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Abstract 

Objective – To measure blood aqueous-barrier breakdown following aqueocentesis using 

various needle sizes and to monitor the intraocular pressure (IOP) response. 

Animals – 24 healthy, adult dogs received treatment (24 treated eyes, 24 contralateral 

eyes); 3 dogs were untreated controls (6 control eyes). 

Procedures – Dogs receiving treatment were divided into 3 equal groups (25-, 27-, or 30-

gauge needle aqueocentesis). In each dog the treated eye was determined randomly, the 

contralateral eye was untreated. Dogs that did not have aqueocentesis performed in either eye 

were used as controls. Aqueocentesis at the lateral limbus was performed under sedation and 

topical anesthesia. Anterior chamber fluorophotometry was performed before and after 

aqueocentesis on day 1. On days 2-5 sedation and fluorophotometry were repeated. Intraocular 

pressure was measured with a rebound tonometer at multiple time points.  

Results – Aqueocentesis resulted in blood-aqueous barrier breakdown in all treated eyes 

with barrier reestablishment present by day 5 detected by fluorophotometry. On day 2 the 

contralateral untreated eyes of all groups also showed statistically significant increased 

fluorescence (P < 0.05) following treatment of the opposite eye, but these values were not 

statistically significantly greater than untreated controls. In treated eyes there was no statistical 

difference in fluorescein concentration or IOP between 27- and 30-gauge needles. Use of the 25-

gauge needle resulted in a statistically significant increase in anterior chamber fluorescence on 

days 3 and 5. It also caused a statistically significant increase in IOP 20 minutes following 

aqueocentesis as compared to the 27- and 30-gauge needles. Aside from this transient ocular 

hypertension, rapid resolution of ocular hypotony following aqueocentesis was observed in all 

treatment groups.  

Conclusions and Clinical Relevance – Aqueocentesis using a 25-gauge needle resulted 

in a greater degree of blood-aqueous barrier breakdown and a brief state of intraocular 

hypertension following paracentesis. Use of a 27- or 30-gauge needle is recommended for 

aqueous paracentesis. A consensual ocular reaction appeared to occur in dogs following 

unilateral traumatic blood-aqueous barrier breakdown and may be of clinical significance. 

Statistical significance was limited in this study due to high variability and large standard 

deviations.  
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CHAPTER 1 - Literature Review 

Aqueous Humor 

Aqueous Humor Dynamics 

Aqueous humor is the optically clear fluid that fills the anterior and posterior chambers in 

the anterior portion of the eye.1 Normal aqueous humor is nearly acellular with very low protein 

concentration.2 Though this transparent liquid occupies spaces in the eye, it is not a static fluid 

body. It is actually a slowly flowing stream which provides nutrition to the intraocular structures 

and allows removal of metabolic waste products.3 Proportionately, the eye contains the largest 

avascular mass found in any organ in the body with blood vessels not normally present in the 

cornea, lens, vitreous or trabecular meshwork.4 Nutrition of these avascular structures is 

accomplished primarily by aqueous humor.4  

Aqueous humor is formed by the ciliary body in the posterior chamber of the eye. Ciliary 

processes are composed of blood vessels embedded in a loose connective tissue stroma with a 

double layer of epithelial cells lining the inner surface.4 Aqueous humor originates from the 

vascular sinuses within these folds and processes, fills the posterior chamber, flows through the 

pupil into the anterior chamber, and drains into the iridocorneal angle.5 The rate of aqueous 

humor formation varies among species and is roughly 2 µl/min in humans4 compared to 4.54 

µl/min in dogs.6 

Aqueous humor is formed by three different mechanisms: diffusion, ultrafiltration, and 

active secretion by the ciliary process epithelial cells. Diffusion of solutes occurs down a 

concentration gradient across the ciliary epithelial barrier while ultrafiltration occurs when 

movement of water or a compound across a cell membrane is increased by a hydrostatic force.7 

The latter results from differences between the ciliary body capillary pressure and intraocular 

pressure;1 however, it has recently been suggested that ultrafiltration has little if any role in 

aqueous humor formation.7 Both diffusion and ultrafiltration are examples of passive processes. 

In contrast, active transport of certain solutes, most notably Na and Cl, by the ciliary body 

epithelium is the principal component of aqueous humor formation and drives fluid inflow from 

the ciliary body stroma to the posterior chamber.4,7-11 Present in the ciliary epithelium, the 
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membrane-bound enzyme complex sodium-potassium-ATPase actively transports sodium ions 

from blood to the aqueous humor.1 Chloride ions enter the posterior chamber through 

electroneutral transporters and chloride channels, and represent the principal anion secreted by 

the ciliary epithelium.8 In addition, the enzyme carbonic anhydrase catalyzes the reversible 

hydration of carbon dioxide by the reaction: CO2 + H2O  HCO3
- + H+. Both cytosolic carbonic 

anhydrase isoform II and membrane-bound isoform IV have been identified in the ciliary 

epithelium with net transepithelial bicarbonate transport thought to result from the two 

isoenzymes’ combined effect.7 Entry of sodium, chloride, and to a lesser extent, bicarbonate ions 

into the posterior chamber generates an osmotic gradient and results in transepithelial fluid 

secretion across the ciliary epithelium.7 Modulating ciliary epithelial enzyme function impacts 

aqueous humor production with carbonic anhydrase inhibitors causing up to 50-60% reduction in 

the formation of aqueous.12-15  

Drainage of aqueous humor from the eye is via the iridocorneal angle using the 

conventional route as well as the unconventional uveoscleral outflow pathway.5 The 

conventional route of drainage is via the iridocorneal angle, through the trabecular meshwork 

and into the angular aqueous plexus in most species or Schlemm’s canal in primates.1 

Unconventional outflow is used to varying degrees in different species with fluid leaving by 

diffusion through the iris, ciliary body, and vitreous.1 Studies in dogs using fluorescein-labeled 

dextran and different sized microspheres have shown that in uveoscleral outflow aqueous leaks 

into the interstitial spaces of the uvea to become part of the tissue fluid, with fluid then moving 

through the ciliary muscle into the supraciliary and suprachoroidal spaces to be absorbed by the 

choroidal and scleral circulation.16,17 In normal dogs, uveoscleral outflow accounts for 15% of 

aqueous drainage but in glaucomatous eyes uveoscleral outflow is markedly reduced.18 

In the continuous process of aqueous humor formation and drainage intraocular pressure 

(IOP) is created.5 The rate of aqueous humor formation from within the ciliary stromal tissue is 

influenced by humoral and autonomic innervation so that constant IOP is sustained.1 A normal 

IOP is essential for maintaining the shape of the eye, sustaining its refractive properties, and 

preserving the close association between the retina and choroid.5,8  
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Tonometry 

The balance of aqueous humor formation and drainage helps to maintain a constant 

normal pressure in the eye. Pressure in the normal human aqueous and vitreous averages 15.5 

mm Hg.3 The normal IOP of most animals is usually between 15 and 25 mm Hg due to 

conservation between species.19 Intraocular pressure can be measured experimentally by 

cannulation of the eye, but this is an invasive and complicated technique.3  

Tonometry is the indirect measurement or estimation of IOP through the cornea. 

Historically, tonometers have been used that fall into two categories, those that indent the cornea 

and those that flatten, or applanate, the cornea.3 Indentation tonometers provide reasonable 

estimations of IOP but are not considered as accurate as applanation tonometers.19 Applanation 

tonometers are easier to employ and the portable, reliable TonoPen® instrument is very popular 

among veterinary ophthalmologists. Studies using the Tono-Pen® applanation tonometer, report 

the normal mean canine IOP to be 16.7 +/- 4.0 mm Hg20 and 19.2 +/- 5.9 mm Hg.21 

Disadvantages of this device are that it has difficulty measuring very low IOPs20 and that it has 

been reported to overestimate IOP at lower pressures and underestimate IOP at higher 

pressures.22  

A recently developed intraocular pressure measuring device is the induction-impact, or 

rebound, tonometer. A rebound tonometer has a magnetized probe propelled to come into contact 

with and then rebound from the corneal surface, with the rebound motion characteristics detected 

by a sensing coil and used to calculate IOP.23 The disposable probe has a round plastic tip 1 mm 

in diameter to prevent corneal damage. Due to its small size, topical corneal anesthesia is not 

necessary for IOP measurement as compared to indentation and applanation tonometers used in 

clinical settings. Results of a study by Baudouin and Gastaud documented a significant decrease 

in tonometrically-measured IOP following application of oxybuprocaine and betoxycaine topical 

anesthetics;24 however, in another study no significant difference was present after the 

application of lidocaine topically.23 The rebound tonometer is well-tolerated by dogs, provides 

rapid, reproducible measurements in both normal and glaucomatous animals, and can measure 

intraocular pressure values from 0 to 99 mm Hg.23 In a recent study, IOPs were measured in dogs 

using both the Tono-Pen® applanation tonometer and the TonoVet® rebound tonometer and 

found to be comparable (mean IOP ± SD: Tono-Pen® 12.9 ± 2.7 mm Hg, TonoVet® 10.8 ± 3.1 

mm Hg).25 The two tonometers have also been shown to provide similar measurements following 
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intraocular surgery in dogs.26 In 2006, Gorig et al used freshly enucleated canine eyes to 

compare manometric and tonometric measurements and found that the induction-impact 

tonometer was the most accurate, while with the Tono-Pen® and MacKay-Marg® applanation 

tonometers were increasingly less accurate as the IOP was elevated.23 

Tonometry is an essential diagnostic procedure used during examinations to evaluate 

abnormal eyes and to monitor glaucomatous eyes. With glaucoma, elevated pressure levels 

related to reduced aqueous outflow are present in the eye.4 Ocular hypertension is generally 

associated with the glaucoma disease complex, but can also be present immediately following 

intraocular surgery. Postoperative ocular hypertension is a transient increase in IOP (>25 mm 

Hg) that occurs within 72 hours following cataract surgery and may occur in as many as 50% of 

cases.27 Intraocular pressures remaining greater than normal for a prolonged period of time can 

lead to irreversible damage to the retina and optic nerve and therefore require prompt treatment. 

Pressures lower than the normal range, ocular hypotension, may be present in eyes with uveitis. 

Prolonged hypotension may result in shrinking of the globe, or phthisis bulbi. Monitoring IOP is 

imperative with ocular disease and it is for this reason that tonometry has become a standard 

measure during complete ophthalmic examinations in both humans and animals. 

It has been shown that body position can alter intraocular pressure in dogs as measured 

by tonometry and that the sternal recumbent position may allow for the most consistent and 

repeatable IOP measurements in research investigations.28 Physiologic variables such as changes 

in extraocular muscle tone and eyelid contraction may also alter IOP measurements. These 

factors are possible mechanisms by which systemic anesthetic drugs affect IOP. In one study, 

dogs administered 5 mg/kg ketamine and 10 mg/kg ketamine with 0.5 mg/kg diazepam had 

significantly increased IOP over baseline values.29 An unexplained finding in this study was why 

dogs administered 10 mg/kg ketamine alone did not show a significant IOP change.29 Though 

both patient positioning and anesthetic drug factors are of consequence, it is important to note 

that in both studies IOP differences were only a few mm Hg with no values reported to be above 

the clinically normal canine pressure range.28,29 

Aqueous Humor Centesis 

Anterior chamber paracentesis is used in clinical practice for diagnostic and therapeutic 

purposes to remove aqueous humor fluid from the eye. The procedure can be done on 
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cooperative, awake patients under topical anesthesia, though in some veterinary patients sedation 

or short-acting general anesthesia may be required. Prior to paracentesis the ocular surfaces are 

cleansed with dilute (5%) povidone iodine solution, rinsed with normal saline, and topical 

anesthetic is applied. With the eyelids held open, the bulbar conjunctiva is grasped with small 

forceps near the site of entry and a small needle is inserted bevel up through the perilimbal 

cornea or subconjunctival limbus. The needle enters the eye parallel and anterior to the iris 

avoiding contact with the iris, lens and corneal endothelium. The needle size reported for 

aqueous paracentesis use may range from 25 to 30-gauge.19,30 Once the needle is in the eye, 

aqueous humor fluid is aspirated by a small syringe. An alternative technique is to let the hub of 

the needle fill with fluid without a cumbersome syringe attached, allowing greater control over 

the needle’s position.30 An additional approach more commonly used in humans is to use a 

sterile surgical blade inserted through the peripheral cornea to make a self-sealing stab 

incision.31-33 The technique will vary depending on the indication for paracentesis, the species 

being treated, and the clinician’s preference. 

Aqueous paracentesis is used in clinical practice to collect samples from inside of the 

eyeball for cytological evaluation, culture and sensitivity, antibody determination or other 

diagnostic purposes.2,34-43 Specific ocular diseases where it may be utilized include cases of 

uveitis or intraocular neoplasia. As long as patients are selected appropriately and aseptically 

prepared for the procedure, the technique has been found to be safe with minimal risk of 

complication.38,44 

In addition to diagnostic paracentesis, therapeutic paracentesis is also utilized in a clinical 

setting. Patients with glaucoma or postoperative ocular hypertension may be treated with 

aqueous paracentesis as emergency therapy to rapidly reduce the IOP and prevent damage to the 

retina and optic nerve.19,31-33,45,46 In a human study, cataract surgery patients experiencing 

postoperative ocular hypertension were treated with paracentesis, and though it provided 

immediate reduction in IOP, pressures rebounded to near initial values by one hour after 

treatment.33 Recent human glaucoma studies have combined aqueous paracentesis with medical 

therapy and found that paracentesis provides rapid symptomatic relief, as opposed to medial 

management alone, and can be considered as adjunctive therapy in the management of acute 

elevation of IOP.31,32,45 Therapeutic paracentesis may also be utilized prior to intraocular 
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injection of drugs, such as tissue plasminogen activator, to prevent abnormally elevated pressure 

following drug injection. 

For many decades aqueous paracentesis has been used as a model of intraocular 

inflammation because it causes breakdown of the blood-aqueous barrier with resulting signs of 

uveitis.47-81 Research studies involving paracentesis have allowed detailed study of the blood-

aqueous barrier, have improved our understanding of species-specific differences, and have 

allowed evaluation of therapies to prevent or reduce barrier compromise.  

Anterior chamber centesis is also used in experimental studies to collect aqueous humor 

for analysis of the fluid components. Multiple investigations have measured anterior chamber 

drug levels of various antimicrobial agents following topical, subconjunctival, or systemic 

administration.74,82-88. Aqueous paracentesis is also used to monitor intraocular inflammation by 

analyzing protein, cells, and inflammatory mediators in the fluid. It has been documented that 

aqueous humor in healthy animal species is nearly acellular with low protein concentration and 

only albumin detectable on electrophoresis.2 Increased cellular composition, elevated protein 

values, and other measurable inflammatory mediators in aqueous humor have been used to 

quantify blood-aqueous barrier breakdown in numerous clinical cases and research 

studies.49,50,52,53,57-68,70-73,75,76,78-81,89-95 

Blood-Aqueous Barrier 

Anatomy 

The blood-ocular barriers consist of the blood-aqueous barrier and the blood-retinal 

barrier, functioning to keep the eye as a privileged site by regulating the contents of the ocular 

fluids and protecting the internal ocular tissues from variations which occur constantly in the 

systemic circulation.11 These barriers provide a suitable, highly regulated, chemical environment 

for the avascular, transparent tissues of the eye.11 It is important for optical clarity that virtually 

no protein or cells be present in the ocular fluids as these components would result in light 

scattering and impaired vision.  

The blood-aqueous barrier is composed of tight junctions between the apicolateral 

surfaces of the nonpigmented epithelial cells of the ciliary body processes and between the 

endothelial cells of the iris vasculature.1,11,67 Following intravenous injection of horseradish 

peroxidase, histopathologic examination of normal rabbit eyes demonstrated marker presence in 



 7

iris vessels and ciliary stroma, but horseradish peroxidase was blocked by zonula occludens of 

the iris endothelial cells and those at the sides of the ciliary process nonpigmented epithelial 

cells.96 It has been shown that the intercellular tight junction proteins occludin and ZO-1 are 

integral components of the blood-aqueous barrier.97,98  

In addition to the nonpigmented ciliary epithelium lateral tight junctions, the morphology 

of the normal bilayered ciliary body epithelium is a formidable barrier to blood-borne substances 

with numerous desmosomes and complicated interdigitations between adjoining nonpigmented 

and pigmented ciliary body epithelial cells.67,99 In the healthy eyes this intercellular pathway 

from the pigment epithelium to the posterior chamber is extremely narrow, long, and tortuous; 

however, in abnormal eyes this pathway becomes much simpler, shorter, and wider due to 

separation of the epithelial cells.99  

A recent review of the blood-aqueous barrier shifts the concept slightly to also include 

the posterior pigmented iris epithelium with tight junctions analogous to those in the 

nonpigmented ciliary epithelium.100 Many years prior, Pedersen observed blockage of 

horseradish peroxidase at the posterior limit of the iris and surmised the presence of zonula 

occludens between the posterior iris epithelium considering they are the only type of junctions 

effective at blocking horseradish peroxidase movement though the intercellular spaces of 

epithelia.101 This finding of similar tight junctions in the posterior iris and nonpigmented ciliary 

epithelium is not surprising as both epithelial tissues originate embryologically from the inner 

layer of the optic cup and are confluent with one another.5 

Given that the non-pigmented ciliary epithelium, posterior iris epithelium, and iris vessels 

are impermeable to albumin,100,102 yet small amounts of protein are present in normal aqueous 

humor,2,92 the source of this protein is believed to be leakage from the ciliary body stroma via the 

iris.100,103 It is well known that ciliary body blood vessels are highly fenestrated and leak most of 

the plasma components into the stroma.1,100,103 Though proteins are prevented from entering the 

posterior chamber by the tight junctions of the ciliary epithelium, proteins can diffuse forward 

along the continuous pathway of loose connective tissue from the ciliary body stroma to that of 

the iris.100 With no epithelium present on the anterior surface of the iris, protein reaching the 

anterior iris surface is able to enter the anterior chamber.100 A kinetic model of fluorescein 

diffusion assessing transfer from plasma, into the iris stroma, and then into the anterior chamber 

closely matched actual findings in rabbit and human eyes.104 This finding supported the 
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conclusion that the principal route of normal aqueous humor plasma-derived protein entry was 

via the iris and not the posterior chamber.100 Thus in normal eyes the posterior chamber is free of 

protein due to the tight junctions of the nonpigmented ciliary and posterior pigmented iris 

epithelium along with the unidirectional flow of aqueous humor forward through the pupil.100 

This modified barrier separates constituents of plasma from the tissues behind the iris and is 

extremely important as there is no functional barrier present between the aqueous humor and the 

vitreous humor.1  

Diurnal protein variations have been detected in the aqueous humor of normal human 

eyes.105 These variations were found to be due to changes in aqueous humor flow rate and not 

changes in blood-aqueous barrier protein permeability as the later was stable over a 24-hour 

period.105 

Blood-Aqueous Barrier Breakdown 

When the anterior segment of the eye becomes traumatized, irritated, or inflamed clinical 

changes that manifest include conjunctival hyperemia, uveal vasodilation, pupillary constriction, 

breakdown of the blood-aqueous barrier, and a transient rise in IOP followed by relative 

hypotony.66,71,72,103 Blood-aqueous barrier breakdown results in leakage of plasma proteins into 

the aqueous humor due to collapse of the epithelial barrier and failure of endothelial cell 

junctions.67 

Disruption of the blood-aqueous barrier can occur following antidromic release of 

endogenous vasodilator substances and from the direct action of prostaglandins.103 Response to 

an irritative stimulus like topical nitrogen mustard depends on intact, sensory innervation and is 

mediated by pain fibers as opposed to prostaglandins or the adrenergic nervous system.66 This is 

supported by the fact that aspirin treatment did not inhibit aqueous humor protein rise after 

topical nitrogen mustard application to rabbit eyes.72 In addition to nitrogen mustard-induced 

irritation, antidromic stimulation of the trigeminal nerve and formaldehyde-induced irritation of 

the eye do not cause prostaglandin release nor are the responses to these stimuli inhibited by 

prostaglandin synthetase inhibitors.106 The mediators of blood-aqueous barrier breakdown 

following trigeminal nerve stimulation are likely sensory neuropeptides like calcitonin gene-

related peptide and substance P.107-110 Substance P-like immunoreactivity was documented in 

rabbit eyes following trigeminal nerve electrical stimulation, and similar ocular signs of miosis 
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and blood-aqueous barrier breakdown were also observed in rabbit eyes after intracameral 

injection of substance P, with the nonsteroidal anti-inflammatory agent indomethacin failing to 

block the effects .107  

Aside from neurogenic stimulation, ocular irritative and inflammatory responses are most 

notably mediated by prostaglandins. Prostaglandins are formed in vivo from metabolism of cell 

membrane arachidonic acid via the cyclooxygenase pathway.111 PGE and PGF2α are the 

predominant metabolites present in ocular tissues during inflammatory events.80 Rabbits 

administered various prostanoids showed a rapid, monophasic response of blood-aqueous barrier 

breakdown to PGE2 and the EP2 selective agonist 11-deoxy PGE1 indicating EP2 receptor 

subtype mediation.112 Paracentesis-induced disruption of the blood-aqueous barrier is mediated 

largely by prostaglandins, most notably E-type, released from the anterior uveal tissues with the 

response minimized by prostaglandin inhibitor treatment.47,49,50,55-57,65,71-73,79,113-115  

As previously discussed, aqueous paracentesis has been used as a model of blood-

aqueous barrier breakdown and has contributed significantly to description of the ocular changes. 

It has been documented that the main site of blood-aqueous barrier disruption is the ciliary 

processes.71,99,106,116,117 Fluorescein angiography has been used to document that after 

paracentesis the ciliary processes are the origin of the protein and fluorescein that enter the 

anterior chamber via the pupil.59 Scanning electron microscopy images of the ciliary body from 

monkey eyes following paracentesis have demonstrated swollen ciliary processes with plasma 

proteins, particularly fibrin, entering the posterior chamber.51 Light and electron microscopy also 

showed prominent structural alterations in the ciliary epithelium of the pars plicata in 

cynomolgus monkey eyes, but these changes were not diffuse with the anterior portion more 

severely affected and the posterior epithelium less disrupted.69 However, following 

prostaglandin-treatment of rabbit eyes, the tracer horseradish peroxidase was seen penetrating the 

anterior and posterior ciliary process nonpigmented epithelium intercellular clefts equally.118  

Even though the ciliary processes are known to be the main site of blood-aqueous barrier 

breakdown, other tissues have also been studied. Following topical application of PGE1 or PGE2 

to rabbit eyes, iris vessels become permeable to horseradish peroxidase with notable leakage into 

the iris stroma.101 On the other hand, posterior inflammation does not appear to result from 

ocular irritation or trauma to the anterior segment. Aqueous paracentesis of rabbit eyes resulted 

in increased aqueous humor PGE2 values; however, PGE2 was not detected in the vitreous, 
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indicating that prostaglandins do not diffuse posteriorly and that they are not released locally 

from posterior segment tissues.119 

Early studies identified the importance of prostaglandins following paracentesis; 

however, given that no drug completely abolished the increase in protein after paracentesis 

injury, it was hypothesized that an antidromic nervous component existed or that the ciliary 

epithelium was mechanically damaged during paracentesis.65,71 Paracentesis-induced blood-

aqueous barrier breakdown has been studied specifically in dogs and results show that 

prostaglandins are indeed the most important mediators of the ocular irritative response, with 

sensory neuropeptides less important and leukotrienes playing no role.47 Though topical 

flurbiprofen significantly reduced blood-aqueous barrier breakdown as measured by anterior 

chamber fluorophotometry,47 the inability to completely abolish the response suggests that 

additional non-prostaglandin, non-sensorineurally-derived mediators may be involved or that the 

rapid reduction in IOP causes physical damage to the blood-aqueous barrier.47,51,54 Similar canine 

studies evaluating other nonsteroidal anti-inflammatory drugs document reduced but not 

abolished aqueous protein increases following paracentesis, again suggesting the blood-aqueous 

barrier breakdown is only partially mediated by prostaglandins.75,76,120 

The sequence of events after paracentesis-induced blood-aqueous barrier breakdown 

involves prostaglandin accumulation followed by anterior chamber protein entry. After 

paracentesis of rabbit eyes, aqueous humor PGE2 and 6-keto-PGF1α values rapidly increased, 

followed by protein increases to maximal levels at 30 minutes.78 The increased protein 

concentration in the reformed, or secondary, aqueous humor has a decreased albumin:globulin 

ratio and increased percent of α- and γ- globulins as opposed to the larger β-globulins.89 An early 

paracentesis study showed that marked hypotony significantly affected the protein content of the 

reformed aqueous, but speed of aspiration and grasping of the conjunctiva with forceps had no 

effect on protein content.121 Neupert and Lawrence also found that final IOP (<12.5 mm Hg) 

after paracentesis may be more important in determining aqueous protein concentration than rate 

of IOP change.89  

Blood-aqueous barrier breakdown is accompanied by a rapid rise in IOP, a response also 

induced by prostaglandins. Various prostaglandins administered topically and systemically have 

been shown to cause transient IOP elevation in animals.122-124 Paracentesis-induced ocular 

hypertension follows blood-aqueous barrier breakdown and is variable between species. Unger et 
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al found rebound hypertension was maximal in treated eyes of rabbits 15-20 minutes following 

paracentesis with pressures 13 mm Hg greater than control values.71 A separate rabbit study 

documented elevated IOP within 15 minutes and lasting 2 hours after paracentesis.67 The ocular 

hypertension is likely due to a sudden rise in the anterior uveal blood volume with a subsequent 

increase in ultrafiltration and plasma extravasion, though blepharospasm and reflex contraction 

of the extraocular muscles may also confound the effect.103,125 In addition to inflow of plasmoid 

aqueous, the role of pupillary block associated with severe miosis was also suggested as rabbit 

eyes pretreated with sector iridectomy had less profound (50% less) pressure elevation after 

paracentesis;67 however, in the study by Unger et al only slight pupillary constriction was 

noted.71 Following paracentesis in cynomolgus monkeys IOP increased rapidly reaching its 

highest value (20 mm Hg) at 3 hours, then returned to normal at 6-9 hours.69  

Though prostaglandins are known to cause increased IOP, other mediators of ocular 

inflammation may also be involved or have similar effects, with variation noted between 

species.126 This is suggested by studies in which nonsteroidal anti-inflammatory agents were 

unable to block the hypertensive response following ocular irritation.72,127  

After blood-aqueous barrier breakdown ocular hypertension persists until aqueous 

outflow increases as compensation, or congestion and edema of the ciliary processes decrease 

aqueous formation.103,109 Prostaglandins are believed to increase aqueous humor drainage via 

uveoscleral outflow, though other mediators may also be associated with the subsequent fall in 

IOP.109,126 Thereafter ocular hypotony ensues, with decreased IOP a common clinical finding in 

uveitis.128  

It is uncertain exactly how long the blood-aqueous barrier takes to recover its function 

after damage with variability likely dependent on type and severity of trauma as well as the 

species affected. After paracentesis of rabbit eyes, increased aqueous humor prostaglandin and 

protein levels decreased to near baseline values 48 hours after trauma indicating almost complete 

resolution.78 In a monkey study involving paracentesis and intravenous horseradish peroxidase, 

breakdown of the blood-aqueous barrier was not functionally repaired even seven days after the 

operation with marker molecules noted in the intercellular spaces beyond the nonpigmented 

ciliary epithelium tight junctions.77 A separate study using cynomolgus monkeys noted persistent 

morphologic differences present in the anterior portion of the pars plicata seven days following 

paracentesis.69  
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In addition to the numerous studies involving paracentesis, other research models have 

also been used to study blood-aqueous barrier breakdown and therapeutic modalities. 

Investigations have utilized topical irritants,48 topical pilocarpine,81,129-131 ocular surgery,132 

anterior segment ischemia,133 laser treatment of the iris59,134 or lens,90,91,127,135 intraocular 

injection of endotoxin,80,93,115,136-138, intravitreal injection of vascular endothelial growth 

factor,139 intravitreal injection of endothelin-1,96 intravitreal injection of adjuvant,115 and a more 

recent ocular perfusion model that does not have to be performed on live animals.140  

Blood-aqueous barrier breakdown associated with anterior uveitis results in the clinical 

changes previously discussed, and if severe may be accompanied by signs of ocular pain, 

epiphora, photophobia, corneal changes, hypopyon, hyphema, and iris changes.141,142 

Consequences of severe or prolonged blood-aqueous barrier breakdown include iris adhesions 

(synechiae), pre-iridofibrovascular membranes, loss of corneal transparency, cataract, lens 

subluxation, glaucoma, and phthisis bulbi.142 Treatment of ocular inflammation utilizing both 

corticosteroids and nonsteroidal anti-inflammatory agents to block production of prostaglandins 

and other metabolites of arachidonic acid is imperative so that vision-threatening sequelae of 

ocular inflammation can be avoided.111,143,144  

Consensual Reactions 

Not only does ocular trauma affect the treated eye, but a consensual reaction has also 

been documented in the contralateral untreated eye of rabbits117,119,145-147 and humans.148 

Following anterior chamber paracentesis of rabbit eyes a rapid rise in PGE2 levels was 

documented in treated eyes as well as contralateral untreated eyes.119 Scanning electron 

microscopy of rabbit eyes treated with paracentesis and contralateral control eyes demonstrated 

changes in ciliary body processes consistent with both a direct and consensual reaction.117 The 

researchers hypothesized the consensual response was carried from the traumatized to non-

traumatized eye by a neural reflex arc but could not rule out a modulating or mediating role for 

prostaglandins.117 Early studies involving intracameral injections of prostaglandins in rabbit eyes 

resulted in elevated IOP in both the treated and contralateral untreated eye.145,146 The authors 

concluded the consensual reaction was due to a transfer of prostaglandin from the injected eye to 

the opposite eye via systemic blood circulation.145,146 However, a later study involving rabbit 

paracentesis and anterior segment fluorescein angiography found that the consensual responses 
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were more effectively inhibited by nerve-blocking agents than prostaglandin inhibitors and 

therefore the interocular pathway mediating the response was probably neural.147 This is 

supported by the fact that prostaglandins released into the general circulation are rapidly 

inactivated by the liver and lungs so that only scant amounts may reach arterial circulation.147 

The consensual ocular reaction is an important biological finding and is clinically noteworthy as 

it was documented immediately following and then up to one month following cataract surgery 

in humans.148 A study using paracentesis and fluorophotometry in cynomolgus monkeys did not 

find increased fluorescein concentration in the contralateral eye though.70 

Species Variations 

Blood-aqueous barrier breakdown has been studied extensively over the years but there is 

considerable species variation in the responsiveness of the eye to acute insults.125 This variability 

is important to note, especially in regard to research models and when evaluating therapeutic 

strategies. Rabbit eyes are much more responsive to injury than primates and the physiologic 

response is somewhat altered.103 For example, paracentesis in monkeys causes only a mild and 

short-lived breakdown of the blood-aqueous barrier,70 and protein accumulation in the anterior 

chamber following paracentesis in monkeys does not originate from the posterior chamber, 

instead entering the aqueous humor by reflux through Schlemm’s canal.51,69,149 This variability is 

not surprising as a mechanism facilitating blood-aqueous barrier breakdown is advantageous to 

some species but disadvantageous to others. 

A paper by Bito extensively discusses evolutionary divergence in ocular defense 

mechanisms.150 On a physiologic basis, the most pronounced effect of acute blood-aqueous 

barrier breakdown is protein entry into the aqueous humor. This is a primary ocular defense 

mechanism necessary for the rapid delivery of clotting factors into the anterior chamber so that 

penetrating corneal wounds can be rapidly sealed and repaired. It has been shown that those 

animals with more labile blood-aqueous barriers are the most vulnerable to corneal perforation 

because of their morphological, behavioral, and environmental adaptations. These species, such 

as rabbits, rely on monitoring visual systems with laterally placed, somewhat protruding, and 

hence relatively unprotected globes. In contrast, primates have searching type visual systems that 

require visual acuity and stereopsis. These species have well-protected globes and more stable 

blood-aqueous barriers given the obvious disadvantage aqueous humor protein has on visual 
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acuity. There is a positive correlation among species between dependence on visual acuity and 

blood-aqueous barrier stability and a negative correlation between corneal vulnerability and 

blood-aqueous barrier stability.150  

For this reason, extrapolation from rabbits or other species commonly used in ocular 

research is not always appropriate. Comparative studies are valuable, but ultimately 

documentation of a response in species of interest is most important and necessary for evidence 

based medicine. 

Quantification of Blood-Aqueous Barrier Breakdown 

Slit-Lamp Assessment 

Aqueous flare is the result of proteins leaking from systemic circulation into the 

relatively protein-free aqueous humor when the anterior uveal blood vessel integrity and 

epithelial cell junctions are compromised.94 Though the normal aqueous humor is acellular, cells 

can also be observed in the anterior chamber during intraocular inflammation. Cells in the 

aqueous humor originate locally from the uveal tissues or enter the aqueous humor after passing 

through compromised capillary walls and epithelial barriers.141 

Subjective grading of changes in aqueous humor composition with blood-aqueous barrier 

breakdown by slit-lamp examination has been widely employed to quantify aqueous flare 

intensity and cell number in uveitis.141 Normal aqueous humor is optically clear; however, if 

blood-aqueous barrier breakdown occurs protein and cells leak into the aqueous and can be 

visualized in a slit-lamp beam of light passing through the anterior chamber (Tyndall light 

phenomenon).141 Evaluation is performed in a very dark room with intensity of the beam passing 

through the protein-rich aqueous humor subjectively quantified (Figure 1-1).141 Grades for 

aqueous flare include 0 for complete absence, 1+ for faint flare (barely detectable), 2+ for 

moderate flare (iris and lens details clear), 3+ for marked flare (iris and lens details hazy), and 4+ 

for intense flare (fixed, coagulated aqueous humor with considerable fibrin). Aqueous humor cell 

levels are quantified on a similar scale based on cellular density in the beam of light (wide beam 

with narrow slit) with a grading of 0 for no cells, 1+ for 5-10 cells per field, 2+ for 10-20 cells 

per field, 3+ for 20-50 cells per field, and 4+ for 50+ cells per field. Though this method is 

simple, convenient, repeatable and clinically useful, it is subjective, not sensitive, and not 

standardized. Slit-lamp assessment is most applicable in a clinical setting. In research studies, 
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this type of subjective examination has low sensitivity, poor reproducibility, a lack of 

standardization values between different instruments, and suffers from observer bias.151 

 

Figure 1-1 Tyndall light phenomenon demonstrating aqueous flare. 

 

Image courtesy of Dr. Paul Miller 

Fluorophotometry 

Increased concentration of fluorescein in the eye following systemic administration has 

been shown to correlate well with increased protein concentration in the eye, suggesting protein 

and fluorescein pass into the aqueous at the same place (ciliary body) and from the same source 

(blood plasma).73 This basis allows fluorophotometry to be used to quantitatively assess anterior 

chamber inflammation and is an objective means of assessing blood-aqueous barrier breakdown.  

Fluorophotometric evaluation of the blood-aqueous barrier measures the diffusion of 

small fluorescein molecules (MW 376) into the anterior chamber and allows detection of even 

subclinical alterations.152 The amount of fluorescein that enters the anterior chamber following 

systemic administration is proportional to the degree of blood-aqueous barrier disruption, 

allowing anterior chamber fluorophotometry to provide a reliable and noninvasive method of 

evaluating the integrity of the blood-aqueous barrier.54 Following administration of intravenous 

fluorescein, a patient is placed in front of the fluorophotometer and a blue excitation beam scans 

the eye along the optical axis (Figure 1-2). The machine’s optic head receives green fluorescence 
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readings, which are processed by the photodetector and associated computer. Results are 

reported in fluorescein ng/ml and displayed graphically (Figure 1-3). Each scan takes only a few 

seconds, but some animal patients may need sedation or anesthesia to allow proper positioning. 

The cited disadvantages of fluorophotometry are that it requires administration of systemic 

fluorescein with potential adverse reactions153,154 and a short time delay (30-90 minutes) 

necessary before readings can be performed. 

 

Figure 1-2 Ocular fluorophotometry being performed on a canine patient. 
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Figure 1-3 Data generated by the fluorophotometer showing a graphical display of ocular 

fluorescence and equivalent fluorescein concentrations (ng/ml) with peak plateau levels 

present in the anterior chamber.  
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Data reporting and analysis of fluorophotometry results has been performed in a variety 

of ways over the years with methods that include actual fluorescein concentrations, percent 

increase in the treated versus the contralateral eye, percent increase as compared to baseline, and 

calculation of a diffusion coefficient. No one method has shown to be superior. Studies that 

utilize mean anterior chamber fluorescence report results in ng/ml.70,90,135,136,155-159 Investigations 

that report results in percent increase in the treated versus the contralateral eye use the formula: 

%INC FL = {(FLtx – FLuntx)/(FLuntx)} x 100.47,54-56,132,160,161 This method has been used for 

calculation because both eyes equilibrate against the same serum concentration; however, it has 

been stated that this ratio may be deceptive due to a consensual reaction in the contralateral 

unoperated eye.148,152,157 A 2008 study reported results as a percentage increase in the post-

treatment fluorescein concentration over the baseline concentration using the following formula: 

%INC FL = {(FLpost – FLbaseline)/(FLbaseline)} x 100.162 A diffusion coefficient for fluorescein can 

also be calculated by fluorophotometry, providing a physical value for the leakage of fluorescein 

molecules through the blood-aqueous barrier. This method is reliable and reproducible as long as 

a strict protocol is followed, which involves multiple blood samples and numerous 

fluorophotometric measurements per eye.163 This method is less commonly used for 

investigations due to the conclusion that measurement of plasma fluorescence and calculation of 

a diffusion coefficient does not improve the clinical accuracy of anterior chamber 

fluorophotometry.156 Shah et al suggest that the concentration of anterior chamber fluorescence 

(ng/ml) is appropriate for quantification provided that patients are systemically well and are 

given the same dose of fluorescein by the same route.156  Further studies are warranted to 

determine which method of analysis is most appropriate in dogs. 

Anterior chamber fluorophotometry can be used to assess the integrity of the blood-

aqueous barrier in research studies, after intraocular surgery, and during clinical disease 

(uveitis).47,54-56,70,90,93,132,135,139,152,155,157,159-162,164 This method of assessing the functional status of 

the blood-aqueous barrier is simple, sensitive, objective, reproducible, and provides observer-

independent results.155,157,164 Fluorophotometry is able to detect differences that cannot be 

clinically assessed155,160 and provides a longer-lasting indicator of permeability barrier disruption 

than macromolecule leakage.132  
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Laser Flaremetry 

Aqueous humor protein and cells can be noninvasively and objectively quantified by a 

laser flare cell meter.165 The system consists of a helium-neon laser slit lamp, a binocular 

microscope fitted with a photomultiplier, and a personal computer that controls the system and 

analyzes the data (Figures 1-4 and 1-5). The 25 µW helium-neon laser beam has a focused 

diameter of 20 µm and is projected into the anterior chamber with beam scattering detected in a 

sampling window (0.3 x 0.5 mm) by the photomultiplier. Scans lasting only 0.5 seconds are 

performed sequentially for protein concentration and cell count with the total scan time taking 

one second. The laser beam light scattering intensity in the anterior chamber is analyzed and 

results are reported as photon counts of scattered light per millisecond (pc/ms). The test is 

rapidly repeatable and therefore allows demonstration of dynamic changes. 

 

Figure 1-4 Laser flare cell meter. 

 

Image courtesy of Dr. Amy Rankin 
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Figure 1-5 Feline patient positioned in front of the laser flare cell meter. 

 

Image courtesy of Dr. Amy Rankin 

 

Albumin is the major protein constituent of normal aqueous humor and laser flaremetry 

has been shown to reliably predict albumin protein concentration in noninflamed eyes.166 

However, as eyes become progressively more inflamed there is an increase in both the 

concentration and proportion of higher molecular weight molecules, both of which increase light 

scattering and preclude use of a calibration curve based on albumin alone.167 To avoid protein 

overestimation, it is recommended that laser flare results be expressed in either pc/ms or 

converted into an equivalent protein concentration using a calibration curve based on actual 

anterior chamber protein measurements.166,167 Investigation of canine patients confirms that laser 

flaremetry results should be expressed as pc/ms or converted to protein concentration by using 

the dog in vivo calibration curve for comparisons with data of other studies to avoid 

overestimation from use of the albumin curve.92 Others recognize that macromolecules, like 

globulin and lipids, generate stronger scattering effects than albumin, but feel that except in cases 

of very strong inflammation the intensity measured with the laser flare cell meter parallels the 

actual aqueous protein concentration.151 
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Aqueous humor cell count can also be quantified with the laser flare cell meter. A study 

by Krohne et al determined that the cell measuring function was accurate and useful, but did cite 

certain limitations.168 The authors identified a difference between cell sizes and counting 

accuracy and also noted that the instrument counted flare if beads or cells were present, even 

when protein was not present.168 The artifactual flare was attributed to scatter from the cells or 

beads studied, and would not likely cause a problem in clinical or research cases with uveitis due 

to higher expected protein concentrations in diseased eyes.168 One study in humans also 

recognized a limitation in cell counting with the laser flare cell meter as 16.8% of clinical uveitis 

cases graded to have 1+ cells by slit-lamp examination were not detected by the laser flare cell 

meter.151 This was attributed to the limited sampling window and short sampling time of the laser 

flare cell meter as compared to the larger observation volume and arbitrary time of slit-lamp 

examination.151  

Aside from these minor limitations, the laser flare cell meter has been deemed a useful 

clinical and investigative tool for noninvasive, repeatable, quantitative assessment of the blood-

aqueous barrier and has been used in numerous studies.81,92,96,129-131,133,151,152,164,168-170 Laser flare 

and cell measurement is relatively easy to perform and reproducibility is within a reliable range 

for biological systems.164  

Aqueous Humor Microprotein Assays 

Given that aqueous humor protein concentration increases are directly proportional to the 

severity of blood-aqueous barrier breakdown actual protein values can be evaluated.171 In order 

to determine aqueous humor protein a sample of aqueous fluid is collected by paracentesis and 

protein concentration is quantified in mg/dl typically using the Coomassie blue technique for 

microprotein analysis.172 In one study healthy dogs averaged 15.1 mg/dl aqueous protein with a 

range of 5-28 mg/dl,92 while another canine study reported slightly higher normal values 

averaging 36.4 mg/dl and ranging from 21 to 65 mg/dl.2 Though calculation of aqueous humor 

protein has been utilized in numerous studies as an objective measure of blood-aqueous barrier 

breakdown,49,50,57-59,66,68,72,73,75,76,79,81,92,95,138 collection of the sample is invasive and further 

blood-aqueous barrier breakdown complicates sequential measurements. 
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Comparison of Techniques 

In a clinical setting, slit-lamp assessment is the most practical method for evaluating 

blood-aqueous barrier breakdown. The semi-quantitative method of grading aqueous humor flare 

and cells can be performed repeatedly and by different observers, but is therefore subjective and 

insensitive. On the other end of the spectrum, microprotein assays are very sensitive and specific, 

but due to the nature of aqueous collection are invasive and preclude repeated monitoring over 

short periods of time. For these reasons, the fluorophotometer and laser flare cell meter have 

become the primary means of assessing blood-aqueous barrier breakdown in research studies. 

There is widespread debate as to which method is superior, and it has been stated that the two 

techniques may measure different and not identical parameters of blood-aqueous barrier 

function.156  

It is known that the laser flare cell meter measures the barrier function to protein and 

cells, while the fluorophotometer measures the influx of small fluorescein molecules. A 1983 

study in rabbits documented selective barrier reestablishment for different-sized molecules and 

found fluorescein leakage to be a more sensitive and longer-lasting indicator of loss of integrity 

of permeability barriers between the blood and aqueous than macromolecule leakage.132 In a 

1992 human study, fluorophotometry was found to be more sensitive for early blood-aqueous 

barrier changes as compared to laser flaremetry.164 It was stated that in cases of moderate blood-

aqueous barrier dysfunction increased permeation of fluorescein possibly precedes that of bigger 

molecules, whereas albumin passes into the eye in higher quantities with more distinct failure of 

the blood-aqueous barrier.164 Another human study measuring blood-aqueous barrier function 

following cataract surgery found fluorophotometry to be more sensitive than flaremetry in 

detecting small alterations in barrier permeability.152 The need to administer systemic 

fluorescein, wait for steady-state aqueous humor levels, and allow adequate wash-out of 

fluorescein between repeated fluorophotometry measurements has been cited as the main benefit 

to using laser flaremetry.92 Despite these minor differences, both fluorophotometry and laser 

flaremetry are able to provide sensitive, reliable measures of ocular inflammation and both are of 

use in the quantitative assessment of damage to the blood-aqueous barrier.152,156 
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CHAPTER 2 - Ocular Effects Following Aqueocentesis in Dogs 

Using Variable Needle Sizes: Fluorophotometric and Tonometric 

Evaluation 

Introduction 

Ocular anterior chamber paracentesis, or aqueocentesis, is a commonly performed 

procedure for both diagnostic and therapeutic purposes in veterinary medicine. In a clinical 

setting it may be performed in the face of anterior chamber disease to collect a sample of 

material for diagnostic purposes. It is also employed as therapy in emergency management of 

glaucoma to protect the retina from the deleterious effects of elevated intraocular pressure (IOP) 

when refractive to medical means of pressure control. Aqueocentesis is accomplished by 

inserting a 25- to 30-gauge hypodermic needle through the limbal cornea into the anterior 

chamber, with the needle passing parallel to the iris.19 This is commonly performed in a clinical 

setting on awake patients under topical anesthesia alone, though general anesthesia may be 

employed in select cases. It is important to note that aqueocentesis has been shown to cause 

intraocular inflammation by inducing breakdown of the blood-aqueous barrier. For this reason 

anterior chamber paracentesis has been used as a model of intraocular inflammation for research 

investigations in a variety of species.47-76,81 

The ocular blood-aqueous barrier is formed by the endothelium of the iris blood vessels, 

the non-pigmented layer of the ciliary epithelium, and the posterior pigmented epithelium of the 

iris.100 These structures normally prevent substances present in the blood from entering the eye. 

When the barrier is disrupted the blood vessels dilate and plasma proteins leak into the aqueous 

humor.103 Common causes of blood-aqueous barrier breakdown are anterior uveitis, ocular 

surgery, trauma, aqueous paracentesis and ocular irritants. Blood-aqueous barrier breakdown can 

be assessed by subjective ophthalmic examination using a time-honored semiquantitative grading 

scheme, with aqueous flare indicating protein-rich aqueous humor.141 Objective techniques that 

allow for more accurate comparison of blood-aqueous barrier compromise include 

fluorophotometry, laser flaremetry, and aqueous humor protein assays. Anterior chamber 

fluorophotometry noninvasively measures the fluorescein concentration in the anterior chamber 
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following systemic administration of fluorescein. Greater levels of fluorescein entering the 

anterior chamber indicate greater permeability of the blood-aqueous barrier; therefore 

fluorophotometry can be used to quantify the degree of blood-aqueous barrier disruption.  

Considering aqueocentesis is a common diagnostic and therapeutic practice with known 

adverse effects, the question remains whether those adverse effects can be minimized with use of 

a smaller gauge needle. This variable has not been previously studied so no scientifically-based 

recommendations for aqueocentesis needle size are currently reported in the literature. The 

purposes of this study were to use anterior chamber fluorophotometry to evaluate the degree of 

blood-aqueous barrier breakdown following aqueocentesis using variable needle sizes and 

tonometry to track the IOP response.  

Materials and Methods 

Animals 

The use of dogs and all procedures in this study were approved by the Institutional 

Animal Care and Use Committee at Kansas State University. Beagle dogs were obtained 

following use in prior studies unrelated to ophthalmic research, and after completion of our study 

were returned for eventual adoption. Dogs were housed individually in a temperature-controlled 

environment illuminated by fluorescent lights that were automatically turned on (from 8 a.m. to 8 

p.m.) and off. Prior to their inclusion in the study, individual physical and ophthalmologic 

examinations were performed and all dogs were deemed healthy with no confounding 

conditions. Ocular examination included rebound tonometry,a slit-lamp biomicroscopy,b and 

indirect ophthalmoscopy.c Animals were adapted to human contact for a minimum of 3-6 weeks 

during their previous research investigations. Three dogs (two intact males and one intact 

female) were used for preliminary work to determine ideal time points for study design. Twenty-

eight dogs (13 intact male dogs, two neutered male dogs, and 13 intact female dogs) were used 

for the research study with 24 dogs in the treatment groups and 4 dogs in the control group; 

however, one control dog developed a corneal ulcer in one eye and was removed from the study. 

Aqueocentesis 

Twenty-four healthy, adult beagles were divided into 3 equal treatment groups (25-, 27-, 

or 30-gauge needle) by permuted block randomization. In each dog the treated eye was 
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determined randomly by the flip of a coin and the contralateral eye remained untreated. Three 

healthy, adult beagles did not receive treatment in either eye but participated in all other aspects 

of the study and were used as controls with each eye treated as an independent variable.   

Aqueous paracentesis, anterior chamber fluorophotometry, and tonometric measurements 

were all performed by a single investigator (RAA). Animals were sedated with ketamined (8.8 

mg/kg of body weight, IM) and xylazinee (0.88 mg/kg of body weight, IM) prior to 

aqueocentesis and fluorophotometer scans for optimal patient positioning and accurate 

measurements. Topical anestheticf (0.5% proparacaine) and 5% povidone iodine were applied to 

the eye prior to aqueocentesis. Bishop-Harmon forceps grasped the bulbar conjunctiva to 

stabilize the eye and a needle was inserted through the lateral perilimbal cornea parallel to the 

iris (Figure 2-1). Care was taken to avoid the iris, lens, and corneal endothelium. The needle hub 

was allowed to fill half-way and then was rapidly removed from the eye. No effort was made to 

prevent regurgitation of aqueous humor through the corneal puncture site. The aim of our study 

was to evaluate the clinical practice of therapeutic aqueocentesis, therefore uncontrolled 

paracentesis was performed. 

 

Figure 2-1 Globe stabilization and needle positioning for performing aqueocentesis. 
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Fluorophotometry 

A computerized scanning ocular fluorophotometerg with an anterior chamber adapter was 

used to measure fluorescein concentrations in the central anterior chamber of each eye following 

administration of 10% fluoresceinh (20 mg/kg of body weight, IV). Each dog was placed in 

sternal recumbency, the head was stabilized, the eyelids were held open, and the eye was 

positioned in front of the scanner (Figure 2-2). For consistency the left eye was always scanned 

first, followed immediately by the right eye with no more than 2 minutes elapsing between 

measurements at each time point. Aqueous humor fluorescein values are reportedly maximal and 

stable in dogs between approximately 30 and 90 minutes after intravenous injection of 

fluorescein.54 Results from our preliminary work with three dogs confirmed this finding and for 

the research study all fluorophotometry readings were scheduled during this appropriate post-

injection period. Fluorophotometry was performed on sedated dogs prior to and following 

aqueocentesis on day 1, then daily through day 5 (and at equal time points in control dogs). To 

minimize motion during fluorophotometric readings chemical restraint is commonly needed in 

dogs. It has been previously shown that the administration of ketamine and xylazine does not 

alter blood-aqueous barrier permeability.54 

 

Figure 2-2 Patient positioning for ocular fluorophotometry with use of the anterior 

chamber adapter. 
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Tonometry 

All IOP measurements were performed using a rebound tonometer as previously 

described.23,25,173 The measurements were taken with each dog manually restrained sternally, the 

head maintained in an upright position and the eyelids gently held open while avoiding pressure 

on the globe (Figure 2-3). Three consecutive IOP readings were obtained on each eye according 

to manufacturer specifications and IOP was determined as the mean of these readings. Given that 

the cornea would be anesthetized for IOP readings immediately following aqueocentesis, initial 

tonometric readings were taken both prior to and after application of topical anesthetic to 

evaluate for significant variation. One drop of topical anesthetic (0.5% proparacaine) was applied 

to the cornea and tonometry was repeated in the same manner described above. In order to 

maintain consistent and comparable IOP values throughout the study topical anesthesia was 

utilized for every tonometric measurement. 

 

Figure 2-3 Use of the Tono-Vet® rebound tonometer for intraocular pressure 

measurement. 

 

Study Time Points 

The experimental schedule was based on reports from previous studies 54 and results of 

preliminary testing on three dogs. Time points for the 24 treated dogs were as follows 
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(hours:minutes): Day 1 – initial examination and IOP; time 0 IV fluorescein; 0:25 IM sedation; 

0:30 pre-aqueocentesis fluorophotometer scan (baseline); 0:33 pre-aqueocentesis IOP; 0:35 

aqueocentesis; 0:36 1 minute post-aqueocentesis IOP; 0:55 20 minutes post-aqueocentesis IOP; 

1:05 post-aqueocentesis fluorophotometer scan; 1:15 40 minutes post-aqueocentesis IOP; 1:35 

60 minutes post-aqueocentesis IOP; IOP measurements continued every 60 minutes until 8 hours 

following aqueocentesis (Table 2-1). Follow-up ocular examinations were performed 6 hours 

after aqueocentesis. Days 2-5 – examination and IOP; IV fluorescein 1 hour prior to 

fluorophotometry; IM sedation 10 minutes prior to fluorophotometry; fluorophotometer scans 

every 24 hours post aqueocentesis (Table 2-2). Control dogs were studied similarly; however, 

aqueocentesis was not performed and only topical betadine and ophthalmic anesthetic were 

applied to the eyes at 0:35 on Day 1. 

 

Table 2-1 Experimental schedule time points on Day 1 of the study (hours:minutes) 

Time Point Measurement 

Baseline data Initial exam and IOP 

0:00 Intravenous fluorescein 

0:25 Intramuscular sedation 

0:30 Pre-aqueocentesis fluorophotometer scan 

0:33 Pre-aqueocentesis IOP 

0:35 Aqueocentesis 

0:36 1 minute post-aqueocentesis IOP 

0:55 20 minutes post-aqueocentesis IOP 

1:05 Post-aqueocentesis fluorophotometer scan 

1:15 40 minutes post-aqueocentesis IOP 

1:35 60 minutes post-aqueocentesis IOP 

+1:00 Hourly post-aqueocentesis IOPs 

6:35 6 hours post-aqueocentesis ocular examination 
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Table 2-2 Experimental schedule time points on Day 2 of the study (hours:minutes) with 

subsequent daily evaluations every 24 hours through Day 5. 

Time Point Measurement 

23:00 Ocular exam and IOP 

23:35 Intravenous fluorescein 

24:25 Intramuscular sedation 

24:35 Fluorophotometer scan 

End of day Ocular examination 

 

Data Analysis 

Results from this study are reported as mean anterior chamber fluorescence in ng/ml as 

has been used in previous investigations.70,90,135,136,155-159 Additional methods of analyzing 

fluorophotometer results include percent increase in the treated versus the contralateral eye using 

the formula: %INC FL = {(FLtx – FLuntx)/(FLuntx)} x 10047,54-56,132,160,161 and percentage increase 

in the post-treatment fluorescein concentration over the baseline concentration using the formula: 

%INC FL = {(FLpost – FLbaseline)/(FLbaseline)} x 100.162 Though mean fluorescence in ng/ml was 

used as the primary method of analysis in our study, the additional percentage increase methods 

were also employed when comparing between treatment groups. 

A commercial software programi was used for all statistical analyses. Values of P < 0.05 

were considered significant. Intraocular pressure values obtained prior to or following 

application of topical anesthetic were compared using a paired T-test. Anterior chamber 

fluorescein values in the treated versus the contralateral untreated eyes were compared within 

each treatment group using a paired T-test. Treatment groups were compared by repeated 

measures analysis of variance followed by a Newman-Keuls posthoc multiple comparisons test 

to discern individual differences. This method was utilized for both gross anterior chamber 

fluorescein values and percent increase in fluorescence evaluation. Anterior chamber fluorescein 

values in treated or contralateral untreated eyes were compared over time by repeated measures 

analysis of variance followed by a Newman-Keuls posthoc multiple comparisons test to discern 

individual differences. Multiple linear regression was used to evaluate the effect of treatment 
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group on IOP over time and analysis of variance was performed to determine whether there were 

significant differences in IOP measurements at specific time points between treatment groups.  

Results 

Fluorophotometry 

Aqueocentesis caused blood-aqueous barrier disruption using all needle sizes. Evaluating 

all treated eyes as a group, significant increased anterior chamber fluorescence was present at the 

post-aqueocentesis (P < 0.001), day 2 (P < 0.001), day 3 (P = 0.0014) and day 4 (P = 0.0011) 

time points as compared to contralateral untreated eyes (Table 2-3). In the 25-gauge needle 

group a significant difference was present between the treated and contralateral untreated eyes at 

the post-aqueocentesis (P = 0.0163), day 2 (P = 0.0387), and day 3 (P = 0.0428) time points with 

significantly greater anterior chamber fluorescence in the treated eyes (Figure 2-4). In the 27-

gauge needle group a significant difference was present between the treated and contralateral 

untreated eyes at the post-aqueocentesis (P = 0.0017), day 2 (P = 0.001), day 3 (P = 0.001) and 

day 4 (P = 0.002) time points with significantly greater anterior chamber fluorescence in the 

treated eyes (Figure 2-5). In the 30-gauge needle group a significant difference was present 

between the treated and contralateral untreated eyes at the post-aqueocentesis (P = 0.0333), day 2 

(P = 0.0173), and day 3 (P = 0.0078) time points with significantly greater anterior chamber 

fluorescence in the treated eyes (Figure 2-6). 

Fluorophotometry values for treated eyes showed statistically significant mean increased 

fluorescence in the 25-gauge treatment group as compared to the 27- and 30-gauge treatment 

groups on day 3 (P = 0.0166) and as compared to the 30-gauge treatment group on day 5 (P = 

0.0478) (Figure 2-7). When percentage increase in fluorescein concentration in the treated versus 

untreated eye is calculated no significant difference is noted between treatment groups at any 

time point (day 3 P = 0.0633 and day 5 P = 0.1919); however, when analyzed based on the 

percentage increase in the post-treatment fluorescein concentration over the baseline 

concentration a statistically significant difference remains on day 3 (P = 0.0383) with 25-gauge 

needle treated eyes having increased fluorescence as compared to 27- and 30-gauge needle 

treated eyes, but there is no significant difference on day 5 (P = 0.0978). 

There were significant differences present over time within all treatment and contralateral 

untreated eye groups (P < 0.001 by repeated measures ANOVA and Newman-Keuls posthoc; 
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Table 2-3). In the 25-gauge needle treated eyes the fluorescein concentration on day 2 was 

significantly greater than prior to aqueocentesis, day 4 and day 5. In addition, the post-

aqueocentesis and day 3 fluorescein values were greater than prior to aqueocentesis. In the 25-

gauge needle contralateral untreated eyes significantly greater fluorescence was present on days 

2 and 3 as compared to prior to and post-aqueocentesis. In the 27-gauge needle treated eyes the 

post-aqueocentesis and day 2 fluorescein values were greater than prior to aqueocentesis, day 3, 

day 4, and day 5. In addition, days 3 and 4 fluorescence was also greater than prior to 

aqueocentesis and on day 5. In the 27-gauge needle contralateral untreated eyes the fluorescein 

value on day 2 was greater than at all other time points. The day 4 fluorescein value was also 

greater than prior to aqueocentesis. In the 30-gauge needle treated eyes day 2 fluorescence was 

greater than all other time points. In the 30-gauge needle contralateral untreated eyes the 

fluorescein value on day 2 was greater than prior to aqueocentesis, post-aqueocentesis, and on 

day 5. Days 3 and 4 fluorescence were greater than prior to and post-aqueocentesis. The day 5 

fluorescein value was greater than prior to aqueocentesis. 

Though fluorescein changes were noted over time in the contralateral untreated eyes of 

all groups, no significant difference in anterior chamber fluorescence was found at any time 

point when compared to the control group (Figure 2-8). An unexpected finding was noted in the 

one control dog pulled from the study due to development of a corneal ulcer. In this dog data 

values were still collected over the 5 days and a notable rise in anterior chamber fluorescein was 

present on day 2 in the ulcerated eye, with a mild increase in fluorescence also present in the 

contralateral healthy eye (Figure 2-9).
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Table 2-3 Anterior chamber fluorescein concentrations (mean ± standard deviation in ng/ml) for treated, contralateral 

untreated, and control eyes at each study time point. 

 Pre-aqueo Post-aqueo Day 2 Day 3 Day 4 Day 5 

25-gauge treated 298.31 ± 140.94 bd 1274.96 ± 942.66*c 1953.65 ± 1360.54*a 1419.71 ± 778.85*c 800.50 ± 309.61 b 723.71 ± 278.82 b 

25-gauge contralateral 282.64 ± 116.72 b 310.53 ± 128.66 b 760.01 ± 518.49 a 631.79 ± 313.80 a 504.16 ± 250.46 509.15 ± 221.69 

27-gauge treated 355.11 ± 113.24 bd 1087.4 ± 421.49*a 1319.06 ± 348.89*a 758.02 ± 190.34*bc 662.31 ± 192.47*bc 545.18 ± 120.72 bd 

27-gauge contralateral 338.15 ± 127.35 bd 358.34 ± 111.69 b 567.73 ± 190.72 a 433.90 ± 101.22 b 459.29 ± 137.72 bc 446.44 ± 110.06 b 

30-gauge treated 290.29 ± 95.18 b 761.20 ± 418.01*b 1395.36 ± 1064.39*a 706.45 ± 338.09*b 594.96 ± 238.46 b 483.13 ± 117.62 b 

30-gauge contralateral 265.44 ± 90.74 bdf 313.71 ± 96.10 bd 651.28 ± 414.23 a 540.34 ± 243.32 c 521.43 ± 252.23 c 442.15 ± 157.54 be 

All treated eyes 314.57 ± 116.51 1041.19 ± 651.70* 1556.03 ± 1014.26* 964.40 ± 583.51* 685.93 ± 255.72* 584.00 ± 207.75 

All contralateral eyes 295.41 ± 112.22 327.53 ± 110.20 659.67 ± 389.33 535.34 ± 240.68 494.96 ± 212.00 465.91 ± 164.85 

Control eyes 286.57 ± 122.74 323.72 ± 119.42 372.83 ± 113.06 400.77 ± 125.82 349.65 ± 135.59 442.90 ± 129.31 

 
* Indicates statistically significant difference at each time point between treated and contralateral untreated eyes 
 
Statistically significant differences over time within each treated or contralateral untreated eye group: a > b, c > d, e > f
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Figure 2-4 Mean anterior chamber fluorescence (ng/ml) in 25-gauge needle treated and 

contralateral untreated eyes. 

 

* Indicates statistically significant difference at each time point between treated and contralateral 
untreated eyes 

 

Figure 2-5 Mean anterior chamber fluorescence (ng/ml) in 27-gauge needle treated and 

contralateral untreated eyes. 

 

* Indicates statistically significant difference at each time point between treated and contralateral 
untreated eyes 
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Figure 2-6 Mean anterior chamber fluorescence (ng/ml) in 30-gauge needle treated and 

contralateral untreated eyes. 

 

* Indicates statistically significant difference at each time point between treated and contralateral 
untreated eyes 

 

Figure 2-7 Mean anterior chamber fluorescence (ng/ml) in treated eyes of all groups. 

 

* Indicates statistically significant difference between the 25-gauge treatment group as compared 

to the 27-gauge and 30-gauge treatment groups on Day 3, and between the 25-gauge treatment group 

and the 30-gauge treatment group on Day 5 
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Figure 2-8 Mean anterior chamber fluorescence (ng/ml) in untreated eyes of all groups. 

 

 

Figure 2-9 Individual eyes of control dogs showing anterior chamber fluorescence.  

Note Dog 77-07 (pulled from control study) with increased fluorescence in the OS on Day 2 

following development of a corneal ulcer and also notable fluorescein increase in the 

contralateral nonulcerated OD. 
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Tonometry 

Initial tonometric readings taken on each dog were obtained both prior to and after 

application of topical anesthetic and a statistically significant difference in IOP was observed 

following topical anesthesia (no topical anesthesia, mean IOP ± s.d. = 21.20 ± 4.36 mm Hg; after 

topical anesthesia, mean IOP ± s.d. = 19.17 ± 3.60 mm Hg, P = 0.0013). This result was relevant 

for design of the study but did not have clinical significance. In order to maintain consistent and 

comparable IOP values throughout the study topical anesthesia was utilized for every tonometric 

measurement. 

When comparing the IOP between treatment groups a statistically significant difference 

was present at 20 minutes post-aqueocentesis with the 25-gauge needle treatment group 

significantly higher (32.96 ± 13.03 mm Hg) than the 27-gauge (20.15 ± 8.07 mm Hg) or 30-

gauge (19.54 ± 9.77) treatment groups (P = 0.0297) (Figure 2-10). Aside from transient ocular 

hypertension in the 25-gauge treatment group, IOP rapidly normalized in treated eyes and the 

IOP of contralateral untreated eyes showed no clinically significant changes (Figure 2-11). 

 

Figure 2-10 Mean intraocular pressure (mm Hg) of treated eyes in all groups. 

 

* Indicates statistically significant difference between the 25-gauge treatment group as compared 

to the 27-gauge and 30-gauge treatment groups 
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Figure 2-11 Mean intraocular pressure (mm Hg) of contralateral untreated eyes in all 

groups. 

 

Discussion 

Consistent with previous reports, aqueocentesis caused blood-aqueous barrier disruption 

in all treated eyes of this study. Anterior chamber fluorophotometry allowed noninvasive, 

repeated daily assessment of the breakdown and reestablishment of the blood-aqueous barrier. 

Maximal fluorescence was noted in the treated eyes of all groups on day 2 (24 hours post-

aqueocentesis), with declining values thereafter (Figure 2-7). By day 5 in all treatment groups the 

mean anterior chamber fluorescein value of the treated eyes was not significantly different than 

the contralateral untreated eyes (Table 2-3 and Figures 2-4 to 2-6). Though statistically 

significant differences were present at additional time points in some groups, values between the 

treated and contralateral untreated eyes that did not differ by more than 25% were considered 

within normal limits as has been previously reported.54 

It was of great interest to note that the contralateral untreated eyes of all groups showed 

maximal and statistically significant anterior chamber fluorescence on day 2 (Table 2-3 and 

Figure 2-8). Values declined subsequently, but no statistically significant difference was found 

between the contralateral untreated eyes and control eyes at any point in time. There are two 

possible explanations for this finding. The first supports the statistical analysis, that 

aqueocentesis treatment did not affect the contralateral eye and the value disparities over time are 

due to random variation. The second explanation is that aqueocentesis treatment did indeed 



 38

affect the contralateral untreated eye by causing a subtle degree of blood-aqueous barrier 

disruption as measured by fluorophotometry, but due to limited animal numbers and high 

variability (large standard deviations) a significant difference was not documented. This latter 

theory is supported by an inadvertent finding in the control dog (Dog 77-07) pulled from the 

study due to corneal ulcer development. In this dog a corneal ulcer was present in the OS on day 

2, and at that time increased anterior chamber fluorescein was measured. In addition, a mild 

spike in fluorescence was present on day 2 in the same dog’s healthy OD. These fluorescence 

changes were not noted in any other eye of the control dogs (Figure 2-9). Over days 3 through 5 

anterior chamber fluorescence in Dog 77-07 declined in both eyes as the ulcer healed. The 

increased fluorescence in the ulcerated eye of this dog is not surprising and can be attributed to 

axonal reflex causing blood-aqueous barrier breakdown.107,110 It is the increased fluorescence 

noted in this dog’s contralateral healthy eye that parallels the mean response seen in the 

contralateral eyes of treated dogs in this study. Though this finding cannot be statistically 

evaluated, it is of pertinent interest given the other study findings that suggest presence of a 

consensual ocular reaction in dog eyes. 

Consensual ocular reactions have been reported in humans and rabbits,119,145-148,174 but 

have not previously been documented in dogs. Scanning electron microscopy of rabbit eyes 

treated with paracentesis and contralateral control eyes demonstrated changes in ciliary body 

processes consistent with both a direct and consensual reaction.117 The mechanism for this 

reaction is hypothesized to be a neural reflex arc,117,147,148 but others suggest it is due to a transfer 

of prostaglandins via systemic circulation.145,146 The consensual ocular reaction is an important 

biological finding and is clinically noteworthy as it was documented immediately following and 

then up to one month following cataract surgery in humans.148 Though it is commonly 

recognized that drugs applied topically to one eye can result in effects in the opposite eye due to 

likely systemic absorption of the medication,73,129,175-178 our study is the first to suggest a 

consensual blood aqueous-barrier breakdown reaction in dogs. 

The findings in this study confirm that aqueocentesis using a 25-gauge needle caused 

greater blood-aqueous barrier breakdown than aqueocentesis with 27- or 30-gauge needles. 

Statistically significant differences were documented by anterior chamber fluorophotometry on 

days 3 and 5. Though statistically significant differences between groups were not present at the 

other time points, likely due to large standard deviations and small sample sizes, the trend of 
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increased fluorescence over time is apparent in the 25-gauge needle treatment group (Figure 2-

7). The reason for large individual variance is likely due to the uncontrolled aqueous paracentesis 

performed in this study. Though this method has been previously shown to induce large variance 

as compared to controlled, timed paracentesis,54 the former is the technique commonly employed 

during therapeutic aqueocentesis. The aim of our study was to evaluate the clinical practice of 

aqueocentesis and its effect on blood-aqueous barrier breakdown, therefore uncontrolled 

paracentesis using various needle sizes was performed.  

In this study the cause of increased blood-aqueous barrier breakdown is not clear, but 

appears to be needle size. Though the degree of ocular hypotony does affect blood-aqueous 

barrier breakdown and causes increased protein content in the reformed aqueous,121 in our study 

the average IOP immediately after aqueocentesis was not significantly different between 

treatment groups (Figure 2-10). The speed of fluid flow into the needle could also be considered 

as a cause; however, it has been shown that speed of aspiration during aqueous paracentesis had 

no effect on protein content of the reformed aqueous humor.121 Therefore, more rapid fluid 

outflow is not likely the cause of the greater blood-aqueous barrier breakdown identified in this 

study.  

Not only did 25-gauge needle aqueocentesis induce greater blood-aqueous barrier 

breakdown, but it also resulted in transient ocular hypertension 20 minutes following treatment. 

This point of elevated IOP was an unexpected finding given that in all treatment group eyes the 

IOP immediately after aqueocentesis averaged 2 mm Hg. Elevated IOP in the 25-gauge needle 

treatment group is consistent with a greater degree of blood-aqueous barrier breakdown as initial 

ocular hypertension is found in uveitis due to prostaglandin release.67,71 Paracentesis-induced 

ocular hypertension is likely due to a sudden rise in the anterior uveal blood volume with a 

subsequent increase in ultrafiltration and plasma extravasion.103,125  Paracentesis-induced blood-

aqueous barrier breakdown has been studied in dogs and results show that prostaglandins are 

indeed the most important mediators of the ocular irritative response.47 While topical 

flurbiprofen significantly reduced blood-aqueous barrier breakdown as measured by anterior 

chamber fluorophotometry,47 the inability of flurbiprofen and proparacaine to completely abolish 

the response suggests that additional non-prostaglandin, non-sensorineurally-derived mediators 

may be involved or that the rapid reduction in IOP causes physical damage to the blood-aqueous 

barrier.47,51,54  
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Though patients with glaucoma were not evaluated in the current study, the rapid 

resolution of ocular hypotony in all groups confirms the assumption that aqueocentesis alone is 

insufficient therapy for elevated IOP in dogs. This is consistent with a previous human study 

where cataract surgery patients experiencing postoperative ocular hypertension treated with 

paracentesis experienced immediate reduction in IOP followed by rebounding pressures to near 

initial values one hour after treatment.33 On the other hand, aqueous paracentesis combined with 

medical therapy provides rapid symptomatic relief of acutely elevated IOP and could be 

considered as adjunctive therapy in the management of acute elevation of IOP.31-33,45 

Data reporting and analysis of fluorophotometry studies has varied over the years with 

reports that utilize actual fluorescein concentrations, percent increase in the treated versus the 

contralateral eye, percent increase as compared to baseline, and calculation of a diffusion 

coefficient. No one method has shown to be superior. In this study actual fluorescein 

concentrations were used in an effort to avoid confounding effects by the other methods. 

Specifically, with the possibility that treatment of one eye affected anterior chamber fluorescence 

in the contralateral eye we felt it was suboptimal to use the percent increase in fluorescence in 

the treated versus contralateral eye as the means for analyzing fluorophotometry results. Laurell 

et al cautions that use of this ratio may indeed be deceptive due to a consensual reaction in the 

opposite (unoperated) eye.152 It has been reported that 5-6 hours after fluorescein injection 

aqueous humor levels fall to low or undetectable values;54 however, a trend toward increased 

anterior chamber fluorescence was noted even in control eyes over the five days of the study 

(Table 2-3 and Figure 2-9) so comparing percent increase in fluorescence to baseline may also be 

suboptimal. A diffusion coefficient for fluorescein can be calculated by fluorophotometry, 

providing a physical value for the leakage of fluorescein molecules through the blood-aqueous 

barrier. This method is reliable and reproducible as long as a strict protocol is followed, which 

involves multiple blood samples and numerous fluorophotometric measurements per eye.163 This 

method is less commonly used for investigations due to the conclusion that measurement of 

plasma fluorescence and calculation of a diffusion coefficient does not improve the clinical 

accuracy of anterior chamber fluorophotometry.156 Shah et al suggest that the concentration of 

anterior chamber fluorescence (ng/ml) is appropriate for quantification provided that patients are 

systemically well and are given the same dose of fluorescein by the same route.156 Further 

studies are warranted to determine which method of analysis is most appropriate in dogs. 
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Conclusion 

Uncontrolled aqueocentesis using 25-, 27-, and 30-gauge needles was performed in dogs 

to evaluate the degree of blood-aqueous barrier breakdown. There was no statistically significant 

difference in fluorescein concentration or IOP between 27- and 30- gauge needle treatment 

groups at any time point. Use of the 25-gauge needle resulted in a statistically significant 

increase (P < 0.05) in anterior chamber fluorescence on days 3 and 5. It also caused a statistically 

significant increase in intraocular pressure at 20 minutes post-aqueocentesis as compared to the 

27- and 30- gauge needle treatment groups. Peak anterior chamber fluorescence was documented 

in the contralateral untreated eyes of all treatment groups on day 2 suggesting a consensual 

ocular reaction in dogs; however, values were not significantly greater than control eyes. 

Substantial variability common in biological systems complicates research studies, and as in this 

investigation, high variability and large standard deviations were found to be a problem with 

statistical analysis.  
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Footnotes 

a. TonoVet®, Tiolat Ltd, Helsinki, Finland 

b. SL-14 Biomicroscope, Kowa Company, Ltd, Tokyo, Japan 

c. HEINE Omega 180® Ophthalmoscope, HEINE Optotechnik, Herrsching, Germany 

d. VetaKet®, IVX Animal Health, Inc, St. Joseph, Missouri 

e. AnaSed®, Ben Venue Laboratories, Bedford, Ohio 

f. 0.5% proparacaine hydrochloride ophthalmic solution, Akorn, Inc, Buffalo Grove, 

Illinois 

g. FM-2 Fluorotron Master, OcuMetrics, Inc, Mountain View, California 

h. AK-FLUOR®, Akorn, Inc, Buffalo Grove, Illinois 

i. WINKS 4.8 5th Ed. Statistical Analysis System, TexaSoft, Cedar Hill, TX 
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