps corresponding
to the following four layers are shown: (1) densenet121 denseblock1 denselayer2 conv1; (2)
densenet121 denseblock2 denselayer7 conv2; (3) denseblock3 denselayer24 conv2; (4) dense-
block4 denselayer16 conv2. The IoU values obtained for three thresholds T (20%, 40% and
60%, respectively) are shown under each heatmap.
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Figure S5: Examples of Grad-CAM (VGG-19) heatmaps for 10 sample chalky seed images
(5 on the left side and 5 on the right side). For each seed, heatmaps corresponding to the
following four layers are shown: (1) vgg16 features module 5; (2) vgg16 features module 10;
(3) vgg16 features module 19; (4) vgg16 features module 28. The IoU values obtained for
three thresholds T (20%, 40% and 60%, respectively) are shown under each heatmap.
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Figure S6: Examples of binary masks predicted by Grad-CAM on 12 unpolished images,
by comparison with the ground truth binary masks. The Grad-CAM model used was trained
on the 12 combinations corresponding to CO-39 and Kati genotypes. The images shown are
randomly selected from the other four genotypes not included in the training. These examples
show that the unpolished model generalizes well from some genotypes to others.
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% Chalkiness
Genotype Control HNT

CO-39 63.2 ±9 68.8 ±9
IR-1561 0.1 ±0.1 2.76 ±1.6

IR-22 0.1 ±0.09 0.26 ±0.14
Kati 72.6 ±3.5 89.4 ±2.3

Oryzica 1.87 ±0.83 13.0 ±5.8
WAS-174 1.4 ±0.7 3.2 ±1

Treatment (T) 0.005
Genotype (G) <0.001

T * G 0.2391

Table T3: Number of seeds with and without chalk selected across treatments and geno-
types. A three-way analysis of variance for this trait was performed under completely ran-
domized design (CRD) using PROC GLM procedure in SAS. Means were separated using
HSD (Tukey’s Studentized Range ) test at p=0.05. Table includes mean and +/- SEM for
three way comparison. No significant differences were found.
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Chapter 5

Conclusions and future work

In this dissertation, several state-of-the-art deep learning approaches for plant phenotyping

tasks were studies. The tasks addressed include characterization of rice root anatomy based

on microscopic root cross-section images, estimation of sorghum stomatal density and area

based on microscopic images of leaf surfaces, and estimation of the chalkiness in rice exposed

to high night temperature based on images of rice grains.

In Chapter 2, deep learning approaches for identifying root anatomical traits such as

root, stele and late metaxylem were studies. This task was implemented using the Faster

Region-based Convolutional Neural Network (Faster R-CNN) with the pre-trained VGG-16

as backbone. The model was trained on root cross-section images of roots, where the traits

of interest were manually annotated as rectangular bounding boxes using the LabelImg tool.

The traits were also predicted as rectangular bounding boxes, which were compared with

the ground truth bounding boxes in terms of intersection over union metric to evaluate the

detection accuracy. The predicted bounding boxes were subsequently used to estimate root

and stele diameter, as well as late metaxylem count and average diameter. Experimental

results showed that the trained models can accurately detect and quantify anatomical fea-

tures, and are robust to image variations. It was also observed that using the pre-trained

VGG-16 network enabled the training of accurate models with a relatively small number
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of annotated images, making this approach very attractive in terms of adaptations to new

tasks.

In Chapter 3, a deep learning approach for estimating sorghum stomatal density and area

were studies. A deep learning approach for instance segmentation was used, specifically a

Mask Region-based Convolutional Neural Network (Mask R- CNN), which produces pixel-

level annotations of stomata objects. The pre-trained ResNet-101 network was used as the

backbone of the model in combination with the feature pyramid network (FPN) that enables

the model to identify objects at different scales. The Mask R-CNN model was trained on

microscopic leaf surface images, where the stomata objects have been manually labeled at

pixel level using the VGG Image Annotator tool. The predicted stomata masks were counted,

and subsequently used to estimate the stomatal area. Experimental results showed a strong

correlation between the predicted counts/stomatal area and the corresponding manually

produced values. Furthermore, as for the root anatomy task, this study showed that very

accurate results can be obtained with a relatively small number of annotated images.

In Chapter 4, a labour-less approach of using deep learning to segment rice chalkiness

area was studies. For the task of estimating chalkiness based on images of rice grains exposed

to high night temperatures, a weakly supervised approach was used, specifically, an approach

based on Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of performing

pixel-level segmentation of the chalkiness in rice images, the weakly supervised approach

makes use of high-level annotations of images as chalky or not-chalky. A convolutional

neural network (e.g., ResNet-101) for binary classification is trained to distinguish between

chalky and not-chalky images, and subsequently the gradients of the chalky class are used

to determine a heatmap corresponding to the chalkiness area and also a chalkiness score for

a grain. Experimental results on both polished and unpolished rice grains using standard

instance classification and segmentation metrics showed that Grad-CAM can accurately

identify chalky grains and detect the chalkiness area. The results also showed that the

models trained on polished rice cannot be transferred between polished and unpolished rice,
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suggesting that new models need to be trained and fine-tuned for other types of rice grains

and possibly images taken under different conditions.

For future work, there are several challenges that remain to be addressed. Image acqui-

sition approach should be as simple as possible to ensure usability. However, lower quality

images that can be obtained relatively cheap, will require robust models to compensate for

the low-cost images. To achieve robust models, the models should be trained with more

types and variations of agricultural images and also with other modalities complementary to

images. Specifically, multi-modal data that includes not only images but also video (taken

by drones or autonomous vechicles), or even text, are also needed to perform time series

analyses and predict target yield directly from the phenotype. Many other classification

tasks that are important for plant phenotyping are also challenging and need more research

efforts, such as 3D density estimation. In the view of state-of-the-art- approaches, we can

experiment with faster light weight network and one stage or even anchor free detection and

classification approaches, especially if the research will be deployed to the field.
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Myroot: A novel method and software for the semi-automatic measurement of plant root

length. bioRxiv, 2018.

R. Bheemanahalli, R. Sathishraj, J. Tack, L. L. Nalley, R. Muthurajan, and K. S. Jagadish.

Temperature thresholds for spikelet sterility and associated warming impacts for sub-

tropical rice. Agricultural and Forest Meteorology, 221:122–130, 2016.

R. Bheemanahalli, C. Wang, E. Bashir, A. Chiluwal, M. Pokharel, R. Perumal, N. Moghimi,

T. Ostmeyer, D. Caragea, and S. K. Jagadish. Classical phenotyping and deep learning

concur on genetic control of stomatal density and area in sorghum. Plant Physiology, 186

(3):1562–1579, 2021.

A. Bishopp and J. Lynch. The hidden half of crop yields. Nature Plants, 1:15117, 08 2015.

C. R. Buckley, R. S. Caine, and J. E. Gray. Pores for thought: can genetic manipulation of

stomatal density protect future rice yields? Frontiers in plant science, 10:1783, 2020.

A. Bucksch, J. Burridge, L. M. York, A. Das, E. Nord, J. S. Weitz, and J. P. Lynch. Image-

based high-throughput field phenotyping of crop roots. Plant Physiology, 2014.

A. L. Burton, M. Williams, J. P. Lynch, and K. M. Brown. Rootscan: software for high-

throughput analysis of root anatomical traits. Plant and Soil, 357(1-2):189–203, 2012.

A. M. Casa, G. Pressoir, P. J. Brown, S. E. Mitchell, W. L. Rooney, M. R. Tuinstra, C. D.

Franks, and S. Kresovich. Community resources and strategies for association mapping in

sorghum. Crop science, 48(1):30–40, 2008.

A. Casado and J. Heras. Guiding the creation of deep learning-based object detectors. arXiv

preprint arXiv:1809.03322, 2018.

114



S. Chen, X. jun tao, W. Guo, R. Bu, Z. Zheng, Y. Chen, Z. Yang, and R. Lin. Colored rice

quality inspection system using machine vision. Journal of Cereal Science, 88, 05 2019.

doi: 10.1016/j.jcs.2019.05.010.

X. Chen. TensorFlow Faster RCNN for Object Detection, 2017. URL https://github.com/

endernewton/tf-faster-rcnn. Accessed 2020-04-13.

X. Chen and A. Gupta. An implementation of faster RCNN with study for region sampling.

CoRR, abs/1702.02138, 2017.

J. Chopin, H. Laga, C. Y. Huang, S. Heuer, and S. J. Miklavcic. Rootanalyzer: a cross-

section image analysis tool for automated characterization of root cells and tissues. PloS

one, 10(9):e0137655, 2015.

R. T. Clark, R. B. MacCurdy, J. K. Jung, J. E. Shaff, S. R. McCouch, D. J. Aneshansley, and

L. V. Kochian. Three-dimensional root phenotyping with a novel imaging and software

platform. Plant Physiology, 156(2):455–465, 2011.
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