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Abstract 

Small silver and gold clusters (< 2 nm) display a discrete absorption spectrum 

characteristic of molecular systems whereas larger particles display a strong, broad absorption 

band in the visible. The latter feature is due to the surface plasmon resonance, which is 

commonly explained by the collective dipolar motion of free electrons across the particle, 

creating charged surface states. The evolution between molecular properties and plasmon is 

investigated. Time-dependent density functional theory (TDDFT) calculations are performed to 

study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum 

of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long 

and short axis of the nanorod respectively), similar to the plasmons observed experimentally for 

larger nanoparticles. These plasmon modes result from a constructive addition of the dipole 

moments of nearly degenerate single-particle excitations. The number of single-particle 

transitions involved increases with increasing system size, due to the growing density of states 

available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due 

to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. 

The high-energy, high-intensity beta-peak of acenes also results from a constructive 

addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show 

that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple 

configuration interaction (CI) interpretation. 

The evolution between molecular absorption spectrum and plasmon is also investigated 

by computing the density of states of spherical thiolate-protected gold clusters using a charge-

perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives 

good qualitative agreement with DFT calculations at a fraction of the cost. The progressive 

increase of the density of states with particle size observed is in accordance with the appearance 

of a plasmon peak.   

The optical properties of nanoparticles can be tuned by varying their composition. 

Therefore, the optical behavior of the bimetallic Au25-nAgn(SH)18
-
 cluster for different values of n 

using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed 

with increasing silver content, in accordance with experimental results.   
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Abstract 

Small silver and gold clusters (< 2 nm) display a discrete absorption spectrum 

characteristic of molecular systems whereas larger particles display a strong, broad absorption 

band in the visible. The latter feature is due to the surface plasmon resonance, which is 

commonly explained by the collective dipolar motion of free electrons across the particle, 

creating charged surface states. The evolution between molecular properties and plasmon is 

investigated. Time-dependent density functional theory (TDDFT) calculations are performed to 

study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum 

of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long 

and short axis of the nanorod respectively), similar to the plasmons observed experimentally for 

larger nanoparticles. These plasmon modes result from a constructive addition of the dipole 

moments of nearly degenerate single-particle excitations. The number of single-particle 

transitions involved increases with increasing system size, due to the growing density of states 

available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due 

to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. 

The high-energy, high-intensity beta-peak of acenes also results from a constructive 

addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show 

that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple 

configuration interaction (CI) interpretation. 

The evolution between molecular absorption spectrum and plasmon is also investigated 

by computing the density of states of spherical thiolate-protected gold clusters using a charge-

perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives 

good qualitative agreement with DFT calculations at a fraction of the cost. The progressive 

increase of the density of states with particle size observed is in accordance with the appearance 

of a plasmon peak.   

The optical properties of nanoparticles can be tuned by varying their composition. 

Therefore, the optical behavior of the bimetallic Au25-nAgn(SH)18
-
 cluster for different values of n 

using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed 

with increasing silver content, in accordance with experimental results.  
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Chapter 1 - Introduction 

 Plasmons in noble metal nanoparticles 

For centuries, gold and silver metals have been considered highly valuable by many 

civilizations in all continents and used to make jewelry and currency. The reason for the high 

value of these noble metals is the fact that they are inert and as a result, resistive to degradation 

by harsh environments.  However, when the size of these systems decreases down to the 

nanometer size regime, they display unique catalytic, electrochemical and optical properties that 

have attracted a lot of research interest over the past two decades. One of the fascinating aspects 

of gold and silver nanoparticles is their plasmonic properties.
1-7

 Upon excitation with an 

electromagnetic wave of wavelength λ, these nanoparticles have the unique capability of locally 

enhancing the electric field at their surface.
8
 This phenomenon is explained by the localized 

surface plasmon resonance (LSPR), which is the collective oscillation of the conduction 

electrons across the system.
9
 The main plasmon mode is the dipolar mode, as shown in Figure 1-

1. Higher order modes may occur in large nanoparticles (Radius~ λ) due to retardation effects.
10-

12
 In this thesis, I will consider systems where the dipole approximation is valid, which means 

that retardation effects are negligible (Diameter<<λ).  

  

Figure 1-1. Collective electron oscillation under electromagnetic radiation in spherical 

noble metal nanoparticles.  

 

*Reproduced with permission of Annual Reviews from Ref
9
(Copyright Annual Reviews 

2007). 

 

The surface plasmon resonance of noble metal nanoparticles makes them suitable for a 

wide variety of applications in fields such as energy conversion and storage,
13,14

 sensing,
15-17

, 
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imaging,
18

 nanoantennas,
19

 and nanomedicine.
15,20

 For instance, silver nanoparticles have the 

property to enhance the Raman signal of molecules in their vicinity and can be used for single-

molecule detection via surface enhanced Raman spectroscopy (SERS).
21,22

 On the other hand, 

gold nanoparticles are particularly well suited for biomedical applications due to their low 

toxicity.
20

 

For spherical systems, the plasmon is manifested by a broad high-intensity peak in the 

absorption spectrum, usually in the UV-Vis.
10,23

 The wavelength and intensity of the absorption 

peak can be modulated by modifying the particle size,
23-25

 shape,
10,26

 composition
27,28

 and 

dielectric environment.
29,30

 Nanorods and nanowires are among the most studied shapes because 

of the sensitivity of the wavelength of their plasmon mode to their aspect ratio (length /diameter). 

These elongated systems display two plasmon modes: a low-energy longitudinal mode, 

corresponding to photon absorption along the main axis of the system and a transverse mode, 

which corresponds to light absorption along the short axis of the system.
31-33

 The longitudinal 

mode can shift down to the IR regime with increasing aspect ratio, which is particularly useful 

for biomedical applications such as cancer therapy since IR radiation can penetrate through 

tissues.
34-36

   On the other hand, the wavelength of the transverse mode shows very little 

sensitivity to the particle’s aspect ratio. 

 Theoretical modeling of plasmons in noble metal nanoparticles 

 Classical electromagnetic theory 

The optical properties of silver and gold nanoparticles have been studied using classical 

electromagnetic theory.
30,37-40

 In particular, Mie theory has proven successful in reproducing the 

plasmon extinction of spherical particles.
41,42

 It was later extended by Gans for cylindrical 

particles.
43

 In Mie theory, the particle is embedded in a dielectric medium and submitted to an 

electromagnetic field.
41

 The Maxwell equations are then solved. Within the dipole 

approximation, the extinction cross-section of a spherical particle is given by:
10,39,44

 

 

2 3 3/2

2

2 2

21

24

2

m

m

R
C

  

  



 (1.1) 

where R is the radius of the particle, ε1 and ε2 are the real and imaginary part of the dielectric 

function ε of the metal and εm is the dielectric constant of the surrounding medium. λ is the 
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wavelength of the incident field. A plasmon occurs when ε1=-2εm, assuming that ε2 is small and 

weakly dependent on λ. The extinction cross-section is the sum of the absorption and scattering 

contributions. For particles smaller than about 20 nm, the main contribution to the extinction is 

the absorption and scattering is negligible.
45

 The dielectric constant of the bulk metal is not a 

good value for small particles due to the electronic confinement. One common approach is to 

consider the Drude dielectric function, which applies for systems whose optical properties are 

only a function of the free conduction band electrons. The Drude dielectric function is given 

by:
39,46

 

 
 

2

1
pDrude

i


 

  
 


 (1.2) 

where γ is the damping parameter, ω is the frequency of the incoming radiation and ωp is the 

plasma frequency given by: 
2

0

p

eff

ne

m






. meff is the effective mass of the electrons, ε0 is the 

permittivity, e is the electron charge and n is the density of free electrons. This model works well 

for alkali metals and reproduces the red-shift of the plasmon peak with decreasing cluster size 

(note that alkali clusters also have a plasmon but their instability makes them inadequate for 

practical applications).
47,48

 This approach does not take into consideration the interband 

transitions (transitions out of the d-band) in noble metal nanoparticles, which result in a broader 

absorption spectra and a blue shift of the resonance frequency with decreasing cluster size.
49,50

 

Interband excitations were successfully included by expressing the dielectric function in terms of 

the sum of the free electron contribution (the Drude model) and the interband contribution.
51-53

 

Analytical Mie theory cannot be easily applied to particles with complex shapes due to 

the difficulty in deriving an analytical cross-section for such systems. Numerical methods such 

as the finite-difference time domain (FDTD)
54

 and the discrete dipole approximation (DDA),
55

 

which rely on the discrete mapping of space, can be used instead. These numerical methods have 

successfully modeled the plasmon of nanoparticles of various shapes.
32,37,38,56,57

   

Classical electromagnetic theory does not account for quantum effects. Such effects may 

be very important for instance to describe the plasmon coupling with small molecules.
21,58,59

 In 

addition, silver and gold clusters (< 2 nm) display molecular properties, as illustrated by their 

discrete absorption spectrum.
49,50

  As a result, first principles calculations have been attempted 

and are discussed next. 
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 First principle calculations on silver and gold nanoparticles 

First principle calculations have been performed on a large variety of noble metal 

nanoparticles using the time-dependent local density approximation (TDLDA) with the Jellium 

model.
60-63

 In this method, the nuclei are replaced with a single positive charge uniformly spread 

out. Plasmons of large systems can be modeled with this method due to the computational 

efficiency. However, ligand shells cannot be included with this method and structural effects 

cannot be determined since the nuclei are not explicitly considered.  

Time-dependent density functional theory (TDDFT) with explicit nuclei has been used on 

a wide variety of clusters to investigate the effect of size and shape on the optical properties of 

the clusters.
50,64-72

 The TDDFT evolution of the absorption spectrum of tetrahedral silver clusters 

with increasing size seems to converge to classical theory results, emphasizing the connection 

between molecular properties and plasmons.
64

 Due to the high computational cost, systems with 

more than about 300 atoms cannot be modeled. With this method, the structural effects can be 

accounted for and information on electron dynamics can be obtained. In this section, we will 

discuss first principle calculations performed on 1) spherical ligand-protected gold clusters and 

2) bare noble metal nanorods since these systems are analyzed in this thesis. 

 Spherical ligand-protected clusters 

One important type of noble metal clusters is the thiol-protected gold clusters. Many have 

been synthesized and their structures characterized.
73-77

 They are commonly composed of a 

metallic core surrounded by linear RS-Au(I)-SR and V-shaped RS-Au(I)-SR-Au(I)-SR “staple 

motifs”. Due to the ligands, these systems cannot be appropriately described with TDLDA and 

TDDFT with explicit nuclei needs to be used. The Au25(PET)18
-
 (PET=phenylethylthiol) cluster 

is shown in Figure 1-2 as an example.  
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Figure 1-2. Structure of the thiol-protected Au25(SR)18
-
 cluster.  

 

*The ligand R=PET has been replaced by R=H for clarity. Key: Yellow= gold, orange=sulfur 

and white=hydrogen. Coordinates from Ref
78

.  

 

The role of the staple motifs is to protect the reactive gold core and their arrangement was 

explained in terms of the “divide and protect model”.
79

 The DFT-calculated electronic structure 

of the Au25(SH)18
-
 cluster is shown in Figure 1-3A. The frontier orbitals of these nanoparticles 

are commonly named “superatom orbitals”
80-82

 and define the sp-band. They mainly result from 

linear combinations of the atomic gold valence s and p orbitals. The superatom orbitals look like 

the familiar s, p, d orbitals of the hydrogen atom but are delocalized over the metallic core 

(hence their name). They are labeled 1S, 1P, 1D,…These levels may be split due to the ligand 

field, as will be discussed in chapter 7. For a cluster with the stoichiometric formula ANXMLS
Z
, A 

corresponds to gold, X corresponds to electron-withdrawing ligands and L corresponds to Lewis 

ligands. Z corresponds to the total charge of the cluster. If the number of core electrons given by 

n*=N-M-Z is equal to a “magic number” (n*=2, 8, 18, 34, 58…), the cluster tends to be stable.
80

 

These numbers correspond to a fully occupied superatomic electronic shell. For the Au25(SH)18
-
 

cluster, n*=25-18+1=8, which corresponds to a full 1P shell. Below the sp-band is a large d-

band. These orbitals mostly have atomic d-character but also contributions from the 3p orbitals 

of the sulfur ligands. They tend to be localized.  

The absorption spectrum of the Au25(SH)18
-
 cluster was calculated using TDDFT (Figure 

1-3B). Discrete features were obtained, in agreement with experiment, and were interpreted in 

terms of the electronic structure of the cluster. Low energy excitations occur within the sp-band 

(1P→1D) and are labeled intraband whereas higher energy excitations between the d-band and 

the sp-band are called interband. Note that the absorption spectrum cannot be divided in terms of 

core and ligands contributions, showing that the thiol ligands represent an integral part of the 

cluster and greatly affect its electronic structure.
83,84
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Figure 1-3. A) Electronic structure and B) theoretical absorption spectrum of the 

Au25(SH)18
-
 cluster.  

 

 

*Reprinted with permission from Ref 
73

. Copyright 2008 American Chemical Society. 

 

The transition from the discrete absorption spectrum of the small systems to the strong 

plasmon absorption of the large systems can be observed between 1.5 and 2 nm.
67

 The 

Au144(SH)60 and Au314(SH)96 clusters are within that size range and have been studied using 

time-dependent density functional perturbation theory.
67

 One broad absorption peak occurs at 

540 nm for these systems. Transition densities for these systems show a collective dipole 

character. For the Au144(SH)60  cluster, the density is mostly within the core with a small amount 

at the outer surface of the particle. For the larger Au314(SH)96 cluster, the electron density is 

mostly focused on the outer surface, which is expected for the surface plasmon resonance. The 

authors showed that the ligands are responsible for the enhancement of the surface plasmon.
67

 

This also shows the importance of the ligand shell in the optical properties of these clusters.  

 Elongated noble metal clusters 

The extinction spectra of noble metal nanorods display two main modes: the longitudinal 

mode, corresponding to excitations along the long axis of the system and the transverse mode, 

which corresponds to excitations along the short axis.
6,16,85

 Both classical electromagnetic theory 

and first principle calculations have been performed to model the optical properties of silver and 

gold nanorods.
32,66,70

 The electronic structure of silver nanorods with sizes between 13 and 67 

atoms was analyzed using density functional theory.
70

 The frontier orbitals of these systems are 

delocalized over the entire structure and have cylindrical symmetry.
70

 They are labeled nLm 
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where L= Σ, Π, Δ… and n and m are quantum numbers corresponding to the number of radial 

nodes plus one and the number of axial nodes plus one respectively. Like the superatom orbitals 

of the thiolate-protected clusters described above, they result from a linear combination of the 

singly occupied s orbitals of the silver atoms. The TDDFT absorption spectra of these nanorods 

display a strong low-energy longitudinal peak, corresponding to a superposition of Σ→Σ, 

Π→Π… transitions and a high energy transverse peak corresponding to a superposition of Σ→Π, 

Π→ Σ, Π→Δ… transitions.
66,70

 The electronic confinement along the long axis of the rod 

decreases with increasing length but it remains constant along the short axis. As a result, the 

longitudinal peak shifts to the red while the transverse peak remains at nearly constant energy.
70

 

TDDFT calculations performed on cigar-like and hexagonal nanorods at the BP86/DZP level of 

theory show similar trends.
66

 Few TDDFT calculations were performed on gold nanorods due to 

the higher computational cost. Liao et al. calculated the TDDFT absorption spectra of gold 

nanorods with up to 84 atoms and obtained very broad features due to relativistic effects.
66

  

 Objectives and overview of the thesis 

Classical methods such as the discrete-dipole approximation (DDA),
55,86

 finite-difference time 

domain (FDTD)
54,87

 and Mie theory
41

 can successfully describe the plasmon peak energy and 

intensity of noble metal nanoparticles.
37

 However, these approaches do not capture quantum 

effects which may be important, for instance when describing the interaction of these particles 

with small molecules.
59,88,89

 In addition, quantum effects play a critical role in very small systems 

(less than about 2 nm) as shown by the discrete features occurring in their absorption spectrum. 

A uniform description of the optical properties of noble metal particles of all sizes is necessary. 

The main objective of this thesis is to determine the origin of the plasmon resonance in noble 

metal nanoparticles and show that plasmons may occur at the molecular level. The second 

objective is to provide a uniform description of the optical properties of plasmonic systems. 

Silver and gold atoms have a similar electronic structure: a singly occupied valence s orbital and 

a fully occupied d-band. Due to relativistic effects, the gap between the d and s orbitals of silver 

is larger than for gold, which leads to differences in the optical behavior of silver and gold 

nanoparticles. The final objective of this thesis is to compare the optical properties of silver and 

gold nanoparticles and define the importance of relativistic effects.   
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Chapter 2 describes the theory and computational methods used in this research. In 

chapter 3 (Guidez, E. B.; Aikens, C. M. Nanoscale 2012, 4, 4190), the optical properties of both 

silver and gold nanowires (linear atomic chains) are analyzed. In chapter 4 (Guidez, E. B.; 

Aikens, C. M. J. Phys. Chem. C 2013, 117, 12325), I extend this study to systems with a larger 

diameter. Chapter 5 (Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 21466) describes 

the plasmonic behavior of linear polycyclic hydrocarbons and the similarities with noble metal 

nanorods are discussed. A configuration interaction (CI) model to calculate plasmon peak 

energies and oscillator strengths is discussed in chapter 6. Chapter 7 (Guidez, E. B.; Aikens, C. 

M. Phys. Chem. Chem. Phys. 2012, 14, 4287) shows the development of a charge-perturbed 

particle-in-a-sphere model to determine the electronic structure of thiol-protected gold 

nanoparticles. In chapter 8, the CI method is applied to multiple silver clusters and the link 

between small clusters and large nanoparticles is discussed. Finally, the effect of silver doping on 

the optical properties of the Au25(SH)18
-
 cluster is analyzed in chapter 9 (Guidez, E. B.; Mäkinen, 

V.; Häkkinen, H.; Aikens, C. M. J. Phys. Chem. C 2012, 116, 20617).   
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Chapter 2 - Theory and computational methods 

 Theory of quantum mechanics 

 The Schrödinger equation 

Classical mechanics dictate that the evolution of a macroscopic system can be derived by 

solving Newton’s equations of motion, provided we know the state of this system at an original 

time t0. However, in the case of microscopic particles like electrons, the Heisenberg uncertainty 

principle dictates that their position and velocity cannot be determined simultaneously.  The laws 

of classical mechanics therefore do not apply and quantum mechanics must be used. In quantum 

mechanics, all information about the system of interest is contained in a wavefunction , which 

depends on both the coordinates of the particles (noted r) and on time t. The probability of 

finding a particle at a position between r and r+dr at time t is given by the probability density ρ:  

2
( , ) ( , )t dt  r rr  (2.1) 

The equation that describes the state of a quantum-mechanical system (such as an atom or a 

molecule) is the time-dependent Schrödinger equation (TDSE), which in atomic units reads: 

( , ) ˆ ( , ) ( , )
t

i H t t
t


 



r
r r  (2.2)  

where t is time and 1i   . Ĥ is the Hamiltonian and it is defined in atomic units as: 

2

1 1

1ˆ ( , ) ( , )
2

N N N
i j

i i

i i i ji ij

Z Z
H t V t

m r  

      r r  (2.3)  

The subscripts i and j refer to the quantum mechanical particles in the system. N is the total 

number of particles. mi and Zi correspond to the mass and charge of the particle i in atomic units 

respectively. The Laplacian operator 
2  refers to the second derivative with respect to the 

particle position. rij corresponds to the distance between particles i and j. The first term of the 

Hamiltonian represents the kinetic energy of the particles. The second term corresponds to the 

external potential acting on each particle i. The third term represents the coulomb interaction 

between particles i and j. 

We now consider wavefunctions that can be written as a product of a time-dependent part 

and a position-dependent part such that: 
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( , ) ( ) ( )t f t  r r  (2.4)  

where f(t) is a function of time only and ( ) r is a wavefunction that depends only on the position 

of the particles. ( ) r describes the states of a system where the probability density does not 

change with time. Such states are called stationary states.  

 If the system does not experience any time-dependent external forces, the time-

dependence in the Hamiltonian disappears and one can derive the time-independent Schrödinger 

equation (TISE) which has the following form: 

ˆ ( ) ( )H E r r  (2.5)  

where E is the energy of the system in its stationary state ( ) r .  

 The Born-Oppenheimer approximation 

In atomic units, the time-independent Hamiltonian Ĥ for a non-relativistic molecule or 

atom has the following form: 

2 2

1 1 1 1 1 1

1 1 1ˆ
2 2

N M N M N N M M
A A B

i A

i A i A i j i A B AA iA ij AB

Z Z Z
H

M r r R       

             (2.6)  

The subscripts i and j refer to the electrons whereas A and B refer to the nuclei. N and M 

represent the number of electrons and nuclei of the system respectively. MA and ZA are the mass 

and charge of nucleus A respectively. We note that in atomic units, the mass of the electron is 

equal to 1 and the charge of the electron is -1. rij corresponds to the distance between electrons i 

and j. riA refers to the distance between electron i and nucleus A. RAB corresponds to the distance 

between nuclei A and B. The first and second terms of equation 2.6 correspond to the kinetic 

energy of the electrons and nuclei respectively. The third term corresponds to the coulomb 

attraction between electrons and nuclei whereas the last two terms represent the inter-electronic 

and inter-nuclear repulsion respectively.  

Even the time-independent Schrödinger equation (eq. 2.5) is impossible to solve for large 

molecules of interest to chemists when using the full Hamiltonian (eq. 2.6). Approximations 

must therefore be made to render the calculations manageable. One of these approximations is to 

consider that the nuclei, being much heavier than the electrons, move slower. Consequently, 

electrons can be assumed to move in a field of fixed nuclei. The second term in eq. 2.6 can be 



11 

 

neglected and the last term is a constant. The new Hamiltonian describing the electronic motion 

becomes: 

ˆ ˆ
el MMH H V   (2.7)  

where ˆ
el

H  is the electronic Hamiltonian which is written as: 

2

1 1 1 1

1 1ˆ
2

N N M N N
A

el i

i i A i j iiA ij

Z
H

r r    

        (2.8)  

and VMM is the inter-nuclear repulsion term: 

1

M M
A B

MM

A B A AB

Z Z
V

R 

  (2.9)  

Since VMM is a constant for any set of nuclear coordinates, it can be omitted in the time-

independent Schrödinger equation (eq. 2.5) which gives: 

 ˆ
el el el elH E   (2.10)  

This equation can be solved for many different possible sets of nuclear configurations. 

Therefore, the purely electronic energy Eel and the electronic wavefunction 
el

 depend 

parametrically on the nuclear coordinates. We can now add the internuclear-repulsion term 

defined in equation 2.9 to the purely electronic energy Eel to obtain the total electronic energy U: 

el MMU E V   (2.11)  

The time-independent Schrödinger equation (eq. 2.5) can also be solved for the nuclear motion: 

ˆ
nuc nuc nuc nucH E   (2.12)  

The nuclear Hamiltonian is: 

 2

1

1ˆ ( )
2

M

nuc A A

A A

H U
M

    R  (2.13)  

where the first term is the sum of the kinetic energies of the nuclei and the second term 

represents the average field of the electrons (eq. 2.11) for the set of nuclear coordinates  AR  

considered. The nuclear energy Enuc includes electronic, vibrational, rotational and translational 

energies. The total molecular wavefunction using the Born-Oppenheimer approximation can be 

written as a product of the nuclear and electronic wavefunctions: 
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el nuc     (2.14)  

 Relativistic effects 

When electrons move with a velocity comparable to the speed of light, it leads to an 

increase of their mass. Electrons in atomic s orbitals undergo a mass increase that is given by: 

0
1/2(1 ( / ))

m
m

v c



 (2.15)  

where 0m  is the rest mass of the electron, v  is the velocity of the electron and c  is the speed of 

light ( c =137.04 a.u. = 300000 km/s). The velocity of a 1s electron in a hydrogen-like atom 

relative to the speed of light is approximately Z/c, where Z is the atomic number of the element 

and c is the speed of light in atomic units.
90

 We can see that for high values of Z, the velocity of 

the electron represents a large portion of the speed of light. Therefore, the 1s electron mass 

substantially increases. The results of this mass increase on the properties of heavy metal 

compounds are referred to as scalar relativistic effects. The radial function of a hydrogen-like 

atomic 1s orbital is given by: 

3/2

1 /( ) 2s Zr aZ
R r e

a

 
  

 
 (2.16)  

where a is the Bohr radius defined in SI units as: 

2

0

2

4
a

me


  (2.17)  

where 0 is the permittivity of vacuum with a value of 8.8541878∙10
-12

 C
2
N

-1
m

-2
, / 2h  ( h is 

the Plank constant equal to 6.626069∙10
-34

J·s), e  is the elementary charge with a value of 

1.6021765·10
-19

C  and m  is the relativistic electron mass. For elements with a high Z, the mass 

of the 1s electron is significantly increased and the Bohr radius is reduced. As a result, the 

distance between the nucleus and the 1s electron will decrease. We note that for a non-relativistic 

1s electron, the Bohr radius is equal to 1 a.u. since the electron mass is equal to its rest mass. In 

order to maintain orthogonality, the higher s orbitals (and to a lesser extent the p orbitals) must 

also shrink and therefore their energy will decrease. On the other hand, the d and f orbitals are 

more diffuse and become higher in energy due to the higher shielding of the inner s electrons.  
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Relativistic effects can strongly affect the geometries, optical properties, electrochemical 

properties and physical properties of heavy metal compounds.
90-94

  Since this work focuses 

mainly on silver and gold nanoparticles, it is critical to take these effects into account.  

 Computational methods 

 Density functional theory (DFT) 

DFT is one of the most widely used methods for ground state electronic calculations due 

to its high efficiency compared to correlation methods. A basic description of the method is 

given in this section. For more details, the reader is invited to consult some selected publications 

and texts.
95-98

 DFT calculates the ground state energy E0 and other ground state molecular 

properties as a function of the ground state electron density ρ0. Unlike the wavefunction, which 

depends on 3N spatial coordinates and N spin coordinates (where N is the number of electrons), 

the ground state electron density is a function of only on three variables: the coordinates x, y and 

z. In DFT, all ground state properties of interest are calculated in principle as a function of the 

electron density only (and avoid wavefunctions), resulting in higher computational efficiency. 

 The Hohenberg-Kohn theorem 

The ground state wavefunction of an N-electron molecule is an eigenfunction of the 

electronic Hamiltonian given in equation 2.8. We define the external potential ( )
i

v r  acting on 

electron i for a real system as the potential generated by charges other than the electrons (aka the 

nuclei in the absence of additional potential): 

1

( )
M

A
i

A iA

Z
v

r

 r  (2.18) 

The Hohenberg-Kohn theorem states that there is a one-to-one relationship between the ground 

state electron density ρ0 and the sum of the external potentials acting on each electron (the 

nuclear attraction potential energy function  v r ).
99

 A direct consequence of this relationship is 

that the ground state density determines the ground state energy E0 and other ground state 

properties. E0 is a functional of the ground state density (  0 0E E  ). The ground state energy 

is given by the sum of the kinetic energy T, nuclear-electron attraction VNe and electron-electron 

repulsion Vee: 



14 

 

       0 0 0 0 0Ne eeE E T V V        (2.19) 

Each of these contributions is also a functional of the ground state electronic density.  

Overbars denote averages. The second term of this sum is known and given by: 

   0 0 0
i

Ne
i

vV v d    r rr  (2.20) 

However, the dependence of the kinetic energy and electron-electron repulsion components on ρ0 

is not known. 

 The Kohn-Sham (KS) method 

In order to evaluate the density of the interacting system, Kohn and Sham considered a 

fictitious system of N non interacting electrons that experience an external potential  s iv r  such 

that 0( ) ( )s r r .
100

 The subscript s denotes the non-interacting system. Since the electrons are 

not interacting, the electronic Hamiltonian for this fictitious system given in equation 2.8 

becomes: 

 2

1

1ˆ ˆˆ
2

N N
KS KS

s ii s i
i i

H h hv


 
     

 
 r  (2.21) 

where  21ˆ
2

KS

i i s ih v    r is the Kohn-Sham Hamiltonian for electron i. The ground state 

wavefunction of this non-interacting system can be written as a Slater determinant: 

,0 1 2...s N     (2.22) 

χi are the occupied Kohn-Sham spin-orbitals and can be written as a product of a spatial function 

ψ and a spin function σ: 

( )i i i i   r  (2.23) 

The spin functions can only have two values: +1/2 and -1/2. For closed-shell systems, the 

electrons are paired in the spatial orbitals, one with spin +1/2 (α) and the other with spin -1/2 (β). 

In the restricted case (all electrons are paired), the ground state determinant has the form: 

,0 1 1 2 2 /2 /2...s N N

             (2.24) 
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The orbitals 
i

 and 
i

 have α spin and β spin respectively. The spatial functions ψi are 

eigenfunctions of the Kohn-Sham Hamiltonian and are called the Kohn-Sham orbitals. The 

electron density can be derived from these orbitals by the relation: 

2

0

1

N

s i i

i

f  


   (2.25) 

 fi is the occupation number of the orbital (fi=2 for a fully occupied orbital). According to the 

Hohenberg-Kohn variational theorem,
99

 the true ground state density is the one that minimizes 

the ground state energy. Therefore, the Kohn-Sham orbitals can be optimized such that the 

resulting electron density minimizes the ground state energy. This optimization can be done by 

solving the KS equation (provided we have the appropriate potential  s iv r ): 

ˆKS

i i i ih    (2.26) 

where the eigenvalues εi correspond to the Kohn-Sham orbital energies. Now, we have to 

determine the external potential of this non-interacting system that would yield an electronic 

density equal to the density of the real system. We first write the two unknown components to 

the ground state energy in equation 2.19 in relation to this non-interacting system. For the kinetic 

energy we have: 

   
2

,0 ,00 0

1

2
is s

i

T T      (2.27) 

where the first term of the sum represents the kinetic energy contribution to the ground state of 

the non-interacting system and the second term represents the kinetic energy difference between 

the real and non-interacting system. Using the Slater-Condon rules, we can rewrite eq. 2.27: 

       2
0 01

1
1 1

2
i i

i

T T       (2.28) 

where (1) labels electron 1. For the electron-electron repulsion we have: 

   1 2
0 1 2 0

12

( ) ( )1

2
ee eeV d d V

r

 
  

r r
r r  (2.29) 

where the first term of the sum represents the Coulomb interaction for a smeared out charge. 12r

is the distance between coordinates 1r  and 2r . The term  0eeV  is the difference in inter-
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electronic repulsion energy between the real system and the non-interacting system. The two 

unknown terms  0eeV  and  0T  define the exchange-correlation energy functional: 

     0 0 0eexcE T V      (2.30) 

The external potential 
1

( )
s

v r of the Kohn-Sham Hamiltonian in 2.21 that minimizes the ground 

state energy satisfies: 

 
1

3 2
1

1 1 12

( )
( ) 1

M
A

s xc

A A

Z
v d r v

r r





    
r

r  (2.31) 

The first term is the external potential of the nuclei, the second term is the Hartree potential 

(electron-electron interaction) and the last term is the exchange-correlation potential given by: 

 ( )
( )

( )

xc

xc

E r
v r

r

 


  (2.32) 

This last term includes all many-body effects. Since the functional Exc is unknown, various 

approximations have been developed. These approximations can be classified in Jacob’s ladder, 

as shown in Table 2.1. The key to accuracy resides in the good approximation of the exchange-

correlation functional. There is no single good functional. The functional to choose depends on 

the system and properties investigated. 

In practice, the KS equations are solved self-consistently: 

1) Take the KS orbitals ( )n

i (n is the step number. n=1 corresponds to the initial guess). 

Calculate ρ
(n)

 from equation 2.25. 

2) Construct the KS operator ( )ˆKS n

ih  using the potential given in equation 2.31. 

3) Solve the KS equation 2.26 using the KS operator derived in step 2) to get new improved 

orbitals ( 1)n

i  . 

4) Calculate ρ
(n+1)

 . If  E[ρ
(n+1)

] –E[ ρ
(n)

]< Δ, where Δ is a preset convergence criterion, the 

calculation is converged. Otherwise, go back to step 1 where ( ) ( 1)n n

i i   . Repeat until 

converged.  
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Table 2.1 Jacob’s ladder 

Functional category Density dependence Examples 

Local Density Approximation 

(LDA) 

ρ VWN,
101

 Xα99,100 

Generalized-Gradient 

Appoximation (GGA) 

ρ, ∇ρ  BP86,
102,103

 PW91,
104

 

PBE
105

 

Meta-GGA ρ, ∇ρ, ∇2
ρ TPSS,

106
 M06-L

107
 

Hybrid ρ, ∇ρ, ∇2
ρ, exact Hartree-Fock 

exchange 

B3LYP,
102,108

 PBE0
109

 

 

 Construction of the molecular orbitals. 

The molecular KS orbitals are usually expanded in linear combinations of atomic orbitals 

φr: 

1

b
KS

i ri r

r

c 


  (2.33) 

The atomic orbitals φr are in turn expanded as a linear combination of Slater orbitals or 

Gaussian orbitals. The former is a function of 
re 
where ζ is a coefficient representing the decay 

of the function. The latter is a function of 
2re  . The Slater orbitals describe more accurately the 

features of the molecular orbitals and fewer Slater orbitals are needed in the expansion of the 

atomic orbitals. The Amsterdam Density Functional (ADF)
110

 program used in most of this 

research uses Slater orbitals. The reason Gaussian orbitals are often used is that the four-index 

integrals that have to be calculated can be expressed analytically as opposed to numerically with 

Slater functions. The number of Slater orbital used to model an atomic orbital represents the 

basis set. A double-zeta (DZ) basis set uses two Slater functions per atomic orbital. A triple-zeta 

(TZ) basis set uses three Slater functions, a quadruple zeta (QZ) basis set uses four Slater 

functions, and so forth. A larger basis set yields higher accuracy but also increases the 

computational cost. Additional features like polarization functions and diffuse functions may be 

added to the basis to account for orbital hybridization in polar bonds and loosely bound electrons 

(such as in anions, hydrogen bonds…) respectively. Polarization functions are labeled “nP” 

where n is the number of polarization functions (for instance TZP, QZ4P…) and diffuse 
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functions are labeled with “-nD” where n is the number of diffuse functions (for instance QZ3P-

2D). A more detailed description of basis sets can be found in Ref
111

. 

 Relativistic effects: The zeroth order regular approximations (ZORA) 

Relativistic effects are commonly integrated into the one-electron operator of the 

Hamiltonian in equation 2.8. The expression for the relativistic one-electron Hamiltonian was 

derived by Dirac:
112,113

 

  2

4

ˆˆ ˆ ˆ( ) A
D i i i

A iA

Z
h i c p c

r
 


    I  (2.34) 

  
ˆ

ˆ
ˆ

0

0






 
  
 
 

 and ˆ =β
 
 
 

2 2

2 2

I 0

0 -I
 are the 4X4 Dirac matrices where I2 is the 2X2 identity matrix 

and ̂  is the electron spin matrix. ˆ
ip is the momentum operator for particle i. 

The solution of the TISE for this Hamiltonian is a 4-electron spinor: 

U

D

L






 
  
 

 (2.35) 

U and L denote the upper and lower components of the Dirac wavefunction respectively. Each of 

these components has a α-spin component and a β-spin component. The upper and lower spinors 

are not linearly independent: 

1

2

L U
k

c
 

 
  
 

 p  (2.36) 

with 
2

1
2

V E
k

c

 
  
 

. 

Only the upper spinor is needed to describe electronic states. However, the relation between the 

lower and upper components must be enforced as a constraint to avoid variational collapse. 

In this work, relativistic effects are treated with the zeroth order regular approximation 

(ZORA).
114-116

 In the regular approximation, the parameter k in the coupling between upper and 

lower component spinor is approximated using an expansion in a power series. ZORA 

corresponds to the approximation where the power series is cut to the zeroth order term. Since 

ZORA is variationally stable and computationally efficient, it is one of the preferred methods for 

relativistic calculations. 
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 Time-dependent density functional theory (TDDFT) 

When a system is submitted to an external perturbation, for instance an electromagnetic 

field, its electronic structure undergoes changes that depend on time. TDDFT allows the study of 

the evolution of the electron density in real time (RT-TDDFT). A robust linear response 

formalism (LR-TDDFT) was also developed to obtain useful excited states properties in the 

frequency domain such as excited state energies, oscillator strengths, gradients, etc...   One great 

advantage of TDDFT compared to correlation methods is that it can simulate larger systems. One 

of the main limitations is the poor description of charge-transfer states. The basics of the method 

are given in this section but the reader is invited to consult selected references for more 

details.
117-120

 First, I will state the Runge-Gross theorem, which is the foundation of the method. 

Then, I will state the time-dependent Kohn-Sham equations and finally, I will discuss the linear 

response formalism, which is used in the TDDFT calculations performed.  

 The Runge-Gross theorem 

The Runge-Gross theorem is the foundation of TDDFT and can be viewed as the time-

dependent analog of the Hohenberg-Kohn theorem. It states that there is a one-to-one mapping 

between the time-dependent external potential ( , )
ext

v tr  and the time-dependent electron density

( , )t r  up to a phase factor C(t). This means that if two different time-dependent potentials 

( , )
A

ext
v tr and ( , )

B

ext
v tr  are applied on a system in its ground state at t=t0  

( ( , ) ( , ) ( )
A B

ext ext
v t v t C t r r ), the two resulting time-dependent electron densities ( , )

A
t r  and 

( , )
B

t r  will be different at any time t1>t0. Similar to the Hohenberg-Kohn theorem, this means 

the external potential can be expressed as functional of the electron density (there is a one-to-one 

correspondence) and all properties of the system can be obtained.  

 The time-dependent Kohn-Sham equations 

Like we did for the time-independent scheme, we now define a non-interacting system 

with an electron density ρs equal to the electron density of the real system ρ. The non-interacting 

system is represented by a single determinant Ψ(r,t). If for instance an electron is excited from 

an orbital N  to an orbital 1N  we have: 

1 1 1
( , ) ( , ) ( , )... ( , ) ( , )N N

t t t t t       
 r r r r r  (2.37) 
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The electron density can be calculated from the time-dependent Kohn-Sham orbitals ( , )i t r : 

2

( , ) ( , ) ( , )
N

s i i

i

t t f t   r r r  (2.38) 

if is the occupation number of the spatial orbital i . The time-dependent density can be obtained 

by solving the time-dependent Kohn-Sham (TDKS) equations until self-consistency is reached. 

The TDKS have the following form: 

( , ) ( , ) ( , )KS

i ii t h t t
t


 


r r r  (2.39) 

where 

21
( , ) [ ]( , )

2

KS

i Sh t v t   r r  (2.40) 

The time-dependent potential of the non-interacting system can be written as a sum of three 

terms: 

[ ]( , ) [ ]( , ) [ ]( , ) [ ]( , )S ext Hartree xcv t v t v t v t     r r r r  (2.41) 

The external potential extv  includes the potential from the nuclei and the potential generated by 

for instance an external electromagnetic field.  

The Hartree potential is written as: 

1

3 2
1

12

( , )
( , )Hartree

t
v t d r

r


 

r
r  (2.42) 

The TDKS equations can be solved iteratively until self-consistent like in the static case. Two 

questions remain: 1) how do we define self-consistency? 2) What is the exchange-correlation 

potential xcv ? We first answer question 1). Contrary to static DFT, the density and energy are not 

conserved quantities and we cannot derive an equivalent to the Hohenberg-Kohn variational 

principle. Instead, we have to find the state that corresponds to a stationary point of the quantum 

mechanical action integral A, which is a functional of the density: 

1

0

ˆ[ ] [ ]( , ) [ ]( , )( )

t

t

A dt t ti H t
t


  


   r r  (2.43) 

Ĥ  is the Hamiltonian, which is written as a sum of the kinetic energy and electron-electron 

repulsion term: 
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 The exact density can be determined by solving the Euler equation: 

[ ]
0

( , )

A

t








 r
 (2.45) 

The action integral can be rewritten in the following form: 

1 1

0 0

3 3 3

2

12

( , ) ( , )1
[ ] [ ] ( , ) ( , ) [ ]

2

t t

s 1 ext 1 xc

t t

t t
A B dt d r t v t dt d r d r A

r

 
          

1 2
1

r r
r r  (2.46) 

Bs is the universal functional for the non-interacting system: 

1

0

ˆ[ ] [ ]( , ) [ ]( , )( )

t

s

t

B dt t ti T
t


  


   r rr  (2.47) 

where T̂  is the time-independent kinetic energy operator. The first three terms of 2.46 can be 

readily evaluated. The fourth term of equation 2.46 is the exchange-correlation functional and it 

is unknown. This leads us to question 2: what is the exchange-correlation part of the potential? 

The exchange-correlation part of the potential can be expressed as: 

[ ]
( , )

( , )

xc
XC

A
v t

t









r
r

 (2.48) 

The first approximation for the action functional is the adiabatic approximation, where the time-

dependent exchange-correlation functional is replaced by a time-independent one (eq. 2.32). This 

is a good approximation if the probability density changes slowly with time. 

  Time-dependent density function response theory (TD-DFRT) 

The following section summarizes the formalisms used in TD-DFRT used in ADF and is 

based on Ref
121

. The derivation of properties like excitation energies and polarizabilities only 

require the linear density response of the system. The linear response of a system to a time-

dependent electric field is given by: 

(0) ( ) ( )i i ij j

j

E       (2.49) 



22 

 

where i  is the dipole moment in direction i at time t and 
(0)

i is the dipole moment in direction i 

(i=x, y, z) at t=0 (molecule in the ground state). ( )ij   is the linear dipole polarizability tensor, 

which has poles at the vertical excitation frequencies i .  

We need the first-order change in the time-dependent density of the spin σ electrons (1)

  

in order to derive the polarizabilities. The first order time-dependent density in terms of KS 

orbitals in given by: 

(1)

,

( , ) ( ) ( ) ( ) ( ) ( ) ( )ia a i ai a i
i a

P P 
    
          r r r r r  (2.50) 

The indices i, j, k… and a, b, c… denote occupied and unoccupied orbitals respectively. The 

indices σ and τ denote electron spins. P is the first order density matrix. Expanding the KS 

equations to first order of the applied field yields the following set of equations that can be 

solved to determine the density matrix elements: 

   

   

, ,

, ,

ij ab a i ia jb jb ia jb jb ext ia
jb jb

ij ab a i ai bj jb ai jb jb ext ai
jb jb

K P K P v

K P K P v

 
       

 

 
       

 

      

      

      

       

 

 
 (2.51) 

where 
ij  is the Kronecker delta, ω is the frequency of the electromagnetic wave, and  are KS 

orbital energies. The matrix elements of the external field  ext ia
v


 are given by: 

    ( ) ( ) ( )ext ext i ext aia ai
v v d   

       r r r r  (2.52) 

In the dipole case, the external potential can be written as: 

4
( ) cos( )

3
ext Er t


  r,   (2.53) 

where E is the amplitude of the field and α is the polarization of the field (= x, y, z). 

The matrix K is the coupling matrix and is defined as: 

, 1 2 1 1 2 2

12

1 2 1 1 1 2 2 2

1
( ) ( ) ( ) ( )

( ) ( ) ( , , ) ( ) ( )

ia jb i a j b

i a xc j b

K d d
r

d d f

     



   

   

    

  



 

 

r r r r r r

r r r r r r r r

 (2.54) 

The first term of the sum is the Hartree part and the second term is the exchange-correlation part. 

The xc kernel
xcf   is given by: 
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 (2.55) 

If the adiabatic approximation is used and we choose real KS orbitals, we have 
, ,ia jb ia bjK K    . 

Equation 2.51 can now be greatly simplified. The excitation energies ωI and oscillator strengths fI 

(I here labels the excited state number) can now be derived from a simple eigenvalue equation: 

2

I I I F F  (2.56) 

where the matrix elements Ω are given by: 

     
2

, ,2 b jia jb ij ab a i a i ia jbK    
              (2.57) 

The oscillator strength can be derived from the eigenvectors FI: 

 
22 2 2

† 1/2 † 1/2 † 1/2
2

/
3

I II I I
f Fx S F y S F z S F      (2.58) 

where 
  ,

ij ab

ia jb

j b b j

S
f f



 

   

  

 


 
 

 If we assume that the products ( ) ( )i a  r r  are linearly independent and the ground state 

wavefunction is a single determinant (eq.2.24) we can expand the excited state wavefunction as a 

linear combination of singly excited configurations Ψ: 

0
†ˆ ˆ

i af f
Ia i

I ia i a

ia I

F a a
 

 
  



 



  
    (2.59) 

where †â and â  are the creation and annihilation operators respectively. Ψ represents singly 

excited wavefunctions defined in eq.2.37. I

iaF 
 represents the contribution of the one-electron 

transition i a   . We can now also express the oscillator strength (2.58) of each excited state 

as a combination of the elements I

iaF 
 and therefore assign each single-particle transition a 

contribution to the total oscillator strength. 

 

 Configuration interaction 

 Configuration interaction (CI) is a quantum mechanical method used to determine the 

correlation energy of a system in its ground state and can also be used for excited states. The 
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essence of the method is to diagonalize the N-electron Hamiltonian in a basis of N-electron Slater 

determinants. The CI wavefunction is given by: 

1

N

i i

i

A


    (2.60) 

where Ai are weighing coefficients and Φi are the Slater determinants. The Slater determinants 

can be the ground state determinant but also singly excited (CIS), doubly excited (CISD), triply 

excited (CIDST)… In order to determine the energy E and wavefunction Ψ of the state of 

interest, we solve the eigenvalue problem: 

1 11 1 1 2 1

2 22 1 2 2 2

1 2

N

N

N N N N N N

ˆ ˆ ˆ A AH H H

ˆ ˆ ˆ A AH H H
E

ˆ ˆ ˆ A AH H H

          
     

         
     
     
          

 (2.61) 

 

In principle, if we expand the wavefunction in an infinite basis and includ all possible 

excited determinants (singly, doubly, triply, quadruply…), the solution to the CI gives the exact 

wavefunction with the exact energy. Computationally, this is of course not possible and the level 

of accuracy obtained depends on the level of theory used. For commonly investigated systems 

(in the order of 10 atoms), it is difficult to go beyond CISD. Alternative methods have been 

developed to include triply excited configurations at a lower cost by including them 

perturbatively. This is called CISD(T). The CI method is not highly used due its high 

computational cost and the fact that it is not size consistent. However, it is one of the best to 

describe highly correlated systems. 
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Chapter 3 - Theoretical analysis of the optical excitation spectra of 

silver and gold nanowires  

Guidez, E. B.; Aikens, C. M. Nanoscale 2012, 4, 4190  

Reproduced by permission of The Royal Society of Chemistry 

 Abstract 

The excitation spectra of linear atomic chains of silver and gold with various sizes have 

been calculated using time-dependent density functional theory. Silver chains show longitudinal 

and transverse peaks as well as a low-intensity d-band. The longitudinal peak, corresponding to 

the HOMO-LUMO transition (along the main axis of the chain), shifts linearly to the red as the 

length of the system increases, consistent with the particle-in-a-box model. The transverse peak 

remains at approximately constant energy for all systems studied and corresponds to m→m 

transitions in the xy plane perpendicular to the chain. As the chain grows, transitions arising from 

d orbitals contribute to the transverse peak, which affects its oscillator strength. Contrary to 

silver, gold chains display a strong d-band that converges to a distinct pattern at a chain length of 

about twelve atoms.  The transitions involved in the d-band originate from localized d-orbitals 

with a 2z
d character since they have the right symmetry to give transitions into the LUMO, 

LUMO+1... which have  symmetry.  Transitions arising from these localized d-orbitals also 

affect the position of the longitudinal peak and generate a wide transverse band. Although the 

majority of the transitions involved in the transverse band have a d→ or d→ character, 

they are hidden by much stronger excitations of d→ character in gold nanowires. 

 Introduction 

Noble metal nanoparticles (e.g. Ag, Au) have been recently studied for applications in 

sensing,
122,123

 catalysis
124

 as well as the environmental
125

 and biomedical fields.
34,36,126,127

 One of 

the attractive properties of 10-100 nm noble metal nanoparticles is that they show a strong 

absorption peak in the visible-IR region that can be tuned by varying their size,
24

 shape,
128,129

 or 

chemical environment.
29

 This is due to the concerted excitation of the conduction electrons in the 

presence of an electric field, or surface plasmon resonance (SPR).
51,52,130-132

 As the nanoparticle 

size decreases (down to hundreds of atoms), molecular properties arise and the absorption 
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spectrum becomes more complex. Quantum-mechanical calculations have been used to model 

the optical properties of noble metal clusters. In particular, time-dependent density functional 

theory (TDDFT) has been shown to provide insights regarding the origin of the discrete 

absorption spectra of noble metal clusters.
64,66,81,133,134

 Molecular excitations obtained with 

TDDFT for small clusters show intense peaks analogous to the plasmon excitations of larger 

nanoparticles and correspond well with peaks described in the Mie theory framework or with 

other classical electrodynamics methods.
50,64

 For example, tetrahedral Ag20 exhibits an intense 

peak that arises from a collective sp  sp intraband transition.
64

  

Significant progress has been achieved in synthesizing gold and silver nanoparticles with 

a wide variety of shapes including spherical,
58

 cylindrical,
135

  decahedral,
136

 icosahedral,
137

 and 

triangular.
138

 Cylindrical nanoparticles (nanorods and nanowires) are of particular interest since 

their optical properties are very sensitive to their aspect ratio.
131,139,140

 Studies of linear atomic 

chains of alkali metals (Na, K) and noble metals (Ag, Au) showed two main plasmon 

resonances: a longitudinal mode along the main axis of the chain and two transverse modes 

perpendicular to that axis.
141,142

 The energy and intensity of the longitudinal mode can be tuned 

by changing the length of the chain. The two transverse modes correspond to plasmon 

resonances at the end-atoms and inner atoms of the chain respectively. Therefore, the behavior of 

the electrons on the more exposed end-atoms is very distinct from the central atoms. The 

transverse plasmon resonance of gold nanowires was previously shown to strongly enhance two-

photon absorption.
143

 Both alkali metals and noble metals have a single electron in their valence 

shell. However, d electrons affect the plasmon resonance of the noble metal clusters, especially 

for gold due to relativistic effects.
53,66,144

  

    The aim of this work is to compare the absorption spectra of gold and silver nanowires (NWs), 

here defined as a linear chain of atoms, using time-dependent density functional theory and show 

how they are affected by the length of the nanowires. Orbitals involved in the main longitudinal 

and transverse excitations are discussed in detail for both silver and gold nanowires.  

  

 Computational details 

    All calculations in this work are performed with the Amsterdam Density Functional (ADF) 

package.
110 

 All the geometry optimizations are run using the generalized gradient approximation 
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(GGA) Becke-Perdew (BP86) exchange-correlation functional
102,103

 and an all-electron double-

zeta (DZ) basis set. Scalar relativistic effects are included with the zeroth-order regular 

approximation (ZORA).
115,116

 In order to have closed-shell species, positively and negatively 

charged species are considered for nanowires with an odd number of atoms. Excitation spectra 

are calculated using time-dependent density functional theory (TDDFT) with the statistical 

average of orbital potentials (SAOP)
145

 and LB94
146

 model potentials. An all-electron double-

zeta basis set is used for the SAOP calculations. With the LB94 potential, a frozen core is 

considered and the basis set used is DZ.4p for silver and DZ.4f for gold. The absorption spectra 

are convoluted with a Gaussian with a full width at half maximum of 0.2 eV. Orbitals are 

represented with a contour value of 0.02. 

 Results and discussion 

 Silver nanowires 

    The excitation spectra of silver nanowires are analyzed in this section. The spectra of the 

neutral silver nanowires are analyzed first at the SAOP/DZ and LB94/DZ levels of theory, 

followed by a comparison with the positively and negatively charged nanowires.  

  Neutral nanowires 

    The absorption spectra of silver nanowires Agn (n=2, 4, 8, 10, …, 20, and 40) show three 

distinct features: a sharp low-energy longitudinal peak, a low-intensity d-band and a transverse 

peak at about 6.3 eV (197 nm).  The excitation spectrum of Ag20 is presented in Figure 3-1A.  

 

Figure 3-1. Excitation spectra of A) Ag
20

 nanowire and B) Ag
40

 nanowire at the SAOP/DZ 

level of theory. 

 

A B 



28 

 

The rest of the spectra are shown in Appendix A. The longitudinal peak corresponds to the 

HOMOLUMO transition (). At the SAOP/DZ level of theory, this peak red shifts linearly 

from about 358 nm (3.46 eV) to 1562 nm (0.79 eV) as the length of the wire chain increases, as 

shown in Figure 3-2A.  

 

Figure 3-2. Longitudinal and transverse peak wavelengths (nm) for A) neutral B) positively 

charged and C) negatively charged silver nanowires. 

 

 

The linear shift of the longitudinal peak is in accordance with the particle-in-a-cylinder model, as 

previously discussed by Johnson and Aikens.
70

 A similar linear relationship is observed at the 

LB94/DZ level of theory but with a slightly smaller magnitude (Figure 3-2A). Note that the 

transition energies tend to occur at higher wavelength with the exchange-correlation model LB94 

than with SAOP as previously observed elsewhere.
64,70

 An analogous red-shift of the 

longitudinal absorption peak with increasing aspect ratio is observed for noble metal nanowires 

synthesized experimentally.
32,147

 As the aspect ratio increases, the energy of this peak tends to 

zero and its wavelength increases.  Nanowires with very high aspect ratios can be transparent in 

the visible and near-IR regions.
147

 In the linear atomic chains, the HOMO-LUMO gap will 

A B 

C 
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eventually approach zero which means that the system will become metallic as in the bulk 

material.  

The HOMO and LUMO orbitals both have a strong delocalized s character as shown for Ag6 

in Figure 3-3. These delocalized orbitals originate from the linear combination of the singly 

occupied 5s electron of the silver atoms.  

 

Figure 3-3. Kohn-Sham orbital energy diagram of Ag
6
 at the BP86/DZ level of theory. 

 

 

Since the 5s orbital of silver lies much higher in energy than the 4d orbitals, the HOMO-

LUMO transitions are well defined and separated from the rest of spectrum (about 1.1 eV gap for 

Ag20). We also note that the HOMO-LUMO transition starts splitting at a chain length of six 

atoms due to some contribution of the HOMO-2→LUMO transition, which is close in energy. 

As the nanowires grow longer, the splitting between the two peaks becomes smaller. The 

intensity of the longitudinal peak varies linearly with the length of the wire (and thus the number 

of electrons), as shown in Figure 3-4. The peak intensities tend to be somewhat higher at the 

LB94/DZ level of theory but follow the same trend.  
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Figure 3-4. Oscillator strength* of A) the longitudinal peak of silver nanowires with 

SAOP/DZ; B) the transverse peak of silver nanowires with SAOP/DZ; C) the longitudinal 

peak of silver nanowires with LB94/DZ; D) the transverse peak of silver nanowires with 

LB94/DZ.  

 

* The maximum intensity of the Gaussian convolution was considered. 

 

In the nanowire case, the longitudinal peak corresponds to a single HOMO-LUMO 

excitation. On the other hand, the longitudinal peak of silver nanorods with a larger diameter 

arise from several transitions involving delocalized orbitals.
70

 For example, for the pentagonal 

Ag25
+1

, the strong longitudinal peak appears at 3.40 eV and corresponds to a linear combination 

of three “single-particle transitions” (a term referring to an electronic transition between an 

occupied and an unoccupied orbital) of  (HOMO-1  LUMO+4) and  (HOMO-2  

LUMO and HOMO-2  LUMO+2) character.
70

 The HOMO-LUMO transition is not allowed by 

symmetry.
70

 The mixed transition at 3.40 eV arises when the z-components of the transition 

dipole moment combine in-phase; two weak peaks at 1.85 eV and 2.07 eV also arise from a 

linear combination of the same three single-particle transitions but have low oscillator strength 

C 

A B 

D 
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and are not observable in the excitation spectrum because of a destructive interference of the 

transition dipole moments.
70

 The coupling between those transitions and the mechanism by 

which they form a single peak is yet to be understood, but appears to be the key factor in 

connecting the excitations of smaller clusters with the plasmon resonance of larger nanoparticles. 

The longitudinal peak for the nanowires examined in this work corresponds mainly to a single 

excitation, leading to a very sharp single peak. The peak assigned as plasmon for larger systems 

involves more transitions leading to broadening of the peak, especially for systems with partially 

filled shells.
64,70

 Thus, it appears that a plasmon may be understood as a combination of single-

particle transitions that constructively interact; in addition, multiple peaks in the same energy 

region can contribute.  It is also important to note that we can expect the electron density of these 

nanorods in the excited state to be delocalized on the surface similar to the surface plasmon 

resonance, as explained by Harb et al for spherical silver clusters.
50

  

The next transition observed for the small nanowires Agn (4 n 8) corresponds to a 

transition out of the d-band. The energy between the start of the d-band and the HOMO-LUMO 

peak varies between 1.56 eV (Ag4) and 1.73 eV (Ag8). For the larger nanowires Agn (10 n 20), 

a second longitudinal peak appears below the d-band transitions. Its energy lies between 1.1 eV 

(Ag20) and 1.6 eV (Ag10) higher than the HOMO-LUMO peak. As the nanowires grow longer, 

energy gaps become smaller due to the increased number of interactions between the orbitals. 

Therefore, additional peaks appear and a greater number of d-band transitions are revealed. 

However, the intensities and energies of the d-band transitions remain constant, contrary to the 

main longitudinal peak. The d-orbitals are localized as shown in Figure 3-3. As a result, the 

energies and intensities of the transitions originating from these orbitals are not greatly affected 

by the size of the nanowires. The d-band also appears smaller as the nanowires grow longer since 

the intensity of the main longitudinal peak increases uniformly with the chain length. For very 

long nanowires, the d-band practically disappears as observed in the Ag40 case (Figure 3-1B) in 

which only the longitudinal and transverse peaks can be seen. This is in accordance with what is 

observed experimentally for silver nanorods with diameters in the several-tens of nanometers 

range.
148

  

    The transverse peak corresponds to transitions in the xy plane (m→m, where m is a quantum 

number). Since the diameter of the nanowires does not change, the energy of this peak remains 

relatively constant, only varying between 6.1 eV (204 nm) and 6.4 eV (195 nm) at the SAOP/DZ 
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level of theory, as shown in Figure 3-2A. As discussed previously, transitions are shifted to 

smaller wavelengths with LB94/DZ and the energy of the transverse peak varies between 6.6 eV 

(186 nm) and 6.9 eV (178 nm). Table 3-1 shows the transitions involved in the main transverse 

peak at the SAOP/DZ level of theory. For Agn, the number of m→m transitions is n/2. 

Therefore, the longer the nanowires are, the higher the number of transitions that can contribute 

to the transverse peak. For instance, the transverse peak of the nanowire Ag8 has contributions 

from 1→1, 2→2, 3→3 and 4→4. The dipole moment contributions for each 

transition add constructively. For n10, the trend continues but only the first few transitions are 

shown in the table. Additionally, we can see that the transverse peak has a large intensity (at least 

three times as large as the d-band).  Although the intensity of the peak generally increases with 

length, it shows some oscillations as shown in Figure 3-4B. Note that this oscillatory behavior is 

a little different at the LB94/DZ level of theory (Figure 3-4D). These oscillations can be 

explained by some contributions of the d-band to the peak. In fact, starting at a length of six 

atoms, d-transitions start to mix with the m→m transverse transitions as shown in Table 3.1. 

Although the main contribution to the dipole moment originates from m→m transitions, the 

weights of the d-transitions that participate are large enough that the contribution to the peak 

intensity is non-negligible. However, the individual d-band contributions to the dipole moment 

are rather small.  
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Table 3.1. Transitions contributing to the high-intensity transverse peak in silver 

nanowires at the SAOP/DZ level of theory. 

Agn Energy (eV) Transitions 
Type of 

transition 
Weight 

Contribution to 

dipole moment 

2 6.06 10
+

g(HOMO)→6u 1→1 0.9269 2.2276 

4 6.17 
19

+
u(HOMO)→11g 

19
+

g(HOMO-1)→11u 

2→2 

1→1 

0.4742 

0.3838 

-1.5740 

-1.4066 

6 6.20 

13u→30
+

g 

29
+

g(HOMO)→17u 

28
+

u(HOMO-1)→16g 

28
+

g(HOMO-2)→16u 

d-band 

3→3 

2→2 

1→1 

0.4017 

0.1873 

0.1340 

0.1071 

-0.1888 

0.9849 

0.8309 

0.7391 

8 6.29 

37
+

u(HOMO-2)→22g 

38
+

u(HOMO)→22g 

37
+

g(HOMO-3)→21u 

37
+

u(HOMO-2)→21g 

38
+

g(HOMO-1)→22u 

2→4 

4→4 

1→1 

2→2 

3→3 

0.2632 

0.1583 

0.1036 

0.0971 

0.0909 

0.1029 

0.8980 

0.7217 

0.7008 

0.6796 

10 6.25 

21g→49
+

u 

22g→49
+

u 

48
+

g(HOMO)→28u 

47
+

u(HOMO-1)→27g 

d-band 

d-band 

5→5 

4→4 

0.4215 

0.1269 

0.1106 

0.0938 

-0.2309 

0.1588 

0.7517 

0.6919 

12 6.26 

27g→59
+

u 

57
+

g(HOMO-1)→34u 

57
+

u(HOMO)→33g 

57
+

g(HOMO-1)→33u 

d-band 

5→7 

6→6 

5→5 

0.3018 

0.1418 

0.1061 

0.0806 

0.0745 

0.1009 

-0.7348 

-0.6399 

14 6.27 

30u→69
+

g 

67
+

g(HOMO)→40u 

31u→69
+

g 

66
+

u(HOMO-1)→39g 

d-band 

7→7 

d-band 

6→6 

0.4543 

0.0401 

0.0896 

0.0346 

0.2564 

-0.4511 

-0.1321 

-0.4185 

16 6.28 

36u→79
+

g 

76
+

u(HOMO)→45g 

76
+

u(HOMO)→44g 

76
+

g(HOMO-1)→44u 

d-band 

8→8 

8→6 

7→7 

0.3422 

0.1085 

0.0720 

0.0599 

-0.0875 

-0.0582 

0.6037 

0.5499 

18 6.28 

38g→88
+

u 

39g→88
+

u 

86
+

g(HOMO)→50u 

85
+

u(HOMO-1)→49g 

d-band 

d-band 

9→9 

8→8 

0.4372 

0.1469 

0.0519 

0.0457 

-0.2608 

0.1669 

0.5125 

0.4804 

20 6.34 

44g→98
+

u 

49g→99
+

u 

43g→98
+

u 

91
+

g→55u 

95
+

u(HOMO)→55g 

95
+

g(HOMO-1)→55u 

d-band 

d-band 

d-band 

d-band 

10→10 

9→9 

0.4078 

0.0564 

0.0553 

0.0490 

0.0376 

0.0356 

-0.0984 

-0.0071 

0.1042 

0.0028 

-0.4333 

-0.4215 
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 Positively and negatively charged nanowires 

      The absorption spectra of the positively charged silver nanowires Agn
+
 (n=3, 5, 7, 9, …, 19) 

and their negatively charged counterparts Agn
-
 (n=3, 5, 7, 9, …, 19) share many similar features 

with the spectra of the neutral nanowires: they also have a longitudinal peak corresponding to the 

HOMO-LUMO transition, a low-intensity d-band, and a transverse peak that corresponds to one 

or more m→m transitions. We note that the HOMO-LUMO gap of the positively charged 

nanowires decreases much slower than the HOMO-LUMO gaps obtained for the neutral and 

negatively charged species. In fact, the slope of the absorption wavelength of the longitudinal 

peak is distinctively smaller for positively charged nanowires, as shown in Figure 3-2. Figures 3-

4A and 3-4C shows that the more negatively charged the nanowires is, the larger the intensity of 

the longitudinal peak. This may be explained by the larger electron density for the negative 

species. On the other hand, the energy of the transverse peak is not very affected by the charge of 

the nanowires. The intensity of the transverse peak shows similar oscillations for the positively 

charged and negatively charged species as those encountered for the neutral species (Figure 3-4B 

and 3-4D). The energy and intensity of the d-based transitions are also not affected by the charge 

of the nanowires, which can be explained by the fact that the d orbitals are localized.  

 Gold nanowires 

In this section, the absorption spectra of gold nanowires are analyzed and compared with 

their silver analogs. The absorption spectra of gold nanowires also exhibit longitudinal and 

transverse peaks as well as transitions arising from the d-band, as shown with Au20 in Figure 3-

5A. The spectra of the neutral species are first discussed with an additional focus on the d-band, 

followed by a brief comparison with the positively charged and negatively charged species.  
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Figure 3-5. A) SAOP/DZ excitation spectrum of the Au
20

 nanowire. B) Subset of SAOP/DZ 

transverse excitation modes for the Au
20

 nanowire. 

 

 Neutral gold nanowires  

Contrary to the silver case, transitions originating from the d-band are important for the 

gold nanowires since they highly affect the longitudinal and transverse peak energies and 

intensities. In fact, the 5d orbitals of the gold atom lie closer in energy to the 6s orbital than do 

the 4d orbitals of silver to the 5s. Figure 3-6A shows the wavelengths of the longitudinal peak for 

neutral gold nanowires. A red shift of the longitudinal peak is observed. A similar observation 

was found at the PW91/LANLDZ level of theory.
144

 At the SAOP/DZ level of theory, a break in 

linearity occurs at ten atoms (eights atoms with LB94/DZ), which is the size where the 

longitudinal peak becomes distinguishable from the d-based transitions.  

 

 

 

 

 

 

 

 

 

 

 

A B 
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Figure 3-6. Wavelengths of main longitudinal peak for A) neutral B) positively charged and 

C) negatively charged gold nanowires. 

 

 

At that system length, the peak intensity becomes stronger than the intensity of the transitions 

originating from the d-band. The HOMO-LUMO transition couples with the d-based transitions 

because they have the same symmetry. As a result, a splitting of the longitudinal peak occurs. 

We can adjust for this effect by considering the weighted average of the transition dipole 

moment of the HOMO-LUMO transition from several excitation peaks. As shown in Figure 3-

7A, the linear relationship between the wavelength of the HOMO-LUMO transition and the 

number of atoms in the chain is recovered. This shows that the longitudinal transitions of gold 

nanowires still follow the particle-in-a-cylinder model but the d-band splits the HOMO-LUMO 

peak. Since the d-band energy does not vary much with size whereas the energy of the 

longitudinal peak red shifts with length, the energy difference between the d-based transitions 

and the longitudinal peak increases as the nanowires grows from Au10 to Au20 and this difference 

reaches about 1 eV for Au20. However, this energy difference is more than 1 eV smaller than the 

one discussed previously with the silver nanowires.  

A B 

C 
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Figure 3-7. Weighted average of the HOMO-LUMO transition for A) neutral B) positively 

charged and C) negatively charged gold nanowires. 

 

It should be noted that the d-band mixing is also reflected in the intensity of the longitudinal 

peak. As shown in Figure 3-8, the intensity of the longitudinal peak starts increasing linearly 

with chain length at 8-10 atoms. This corresponds to the size where the longitudinal peak starts 

to separate from the d-based transitions. 

  

Figure 3-8. Oscillator strength of the longitudinal transition energy of gold nanowires with 

A) SAOP/DZ and B) LB94/DZ. 

 

  

 

A B 

C 

A B 



38 

 

Contrary to the silver case, a transverse peak can only be distinguished in the two-atom chain. 

For the longer nanowires, a broad band begins at about 6 eV instead. This band shows a similar 

pattern for all the nanowires and starts converging at a system length of about twelve atoms. The 

high-intensity transitions involved are mainly d→ transitions, as shown in Table 3.2. These 

transitions arise from localized d-orbitals to delocalized s-based  orbitals. Because of the 

symmetry of these transitions, they will be excited by z-polarized light.  

 

Table 3.2. Transitions with the highest oscillator strength occurring between 6 and 7 eV for 

the Au20 nanowire.  

 

 

 

 

 

 

 

 

 

Figure 3-5B displays only the transverse excitations of Au20, which correspond to excitations 

across the short axis of the wire (xy-plane). Transverse peaks begin at a wavelength of about 6.3 

eV and their oscillator strength is about ten times smaller than the d→ excitation. Those 

transverse modes are mainly d→ and d→ transitions and they all have high contributions 

to the dipole moments, although not quite as high as the d→ transitions (Table 3.3).  

 

 

 

 

 

 

 

Energy (eV) 
Oscillator 

strength 
Transition Weight 

Contribution 

to the dipole 

moment 

5.99 0.76 80g →81u 0.9530 2.8721 

6.10 0.60 
79g→81u 

80u→81g 

0.5901 

0.3476 

-0.1782 

-1.6479 

6.28 0.46 
79u →81g 

79g →82u 

0.5308 

0.3315 

0.1957 

1.4809 

6.31 0.54 79g →82u 0.4586 1.7373 

6.85 0.52 78g →83u 0.6392 1.6190 
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Table 3.3. d→ transitions involved in the transverse band of the Au20 nanowire at 

SAOP/DZ level of theory. 

 

 

 

 

 

 

 

The d→ and d→ transitions are the majority in the 6-7 eV range but they are hidden by a 

few more intense d→ transitions described above. It should be noted that a band of 

transverse dipole excitation modes between 5 and 6 eV was previously observed at the 

PW91/LANL2DZ level of theory with a frozen orbital picture.
144

 Moreover, we expect that the 

intensity of this transverse band would increase as the diameter of the system increases. An 

investigation of the effect of the diameter on the excitation spectra is currently underway. 

Since the d-band is so important for gold species, it is discussed in more detail here. As 

the wire grows longer, the d-band forms a distinct pattern. In order to study this pattern, all the d-

based transitions between the longitudinal peak and transverse band are plotted for the neutral 

nanowires with 12 to 20 atoms, as shown in Figure 3-9A. Two main transitions occur at about 2 

and 2.8 eV. A series of transitions with lower oscillator strength occur between 3.5 and 5.5 eV. 

The transition energies shift slightly depending on the size of the nanowires but the overall 

pattern is apparent. A density of states diagram showing the d orbitals for gold nanowires with 

12 to 20 atoms is also shown in Figure 3-9B. We note that the two figures are practically mirror 

images of one another. However, the density of states diagram is broader than the excitation 

spectrum. This can be explained by the fact that the density-of-states diagram includes all the d 

orbitals (i.e with , , ,  and character). However, the transitions involved in 

the excitation spectrum originate from d orbitals with character. In fact, they are the only d 

orbitals with the right symmetry to contribute to transitions into LUMO, LUMO+1, LUMO+2, 

LUMO+3 and LUMO+4 orbitals, which have  character.  

xyd xzd yzd 22 yx
d

 2z
d

2z
d

Energy (eV) 
Oscillator 

strength 
Transition Weight 

Contribution 

to the dipole 

moment 

6.29 0.013 129
+

g →81u 0.2369 -1.0961 

6.43 0.019 130
+

g→82u 0.5052 -1.4817 

6.53 0.030 130
+

u →82g 0.4212 1.3255 

6.62 0.023 132
+

g →83u 0.4002 1.1708 

6.79 0.018 131
+

u →83g 0.4873 -0.7199 
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Figure 3-9. A) d-band of the neutral nanowires starting at a wire length of twelve atoms. B) 

Density of states of the d orbitals of gold nanowires. This data was plotted with SAOP/DZ. 

 

 Positively and negatively charged nanowires 

The positively charged and negatively charged gold nanowires display similar trends as 

the neutral ones. The wavelength of the longitudinal peak also shows a break in linearity at five 

atoms for the positively charged systems and at seven atoms for the negatively charged species, 

as shown in Figures 3-6B and 3-6C. In a similar manner as the neutral case, linearity is recovered 

by taking the weighted average of the HOMO-LUMO transition, as shown in Figures 3-7B and 

3-7C. However, Au3
+
 does not fit the trend for the positively charged nanowires. In fact, the 

HOMO-LUMO transition for this system is at much lower energy. Similarly to the silver case, 

the wavelength of the HOMO-LUMO transition increases more rapidly with size for the neutral 

and negatively charged nanowires than for the positively charged nanowires. Also, similarly to 

the neutral case, the coupling between the HOMO-LUMO transition and the d-band is reflected 

in the intensity of the longitudinal peak. In fact, there is a bump in the peak intensity between 

three and seven atoms for the charged species (Figure 3-8). After that, the peak intensity varies 

linearly with the chain length, similarly to the silver case. The d-band pattern is also recovered 

for the positively charged and negatively charged species. Since these orbitals are fairly 

localized, this is expected. The transverse band at 6 eV also compares fairly well with the neutral 

species, which suggests that the transitions involved originate from similar orbitals as the neutral 

case.  

 

A B 
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 Conclusions 

The excitation spectra of linear chains of silver and gold have been studied for systems 

with lengths between two and twenty atoms.  Neutral, positively charged, and negatively charged 

nanowires typically follow the same patterns.  For silver, a series of delocalized m and m 

orbitals formed from 5s orbitals lie near the HOMO-LUMO gap.  Localized 4d-based orbitals are 

well separated in energy. The excitation spectra for both silver and gold exhibit a main 

longitudinal peak corresponding to the HOMO-LUMO excitation along the chain. This peak 

shifts to the red as the chain length increases. The shift is linear for silver, which is consistent 

with the particle-in-a-cylinder model. However, the d-band of the gold species affects the energy 

of this peak because of coupling due to symmetry; this can be treated by taking a weighted 

average of the transition dipole moment contributions for all peaks with some HOMO-LUMO 

contribution.  Silver nanowires show a transverse peak with nearly constant energy that is 

formed from delocalized m→m transitions whose transition dipole moments add in a 

constructive manner in analogy to the transverse plasmonic peak of larger nanoparticles. 

Transitions arising from the d-band also tend to contribute to this peak as the chain becomes 

longer. The gold species show a wide transverse band corresponding to d→ and d→ 

transitions. This band is mostly hidden by d→ transitions with oscillator strength about ten 

times higher than the transverse excitations. Silver nanowires show a low-intensity d-band that 

essentially goes away for systems of longer length. On the other hand, the excitation spectra of 

the gold species show a strong d-band that converges to a specific pattern at a chain length of 

about twelve atoms. This d-band also affects the position of the main longitudinal peak. 
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Chapter 4 - Diameter-Dependence of the Excitation Spectra of Silver 

and Gold Nanorods 

Reproduced with permission from:  

Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 12325. 

Copyright 2013 American Chemical Society. 

 Abstract 

An analysis of the excitation spectra of silver and gold nanorods with different cross-

sections, lengths and diameters was performed using time-dependent density functional theory at 

the LB94/DZ level. Silver nanorods show a strong longitudinal peak, corresponding to 

excitations along the main axis (z axis) of the nanorods, and a smaller transverse peak, 

corresponding to excitations in the xy plane of the nanorods. For systems with a large cross-

section (star-shaped and large pentagonal nanorods), the single transverse peak is split into a 

wide band. The orbitals involved in these transitions are delocalized cylindrical orbitals. 

Constructive addition of the dipole moments of these transitions is observed for the strong 

longitudinal and transverse peaks, which is likely at the origin of the surface plasmon resonance 

phenomenon. The wavelength of the longitudinal peak increases linearly with increasing length, 

crossing over the transverse peak or transverse band, which remains at nearly constant energy. 

The intensity of the longitudinal peak increases with increasing system length due to the 

increasing number of electrons being collectively excited. The energy of the longitudinal peak 

for systems of identical length also tends to increase as the diameter of the system increases, 

which can be correlated to a decreasing aspect ratio. Gold nanorods display more complex 

excitation spectra due to the presence of transitions originating from the d-band. Such transitions 

may also mix with cylindrical orbital-based transitions, especially for systems with low aspect 

ratios, splitting the longitudinal peak into several peaks of lower intensity. As the aspect ratio 

increases, the energy of the longitudinal peak decreases and its intensity increases. It then 

becomes separated from the d-band transitions which remain approximately constant in intensity 

and energy. Consequently, the amount of d-band coupling to the main cylindrical orbital-based 

excitations decreases, which leads to a strong isolated longitudinal peak similar to the silver case. 
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No strong transverse peak is observed for gold nanorods at this level of theory. Instead, the 

transverse excitations are hidden by the d-band transitions. 

 Introduction 

 Gold and silver nanoparticles show unique catalytic,
3,149,150

 optical
151-156

 and 

electrochemical
157

 properties that can be used in the biomedical,
17,127,157-160

 sensing
157,161-167

 and 

imaging
15,165

 fields. Possible biomedical applications include cancer diagnostics,
168,169

 cancer 

therapy,
35,170,171

 and tissue imaging.
172

 Noble metal nanoparticles with sizes on the order of 10-

100 nm display a strong peak in the excitation spectrum near the visible region that is due to their 

unique surface plasmon resonance (SPR).
157,164,173-176

 This phenomenon is formally defined as a 

collective excitation of the electrons under the application of an electric field. The plasmon 

resonance can enhance the SERS signal of small molecules like HCN
177

 and enhance the circular 

dichroism signal generated by chiral molecules.
163,178

 In addition, when attached to a receptor, 

the localized surface plasmon resonance of gold nanoparticles can be spectrally tuned after 

binding of the receptor to the analyte.
179

  The size,
32,167,174

 shape,
71,174

 and composition
180-182

 of 

the nanoparticle as well as the dielectric constant
174

 of the medium can help tune the SPR. 

Significant progress has been achieved in the synthesis of nanoparticles
183

 and it is now possible 

to produce particles with a wide variety of shapes
184-186

 and sizes
187-189

  with a narrow size 

distribution.  

Optical properties of noble metal nanorods have been intensively studied both 

experimentally
32,175,189-194

 and theoretically.
32,70,174,193-197

 The absorption spectra of gold and 

silver nanorods show one low-energy peak that corresponds to a superposition of transitions 

along the main axis of the system (longitudinal).
85,191

 This peak shifts to lower energy, as 

explained by the particle-in-a-cylinder model,
198

 and its intensity increases as the aspect ratio of 

the rod increases.
32,193

 The absorption spectra also show a second peak at higher energy and of 

lower intensity, which corresponds to transitions across the short axis of the system 

(transverse).
85

  

Gold and silver atoms have a single electron in their valence s orbital. Frontier orbitals of 

silver and gold nanoparticles are a linear combination of these s orbitals and are delocalized over 

the entire structure.
71,180,195,199-202

 The main difference between the two types of nanoparticles is 

due to relativistic effects.
91,203-205

 In silver systems, the d-band is much lower in energy than in 
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the case of gold.  Gold nanowires show a strong d-band compared to their silver counterparts, 

which affects the energies and intensities of the longitudinal and transverse peaks, leading to a 

more complex excitation spectrum.
144,206

 

The objective of this work is to quantitatively determine how the absorption spectrum of 

silver and gold nanorods is affected by the shape and diameter of the system. In order to do that, 

four different systems are compared: nanowires
206

 (linear atomic chains), nanorods with a 

pentagonal cross-section of two different diameters and nanorods with a star-shaped cross-

section.  These shapes are chosen because silver and gold nanorods are known to have a 

pentagonal structure.
189,207

 In addition, the pentagonal and star-shaped structures are a subset of 

Marks decahedra, which form the cores of nanoclusters.
42,76

 

 Computational methods 

All calculations in this work are performed with the Amsterdam Density Functional 

(ADF) program.
110

 Geometry optimizations employ the generalized gradient approximation 

(GGA) Becke-Perdew exchange-correlation functional.
102,103

 A double zeta Slater-type basis set 

with the frozen core approximation is used for all calculations. Scalar relativistic effects are 

included with the zeroth-order regular approximation (ZORA).
114-116

 Multiple charge states 

leading to closed-shell electronic structures are considered in this work.  Since some of the 

highest occupied orbitals are degenerate, this is taken into consideration when determining the 

available charge states. Most structures optimized with D5h symmetry except for Au19
+1

, Au25
+1

, 

Au29
+3

, Au39
+1

, Ag39
+1

, Ag39
-1

, Ag29
-5 

and Ag29
+3

, which utilized C5v symmetry. These structures 

are local minima but may not be global minima for their respective sizes; as discussed in the 

introduction, these systems are of interest due to their symmetry and their relationship to 

experimental nanorods and nanoparticles. Excitation spectra are calculated using time-dependent 

density functional theory (TDDFT) with the asymptotically corrected LB94 model potential.
146

 

HOMO-LUMO gaps are also reported at the LB94/DZ level of theory. The absorption spectra 

are convoluted with a Gaussian with a full width at half maximum of 0.2 eV. All individual 

excitation spectra are available in Appendix B. 
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 Results and discussion 

 Silver nanorods 

In this section, silver nanorods with four different cross-sections are compared: the 

nanowires studied in Ref
195

, the small pentagonal nanorods studied in Ref
70

, the star-shaped 

nanorods and the large pentagonal nanorods calculated here. Figure 4-1 shows an end view and a 

side view for each of these systems as well as the length and radius considered. We note that for 

the silver and gold nanowires, the radii considered are 145 pm and 136 pm respectively, which 

correspond to their covalent radii. For each of these systems, several lengths are considered. 

Tables 4.1 to 4.4 show the systems considered and their aspect ratios. Since some of the highest 

occupied orbitals are degenerate, this is taken into consideration when determining the charge 

states of interest. The charges considered here all lead to closed-shell systems.  

 

Figure 4-1. Side view and end view of A) Ag9
+1

 nanowire B) Ag37
+1

 small pentagon C) Ag73
+1 

star-shaped silver nanorod and D) Ag55
+1

 large pentagon-shaped nanorod. The length and 

radius considered for each system are noted L and R respectively. 
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Table 4.1. Peak energies and HOMO-LUMO gaps of silver nanowires. 

System 
Aspect ratio 

(L/2R) 

Longitudinal peak
a
 

(nm) 

Transverse peak
a
 

(nm) 

HOMO-LUMO 

gap (eV) 

Ag3
+1

 1.84 565.63 181.16 0.90 

Ag7
+1

 5.52 775.69 180.54 0.54 

Ag11
+1

 9.19 1022.63 178.20 0.39 

Ag15
+1

 12.85 1249.32 178.62 0.30 

Ag19
+1

 16.52 1484.22 179.19 0.25 

a. Ref
195

 

Table 4.2. Peak energies and HOMO-LUMO gaps of small positively charged pentagon-

shaped silver nanorods. 

System 
Aspect ratio 

(L/2R) 

Longitudinal peak 

(nm) 

Transverse peak 

(nm) 

HOMO-LUMO 

gap (eV) 

Ag19
+1

 1.62 305.88 261.02 0.24 

Ag31
+1

 2.85 366.53 259.38 0.38 

Ag43
+1

 3.94 434.97 256.70 0.35 

Ag55
+1

 5.16 506.29 254.07 0.13 

Ag67
+1

 6.24 560.82 254.07 0.22 

 

Table 4.3. Peak energies and HOMO-LUMO gaps of positively charged star-shaped silver 

nanorods. 

System 

Aspect 

ratio 

(L/2R) 

Longitudinal 

peak (nm) 

Transverse peak 1 

(nm) 

Transverse peak 

2 (nm) 

HOMO-

LUMO gap 

(eV) 

Ag18
+4

 0.72 255.52 298.25 257.94 0.73 

Ag29
+3

 1.12 285.03 290.81 259.02 0.29 

Ag40
+2

 1.47 302.47 285.88 257.94 0.13 

Ag51
+1

 1.82 317.85 283.26 255.81 0.18 

Ag62
+2

 2.20 351.78 281.98 265.11 0.19 

Ag73
+1

 2.58 375.19 279.44 260.10 0.018 
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Table 4.4. Peak energies and HOMO-LUMO gaps of large positively charged pentagon-

shaped silver nanorods. 

System 

Aspect 

ratio 

(L/2R) 

Longitudinal peak 

(nm) 

Transverse 

peak 1 (nm) 

Transverse 

peak 2 (nm) 

HOMO-

LUMO gap 

(eV) 

Ag23
+1

 0.60 225.99 294.50 272.49 0.11 

Ag39
+1

 0.89 261.75 279.87 263.80 0.58 

Ag55
+1

 1.18 283.26 270.71 249.47 0.74 

Ag71
+1

 1.49 302.05 273.09 255.11 0.14 

Ag87
+1

 1.78 326.76 273.70 249.97 0.03 

 

The HOMO-LUMO gaps of most silver systems are larger than 0.1 eV, as shown in 

Tables 4.1 to 4.4. The large star-shaped nanorod Ag73
+1

 and the large pentagonal nanorod Ag87
+1

 

have HOMO-LUMO gaps of 0.018 eV and 0.03 eV respectively, which are comparable to kT 

(T=300K). However, other large systems such as Ag67
+1

 have HOMO-LUMO gaps on the order 

of 0.22 eV.  The HOMO-LUMO gaps for these systems do not monotonically decrease in this 

size regime, which is due to energy spacings between the orbitals that vary due to quantum 

confinement effects (more information about this is available in the SI of Ref 
208

). 
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Figure 4-2. Excitation spectra of silver A) nanowires
195

 B) small pentagonal nanorods
70

 C) 

star-shaped nanorods and D) large pentagonal nanorods
 
at the LB94/DZ level of theory.  

 

*The key shows the systems considered and their aspect ratios. 

 

The absorption spectra of positively charged silver systems are narrow and show few 

strong peaks, as shown in Figure 4-2. The two main features of these spectra are the low-energy 

longitudinal peak, which shifts to the red and grows in intensity as the system becomes longer 

for a given radius, and the transverse peak, which does not shift or grow significantly. For 

nanowires and small pentagonal nanorods (Figures 4-2A and 4-2B respectively), these two peaks 

are far apart in the spectrum and can be easily identified. Tables 4.1 and 4.2 show the wavelength 

of the longitudinal and transverse peaks of these systems. The transverse peak is at 6.9 eV (180 

nm) for the nanowires and at 4.8 eV (257 nm) for the small pentagonal nanorods. The 

longitudinal peak of the nanowires shifts from 2.19 eV (565.6 nm) to 0.84 eV (1484 nm) with 

increasing length. The longitudinal peak of the small pentagonal nanorods shifts from 4.05 eV 



49 

 

(305.9 nm) to 2.21 eV (560.8 nm). These trends are similar to what was previously observed at 

the SAOP/DZ level of theory.
70,195

  

For the wider systems (star-shaped nanorods and large pentagonal-shaped nanorods), the 

transverse peak is strongly split, giving a transverse band between 4 and 6 eV. Four main peaks 

can be identified in the transverse band for the star-shaped nanorods. The first two strong peaks 

making up the band are given in Table 4.3 with the longitudinal peak. We can see that this band 

seems to slightly grow in intensity as the length of the system increases, due to an increasing 

density of states in the band. The longitudinal peak shifts from 4.86 eV (255.5 nm) to 3.31 eV 

(375.2 nm) with increasing length. It is lower in energy and has a higher intensity than the 

transverse band for systems with an aspect ratio larger than one as shown in Figure 4-2C and 

Table 4.3. As the aspect ratio decreases, the longitudinal peak becomes higher in energy and 

starts to overlap with the transverse band. Additionally, the intensity of the longitudinal peak is 

similar to the intensity of the transverse band for systems with a small aspect ratio, making the 

longitudinal peak less easily identifiable. For instance for Ag29
+3

, which has an aspect ratio of 

1.12, the longitudinal peak at 4.35 eV (285.0 nm) overlaps the first peak making up the 

transverse band at 4.27 eV (290.8 nm). For Ag18
+4

, which has an aspect ratio smaller than one 

(0.72), the first transverse peak making up the transverse band is at 4.16 eV (298.3 nm), which is 

lower in energy than the longitudinal peak at 4.85 eV (255.5 nm). The longitudinal peak overlaps 

the second peak of the transverse band at 4.81 eV (257.9 nm). 

Two main peaks are observed in the transverse band of the large pentagonal nanorods. 

The energies of these two peaks and the longitudinal peak are given in Table 4.4. The 

longitudinal peak shifts from 5.49 eV (226.0 nm) to 3.80 eV (326.8 nm) with increasing length. 

Like the star-shaped nanorods, the systems with a higher aspect ratio (Ag71
+1

 and Ag87
+1

) show a 

strong identifiable longitudinal peak that is lower in energy than the transverse band. For 

instance, the longitudinal peak of Ag71
+1

 occurs at 4.11 eV (302.1 nm) while the first peak of the 

transverse band appears at 4.54 eV (273.1 nm).  For Ag55
+1

, which has an aspect ratio close to 

one (aspect ratio=1.18), the first transverse peak in the transverse band at 4.58 eV is close in 

energy to the longitudinal peak which is at 4.38 eV. Therefore, we only see one peak in the 

spectrum. Ag23
+1

 has an aspect ratio of 0.60. The range of the transverse band for this system is 

from 4 to 5 eV, which is lower energy than the longitudinal peak at 5.49 eV since the aspect ratio 

is smaller than one. 
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The excitation spectra of negatively charged star-shaped and large pentagonal nanorods 

(Appendix B) show similar features and trends as their positively charged counterparts, which 

has been observed previously for negatively and positively charged nanowires.
195

 The intensity 

of the main features tends to be higher for negatively charged systems due to the larger electron 

density, as explained previously for silver nanowires.
195

 The negatively charged small 

pentagonal silver nanorods were not calculated but similar features are expected. 

 Analysis of the longitudinal peak 

The longitudinal peaks for all the positively charged systems considered in Figure 4-2 are 

now analyzed in more detail. Longitudinal peaks have A2’’ symmetry for D5h systems and A2 

symmetry for systems in which C5v symmetry was applied. Transitions involved here take place 

along the length of the nanorods, as will be discussed in the next section. Figure 4-3 shows the 

wavelength of the longitudinal peak as a function of the number of core atoms.  For all systems, 

the wavelength of the longitudinal peak increases linearly with the length of the rod. Such 

behavior was previously explained with the particle-in-a-cylinder model.
70

 Despite the fact that 

the charge of the individual rods is not constant for the star-shaped systems, the linearity is very 

good, suggesting that the longitudinal peak energy is not significantly affected by the charge for 

these systems.  

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

Figure 4-3. Longitudinal peak wavelengths of positively charged silver nanorods at the 

LB94/DZ level of theory. 

 

The wavelength of the longitudinal peak tends to decrease as the diameter of the system 

increases. This can be correlated to the fact that for a system with a given length, the aspect ratio 

decreases as the diameter increases. In addition, the slope of the line tends to decrease as the 

diameter of the system increases, meaning the red shift of the peak with increasing length 

becomes smaller as the diameter of the system increases. This is because the aspect ratio of a 

system with a larger radius increases slowly with increasing unit length compared to a system 

with a smaller radius. The change in wavelength of the longitudinal peak with increasing length 

is slightly smaller for star-shaped than for the large pentagon-shaped nanorods, although the 

large pentagons have a larger radius than the stars. This observation may be explained by the 

different shape of the two systems. Figure B-6 shows the energy of the longitudinal peak as the 

function of the number of core atoms for positively and negatively charged star-shaped and large 

pentagonal nanorods. The positively charged systems considered are the same as in Figure 4-2. 

The negatively charged systems considered, along with their HOMO-LUMO gap, longitudinal 

peak energy and transverse peak energy are shown in Table B1 and B2 of appendix B for the 

star-shaped nanorods and large pentagonal nanorods, respectively.  The positively and negatively 

charged systems exhibit a very similar behavior and the position of the longitudinal peak does 

not significantly vary for the different charges. As mentioned above, this data also supports the 

fact that the charge does not significantly affect the excitation spectra for silver nanorods. The 

HOMO-LUMO gaps for the negatively charged systems are mostly larger than 0.1 eV, like the 
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positively charged systems. The main exceptions are Ag39
-5

 and Ag55
-3

, which have HOMO-

LUMO gaps of 0.02 and 0.04 eV, respectively. On the other hand, the positively charged systems 

Ag39
+1

 and Ag55
+1

 have much higher HOMO-LUMO gaps of 0.58 and 0.74 eV, respectively.     

 Analysis of the transverse peak 

Transverse peaks have E1’symmetry for D5h systems and E1 symmetry for C5v systems. 

As mentioned above, the nanowires and small pentagonal nanorods display a strong, identifiable 

transverse peak at 6.9 eV and 4.8 eV respectively. On the other hand, the transverse peak of the 

star-shaped rods and large pentagonal rods is split into a broad band between about 4 and 6 eV. 

We see that the transverse peak of the nanowires has a much shorter wavelength (higher energy) 

than the transverse peak of wider systems. However, the strong splitting of the transverse peak 

for the star-shaped and large pentagonal nanorods makes it difficult to derive a more quantitative 

relationship for the relationship between diameter and transverse peak wavelength.  

 

 Analysis of the Ag71
-3

 spectrum 

The excitation spectrum of the large pentagonal nanorod Ag71
-3

 shown in Figure 4-4A is 

described in detail here.  

 

Figure 4-4. Excitation spectra of A) Ag71
-3

 and B) Au71
-3

 at the LB94/DZ level of theory. 
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This system is chosen since it is the longest system with a large pentagonal cross-section 

whose gold counterpart was also obtained (Figure 4-4B). One intense sharp feature, the 

longitudinal peak, is observed at about 4 eV. This main feature is comprised of four peaks with 

energies varying between 3.98 and 4.12 eV. These four high-intensity peaks are of A2’’ 

symmetry, describing transitions along the main axis of the nanorod. The energy, oscillator 

strength and transitions involved are displayed in Table 4.5. Most of the orbitals involved in 

these transitions are very delocalized and located near the HOMO-LUMO gap, as shown in 

Figure 4-5. Due to the cylindrical symmetry of these system, these orbitals can be described with 

upper case Greek letters Σ, Π, Δ, Φ, Γ, Η, …, and correspond to linear combinations of the 

valence s orbitals of the silver atoms. The subscript corresponds to the number of axial nodes 

plus one. The number before the upper case Greek letter corresponds to the number of radial 

nodes plus one. For instance, the LUMO+2 is a Π–like orbital with two axial nodes and one 

radial node giving the notation 2Π3. The transitions with the highest dipole moments involved in 

these four longitudinal peaks are Σm→Σm+1, Πm→Πm+1, Δm→Δm+1, etc. 

 

Figure 4-5. Kohn-Sham orbitals involved in the high intensity transitions for Ag71
-3

 at the 

LB94/DZ level of theory. Contour value=0.01. 
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Table 4.5. Energy, oscillator strength and transitions of the main A2’’ peaks of Ag71
-3

. 

Peak 

number 

Energy 

(eV) 

Intensity 

(a.u) 
Transitions 

z-component 

of transition 

dipole 

moment (a.u.) 

Weight 

1 3.9826 1.9463 

Δ4 (HOMO-2) → Φ5 (LUMO+31) -0.4687 0.3678 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 0.8446 0.0182 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 1.2746 0.0278 

2Σ3 (HOMO-6) → 2Σ4 (LUMO+3) 0.5793 0.0122 

Π5 (HOMO-1) → Π6 (LUMO+7) 1.0255 0.0201 

Φ3 (HOMO) → Φ4 (LUMO+9) 0.8015 0.0179 

2 4.0435 1.6048 

Δ4 (HOMO-2) → Φ5 (LUMO+31) -0.4747 0.383 

Φ2 (HOMO-5)→2Φ1 (LUMO+23) -0.0918 0.3249 

Σ6 (HOMO-4) → Σ7 (LUMO+6) -0.6387 0.0106 

Δ4 (HOMO-2) → Δ5 (LUMO+11) -0.9434 0.0155 

2Σ3 (HOMO-6) → 2Σ4 (LUMO+3) -0.4565 0.0077 

Π5 (HOMO-1) → Π6 (LUMO+7) -0.7803 0.0118 

Φ3 (HOMO) → Φ4 (LUMO+9) -0.5601 0.0089 

2Π2 (HOMO-3)→ 2Π3 (LUMO+2) -0.4491 0.007 

3 4.0784 2.0185 

Σ6 (HOMO-4) → 3Σ3 (LUMO+26) -0.0938 0.2189 

Φ2 (HOMO-5) →2Φ1(LUMO+23) -0.0992 0.3833 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 0.9078 0.0216 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 1.3674 0.0327 

2Σ3 (HOMO-6) → 2Σ4 (LUMO+3) 0.5941 0.0132 

Π5 (HOMO-1) → Π6 (LUMO+7) 1.1183 0.0244 

4 4.1268 5.1423 

Σ6 (HOMO-4) → 3Σ3 (LUMO+26) 0.1353 0.4609 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 1.1479 0.0349 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 1.8721 0.0621 

2Σ3 (HOMO-6) → 2Σ4 (LUMO+3) 0.8478 0.0271 

Π5 (HOMO-1) → Π6 (LUMO+7) 1.5081 0.045 

Φ3 (HOMO) → Φ4 (LUMO+9) 1.0964 0.0347 

2Π2 (HOMO-3) → 2Π3(LUMO+2) 0.8278 0.0242 

 

For these four strong longitudinal peaks, the transitions with high dipole moments add up 

constructively, as shown in Table 4.5. This constructive addition of one-electron transitions leads 

to the sharp high intensity band observed in the excitation spectra and can be correlated to the 

plasmon resonance, which is described as a collective oscillation of the electrons in response to 

an electric field. Several other peaks at lower energy arise from the same transitions, as shown in 

Table 4.6. However, their dipole moments add up in a destructive manner, giving peaks of very 

low intensity. Similar trends were observed for silver nanowires
195

 and small pentagonal  

nanorods,
70

 as well as tetrahedral,
209

 octahedral,
71

 and icosahedral
71

 silver clusters.  
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Table 4.6. Energy, oscillator strength and transitions of the low intensity A2’’ peaks 

involving the same transitions as the main A2’’ peaks for Ag71
-3

. 

Peak 

number 

Energy 

(eV) 

Intensity 

(a.u) 
Transitions 

z-component 

of transition 

dipole 

moment (a.u.) 

Weight 

1' 1.3505 0.00787 

Σ6 (HOMO-4) → Σ7 (LUMO+6) -0.1652 0.0002 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 0.316 0.0006 

2Σ3 (HOMO-6) → 2Σ4 (LUMO+3) 0.5052 0.0032 

Π5 (HOMO-1) → Π6 (LUMO+7) 2.1431 0.0297 

Φ3 (HOMO) → Φ4 (LUMO+9) 2.6221 0.0649 

2Π2 (HOMO-3) → 2Π3 (LUMO+2) -7.8803 0.7165 

Φ3 (HOMO) → 2Δ2 (LUMO+10) 1.1095 0.0522 

2' 1.4565 0.00294 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 2.0691 0.04 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 1.3857 0.012 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+3) 0.5556 0.0041 

Π5 (HOMO-1) → Π6 (LUMO+7) -9.3167 0.6058 

Φ3 (HOMO) → Φ4 (LUMO+9) 5.4624 0.304 

3' 1.6538 0.03393 

Σ6 (HOMO-4) → Σ7 (LUMO+6) -2.3424 0.0582 

Δ4 (HOMO-2) → Δ5 (LUMO+11) -5.7698 0.2364 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+3) -2.754 0.1148 

Π5 (HOMO-1) → Π6 (LUMO+7) 2.745 0.0597 

Φ3 (HOMO) → Φ4 (LUMO+9) 4.9901 0.288 

2Π2 (HOMO-3) → 2Π3 (LUMO+2) 2.4314 0.0835 

4' 1.8546 0.00245 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 1.3719 0.0224 

Δ4 (HOMO-2) → Δ5 (LUMO+11) 3.9595 0.1248 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+3) -5.1325 0.447 

2Π2 (HOMO-3) → 2Π3 (LUMO+2) -0.3946 0.0025 

5' 1.8905 
9.03E-

04 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 7.4579 0.6743 

Δ4 (HOMO-2) → Δ5 (LUMO+11) -5.4239 0.2388 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+3) -1.1173 0.0216 

2Π2 (HOMO-3) → 2Π3 (LUMO+2) -0.4078 0.0027 

Φ3 (HOMO) → Φ4 (LUMO+9) -0.9412 0.0117 

Π5 (HOMO-1) → Π6 (LUMO+7) 0.4744 0.002 

 

 Three transverse peaks are observed between 4.37 and 4.78 eV, as shown in Table 4.7. 

Their intensities are lower than the longitudinal ones because they have lower transition dipole 

moments. Contrary to the longitudinal case, we get the following transitions: Σ→Π, Π→Σ, Φ→Γ 

as well as Π→Φ or Π→Η. For the nanowires, the main transitions involved in the transverse 
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peak are of the type Σm→Πm.
195

 For the small pentagonal nanorods, the transverse excitations are 

mainly of the type Σm→Πm, Πm→Σm, Πm→Δm etc., where the change in the azimuthal quantum 

number is ±1.
70

 For the wider systems, we get more flexibility due to the fact that the cross-

section is not spherical and due to the higher number of states available. For instance, we see 

some 2Π1→Η1 and Φ3→3Π3 transitions, where the changes in the azimuthal quantum number 

are +4 and -2 respectively. The quantum numbers m and n may also change. Nevertheless, we 

still see some Φm→Γm transitions, which have a higher transition dipole moment than the others.  

We note that the unoccupied orbitals involved here are much higher above the LUMO than for 

the longitudinal case, which contributes to the higher energy of the transverse peak compared to 

the longitudinal peak. The excitations involved in peak 3 at 4.78 eV show a constructive 

interference of the transition dipole moments and the peak is therefore more intense than the 

other two where there is some destructive interference.  

 

Table 4.7. Energy, oscillator strength and transitions of the main E1’ peaks of Ag71
-3

. 

Peak 

number 

Energy 

(eV) 

Intensity 

(a.u) 
Transitions 

x- 

component 

of transition 

dipole 

moment 

(a.u.) 

Weight 

1 4.37 0.9199 

Φ1 (HOMO-10) → 3Π1 (LUMO+19) -0.2474 0.3646 

2Π1 (HOMO-7) → 3Σ1 (LUMO+1) 0.2936 0.0059 

2Π2 (HOMO-3) → 3Σ2 (LUMO+8) 0.256 0.0046 

2Σ3 (HOMO-6) → Π7 (LUMO+25) 0.1024 0.0223 

2 4.58 0.8743 

Π5 (HOMO-1) →H3 (LUMO+35) 0.2982 0.3445 

Φ3 (HOMO) → 3Π3 (LUMO+37) 0.1667 0.2092 

Φ1 (HOMO-10) → Γ1 (LUMO) -0.4572 0.0084 

2Π1 (HOMO-7) → Η1 (LUMO+21) -0.1287 0.0063 

3 4.78 1.5949 

2Π1 (HOMO-7) → Η1 (LUMO+21) -0.172 0.0118 

2Π2 (HOMO-3) → Η2 (LUMO+29) -0.1483 0.01 

Φ1 (HOMO-10) → Γ1 (LUMO) -0.5507 0.0128 

Φ3 (HOMO) → Γ3 (LUMO+12) -0.2411 0.0051 
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 Gold nanorods 

The gold equivalents of the small pentagonal nanorods, star-shaped nanorods and the large 

pentagonal nanorods are modeled. The charge of the systems is usually the same as their silver 

counterpart except for the star-shaped Au51
+3

 and Au73
+3

 and the large pentagonal Au71
-3

. These 

systems do not have a +1 charge contrary to their silver equivalent studied in the previous section 

because a closed-shell occupation was not obtained for the singly positively charged system. 

Figure 4-6 shows the absorption spectra of the gold nanowires,
195

 small pentagonal nanorods, 

star-shaped nanorods and large pentagonal nanorods examined in this work. Tables 4.8 to 4.11 

show the HOMO-LUMO gaps and longitudinal peak energies of the systems considered in 

Figure 4-6. 

 

Figure 4-6. Excitation spectra of gold A) nanowires
195

 B) small pentagonal nanorods C) 

star-shaped nanorods and D) large pentagonal nanorods
 
at the LB94/DZ level of theory.  

 

*The key shows the system considered and their aspect ratio. 
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Table 4.8. Longitudinal peak energy and HOMO-LUMO gap of gold nanowires. 

System Aspect ratio (L/2R) Longitudinal peak (nm)
a
 

HOMO-LUMO gap 

(eV) 

Au3
+1

 1.92 489.55 0.38 

Au7
+1

 5.85 1177.77 0.35 

Au11
+1

 9.74 1315.58 0.27 

Au15
+1

 13.64 1553.74 0.22 

Au19
+1

 17.54 1795.49 0.18 

a) Ref 
195

 

Table 4.9. Longitudinal peak energy and HOMO-LUMO gap of small positively charged 

pentagon-shaped gold nanorods . 

System Aspect ratio (L/2R) 
Longitudinal peak 

(nm) 

HOMO-LUMO gap 

(eV) 

Au19
+1

 1.63 390.27 0.24 

Au31
+1

 2.80 424.21 0.32 

Au43
+1

 3.90 511.40 0.30 

Au55
+1

 5.07 545.11 0.13 

Au67
+1

 6.16 598.55 0.03 

 

Table 4.10. Longitudinal peak energy and HOMO-LUMO gap of positively charged star-

shaped gold nanorods. 

System Aspect ratio (L/2R) 
Longitudinal peak 

(nm) 

HOMO-LUMO gap 

(eV) 

Au18
+4

 0.75 328.91 0.83 

Au29
+3

 1.12 340.10 0.34 

Au40
+2

 1.47 436.59 0.16 

Au51
+3

 1.82 438.31 0.04 

Au62
+2

 2.19 457.51 0.01 

Au73
+3

 2.53 450.65 0.19 
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Table 4.11. Longitudinal peak energies and HOMO-LUMO gap of large pentagon-shaped 

gold nanorods. 

System Aspect ratio (L/2R) 
Longitudinal peak 

(nm) 

HOMO-LUMO gap 

(eV) 

Au23
+1

 0.64 235.51 0.18 

Au39
+1

 0.90 298.02 0.43 

Au55
+1

 1.17 379.20 0.78 

Au71
-3

 1.47 397.21 0.34 

 

The HOMO-LUMO gaps of gold systems are generally larger than 0.2 eV and can be as 

high as 0.83 eV. The star-shaped nanorod Au40
+2

 has a HOMO-LUMO gap of 0.16 eV at the 

LB94/DZ level of theory and 0.17 eV at the BP86/DZ level of theory, which is 0.1 eV smaller 

than the more compact Au40 nanorod studied by Liu et al.
210

 This emphasizes the fact that the 

HOMO-LUMO gaps do not correlate with the number of atoms in the system. On the other hand, 

the small pentagonal nanorod Au67
+1

, and the star-shaped nanorods Au51
+3

 and Au62
+2

 have very 

small HOMO-LUMO gaps (smaller than 0.04 eV). Excitation spectra for gold nanorods are 

much broader and exhibit a multitude of transitions out of the d-band compared to their silver 

counterparts. Transitions out of the d-band occur in gold systems because of relativistic effects: 

the heavy nuclei of gold atoms induce a contraction of the valence s electrons, which brings the 

valence s orbitals close to the d-band.
91,203,204

 The effect of the d-band was previously studied in 

detail for gold nanowires.
141,142,195

 The longitudinal peak is less obvious than for the silver case 

for systems with a low aspect ratio since the transitions originating from the d-band have a 

similar intensity. As the aspect ratio increases, the longitudinal peak becomes stronger and shifts 

to the red, making it more easily identifiable. Systems with an aspect ratio larger than 2.80 for 

the small pentagon-shaped nanorods and 2.19 for the star-shaped nanorods show a strong, 

distinguishable longitudinal peak. We note that for the large pentagons, the longest system that 

could be studied at this level of theory has a 1.47 aspect ratio and therefore the main longitudinal 

peak is difficult to identify. For systems with very high aspect ratio, only the main longitudinal 

peak is strong and the d-band seems to disappear since these transitions have a constant intensity. 

However, we cannot see any strong transverse peak for these gold systems at this level of theory, 

which is in contradiction with experiment.
32,175

 The transverse peaks are weak and blend in with 
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the d-band, similar to what was observed with gold nanowires.
195

 More investigations need to be 

performed on these gold nanorods and new computational methods need to be developed to 

provide a better description of their plasmonic properties.   

 

Figure 4-7. Longitudinal peak wavelengths of positively charged gold nanorods. 

 

The wavelength of the longitudinal peak of positively charged gold nanorods as a 

function of the number of core atoms is shown in Figure 4-7. Longitudinal peak energies, 

HOMO-LUMO gaps and aspect ratios of these systems are presented in Tables 4.8 to 4.11. The 

data for the nanowires is from Ref
195

. All nanowires considered have a +1 charge. We note that 

just like in the silver case, the charges of the star-shaped nanorods considered vary. All the other 

systems considered have a +1 charge except for the large-pentagon Au71
-3

. The excitation 

spectrum of the positively charged Au71
+1

 system could not be obtained. The relationship 

between the peak wavelength and number of core atoms is not as linear as the silver case. This 

was explained for the nanowires by the coupling of d-band transitions with the main HOMO-

LUMO transition, which splits the HOMO-LUMO (longitudinal) peak and affects the peak 

energy.
195

 The linearity was recovered by taking the weighted average of the energy of the 

HOMO-LUMO transition. A similar effect is observed for the larger systems. In fact, excitations 

from the d-band contribute to the main longitudinal peak for systems with a low aspect ratio, 
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splitting the longitudinal peak. As the nanorods grow longer, the contributions from the 

excitations out of the d-band decrease and the main longitudinal peak grows stronger, just as it 

does for the silver case. This will be discussed in more detail in the next section.  Similar to the 

silver case, we can see that the energy of the longitudinal peak tends to increase as the diameter 

of the system increases. However, the longitudinal peaks of star-shaped and small pentagon-

shaped nanorods of similar length have similar energies. This discrepancy may be due to the 

different shapes of the two systems and also possibly to the contributions of the d-band. 

 Analysis of the Au71
-3

 nanorod 

The spectrum of Au71
-3

 is much broader than its silver counterpart, as shown in Figure 4-

4B. Nevertheless, a few peaks are slightly more intense than the rest and are analyzed in more 

detail in this section. Five peaks of A2’’ symmetry with oscillator strength between 0.11 and 0.31 

appear at low energy between 2.96 and 3.58 eV (Table 4.12). We note that the contributions of 

the transition dipole moments are not as high as the silver case. In addition, there is also more 

destructive addition of the transition dipole moments. Many transitions are of Σm→Σm+1, 

Πm→Πm+1 or Δm→Δm+1 character, involving delocalized orbitals around the HOMO-LUMO gap 

that are shown in Figure 4-8. We note that these orbitals have a small amount of d-character 

mixed in. We also see some excitations like Φ1 → Φ4 or 2Σ3 → Σ8, where the azimuthal quantum 

number does not change but Δm is larger than 1 and Δn is larger than zero. Peaks 1 through 4 

display some common excitations, suggesting some splitting has occurred. These longitudinal 

peaks also display high contributions from transitions out of localized d-band orbitals, which are 

closer in energy to the delocalized cylindrical orbitals than in the silver case, again due to 

relativistic effects.
91,203

 Peak number 5 is comprised only of transitions from the d-band and its 

intensity is slightly higher than peak 1 which only has contributions from delocalized orbitals. In 

fact, we can see that d-band transitions have a similar dipole moment to the delocalized orbital-

based transitions or even higher. Two of these d-band orbitals are also shown in Figure 4-8. 
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Table 4.12. Energy, oscillator strength and transitions of the main A2’’ peaks of Au71
-3

. 

Peak 

number 

Energy 

(eV) 

Intensity 

(au) 
Transition 

z-contribution 

of transition 

dipole 

moment (a.u.) 

Weight 

1 2.96 0.114 

Σ6 (HOMO-4) → 3Σ3 (LUMO+16) 0.3802 0.6639 

Φ1 (HOMO-10) → Φ4 (LUMO+9) 0.2062 0.1206 

Σ6 (HOMO-4) → Σ7 (LUMO+6) -0.4679 0.0051 

Σ5 (HOMO-11) → 2Σ4 (LUMO+5) -0.2744 0.0296 

Π5 (HOMO-1) → 3Π4 (LUMO+23) 0.2121 0.0101 

Π5 (HOMO-1) → 2Π4 (LUMO+18) -0.1668 0.0099 

2 3.1 0.265 

d-orbital→  Γ1 (LUMO) 0.308 0.2794 

2Σ3 (HOMO-5) → Σ8 (LUMO+15) -0.2033 0.1391 

Π5 (HOMO-1) → 3Π4 (LUMO+23) -0.8633 0.1744 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 0.6281 0.0097 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+5) 0.5101 0.0082 

Δ4 (HOMO-2) →Δ5 (LUMO+10) 1.0967 0.0171 

Π5 (HOMO-1) → Π6 (LUMO+8) 0.4603 0.0062 

3 3.25 0.1944 

d-orbital → Γ1 (LUMO) 0.25 0.2926 

Π5 (HOMO-1) → 3Π4 (LUMO+23) -0.6312 0.0978 

2Σ3 (HOMO-5) → 2Σ4 (LUMO+5) -0.4253 0.006 

Δ4 (HOMO-2) → Δ5 (LUMO+10) -0.8805 0.0116 

4 3.29 0.3057 

d-orbital → 3Σ1 (LUMO+1) -1.0268 0.4271 

d-orbital → Γ2 (LUMO+2) 0.317 0.1318 

d-orbital → Γ1 (LUMO) 0.1291 0.079 

d-orbital → 2Δ1 (LUMO+3) 0.239 0.0694 

Π5 (HOMO-1) → 3Π4 (LUMO+23) 0.3999 0.0398 

Σ6 (HOMO-4) → Σ7 (LUMO+6) 0.456 0.0054 

5 3.58 0.1814 

d-orbital → Σ7 (LUMO+6) 0.173 0.1942 

d-orbital → 2Δ1 (LUMO+3) 0.7514 0.1872 

d-orbital → 2Δ1 (LUMO+3) -0.2858 0.1661 

d-orbital → Φ4 (LUMO+9) -0.2683 0.067 
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Figure 4-8. Kohn-Sham orbitals involved in the high intensity transitions for Au71
-3

 at the 

LB94/DZ level of theory. Contour value= 0.01. 

 

For systems with a low aspect ratio like this one, excitations out of the d-band tend to mix 

with transitions from the delocalized orbitals and split the longitudinal peak into peaks of lower 

intensity, making it less identifiable. For systems with a high aspect ratio such as the small 

pentagon-shaped nanorod Au67
+1

, there is no contribution of the d-band to the longitudinal peak. 

The transitions from the cylindrical orbitals have a high dipole moment and add up 

constructively, leading to a strong, easily identifiable longitudinal peak similar to the silver case. 

The transitions involved in the main longitudinal peak of Au67
+1

 are mainly Σm→Σm+1, Πm→Πm+1 

and Δm→Δm+1 also like in the silver case. We note that the longitudinal peak has a contribution 

from the Σ11→2Σ4 transition, which involves Δn=1 and Δm=-7.  All these transitions are 

summarized in Table B3 of Appendix B and pictures of the orbitals involved are shown in Figure 

B7 of Appendix B. It should be noted that the cylindrical orbitals also have a small amount of d 

character mixed in contrary to the silver case. 

 Conclusions 

Silver and gold nanorods with different lengths and diameters were analyzed in this work. 

The excitation spectrum of silver nanorods shows two main strong peaks: a longitudinal peak 

corresponding to transitions along the main (z) axis of the nanorods and a transverse peak, 
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corresponding to transitions in the xy plane of the nanorod. The longitudinal peak increases in 

intensity and shifts to lower energy as the length of the system increases. The dipole moments of 

the single electron excitations involved in this main peak add up constructively, which can be 

related to the surface plasmon resonance of noble metal nanoparticles. The increasing intensity 

of this peak may be explained by the increasing number of one-electron excitations adding 

constructively. The transitions involved are of Σ→Σ, Π→Π, Δ→Δ, etc. character where the 

upper case Greek letter is a label for the cylindrical orbitals. For a system with a given length, the 

energy of the longitudinal peak increases as the diameter increases, due to the decreasing aspect 

ratio. The red shift of the longitudinal peak with increasing length becomes smaller as the 

diameter of the system increases, which correlates with the smaller increase of the aspect ratio 

for each added unit length to the system. The transverse peak is narrow and well separated from 

the longitudinal peak for systems with a small diameter such as nanowires and small pentagonal 

nanorods. For the star-shaped and large pentagonal nanorods, the transverse peak is split into a 

broad band. The transverse peak or band stays at nearly constant energy and intensity for each 

system of a given radius. The transitions involved are of Σ→Π, Φ→Γ, etc. character for the 

nanowires and small pentagonal nanorods, but additional transitions such as Π→Η also occur for 

the wider systems. The transition dipole moments have a smaller magnitude than for the 

longitudinal peak. For systems with an aspect ratio smaller than one, the longitudinal peak is 

higher in energy than the transverse peak; as the aspect ratio increases, these two peaks cross in 

the excitation spectrum so that the longitudinal peak becomes the lowest in energy. Gold 

nanorods show a much wider excitation spectrum due to the high density of transitions 

originating from the d-band. The longitudinal peak shifts to lower energy and increases in 

intensity with increasing length, like in the silver case. However, the longitudinal peak of 

systems with a low aspect ratio shows strong contributions from transitions originating from the 

d-band in addition to the transitions originating from delocalized cylindrical orbitals. The amount 

of d-band mixing decreases as the aspect ratio increases and the longitudinal peak shifts away 

from the d-band.  At the LB94/DZ level of theory, the transverse peaks are hidden in the d-band. 

While the LB94 functional usually works well for gold and silver systems, no strong transverse 

peak is shown for the gold nanorods studied here, which contradicts experiment.  
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Chapter 5 - Origin and TDDFT Benchmarking of the Plasmon 

Resonance in Acenes 

Reproduced with permission from:  

Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 21466. 

Copyright 2013 American Chemical Society. 

 Abstract 

The origin of plasmon resonance in acenes is described by analyzing the excitation 

spectrum of naphthalene in terms of configuration interaction. The strong longitudinal β-peak in 

the UV region of the spectrum results from a constructive interaction of the transition dipole 

moments of two degenerate configurations V1 and V2. V1 corresponds to the excitation of an 

electron from the HOMO to the LUMO+1. V2 corresponds to the excitation of an electron from 

the HOMO-1 to the LUMO. The weak longitudinal α-peak in the visible results from a 

destructive interaction of the dipole moments of the same two configurations. Previous TDDFT 

calculations showed a similar behavior for silver and gold nanoparticles but often with more than 

two interacting configurations.  The plasmon occurs at the frequency where all configurations 

interact constructively. The β-peak of acenes can therefore be identified as the plasmon peak.  

The natural transition orbitals involved in the α- and β- peaks of naphthalene have identical 

shapes, which reflects the fact that the transitions involved in these two peaks are similar, but 

they may have opposite phases. An analysis of the transition density of the β-peak of naphthalene 

reveals that the electron density moves from one side of the molecule to the other upon 

excitation, as expected for a dipolar plasmon. The plasmonic character of the β-peak is compared 

to the single-particle transition character of the transverse p-band. Several exchange-correlation 

functionals have been benchmarked. Hybrid functionals give the best description of the β-peak 

and the α-peak. The couplings between the two interacting configurations at all levels of theory 

are similar to experimental values.  On the other hand, long-range corrected functionals give the 

most accurate energies for the transverse p-band.  
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 Introduction 

Polycyclic aromatic hydrocarbons have been studied for almost a century due to their 

environmental impact and their role as carcinogens.
211,212

 Linear polycyclic aromatic 

hydrocarbons, or acenes (Figure 5-1), have recently attracted more attention due to their potential 

use as semi-conducting materials such as field-effect transistors.
213-218

  

 

Figure 5-1. Linear polycyclic aromatic hydrocarbons (acenes). 

 

Acenes with up to five fused aromatic rings can be easily synthesized with a procedure 

readily available in the literature.
211

 However, the synthesis of longer acenes is more difficult due 

to their increasing instability in solution as the number of rings increases.
219-221

 Octacene and 

nonacene were synthesized in a cryogenic argon matrix in 2010.
222

 Computational methods are 

therefore necessary to study the electronic structure of acenes in the ground state
223-225

 and 

excited state.
226-228

 Despite their long history, the electronic properties of acenes are still subject 

to some controversy.  For instance, Houk et al. predicted a singlet ground state for acenes shorter 

than nonacene and a triplet ground state for acenes longer than nonacene using density functional 

theory
229

 while Bendikov et al. predicted a singlet ground state with a strong diradical nature for 

acenes larger than hexacene.
230

 Chan et al. showed than the polyradical character increases with 

increasing number of rings.
231

  

The excitation spectra of acenes show three main features: the β-band, α-band and p-

band.
211,232

 The α- and β-bands are comprised of two transitions polarized along the long axis of 

the system (HOMO→LUMO+1 and HOMO-1→LUMO) and have B3u symmetry.
233

 The p-band 

corresponds to transitions polarized along the short axis of the system (B2u symmetry), where the 

main component is the HOMO-LUMO transition.
211,234

 The α- and p-bands are also known as the 

1Lb and 1La states, respectively. The β-band is in the UV region of the spectrum and has a very 
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large oscillator strength while the p-band and α-band are in the visible and are very weak.
211

 All 

three bands shift to lower energy as the number of rings increases.
211,235

 However, the shift of the 

p-band is larger than the shift of the α-band and consequently the two peaks cross. The α-band of 

naphthalene is lower in energy than the p-band whereas the α-band is higher in energy than the 

p-band for anthracene and longer acenes.
211

 Several models involving configuration interaction 

have been used to describe the excited states of acenes. These methods include configuration 

interaction calculations using the free-electron approach,
234,236

 as well as configuration 

interaction using a linear combination of atomic orbitals approximation with neglect of 

differential overlap between atomic orbitals.
237

 More recently, Sony and Shukula used the 

Pariser-Parr-Pople (PPP) Hamiltonian in conjunction with the configuration interaction method 

to reproduce the excitation spectrum of acenes.
233

 Time-dependent density functional theory has 

also been used to calculate the excited states of acenes. But in 2003, Grimme and Parac 

determined that standard GGAs and hybrid functionals used in time-dependent functional theory 

calculations tend to strongly underestimate the energy of the p-band with increasing acene 

length, which is why these standard functionals do not give the correct ordering between the α-

band and p-band.
228

 In the last three years, Wong and Hseih and Herbert et al. employed several 

long-range corrected exchange-correlation functionals to obtain the correct ordering between the 

α and p-bands for all acenes.
238,239

  Later, Ziegler et al performed an all-order constricted 

variational density functional theory calculation and obtained excitation energies for the α-and p-

bands in good agreement with experiment.
240

  

Several experiments have suggested that carbon nanotubes and graphene exhibit a 

plasmonic behavior.
241-245

 Since acenes are building blocks of these systems, it is important to 

understand their properties. Recently, Manjavacas et al. showed that polycyclic aromatic 

hydrocarbons exhibit plasmons that are highly dependent on the charge of the molecule.
246

 

Plasmons, defined as a collective oscillation of electrons under an electromagnetic field, have 

previously been widely studied in noble metal nanoparticles.
2,64,71,151,192,209,247,248

 The occurrence 

of plasmons in organic molecules opens many doors for plasmonic devices and an understanding 

of the origin of this phenomenon is essential in order to enhance its applications. 

The majority of the theoretical studies of acenes in their excited states focus on the α- and 

p-band since they lie in the visible region.
228,240,249,250

 However, very few studies focus on the β-

peak which shows strong resonance. The goal of this study is to show that the β-peak is 
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plasmonic and to theoretically derive the origin of this plasmon in naphthalene (i.e. acene with 

two fused benzene rings) using configuration interaction.  We will also briefly compare the 

plasmonic character of the β-band with the single-particle excitation character of the p-band. 

Finally, we will benchmark exchange-correlation functionals for the plasmonic β-peak for the 

acene series up to hexacene. 

 Computational methods 

The Q-Chem software was used to perform time-dependent density functional theory 

(TDDFT) calculations on acenes.
251

 The acenes studied are naphthalene (two fused aromatic 

rings) up to hexacene (six fused aromatic rings). The geometries used to perform the TDDFT 

calculations were the ones optimized at the B3LYP/6-31G* level by Richard and Herbert.
239

 The 

exchange-correlation functionals used for the TDDFT calculations are the GGAs BP86
102,103

 and 

BLYP,
102,108

 the hybrid functionals PBE0
105

 and B3LYP,
102,108

 and the asymptotically corrected 

functional LB94,
146

 as well as three long-range corrected functionals ωPBEh,
252

 μBLYP
239

 and 

CAM-B3LYP.
253

 For ωPBEh, we use the same parameters as Herbert et al as they were found to 

give accurate energies for the α and p-bands of acenes.
239

 For μBLYP, we use a Coulomb 

parameter μ=0.17 a0
-1

 which was also used by Herbert on acenes
239

 and by Wong on Courmarin 

dyes.
254

 For CAM-B3LYP, the original parameters by Yanai et al. are used.
253

 A cc-pVTZ
255

 

basis set was used for all these calculations. Natural Transition Orbitals (NTOs) were also 

obtained using Q-Chem
256

 and visualized using MacMolPlot.
257

 The Amsterdam Density 

Functional package (ADF)
110

 was used to perform TDDFT calculations at the asymptotically 

corrected SAOP
145

/TZP, LB94/TZP and LB94/QZ4P levels of theory. The transition densities 

were calculated with ADF using the excitations at the LB94/TZP level of theory and visualized 

using VMD.
258

 

 Results and discussion 

 Theoretical explanation of plasmon resonance in acenes 

In this section, we will derive the plasmon resonance of naphthalene using a 

configuration interaction approach. The single-electron excitations making up the longitudinal α- 

and β-peaks are HOMO→LUMO+1 and HOMO-1→LUMO.
233

 Only singly excited 

configurations are considered in this derivation. Both transitions have B3u symmetry. In the 
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neglect of differential overlap model, these transitions are exactly degenerate. We note that this 

configuration interaction approach was previously performed by Pariser,
237

 but we expand on the 

important steps here to make a link to the origin of the plasmon effect. The excited state 

wavefunctions for the α- and β- peaks are given by the configuration interaction expression: 

1 1 2 2ex AV A V    (5.1) 

where V1 and V2 designate the singly excited determinantal configuration functions where an 

electron is excited from the  HOMO to the LUMO+1 and from the HOMO-1 to the LUMO 

respectively. 

The configuration interaction secular equations that must be solved are:  

11 12

21 22

H E H
0

H H E





 (5.2) 

 

11 12 1

21 22 2

H E H A
0

H H E A

   
   

   
 (5.3) 

where the matrix elements Hij are defined by 
2

core*
ijij i j

pq pq

1 e
H V V d

2 r


 
  

 
 H  and p and q 

designate the atomic pπ-orbitals. The neglect of differential overlap is used to simplify the 

Coulomb integrals. In addition to the neglect of differential overlap and the neglect of multiply 

excited configurations, only nearest neighbor resonance interactions were considered for the 

calculation of the coupling elements core

ijH . Penetration integrals are constant or neglected for the 

core integrals core

iiH .
237

 Using these approximations, the configurations V1 and V2 are degenerate 

and we have H11=H22 and H12=H21.
237

 The numerical values calculated from the configurational 

secular equations for H11, H12, H12 and H22 are:
237

 

H11=H22=5.17 eV 

H12= H21=0.93 eV 

By solving equation 5.2, two excitation energies arise that correspond to the α and β peaks: 

E
α
 =H11-H12=4.24 eV   and   E

β
 =H11+H12=6.10 eV. Now solving for the coefficients A1 and A2 

yields 1 2A A  for E
α
 and 1 2A A for E

β
. Therefore we get excited state wavefunctions for the α 

and β peaks; after normalizing coefficients A1 and A2, these wavefunctions are: 
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1 2

1 1
A A

2 2

    (5.4) 

1 2

1 1
A A

2 2

    (5.5) 

Now, we can calculate the dipole moment of electronic transitions from the ground state to these 

two excited states. The transition dipole moments are directly related to the oscillator strength of 

the peaks observed in the excitation spectrum. The transition dipole moment between the ground 

state and an excited state is given by: 

*

0ex 0 exd  M M  (5.6) 

with  

t t

t

eM r  (5.7) 

where et and rt are the charge and position of the t
th

 particle. Also, since the α and β excitations 

take place along the z-axis (long axis) of the molecule, we can simplify M by considering only 

the z-component of the transition which gives us: 

t t

t

e zM  (5.8) 

The transition dipole moment to the α state is given by: 

 

* *

1 20 0 0 t t

t

* *

0 t t 1 0 t t 2 1 2

t t

1 1
V Vd V e z d

2 2

1 1 1
V e z V d V e z V d 0m m

2 2 2

   

 

 
     

 

   

 

  

M M

 (5.9) 

 

where                      and                     . Using the approximations 

mentioned above, m1=m2 and equation 5.9 is exactly equal to zero. The transition dipole moment 

to the β state is given by: 
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 

* *

1 20 0 0 t t

t

* *

0 t t 1 0 t t 2 11 2

t t

1 1
V Vd V e z d

2 2

1 1 1
V e z V d V e z V d 2mm m

2 2 2

   

 

 
     

 

   

 

  

M M

 (5.10) 

How does this relate to the plasmon resonance? We see that the transitions involved in the α- and 

β-bands are identical but interact constructively in one case, giving the high-energy β-band, and 

destructively in the other, giving the low-intensity α-band. The TDDFT calculations performed 

for acenes from naphthalene to hexacene at the LB94/TZP level also display this behavior, as 

shown in Table 5.1.  

 

Table 5.1. Excitation energies of α and β peaks of acenes, transitions involved, and their 

transition dipole moment contributions at the LB94/TZP level of theory. 

Acene Peak energy (eV) 
Oscillator 

strength (a.u.) 
Transitions Weight 

Transition 

dipole moment 

contribution 

(a.u.) 

2 

4.09 (α-peak) 0.000032 
HOMO-1→ LUMO 0.5027 2.2022 

HOMO→ LUMO+1 0.4967 -2.1736 

5.60 (β-peak) 1.107 
HOMO-1→ LUMO 0.4734 -1.8247 

HOMO→ LUMO+1 0.4811 -1.8267 

3 

3.50 (α-peak) 0.00052 
HOMO-1→ LUMO 0.5166 2.8333 

HOMO→ LUMO+1 0.4830 -2.7312 

4.82 (β-peak) 1.678 
HOMO-1→ LUMO 0.4597 -2.2764 

HOMO→ LUMO+1 0.4944 -2.3536 

4 

3.12 (α-peak) 0.0017 
HOMO-1→ LUMO 0.5295 3.3752 

HOMO→ LUMO+1 0.4701 -3.1848 

4.26 (β-peak) 2.152 
HOMO-1→ LUMO 0.4441 -2.6426 

HOMO→ LUMO+1 0.5042 -2.8198 

5 

2.86 (α-peak) 0.0042 
HOMO-1→ LUMO 0.5426 -3.8516 

HOMO→ LUMO+1 0.4569 3.5533 

3.85 (β-peak) 2.508 
HOMO-1→ LUMO 0.4257 2.9407 

HOMO→ LUMO+1 0.5111 3.2396 

6 

2.67 (α-peak) 0.0083 
HOMO-1→ LUMO 0.5563 4.2759 

HOMO→ LUMO+1 0.4431 -3.8489 

3.52 (β-peak) 2.742 
HOMO-1→ LUMO 0.4047 -3.1773 

HOMO→ LUMO+1 0.5163 -3.6193 

 

In fact, Table 5.1 shows that the HOMO→LUMO+1 and HOMO-1→LUMO both contribute 

essentially equally to the β- and α-peaks. The transition dipole moments have similar amplitudes 
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but opposite signs for the α-peak, which explains why this peak is weak.  On the other hand, the 

transition dipole moments have the same sign (and again similar amplitudes) for the β-peak, 

leading to a strong peak. Both transitions have similar weights for both the α-peak and the β-

peak.  We note that the theoretical derivation described above yields a zero oscillator strength for 

the α-peak but this peak is observed both experimentally and with TDDFT. This is because, as 

mentioned above, the theoretical derivation used some approximations like the neglect of 

differential overlap that do not exactly apply in a real system. In a real system H11 is not exactly 

equal to H22, which will affect not only the energies of the α- and β- peaks but also their 

oscillator strengths. Thus, the oscillator strength of the α-peak is not exactly equal to zero 

although it remains small. This constructive versus destructive addition of the transition dipole 

moments giving the β- and α-peak in acenes also occurs in noble-metal nanoparticles as shown 

by several TDDFT calculations.
64,70,71,195,209

 In the case of the acenes studied here, only two 

configurations interact, but many configurations may interact for silver and gold nanoparticles. 

The higher the number of interacting configurations, the more excitation peaks are obtained. For 

instance if four configurations interact, four peaks are obtained. At a specific frequency all of 

these configurations interact constructively, leading to the strong peak (the plasmon peak) 

observed in the excitation spectrum of these systems. Therefore, the β-band in acenes can be 

identified as a plasmon band in which only two configurations contribute. It is worth pointing out 

that the intensity and the wavelength of the β-peak (the plasmon peak) increase with increasing 

number of rings the same way the intensity and the wavelength of the longitudinal plasmon peak 

in noble metal nanorods do with increasing length.
55,56

 In the hypothetical example with four 

interacting configurations, the other three peaks, resulting from a destructive interaction of the 

dipole moments of these configurations, are weaker but their oscillator strengths may vary from 

one another depending on the total resulting dipole moment. These peaks are analogs of the α-

peak observed in acenes.  

Natural transition orbitals (NTOs) calculated for both the α and β peaks of naphthalene at 

the LB94/cc-pVTZ and ωPBEh/cc-pTZV levels of theory are shown in Figure 5-2 and Figure C-

1 of Appendix C, respectively. NTOs are used to express an excitation in terms of a single 

electron-hole pair of orbitals. The “hole” represents the orbital where the electron density is 

excited from and the “electron” represents the orbital the electron density is excited to.
256
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Figure 5-2. Natural transition orbitals involved in the α and β-peak at the LB94/cc-pVTZ 

level of theory.  

 

*An edge view and a face view of each orbital are presented. 

 

At both the LB94 and ωPBEh levels, a single pair could not be obtained but two pairs of 

delocalized orbitals with approximately equal amplitude were obtained. We can see that the two 

orbital pairs involved are the same for both the α- and β-peaks. This again results from the fact 

that the two single-electron configurations involved in both peaks are the same but may interact 

constructively or destructively. We also note that the orbitals are the same at both levels of 

theory examined here. At the LB94/cc-pVTZ level of theory, we can see that the two holes of the 

α-peak have the opposite phase as the two holes of the β-peak. In addition, electron 1 of the β-

peak has the opposite phase as electron 1 of the α-peak. Electron 2 of the α-peak and electron 2 

of the β-peak are in phase. At the ωPBEh/cc-pVTZ level of theory, only hole 1 of the α-peak has 

the opposite phase as hole 2 of the β-peak. All other NTO pairs are in phase. It is likely that this 

behavior is related to the fact that the wavefunctions describing the α- and β-peaks differ by a 

negative sign (equations 5.4 and 5.5). The holes are the eigenvectors that diagonalize the matrix 

TT
† 
and the electrons are the eigenvectors that diagonalize the matrix T

†
T where T is the 

transition density matrix defined by:
118
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 
ia ai T rˆ T  (5.11) 

with 

     ex

0 2 n1 2 n1 2 n
T N dr drr r rr r rr ..., ,...,, ,...,   (5.12) 

The indices i and a define occupied and unoccupied orbitals respectively. Ψ
ex

 corresponds to the 

excited state (here α or β) and Ψ0 labels the ground state.  

The transition densities corresponding to the α- and β-peaks of naphthalene are plotted in 

Figure 5-3.  

 

Figure 5-3. Edge view and side view of the transition densities for the α- and β-peaks of 

naphthalene.  

 

*In blue is the region of the molecule where the electron density decreases. In red is the 

region of the molecule where the electron density increases. |Isovalue (α–peak)|=0.005. |Isovalue 

((β–peak)|=0.05. 

 

For the β-peak (the plasmon peak), we can see that upon excitation, the electron density moves 

from one end of the molecule (blue region) to the other (red region). This is what we expect for 

this dipolar plasmonic excitation, where the valence electrons are coherently excited.
259

 For the 

α-peak, we can see that the region of the naphthalene molecule where the electron density is 

depleted upon excitation is not concentrated at the ends of the molecule, but is spread throughout 

the ring system. The same observation can be made for the part of the molecule where the 

electron density accumulates upon excitation. We note that the amplitude of the isovalue used to 

plot the β-peak transition density is ten times larger than for the α-peak. This choice was made in 

order to be able to visualize the transition density of the α-peak. This indicates that the α-peak 
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involved a much smaller charge redistribution upon excitation than the β-peak. In summary, we 

can see that the plasmon peak involves a high charge redistribution from one end of the 

naphthalene molecule to the other, which results from the constructive addition of the transition 

dipole moments of the HOMO-1→LUMO and HOMO→LUMO+1 excitations. On the other 

hand, the α-peak involves a small rearrangement of the electron density upon excitation due to 

the destructive addition of the dipole moments of the HOMO-1→LUMO and 

HOMO→LUMO+1 transitions. 

 Single-particle versus plasmonic character of the p-band 

        We have demonstrated above that the β-band and α-band result from the interaction 

between the HOMO→LUMO+1 and HOMO-1→LUMO configurations which have the same 

symmetry and similar energies. The dipole moments of these two transitions have similar 

amplitudes but interact constructively in one case, which yields the high-intensity β-band in the 

UV, and destructively in the other, yielding the low-intensity α-band in the visible. We now 

briefly focus on the p-band, which involves transitions perpendicular to the main axis of the 

system. Like the α-band, the p-band is in the visible and has low oscillator strength. It also shifts 

to lower energy with increasing system length.
233,239

 It is known that the HOMO→LUMO 

transition, which has B2u symmetry, is the main component of the p-band.
233

 Table 5.2 shows the 

transitions contributing to the p-band in naphthalene at the LB94/TZP level of theory.  

 

Table 5.2. Transitions with B2u symmetry for naphthalene at the LB94/TZP level of theory. 

Energy (eV) 
Oscillator 

strength(a.u.) 
Transitions Weight 

Transition dipole 

moment (a.u.) 

3.99 (p-band) 0.0416 

HOMO→LUMO 0.9173 -1.8247 

HOMO-2→LUMO+2 0.0413 0.5384 

HOMO-1→LUMO+1 0.0311 0.3996 

5.75 0.129 

HOMO-1→LUMO+1 0.8877 1.7760 

HOMO-2→LUMO+2 0.0673 -0.5720 

HOMO→LUMO 0.0145 0.1909 

7.38 0.503 

HOMO-2→LUMO+2 0.8602 -1.8060 

HOMO→LUMO 0.0494 -0.3111 

HOMO-1→LUMO+1 0.0485 -0.3663 
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The HOMO→LUMO transition indeed has a very high dipole moment but two other transitions 

are also involved in the p-band: HOMO-1→LUMO+1 and HOMO-2→LUMO+2. These two 

transitions of course also have B2u symmetry. They have a smaller dipole moment and a lower 

weight than the HOMO→LUMO transition. Two other peaks in the excitation spectrum are 

comprised of these three transitions, as shown in Table 5.2. For the peak at 5.75 eV and the p-

band at 3.99 eV, the dipole moments of these transitions interact destructively with the dipole 

moment of the HOMO→LUMO. These peaks therefore have moderately low oscillator strength. 

Even so, the p-band is observed experimentally.
211

 The peak at 5.75 eV is very close in energy to 

the strong β-band and therefore cannot be easily resolved experimentally. For the higher energy 

peak at 7.38 eV, the dipole moments of the three transitions interact constructively and this peak 

has a higher oscillator strength than the other two. However, it is at such a high energy that it is 

not observed experimentally. This behavior is what we expect for three interacting transitions: 

two low-energy and low-intensity peaks resulting from the destructive addition of the three 

transition dipole moments and one high-energy peak resulting from the constructive addition of 

the three transition dipole moments.  Does this mean that this high energy peak is plasmonic?  

By looking at the weights and dipole moments of the transitions involved in these peaks, it is 

obvious than one transition strongly dominates the other two. For the p-band, the 

HOMO→LUMO transition dominates with a weight of 0.9173 and a dipole moment of -1.8247 

a.u. On the other hand, the HOMO-1→LUMO+1 and HOMO-2→LUMO+2 transitions have 

much lower weights (0.0413 a.u. and 0.0311 a.u. respectively) and lower dipole moments 

(0.5384 and 0.3996 a.u. respectively). In a similar way, we can see that for the second peak at 

5.75 eV, the HOMO-1→LUMO+1 transition dominates and for the peak at 7.38 eV, the HOMO-

2→LUMO+2 transition dominates. This behavior can be explained by the fact that these three 

transitions have very different energies and therefore do not mix as efficiently as the transitions 

involved in the α and β-bands. These transverse peaks are therefore best described as single-

particle excitations. However, there is a small amount of plasmonic character mixed in, which 

makes the peak at 7.38 eV peak gain some oscillator strength.  

 Benchmarking of exchange-correlation functionals 

The β-band is the strongest excitation peak and was shown in the first section to have 

plasmonic character. However, most previous theoretical studies on acenes have focused on the 
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α- and p-bands since they lie in the visible region.
238,239

 Therefore, benchmarking of a variety of 

DFT exchange-correlation functionals is performed for the β-peak. 

Several GGAs, hybrid and long-range corrected exchange-correlation functionals were used 

to calculate the excitation energies and oscillator strengths of acenes with two to six rings. The 

wavelength of the α-, β- and p-bands obtained as well as experimental values are shown in 

Figures 5-4A to 5-4C. Tables 5.3 to 5.5 show the excitation energy values calculated with 

different functionals for all three bands as well as the Mean Absolute Error (MAE) calculated in 

comparison with experiment.  

 

Figure 5-4. A) β-band B) p-band and C) α-band excitation energies of acenes with two to 

six rings at various levels of theory. 

 

*Due to convergence issues, the excitation energies of tetracene at the μBLYP/cc-pVTZ level of 

theory could not be obtained. Experimental data is obtained from Ref
235

. 
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Table 5.3. TDDFT wavelength of the α-band of acenes with various exchange-correlation 

functionals. 

Number of rings 2 3 4 5 6 
MAE 

(nm) 

SAOP/TZP 293.87 343.47 385.35 420.69 450.49 10.28 

LB94/cc-pVTZ 301.58 353.15 396.57 433.81 463.42 16.60 

LB94/TZP 303.43 354.70 397.73 433.07 464.01 16.74 

LB94/QZ4P 302.86 354.52 398.00 434.48 465.06 17.36 

B3LYP/cc-pVTZ 279.17 323.21 359.66 389.50 413.58 22.52 

PBE0/cc-pTZV 274.28 317.10 352.45 381.48 404.95 29.49 

ωPBEh/cc-pVTZ 269.82 308.48 339.45 364.16 383.73 42.41 

CAM-B3LYP/cc-pVTZ 264.91 303.21 335.02 361.41 383.15 46.00 

μBLYP/cc-pVTZ 282.91 323.64 NA
a
 379.82 398.68 29.80

c
 

BP86/cc-pVTZ 292.97 343.36 385.94 421.92 452.18 11.18 

BLYP/cc-pVTZ 294.77 345.25 387.94 423.95 454.25 11.66 

Experiment
b
 307.65 347.29 373.45 406.51 442.80  

a. Data could not be obtained due to convergence issues. 

b. Data from Ref
235

 

c. MAE calculated with four systems (tetracene omitted) 

 

Table 5.4. TDDFT wavelength of the β-band of acenes with various exchange-correlation 

functionals. 

Number of rings 2 3 4 5 6 MAE
c
 (nm) 

SAOP/TZP 215.96 250.53 282.48 312.72 341.35 7.66 

LB94/cc-pVTZ 220.31 256.26 289.66 321.29 350.40 9.65 

LB94/TZP 221.23 257.30 290.71 322.33 352.20 10.52 

LB94/QZ4P 222.67 258.47 291.71 323.18 353.00 11.63 

B3LYP/cc-pVTZ 208.27 238.48 266.09 291.19 313.21 11.37 

PBE0/cc-pTZV 205.35 235.13 261.24 286.01 307.71 15.44 

ωPBEh/cc-pVTZ 202.20 228.80 251.82 271.85 289.24 23.71 

CAM-B3LYP/cc-pVTZ 198.28 223.41 245.28 264.41 281.11 29.53 

μBLYP/cc-pVTZ 210.19 238.93 NA
a
 285.21 303.86 13.63

d
 

BP86/cc-pVTZ 215.44 250.36 282.60 313.15 342.11 7.97 

BLYP/cc-pVTZ 216.22 251.14 283.48 314.16 343.28 8.06 

Experiment
b
 220.61 255.11 274.30 299.48 NA  

a. Data could not be obtained due to convergence issues. 

b. Data from Ref
235

 

c. Hexacene omitted for MAE calculation since no experimental data is available for the β peak 

d. MAE calculated with three systems (tetracene and hexacene omitted).  
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Table 5.5. TDDFT wavelength of the p-band of acenes with various exchange-correlation 

functionals. 

Number of rings 2 3 4 5 6 MAE (nm) 

SAOP/TZP 302.80 422.38 569.32 754.34 992.29 145.04 

LB94/cc-pVTZ 310.83 436.09 590.85 786.85 1040.92 169.92 

LB94/TZP 311.10 434.71 586.61 777.61 1022.99 163.42 

LB94/QZ4P 312.25 437.55 592.31 788.08 1041.55 171.16 

B3LYP/cc-pVTZ 285.09 389.37 514.22 664.15 844.29 76.24 

PBE0/cc-pTZV 279.03 379.88 500.02 643.31 813.60 61.60 

ωPBEh/cc-pVTZ 265.91 350.65 445.27 548.70 659.03 11.87 

CAM-B3LYP/cc-pVTZ 257.49 334.48 421.21 517.29 621.79 32.73 

μBLYP/cc-pVTZ 283.08 378.12 NA
a
 598.18 720.34 30.32 

BP86/cc-pVTZ 304.06 426.44 578.55 772.34 1025.76 158.25 

BLYP/cc-pVTZ 305.63 427.86 579.42 771.91 1022.55 158.29 

Experiment
b
 283.07 366.82 457.51 555.98 652.55  

a. Data could not be obtained due to convergence issues. 

b. Data from Ref
235

 

c. MAE calculated with four systems (tetracene omitted).  

 

All three peaks display a linear increase of their wavelength with increasing length. The 

longitudinal peak of noble metal nanorods exhibit a similar behavior which was explained by the 

particle-in-a-cylinder model.
70

 The α- and β-peaks show similar trends, which is not surprising 

since they are comprised of the same one-electron transitions.  

 We now compare the excitation energies obtained for the α- and β-peaks with the different 

functionals. GGAs (BP86 and BLYP) and asymptotically corrected functionals (LB94 and 

SAOP) give α- and β-peak wavelengths that are very close to experiment for small systems 

(naphthalene and anthracene). However, the error increases with increasing length and the peak 

wavelengths tend to be highly overestimated for the longest systems. We note that the energies 

calculated at the LB94/cc-pVTZ level of theory with Q-Chem and the energies calculated at the 

LB94/TZP with ADF are very similar, as shown in Tables 5.3 and 5.4. Also, the energy values 

calculated at the LB94/QZ4P level of theory are very similar to the LB94/TZP values, which 

suggests that there is almost no basis set dependence on the energies of the α- and β-peaks.  

Hybrid functionals (B3LYP and PBE0) tend to underestimate the α- and β-peak wavelengths but 

the difference between theory and experiment remains nearly constant with increasing system 

length. This is shown by the fact that the slope of the linear fit for these functional is nearly equal 
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to the slope of the linear fit for experimental data (Table 5.6). B3LYP shows mean absolute 

errors of 11.37 nm and 22.52 nm in comparison with experiment for the β- and α- peaks 

respectively. The MAE values are slightly larger for the hybrid functionals than for the 

asymptotically corrected functional and GGAs but hybrid functionals give a better description of 

the α- and β-peak energies with increasing size.  The long-range corrected functionals ωPBEh 

and CAM-B3LYP tend to underestimate the wavelength of the α- and β-peaks. This 

underestimation tends to become larger with increasing system size, as shown by the fact that the 

slope of the linear fit for these functional is smaller than the slope of the linear fit for the 

experimental data (Table 5.6).  

 

Table 5.6. Slope of the linear fits from Figure 4 (in nm/ring). 

Functional α-band β-band p-band 

SAOP/TZP 39.05 31.30 171.09 

LB94/cc-pVTZ 40.44 32.52 181.09 

BP86/cc-pVTZ 39.70 31.61 178.93 

BLYP/cc-pVTZ 39.77 31.72 177.79 

B3LYP/cc-pVTZ 33.51 26.26 139.32 

PBE0/cc-pTZV 32.57 25.56 133.26 

ωPBEh/cc-pVTZ 28.35 21.71 98.43 

CAM-B3LYP/cc-pVTZ 29.47 20.67 91.14 

μBLYP/cc-pVTZ 28.77 23.36 109.46 

Experiment
a
 32.95 25.58 92.81 

a. Data from Ref
235

 

 

These long-range corrected functionals display the largest MAE values: 23.71 and 29.53 nm 

for ωPBEh and CAM-B3LYP respectively. The long-range corrected functional μBLYP, which 

does not contain any Hartree-Fock exchange contrary to the other two, gives peak wavelengths 

close to the ones obtained with hybrid functionals and also a similar MAE value. But like the 

other long-range corrected functionals studied here, the error increases with increasing system 

length.  

We now briefly look at the p-band. GGAs and asymptotically corrected functionals tend 

to strongly overestimate the wavelength of the p-band and the overestimation strongly increases 

with system size, as also observed previously by Grimme.
228

 This is illustrated by MAE values 

larger than 145 nm. We can make a similar observation for hybrid functionals, although the error 
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does not increase as fast as for the GGAs and asymptotically corrected functionals, which is 

shown by smaller MAE values (61.60 and 76.24 nm for PBE0 and B3LYP respectively). We 

note that similar to the longitudinal peaks, the energies calculated at the LB94/cc-pVTZ level of 

theory with Q-Chem and the energies calculated at the LB94/TZP with ADF for the p-band are 

very similar, as shown in Table 5.5. However, the difference between the energy values 

calculated at the LB94/QZ4P level of theory and the values calculated at the LB94/TZP level of 

theory tends to increase with increasing size. The p-band energies therefore exhibit some basis 

set dependence. Long-range corrected functionals give an improved description of the p-band but 

not the α-band or β-band. The wavelengths for the long-range corrected functional ωPBEh and 

the experimental data nearly overlap each other. The MAE is 11.87 nm, which is smaller than all 

other functionals.  It is also known that the ωPBEh functional gives the correct ordering between 

the α and β peak for all acenes.
239

 CAM-B3LYP tends to underestimate the p-band wavelength 

but the difference between theory and experiment is approximately constant with increasing size, 

as shown by the slope of the linear fit which is similar to the slope of the linear fit of the 

experimental data. The long-range corrected functional μBLYP overestimates the p-band 

wavelength and the overestimation gets larger as the system size increases. The MAE values for 

CAM-B3LYP and μBLYP (32.73 and 30.32 nm respectively) are twice as large as the MAE 

calculated for ωPBEh (11.87 nm). Overall, hybrid functionals provide the best energies of the α- 

and β-bands whereas the long-range corrected functional ωPBEh provides the best energies for 

the p-band.  

The matrix elements Hmn were calculated at the BP86, B3LYP, LB94, and ωPBEh levels 

of theory and for the experimental data using the expressions for E
α
 and E

β
 reported above:  

E
α
 =H11-H12 and E

β
 =H11+H12. The values of H11=H22=½(E

α
+E

β
) and H12=H21=½(E

β
-E

α
) are 

reported in Table 5.7.  
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Table 5.7. Matrix elements H11 and H12 of the secular equation 5.2 in eV for acenes with 

various exchange-correlation functional and cc/pVTZ basis set. 

 

LB94 B3LYP BP86 ωPBEh Experiment
a
 

Number 

of rings H11 H12 H11 H12 H11 H12 H11 H12 H11 H12 

2 4.87 0.76 5.20 0.76 4.99 0.76 5.36 0.77 4.83 0.80 

3 4.17 0.66 4.52 0.68 4.28 0.67 4.72 0.70 4.22 0.65 

4 3.70 0.58 4.05 0.61 3.80 0.59 4.29 0.64 3.92 0.60 

5 3.36 0.50 3.72 0.54 3.45 0.51 3.98 0.58 3.60 0.55 

6 3.11 0.43 3.48 0.48 3.18 0.44 3.76 0.53 NA NA 

a. Experimental values calculated from the α and β bands in Ref
235

 

 

Both H11 and H12 values decrease with increasing system size. This is in accordance with the 

decreasing orbital energy gaps with increasing length. The relative amount of coupling (H12/H11) 

seems to remain constant with increasing size. We see that the coupling matrix elements H12 are 

similar at all levels of theory, which suggests that the amount of coupling between the two 

configurations V1 and V2 does not vary significantly between different levels of theory. On the 

other hand, the matrix elements H11 can fluctuate between different levels of theory. The 

energies of the configurations V1 and V2 are therefore affected by the level of theory used. The 

asymptotically corrected LB94 functional gives accurate values of H11 for naphthalene and 

anthracene compared to experiment (the difference is 0.04 eV) but the error strongly increases 

with increasing system length (the difference is 0.24 eV for pentacene). The hybrid B3LYP 

functional gives a large difference with experiment for the H11 value but the error seems to 

decrease with increasing system length (from 0.37 eV for naphthalene to 0.13 eV for hexacene). 

A similar observation can be made for the long-range corrected ωPBEh functional, where the 

difference between theory and experiment is 0.54 eV for naphthalene down to 0.39 eV for 

hexacene.  

 Conclusions 

This work presents a TDDFT analysis of the excitation spectrum of acenes and shows the 

origin of their plasmon resonance. The interaction between the quasi-degenerate 

HOMO→LUMO+1 and HOMO-1→LUMO transitions yields two peaks in the excitation 

spectrum: the β-peak and the α-peak. We have shown that the β-peak, which has a high energy 
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and high intensity, originates from a constructive interaction of the two transition dipole 

moments and can be identified as a plasmon peak. The low-energy α-peak originates from a 

destructive interaction between the two transition dipole moments and is therefore weak. The 

configuration interaction singles analysis with the neglect of differential overlap approximation 

performed by Pariser
237

 reproduces these features. We note that silver and gold nanoparticles, 

which are known to exhibit plasmon resonances, display a similar configuration interaction 

behavior to that described here although more than two transitions may interact. The frequency 

where the dipole moments of all the transitions involved interact constructively is the plasmon 

resonance. The natural transition orbitals were calculated for naphthalene and we saw that two 

electron-hole pairs of similar amplitudes were needed to describe the α- and β-peaks. The NTOs 

involved in both the α- and β-peaks are identical but may have opposite phases. An analysis of 

the transition densities shows a strong charge redistribution where electron density moves from 

one side of the molecule to the other upon excitation for the β-peak (plasmon peak). On the other 

hand, the α-peak involves much less charge redistribution upon excitation.  In contrast to the 

plasmonic character of the longitudinal β-band, we show that the transverse p-band can be best 

described as a single-particle transition. Since very few theoretical studies have previously 

examined the β-peak, a benchmarking of several functionals was performed. Hybrid functionals 

give the best description of the α- and β-peaks but highly overestimate the p-band for long 

systems. The long-range corrected functional ωPBEh gives an accurate energy for the p-band but 

does not provide good excitation energies for the α- and β-peaks. The couplings between the two 

interacting configurations HOMO-1→LUMO and HOMO→LUMO+1 are similar to experiment 

regardless of the functional considered. 

The occurrence of plasmon resonances in organic systems is very important as they can 

be used to make lighter optic devices compared to metallic nanoparticles. While our analysis 

focuses only on acenes, a wide variety of polycyclic aromatic hydrocarbons may display 

plasmon resonances.
246

 Like noble metal nanoparticles, the plasmon resonances in these systems 

can be tuned for applications of interest. 
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Chapter 6 - Plasmon Resonance Analysis with Configuration 

Interaction 

 Abstract 

Plasmon resonances are described using configuration interaction (CI). A fictitious system 

of three interacting configurations is considered, which yields three excited states. Excited states 

energies and oscillator strengths are derived from the eigenvalues and eigenvectors of the CI 

matrix, where the diagonal elements αi (i=1,2,3) correspond to the interacting one-electron 

transition energies and the off-diagonal elements βij correspond to the coupling between these 

configurations. The plasmonic state is easily identified by its higher energy and much larger 

oscillator strength. This high oscillator strength is due to a constructive addition of the 

eigenvectors contributing to this state. The maximum oscillator strength enhancement of the 

plasmon peak is equal to the number of configurations in the CI matrix (three here), which 

occurs in the ideal case where all α elements are equal and all β elements are equal. When the 

transitions involved in the CI have different energies (different α values), the oscillator strength 

of the plasmon peak becomes smaller and its energy is shifted in comparison to the ideal case. 

Increasing all the coupling values from 0 up to the point where the coupling is similar in 

magnitude to the difference in α values leads to a rapid rise of the plasmon peak oscillator 

strength whereas its energy slightly blue-shifts. A further increase of the coupling values does 

not affect the oscillator strength of the plasmon peak, which remains near its maximum 

enhancement value, but drastically affects its energy, which rapidly rises. The plasmonic 

behavior of noble metal model systems is successfully described using configuration interaction.  

 Introduction 

The plasmon resonance is defined classically as a collective oscillation of the conduction 

electrons of a system upon irradiation with light at a specific frequency. The plasmonic behavior 

of sodium clusters has been studied for several decades.
47,48,260-264

 This phenomenon has also 

been intensively investigated in noble metal nanoparticles both theoretically
30,40,59,64,68,88,265-267

 

and experimentally
4,6,25,33,40,267-271

 for applications in imaging,
15,16,165,271

 sensing,
15-17,165,179,271

, 

cancer therapy
6,170,171,271

 and light harvesting devices.
19,248,272

 More recently, polycyclic aromatic 

hydrocarbons
246,273

 and graphene
243,274,275

 have been described as plasmonic as well, which 
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indicates that plasmons are not limited to metallic nanoparticles and opens additional doors for 

applications.
274,276

  

Identification of plasmon modes is of course very important for the design of plasmonic 

materials. However, one question that still remains unanswered is: what is the quantum 

mechanical origin of these plasmons? One recent time-dependent density functional theory 

(TDDFT) study performed by Jacob et al. describes plasmon resonances as zero modes of the 

dielectric function ε, which depends on the coulomb kernel.
259

 Plasmon modes can therefore be 

distinguished from single-particle transitions by scaling the electron-electron interaction. As a 

complementary interpretation, other studies suggest that plasmon resonances can be described as 

a constructive interaction of multiple one-electron transition dipole moments.
70,71,195,273,277

 One-

electron transitions may interact if they have the same symmetry and if they are close in energy. 

Using a configuration interaction approach, the energy and relative oscillator strength of the 

resulting peaks in the absorption spectrum can be determined.
237,273

 The constructive interaction 

of the individual transitions leads to a strong, high-energy peak in the absorption spectrum (the 

plasmon peak). This is observed for several systems such as silver and gold nanoparticles
70,195,277

 

as well as polycyclic aromatic hydrocarbons.
237,273

 For instance, two one-electron excitations 

with B3u symmetry are involved in the longitudinal plasmon mode of acenes.
237,273

 The 

constructive interaction between these two transition dipole moments yields a strong peak in the 

UV region called the β-peak (the plasmon peak) whereas the destructive addition of these two 

transition dipole moments yields the weak α-peak in the visible region.
273

  More than two 

interacting configurations may be involved for noble metal nanoparticles, which leads to several 

peaks in their absorption spectrum with low intensity in addition to the higher-energy plasmon 

peak. For instance, TDDFT calculations show that the linear atomic chain Ag6 has a strong 

transverse plasmon peak at 6.20 eV at the SAOP/DZ level of theory.
195

 This peak arises from a 

constructive addition of the dipole moments of three single-particle transitions between 

delocalized cylindrical orbitals: Σ1→Π1, Σ2→Π2 and Σ3→Π3.
195

 Two peaks in the spectrum 

located at 5.18 and 5.29 eV are composed of the same transitions, but they have low oscillator 

strength since their transition dipole moments add destructively.  

The objective of this work is to determine how the relative energy between different 

transitions and the degree of coupling between these transitions affects the excitation spectrum of 

a plasmonic system. In order to do that, a fictitious system with three interacting transitions is 
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considered. We will only consider dipolar plasmon modes. The eigenvalues of the secular 

matrix, corresponding to the energies of the peaks in the absorption spectrum, are calculated. The 

eigenvectors of this matrix are also solved to determine the oscillator strength of each peak.  

 Methods 

We consider a plasmonic system with three interacting configurations such as the Ag6 

nanowire described above. Vi (i=1,2,3) defines the singly excited singlet determinantal function 

for each configuration.
237

 The three excited state wavefunctions resulting from the interaction 

between these three configurations can be written in the form: 

1 1 2 2 3 3

ex AV A V AV     (6.1) 

where the coefficients A1, A2 and A3 are eigenvectors of the 3X3 configuration interaction (CI) 

secular matrix: 

1 12 13

21 2 23

31 32 3

  

  

  

 
 
 
  

 (6.2) 

The matrix elements βij correspond to the coupling between transitions i and j:
237

 

*

ij i jV V d ,   H  (6.3) 

where Vi and Vj correspond to the singly excited determinantal configuration functions for 

transitions i and j respectively and H is the Hamiltonian. In this case, we consider *

i iV V  and 

therefore βij= βji. The diagonal matrix elements αi are defined as:
237

 

* .i i iV V d   H  (6.4) 

These values may be approximated in a Koopman-like approach by an orbital energy difference 

of the two singly occupied orbitals that represent the singly excited determinant Vi. The 

eigenvalues E1, E2 and E3 of the CI matrix are the excited state energies. The eigenvectors 

corresponding to each eigenvalue can be used to construct the excited state wavefunctions, as 

shown in equation 6.1. All eigenvalues and eigenvectors of the CI matrix are calculated for 

different values of αi and βij using Matlab 7.0.1.  

If it is assumed that the transition moments between the ground and excited 

configurations are equal, which is a reasonable first approximation for these systems,
237,273

 the 
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sum of the eigenvectors for each eigenvalue is proportional to the transition dipole moment 

between the ground and excited state 0 ˆ ex   where ̂  is the transition dipole operator and 

0  is the ground state Slater determinant. Since the oscillator strength of the peak in the 

absorption spectrum is proportional to 
2

0 ˆ ex  , the value |A1+A2+A3|
2
 is the oscillator 

strength enhancement due to CI and will be referred to as “oscillator strength” for the remainder 

of this paper. 

 Results and discussion 

 Case 1: Ideal case. 

Let us first consider the special case where all values of α and all values of β are equal. 

This yields the matrix: 

  

  

  

 
 
 
  

 (6.5) 

This matrix is a special case of a Toeplitz matrix and of a circulant matrix, which have been 

studied for applications in various mathematical, physical and chemical problems.
278-281

 The 

eigenvalues of this matrix are E1=α-β; E2=α-β; E3=α+2β. For these systems, we assume that  is 

positive, so E3 is the highest energy eigenvalue.  For higher n-dimensional matrices with a 

similar form, the lowest (n-1) states are degenerate with eigenvalue α-β, and the highest state has 

energy α+(n-1)β. For E1 and E2, the requirement for the eigenvectors is that (A1+A2+A3)=0. For 

E3, A1=A2=A3. One set of normalized eigenvectors is reported in Table 6.1.  

 

Table 6.1. Eigenvectors of matrix (6.5). 

 

E1=α-β  E2=α-β  E3=α+2β  

A1 1 2  1 2  1 3  

A2 1 2  0 1 3  

A3 0 1 2  1 3  

|A1+A2+A3|
2
 0 0 3.0000 

 

For the two lowest eigenvalues E1 and E2, which are degenerate, the eigenvectors interact 

destructively and the oscillator strength of these two states is 0. For the third eigenvalue E3, the 
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eigenvectors interact constructively, yielding an oscillator strength value of 3. This state is the 

plasmon and the wavefunction has the form: 

1 2 3

1 1 1
.

3 3 3

ex V V V     (6.6) 

The oscillator strength of this excited state can be written as: 

2

2 0 0 00
31 2

1
ˆ ˆ ˆˆ .

3
ex VV V  

 
          

 
 (6.7) 

As mentioned in the methods section, we use the assumption that the transition moments 

between the ground state and all excited configurations are equal: 

0 0 0
31 2

ˆ ˆ ˆ .VV V       (6.8) 

Therefore we have: 

2
22 00 0

1 1

1
ˆ3ˆ ˆ3 .

3
ex V V 

 
       

 
 (6.9) 

The oscillator strength enhancement of the plasmonic state due to CI is therefore a factor of 3. 

For n-dimensional matrices similar to this one, it can be shown that the enhancement due to CI is 

a factor of n, which is the number of transitions involved in the CI.  

A similar behavior has been observed for silver and gold nanoparticles: one high-energy, 

high-intensity peak (plasmon) results from the constructive addition of the single-particle 

transitions and multiple low energy weaker peaks result from the destructive addition of the same 

transitions.
70,71,195,277

 For real systems such as these noble metal nanoparticles, all values of α and 

β are not identical and deviations from this ideal case occur. A simple analytical solution for 

matrices with different values of α (α1≠α2≠α3) and β (β12≠β23≠β13) cannot be obtained, although 

analytical solutions with different values of α with constant β (β12=β23=β13) are possible. 

Therefore, in order to analyze the effect of varying the values of α and β on the absorption 

spectrum, we will give α and β numerical values that we will vary in a systematic fashion.  

First, we consider a matrix like (eq. 6.5) above but we set α1= α2= α3= 5 eV and β12= β13= β23= 

0.5 eV: 
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5 0 5 0 5

0 5 5 0 5

0 5 0 5 5

. .

. .

. .

 
 
 
  

 (6.10) 

The chosen values for α and β are similar to those obtained in the configuration interaction 

treatment of acenes.
237

 The eigenvalues of this matrix are E1= 4.5 eV, E2= 4.5 eV and E3= 6.0 

eV, corresponding to α-β for E1 and E2 and α+2β for E3, as expected. The rows and columns of 

the eigenvector matrix are orthogonal. As derived analytically, the oscillator strength is 0 for E1 

and E2. The peak at E3 has an oscillator strength of 3.0000, as expected (Table 6.2).  

 

Table 6.2. Eigenvectors of matrix (6.10).  

  E1= 4.5 eV E2= 4.5 eV E3= 6.0 eV 

A1 0.1201 0.8076 0.5774 

A2 0.6394 -0.5078 0.5774 

A3 -0.7595 -0.2998 0.5774 

|A1+A2+A3|
2
 0 0 3.0000 

 

 Case 2: Vary α1 only. 

We now consider the case where one of the values of α is different from the others. We still 

consider all values of β to be the same. The resulting matrix is: 

1  

  

  

 
 
 
  

 (6.11) 

where α1=α+ε. ε can be a positive or negative number. The eigenvalues for such a system are: 

1E    ,   2 2

2

1 1
9 2

2 2
E          and   2 2

3

1 1
9 2

2 2
E         

.
281

 We see that E1 does not depend on ε and its value therefore remains constant. On the other 

hand, E2 and E3 both depend on ε.   

We now analyze the peak oscillator strengths by considering numerical values for ε of ±0.05, 

±0.25, ±0.5, ±1.0, ±1.5, ±2.0 and ±2.5 eV. This corresponds to changes in α1 by ±1, ±5, ±10, ±20, 

±30, ±40 and ±50% of the value used in case 1 (5 eV). All other matrix elements remain the 

same as in case 1 (β=0.5 eV and α2= α3= 5 eV). The resulting matrix is: 
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1 0 5 0 5

0 5 5 0 5

0 5 0 5 5

. .

. .

. .

 
 
 
  

 (6.12) 

where α1= 2.5, 3.0, 3.5, 4.0, 4.5, 4.75, 4.95, 5.05, 5.25, 5.5, 6.0, 6.5, 7.0 and 7.5 eV. The peak 

energies Ei (i=1, 2, 3) and oscillator strengths Si (i=1, 2, 3) are shown in Figure 6-1A and 6-1B 

respectively. 

 

Figure 6-1. A) Peak energies and B) oscillator strengths for different values of α1 (case 2). 

 

The computed values of the energies and oscillator strengths are reported in Table D-1 of 

Appendix D. Just as in the ideal case, the high-energy excited state E3 with high oscillator 

strength corresponds to the plasmon. We can see that the degeneracy between E1 and E2 is lifted 

when α1 shifts away from the 5 eV value of case 1. This can be explained by the ε-dependence of 

E2. For ε=0, E2=E1= 4.5 eV, which corresponds to the ideal case discussed above. E1 remains at 

4.5 eV (α-β) and does not depend on ε, as derived analytically, and its oscillator strength remains 

0. We note that E1 is larger than E2 when α1< 5eV and smaller than E2 when α1> 5eV. This is 

because these excited states are labeled to correspond to the analytical results and not by 

increasing energies. E2 quickly rises when α1 increases from 2.5 to 5.5 eV and then slowly 

stabilizes for higher values of α1. On the other hand, E3 slowly increases when α1 shifts from 2.5 

to 5.5 eV and quickly rises when α1 is larger than 5.5 eV. A more detailed discussion on the 

origin of this behavior is given in the discussion of the analytical solution in Appendix D.  For 

values of α1 smaller than 5.5 eV (ε < β), ε contributes mainly to the energy of the E2 state. When 
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α1 becomes larger than 5.5 eV (ε > β), E3 takes advantage of the increasing ε value to raise its 

energy. The oscillator strength S2 of E2 grows as the value of α1 changes from the 5 eV resonance 

value where α1= α2= α3 (the ideal case 1).  On the other hand, the oscillator strength S3 of the 

plasmon peak reaches a maximum for this value of α1. S3 therefore “borrows” less oscillator 

strength from S2 when α1≠α. We note that S3 always has a larger value than S2 in the α1 range 

considered. The eigenvectors of all the matrices studied are reported in Appendix D (Tables D.4-

D.17). The coefficients Ai contributing to the plasmon peak (with energy E3) all have the same 

sign. The constructive interaction of the individual transitions making the plasmon therefore 

remains. We see that for E1, 1 0A  , 2
1

2
A    and 3

1
2

A     regardless of the value of α1. 

This reflects that only transitions 2 and 3 contribute to that peak and their contributions remain 

constant. This is not surprising since α2=α3=5 eV and all coupling constants are equal for all 

values of α1. For E2 and E3, the contributions of transitions 2 and 3 are identical regardless of the 

value of α1 (A2 = A3). As α1 becomes larger, the contributions of transitions 2 and 3 increase for 

E2 and decrease for E3. On the other hand, |A1| increases for E3 and decreases for E2. This shows 

the growing contribution of transition 1 to E3 as α1 becomes larger. For α1>> α, it would be 

reasonable to expect that only transition one will contribute to the peak at energy E3. E3 will then 

be labeled as a single-electron transition and no longer be a plasmon. Only transitions two and 

three will mix efficiently and a high-intensity plasmon peak at 5.5 eV will result from the 

constructive interaction of these two transitions. Another peak with zero oscillator strength will 

occur at 4.5 eV.  This illustrates why the configurations in the CI must be close in energy to 

create a plasmon. Overall, changing one of the values of α not only lifts the degeneracy between 

E1 and E2, but it also increases the oscillator strength of the peak at energy E2, which would 

make it observable in the absorption spectrum. The increase in oscillator strength for E2 also 

leads to a decrease in oscillator strength for E3, which is the plasmon peak. The plasmon peak is 

therefore stronger when all the contributing transitions have identical values of α. The closer in 

energy the one-electron transitions involved in the plasmon are, the stronger the plasmon peak 

will be (up to its ideal value). In noble metal particles with a common diameter (2-100 nm), a 

high density of states is available and many allowed transitions with similar symmetry have very 

similar energies.
282

 The strong plasmon peak commonly observed experimentally
6
 can thus result 
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from the interaction between these transitions. The low-intensity peaks associated with the same 

transitions also occur but are usually too small to be observed experimentally. 

 Case 3: Vary α1 and α3. 

We now analyze the effect on the absorption spectrum of changing both α1 and α3. In this 

case, we change α1 by 20% and α3 by ±1, ±5, ±10, ±20, ±30, ±40 and ±50% of the value used in 

case 1 (5 eV). All other matrix elements remain the same as in case 1. The resulting CI matrix is: 

1

3

0 5 0 5

0 5 5 0 5

0 5 0 5

. .

. .

. .





 
 
 
  

 (6.13) 

where α1= 6.0 eV and α3= 2.5, 3.0, 3.5, 4.0, 4.5, 4.75, 4.95, 5.05, 5.25, 5.5, 6.0, 6.5, 7.0 and 7.5 

eV. The peak energies and oscillator strengths are reported in Figure 6-2A and 6-2B respectively.  

 

Figure 6-2. A) Peak energies and B) oscillator strengths for different values of α3 (case 3). 

(α1=6.0 eV). 

 

Table D.18 of Appendix D displays all energies and oscillator strengths of the three peaks. When 

all three values of α are different, all three peaks have non-zero oscillator strength. All three peak 

energies tend to increase with increasing value of α3, which makes sense since the total energy 

α1+α2+α3 increases. Again, the peak at E3 has higher energy and oscillator strength than the other 

two and corresponds to the plasmon peak. E1 and E3 behave in a similar way as E2 and E3 in case 

2. The energy of the plasmon peak E3 slowly blue shifts until α3 reaches a value of 

approximately 5.0 eV and then grows much more rapidly. On the other hand, E1 quickly rises 
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until α3 reaches a value of about 5.0 eV and then increases very slowly. When α3 is between 2.5 

and 5.0 eV, α3 contributes mainly to E1 and does not contribute significantly to E2 or E3 as these 

two values remain nearly constant. When α3 shifts between 5.0 and 7.5 eV, it contributes mainly 

to the plasmon peak energy E3, as shown by the rapid increase of E3. It no longer contributes as 

meaningfully to E1 since E1 remains nearly constant for these values of α3. We can see that E2 

increases slightly as well but seems to stabilize when α3 becomes larger than 7 eV. This indicates 

that the contribution of α3 to this state becomes larger when α3 increases from about 5 to 7 eV 

and then remains nearly constant.  

The eigenvectors A1, A2 and A3 are shown in Tables D.19 to D.32 of Appendix D. When 

α3 becomes very small (2.5 eV) or very large (7.5 eV), we can see that one transition dominates 

over the others for each peak. For instance, for α3=2.5 eV, transition 3 dominates for the peak at 

energy E1, as shown by the large value of A3=0.9800 compared to the small values of A1 and A2 

of -0.1120 and -0.1643, respectively (Table 6.3). 

 

Table 6.3. Eigenvectors of the CI matrix in case 3 where α3=2.5 eV, α1=6.0 eV and α2=5.0 

eV. All β values are equal to 0.5 eV. 

  E1= 2.3590 eV E2= 4.8207 eV E3= 6.3202 eV 

A1 -0.1120 -0.4248 -0.8983 

A2 -0.1643 0.8995 -0.4048 

A3 0.9800 0.1023 -0.1706 

|A1+A2+A3|
2
 0.4952 0. 3329 2.1718 

 

We note that A3 is very small for both E2 and E3, which suggests that transition 3 

contributes very little to the peaks at E2 and E3. At α3=7.5 eV, transition 3 dominates for the 

plasmon peak at energy E3 (Table 6.4). 
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Table 6.4. Eigenvectors of the CI matrix for case 3 where α3=7.5 eV, α1=6.0 eV and α2=5.0 

eV. All β values are equal to 0.5 eV. 

  E1= 4.7629 eV E2= 5.9437 eV E3= 7.7934 eV 

A1 0.3339 0.8871 0.3188 

A2 -0.9362 0.2726 0.2220 

A3 0.1100 -0.3726 0.9215 

|A1+A2+A3|
2
 0.2423 0.6195 2.1380 

 

This is consistent with the fact that α3 contributes mostly to the peak at energy E1 when it 

is small but contributes mainly to the plasmon peak energy when it is large. These results 

confirm that as the value of α3 increasingly differs from the other α values, the mixing between 

transition 3 and the other two becomes smaller. In other words, the further apart in energy the 

contributing transitions are, the less efficiently they will mix. 

When α3 becomes close to the other values of α (which occurs around 5.0 and 6.0 eV), it 

contributes to all three excited states due to the strong coupling that occurs. The oscillator 

strength of the plasmon peak tends to grow as α3 gets closer to the value of α1 (6.0 eV). When α1 

and α3 are equal (transitions 1 and 3 are in resonance), the oscillator strength of the plasmon peak 

reaches a maximum. This maximum is less than the 3.0 value of the ideal case since all α values 

are not in resonance. On the other hand, the oscillator strength S2 of the peak at energy E2 

reaches its minimum value of 0 when α1= α3. We note that when α3=5.0, we have α2= α3 and the 

oscillator strength of peak 1 reaches its minimum value of 0. In that case, transitions 2 and 3 are 

in resonance.   

 Case 4: Vary β12 only. 

We now investigate how changing the coupling values β affects the absorption spectrum 

of the system. First, only the coupling between transitions 1 and 2 is changed. The CI matrix 

studied in this section is: 

12

12

5 0 5

5 0 5

0 5 0 5 5

.

.

. .





 
 
 
  

 (6.14) 
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The values of β12 considered are varied by ±1, ±5, ±10, ±20, ±30, ±40 and ±50% of the value 

used in case 1 (0.5 eV), which gives β12= 0.25, 0.30, 0.35, 0.40, 0.45, 0.475, 0.495, 0.505, 0.525, 

0.55, 0.60, 0.65, 0.70 and 0.75 eV. The peak energies and oscillator strengths are reported in 

Figure 6-3 and in Table D.33 of Appendix D. The eigenvectors for each matrix studied in this 

section are reported in Tables D.34 to D.47 of the supporting information. 

 

Figure 6-3. A) Peak energies and B) oscillator strengths for different values of β12 (case 4). 

 

The state E3 has the highest energy as well as the highest oscillator strength due to a constructive 

addition of its eigenvectors. Like in the previous cases, this state is the plasmon. One of the three 

excited states has 
1 2 1 2A A    and A3= 0 for all values of β12 (except in the ideal case where 

β12=0.5 eV, due to the normalization of the eigenvectors). This state is labeled with energy E1 

and it has zero oscillator strength. It crosses with E2 at β12= 0.5 eV.  The amplitude of the 

variation of the peak energies is very small (less than 0.5 eV), due to the fact that the values of β 

considered are only approximately 10% of the values of α. We can see that the energies of states 

2 and 3 increase linearly with increasing β12 whereas the energy of state 1 decreases linearly. E2 

and E3 use the intensifying coupling between transitions 1 and 2 to increase their energy, which 

results in a decrease of E1. The decrease in E1 (indicated by the slope of the linear fit of E1 as a 

function of β12) is equal to the increase of E2 plus the increase of E3. The oscillator strengths of 

the three excited states are nearly identical to those obtained for the ideal case regardless of the 

value of β12. The plasmon state oscillator strength grows as β12 approaches the 0.5 eV value of 

the ideal case. However, the change is so small that the oscillator strength appears constant. The 

oscillator strength of state 2 slightly increases as the value of β12 differs more from the original 
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0.5 eV value but it remains so small that it is essentially zero.  We can also see that A1 = A2 for 

the eigenvalues E2 and E3 regardless of the β12 value, reflecting the identical contributions of 

transitions 1 and 2. As β12 increases, we see that |A1| and |A2| decrease whereas |A3| increases for 

E2 and vice versa for E3.  

 Case 5: Vary β12 and β23. 

We now consider a matrix where all coupling elements are different.  The CI matrix 

studied in this section is: 

12

12 23

23

5 0 5

5

0 5 5

.

.



 



 
 
 
  

 (6.15) 

In this case, β12= 0.6 eV and the values of β23 considered are varied by ±1, ±5, ±10, ±20, ±30, 

±40 and ±50% of the value used in case 1 (0.5 eV), which gives β23= 0.25, 0.30, 0.35, 0.40, 0.45, 

0.475, 0.495, 0.505, 0.525, 0.55, 0.60, 0.65, 0.70 and 0.75 eV. The peak energies and oscillator 

strengths are reported in Figure 6-4 and in Table D.48 of Appendix D.  

 

Figure 6-4. A) Peak energies and B) oscillator strengths for different values of β23 (case 5). 

(β12=0.6 eV) 

 

 

Again, we can see that the plasmon peak (peak 3), which corresponds to a constructive addition 

of the eigenvectors A1, A2 and A3, has a much higher energy and oscillator strength than the other 

two. Its energy increases linearly with increasing value of β23. Like in the previous case, the 

oscillator strength of all three peaks is nearly equal to the values obtained in the ideal case: 3 for 
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the plasmon and 0 for the other two. There is a slight growth of the plasmon peak oscillator 

strength up to β23=0.55 eV and then a slight decrease. The change is again so small that the 

plasmon peak oscillator strength appears to remain constant. Its maximum value of 2.9981 is 

slightly less than 3 since all these transitions do not couple equally.  Peaks 1 and 2 both have 

very low oscillator strength. From β23=0.25 to 0.5 eV, E1 becomes larger. From β23=0.5 to 0.75 

eV, E1 decreases. The opposite behavior is observed for E2. From β23=0.25 to 0.6 eV, E2 

becomes smaller. From β23=0.6 to 0.75 eV, E2 increases. Therefore, the plasmon peak of energy 

E3 and the peak of energy E1 use the ascending value of β23 up to the 0.5 eV (which is equal to 

β13) to increase their energy in a similar way as in the previous case. This results in a drop of the 

E2 energy. On the other hand, when β23 reaches 0.6 eV (value of β12), E2 takes advantage of the 

large coupling value to increase its energy, which leads to a decreasing value of E1.  E1 reaches a 

maximum at β23=0.5 eV where β23=β13, and S1 attains its minimum value of zero. E2 reaches a 

minimum at β23=0.6 eV where β23=β12, and S2 attains its minimum value of zero. The 

eigenvectors associated with each eigenvalue are displayed in Appendix D (Tables D.49-D.62). 

We can see that as β23 increases, A1 decreases for the plasmon peak whereas A2 and A3 increase; 

overall, |A1+A2+A3|
2
 (the oscillator strength) remains nearly constant.  

 Case 6: Varying the β/α ratio. 

We now consider a system where all three values of α are different and all coupling 

elements are identical, as in case 3. The values of α considered (α1=5.0 eV, α2=5.1 eV and α3=5.2 

eV) are similar to the values obtained for the nanowire Ag6.
195

 This time, we investigate the 

effect of increasing all three coupling values from 0 to 2.0 eV on the peak energies and oscillator 

strength. The CI matrix considered is: 

5 0

5 1

5 2

.

.

.

 

 

 

 
 
 
  

 (6.16) 

The values of β considered are: β=0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 and 2.0 

eV. Figure 6-5 shows the excited state energies and oscillator strengths as a function of the 

coupling. Table D.63 of the Appendix D gives the numerical values. 
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Figure 6-5. A) Peak energies and B) oscillator strengths for different values of 

β=β12=β13=β23 and α1=5.0 eV, α2=5.1 eV, α3=5.2 eV (case 6). Inset in A is an enlarged version 

of the region in the black square. 

 

For β=0 (no coupling), the three excited states energies are equal to α1, α2 and α3 and their 

oscillator strength is equal to 1. These states are therefore qualified as single particle transitions 

and there is no plasmon. When β>0, the eigenvectors add constructively for the highest energy 

peak E3 and destructively for the other two peaks (Tables D.64 to D.75 of Appendix D). The 

energy of E3 rises linearly as the coupling grows whereas the energy of the other two states 

decreases; the slope for the change in energy of E3 is twice that of the other two states.  For 

β≤0.1 eV, the peak energies do not differ significantly from the α values (e.g. less than 0.1 eV, 

Figure 6-5A inset). In that range, the oscillator strength of the highest energy peak rapidly 

increases and the oscillator strength of the other two peaks rapidly decreases (Figure 6-5B). As 

the coupling grows larger, the oscillator strength rapidly converges to a value close to 3 for the 

highest energy peak (now the plasmon peak), and 0 for the other two peaks. When β reaches a 

value close to the difference in energy of the α values (β=0.1-0.2 eV), the oscillator strength of 

the plasmon peak is already in the 2.80-2.95 range.  We note that since the three transitions do 

not have the same energy, the plasmon peak oscillator strength will never identically reach the 

maximum value of 3, but strong coupling values do lead to oscillator strengths of essentially 3. 

Overall, the oscillator strength is highly sensitive to small coupling values and rapidly converges 

to its maximum (or minimum) value whereas the excited state energies are only significantly 

affected by large coupling values. 
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 Case 7: Mixed-coupling systems. 

In real systems, some transitions with similar α values may couple strongly while others 

couple weakly. For example, noble metal nanoparticles (especially gold) may have interband (i.e. 

excitations from the d-band into the sp-band) transitions that can mix with sp-band transitions of 

similar energy and affect the plasmon peak energy and oscillator strength. However, these 

interband excitations typically have significantly smaller dipole moments. We postulate that the 

coupling values between interband and sp-band transitions are smaller than the coupling values 

between sp-band transitions. In order to model this, we consider a matrix similar to the one in 

case F. Transitions 1 and 2 will be considered to be sp-band and we give them a large coupling 

value of β12=0.5 eV. Transition 3 will be considered to be interband and the coupling values 

between this transition and the other two are identical but smaller than the coupling between the 

two sp-band transitions: β=β13=β23<β12. The resulting CI matrix is: 

5 0 0 5

0 5 5 1

5 2

. .

. .

.





 

 
 
 
  

 (6.17) 

The values of β considered are β=0, 0.001, 0.005, 0.01, 0.05 and 0.1 eV. Peak energies and 

oscillator strengths are given in Table 6.5.  

 

Table 6.5. Excited states energies and oscillator strengths for a system with α1=5.0 eV, 

α2=5.1 eV,  α3=5.2 eV, β12=0.5 eV and different values of  β13 =β23 (case 7). 

β13 =β23(eV) E1 (eV) S1 (a.u.) E2 (eV) S2 (a.u.) E3 (eV) S3 (a.u.) 

0.0000 4.5475 0.0050 5.2000 1.0000 5.5525 1.9952 

0.0010 4.5475 0.0050 5.2000 0.9888 5.5525 2.0062 

0.0050 4.5475 0.0049 5.1999 0.9440 5.5526 2.0512 

0.0100 4.5475 0.0048 5.1994 0.8889 5.5531 2.1063 

0.0500 4.5475 0.0043 5.1864 0.5108 5.5661 2.4847 

0.1000 4.5474 0.0038 5.1505 0.2267 5.6021 2.7696 

 

The first excited state remains at nearly constant energy with a low oscillator strength, which 

reflects the fact that within this range of coupling values, this state arises from the destructive 

combination of the two sp-band excitations. This is confirmed by the fact that A1 and A2 are 

much larger than A3 for this state (Tables D.76 to D.81 of Appendix D). As in all the other cases, 

the high energy state E3 is the plasmon, as reflected by the constructive addition of its 
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eigenvectors; however, it should be noted that for small values of β, it is only a constructive 

combination of the two sp-band states and its oscillator strength is approximately 2. E2 becomes 

slightly smaller and E3 becomes slightly larger with increasing β. The energy change is small 

(less than 0.05 eV) but still observable. This in accordance with the observations made in case 6. 

The mixing of the interband transition therefore only has a small effect on the excited states 

energies. We can see that S2 drastically decreases and S3 drastically increases as β grows, again 

in accordance with previous observations (case 6). As a result, a small interband mixing can 

highly affect the oscillator strength of the plasmon peak. One must note that several interband 

transitions may occur in real gold clusters due to the higher density of states of these transitions. 

When a large proportion of interband excitations mix with the sp-band excitations, it is 

reasonable to expect more significant energy variations of the excited states. This has previously 

been observed in gold nanorods.
195,277

  For accurate predictions of oscillator strengths, the 

difference in the transition dipole moment between the sp-band and interband transitions must 

also be considered.   

  Conclusions 

In summary, we used configuration interaction to study plasmonic systems with three 

contributing transitions.  The diagonal elements of the CI matrix correspond to the energy of 

each contributing transition whereas the off-diagonal elements correspond to the couplings 

between the transitions. In the ideal case where all the diagonal elements α are equal and all the 

off-diagonal elements β are equal, two degenerate low-energy peaks with zero oscillator strength 

occur as well as one high-energy peak with large oscillator strength. The latter arises from a 

constructive addition of the eigenvectors and is identified as the plasmon peak. On the other 

hand, the former two peaks result from a destructive addition of the eigenvectors. The same 

qualitative behavior is observed in TDDFT calculations on silver and gold nanoparticles where 

multiple configurations mix to yield a high-energy, high-intensity plasmon peak and multiple 

low-energy low-intensity peaks.
195

  In these real systems, all values of α and β are not equal. This 

leads to deviations from the ideal case. We therefore considered systematic variations from the 

ideal case.  

As we change one (or two) of the α values, the degeneracy between the two low-energy 

peaks is lifted and one (or two) low energy peak(s) gain(s) some oscillator strength. The α values 
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can be related to the single-electron transition energies. As these energies increasingly vary from 

each other (i.e. their energies diverge from the ideal case), the mixing between the transitions 

becomes smaller. Therefore, the plasmon peak oscillator strength decreases and the oscillator 

strength of the other two peaks increases as we deviate from the ideal case. Changing one or two 

of the coupling constants within a 50% range has a small effect on peak energies and oscillator 

strength. If the coupling between two transitions becomes larger, the plasmon peak energy 

increases in a linear fashion. Its oscillator strength remains nearly constant with a value slightly 

smaller than its maximum value of 3. The other two peaks have nearly zero oscillator strength. 

The maximum oscillator strength enhancement due to CI is equal to the number of 

configurations involved (3 in the cases considered here) and occurs only in the ideal case where 

all transitions have identical energies and couplings.  

We then considered a system with three different values of α and identical values of β 

that were varied in a systematic fashion. When the coupling elements increase up to 

approximately the difference in α values, the oscillator strength of the plasmon peak rapidly 

increases to a value near its maximum enhancement. However, its energy remains near the 

highest energy configuration. For higher coupling values, we get a high increase of the plasmon 

peak energy but its oscillator strength remains near the maximum value of 3. We also modeled a 

system similar to a real nanoparticle by considering two sp-band excitations and one interband 

excitation in the CI matrix. The interband character is modeled by taking a small coupling value 

between this transition and the two sp-band transitions. We found that the excited states energies 

are not as affected as the oscillator strength. However, we suggest that multiple interband 

transitions in the CI matrix (as would be expected in gold nanoparticles) might lead to larger 

variations in the excited state energies (including the plasmon), due to a highly split spectrum. 

Overall, we show that configuration interaction is a useful concept for understanding the 

coupling of single-particle transitions into a strong plasmon peak. 
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Chapter 7 - Development of a charge-perturbed particle-in-a-sphere 

model for nanoparticle electronic structure  

Guidez, E. B.; Aikens, C. M. Phys. Chem. Chem. Phys. 2012, 14, 4287.  

Reproduced by permission of the PCCP Owner Societies 

 Abstract 

The complex surface structure of gold-thiolate nanoparticles is known to affect the 

calculated density functional theory (DFT) excitation spectra. However, as the nanoparticle size 

increases, it becomes impractical to calculate the excitation spectrum using DFT. In this study, a 

new method is developed to determine the energy levels of the thiolate-protected gold 

nanoparticles [Au25(SR)18]
-
 , Au102(SR)44 and Au144(SR)60.  A 3 nm thiolate-protected 

nanoparticle is also modeled. The particle-in-a-sphere model is used to represent the core while 

the ligands are treated as point charge perturbations. The electronic structures obtained with this 

model are qualitatively similar to DFT results. The symmetry of the arrangement of the 

perturbations around the core plays a major role in determining the splitting of the orbitals. The 

radius chosen to represent the core also affects the orbital splitting.  Increasing the number of 

perturbations around the core shifts the orbitals to higher energies but does not significantly 

change the band gaps and orbital splitting as long as the symmetrical arrangement of the 

perturbations is conserved. This model can be applied to any gold nanoparticle with a spherical 

core, regardless of its size or the nature of the ligands, at very low computational cost. 

 Introduction 

In the past decade, many thiolate-protected gold nanoparticles (NPs) of various sizes 

have been synthesized
76,283-289

 and studied for possible applications in areas such as 

biology,
290,291

 catalysis
292

 or biosensing.
293

 Nanoparticles with tens to a few thousands of atoms 

are of particular interest since their properties lie between those of molecules and bulk materials. 

The structure, luminescence, and magnetic properties of several stable clusters such as 

Au25(SR)18
0/-1

, Au38(SR)24, Au102(SR)44 and Au144(SR)60 have been intensively studied.
78,294-301

 

Gold nanoparticles show complex absorption spectra, which is due both to interband transitions 

and geometric effects on electronic structure. Density functional theory (DFT) calculations on 
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such systems can be expensive or unachievable for the larger sized nanoparticles. Therefore, the 

need for a simpler model arises in order to determine the electronic structure of these 

nanoparticles. This work focuses on nanoparticles with spherical shape. The inherent stability of 

spherical gold nanoparticles was recently explained by the superatom model: spherical systems 

with a “magic number” (n=2, 8, 18, 34, 58...) of core electrons tend to be particularly stable.
80

  

The magic numbers correspond to shell-filling numbers for particles in a spherical 

potential.
260

 Orbitals near the HOMO-LUMO gap in gold nanoparticles have characteristics of S, 

P, D, etc. superatomic orbitals, which are delocalized throughout the nanoparticle core.
80,81,83

  

A charge-perturbed particle-in-a-box model was effectively used by Goldsmith et al.
302

 to 

explain the optical activity of several gold clusters such as Au28(SG)16. The gold core was 

modeled with non-interacting electrons confined to a cubic box and the ligands were described as 

perturbations using point charges.  In this work, a similar method is used to predict the electronic 

structure of several thiolate-protected spherical gold NPs: the core is modeled as a spherical well 

and point charges representing the ligands act as perturbations. The spherical systems 

investigated in this work are Au25(SR)18
-
, Au102(SR)44, Au144(SR)60 and a 3 nm nanoparticle with 

uniformly dispersed S-Au-S perturbations.   

 Method 

A particle-in-a-sphere (PIS) model is used in this work to represent the spherical core of 

the nanoparticles. We consider a single unpaired electron in the core to be trapped in a spherical 

potential: V=0 inside the sphere and V=∞ outside the sphere.  The PIS zeroth order wave 

functions have the following form: 

     , , ,
, , ,

l

n l m m n l
r Y j r      (7.1) 

where  ,
l

m
Y    are the normalized spherical harmonics with quantum number l and m such that 

l=0,1,2…where l=0 corresponds to an S orbital, l=1 is a P orbital, l=2 is a D orbital, etc. and m=-

l,-l+1,…,+l. n is the quantum number of the electron shell. jn,l(r) are the normalized spherical 

Bessel functions with n=1,2,3… and again l=0,1,2... The spherical Bessel functions can be 

written in the form: 
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where Jn,l+1/2 is a standard Bessel function, k = αn,l/R, R is the sphere radius in Å and αn,l is the 

root of jn,l. The zeroth order energy of the particle in a sphere is: 

2

,(0)

, 2

α

2R

n l

n lE   (7.3) 

The atoms constituting the ligands are considered as point charge perturbations. First-order 

degenerate perturbation theory is applied for all orbitals with l1. A non-degenerate version of 

the code is used to calculate the energy of the S orbitals.  

 In the presence of a perturbation, the correct zeroth order wavefunction of degenerate energy 

levels is a linear combination of the zeroth order non-degenerate wavefunctions:  

(0)

1 , , 2 , , 1 2 1 , ,n l l n l l l n l lc c c           (7.4) 

By solving the secular equation, we can obtain the first order energy and the zeroth order 

wavefunction (eigenvectors c1, c2…) of each energy level. The secular equation has the 

following form: 

(1)  c E cA  (7.5) 

Where    represents the eigenvectors, E
(1)

 the first order energy and A is a square matrix of 

dimension (2l+1): 
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A  (7.6) 

    the total perturbation exerted by the ligands, is: 

i

2 2 2
1 i i i

qˆ

(x x ) (y y ) (z z )

N

i

V





    
  (7.7) 

where N is the number of perturbations, (xi,yi,zi) are the coordinates of the i
th

 perturbation, and qi 

is the charge of the i
th

 perturbation. It should be noted that    and A are Hermitian. Each matrix 

element of the secular equation corresponds to a triple integral over r,  and  coordinates: 

2
* 2

, , , ,
0 0 0

ˆ( , , ) ( , , ) sin
R

n l m n l mr V r r drd d
 

            (7.8) 

In this equation,    is expressed in spherical coordinates. The triple integration was found to be 

impractical to solve analytically. Therefore, the integration was performed numerically. The 

sphere is divided into a grid. Using spherical coordinates to create the grid inside the sphere 



108 

 

(evenly dividing r, θ,  coordinates) yielded very inaccurate results since a larger density of 

points are generated near the poles than near the equator. In order to fix that issue, a Cartesian 

grid was created. Another advantage of the Cartesian grid is that it is not necessary to convert the 

perturbation    into spherical coordinates.  

    For each case studied in this work, the chosen grid size is the one for which the first order 

energy is converged for the highest l considered. As l increases, the number of nodes increases 

and therefore the grid size needs to be smaller relative to orbitals with smaller l. Although the 

grid is divided based on Cartesian coordinates, the coordinates of each point within the sphere 

are converted to spherical coordinates in order to calculate the wavefunctions for the orbitals of 

interest.  We note that the center of mass of the nanoparticle must be located at the origin. 

However, there is no need to align the primary axis of the nanoparticle along the z axis. 

 Computational details 

All energy calculations are computed with a code written in FORTRAN90. Bessel 

functions and Legendre Polynomial subroutines are taken from Fortran numerical recipes.
303

 

Calculation of the eigenvalues and eigenvectors of the secular matrix A are run using the zheev.f 

subroutine from the LAPACK 3.2 package.
304,305

 The roots of the spherical Bessel functions 

were determined using an online calculator.
306

 The test cases figures and the orbitals of the first 

test case are drawn using Matlab. Au25(SR)18
-
, Au102(SR)44, Au144(SR)60 and the 3 nm sphere 

perturbations are drawn using MacMolPlot.
257

 The perturbation coordinates for the Au144(SR)60 

spherical case and the 3 nm NP are generated using a Matlab program written by J. Bowman that 

generates uniform points on a sphere.
307

 Since a few of the resulting S-Au-S units are bent and a 

few sulfur atoms overlap some gold atoms, the sulfur atoms are manually arranged around the 

gold atoms to get linear S-Au-S units. Consequently, the arrangement of the units is not perfectly 

uniform. The density of states (DOS) spectra are fit with a Gaussian of 0.1 eV FWHM. 

 Description of the model systems 

 Test cases 

In order to verify that the program is working correctly, five simple test cases are 

designed in which the spherical core is perturbed by negative point charges (Figure 7-1). These 

test configurations include axial (Case 1), square planar (Case 2), octahedral (Case 3), planar 
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with eight perturbations (Case 4) and approximately spherical with eighteen perturbations (Case 

5). In order to verify that no alignment along the z axis is necessary, two different possibilities 

are considered for Case 1: 1a) the two perturbations are along the z axis and 1b) the two 

perturbations are on opposite sides of the sphere but at a random orientation. The coordinates of 

the perturbations for each case are given in Appendix E. The core is a 3.00 Å radius sphere 

centered at the Cartesian coordinates (0,0,0) and divided using a 0.1 Å grid. Each perturbation is 

a single negative charge located 4.5 Å away from the center of the spherical core. The 1P and 1D 

orbital energies are calculated for each case by adding zeroth order and first order energies.  

 

Figure 7-1. Test cases. A) Case 1a: Axial with perturbations aligned along the z axis. B) 

Case 1b: Axial with perturbations along a random axis.  C) Case 2: Square planar. D) Case 

3: Octahedral. E) Case 4: Planar with eight perturbations. F) Case 5: Quasi-spherical with 

18 perturbations. 
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 Au25(SR)18
-
 

The structure of Au25(SR)18
q
 (SR=SCH2CH2Ph, SCH3… and q=0,-1,+1) has been subject 

to numerous investigations.
73,308-310

 It was eventually shown to have a Au13 icosahedral core with 

six Au2(SR)3 protecting units arranged in a quasi-tetrahedral fashion
73,309,310

, as shown in Figure 

7-2. The negatively charged cluster has a fully occupied 1P shell and is therefore very stable. 

 

Figure 7-2. Optimized X/TZP.4f structure of the Au25(SR)18
-
 cluster.  

 

 

*The R group is not shown here. Orange: Sulfur. Yellow: Gold. Coordinates from Ref
78

.  

 

 In order to model this nanoparticle, a 4.2 Å sphere is used to represent the core. This distance 

corresponds to the experimentally determined
73,310

 and DFT calculated
78

 bond length between 

the central gold atom and the outer gold core atoms (2.8 Å, close to the bulk Au-Au distance of 

2.88 Å) plus half this bond length, which correlates to an approximate atomic radius for the outer 

gold core atom. The R group is not considered as a perturbation since its effect is likely to be 

much smaller than the gold or sulfur atoms. However, it must be remembered that depending on 

the nature of the R group, this perturbation may not be negligible. Gold atoms from the staples 

are considered perturbations with a +1 charge and sulfur atoms are considered perturbations of -1 

charge. However, it should be noted that Au-S bonding is fairly covalent and therefore the 

magnitude of the partial charges on these atoms may be expected to be less than 1. The 

converged grid size is 0.2 Å. In order to investigate the influence of the size of the core in the 

energy level splitting, another set of calculations are run with a spherical core radius of 3.0 Å. 

 Au102(SR)44 

The crystal structure of Au102(SR)44 with R=para-mercaptobenzoic acid (p-MBA) was 

determined by Jadzinsky in 2007.
76

 The structure of the cluster is shown in Figure 7-3.  It is 
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made of an Au79 decahedral core protected by two Au2(SR)3 units similar to those discussed in 

the Au25(SR)18 case and 19 linear RS-Au-SR units. All those units constitute the perturbations. 

The partial charges considered are the same as for Au25(SR)18
-
. We should emphasize that again 

the R group is not considered in this work. The distance between the center of mass of the cluster 

and the outer gold atom of the core is about 6.1 Å.
76 

A 7.2 Å radius is considered to represent the 

spherical core. A grid size of 0.1 Å is used. The first order and zeroth order energies of the 1F, 

2P, 1G, 2D, 1H, 3S and 1I orbitals are calculated and compared with the DFT data obtained by 

Walter et al.
80

 

 

Figure 7-3. Au102(SR)44 crystal structure.  

 

*The R group is omitted. Orange: Sulfur. Yellow: Gold. Coordinates from ref 
76

 

 Au144(SR)60 

DFT studies on Au144(SR)60 suggest a structure with an icosahedral Au114 core and thirty 

surrounding Au(SR)2 motifs.
301

 The optimized structure is shown in Figure 7-4A, with the R 

group omitted. The distance between the center and the outer gold atoms of the core is 7.10 Å.
301

 

In this work, Au144(SR)60 is modeled with a 8.5 Å core sphere, which corresponds to this 

distance plus half a Au-Au bond length. The S-Au-S perturbations are treated as point charges, 

similar to the two previous cases. The converged grid size is 0.1 Å. The first order and zeroth 

order energies of the 1S, 1P, 1D, 2S, 1F, 2P, 1G, 2D, 1H, 3S, 2F, 1I, 3P and 2G orbitals are 

calculated and compared with the data obtained by Lopez-Avecedo et al.
301

 This range covers all 

occupied and several lowest unoccupied orbitals.    

In order to determine how symmetry influences the splitting of the orbitals, a second 

geometry is examined in which the S-Au-S staples are uniformly spread out around the spherical 

core as shown in Figure 7-4B. In the DFT optimized structure, the average distance between the 
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center of the sphere and the perturbations is 9.30 Å. Therefore, each perturbation in this case is 

located 9.30 Å away from the center of the sphere. The same set of orbital energies is calculated.  

 

Figure 7-4. A) Au144(SR)60 optimized structure. B) Spherically spread out perturbations. 

 

*The R group is omitted. Orange: Sulfur. Yellow: Gold. Coordinates of A) from Ref
301

. 

 3nm nanoparticle 

In order to create a nanoparticle in which the Au atoms in the S-Au-S unit lie at a 

distance of 1.5 nm from the center of the core, a radius of 1.415 nm is chosen for the spherical 

core. Therefore, the distance between the surface of the core and the perturbations is 0.85 Å, 

which is similar to the Au144(SR)60 nanoparticle. To determine the number of S-Au-S 

perturbations for this system, the ratio corresponding to surface area / number of units was 

considered to be identical to the Au144(SR)60 system: 

  
  

 

 
144 60

144 60

   3  

3  

A Au SR A nm NP

N nm NPN Au SR
  

where A is the surface area and N is the number of S-Au-S units. The surface area is proportional 

to the radius squared of the nanoparticle. We consider r = R -1.4 where 1.4 is half of the Au-Au 

bond length in Å and R is the radius of the spherical core also in Å. The number of S-Au-S 

perturbations considered is:  
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The 96 S-Au-S motifs are uniformly spread around the sphere at a distance of 1.5 nm from the 

center of the sphere (Figure 7-5A). A similar nanoparticle with 64 S-Au-S motifs is also 

modelled (Figure 7-5B) in order to determine the effect of the number of perturbations on the 

electronic structure. The number of electrons in these clusters is estimated based on the electron 
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density of the Au144(SR)60 cluster and calculated to be 388. However, this would lead to a 

partially filled shell. On the other hand, a cluster with 398 electrons would entirely fill up 25 

shells. The zeroth order and first order energy of the 3F, 4P, 2I, 3G, 4D, 5S, 1N, 2J, 1L, 1M, 3H, 

2K and 4F orbitals are calculated. They correspond to the six highest occupied and the seven 

lowest unoccupied orbitals, which would be the ones involved in electronic transitions. The 

converged grid size used for these calculations is 0.35375 Å, which was chosen to evenly divide 

into 1.415 nm.  

 

Figure 7-5. Perturbations of the 3 nm sphere. A) 96 perturbations. B) 64 perturbations.  

 

*Orange: Sulfur. Yellow: Gold. 

 

 Results and discussion 

 Test cases 

 Figure 7-6 shows the total energy (sum of zeroth order and first order) of the 1P and 1D 

orbitals for each of the five cases. The orbitals are labeled with the familiar notations Px, Py, Pz, 

Dxy, Dxz… except for the test case 1b since the alignment of the main axis with the z-axis is not 

respected. Instead, they are labeled P’x, P’y, P’z, D’xy, D’xz…  The splitting of the orbitals is as 

expected for all the test cases.  Test case 1a shows that the Pz orbital lies higher in energy than 

the Px and Py orbitals, which are degenerate. The Dz2 orbital’s energy is higher than the Dyz and 

Dxz orbitals (which are degenerate), which lie higher in energy than the Dxy and Dx2-y2 (which are 

also degenerate). Case 1b shows identical orbital splitting as case 1a. The P orbitals are plotted 
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for these two cases in Appendix E. In each case, the three P orbitals are orthogonal with one of 

them pointing toward the perturbations. 

 As expected for the square planar case, the Px and Py energies are degenerate and lie 

higher in energy than the Pz. The energy of the Dx2-y2 orbital is higher than the energy of the Dxy 

orbital. The Dxz and Dyz orbitals come next and are degenerate, followed by the Dz2. For the 

octahedral case, all P orbitals are degenerate. The Dxz, Dxy and Dyz are degenerate. The Dx2-y2 and 

Dz2 are also degenerate and lie higher in energy. As expected, the fourth case shows a similar 

splitting as the square planar case except that the Dxy and Dx2-y2 are degenerate. The last case 

shows an octahedral splitting. However, the energy difference between the two sets of D orbitals 

(0.12 eV) is about twice as small as the standard octahedral case (0.23 eV). The eighteen 

perturbations are arranged in an almost spherical manner and as a result, the energy of the orbital 

splitting is lower; however, the perturbations are not perfectly spherical so the splitting is found 

to be nonzero. The results from Figure 7-6 are consistent with known ligand-field splitting 

patterns. Since the splitting among P orbitals (max=0.64 eV) and among D orbitals (max=1.32 

eV) are much less than the P-D energy difference (~5 eV), the perturbations should be weak 

enough that perturbation theory is valid. First order perturbation theory is sufficient to predict 

these patterns. 
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Figure 7-6. Orbital splitting for the test cases. A) Axial with perturbations along the z axis. 

B) Axial with perturbations along a random axis. C) Square planar. D) Octahedral. E) 

Planar with eight perturbations. F) Quasi-spherical with 18 perturbations. The orbital 

energies are in eV. 

 

 Au25(SR)18
-
 

Figure 7-7A shows the 1P and 1D orbitals and their energies for Au25(SR)18
-
 with a spherical 

core radius of 4.20 Å. These energies are calculated by adding the zeroth order and first order 

energies. The energies lie between 17.08 and 20.15 eV. These large positive values are due to the 

fact that we are considering a simple PIS model: the nuclei are not included. The 1P orbitals 

(HOMO) are degenerate. The 1D orbitals are split into 2 sets.  The Dxy, Dxz and Dyz orbitals 

(LUMO+1) are 0.54 eV higher in energy than the Dx2-y2 and Dz2 orbitals (LUMO). The HOMO-

LUMO gap is 2.49 eV.  
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Figure 7-7. A) Au25(SR)18
-
 1P and 1D orbitals  and their energies in eV for a 4.2 Å spherical 

core. B) Au25(SR)18
-
 1P and 1D orbital energies in eV for a 3 Å spherical core. 

 

*Orbitals are in dark green. Each Au2S3 unit is represented with a different color. The bigger dots 

represent gold atoms and the smaller ones represent sulfur atoms.   

 

This splitting agrees with the quasi-tetrahedral arrangement of the Au2(SR)3 units. As in the DFT 

calculations,
73,310

 the orbitals making up the HOMO, LUMO and LUMO+1 levels are nearly 

degenerate, although a slight splitting occurs since the symmetry of the NP is not rigorously Th. 

The DFT splitting between the two sets of D orbitals is 0.82 eV and the HOMO-LUMO gap is 

1.48 eV. Therefore, the PIS model gives an orbital splitting that is comparable to DFT values but 

not quantitatively accurate. A few reasons for this may include the fact that the PIS model 

calculates the energy of orbitals within the core of the NP. Although the 1P and 1D orbitals are 

mainly located within the core of the nanoparticle, there is some ligand contribution.
73

 In 

addition, electrons in the real case can spill out of the core, whereas they are constrained by an 

infinite potential in the PIS model. Other contributions to the inaccuracy of the energy gaps 

might include the absence of nuclei or the fact that orbital occupancies are not considered. 

Nevertheless, good qualitative results are obtained, including the right degeneracies and the 
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correct orbital orderings. The PIS orbitals are very similar to the ones obtained with DFT:
73

 the 

HOMO level is made of orbitals with a P character, the LUMO level is made of orbitals with 

Dx2-y2 and Dz2 character and the LUMO+1 is made of orbitals with Dxy, Dxz and Dyz character. 

However, the alignment of these orbitals is not always identical to DFT. In fact, some of these 

orbitals are oriented in a slightly different set of axes.  

The orbital energies are between 21.28 and 26.86 eV for the 3.0 Å case, as shown in 

Figure 7-7B. The difference in range compared to the 4.20 Å case is mainly due to the zeroth 

order energy, which is inversely proportional to the radius of the spherical core squared (eq. 7.3). 

The Dxy, Dxz and Dyz orbitals (LUMO+1) are 0.14 eV higher in energy than the Dx2-y2 and Dz2 

orbitals (LUMO) and the HOMO-LUMO gap is 5.43 eV. Consequently, as the core radius 

increases, the orbital splitting for a given shell increases but the energy between two different 

shells decreases. 

Silver has a free-electron character similar to gold. Since the d band plays less of a role in 

silver than gold, the PIS model (which does not discriminate between elements) may provide 

more quantitative results. According to DFT, the silver cluster Ag25(SR)18
-
 shows similar 

splitting as its gold counterpart.
73

 The DFT calculated HOMO-LUMO energy gap is found to be 

1.43 eV and the LUMO-LUMO+1 gap is 0.55 eV.
73 

Thus, the HOMO-LUMO gap for both gold 

and silver is overestimated somewhat by the PIS model but the LUMO-LUMO+1 splitting for 

silver is well-reproduced by the PIS model. In the future, we may discriminate between elements 

by including the d-band or different spill-out parameters depending on the metal considered. 

 Au102(SR)44 

Figure 7-8A shows the density of states diagram of Au102(SR)44 calculated with the PIS model. 

Figure 7-8B shows the DFT projected density of states within the Au79 core from Walter et al.
80
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Figure 7-8. A) Au102(SR)44 density of states spectrum using the PIS model. B) Projected 

density of states within the gold core region.   

 

*Yellow: S. Blue: P. Red: D. Green: F. Magenta: G. Cyan: H. Black: I. B) is reprinted from Ref 

80
.(Copyright 2008 National Academy of Sciences, U.S.A.). 

 

Both the PIS model and DFT show a set of occupied 1F orbitals followed by the 2P orbitals, 

which partially overlap the 1G. A gap of 0.4 eV occurs between the 1G and 1H orbitals with the 

two methods. It corresponds to the HOMO-LUMO gap. With the PIS model, the 2D orbitals 

partially overlap the 1H orbitals. However, there is a distinct set of 1H orbitals that does not 

overlap the 2D set with DFT. This feature is not reproduced with the PIS model. Additionally, 

contrary to DFT, the PIS model gives a large gap (0.7 eV) between the 1H and 1I orbitals. The 

orbital splittings are given in Table 7.1.  

 

Table 7.1. Energy splitting (eV) of each set of orbitals of the Au102(SR)44 nanoparticle. 

Orbitals PIS model DFT
* 

1F 0.8 0.2 

2P 0.5 0.3 

1G 0.9 0.5 

2D 0.5 0.6 

1H 1.1 0.8 

1I 1.0 0.4 

*Ref
80

 

 

Overall, the splitting tends to be overestimated with the PIS model. In general, the PIS model 

gives good qualitative agreement with DFT but lacks quantitative accuracy. It should be 

emphasized that the core of this cluster has a decahedral symmetry which is not as spherical as 
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the core of Au25(SR)18
-
 or Au144(SR)60 which have icosahedral symmetry. Additionally, the p-

MBA groups, which are not considered here, may influence the energy splittings and gaps. These 

calculations have also been run with a core radius of 7.5 Å, which corresponds to the distance 

between the center of mass of the cluster and the outer gold atom of the core plus half a gold-

gold bond length. This DOS spectrum did not show any gap between the 1G and 1H orbitals, 

which again stresses the importance of the choice of radius.  

 

 Au144(SR)60 

Figure 7-9A shows the density of states diagram calculated with the PIS model for the optimized 

structure. Figure 7-9B shows the DFT projected density of states within the Au114 core from 

Lopez-Acevedo et al.
301

 and Figure 7-9C shows the density of states diagram calculated with the 

PIS model for uniformly spread perturbations. Tables 7.2 and 7.3 show the band gaps and energy 

splitting of the orbitals respectively for each of those three cases. The electronic structures 

obtained with the PIS model (Case A) and with DFT (Case B) for the DFT optimized structure 

are first discussed, followed by a discussion of the electronic structure obtained with the PIS 

model for uniformly distributed perturbations (Case C).  
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Figure 7-9. A) Au144(SR)60 density of states spectrum using the PIS model. B) Projected 

density of states within the gold core region. C) Au144(SR)60 density of states spectrum using 

PIS model with uniformly spherically spread out perturbations.  

 

*Red: S. Green: P. Blue: D. Magenta: F. Turquoise: G. Yellow: H. Black: I. B) is reproduced 

with permission from Ref
301

(Copyright 2009 American Chemical Society) 

 

 Comparison between the PIS model and DFT electronic structures for the optimized structure 

(Cases A and B). 

 

Similar features between the two spectra are observed. First, the 1S, 1P and 1D orbitals 

show similar splitting. The gap between the 1S and 1P orbitals is 0.50 eV with both the PIS 

model and DFT. The PIS model overestimates the gap between the 1P and 1D orbitals by 0.16 

eV. The next higher-energy orbitals are 2S, 1F, 2P and 1G. In the DFT calculations, the 2S, 1F 

and 2P orbitals overlap the d-band. The d-band originates from d electrons localized on the gold 

atoms and is not calculated with our model. The 1G orbital splitting is overestimated with our 
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model. This could possibly be explained by the fact that the 1G orbitals partially overlap the d 

band in DFT calculations. A gap of 0.58 eV (Table 7.2) appears between the 1G and 2D orbitals 

with the PIS model, which is a bit larger than the 0.45 eV gap predicted by DFT for these 

orbitals. The 2D orbitals are split over 0.11 eV with the PIS model (Table 7.3) and about 0.06 eV 

with DFT. With DFT, the 1H orbitals are split into two main sets and the 2D orbitals fall 

between those two sets of 1H orbitals. Our model also predicts the splitting of the 1H orbitals 

into 2 sets but the 2D orbitals lie slightly lower in energy (0.03 eV) than the first set of 1H 

orbitals. The splitting of the 1H orbitals is underestimated by 0.27 eV with the PIS model.  DFT 

calculations show that the 3S orbital overlaps the second set of 1H orbitals. With the PIS model, 

the 3S orbital falls between the two sets of 1H orbitals.  

 

Table 7.2. Band gap energies (eV) of the Au144(SR)60 nanoparticle. 

Orbitals Case A Case C Case B
a
 

1S→1P 0.50 0.48 0.50 

1P→1D 0.60 0.54 0.44 

1D→2S 0.26 0.22 NA
b
 

2S→1F 0.33 0.38 NA
b
 

1F→2P 0.29 0.37 NA
b
 

2P→1G 0.15 0.19 NA
b
 

1G→2D 0.58 0.55 0.45, 0.16
c
 

1H→2F 0.64 0.75 0.76, 0.10
d
 

2F→3P 0.29 0.37 0.18 

3P→2G 0.75 0.78 0.18 

a) Ref
301

  

b) These orbitals overlap with the d band and therefore their energies could not be 

determined. 

c) 1G→1H 

d) 1H→1I 
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Table 7.3. Energy splitting (eV) of each set of orbitals of the Au144(SR)60 nanoparticle. 

Orbitals Case A Case C Case B
a
 

1P 0.08 0.12 0.02 

1D 0.12 0.21 0.07 

1F 0.41 0.25 NA
b
 

2P 0.07 0.11 NA
b
 

1G 0.41 0.34 0.27 

2D 0.11 0.19 0.06 

1H 0.47 0.44 0.74 

2F 0.37 0.22 0.53 

1I 0.58 0.49 0.63 

3P 0.07 0.11 0.02 

2G 0.35 0.30 0.38 

a) Ref
301

  

b) These orbitals overlap with the d band and therefore their energies could not be 

determined. 

 

 The PIS model shows a large gap of 0.64 eV between the 1H and 2F orbitals. Therefore, the 

filling of the 1H shell would lead to a very stable cluster. However, Au144(SR)60 only possesses 

84 metallic electrons according the superatom complex model.
301

 According to the PIS model, 

84 electrons would fill orbitals up to the 3S. There is a significant gap of 0.12 eV between the 3S 

orbitals and the second set of 1H orbitals that would contribute to the stability of the cluster.  

The PIS model shows that the 2F orbitals strongly overlap with the 1I orbitals.  DFT also shows 

some overlap between the 2F and 1I orbitals but the 1I orbitals tend to have lower energies than 

the 2F orbitals. Similar to the 1H orbitals, the splitting of the 2F orbitals is underestimated by 

0.16 eV with the PIS model. The splitting of the 1I orbitals with the PIS model (0.58 eV) is 

somewhat smaller than the one obtained with the DFT calculations (0.63 eV) but in the right 

range. Similarly to DFT calculations, the 3P and 2G orbitals appear at higher energy than the 2F 

and 1I orbitals. The gap between the 2F and 3P orbitals is 0.29 eV with the PIS model but only 

0.18 eV with DFT. However, the gap between the 3P and 2G orbitals is much larger with the PIS 

model (0.75 eV) than with DFT calculations (about 0.18 eV). Most band gaps tend to be 

overestimated with the PIS model, but within a reasonable range. The only exception is the gap 

between the 3P and 2G orbitals which is overestimated by 0.57 eV.  

Generally, the PIS model can reproduce many of the features of the density of states 

spectrum. However, since the charge-perturbed PIS is a rough model, accurate quantitative 

results are not obtained. 
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 Comparison between the DFT optimized structure and uniformly spread perturbations (Cases 

A and C). 

The PIS orbital energies for the uniformly spherically spread out perturbations are shown 

in Figure 7-9C and compared to those obtained using the DFT optimized structure (Figure 7-9A). 

The peaks in Figure 7-9C are sharper than those obtained on Figure 7-9A: the orbital energies for 

each set of orbitals are not as spread out as those calculated for the DFT optimized structure. 

This observation is particularly obvious for high l quantum numbers (F, G, H and I orbitals) as 

shown in Table 7.2, since these orbitals have many lobes and the perturbations are uniformly 

spread out around the spherical core. On the other hand, lower l (P and D orbitals) tend to look 

more spread out in the spherical case, which can be explained by the fact that they have fewer 

lobes and that the perturbations are not perfectly uniform around the sphere.  

Additionally, the orbitals are shifted to higher energies (about 2 eV) in Figure 7-9C. This is due 

to the fact that in the uniformly arranged perturbations case, all the perturbations are chosen to be 

equidistant from the center of the sphere, which is not the case for the DFT optimized structure. 

Another interesting feature is that most of the gaps between different shells vary by less than 

0.11 eV.  Therefore, these energy gaps are not as affected by the arrangement of the 

perturbations as the orbital splitting is. 

      The data shows that the symmetry of the system plays a major role in determining the density 

of states spectrum, since it strongly influences orbital splitting. On the other hand, band gaps are 

not very affected by the arrangement of the perturbations. 

 3 nm NP 

Figure 7-10 shows the density of states spectrum of the 3 nm nanoparticle with 96 and 64 

perturbations. The two spectra are very similar, which shows that the number of perturbations 

does not significantly affect the electronic structure. As shown in Table 7.4, the splitting of the 

orbitals remains almost identical as the number of perturbation changes. We shall note that the 

orbital splitting is in general lower for this large nanoparticle than for the Au144(SR)60 cluster for 

a specific l. In fact, we can expect a decrease of the splitting of the orbitals as the radius of the 

nanoparticle increases and the arrangement of the perturbations become more and more 

spherical. We also note that, as found in the Au25(SR)18
-
 case, if the core radius is decreased to 

13.15 Å, the splitting of the orbitals becomes much lower. For instance, the splitting of the 1N 



124 

 

orbitals decreases by 0.13 eV. The spectrum shifts to higher energy as the number of 

perturbations increases, which is expected since the orbital energies increase proportionally to 

the charge of the perturbations and each S-Au-S unit has a net negative charge. Both spectra 

show three main regions with a very large density of states. It is known that a large HOMO-

LUMO gap and completely filled shells increase the system’s stability: the electrons in the filled 

HOMO shell have low energy and cannot be easily removed. The LUMO has a high energy 

which means the system cannot accept any electrons. If this particle had 338 core electrons, it 

would be expected to be more stable since all the shells up to 2I would be completely filled and 

there is a gap of 0.09 eV between the 2I and 1M orbitals for the 96 perturbations case. In the 64 

perturbation case, this gap increases to 0.13 eV. Similarly, this nanoparticle would also be quite 

stable if it had 452 electrons since there is an energy gap of 0.05 eV between two sets of 1N 

orbitals in the 96 perturbation case (0.06 eV in the 64 perturbation case). However, this 

arrangement does not lead to a fully occupied electronic shell. Overall, the size of the orbital 

gaps decreases as the particle becomes larger, and the 3 nm NP is closer to being “metallic” than 

Au144(SR)60. 

 

Figure 7-10. Density of states spectra using PIS model of a 3 nm nanoparticle with A) 96 

and B) 64 S-Au-S units.  

 

*Red: S. Green: P. Blue: D. Magenta: F. Turquoise: G. Yellow: H. Black: I. Grey: J. Golden: K. 

Orange: L. Indigo: M. Brown: N. One possible HOMO-LUMO gap leading to enhanced stability 

is denoted in both spectra. 



125 

 

Table 7.4. Energy spread of each set of orbitals for the 3 nm nanoparticle. 

Orbitals Orbital energy splitting 

(eV) with 96 perturbations 

Orbital energy splitting 

(eV) with 64 perturbations 

3F 0.23 0.16 

1L 0.44 0.41 

4P 0.10 0.10 

2I 0.28 0.24 

1M 0.46 0.40 

3G 0.22 0.22 

2J 0.29 0.29 

4D 0.14 0.12 

1N 0.46 0.42 

3H 0.23 0.24 

2K 0.31 0.30 

4F 0.23 0.16 

 

 Final considerations 

All the calculations performed in this work took no longer than a few minutes for each 

value of l, which makes this method very effective. The computational time required of course 

still depends on the size of the particle studied, the number of electron shells of interest, the 

number of perturbations considered and the grid size chosen. The results are qualitatively similar 

to those obtained with DFT, but quantitative accuracy in splitting energies and band gaps is still 

lacking. This model can potentially be improved by including interactions with the nuclei, for 

example by using a Jellium model, which would significantly lower the orbital energies. Another 

way to improve this model is to consider each atom in the ligand (the R group in our example). 

Finally, we could also include the d-band and introduce different spill-out parameters to 

discriminate between silver and gold, as explained in the results and discussion section. Of 

course, this would increase the computational time required.  

 Conclusions 

In summary, a charge-perturbed particle-in-a-sphere model was created using first-order 

degenerate perturbation theory to calculate orbital energies of ligand-protected spherical gold 

nanoparticles. Atoms constituting the ligand motifs are described as point charge perturbations 

and the core is treated as a spherical well. Since spherical nanoparticles can be described with the 

superatom model,
22

 the program uses the PIS model in conjunction with perturbation theory to 
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determine the density of states of several spherical gold nanoparticles. The results are 

qualitatively similar to those obtained with DFT. The orbital energies are in agreement with 

expected ligand-field splitting patterns. The calculations performed on the Au25(SR)18
-
 cluster 

show that the core radius plays a major role in the determination of the orbital splitting. The data 

obtained for the Au144(SR)60  nanoparticle shows that the symmetry of the perturbations greatly 

influences the electronic structure. However, the number of perturbations does not play a major 

part as long as the symmetry remains constant, as shown with the 3 nm nanoparticle case. As the 

nanoparticle size increases, the degree of orbital splitting decreases, which is most likely due to 

the nearly spherical arrangement of S-Au-S units. In addition, the energy gaps become smaller 

and the particle takes a metallic character. 

    A great advantage of this method is that it is computationally cheaper than DFT. The 

computational time required depends on the size of the particle studied, the number of 

perturbations considered and the grid size chosen. This model can be used for a wide variety of 

gold nanoparticles and ligands, if one is interested in getting the order of the superatom orbitals 

of a specific nanoparticle. The charge of the perturbations can be modulated depending on the 

atoms considered. 
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Chapter 8 - Applications of the configuration interaction 

interpretation and extension to large nanoparticles 

 Introduction 

 In this section, we combine the findings described in the previous chapters to describe the 

evolution of the optical behavior of noble metal nanoparticles. We show that the CI model 

described in chapter 6 can reproduce the absorption features of several silver clusters and can be 

applied to any system size. In addition, we discuss the extension of this model to large noble 

metal nanoparticles. 

 Applications of the CI interpretation 

In chapter 5, we showed that the high-energy, high-intensity β-band in acenes can be 

qualified as a plasmon. The reason for this is the constructive addition of the single-particle 

states HOMO-1→LUMO and HOMO→LUMO+1. In addition, we saw that the electron density 

shifts from one end of the molecule to the other upon excitation, as expected for a dipolar 

plasmon mode. Another excited state with lower energy and low oscillator strength (the α state) 

is also made of the same single-particle transitions. In this case, their dipole moment 

contributions interact destructively, explaining the low oscillator strength of the α state. This data 

is summarized in Table 8.1.  
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Table 8.1. Longitudinal modes of naphthalene at the LB94/TZP level of theory.
273

 

Peak 
Energy 

(eV) 

Oscillator 

strength 

(a.u) 

Transitions 

Dipole 

moments 

contributions 

(a.u) 

Transition 

densities* 
|Isovalue| 

α 4.09 0.000032 

HOMO -1→ LUMO 2.2022  

0.005 

HOMO→ LUMO+1 -2.1736 

β 5.60 1.107 

HOMO -1→ LUMO -1.8247  
0.05 

HOMO →LUMO+1 -1.8267 

* The region where the electron density increases is in red. The region where the electron density 

decreases is in blue. 

 Application of the CI interpretation to the nanowire Ag6 

 Is this behavior reproduced in noble metal nanoparticles? We already described the 

plasmon features of noble metal nanorods in terms of the constructive addition of single-particle 

transitions but we have not yet looked at the transition densities. We now take a closer look at 

the Ag6 nanowire described in chapter 3. Table 8.2 shows the longitudinal and transverse excited 

state energies and oscillator strengths. The single-particle transitions and their contribution to the 

dipole moment of these excited states are also displayed. 
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Table 8.2. Longitudinal (L) and transverse (T) peak energies, oscillator strength and 

transition densities of the nanowire Ag6 at the LB94/DZ level of theory. Single-particle 

states and dipole moments contributing to each peak are also given. 

Peak  
Energy 

(eV)  

Oscillator 

strength 

(a.u.)  

Excitations  

Dipole 

moment 

contribution 

(a.u.)  

Transition density 

side view*  

Transition 

density 

end view*  

|Isovalue|  

L  1.98  1.74  Σ
3
 → Σ

4
  -6.3581  

 

 

0.06  

T1  6.86  0.67  

Σ
1
 → Π

1
  0.6997  

 

 

0.04  Σ
2
 → Π

2
  1.0356  

Σ
3
 → Π

3
  0.9631  

T2  5.75  0.0011  

Σ
1
 → Π

1
  0.3590  

 

 

0.017  Σ
2
 → Π

2
  1.5259  

Σ
3
 → Π

3
  -1.8127  

T3  5.82  0.0013  

Σ
1
 → Π

1
  -1.9817  

 

 

0.015  Σ
2
 → Π

2
  1.1369  

Σ
3
 → Π

3
  0.6165  

* The region where the electron density increases is in red. The region where the electron density 

decreases is in blue. 

 

Only one single-particle transition contributes to the longitudinal mode. The electron density 

oscillates from one end of the molecule to the other, again as expected for a dipolar plasmon. As 

discussed in chapter 3, three Σm→Πm (m=1, 2, 3) single-particle transitions contribute to the main 

transverse peak (labeled T1) and their dipole moment contributions add constructively. The 

electron density moves across the short axis of the system (as expected) and it is focused on the 

extremities of the wire. The same Σm→Πm transitions contribute to two other transverse peaks in 

the absorption spectrum (labeled T2 and T3). However, their dipole moments add destructively, 

explaining the lower oscillator strength of these states. The transition densities of these two states 

also reveal the oscillation of the electron density across the short axis of the system. The electron 
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density involved in these two states is much lower than the one involved in T1. This is shown by 

the lower isovalues used to plot these orbitals.  

We now apply the CI model discussed in Chapter 6 to the transverse peak of this system. 

The values of α used correspond to the DFT calculated energy difference between the Πm and Σm 

orbitals. At the LB94/DZ level of theory, these values are: α1 =E(Π1)- E(Σ1)=5.59 eV, α2= E(Π2)- 

E(Σ2)=5.69 eV and α3= E(Π3)- E(Σ3)=5.79 eV. The coupling β values are assumed to be all equal 

and a value of 0.36 eV is taken to obtain the best fit with TDDFT. The best fit here is determined 

by the energy gap between the excited states. The CI and TDDFT results are given in Table 8.3. 

 

Table 8.3. Comparison between TDDFT and CI excitation energies and oscillator strengths 

for the three excited states in Ag6 resulting from the combination of the single-particle 

states Σm→Πm (m=1, 2, 3). 

Peak 

TDDFT (LB94/DZ) CI
a
 

Energy (eV) 
Oscillator 

strength (a.u.) 
Energy (eV) 

Oscillator 

strength
b
 (a.u.) 

T2 5.75 0.0013 5.27 0.0081 

T3 5.82 0.0011 5.38 0.0089 

T1 6.86 0.6653 6.42 2.9830 

 
a
The α values used for the CI matrix in eq. 6.2 are α1 =5.59 eV, α2=5.69 eV, α3=5.79 eV and 

β=0.36 eV. 
b
The value given here is actually the oscillator strength enhancement, as explained in Chapter 6. 

 

The excited state energies obtained with CI tend to be about 0.5 eV lower than the TDDFT 

values. The oscillator strengths enhancements give trends in very good agreement with TDDFT. 

Since the values of α are not exactly equal, the excited states T2 and T3 are not exactly 

degenerate and their oscillator strength is slightly higher than zero, as explained in chapter 6. 

  

 Application of the CI interpretation to the nanorod Ag71
-3

 

Only one single-particle transition contributes to the longitudinal peak of the nanowires 

such as the Ag6 described above. On the other hand, multiple transitions contribute to the 

longitudinal peak of wider systems, as discussed in chapter 4.  Multiple single-particle transitions 
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out of delocalized cylindrical orbitals contribute constructively to the high intensity longitudinal 

peak at 4.13 eV for the nanorod Ag71
-3

. Multiple low-energy excited states occur between 1.1 and 

2.6 eV, arising from a destructive interaction of the same single-particle transitions. Again, these 

peaks are too weak to be observed experimentally.  The strong longitudinal peak (plasmon) and 

one of these low-energy peaks are analyzed in Table 8.4. The electron density shifts from one 

end of the nanorod to the other in both of these excited states. This kind of motion is expected for 

a dipolar plasmon. However, we again note that the electron density involved in the strong 

longitudinal peak is higher than for the small peak, as suggested by the larger isovalue used to 

plot these orbitals. A direct application of the CI interpretation, as was done for Ag6, is more 

difficult here since not all single-particle excitations out of the cylindrical orbitals contributing to 

this peak are printed out in the ADF program. In addition, a larger number of d-band orbitals 

may mix in due to their increased density of states with increasing system size. However, it is 

clear that the optical behavior of this system can be described in a similar way.  
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Table 8.4. Two longitudinal peak energies, oscillator strength and transition densities of the 

nanorod Ag71
-3

 at the LB94/DZ level of theory.  

Energy 

(eV)  

Oscillator 

strength 

(a.u.)  

Excitations  

Contribution 

to dipole 

moment (a.u.)  

Transition density side 

view  

Transition 

density end 

view  

|Isovalue|  

4.13  5.14  

Σ
6
 → Σ

7
  1.1479  

 

 

0.015  

Δ
4
 → Δ

5
  1.8721  

2Σ
3
 → 2Σ

4
  0.8478  

Π
5
 → Π

6
  

1.5081  

Φ
3
 → Φ

4
  

1.0964  

2Π
2
 → 2Π

3
  

0.8278  

1.46  0.0029  

Σ
6
 → Σ

7
  

2.0691  

 

 

0.005  

Δ
4
 → Δ

5
  

1.3857  

2Σ
3
 → 2Σ

4
  

0.5556  

Π
5
 → Π

6
  

-9.3167  

Φ
3
 → Φ

4
  

5.4624  

* The region where the electron density increases is in red. The region where the electron density 

decreases is in blue. 

 Application of the CI interpretation to the tetrahedral cluster Ag20. 

We discussed how the CI treatment can describe the plasmonic features of elongated 

systems. Can we apply it to any shape? The tetrahedral cluster Ag20 was previously studied using 

TDDFT.
177,209

 At the LB94/TZP level of theory, this system has one strong peak in its absorption 

spectrum at 4.14 eV. Nine single-particle transitions between frontier orbitals contribute to this 

peak, as shown in Table 8.5. Their dipole moment contributions add constructively, giving this 

state a high oscillator strength. The same single-particle transitions contribute to eight other 

excited states between 2.17 and 3.12 eV, as shown in Table 8.6. These states have low oscillator 

strengths due to a destructive addition of the same single-particle transitions. The transitions 

densities of the strong peak and one of these weak states are shown in Table 8.5. 
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Table 8.5. Excited state energies, oscillator strength and transition densities of the 

tetrahedral Ag20 cluster at the LB94/TZP level of theory.  

Energy 

(eV) 

Oscillator 

strength 

(a.u.) 

Transitions 

Dipole 

moments 

(a.u.) 

Transition density* |Isovalue| 

2.74 0.0192 

HOMO-1 →LUMO+1 -1.576 

 

0.010 

HOMO → LUMO+2 2.8284 

HOMO-2 → LUMO -1.1909 

HOMO → LUMO+2 0.6464 

HOMO-1 →LUMO -0.9814 

HOMO →LUMO+3 -0.4312 

HOMO-1 →LUMO+3 0.3975 

HOMO-2 → LUMO+3 -0.2251 

HOMO → LUMO 0.0608 

4.14 3.0047 

HOMO-2 → LUMO -1.1957 

 

0.044 

HOMO →LUMO+3 -1.5952 

HOMO-1 →LUMO+2 -1.3647 

HOMO-1 →LUMO -1.4425 

HOMO → LUMO+2 -0.818 

HOMO-1 →LUMO+1 -0.686 

HOMO-1 →LUMO+3 -0.2421 

HOMO-2 → LUMO+3 -0.1266 

HOMO → LUMO -0.0801 

* The region where the electron density increases is in red. The region where the electron density 

decreases is in blue. 

 

For the state at 4.14 eV, the electron density moves from one edge of the cluster to the 

opposite one. The electron density change tends to be larger at the vertices of the system. For the 

state at 2.74 eV, a similar shift of the electron density is observed. Again, the electron density 

involved in the excitation is higher in the 4.14eV state, as shown by the higher isovalue used in 

the plot. The strong peak at 4.14 eV can therefore be attributed to a plasmon according to the 

scheme used so far. 

The CI interpretation is applied to this system as well. The nine single-particle transitions 

shown in Table 8.5 are considered in the CI matrix. As in the Ag6 case discussed above, the 
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diagonal elements α of the CI matrix are the DFT energy differences between the two orbitals 

involved in the transition. At the LB94/TZP level of theory, these values are: α1=2.41 eV, 

α2=2.63 eV, α3=2.64 eV, α4=2.27 eV, α5=2.46 eV, α6=2.55 eV, α7=2.80 eV, α8=2.95 eV and 

α9=2.09 eV. The coupling β considered is 0.15 eV. This value is chosen in the same manner as 

the one chosen for Ag6 (such as to obtain the best splittings in comparison with TDDFT). Both 

CI and TDDFT results are reported in Table 8.6. Both methods show excellent agreement. Like 

in the Ag6 case, the excited state energies are lower with CI. In addition, both CI and TDDFT 

show that the oscillator strengths of the 8 lower excited states are very low whereas the excited 

state of the high energy state is very high. Again, since the nine single-particle transitions are not 

exactly degenerate, the 8 low-energy excited states have non-zero oscillator strength. 

 

Table 8.6. Comparison between TDDFT and CI excitation energies and oscillator strengths 

for the excited states in the tetrahedral cluster Ag20. 

TDDFT (LB94/TZP) CI
a
 

Energy (eV) 
Oscillator 

strength (a.u.) 
Energy (eV) 

Oscillator 

strength
b
 (a.u.) 

2.17 2.69E-03 1.97 0.048 

2.36 3.03E-03 2.15 0.039 

2.54 7.54E-03 2.28 0.011 

2.65 4.01E-04 2.35 0.032 

2.74 1.92E-02 2.43 0.024 

2.81 6.88E-03 2.49 0.00055 

2.93 1.33E-08 2.60 0.069 

3.12 1.62E-02 2.75 0.078 

4.14 3.0047 3.78 8.70 

a
The α values used for the CI matrix in eq. 6.2 are α1=2.41 eV, α2=2.63 eV, α3=2.64 eV, α4=2.27 

eV, α5=2.46 eV, α6=2.55 eV, α7=2.80 eV, α8=2.95 eV, α9=2.09 eV and β=0.15 eV. 
b
The value given here is the oscillator strength enhancement, as explained in Chapter 6. 
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 Discussion: Extension of the CI interpretation to large nanoparticles 

We showed in this chapter that the CI formalism in chapters 5 and 6 can successfully 

model the optical behavior of metallic clusters of various shapes. The plasmon of metallic 

clusters results from a constructive addition of nearly degenerate single-particle transitions. 

These transitions occur between delocalized orbitals resulting from a linear combination of the 

valence s orbitals of the metal atoms. As the size of the cluster increases, the number of single-

particle transitions contributing to the plasmon peak increases due to the increasing density of 

states of these orbitals. This density of states increase was shown using the charge-perturbed 

particle-in-a-sphere model for gold nanoparticles in chapter 7 (Figures 7-7 to 7-10). For large 

nanoparticles, a large number of transitions between these delocalized orbitals have the same 

symmetry and similar energies. They can interact constructively to make a plasmon, as described 

above. The intensity of the plasmon peak increases with the number of single-particle 

contributions (Chapter 6). Therefore, the intensity of the resulting plasmon peak will become 

very high for large systems. Thus, one cause of the evolution from the discrete absorption 

spectrum of clusters to the plasmon peak of nanoparticle can be assigned to the increasing 

number of transitions involved in the CI. (As shown in chapter 7, another cause of the evolution 

is the decreased ligand-field splitting as the nanoparticle increases in size.) For small clusters, the 

density of states of delocalized orbitals is small. Few allowed transitions are close enough in 

energy to interact and make a plasmon. A discrete absorption spectrum is therefore obtained. We 

emphasize that for small gold clusters, excitations out of the d-band also contribute to the 

absorption spectrum since these localized orbitals may be close in energy to the delocalized ones. 

Overall, as the size of the system increases the number of transitions that can interact increases, 

giving birth to the plasmon.   
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Chapter 9 - Effects of Silver Doping on the Geometric and 

Electronic Structure and Optical Absorption Spectra of the Au25-

nAgn(SH)18
-
 (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters 

Reproduced with permission from: 

Guidez, E. B.; Mäkinen, V.; Häkkinen, H.; Aikens, C. M. J. Phys. Chem. C 2012, 116, 20617. 

Copyright 2012 American Chemical Society. 

 

 Abstract 

The effect of silver doping of the Au25(SH)18
-
 nanoparticle is studied by investigating Au25-

nAgn(SH)18
-
 (n = 1, 2, 4, 6, 8, 10, 12) systems using density functional theory (DFT).  For n = 1, 

doping of the icosahedral shell of the metal core is energetically more favorable than doping of 

the metal-thiolate units or the center of the core. For n ≥ 2, only doping of the core surface is 

considered and arrangements where the silver dopants are in close proximity tend to be slightly 

less favorable. However, energy differences are small and all conformations are accessible under 

experimental conditions. Boltzmann-averaged excitation spectra for these systems show similar 

features to the undoped Au25(SH)18
-
. The main differences include a blue shift of the low-energy 

HOMO-LUMO (1P→1D) peak and an increased intensity of the peak at 2.5 eV as the number of 

doping silver atoms increases. Silver doping lowers the energy of ligand-based orbitals and 

facilitates the transitions between the superatom orbitals. Silver-doped systems show broader 

excitation spectra due to a breaking of the symmetry of the superatom orbitals. 

 Introduction 

Small thiolate-stabilized gold and silver nanoparticles with diameters on the order of 1-2 

nm exhibit structured optical absorption spectra with multiple peaks rather than the single, sharp 

peak of larger nanoparticles.
311-314

  These optical characteristics provide a fingerprint of the 

nanoparticle core size and lead to interesting applications related to luminescence, nonlinear 

optical properties, etc.
315,316

  The geometric structures of several nanoparticles in this size range 

have been characterized by x-ray crystallography, including Au25(SR)18
-/0

,
73,297,310

 Au38(SR)24,
74

 

and Au102(SR)44,
76

 and it is now known that these systems are composed of a metal core 
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surrounded by oligomeric –S–Au–S– or –S–Au–S–Au–S– motifs often called “staples”. This 

Au-S interface structure is found also in certain cases in self-assembled monolayers of thiolates 

on Au(111) (for a recent review, see Ref 
317

).  The Au25(SR)18
-
 nanocluster has a 13-atom 

icosahedral core surrounded by six –S–Au–S–Au–S– units.  Because the outermost valence 

electrons of gold (6s) and silver (5s) are relatively free-electron-like, these nanoparticles exhibit 

electron shell structure similar to that of sodium or other simple metal clusters; however for 

ligand-stabilized nanoparticles, the “free-electron” count ne of a cluster with stoichiometry Au(or 

Ag)NXMLS
z
 (X = one-electron-withdrawing or -localizing ligand; L = Lewis base type ligand) can 

be determined by ne = N – M – z, where N is the number of valence s electrons from the metal 

atoms and z is the global charge of the cluster.
80,260

Au25(SR)18
-
 has ne = 8 corresponding to an 

electronic shell structure with three highest occupied P-like orbitals and five lowest unoccupied 

D-like orbitals that can be revealed either by using a projection onto spherical harmonics 

approach or by examining Kohn-Sham orbitals.
73,80,83,309

 Such orbitals are sometimes referred to 

as “superatom” orbitals since they originate from the linear combination of the gold 6s orbitals in 

the cluster and look like the familiar atomic orbitals. These superatom orbitals are delocalized 

over the core.
83

 In the Au25(SR)18
-
 system, the D-like orbitals split into two or more sets 

depending on the arrangement of the ligands.
82,83

 

 Doping of these nanoparticles has been of interest since Murray and co-workers 

demonstrated via mass spectrometry that a single Pd atom could be doped into the Au25(SR)18
-
 

cluster.
318

 Density functional theory (DFT) calculations showed that the resulting cluster is most 

stable if Pd replaces the central core atom rather than gold atoms in the outer core or staple 

motifs.
319,320

  A later combined experimental and theoretical study further supported the idea that 

the most stable cluster is indeed Pd@Au24(SR)18, proposed a neutral charge state, and suggested 

that this nanoparticle is more stable than the pure Au25(SR)18
-
 system;

321
 other recent work from 

this group indicates that the two central atoms of Au38(SR)24 can also be replaced by Pd, leading 

to a cluster with greater stability than the pure system.
322

  Because of the interest in doped 

nanoparticles, the properties of M@Au24(SR)18
q
 core-shell clusters with over 15 different metal 

atoms M including Ag, Cu, Pt, and Mn as the central atom have been studied by a number of 

researchers using DFT.
323-326

 

 Silver doping of gold nanoparticles is of interest since silver nanoparticles typically have 

strong plasmonic properties; in addition, the lattice constants of silver and gold are nearly 
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identical so the two noble metals can be mixed in various proportions.  Previous DFT work on 

doping of a single Ag atom into Au25(SR)18
-
 indicated that the most favorable position for the 

silver atom is on the surface of the core rather than at the center of the core or in the staple 

motifs.
320

  Other atoms such as Cd and Mn also appear to be most stable in this position.
168,320,327

  

Recently, it has been shown that approximately 11 silver atoms can be doped into Au25(SR)18
-
 

[Ref 
181

] and up to 60 silver atoms can be doped into the Au144(SR)60 system.
328

  Using DFT 

calculations, Malola and Häkkinen showed that the most favorable sites for silver doping of the 

icosahedral Au144(SR)60 nanoparticle are on the surface of the metal core, and this enhances the 

electronic shell structure of the particle.
329

  Monte Carlo calculations using a MAEAM potential 

also find that silver atoms preferentially segregate to the surface layer of larger bare Au-Ag alloy 

nanoparticles,
330

 which suggests that this phenomenon is not restricted to small thiolate-

stabilized nanoparticles. 

 Previously, Negishi et al. reported a continuous change in the low-energy intraband 

transitions in silver-doped Au25(SR)18
-
 nanoparticles.

181
 They found that the optical absorption 

spectrum of their most highly doped system is close to the theoretical time-dependent DFT 

calculations of Aikens on a related Ag13Au12(SH)18
-
 nanoparticle.

83
  In this work, we examine the 

absorption spectra of a series of Au25-nAgn(SH)18
-
 (n = 1, 2, 4, 6, 8, 10, 12) bimetallic 

nanoparticles in order to determine the origin of the observed continuous change of the electronic 

structure and optical absorption. 

 Computational details 

Calculations were run using density functional theory as implemented in the codes 

ADF2010.01
110

 and GPAW.
331,332

 In the ADF program, a triple-zeta polarized basis set with the 

frozen core approximation was used for all calculations. Relativistic effects were considered 

using the zeroth order regular approximation (ZORA).
115,116

  All geometry optimizations were 

performed with the LDA functional Xα since LDA functionals reproduce Au-Au distances well.  

Single point energies are also reported at the LB94/TZP level of theory
146

 using the Xα 

geometries. Excitation calculations were run at the LB94/TZP level and the frozen core 

approximation was also used. Excitation spectra were convoluted using a Gaussian with a 

FWHM value of 0.2 eV. A set of test calculations were run also with the GPAW code, by using 

the LDA parameterization by Perdew and Wang (LDA-PW).
104

 The code uses the projector 
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augmented wave (PAW) method
333

  in a real-space grid. A grid spacing of 0.2 Å was used. 

Ag(4d
10

5s
1
), Au(5d

10
6s

1
) and S(3s

2
3p

4
) electrons were treated as valence and the inner electrons 

were included in a frozen core density. The setups for Au and Ag include scalar-relativistic 

effects. In geometry optimizations, 0.05 eV/Å convergence criterion for residual forces in atoms 

was used without any symmetry constraints. 

Geometry optimizations and excitation calculations were performed on several isomers of 

each Au25-nAgn(SH)18
-
 cluster (n = 1, 2, 4, 6, 8, 10, 12, 13). All the isomers studied are shown in 

Appendix F. Except for n = 1, only dopants on the surface of the core were considered since it is 

the most favorable position, as shown in the next section. For each even value of n between 2 

and 10, the excitation spectra of the different isomers were Boltzmann-averaged using the 

procedure described here.  The Boltzmann weight (BW) of each isomer (i) at room temperature 

was calculated using the following formula: 

-

-

( )

i

j

E

kT

E

kT

j

e
BW i

e





 

where k is the Boltzmann constant (8.6173324 x 10
-5

 eV/K), T the temperature (298 K), and Ei is 

the energy of the isomer relative to the most stable structure. The sum j is over all isomers for a 

specific value of n. The intensity of each LB94/TZP excitation was multiplied by the Boltzmann 

weight of the isomer considered. The Boltzmann-averaged excitation spectrum was generated by 

convoluting all the obtained transitions for each n value with Gaussian functions with a FWHM 

of 0.2 eV. 

 Results and discussion 

The effect of the position of the doping atom on the geometry, stability and excitation 

spectrum of the cluster will be addressed in detail in this section. 

  Au24Ag(SH)18
-
 

One silver dopant can occupy three distinct positions: on the surface of the core (1a), in one of 

the protecting staples (1b) and in the center (1c), as shown in Figure 9-1.  
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Figure 9-1. Geometry of the Au24Ag(SH)18
-
 isomers at the Xα/TZP level of theory. 

  

*Key: Yellow=gold, gray= silver, orange= sulfur, white= hydrogen 

 

Table 9.1 shows the relative energies and HOMO-LUMO gap of these relaxed systems at three 

levels of theory. Although the X LDA-PW, and LB94 numbers differ, the trends are the same.  

1a is the most stable structure, followed by 1b and 1c, in qualitative agreement with Ref 
320

. This 

is in contrast to the PdAu24(SR)18
2-

 case where the palladium occupying the central position was 

found to be the most stable, followed by the core surface position and the ligand shell position 

(calculated with the PBE and TPSS exchange-correlation functionals).
319

 Experiment also 

suggests that the center position is preferred for Pd.
321

  

 

Table 9.1. Relative energies and HOMO-LUMO gaps of the silver mono-substituted 

Au24Ag(SH)18
-
  clusters (eV).  

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

1a 0 0 0 1.32 1.39 1.39 

1b 0.11 0.14 0.30 1.32 1.36 1.41 

1c 0.65 0.40 0.78 1.12 1.18 1.21 

 

The HOMO-LUMO gaps obtained with LDA-PW and LB94 are comparable and Xα gives only 

slightly lower values. The HOMO-LUMO gaps for complexes 1a and 1b are similar, with values 

of 1.39 and 1.41 eV respectively at the LB94 level of theory. The HOMO-LUMO gap of 

complex 1c is 1.21 eV, which is 0.18 eV lower than isomer 1a.  In comparison, the 

PdAu24(SR)18
2-

 case exhibits a 1.25 eV HOMO-LUMO gap for the center doping position.
319

  In 
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contrast, the core surface and ligand shell doping positions showed considerably lower HOMO-

LUMO gaps of 0.91 and 0.86 eV respectively.
319

 Since large HOMO-LUMO gaps are often 

associated with stability, these results show that the silver dopant prefers to occupy the core 

surface whereas the palladium prefers to occupy the center. Jiang and Dai demonstrated that 

silver has a lower interaction energy with the Au24(SR)18 framework than palladium at the 

PBE/def2-TZVP level of theory,
23 

which is in accordance with our observations. The energy of 

the substitution reaction Au25(SR)18
-
 + nAg  Au25-n(SR)18

-
 + nAu was calculated for all the 

values of n considered and for all the positions of silver, as shown in Table 9.2. For n = 1, the 

reaction energy is much higher for the substitution of the center gold atom than any other 

position. DFT calculations on silver-doped Au144(SR)60 also show that it is more favorable for 

silver to occupy the outer shell of the cluster core.
329

 Silver doping in the inner icosahedral shell 

of the core and in the staple units of Au144(SR)60 leads to much less stable clusters.
329

 Average 

bond distances between the center atom and the surface of the core as well as distances between 

the edge sulfur atoms of each unit and the adjacent gold or silver atom of the core are shown in 

Table F.1 of Appendix F. Doping of the Au25(SH)18
-
 system somewhat affects the geometry of 

the cluster. The average length between the center atom and the core surface is 2.78 Å for 1c and 

2.79 Å for 1a and 1b. For system 1c, all center-surface distances are almost equal, with a 

deviation up to 0.01 Å. However, center-core distances of 1a are 2.78 ± 0.04 Å.  This larger 

deviation is due to the fact that the bond length between the center gold atom and the silver atom 

on the surface is 2.83 Å. Additionally, the bond length between the core gold atom opposite to 

the silver atom and the center atom is 2.82 Å. This 0.05 Å elongation is interesting since gold 

and silver have approximately the same size and similar bulk lattice constants. Similar to 1c, 1b 

shows little variation in the center-core distances. The average bond length between sulfur atoms 

and the adjacent atom on the surface of the core is 2.41 Å for 1b and 2.42 Å for 1c, with a very 

small deviation for both cases. The average for case 1a is 2.42 Å but a large deviation of 0.09 Å 

occurs. This deviation is due to the long distance between silver and sulfur (2.51 Å). This is very 

comparable to the Ag-S distance at the metal core – sulfur interface (2.52 Å) found in the PBE 

calculation of the most stable silver-doped Au144(SR)60 cluster which has a core-shell 

composition of Au54Ag60(RSAuSR)60.
329
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Table 9.2. Au25+nAg   Au25-nAg + nAu reaction energies per silver atom in eV at the 

Xα/TZP level of theory. 

n configuration ΔE/n  

1 

a (surface) 0.79 

b (unit) 0.90 

c (center) 1.44 

2 

a 0.79 

b 0.80 

c 0.81 

4 

a 0.81 

b 0.82 

c 0.82 

d 0.83 

e 0.83 

f 0.85 

6 

a 0.84 

b 0.84 

c 0.84 

d 0.85 

e 0.85 

f 0.85 

g 0.86 

h 0.86 

8 

a 0.86 

b 0.86 

c 0.86 

d 0.86 

e 0.86 

f 0.87 

10 

a 0.86 

b 0.87 

c 0.87 

12 surface 0.88 

 

Excitation spectra of the three silver-doped species are shown in Figure 9-2. The Au25(SH)18
-
 

excitation spectrum was also calculated at the LB94/TZP level of theory (Figure F-1 of 

Appendix F) and is similar to the one previously calculated at the SAOP/TZP level of theory.
83
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Figure 9-2. Excitation spectra of the A) 1a, B) 1b and C) 1c Au24Ag(SH)18
-
 isomers at the 

LB94/TZP level of theory. 

 

 

 

The first peak at 1.60 eV is assigned to transitions originating from the approximately triply 

degenerate 1P superatom orbitals (HOMO) to the doubly degenerate set of 1D orbitals (LUMO), 

which corresponds to the peak at 1.63 eV at the SAOP/TZP level of theory.
83

 The peak at 2.48 

eV is assigned to transitions from an approximately triply degenerate set of au orbitals originating 

from the staple motifs to the LUMO. This peak also occurs at 2.48 eV at the SAOP/TZP level of 

theory and corresponds to transitions from the triply degenerate HOMO-2 to LUMO.
83

 Orbitals 

below the HOMO are composed of sulfur p orbitals and of d orbitals from the gold on the 

staples. The peak at 2.55 eV is assigned to transitions from the HOMO to the LUMO+1 orbitals 

(a triply degenerate set of 1D orbitals) and corresponds to the peak at 2.60 eV at the SAOP/TZP 

level.
83

 At 2.66 eV, we have transitions from the HOMO orbital to the LUMO+2 orbital, 

corresponding to the 2S superatom orbital.
83

 The excitation spectrum of 1c is very similar to the 

spectrum of the undoped system described above. The sharp low-energy HOMO-LUMO peak 

appears at 1.39 eV. The peak at 2.31 eV corresponds to interband transitions from the triply 
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degenerate ligand-based orbitals (here HOMO-1) to the LUMO. The peak at 2.40 eV is assigned 

to HOMO-LUMO+1 transitions. The peak at 2.58 eV corresponds to transitions from the HOMO 

to the LUMO+3 orbital (1P→2S). Higher energy peaks are assigned to additional interband 

transitions. System 1a shows an excitation spectrum that is much broader than 1c, although the 

main features are similar to the undoped system.  This can be explained by the breaking of the 

symmetry of the system when the doping silver occupies the surface of the core. For instance, the 

low energy peak of 1a, corresponding to a HOMO-LUMO transition in the Au25(SH)18
-
  system, 

extends from 1.56 to 1.70 eV. The silver atom splits the degeneracy of the superatom orbitals, 

leading to a broader spectrum. Case 1b also shows a slightly more split spectrum than 1c. Since 

the silver atom is in a staple unit, it does not change the core orbitals very much. However, the 

ligand orbitals that contribute are affected,
83

 leading to some splitting in the spectrum. 

  Au23Ag2(SH)18
-
 

We now consider two silver atoms doping the surface of the icosahedral core of the 

system. Three configurations are obtained, as shown in Figure 9-3.  

 

Figure 9-3. Geometries of the Au23Ag2(SH)18
-
 isomers at the Xα/TZP level of theory.  

 

 

* Color coding same as Figure 9-1.  

 

Case 2a has two silver atoms aligned with an axis through the gold center, giving a system with 

higher symmetry than the other two cases. Case 2b has two nonadjacent silver atoms. Case 2c 

has two adjacent silver atoms on the surface of the core. Bond lengths follow similar trends as 

case 1a discussed previously (Table F-2 of Appendix F). Distances between the center core and 

the silver atoms are 0.08, 0.05 and 0.03 Å longer than distances between the center gold and 

another gold atom on the surface for cases 2a, 2b and 2c respectively. The distance between 
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silver and the neighboring sulfur are also 0.11 Å longer than corresponding gold-sulfur distances 

for case 2a and 0.1 Å for cases 2b and 2c. Relative energies and HOMO-LUMO gaps are given 

in Table 9.3.  

 

Table 9.3. Relative energies and HOMO-LUMO gaps of the silver bi-substituted 

Au23Ag2(SH)18
-
  cluster (eV).  

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

2a 0 0 0.04 1.25 1.30 1.30 

2b 0.03 0 0 1.36 1.41 1.43 

2c 0.05 0.04 0.05 1.37 1.39 1.44 

 

We note that the relative energies of the three systems are much closer than in the uni-doped 

case, within a 0.05 eV range. Moreover, substitution reaction energies are very similar for the 

three systems. Therefore, all configurations can potentially occur under experimental conditions. 

Xα, LDA-PW and LB94 give slightly different trends. With Xα, longer distances between the 

silver atoms lead to more stable systems. With LB94 single point calculations at the Xα 

geometries, the non-adjacent arrangement (2b) of the silver atoms is more favorable than the 

opposite arrangement (2a). LDA-PW data shows that 2a and 2b have the same energy. However, 

it should be again emphasized that the energy differences are in the order of hundredths of an 

electronvolt. The HOMO-LUMO gap of 2a is 0.13 eV smaller than 2b with LB94, and 0.11 eV 

smaller than 2b with Xα and LDA-PW. 2b and 2c show similar HOMO-LUMO gaps. High 

HOMO-LUMO gaps lead to increased stability since removal of an electron from the HOMO or 

addition of an electron in the LUMO becomes difficult. 2a has a significantly lower HOMO-

LUMO gap than the other two isomers but only a slightly lower energy.  

The excitation spectra are shown in Figure 9-4. The main features are also similar to the 

Au25(SH)18
-
  system described above. Although 2a has the highest symmetry, it shows a higher 

splitting than 2b and 2c.  
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Figure 9-4. Excitation spectra of the A) 2a, B) 2b and C) 2c Au23Ag2(SH)18
-
 isomers at the 

LB94/TZP level of theory. 

 

Table 9.4. Superatom orbital splitting of the three Au23Ag2(SH)18
-
  isomers (eV) at the 

LB94/TZP level of theory.  

 

2a 2b 2c 

1P (“HOMO”) 0.292 0.159 0.159 

First 1D set (“LUMO”) 0.165 0.075 0.061 

Second 1D set (“LUMO+1”) 0.139 0.063 0.063 

 

Orbital energy splittings for these three cases are summarized in Table 9.4. The splitting of the 

1P orbitals is identical for cases 2b and 2c but almost twice as high for 2a. The two sets of 1D 

orbitals also show a much higher splitting for 2a than 2b and 2c. This is in accordance with the 

fact that 2b and 2c show similar excitation spectra and 2a has a significantly split spectrum. 

Figure 9-5 shows the frontier orbitals of case 2a. The lobes of the 1P orbitals are not exactly 

aligned with the axis pointing at the two silver atoms but instead are aligned along an axis 
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pointing toward silver and an adjacent gold atom.  The energy of this orbital is more affected by 

the silver atoms than the other two 1P orbitals, which causes the greater observed energy 

splitting.  The 1Dz
2
-like orbital is oriented similarly to the 1P orbital discussed above. One 1D 

orbital in the second set has two lobes pointing almost directly at the silver atoms. Therefore, the 

orientation of the superatom orbital is determined by the position of the silver atoms and the 

silver atoms affect the spread of the orbital energies. 

 

Figure 9-5. Frontier orbitals of Au23Ag2(SH)18
-
 (2a) at the LB94/TZP level of theory.  

 

Key: Yellow: sulfur, pink: gold, black: silver. Contour value=0.02  

 

 Au25-nAgn(SH)18
-
 (n=4, 6, 8, 10) 

A number of configurations with 4, 6, 8 and 10 silver atoms doping the surface have been 

studied. All the isomers for each value of n are shown in Figure F-2 to F-5 of Appendix F. 

Tables 9.5 to 9.8 show relative energies and HOMO-LUMO gaps for n = 4, 6, 8 and 10 at the 

Xα, LDA-PW and LB94 level of theory. All three levels of theory give similar results.  
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Table 9.5. Relative energies and HOMO-LUMO gaps of the silver tetra-substituted 

Au21Ag4(SH)18
-
 cluster (eV). 

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

4a 0 0 0 1.44 1.44 1.49 

4b 0.02 0.01 0.01 1.42 1.43 1.47 

4c 0.03 0.06 0.01 1.35 1.34 1.40 

4d 0.07 0.06 0.06 1.24 1.29 1.29 

4e 0.07 0.08 0.07 1.43 1.44 1.49 

4f 0.14 0.16 0.13 1.33 1.33 1.40 

 

Table 9.6. Relative energies and HOMO-LUMO gaps of the Au19Ag6(SH)18
-
 cluster (eV). 

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

6a 0 0.02 0.02 1.56 1.56 1.61 

6b 0.01 0 0.01 1.56 1.60 1.62 

6c 0.02 0.03 0 1.51 1.56 1.57 

6d 0.05 0.04 0.11 1.52 1.56 1.58 

6e 0.05 0.07 0.05 1.51 1.58 1.58 

6f 0.07 0.08 0.04 1.23 1.30 1.27 

6g 0.12 0.12 0.13 1.51 1.52 1.57 

6h 0.13 0.18 0.16 1.53 1.56 1.60 

 

The relative energies are again relatively close for each isomer, which shows that there is no 

strongly preferred arrangement of the silver atoms at the surface of the core. However, we can 

see that the arrangements where the silver atoms are close to each other tend to be slightly less 

favored. For instance, 4f has four silver atoms connected at the surface of the core and its energy 

is 0.14 eV higher than the lowest energy structure at the Xα level of theory. Similarly, for six 

silver dopants, the capped structure where all the silver atoms are adjacent (6h) is 0.13 eV higher 

in energy than the lowest-energy isomer. The second highest energy isomer 6g is similar to 4f 

but with an additional two silver atoms also adjacent.  
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For n = 8, there are more silver atoms in the core than gold. The structures with the most packed 

arrangement of the silver atoms are slightly less favored but the relative energies are all within 

0.08 eV at the Xα level. These trends are somewhat reflected in the substitution reaction 

energies. Substitution reactions become less favorable as more gold atoms are substituted, as 

displayed in Table 9.2.  

 

Table 9.7. Relative energies and HOMO-LUMO gaps of the Au17Ag8(SH)18
-
 cluster (eV). 

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

8a 0 0 0 1.51 1.52 1.57 

8b 0.01 0.03 0.02 1.41 1.41 1.44 

8c 0.01 0.03 0.02 1.54 1.54 1.59 

8d 0.04 0.08 0.04 1.42 1.42 1.45 

8e 0.05 0.08 0.07 1.53 1.53 1.58 

8f 0.08 0.1 0.14 1.39 1.39 1.43 

 

We note that for n = 10, the three possible isomers are similar to those obtained with n = 2 (with 

silver and gold swapped on the surface of the core). 10a is the most favorable at the Xα level of 

theory while 10b is the most favorable at the LB94 level. It is interesting to note that the opposite 

arrangement of gold atoms around the core is the least favorable at the LB94 level. 

 

Table 9.8. Relative energies and HOMO-LUMO gaps of the Au15Ag10(SH)18
-
 cluster (eV). 

 Relative energies HOMO-LUMO gap 

Xα LDA-PW LB94 Xα LDA-PW LB94 

10a 0 0 0.07 1.51 1.52 1.56 

10b 0.06 0.06 0 1.61 1.60 1.65 

10c 0.1 0.08 0.03 1.59 1.62 1.64 
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It should be emphasized that the relative energy differences of all isomers for a specific n are 

small and all structures may be accessible at room temperature. Consequently, we looked at the 

Boltzmann-averaged spectra for all n, as displayed in Figure 9-6.  

 

Figure 9-6. Boltzmann-averaged excitation spectra of Au25-nAgn(SH)18
-
 nanoclusters at the 

LB94/TZP level of theory. 

 

 

Individual excitation spectra are shown in Appendix F (Figures F-6 to F-9). The individual 

spectra are very split but the Boltzmann averaged curves show similar features to the Au25(SH)18
-
 

system. Although silver and gold atoms have a singly occupied s orbital, their optical properties 

differ due to the strong relativistic effects in gold. Relativistic effects lead to the contraction of 

the electron cloud of gold. As a result, the 5d orbitals of the gold atom are very close to the 

singly occupied 6s orbital. On the other hand, there is a large gap between the 4d and 5s orbitals 

of silver. For highly doped species, the superatom orbitals become more separated from ligand-

based orbitals. The low-energy peak, which corresponds to the intraband HOMO-LUMO 

transition, shifts from 1.60 eV to 2 eV as the number of doping silver atoms increases. This is in 

accordance with the observed increasing HOMO-LUMO (1P-1D) gap with increasing n. The 

peak intensity remains almost constant. This blue shift of the HOMO-LUMO peak (from 1.59 eV 

to 1.85 eV) with increasing n was previously observed experimentally by Negishi et al. for 

similar Au25-nAgn(SR)18
- 
clusters.

181
 The intensity also remained quasi-constant.

181
 The 
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transitions responsible for the 2.5 eV peak originate from ligand orbitals to LUMO for the 

undoped system, as discussed previously. As n becomes larger, 1P→ 1D and 1P→ 2S transitions 

take over. These transitions are more intense than the interband transitions. We note that the high 

contribution of the superatom orbitals for this peak was previously observed for the fully-doped 

core system at the SAOP/TZP level of theory.
83

 The peak at 3.3 eV shifts to 3.5 eV as the 

number of silver atoms increases and its intensity increases as well.  This peak corresponds 

mainly to interband transitions. This can also be explained by the fact that the ligand orbitals 

become lower in energy and more separated from the superatom orbitals. 

 Au13Ag12(SH)18
-
 

The system with 12 silver atoms on the core surface has also been studied (Figure 9-7). The 

bond length between the center gold atom and the silver atoms is 2.79 Å, similar to the distances 

obtained for the mono-substituted systems. The distance between silver and the adjacent sulfur is 

2.54 Å, which is 0.03 Å longer than the silver-sulfur distance for the mono-substituted system 

1a.  

 

Figure 9-7. Geometry of the Au13Ag12(SH)18
-
 nanocluster at the Xα/TZP level of theory.  

 

 

* Color coding same as Figure 9-1.  

 

The excitation spectrum of Au13Ag12(SH)18
-
 is shown in Figure 9-8. The peak at 1.97 eV is the 

HOMO→LUMO (1P→1D) peak, similar to the other spectra. The peak at 2.51 eV corresponds 

to HOMO→LUMO+1 (1P→1D) transitions. The peak at 2.61 eV corresponds mainly to 1P→2S 

transitions. Similar features were obtained at the SAOP/TZP level of theory for the fully doped 

core Ag13Au12(SR)18
-
 system.

83
  The HOMO-LUMO peak of the Ag13Au12(SR)18

-
 system is at 
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1.83 eV, the HOMO→LUMO+1 peak at 2.34 eV and the HOMO→ LUMO+2 (1P→2S) 

transition at 2.53 eV.
83

  The substitution of the center atom does not significantly affect the 

spectrum, which is in accordance with the results obtained above for case 1c.  

 

Figure 9-8. Excitation spectrum of the Au13Ag12(SH)18
-
 nanocluster at the LB94/TZP level 

of theory. 

 

 Conclusions 

The surface of the core is the preferred position for silver doping into Au25(SH)18
-
. The 

core center position is highly unfavorable. Several isomers of silver-doped Au25-nAgn(SR)18
-
 

nanoparticles have been studied with n = 1, 2, 4, 8, 10 and 12 doping silver atoms. For n ≥ 2, 

only doping of the core surface was considered.  In general, arrangements where the silver atoms 

are close to each other tend to be less favorable but all isomers should be accessible under 

experimental conditions. However, their relative abundance in the experiment may depend on the 

details (kinetic factors) of the growth that cannot be addressed in this study. Silver doping on the 

surface of the core does not affect the overall shape of the optical absorption spectrum but gives 

some additional orbital splitting due to the breaking of the symmetry of the nanoparticle. The 

optical gap determined by the position of the HOMO→LUMO peak (1P→1D) shifts to higher 

energy with increasing n, which is in qualitative agreement with the experiment of Negishi and 

co-workers.
181

 The intensity of the peak at 2.5 eV increases as the number of silver doping atoms 

increases due to the increasing contribution of superatom 1P→ 1D and 1P→2S transitions. The 

high energy peak that corresponds to interband transitions shifts to higher energy as the number 

of doping silver atoms increases.  During nanoparticle growth, any possible arrangement of the 
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silver atoms in the nanoparticle may possibly occur, leading to a mixture of isomers. However, if 

one can control the number of silver atoms in the nanoparticle, it could be possible to tune 

optical properties such as the HOMO-LUMO gap and the shape of the optical absorption spectra. 
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Chapter 10 - Conclusions 

In summary, I showed that the absorption spectra of silver and gold clusters can be 

directly related to the plasmonic behavior of larger nanoparticles using time-dependent density 

functional theory. The frontier orbitals of silver and gold clusters are delocalized over the entire 

structure and result from a linear combination of the singly occupied s orbital of the atoms. They 

look like the familiar hydrogen-like orbitals for spherical clusters and are labeled 1S, 1P, 1D, … 

I showed that the splitting of these orbitals due to the ligand field can be qualitatively reproduced 

by a charge-perturbed particle-in-a-sphere model. For nanorods, the frontier orbitals have 

cylindrical symmetry and are labeled Σ, Π, Δ, … The strong absorption features of noble metal 

clusters can be assigned to a constructive addition of single-particle transitions between these 

delocalized orbitals. As the size of the particle increases, the density of states of these orbitals 

increases. Therefore, the number of interacting single-particle transitions increases, resulting in 

the strong plasmon peak observed in larger nanoparticles.  

A simple CI treatment can reproduce the main absorption features (plasmons) of noble 

metal particles of various sizes. CI was previously used by Pariser to explain the absorption 

spectrum of linear polycyclic hydrocarbons and I showed that plasmons also occur in these 

systems.  

The TDDFT absorption spectra of silver and gold nanorods with up to 71 atoms were 

compared. Two main plasmon modes occur in these systems: the longitudinal mode which 

corresponds to the constructive addition of the dipole moment contributions of Σ→Σ, Π→Π, Δ→ 

Δ, … single-particle transitions and a transverse mode, which corresponds to the constructive 

addition of the dipole moment contributions of Σ→ Π, Π→ Σ, Π → Δ, … single-particle 

transitions. Gold nanorods have a much broader absorption spectrum due to the numerous 

excitations out of the d-band. In addition, transitions out of the d-band orbitals and cylindrical 

delocalized orbitals may interact for systems with low aspect ratios since they have similar 

energies, making the longitudinal plasmon peak difficult to identify. As the aspect ratio 

increases, the energy gap between the cylindrical orbitals involved in the longitudinal mode 

decreases. Therefore, transitions within these orbitals become lower in energy than the 

excitations out of the d-band and the plasmon peak becomes well-defined.   
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I finally analyzed the effect of silver doping on the absorption spectrum of the 

Au25(SH)18
-
 cluster. Doping at the core surface is energetically preferred. An increased silver 

content yields a blue-shift of the low energy HOMO-LUMO peak and an increased intensity of 

the high energy absorption peaks. With increasing silver content, the d-band excitations become 

higher in energy, which results in a larger contribution of intraband excitations to the absorption 

spectrum.  
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Appendix A - Supporting information for “Theoretical analysis of 

the optical excitation spectra of silver and gold nanowires” 

 Silver nanowires 

 

Figure A-1. Neutral silver nanowires excitation spectra with SAOP/DZ. 
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Figure A-2. Positively charged silver nanowires excitation spectra with SAOP/DZ. 
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Figure A-3. Negatively charged silver nanowires excitation spectra with SAOP/DZ. 
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Figure A-4. Neutral silver nanowires excitation spectra with LB94/DZ. 
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Figure A-5. Positively chaged silver nanowires excitation spectra with LB94/DZ. 
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Figure A-6. Negatively charged silver nanowires excitation spectra with LB94/DZ. 

 



185 

 

 

 

 

 

 



186 

 

 Gold nanowires 

Figure A-7. Neutral gold nanowires excitation spectra with SAOP/DZ. 
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Figure A-8. Positively charged gold nanowires excitation spectra with SAOP/DZ. 
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Figure A-9. Negatively charged gold nanowires excitation spectra with SAOP/DZ. 
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Figure A-10. Neutral gold nanowires excitation spectra with LB94/DZ. 

 



192 

 

 



193 

 

 

 

Figure A-11. Positively charged gold nanowires excitation spectra with LB94/DZ. 
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Figure A-12. Negatively charged gold nanowires excitation spectra with LB94/DZ. 
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Appendix B - Supporting information for “Diameter-Dependence of 

the Excitation spectra of Silver and Gold Nanorods” 

Figure B-1. Excitation spectra of star-shaped silver nanorods at the LB94/DZ level of 

theory. 

 



198 

 

 



199 

 

 



200 

 

Figure B-2. Excitation spectra of large pentagon-shaped silver nanorods at the LB94/DZ 

level of theory. 
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Figure B-3. Excitation spectra of small pentagon-shaped gold nanorods at the LB94/DZ 

level of theory. 
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Figure B-4. Excitation spectra of star-shaped nanorods at the LB94/DZ level of theory. 
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Figure B-5. Excitation spectra of large pentagon-shaped gold nanorods at the LB94/DZ 

level of theory. 
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Figure B-6. Longitudinal peak wavelengths of positively charged and negatively charged A) 

star-shaped and B) large  pentagon-shaped silver nanorods. 
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Table B.1. Longitudinal and transverse peak energies of negatively charged star-shaped 

silver nanorods. 

System 

Aspect 

ratio 

(L/2R) 

Longitudinal 

peak (nm) 

Transverse peak 

1 (nm) 

Transverse peak 2 

(nm) 

HOMO-

LUMO gap 

(eV) 

Ag18
-2

 0.88 263.01 278.15 276.94 0.76 

Ag29
-1

 1.17 287.51 285.32 267.39 0.58 

Ag40
-2

 1.53 303.51 284.91 254.76 0.21 

Ag51
-3

 1.78 322.65 290.47 260.10 0.29 

Ag62
-2

 2.12 349.26 287.15 268.55 0.14 

Ag73
-1

 2.46 365.57 287.26 261.20 0.06 

Ag84
-2

 2.80 392.76 286.95 257.94 0.19 

 

 

Table B.2. Longitudinal and transverse peak energies of negatively charged large 

pentagon-shaped silver nanorods. 

System 

Aspect 

ratio 

(L/2R) 

Longitudinal peak 

(nm) 

Transverse peak 1 

(nm) 

Transverse peak 2 

(nm) 

HOMO-

LUMO gap 

(eV) 

Ag23
-3

 0.56 226.41 314.68 258.30 0.18 

Ag39
-5

 0.94 267.97 283.91 267.39 0.02 

Ag55
-3

 1.15 286.54 288.34 270.71 0.04 

Ag71
-3

 1.48 300.64 303.88 258.30 0.24 
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Table B.3. Energy, oscillator strength, and transitions involved in the main longitudinal 

peak of the small pentagon-shaped Au67
+1

 nanorod. 

Energy 

(eV) 

Intensity 

(a.u) 
Transitions 

z-component of 

transition dipole 

moment (a.u.) 

Weight 

2.0714 8.5160 

Π 8 (HOMO-4) → Π9 (LUMO+3) -8.0604 0.2901 

Σ11 (HOMO) → Σ12 (LUMO+7) -3.0604 0.1007 

Σ11 (HOMO) → 2 Σ4 (LUMO+9) -2.3431 0.0934 

Δ3 (HOMO-1) → Δ4 (LUMO) -1.7648 0.0536 

 

Figure B-7. Kohn-Sham orbitals for the transitions involved in the high intensity 

longitudinal peak of the small pentagon-shaped nanorods Au67
+1

. Contour value=0.01. 
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Appendix C - Supporting information for “Origin and TDDFT 

Benchmarking of the Plasmon Resonance in Acenes” 

Figure C-1. Natural transition orbitals involved in the α and β-peak at the ωPBEh/cc-

pVTZ level of theory. 
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Appendix D - Supporting information for “Plasmon Resonance 

Analysis with Configuration Interaction” 

Table D.1. Energies and oscillator strengths for varying values of α1 (case 2). Case 1 is 

shown in red. 

Δα1 (%) α1 (eV) E1 (eV) S1 (a.u) E2 (eV) S2 (a.u) E3 (eV) S3 (a.u) 

-50 2.5 4.5 0 2.3417 0.4448 5.6583 2.5552 

-40 3.0 4.5 0 2.8139 0.3684 5.6861 2.6315 

-30 3.5 4.5 0 3.2753 0.2752 5.7247 2.7248 

-20 4.0 4.5 0 3.7192 0.1661 5.7808 2.8338 

-10 4.5 4.5 0 4.134 0.0566 5.866 2.9433 

-5 4.75 4.5 0 4.3246 0.0164 5.9254 2.9836 

-1 4.95 4.5 0 4.4663 0.0007 5.9837 2.9991 

0 5.0 4.5 0 4.5 0.0000 6 3.0000 

1 5.05 4.5 0 4.533 0.0008 6.017 2.9991 

5 5.25 4.5 0 4.6569 0.0203 6.0931 2.9798 

10 5.5 4.5 0 4.7929 0.0858 6.2071 2.9142 

20 6.0 4.5 0 5 0.1044 6.5 2.8958 

30 6.5 4.5 0 5.134 0.1245 6.866 2.8751 

40 7.0 4.5 0 5.2192 0.1945 7.2808 2.8056 

50 7.5 4.5 0 5.2753 0.3334 7.7247 2.6664 
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Analytical derivation of the behavior of the energies E2 and E3 with increasing value of α1 

(case 2). 

The second and third eigenvalue expressions can be divided into two ε-dependent terms. The 

first term is  1

1
T

2
     , which increases linearly with ε. This term is the same for both E2 

and E3. The second term is 2 2

2

1
T 9 2

2
      . The plus sign is for E3 and the negative 

sign is for E2. The expression under the square root is quadratic. We note that the value 

2 29 2    is always positive regardless of the value of ε since β is real.  For the 

eigenvalue E2, T2 increases with increasing ε until it reaches its maximum value 0 5.   .   

For ε>β, T2 decreases. As a result, E2 is expected to become larger until ε reaches the value of β.  

Due to the opposite sign of T2, the opposite behavior is expected for E3. E3 therefore becomes 

larger with increasing ε when ε > β. 

The values of T1 and T2 for the E2 and E3 peaks for the CI matrix given by eq. 12 are given in 

Tables S2 and S3. When α1 increases from 2.5 to 5.5 eV, both T1 and T2 become larger and 

therefore E2 does as well. When α1 becomes larger than 5.5 eV (ε > β), T2 starts to decrease and 

E2 starts to stabilize. The peak at E3 (the plasmon peak) shows the opposite behavior: its energy 

slowly increases when α1 shifts from 2.5 to 5.5 eV (ε < β) and quickly rises when α1 becomes 

larger than 5.5 eV, as explained by the opposite sign of T2 in the analytical expression. 
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Table D.2. Values of T1 and T2 for the E2 peak (case 2). 

α1 (eV) ε (eV) E2 (eV) T1 (eV) T2 (eV) 

2.5 -2.5 2.3417 4.0000 -1.6583 

3 -2 2.8139 4.2500 -1.4361 

3.5 -1.5 3.2753 4.5000 -1.2247 

4 -1 3.7192 4.7500 -1.0308 

4.5 -0.5 4.1340 5.0000 -0.8660 

4.75 -0.25 4.3246 5.1250 -0.8004 

4.95 -0.05 4.4663 5.2250 -0.7587 

5 0 4.5000 5.2500 -0.7500 

5.05 0.05 4.5330 5.2750 -0.7420 

5.25 0.25 4.6569 5.3750 -0.7181 

5.5 0.5 4.7929 5.5000 -0.7071 

6 1 5.0000 5.7500 -0.7500 

6.5 1.5 5.1340 6.0000 -0.8660 

7 2 5.2192 6.2500 -1.0308 

7.5 2.5 5.2753 6.5000 -1.2247 

 

 

Table D.3. Values of T1 and T2 for the E3 peak (case 2).  

α1 (eV) ε (eV) E3 (eV) T1 (eV) T2 (eV) 

2.5 -2.5 5.6583 4.0000 1.6583 

3 -2 5.6861 4.2500 1.4361 

3.5 -1.5 5.7247 4.5000 1.2247 

4 -1 5.7808 4.7500 1.0308 

4.5 -0.5 5.8660 5.0000 0.8660 

4.75 -0.25 5.9254 5.1250 0.8004 

4.95 -0.05 5.9837 5.2250 0.7587 

5 0 6.0000 5.2500 0.7500 

5.05 0.05 6.0170 5.2750 0.7420 

5.25 0.25 6.0931 5.3750 0.7181 

5.5 0.5 6.2071 5.5000 0.7071 

6 1 6.5000 5.7500 0.7500 

6.5 1.5 6.8660 6.0000 0.8660 

7 2 7.2808 6.2500 1.0308 

7.5 2.5 7.7247 6.5000 1.2247 
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Table D.4. Eigenvectors of the CI matrix for case 2 where α1=2.5 eV. 

  E1= 4.5 eV E2= 2.3417 eV E3= 5.6583 eV 

A1 
0 0.9758 0.2185 

A2 
0.7071 -0.1545 0.6900 

A3 
-0.7071 -0.1545 0.6900 

|A1+A2+A3|
2
 

0 0.4448 2.5552 

 

 

Table D.5. Eigenvectors of the CI matrix for case 2 where α1=3.0 eV. 

  E1= 4.5 eV E2= 2.8139 eV E3= 5.6861 eV 

A1 
0 0.9671 0.2546 

A2 
0.7071 -0.1800 0.6838 

A3 
-0.7071 -0.1800 0.6838 

|A1+A2+A3|
2
 

0 0.3684 2.6315 

 

 

Table D.6. Eigenvectors of the CI matrix for case 2 where α1=3.5 eV.  

  E1= 4.5 eV E2= 3.2753 eV E3= 5.7247 eV 

A1 
0 0.9530 0.3029 

A2 
0.7071 -0.2142 0.6739 

A3 
-0.7071 -0.2142 0.6739 

|A1+A2+A3|
2
 

0 0.2752 2.7248 

 

 

Table D.7. Eigenvectors of the CI matrix for case 2 where α1=4.0 eV. 

  E1= 4.5 eV E2= 3.7192 eV E3= 5.7808 eV 

A1 
0 0.9294 0.3690 

A2 
0.7071 -0.2610 0.6572 

A3 
-0.7071 -0.2610 0.6572 

|A1+A2+A3|
2
 

0 0.1661 2.8338 
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Table D.8. Eigenvectors of the CI matrix for case 2 where α1=4.5 eV.  

  E1= 4.5 eV E2= 4.1340 eV E3= 5.8660 eV 

A1 
0 0.8881 0.4597 

A2 
0.7071 -0.3251 0.6280 

A3 
-0.7071 -0.3251 0.6280 

|A1+A2+A3|
2
 

0 0.0.0566 2.9432 

 

 

Table D.9. Eigenvectors of the CI matrix for case 2 where α1=4.75 eV. 

  E1= 4.5 eV E2= 4.3246 eV E3= 5.9254 eV 

A1 
0 0.8569 0.5155 

A2 
0.7071 -0.3645 0.6059 

A3 
-0.7071 -0.3645 0.6059 

|A1+A2+A3|
2
 

0 0.0164 2.9836 

 

 

Table D.10. Eigenvectors of the CI matrix for case 2 where α1=4.95 eV.  

  E1= 4.5 eV E2= 4.4663 eV E3= 5.9837 eV 

A1 
0 0.8254 0.5646 

A2 
0.7071 -0.3992 0.5836 

A3 
-0.7071 -0.3992 0.5836 

|A1+A2+A3|
2
 

0 0.0007 2.9991 

 

 

Table D.11. Eigenvectors of the CI matrix for case 2 where α1=5.05 eV.  

  E1= 4.5 eV E2= 4.533 eV E3= 6.017 eV 

A1 
0 0.8072 0.5902 

A2 
0.7071 -0.4174 0.5708 

A3 
-0.7071 -0.4174 0.5708 

|A1+A2+A3|
2
 

0 0.0008 2.9991 
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Table D.12. Eigenvectors of the CI matrix for case 2 where α1=5.25 eV. 

  E1= 4.5 eV E2= 4.6569 eV E3= 6.0931 eV 

A1 
0 0.7662 0.6426 

A2 
0.7071 -0.4544 0.5418 

A3 
-0.7071 -0.4544 0.5418 

|A1+A2+A3|
2
 

0 0.0203 2.9798 

 

 

Table D.13. Eigenvectors of the CI matrix for case 2 where α1=5.5 eV. 

  E1= 4.5 eV E2= 4.7929 eV E3= 6.2071 eV 

A1 
0 0.7071 0.7071 

A2 
0.7071 -0.5 0.5 

A3 
-0.7071 -0.5 0.5 

|A1+A2+A3|
2
 

0 0.0858 2.9142 

 

      

Table D.14. Eigenvectors of the CI matrix for case 2 where α1=6.0 eV.  

  E1= 4.5 eV E2= 5.0 eV E3= 6.5 eV 

A1 
0 0.5774 0.8165 

A2 
0.7071 -0.5774 0.4082 

A3 
-0.7071 -0.5774 0.4082 

|A1+A2+A3|
2
 

0 0.3334 2.6663 

 

 

Table D.15. Eigenvectors of the CI matrix for case 2 where α1=6.5 eV. 

  E1= 4.5 eV E2= 5.134 eV E3= 6.866 eV 

A1 
0 0.4597 -0.8881 

A2 
0.7071 -0.628 -0.3251 

A3 
-0.7071 -0.628 -0.3251 

|A1+A2+A3|
2
 

0 0.6341 2.3664 
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Table D.16. Eigenvectors of the CI matrix for case 2 where α1=7 eV.  

  E1= 4.5 eV E2= 5.2192 eV E3= 7.2808 eV 

A1 
0 0.369 -0.9294 

A2 
0.7071 -0.6572 -0.261 

A3 
-0.7071 -0.6572 -0.261 

|A1+A2+A3|
2
 

0 0.8938 2.1066 

 

 

Table D.17. Eigenvectors of the CI matrix for case 2 where α1=7.5 eV. 

  E1= 4.5 eV E2= 5.2753 eV E3= 7.7247 eV 

A1 
0 0.3029 -0.953 

A2 
0.7071 -0.6739 -0.2142 

A3 
-0.7071 -0.6739 -0.2142 

|A1+A2+A3|
2
 

0 1.0918 1.9083 

 

 

Table D.18. Energies and oscillator strengths for different values of α3 (case 3). 

Δα3(%) α3 (eV) E1 (eV) S1 (a.u) E2 (eV) S2 (a.u) E3 (eV) 
S3 

(a.u) 

-50 2.5 2.359 0.4952 4.8207 0.3329 6.3202 2.1718 

-40 3 2.836 0.4273 4.8272 0.3408 6.3368 2.2317 

-30 3.5 3.3038 0.3407 4.8373 0.3520 6.3589 2.3074 

-20 4 3.7554 0.2290 4.8554 0.3681 6.3892 2.4028 

-10 4.5 4.1723 0.0918 4.8946 0.3846 6.4331 2.5236 

-5 4.75 4.3532 0.0284 4.9339 0.3785 6.4628 2.5931 

-1 4.95 4.4741 0.0012 4.9841 0.3469 6.4919 2.6517 

0 5.0 4.5 0.0000 5.0 0.3334 6.5 2.6664 

1 5.05 4.5241 0.0012 5.0174 0.3173 6.5085 2.6814 

5 5.25 4.6015 0.0279 5.1014 0.2331 6.5471 2.7390 

10 5.5 4.6624 0.0832 5.2304 0.1160 6.6072 2.8009 

20 6 4.7192 0.1661 5.5 0.0000 6.7808 2.8338 

30 6.5 4.7429 0.2070 5.714 0.1151 7.0431 2.6778 

50 7.5 4.7629 0.2290 5.9437 0.3681 7.7934 2.4028 
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Table D.19. Eigenvectors of the CI matrix for case 3 where α3=2.5 eV. 

  E1= 2.3590 eV E2= 4.8207 eV E3= 6.3202 eV 

A1 
-0.1120 -0.4248 -0.8983 

A2 
-0.1643 0.8995 -0.4048 

A3 
0.9800 0.1023 -0.1706 

|A1+A2+A3|
2
 

0.4952 0. 3329 2.1718 

 

 

Table D.20. Eigenvectors of the CI matrix for case 3 where α3=3.0 eV.  

  E1= 2.8360 eV E2= 4.8272 eV E3= 6.3368 eV 

A1 
-0.1227 -0.4338 -0.8926 

A2 
-0.1964 0.8922 -0.4067 

A3 
0.9728 0.1254 -0.1947 

|A1+A2+A3|
2
 

0.4273 0.3408 2.2317 

 

 

Table D.21. Eigenvectors of the CI matrix for case 3 where α3=3.5 eV. 

  E1= 3.3038 eV E2= 4.8373 eV E3= 6.3589 eV 

A1 
-0.1329 -0.4477 -0.8843 

A2 
-0.2440 0.8795 -0.4086 

A3 
0.9606 0.1615 -0.2261 

|A1+A2+A3|
2
 

0.3407 0.3520 2.3074 

 

 

Table D.22. Eigenvectors of the CI matrix for case 3 where α3=4.0 eV.  

  E1= 3.7554 eV E2= 4.8554 eV E3= 6.3892 eV 

A1 
-0.1371 -0.4706 -0.8716 

A2 
-0.3213 0.8535 -0.4103 

A3 
0.9370 0.2238 -0.2683 

|A1+A2+A3|
2
 

0.2290 0.3681 2.4028 
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Table D.23. Eigenvectors of the CI matrix for case 3 where α3=4.5 eV. 

  E1= 4.1723 eV E2= 4.8946 eV E3= 6.4331eV 

A1 
-0.1141 -0.5122 -0.8512 

A2 
-0.4623 0.7858 -0.4109 

A3 
0.8794 0.3466 -0.3265 

|A1+A2+A3|
2
 

0.0918 0.3846 2.5237 

 

 

Table D.24. Eigenvectors of the CI matrix for case 3 where α3=4.75 eV.  

 

 

 

Table D.25. Eigenvectors of the CI matrix for case 3 where α3=4.95 eV.  

  E1= 4.4741 eV E2= 4.9841 eV E3= 6.4919 eV 

A1 
0.0172 0.5708 -0.8209 

A2 
0.6803 -0.6084 -0.4088 

A3 
-0.7328 -0.5514 -0.3988 

|A1+A2+A3|
2
 

0.0012 0.3469 2.6517 

 

 

Table D.26. Eigenvectors of the CI matrix for case 3 where α3=5.05 eV.  

  E1= 4.5241 eV E2= 5.0174 eV E3= 6.5085 eV 

A1 
-0.0181 0.5836 0.8118 

A2 
0.7332 -0.5443 0.4076 

A3 
-0.6798 -0.6026 0.4180 

|A1+A2+A3|
2
 

0.0012 0.3173 2.6814 

 

  E1= 4.3532 eV E2= 4.9339 eV E3= 6.4628eV 

A1 
-0.0734 -0.5434 -0.8363 

A2 
-0.5738 0.7088 -0.4102 

A3 
0.8157 0.4497 -0.3639 

|A1+A2+A3|
2
 

0.0284 0.3785 2.5931 
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Table D.27. Eigenvectors of the CI matrix for case 3 where α3=5.25 eV.  

  E1= 4.6015 eV E2= 5.1014 eV E3= 6.5471 eV 

A1 
-0.0929 -0.6056 0.7903 

A2 
0.8219 0.4014 0.4042 

A3 
-0.5621 0.6870 0.4605 

|A1+A2+A3|
2
 

0.0279 0.2331 2.7390 

 

 

Table D.28. Eigenvectors of the CI matrix for case 3 where α3=5.5 eV.  

  E1= 4.6624 eV E2= 5.2304 eV E3= 6.6072 eV 

A1 
-0.1721 -0.6318 0.7558 

A2 
0.8877 0.2332 0.3971 

A3 
-0.4271 0.7392 0.5207 

|A1+A2+A3|
2
 

0.0832 0.1160 2.8009 

 

 

Table D.29. Eigenvectors of the CI matrix for case 3 where α3=6.0 eV. 

  E1= 4.7192 eV E2= 5.50 eV E3= 6.7808 eV 

A1 
0.2610 0.7071 0.6572 

A2 
-0.9294 0 0.3690 

A3 
0.2610 -0.7071 0.6572 

|A1+A2+A3|
2
 

0.1917 0 2.8338 

 

 

Table D.30. Eigenvectors of the CI matrix for case 3 where α3=6.5 eV.  

  E1= 4.7429 eV E2= 5.7140 eV E3= 7.0431 eV 

A1 
0.3005 0.7928 -0.5302 

A2 
-0.9365 0.1398 0.3217 

A3 
0.1810 -0.5932 0.7844 

|A1+A2+A3|
2
 

0.2070 0.1151 2.6778 
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 Table D.31. Eigenvectors of the CI matrix for case 3 where α3=7 eV.  

  E1= 4.7554 eV E2= 5.8554 eV E3= 7.3892 eV 

A1 
0.3213 0.8535 0.4103 

A2 
-0.9370 0.2238 0.2683 

A3 
-0.1371 -0.4706 0.8716 

|A1+A2+A3|
2
 

0.2290 0.3681 2.4028 

 

 

Table D.32. Eigenvectors of the CI matrix for case 3 where α3=7.5 eV.  

  E1= 4.7629 eV E2= 5.9437 eV E3= 7.7934 eV 

A1 
0.3339 0.8871 0.3188 

A2 
-0.9362 0.2726 0.2220 

A3 
0.1100 -0.3726 0.9215 

|A1+A2+A3|
2
 

0.2423 0.6195 2.1380 

 

 

Table D.33. Energies and oscillator strengths for varying values of β12 (case 4).  

Δβ12(%) β12 (eV) E1 (eV) S1 (a.u) E2 (eV) S2 (a.u) E3 (eV) S3 (a.u) 

-50 0.25 4.75 0 4.4069 0.0203 5.8431 2.9798 

-40 0.3 4.7 0 4.4272 0.0128 5.8728 2.9870 

-30 0.35 4.65 0 4.4466 0.0071 5.9034 2.9929 

-20 0.4 4.6 0 4.4652 0.0031 5.9348 2.9971 

-10 0.45 4.55 0 4.483 0.0008 5.967 2.9991 

-5 0.475 4.525 0 4.4916 0.0002 5.9834 2.9998 

-1 0.495 4.505 0 4.4983 7.29*10
-6

 5.9967 2.9998 

0 0.5 4.5 0 4.5 0.0000 6 3.0005 

1 0.505 4.495 0 4.5017 7.84*10
-6

 6.0033 3.0002 

5 0.525 4.475 0 4.5082 0.0002 6.0168 2.9998 

10 0.55 4.45 0 4.5163 0.0007 6.0337 2.9991 

20 0.6 4.4 0 4.5319 0.0028 6.0681 2.9971 

30 0.65 4.35 0 4.5468 0.0062 6.1032 2.9936 

40 0.7 4.3 0 4.561 0.0107 6.139 2.9894 

50 0.75 4.25 0 4.5746 0.0164 6.1754 2.9836 
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Table D.34. Eigenvectors of the CI matrix for case 4 where β12=0.25 eV. 

  E1= 4.75 eV E2= 4.4069 eV E3= 5.8431 eV 

A1 
0.7071 0.4544 0.5418 

A2 
-0.7071 0.4544 0.5418 

A3 
0 -0.7662 0.6426 

|A1+A2+A3|
2
 

0 0.0203 2.9798 

 

 

Table D.35. Eigenvectors of the CI matrix for case 4 where β12=0.3 eV. 

  E1= 4.70 eV E2= 4.4272 eV E3= 5.8728 eV 

A1 
0.7071 0.4451 0.5494 

A2 
-0.7071 0.4451 0.5494 

A3 
0 -0.7770 0.6295 

|A1+A2+A3|
2
 

0 0.0128 2.9870 

 

 

Table D.36. Eigenvectors of the CI matrix for case 4 where β12=0.35 eV. 

  E1= 4.65 eV E2= 4.4466 eV E3= 5.9034 eV 

A1 
0.7071 0.4358 0.5568 

A2 
-0.7071 0.4358 0.5568 

A3 
0 -0.7875 0.6163 

|A1+A2+A3|
2
 

0 0.0071 2.9929 

 

 

Table D.37. Eigenvectors of the CI matrix for case 4 where β12=0.40 eV.  

  E1= 4.60 eV E2= 4.4652 eV E3= 5.9348 eV 

A1 
0.7071 0.4266 0.5640 

A2 
-0.7071 0.4266 0.5640 

A3 
0 -0.7975 0.6033 

|A1+A2+A3|
2
 

0 0.0031 2.9971 
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Table D.38. Eigenvectors of the CI matrix for case 4 where β12=0.45 eV. 

  E1= 4.55 eV E2= 4.483 eV E3= 5.967 eV 

A1 
0.7071 0.4174 0.5708 

A2 
-0.7071 0.4174 0.5708 

A3 
0 -0.8072 0.5902 

|A1+A2+A3|
2
 

0 0.0008 2.9991 

 

 

Table D.39. Eigenvectors of the CI matrix for case 4 where β12=0.475 eV. 

  E1= 4.5250 eV E2= 4.4916 eV E3= 5.9834 eV 

A1 
0.7071 0.4128 0.5741 

A2 
-0.7071 0.4128 0.5741 

A3 
0 -0.8119 0.5838 

|A1+A2+A3|
2
 

0 0.0002 2.9998 

 

 

Table D.40. Eigenvectors of the CI matrix for case 4 where β12=0.495 eV.  

  E1= 4.5050 eV E2= 4.4983 eV E3= 5.9967 eV 

A1 
0.7071 0.4092 0.5767 

A2 
-0.7071 0.4092 0.5767 

A3 
0 -0.8156 0.5786 

|A1+A2+A3|
2
 

0 7.29*10
-6

 2.9998 

 

 

Table D.41. Eigenvectors of the CI matrix for case 4 where β12=0.505 eV.  

  E1= 4.495 eV E2= 4.5017 eV E3= 6.0033 eV 

A1 
0.7071 0.4073 0.578 

A2 
-0.7071 0.4073 0.578 

A3 
0 -0.8174 0.5761 

|A1+A2+A3|
2
 

0 7.84*10
-6

 3.000 
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Table D.42. Eigenvectors of the CI matrix for case 4 where β12=0.525 eV.  

  E1= 4.475 eV E2= 4.5082 eV E3= 6.0168 eV 

A1 
0.7071 0.4037 0.5805 

A2 
-0.7071 0.4037 0.5805 

A3 
0 -0.821 0.571 

|A1+A2+A3|
2
 

0 0.0002 2.9998 

 

 

Table D.43. Eigenvectors of the CI matrix for case 4 where β12=0.55 eV.  

  E1= 4.45 eV E2= 4.5163 eV E3= 6.0337 eV 

A1 
0.7071 0.3992 0.5836 

A2 
-0.7071 0.3992 0.5836 

A3 
0 -0.8254 0.5646 

|A1+A2+A3|
2
 

0 0.0007 2.9991 

 

 

Table D.44. Eigenvectors of the CI matrix for case 4 where β12=0.60 eV.  

  E1= 4.40 eV E2= 4.5319 eV E3= 6.0681 eV 

A1 
0.7071 0.3903 0.5896 

A2 
-0.7071 0.3903 0.5896 

A3 
0 -0.8338 0.5520 

|A1+A2+A3|
2
 

0 0.0028 2.9971 

 

 

Table D.45. Eigenvectors of the CI matrix for case 4 where β12=0.65 eV. 

  E1= 4.35 eV E2= 4.5468 eV E3= 6.1032 eV 

A1 
0.7071 0.3816 0.5953 

A2 
-0.7071 0.3816 0.5953 

A3 
0 -0.8419 0.5396 

|A1+A2+A3|
2
 

0 0.0062 2.9939 
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Table D.46. Eigenvectors of the CI matrix for case 4 where β12=0.70 eV.  

  E1= 4.30 eV E2= 4.5610 eV E3= 6.1390 eV 

A1 
0.7071 0.3730 0.6008 

A2 
-0.7071 0.3730 0.6008 

A3 
0 -0.8496 0.5274 

|A1+A2+A3|
2
 

0 0.0108 2.9891 

 

 

Table D.47. Eigenvectors of the CI matrix for case 4 where β12=0.75 eV. 

  E1= 4.25 eV E2= 4.5746 eV E3= 6.1754 eV 

A1 
0.7071 0.3645 0.6059 

A2 
-0.7071 0.3645 0.6059 

A3 
0 -0.8569 0.5155 

|A1+A2+A3|
2
 

0 0.0164 2.9836 

 

 

Table D.48. Energies and oscillator strengths for varying values of β23 (case 5).  

Δβ23(%) β23 (eV) E1 (eV) S1 (a.u) E2 (eV) S2 (a.u) E3 (eV) S3 (a.u) 

-50 0.25 4.3303 0.0220 4.7551 0.0077 5.9146 2.9705 

-40 0.3 4.3493 0.0144 4.7069 0.0067 5.9438 2.9787 

-30 0.35 4.3669 0.0084 4.6593 0.0059 5.9737 2.9856 

-20 0.4 4.3825 0.0039 4.6131 0.0051 6.0045 2.9912 

-10 0.45 4.3946 0.0010 4.5695 0.0042 6.0359 2.9950 

-5 0.475 4.3985 0.0003 4.5496 0.0036 6.0519 2.9960 

-1 0.495 4.3999 0.00001 4.5352 0.0030 6.0649 2.9971 

0 0.5 4.4 0.0000 4.5319 0.0028 6.0681 2.9971 

1 0.505 4.3999 0.00001 4.5287 0.0027 6.0714 2.9974 

5 0.525 4.3981 0.0002 4.5174 0.0019 6.0845 2.9977 

10 0.55 4.3918 0.0009 4.5072 0.0010 6.101 2.9981 

20 0.6 4.3654 0.0021 4.5 0.0000 6.1346 2.9977 

30 0.65 4.3268 0.0027 4.5043 0.0009 6.1688 2.9964 

40 0.7 4.2828 0.0028 4.5135 0.0035 6.2037 2.9939 

50 0.75 4.2363 0.0027 4.5245 0.0071 6.2392 2.9901 
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 Table D.49. Eigenvectors of the CI matrix for case 5 where β23=0.25 eV. 

  E1= 4.3303 eV E2= 4.7551 eV E3= 5.9146 eV 

A1 
0.7573 0.0717 0.6491 

A2 
-0.5431 0.6211 0.5650 

A3 
-0.3627 -0.7804 0.5093 

|A1+A2+A3|
2
 

0.0220 0.0077 2.9705 

 

 

Table D.50. Eigenvectors of the CI matrix for case 5 where β23=0.30 eV. 

  E1= 4.3493 eV E2= 4.7069 eV E3= 5.9438 eV 

A1 
0.7647 0.0960 0.6372 

A2 
-0.5515 0.6091 0.5700 

A3 
-0.3334 -0.7872 0.5188 

|A1+A2+A3|
2
 

0.0144 0.0067 2.9787 

 

 

Table D.51. Eigenvectors of the CI matrix for case 5 where β23=0.35 eV. 

  E1= 4.3669 eV E2= 4.6593 eV E3= 5.9737 eV 

A1 
0.7696 0.1296 0.6253 

A2 
-0.5665 0.5903 0.5750 

A3 
-0.2946 -0.7967 0.5277 

|A1+A2+A3|
2
 

0.0084 0.0059 2.9856 

 

 

Table D.52. Eigenvectors of the CI matrix for case 5 where β23=0.40 eV. 

  E1= 4.3825 eV E2= 4.6131 eV E3= 6.0045 eV 

A1 
0.7692 0.1792 0.6133 

A2 
-0.5926 0.5591 0.5799 

A3 
-0.2390 -0.8095 0.5362 

|A1+A2+A3|
2
 

0.0039 0.0051 2.9912 
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Table D.53. Eigenvectors of the CI matrix for case 5 where β23=0.45 eV.  

  E1= 4.3946 eV E2= 4.5695 eV E3= 6.0359 eV 

A1 
0.7559 0.2598 0.6014 

A2 
-0.6371 0.5021 0.5848 

A3 
-0.1507 -0.8252 0.5443 

|A1+A2+A3|
2
 

0.0010 0.0042 2.9950 

 

 

Table D.54. Eigenvectors of the CI matrix for case 5 where β23=0.475 eV.  

  E1= 4.3985 eV E2= 4.5496 eV E3= 6.0519 eV 

A1 
0.7383 0.3166 0.5955 

A2 
-0.6690 0.4556 0.5872 

A3 
-0.0854 -0.8320 0.5482 

|A1+A2+A3|
2
 

0.0003 0.0036 2.9960 

 

 

Table D.55. Eigenvectors of the CI matrix for case 5 where β23=0.495 eV. 

  E1= 4.3999 eV E2= 4.5352 eV E3= 6.0649 eV 

A1 
0.7147 0.3743 0.5908 

A2 
-0.6991 0.4051 0.5891 

A3 
-0.0188 -0.8341 0.5513 

|A1+A2+A3|
2
 

0.00001 0.0030 2.9971 

 

 

Table D.56. Eigenvectors of the CI matrix for case 5 where β23=0.505 eV.  

  E1= 4.3999 eV E2= 4.5287 eV E3= 6.0714 eV 

A1 
0.6987 0.4070 0.5884 

A2 
-0.7152 0.3746 0.5901 

A3 
-0.0197 -0.8331 0.5528 

|A1+A2+A3|
2
 

0.00001 0.0027 2.9974 
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Table D.57. Eigenvectors of the CI matrix for case 5 where β23=0.525 eV.  

  E1= 4.3981 eV E2= 4.5174 eV E3= 6.0845 eV 

A1 
0.6562 0.4781 0.5837 

A2 
-0.7470 0.3026 0.5920 

A3 
0.1064 -0.8245 0.5557 

|A1+A2+A3|
2
 

0.0002 0.0019 2.9977 

 

 

Table D.58. Eigenvectors of the CI matrix for case 5 where β23=0.55 eV. 

  E1= 4.3918 eV E2= 4.5072 eV E3= 6.1010 eV 

A1 
0.5846 0.5695 0.5779 

A2 
-0.7797 0.1973 0.5943 

A3 
0.2244 -0.7980 0.5593 

|A1+A2+A3|
2
 

0.009 0.0010 2.9981 

 

 

Table D.59. Eigenvectors of the CI matrix for case 5 where β23=0.60 eV. 

  E1= 4.3654 eV E2= 4.5000 eV E3= 6.1346 eV 

A1 
-0.4235 -0.7071 0.5663 

A2 
0.8008 0 0.5989 

A3 
-0.4235 0.7071 0.5663 

|A1+A2+A3|
2
 

0.0021 0 2.9977 

 

 

Table D.60. Eigenvectors of the CI matrix for case 5 where β23=0.65 eV. 

  E1= 4.3268 eV E2= 4.5043 eV E3= 6.1688 eV 

A1 
-0.3061 -0.7736 0.5548 

A2 
0.7883 0.1207 0.6034 

A3 
-0.5338 0.6220 0.5729 

|A1+A2+A3|
2
 

0.0027 0.0009 2.9964 
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Table D.61. Eigenvectors of the CI matrix for case 5 where β23=0.70 eV.  

  E1= 4.2828 eV E2= 4.5135 eV E3= 6.2037 eV 

A1 
-0.2347 0.8060 0.5435 

A2 
0.7724 -0.1849 0.6077 

A3 
-0.5902 -0.5624 0.5791 

|A1+A2+A3|
2
 

0.0028 0.0035 2.9939 

 

 

Table D.62. Eigenvectors of the CI matrix for case 5 where β23=0.75 eV.  

  E1= 4.2363 eV E2= 4.5245 eV E3= 6.2392 eV 

A1 
-0.1898 0.8250 0.5323 

A2 
0.7598 -0.2200 0.6118 

A3 
-0.6219 -0.5205 0.5851 

|A1+A2+A3|
2
 

0.0027 0.0071 2.9901 

 

 

Table D.63. Energies and oscillator strengths for varying values of β (case 6). 

β (eV) E1 (eV) S1 (a.u) E2 (eV) S2 (a.u) E3 (eV) S3 (a.u) 

0 5.0000 1.0000 5.1000 1.0000 5.2000 1.0000 

0.001 5.0000 0.9704 5.1000 0.9994 5.2000 1.0300 

0.005 4.9996 0.8578 5.1000 0.9853 5.2004 1.1569 

0.01 4.9986 0.7331 5.0998 0.9426 5.2016 1.3241 

0.05 4.9755 0.2291 5.0855 0.3681 5.2389 2.4031 

0.1 4.9325 0.0832 5.0461 0.1160 5.3214 2.8009 

0.2 4.8370 0.0245 4.9520 0.0295 5.5110 2.9460 

0.3 4.7387 0.0114 4.8539 0.0130 5.7074 2.9756 

0.4 4.6396 0.0066 4.7549 0.0072 5.9055 2.9863 

0.5 4.5401 0.0043 4.6555 0.0046 6.1044 2.9912 

1 4.0412 0.0011 4.1566 0.0011 7.1022 2.9977 

2 3.0417 0.0003 3.1572 0.0003 9.1011 2.9995 
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Table D.64. Eigenvectors of the CI matrix for case 6 where β=0.  

  E1= 5.0000 eV E2= 5.1000 eV E3= 5.2000 eV 

A1 
1 0 0 

A2 
0 1 0 

A3 
0 0 1 

|A1+A2+A3|
2
 

1 1 1 

 

 

Table D.65. Eigenvectors of the CI matrix for case 6 where β=0.001 eV.  

  E1= 5.0000 eV E2= 5.1000 eV E3= 5.2000 eV 

A1 
0.9999 0.0099 0.005 

A2 
-0.0099 0.9999 0.01 

A3 
-0.0049 -0.0101 0.9999 

|A1+A2+A3|
2
 

0.9704 0.9994 1.0300 

 

 

Table D.66. Eigenvectors of the CI matrix for case 6 where β=0.005 eV.  

  E1= 4.9996 eV E2= 5.1000 eV E3= 5.2004 eV 

A1 
0.9985 0.0473 0.0262 

A2 
-0.0486 0.9975 0.051 

A3 
-0.0237 -0.0522 0.9984 

|A1+A2+A3|
2
 

0.8579 0.9853 1.1569 

 

 

Table D.67. Eigenvectors of the CI matrix for case 6 where β=0.01 eV. 

  E1= 4.9986 eV E2= 5.0998 eV E3= 5.2016 eV 

A1 
0.9946 0.0884 0.0544 

A2 
-0.0937 0.9902 0.1031 

A3 
-0.0447 -0.1077 0.9932 

|A1+A2+A3|
2
 

0.733078 0.942647 1.32411 
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Table D.68. Eigenvectors of the CI matrix for case 6 where β=0.05 eV.  

  E1= 4.9755 eV E2= 5.0855 eV E3= 5.2389 eV 

A1 
0.937 0.2238 0.2683 

A2 
-0.3213 0.8535 0.4103 

A3 
-0.1371 -0.4706 0.8716 

|A1+A2+A3|
2
 

0.2291 0.3681 2.4031 

 

 

Table D.69. Eigenvectors of the CI matrix for case 6 where β=0.10 eV. 

  E1= 4.9325 eV E2= 5.0461 eV E3= 5.3214 eV 

A1 
0.8877 0.2332 0.3971 

A2 
-0.4271 0.7392 0.5207 

A3 
-0.1721 -0.6318 0.7558 

|A1+A2+A3|
2
 

0.0832 0.1160 2.8009 

 

 

Table D.70. Eigenvectors of the CI matrix for case 6 where β=0.2 eV. 

  E1= 4.8370 eV E2= 4.9520 eV E3= 5.5110 eV 

A1 
0.846 0.2261 0.4828 

A2 
-0.4973 0.6611 0.5618 

A3 
-0.1922 -0.7154 0.6718 

|A1+A2+A3|
2
 

0.0245 0.0295 2.9460 

 

 

Table D.71. Eigenvectors of the CI matrix for case 6 where β=0.3 eV.  

  E1= 4.7387 eV E2= 4.8539 eV E3= 5.7074 eV 

A1 
0.8288 0.2219 0.5137 

A2 
-0.5231 0.6333 0.5703 

A3 
-0.1988 -0.7414 0.641 

|A1+A2+A3|
2
 

0.0114 0.0130 2.9756 
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Table D.72. Eigenvectors of the CI matrix for case 6 where β=0.4 eV.  

  E1= 4.6396 eV E2= 4.7549 eV E3= 5.9055 eV 

A1 
0.8195 0.2195 0.5295 

A2 
-0.5364 0.6193 0.5734 

A3 
-0.2021 -0.7538 0.6252 

|A1+A2+A3|
2
 

0.0066 0.0072 2.9863 

 

 

Table D.73. Eigenvectors of the CI matrix for case 6 where β=0.5 eV.  

  E1= 4.5401 eV E2= 4.6555 eV E3= 6.1044 eV 

A1 
0.8136 0.218 0.539 

A2 
-0.5444 0.6109 0.5748 

A3 
-0.204 -0.7611 0.6157 

|A1+A2+A3|
2
 

0.0043 0.0046 2.9912 

 

 

Table D.74. Eigenvectors of the CI matrix for case 6 where β=1.0 eV.  

  E1= 4.0412 eV E2= 4.1566 eV E3= 7.1022 eV 

A1 
0.8015 0.2148 0.5581 

A2 
-0.5608 0.5941 0.5767 

A3 
-0.2077 -0.7752 0.5966 

|A1+A2+A3|
2
 

0.0011 0.0011 2.9977 

 

 

Table D.75. Eigenvectors of the CI matrix for case 6 where β=2.0 eV. 

  E1= 3.0417 eV E2= 3.1572 eV E3= 9.1011 eV 

A1 
0.7952 0.2131 0.5677 

A2 
-0.569 0.5857 0.5772 

A3 
-0.2095 -0.782 0.587 

|A1+A2+A3|
2
 

0.00028 0.00028 2.9995 
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Table D.76. Eigenvectors of the CI matrix for case 7 where β13= β23=0.  

  E1= 4.5475 eV E2= 5.2000 eV E3= 5.5525 eV 

A1 
-0.7415 0 0.671 

A2 
0.671 0 0.7415 

A3 
0 1 0 

|A1+A2+A3|
2
 

0.0050 1 1.9952 

 

 

Table D.77. Eigenvectors of the CI matrix for case 7 where β13= β23=0.001 eV.  

  E1= 4.5475 eV E2= 5.2000 eV E3= 5.5525 eV 

A1 
0.7415 0.0026 0.671 

A2 
-0.671 0.003 0.7414 

A3 
-0.0001 -1 0.004 

|A1+A2+A3|
2
 

0.0050 0.9888 2.0062 

 

 

Table D.78. Eigenvectors of the CI matrix for case 7 where β13= β23=0.005 eV. 

  E1= 4.5475 eV E2= 5.1999 eV E3= 5.5526 eV 

A1 
0.7415 0.013 0.6709 

A2 
-0.671 0.0152 0.7413 

A3 
-0.0005 -0.9998 0.02 

|A1+A2+A3|
2
 

0.0049 0.9440 2.0512 

 

Table D.79. Eigenvectors of the CI matrix for case 7 where β13= β23=0.01 eV.  

  E1= 4.5475 eV E2= 5.1994 eV E3= 5.5531 eV 

A1 
0.7415 0.026 0.6705 

A2 
-0.671 0.0304 0.7408 

A3 
-0.0011 -0.9992 0.04 

|A1+A2+A3|
2
 

0.0048 0.8889 2.1062 
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Table D.80. Eigenvectors of the CI matrix for case 7 where β13= β23=0.05 eV.  

  E1= 4.5475 eV E2= 5.1864 eV E3= 5.5661 eV 

A1 
0.7417 0.1231 0.6593 

A2 
-0.6707 0.1441 0.7276 

A3 
-0.0054 -0.9819 0.1894 

|A1+A2+A3|
2
 

0.0043 0.5108 2.4847 

 

 

Table D.81. Eigenvectors of the CI matrix for case 7 where β13= β23=0.1 eV.  

  E1= 4.5474 eV E2= 5.1505 eV E3= 5.6021 eV 

A1 
0.7425 0.2142 0.6347 

A2 
-0.6698 0.2531 0.6981 

A3 
-0.0111 -0.9434 0.3314 

|A1+A2+A3|
2
 

0.0038 0.2267 2.7696 
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Appendix E - Supporting Information for “Development of a 

charge-perturbed particle-in-a-sphere model for nanoparticle 

electronic structure” 

Coordinates of the perturbations for the test cases 

 Case 1a: P1(0,0,4.5); P2 (0,0,-4.5) 

 Case 1b: P1(-1.2287,-2.3450,-3.6388); P2 (1.2287,2.3450,3.6388) 

 Case 2: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0) 

 Case 3: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(0,0,4.5); P6 (0,0,-4.5) 

 Case 4: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(3.18198,3.18198,0); P6 

(3.18198, -3.181980); P7(-3.18198,-3.18198,0); P8 (-3.18198, 3.18198,0) 

 Case 5: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(0,0,4.5); P6 (0,0,-4.5); 

P7(-3.18198,-3.18198,0); P8 (-3.18198, 3.18198,0); P9(3.18198,3.18198,0); P10 

(3.18198, -3.181980,0); P11(0,3.18198,3.18198); P12 (0,3.18198, -3.181980); P13(0,-

3.18198,-3.18198); P14(0,-3.18198, 3.18198); P15(3.18198,0,3.18198); P16 (3.18198,0, -

3.181980); P17(-3.18198,0,-3.18198); P18(-3.18198,0,3.18198) 

 

Figure E-1. A) P orbitals of test case 1a and B) P orbitals of test case 1b. Green: Orbitals. 

Magenta: Point charge perturbations. 
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Appendix F - Supporting information for “Effects of Silver Doping 

on the Geometric and Electronic Structure and Optical Absorption 

Spectra of the Au25-nAgn(SH)18
-
 (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic 

Nanoclusters” 

 

Table F.1. Au24Ag(SH)18
- 
bond lengths calculated at the Xα/TZP level of theory. 

Isomer Center-Surface (Å) Sulfur-adjacent core atom (Å) 

1a (Surface) 2.79 (±0.04) 2.42 (±0.09) 

1b (Unit) 2.79 (±0.02) 2.41 (±0.01) 

1c (Center) 2.78 (±0.01) 2.42 (±0.01) 

 

 

Table F.2. Au23Ag2(SH)18
- 
average bond lengths (in Å) calculated at the Xα/TZP level of 

theory. 

 

Opposite Non-adjacent Adjacent 

Au(center)-Ag 2.85 2.83 2.81 

Au(center)-Au (surface) 2.77 2.78 2.78 

S-Ag 2.53 2.51 2.51 

S-Au (surface) 2.42 2.41 2.41 

 

 

Figure F-1. Excitation spectrum of Au25(SH)18
-
 at the LB94/TZP level of theory. 
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Figure F-2. Geometries of the Au21Ag4(SH)18
-
 isomers at the Xα/TZP level of theory.  

 

 

 

Figure F-3. Geometries of the Au19Ag6(SH)18
-
 isomers at the Xα/TZP level of theory  
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Figure F-4. Geometries of the Au17Ag8(SH)18
-
 isomers at the Xα/TZP level of theory. 

 

 

Figure F-5. Geometries of the Au15Ag10(SH)18
-
 isomers at the Xα/TZP level of theory. 
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Figure F-6. Excitation spectra of the A) 4a, B) 4b and C) 4c D) 4d E) 4e and F) 4f  

Au21Ag4(SH)18
-
 isomers at the LB94/TZP level of theory.  
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Figure F-7. Excitation spectra of the A) 6a, B) 6b and C) 6c D) 6d E) 6e and F) 6f  G) 6g 

and H) 6h Au19Ag6(SH)18
-
 isomers at the LB94/TZP level of theory.  
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Figure F-8. Excitation spectra of the A) 8a, B) 8b and C) 8c D) 8d E) 8e and F) 8f  

Au17Ag8(SH)18
-
 isomers at the LB94/TZP level of theory.  
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Figure F-9. Excitation spectra of the A) 10a, B) 10b and C) 10c Au15Ag10(SH)18
-
 isomers at 

the LB94/TZP level of theory.  
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