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Abstract

Small silver and gold clusters (< 2 nm) display a discrete absorption spectrum
characteristic of molecular systems whereas larger particles display a strong, broad absorption
band in the visible. The latter feature is due to the surface plasmon resonance, which is
commonly explained by the collective dipolar motion of free electrons across the particle,
creating charged surface states. The evolution between molecular properties and plasmon is
investigated. Time-dependent density functional theory (TDDFT) calculations are performed to
study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum
of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long
and short axis of the nanorod respectively), similar to the plasmons observed experimentally for
larger nanoparticles. These plasmon modes result from a constructive addition of the dipole
moments of nearly degenerate single-particle excitations. The number of single-particle
transitions involved increases with increasing system size, due to the growing density of states
available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due
to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode.

The high-energy, high-intensity beta-peak of acenes also results from a constructive
addition of single-particle transitions and | show that it can be assigned to a plasmon. I also show
that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple
configuration interaction (CI) interpretation.

The evolution between molecular absorption spectrum and plasmon is also investigated
by computing the density of states of spherical thiolate-protected gold clusters using a charge-
perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives
good qualitative agreement with DFT calculations at a fraction of the cost. The progressive
increase of the density of states with particle size observed is in accordance with the appearance
of a plasmon peak.

The optical properties of nanoparticles can be tuned by varying their composition.
Therefore, the optical behavior of the bimetallic Au,s.Agn(SH)1s™ cluster for different values of n
using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed

with increasing silver content, in accordance with experimental results.
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Abstract

Small silver and gold clusters (< 2 nm) display a discrete absorption spectrum
characteristic of molecular systems whereas larger particles display a strong, broad absorption
band in the visible. The latter feature is due to the surface plasmon resonance, which is
commonly explained by the collective dipolar motion of free electrons across the particle,
creating charged surface states. The evolution between molecular properties and plasmon is
investigated. Time-dependent density functional theory (TDDFT) calculations are performed to
study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum
of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long
and short axis of the nanorod respectively), similar to the plasmons observed experimentally for
larger nanoparticles. These plasmon modes result from a constructive addition of the dipole
moments of nearly degenerate single-particle excitations. The number of single-particle
transitions involved increases with increasing system size, due to the growing density of states
available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due
to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode.

The high-energy, high-intensity beta-peak of acenes also results from a constructive
addition of single-particle transitions and | show that it can be assigned to a plasmon. I also show
that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple
configuration interaction (CI) interpretation.

The evolution between molecular absorption spectrum and plasmon is also investigated
by computing the density of states of spherical thiolate-protected gold clusters using a charge-
perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives
good qualitative agreement with DFT calculations at a fraction of the cost. The progressive
increase of the density of states with particle size observed is in accordance with the appearance
of a plasmon peak.

The optical properties of nanoparticles can be tuned by varying their composition.
Therefore, the optical behavior of the bimetallic Au,s.nAgn(SH)1s™ cluster for different values of n
using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed

with increasing silver content, in accordance with experimental results.
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Chapter 1 - Introduction

Plasmons in noble metal nanoparticles

For centuries, gold and silver metals have been considered highly valuable by many
civilizations in all continents and used to make jewelry and currency. The reason for the high
value of these noble metals is the fact that they are inert and as a result, resistive to degradation
by harsh environments. However, when the size of these systems decreases down to the
nanometer size regime, they display unique catalytic, electrochemical and optical properties that
have attracted a lot of research interest over the past two decades. One of the fascinating aspects
of gold and silver nanoparticles is their plasmonic properties.’” Upon excitation with an
electromagnetic wave of wavelength A, these nanoparticles have the unique capability of locally
enhancing the electric field at their surface.® This phenomenon is explained by the localized
surface plasmon resonance (LSPR), which is the collective oscillation of the conduction
electrons across the system.? The main plasmon mode is the dipolar mode, as shown in Figure 1-
1. Higher order modes may occur in large nanoparticles (Radius~ A) due to retardation effects.'®
12 In this thesis, 1 will consider systems where the dipole approximation is valid, which means

that retardation effects are negligible (Diameter<<).

Figure 1-1. Collective electron oscillation under electromagnetic radiation in spherical

noble metal nanoparticles.

Electric field

*Reproduced with permission of Annual Reviews from Ref*(Copyright Annual Reviews
2007).

The surface plasmon resonance of noble metal nanoparticles makes them suitable for a

13,14 15-17

wide variety of applications in fields such as energy conversion and storage, " sensing,™>"",



imaging,*® nanoantennas,*® and nanomedicine.*>?° For instance, silver nanoparticles have the
property to enhance the Raman signal of molecules in their vicinity and can be used for single-
molecule detection via surface enhanced Raman spectroscopy (SERS).?%* On the other hand,
gold nanoparticles are particularly well suited for biomedical applications due to their low
toxicity.?°

For spherical systems, the plasmon is manifested by a broad high-intensity peak in the

absorption spectrum, usually in the UV-Vis.’®?® The wavelength and intensity of the absorption

23-25 10,26 27,28

peak can be modulated by modifying the particle size, shape,™*> composition“"*" and
dielectric environment.?** Nanorods and nanowires are among the most studied shapes because
of the sensitivity of the wavelength of their plasmon mode to their aspect ratio (length /diameter).
These elongated systems display two plasmon modes: a low-energy longitudinal mode,
corresponding to photon absorption along the main axis of the system and a transverse mode,
which corresponds to light absorption along the short axis of the system.*** The longitudinal
mode can shift down to the IR regime with increasing aspect ratio, which is particularly useful
for biomedical applications such as cancer therapy since IR radiation can penetrate through
tissues.***®  On the other hand, the wavelength of the transverse mode shows very little

sensitivity to the particle’s aspect ratio.
Theoretical modeling of plasmons in noble metal nanoparticles

Classical electromagnetic theory
The optical properties of silver and gold nanoparticles have been studied using classical
electromagnetic theory.*>*"*° In particular, Mie theory has proven successful in reproducing the
plasmon extinction of spherical particles.**? It was later extended by Gans for cylindrical
particles.”® In Mie theory, the particle is embedded in a dielectric medium and submitted to an
electromagnetic field.** The Maxwell equations are then solved. Within the dipole

approximation, the extinction cross-section of a spherical particle is given by:'%3%4

_ 247°Re g,

C Py > -
(6,+2¢,) +¢,

(1.1)

where R is the radius of the particle, &, and ¢, are the real and imaginary part of the dielectric

function & of the metal and &y, is the dielectric constant of the surrounding medium. 4 is the



wavelength of the incident field. A plasmon occurs when &,=-2¢,, assuming that ¢, is small and
weakly dependent on A. The extinction cross-section is the sum of the absorption and scattering
contributions. For particles smaller than about 20 nm, the main contribution to the extinction is
the absorption and scattering is negligible.”® The dielectric constant of the bulk metal is not a
good value for small particles due to the electronic confinement. One common approach is to
consider the Drude dielectric function, which applies for systems whose optical properties are
only a function of the free conduction band electrons. The Drude dielectric function is given
by:39,46

2
@

o e(w)zl—m (1.2)

where v is the damping parameter, o is the frequency of the incoming radiation and w,, is the

2
. Mefs 1S the effective mass of the electrons, ¢, is the

plasma frequency given by: o, =
mef‘f "90

permittivity, e is the electron charge and n is the density of free electrons. This model works well
for alkali metals and reproduces the red-shift of the plasmon peak with decreasing cluster size
(note that alkali clusters also have a plasmon but their instability makes them inadequate for
practical applications).*’*® This approach does not take into consideration the interband
transitions (transitions out of the d-band) in noble metal nanoparticles, which result in a broader
absorption spectra and a blue shift of the resonance frequency with decreasing cluster size.**
Interband excitations were successfully included by expressing the dielectric function in terms of
the sum of the free electron contribution (the Drude model) and the interband contribution.®*3

Analytical Mie theory cannot be easily applied to particles with complex shapes due to
the difficulty in deriving an analytical cross-section for such systems. Numerical methods such
as the finite-difference time domain (FDTD)>* and the discrete dipole approximation (DDA),*
which rely on the discrete mapping of space, can be used instead. These numerical methods have
successfully modeled the plasmon of nanoparticles of various shapes.3237#85657

Classical electromagnetic theory does not account for quantum effects. Such effects may
be very important for instance to describe the plasmon coupling with small molecules.?*%*° In
addition, silver and gold clusters (< 2 nm) display molecular properties, as illustrated by their
discrete absorption spectrum.***® As a result, first principles calculations have been attempted

and are discussed next.



First principle calculations on silver and gold nanoparticles

First principle calculations have been performed on a large variety of noble metal
nanoparticles using the time-dependent local density approximation (TDLDA) with the Jellium
model.®*®3 In this method, the nuclei are replaced with a single positive charge uniformly spread
out. Plasmons of large systems can be modeled with this method due to the computational
efficiency. However, ligand shells cannot be included with this method and structural effects
cannot be determined since the nuclei are not explicitly considered.

Time-dependent density functional theory (TDDFT) with explicit nuclei has been used on
a wide variety of clusters to investigate the effect of size and shape on the optical properties of
the clusters.’*®*"? The TDDFT evolution of the absorption spectrum of tetrahedral silver clusters
with increasing size seems to converge to classical theory results, emphasizing the connection
between molecular properties and plasmons.®* Due to the high computational cost, systems with
more than about 300 atoms cannot be modeled. With this method, the structural effects can be
accounted for and information on electron dynamics can be obtained. In this section, we will
discuss first principle calculations performed on 1) spherical ligand-protected gold clusters and

2) bare noble metal nanorods since these systems are analyzed in this thesis.

Spherical ligand-protected clusters

One important type of noble metal clusters is the thiol-protected gold clusters. Many have
been synthesized and their structures characterized.”’” They are commonly composed of a
metallic core surrounded by linear RS-Au(l)-SR and V-shaped RS-Au(l)-SR-Au(l)-SR “staple
motifs”. Due to the ligands, these systems cannot be appropriately described with TDLDA and
TDDFT with explicit nuclei needs to be used. The Auys(PET)1s” (PET=phenylethylthiol) cluster

is shown in Figure 1-2 as an example.



Figure 1-2. Structure of the thiol-protected Au,s(SR)1s™ cluster.

*The ligand R=PET has been replaced by R=H for clarity. Key: Yellow= gold, orange=sulfur
and white=hydrogen. Coordinates from Ref®.

The role of the staple motifs is to protect the reactive gold core and their arrangement was
explained in terms of the “divide and protect model”.” The DFT-calculated electronic structure
of the Au,s(SH)1s” cluster is shown in Figure 1-3A. The frontier orbitals of these nanoparticles

8082 and define the sp-band. They mainly result from

are commonly named “superatom orbitals
linear combinations of the atomic gold valence s and p orbitals. The superatom orbitals look like
the familiar s, p, d orbitals of the hydrogen atom but are delocalized over the metallic core
(hence their name). They are labeled 1S, 1P, 1D,...These levels may be split due to the ligand
field, as will be discussed in chapter 7. For a cluster with the stoichiometric formula AnXuLs?, A
corresponds to gold, X corresponds to electron-withdrawing ligands and L corresponds to Lewis
ligands. Z corresponds to the total charge of the cluster. If the number of core electrons given by
n*=N-M-Z is equal to a “magic number” (n*=2, 8, 18, 34, 58...), the cluster tends to be stable.®°
These numbers correspond to a fully occupied superatomic electronic shell. For the Au,s(SH)1s
cluster, n*=25-18+1=8, which corresponds to a full 1P shell. Below the sp-band is a large d-
band. These orbitals mostly have atomic d-character but also contributions from the 3p orbitals
of the sulfur ligands. They tend to be localized.

The absorption spectrum of the Au,s(SH)1s™ cluster was calculated using TDDFT (Figure
1-3B). Discrete features were obtained, in agreement with experiment, and were interpreted in
terms of the electronic structure of the cluster. Low energy excitations occur within the sp-band
(1P—1D) and are labeled intraband whereas higher energy excitations between the d-band and
the sp-band are called interband. Note that the absorption spectrum cannot be divided in terms of
core and ligands contributions, showing that the thiol ligands represent an integral part of the

cluster and greatly affect its electronic structure.®84



Figure 1-3. A) Electronic structure and B) theoretical absorption spectrum of the
Aups(SH)1s™ cluster.
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The transition from the discrete absorption spectrum of the small systems to the strong
plasmon absorption of the large systems can be observed between 1.5 and 2 nm.®” The
Aui44(SH)eo and Ausi4(SH)gs clusters are within that size range and have been studied using
time-dependent density functional perturbation theory.®” One broad absorption peak occurs at
540 nm for these systems. Transition densities for these systems show a collective dipole
character. For the Aui44(SH)so Cluster, the density is mostly within the core with a small amount
at the outer surface of the particle. For the larger Ausi4(SH)ge Cluster, the electron density is
mostly focused on the outer surface, which is expected for the surface plasmon resonance. The
authors showed that the ligands are responsible for the enhancement of the surface plasmon.®’

This also shows the importance of the ligand shell in the optical properties of these clusters.

Elongated noble metal clusters
The extinction spectra of noble metal nanorods display two main modes: the longitudinal
mode, corresponding to excitations along the long axis of the system and the transverse mode,
which corresponds to excitations along the short axis.®'®% Both classical electromagnetic theory
and first principle calculations have been performed to model the optical properties of silver and
gold nanorods.**®" The electronic structure of silver nanorods with sizes between 13 and 67
atoms was analyzed using density functional theory.” The frontier orbitals of these systems are

delocalized over the entire structure and have cylindrical symmetry.” They are labeled nL,



where L= X, I1, A... and n and m are quantum numbers corresponding to the number of radial
nodes plus one and the number of axial nodes plus one respectively. Like the superatom orbitals
of the thiolate-protected clusters described above, they result from a linear combination of the
singly occupied s orbitals of the silver atoms. The TDDFT absorption spectra of these nanorods
display a strong low-energy longitudinal peak, corresponding to a superposition of Z—X%,
IT—II... transitions and a high energy transverse peak corresponding to a superposition of T—1II,
[I— X, [I-A. .. transitions.?®™ The electronic confinement along the long axis of the rod
decreases with increasing length but it remains constant along the short axis. As a result, the
longitudinal peak shifts to the red while the transverse peak remains at nearly constant energy.°
TDDFT calculations performed on cigar-like and hexagonal nanorods at the BP86/DZP level of
theory show similar trends.?® Few TDDFT calculations were performed on gold nanorods due to
the higher computational cost. Liao et al. calculated the TDDFT absorption spectra of gold

nanorods with up to 84 atoms and obtained very broad features due to relativistic effects.®®

Objectives and overview of the thesis
Classical methods such as the discrete-dipole approximation (DDA),>*® finite-difference time
domain (FDTD)**®” and Mie theory* can successfully describe the plasmon peak energy and
intensity of noble metal nanoparticles.®” However, these approaches do not capture quantum
effects which may be important, for instance when describing the interaction of these particles
with small molecules.>*#8% |n addition, quantum effects play a critical role in very small systems
(less than about 2 nm) as shown by the discrete features occurring in their absorption spectrum.
A uniform description of the optical properties of noble metal particles of all sizes is necessary.
The main objective of this thesis is to determine the origin of the plasmon resonance in noble
metal nanoparticles and show that plasmons may occur at the molecular level. The second
objective is to provide a uniform description of the optical properties of plasmonic systems.
Silver and gold atoms have a similar electronic structure: a singly occupied valence s orbital and
a fully occupied d-band. Due to relativistic effects, the gap between the d and s orbitals of silver
is larger than for gold, which leads to differences in the optical behavior of silver and gold
nanoparticles. The final objective of this thesis is to compare the optical properties of silver and

gold nanoparticles and define the importance of relativistic effects.



Chapter 2 describes the theory and computational methods used in this research. In
chapter 3 (Guidez, E. B.; Aikens, C. M. Nanoscale 2012, 4, 4190), the optical properties of both
silver and gold nanowires (linear atomic chains) are analyzed. In chapter 4 (Guidez, E. B.;
Aikens, C. M. J. Phys. Chem. C 2013, 117, 12325), | extend this study to systems with a larger
diameter. Chapter 5 (Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 21466) describes
the plasmonic behavior of linear polycyclic hydrocarbons and the similarities with noble metal
nanorods are discussed. A configuration interaction (Cl) model to calculate plasmon peak
energies and oscillator strengths is discussed in chapter 6. Chapter 7 (Guidez, E. B.; Aikens, C.
M. Phys. Chem. Chem. Phys. 2012, 14, 4287) shows the development of a charge-perturbed
particle-in-a-sphere model to determine the electronic structure of thiol-protected gold
nanoparticles. In chapter 8, the CI method is applied to multiple silver clusters and the link
between small clusters and large nanoparticles is discussed. Finally, the effect of silver doping on
the optical properties of the Au,s(SH)1s cluster is analyzed in chapter 9 (Guidez, E. B.; Makinen,
V.; Hakkinen, H.; Aikens, C. M. J. Phys. Chem. C 2012, 116, 20617).



Chapter 2 - Theory and computational methods

Theory of quantum mechanics

The Schrddinger equation

Classical mechanics dictate that the evolution of a macroscopic system can be derived by
solving Newton’s equations of motion, provided we know the state of this system at an original
time to. However, in the case of microscopic particles like electrons, the Heisenberg uncertainty
principle dictates that their position and velocity cannot be determined simultaneously. The laws
of classical mechanics therefore do not apply and quantum mechanics must be used. In quantum
mechanics, all information about the system of interest is contained in a wavefunction ¥ , which
depends on both the coordinates of the particles (noted r) and on time t. The probability of

finding a particle at a position between r and r+dr at time t is given by the probability density p:
p(r,t)=|¥(r,t) dr 2.1)

The equation that describes the state of a quantum-mechanical system (such as an atom or a

molecule) is the time-dependent Schrédinger equation (TDSE), which in atomic units reads:

i% — A (0w t) 2.2)

where tistimeand i = \/—_1 H is the Hamiltonian and it is defined in atomic units as:

H(r,t) =—i%vf +iV(ri,t)+i

i i-1 i~ T

zz,

(2.3)

The subscripts i and j refer to the quantum mechanical particles in the system. N is the total

number of particles. m; and Z; correspond to the mass and charge of the particle i in atomic units

respectively. The Laplacian operator V? refers to the second derivative with respect to the
particle position. rj corresponds to the distance between particles i and j. The first term of the
Hamiltonian represents the kinetic energy of the particles. The second term corresponds to the
external potential acting on each particle i. The third term represents the coulomb interaction
between particles i and j.

We now consider wavefunctions that can be written as a product of a time-dependent part

and a position-dependent part such that:



Y(r,t)=f(Ow(r) (2.4)
where f(t) is a function of time only and (r) is a wavefunction that depends only on the position
of the particles. y(r)describes the states of a system where the probability density does not

change with time. Such states are called stationary states.

If the system does not experience any time-dependent external forces, the time-
dependence in the Hamiltonian disappears and one can derive the time-independent Schrodinger
equation (TISE) which has the following form:

Hy (r) = Ey(r) (2.5)

where E is the energy of the system in its stationary state w(r).

The Born-Oppenheimer approximation

In atomic units, the time-independent Hamiltonian H for a non-relativistic molecule or

atom has the following form:

D U » it
2 ' “om, " 4

M
i1 it A fia i

N3l d¥dzz
2 R R 26
The subscripts i and j refer to the electrons whereas A and B refer to the nuclei. N and M
represent the number of electrons and nuclei of the system respectively. Ma and Z, are the mass
and charge of nucleus A respectively. We note that in atomic units, the mass of the electron is
equal to 1 and the charge of the electron is -1. rjj corresponds to the distance between electrons i
and j. ria refers to the distance between electron i and nucleus A. Rag corresponds to the distance
between nuclei A and B. The first and second terms of equation 2.6 correspond to the kinetic
energy of the electrons and nuclei respectively. The third term corresponds to the coulomb
attraction between electrons and nuclei whereas the last two terms represent the inter-electronic
and inter-nuclear repulsion respectively.

Even the time-independent Schrodinger equation (eq. 2.5) is impossible to solve for large
molecules of interest to chemists when using the full Hamiltonian (eq. 2.6). Approximations
must therefore be made to render the calculations manageable. One of these approximations is to
consider that the nuclei, being much heavier than the electrons, move slower. Consequently,

electrons can be assumed to move in a field of fixed nuclei. The second term in eq. 2.6 can be
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neglected and the last term is a constant. The new Hamiltonian describing the electronic motion

becomes:
H =H, +V,, 2.7)
where |:Iel is the electronic Hamiltonian which is written as:

n N 1 5 N M ZA N N 1
H, :_szi _ZZ_+Zer_ (2.8)
i=1 j>

i=1 i=1 A fia i

and Vuw is the inter-nuclear repulsion term:

:izz WLy

1 B>A A

(2.9)

Since Vuw is a constant for any set of nuclear coordinates, it can be omitted in the time-

independent Schrodinger equation (eg. 2.5) which gives:

|:Iel l//el = EeI l//el (210)
This equation can be solved for many different possible sets of nuclear configurations.

Therefore, the purely electronic energy Eg and the electronic wavefunction i, depend

parametrically on the nuclear coordinates. We can now add the internuclear-repulsion term

defined in equation 2.9 to the purely electronic energy Eg to obtain the total electronic energy U:
U=E,+Vym (2.11)

The time-independent Schrodinger equation (eq. 2.5) can also be solved for the nuclear motion:

I (2.12)
The nuclear Hamiltonian is:
i L2 +U({R,}) (2.13)
A=l 2M A

where the first term is the sum of the kinetic energies of the nuclei and the second term

represents the average field of the electrons (eq. 2.11) for the set of nuclear coordinates {R,}

considered. The nuclear energy Enyc includes electronic, vibrational, rotational and translational
energies. The total molecular wavefunction using the Born-Oppenheimer approximation can be

written as a product of the nuclear and electronic wavefunctions:

11



V=Vg Vi (214)

Relativistic effects
When electrons move with a velocity comparable to the speed of light, it leads to an

increase of their mass. Electrons in atomic s orbitals undergo a mass increase that is given by:

mO
m = %1— Wiy (2.15)

where m, is the rest mass of the electron, v is the velocity of the electron and c is the speed of

light (¢ =137.04 a.u. = 300000 km/s). The velocity of a 1s electron in a hydrogen-like atom
relative to the speed of light is approximately Z/c, where Z is the atomic number of the element
and c is the speed of light in atomic units.”® We can see that for high values of Z, the velocity of
the electron represents a large portion of the speed of light. Therefore, the 1s electron mass
substantially increases. The results of this mass increase on the properties of heavy metal
compounds are referred to as scalar relativistic effects. The radial function of a hydrogen-like

atomic 1s orbital is given by:

Z 3/2
R(r)* = 2(_j ol (2.16)
a
where ais the Bohr radius defined in Sl units as:
2
4o 47[80? (2.17)
me

where &, is the permittivity of vacuum with a value of 8.8541878-10"2 C*N™'m?, hi=h/2x (his

the Plank constant equal to 6.626069-10%%J-s), e is the elementary charge with a value of
1.6021765-10°C and m is the relativistic electron mass. For elements with a high Z, the mass
of the 1s electron is significantly increased and the Bohr radius is reduced. As a result, the
distance between the nucleus and the 1s electron will decrease. We note that for a non-relativistic
1s electron, the Bohr radius is equal to 1 a.u. since the electron mass is equal to its rest mass. In
order to maintain orthogonality, the higher s orbitals (and to a lesser extent the p orbitals) must
also shrink and therefore their energy will decrease. On the other hand, the d and f orbitals are

more diffuse and become higher in energy due to the higher shielding of the inner s electrons.

12



Relativistic effects can strongly affect the geometries, optical properties, electrochemical
properties and physical properties of heavy metal compounds.®®®* Since this work focuses

mainly on silver and gold nanoparticles, it is critical to take these effects into account.
Computational methods

Density functional theory (DFT)

DFT is one of the most widely used methods for ground state electronic calculations due
to its high efficiency compared to correlation methods. A basic description of the method is
given in this section. For more details, the reader is invited to consult some selected publications
and texts.* DFT calculates the ground state energy Eq and other ground state molecular
properties as a function of the ground state electron density po. Unlike the wavefunction, which
depends on 3N spatial coordinates and N spin coordinates (where N is the number of electrons),
the ground state electron density is a function of only on three variables: the coordinates x, y and
z. In DFT, all ground state properties of interest are calculated in principle as a function of the
electron density only (and avoid wavefunctions), resulting in higher computational efficiency.

The Hohenberg-Kohn theorem

The ground state wavefunction of an N-electron molecule is an eigenfunction of the
electronic Hamiltonian given in equation 2.8. We define the external potential v(r.) acting on

electron i for a real system as the potential generated by charges other than the electrons (aka the

nuclei in the absence of additional potential):

v(r)=- —* (2.18)

M
Z A
A1 fia

The Hohenberg-Kohn theorem states that there is a one-to-one relationship between the ground
state electron density po and the sum of the external potentials acting on each electron (the
nuclear attraction potential energy function v(r)).* A direct consequence of this relationship is
that the ground state density determines the ground state energy Eo and other ground state
properties. Eq is a functional of the ground state density (E, = E[ p,]). The ground state energy

is given by the sum of the kinetic energy T, nuclear-electron attraction V. and electron-electron

repulsion Vee:

13



E,=E [,00] :-F[po] +\7Ne [po] +\7€‘e [po] (2.19)
Each of these contributions is also a functional of the ground state electronic density.

Overbars denote averages. The second term of this sum is known and given by:

VNe = <lPO

ZV(“)“P()):fpoV(r)dr (2.20)

However, the dependence of the kinetic energy and electron-electron repulsion components on pg

is not known.

The Kohn-Sham (KS) method

In order to evaluate the density of the interacting system, Kohn and Sham considered a

fictitious system of N non interacting electrons that experience an external potential v, (r;) such

that p,(r) = p,(r) 1% The subscript s denotes the non-interacting system. Since the electrons are

not interacting, the electronic Hamiltonian for this fictitious system given in equation 2.8

becomes:
~ A 1 N ~
AL = =3 Sv o (n) |- XA @21

where h*® = —%Vf +V, (r,) is the Kohn-Sham Hamiltonian for electron i. The ground state

wavefunction of this non-interacting system can be written as a Slater determinant:

Yoo :|751/1’2-'-}CN> (2.22)
i are the occupied Kohn-Sham spin-orbitals and can be written as a product of a spatial function

w and a spin function o:

X =vyi(r)o; (2.23)
The spin functions can only have two values: +1/2 and -1/2. For closed-shell systems, the
electrons are paired in the spatial orbitals, one with spin +1/2 () and the other with spin -1/2 ().

In the restricted case (all electrons are paired), the ground state determinant has the form:

Yoo =|wivlviwl i wls) (2.24)
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The orbitals w* and y/ have a spin and f spin respectively. The spatial functions y; are

eigenfunctions of the Kohn-Sham Hamiltonian and are called the Kohn-Sham orbitals. The

electron density can be derived from these orbitals by the relation:

N 2
Po=ps =2 fily (2.25)
i=1

fi is the occupation number of the orbital (fi=2 for a fully occupied orbital). According to the
Hohenberg-Kohn variational theorem, the true ground state density is the one that minimizes
the ground state energy. Therefore, the Kohn-Sham orbitals can be optimized such that the

resulting electron density minimizes the ground state energy. This optimization can be done by

solving the KS equation (provided we have the appropriate potential v, (r;)):

hw, = sy, (2.26)
where the eigenvalues ¢; correspond to the Kohn-Sham orbital energies. Now, we have to
determine the external potential of this non-interacting system that would yield an electronic
density equal to the density of the real system. We first write the two unknown components to
the ground state energy in equation 2.19 in relation to this non-interacting system. For the kinetic

energy we have:

T[po] :_%<Ts,o W.o)+AT [p] (2.27)

2.V

where the first term of the sum represents the kinetic energy contribution to the ground state of

the non-interacting system and the second term represents the kinetic energy difference between

the real and non-interacting system. Using the Slater-Condon rules, we can rewrite eq. 2.27:

Tlar] =2 2w [vi]wi )+ AT [p,] (2.28)

where (1) labels electron 1. For the electron-electron repulsion we have:

Ve[ py] = %ﬂmdndrz +AV e[ p] (2.29)

I"12

where the first term of the sum represents the Coulomb interaction for a smeared out charge. r,,

is the distance between coordinates r, and r,. The term AV [ o, ] is the difference in inter-
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electronic repulsion energy between the real system and the non-interacting system. The two

unknown terms AV [ p,]and AT [ p,]define the exchange-correlation energy functional:

Ec[2]=AT [,]+ AVee [ 9] (2.30)
The external potential v_(r,) of the Kohn-Sham Hamiltonian in 2.21 that minimizes the ground

state energy satisfies:

N4 r
v, (1) = —Z—"+Id3n@+vxc @ (2.31)
a1 fia o

The first term is the external potential of the nuclei, the second term is the Hartree potential

(electron-electron interaction) and the last term is the exchange-correlation potential given by:

SE,. [p(]
op(r)

This last term includes all many-body effects. Since the functional Ey. is unknown, various

v, (r)= (2.32)

approximations have been developed. These approximations can be classified in Jacob’s ladder,
as shown in Table 2.1. The key to accuracy resides in the good approximation of the exchange-
correlation functional. There is no single good functional. The functional to choose depends on
the system and properties investigated.
In practice, the KS equations are solved self-consistently:
1) Take the KS orbitals ™ (n is the step number. n=1 corresponds to the initial guess).
Calculate p™ from equation 2.25.
2) Construct the KS operator h**®" using the potential given in equation 2.31.
3) Solve the KS equation 2.26 using the KS operator derived in step 2) to get new improved
orbitals "
4) Calculate p™V . 1f E[p™Y] —E[ p™]< 4, where 4 is a preset convergence criterion, the

calculation is converged. Otherwise, go back to step 1 where ™ — " Repeat until

converged.
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Table 2.1 Jacob’s ladder

Functional category Density dependence Examples

Local Density Approximation | p VWN, ' x %100

(LDA)

Generalized-Gradient p, Vp BP86,%*% pw91,™

Appoximation (GGA) PBE'®

Meta-GGA p, Vp, V¥p TPSS,*™ Mo6-L""

Hybrid p, Vp, V°p, exact Hartree-Fock | B3LYP,%*'® ppg0'®
exchange

Construction of the molecular orbitals.
The molecular KS orbitals are usually expanded in linear combinations of atomic orbitals

b
v =D cio, (2.33)
=1

The atomic orbitals ¢, are in turn expanded as a linear combination of Slater orbitals or

Gaussian orbitals. The former is a function of e *" where ( is a coefficient representing the decay

of the function. The latter is a function of e . The Slater orbitals describe more accurately the
features of the molecular orbitals and fewer Slater orbitals are needed in the expansion of the

atomic orbitals. The Amsterdam Density Functional (ADF)'*°

program used in most of this
research uses Slater orbitals. The reason Gaussian orbitals are often used is that the four-index
integrals that have to be calculated can be expressed analytically as opposed to numerically with
Slater functions. The number of Slater orbital used to model an atomic orbital represents the
basis set. A double-zeta (DZ) basis set uses two Slater functions per atomic orbital. A triple-zeta
(TZ) basis set uses three Slater functions, a quadruple zeta (QZ) basis set uses four Slater
functions, and so forth. A larger basis set yields higher accuracy but also increases the
computational cost. Additional features like polarization functions and diffuse functions may be
added to the basis to account for orbital hybridization in polar bonds and loosely bound electrons

(such as in anions, hydrogen bonds...) respectively. Polarization functions are labeled “nP”

where n is the number of polarization functions (for instance TZP, QZ4P...) and diffuse
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functions are labeled with “-nD” where n is the number of diffuse functions (for instance QZ3P-

2D). A more detailed description of basis sets can be found in Ref*'.

Relativistic effects: The zeroth order regular approximations (ZORA)
Relativistic effects are commonly integrated into the one-electron operator of the
Hamiltonian in equation 2.8. The expression for the relativistic one-electron Hamiltonian was

derived by Dirac:**#!3

.

and & is the electron spin matrix. f)i is the momentum operator for particle i.

hy (i) =cc; B +(3 —1,)c"+ Y. —2 (2.34)

A Bia

(@)

2 2

G . (1, 0
qJ and g = (02 ? J are the 4X4 Dirac matrices where I, is the 2X2 identity matrix
0

Qi

The solution of the TISE for this Hamiltonian is a 4-electron spinor:

U
p° =["Lj (2.35)
U and L denote the upper and lower components of the Dirac wavefunction respectively. Each of
these components has a a-spin component and a B-spin component. The upper and lower spinors
are not linearly independent:

v =(i ko pjl//u (2.36)
2¢

with k :(1—\/ _ZE).
2C

Only the upper spinor is needed to describe electronic states. However, the relation between the
lower and upper components must be enforced as a constraint to avoid variational collapse.

In this work, relativistic effects are treated with the zeroth order regular approximation
(ZORA)."*® |n the regular approximation, the parameter k in the coupling between upper and
lower component spinor is approximated using an expansion in a power series. ZORA
corresponds to the approximation where the power series is cut to the zeroth order term. Since
ZORA is variationally stable and computationally efficient, it is one of the preferred methods for

relativistic calculations.
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Time-dependent density functional theory (TDDFT)

When a system is submitted to an external perturbation, for instance an electromagnetic
field, its electronic structure undergoes changes that depend on time. TDDFT allows the study of
the evolution of the electron density in real time (RT-TDDFT). A robust linear response
formalism (LR-TDDFT) was also developed to obtain useful excited states properties in the
frequency domain such as excited state energies, oscillator strengths, gradients, etc... One great
advantage of TDDFT compared to correlation methods is that it can simulate larger systems. One
of the main limitations is the poor description of charge-transfer states. The basics of the method
are given in this section but the reader is invited to consult selected references for more
details."*"*? First, | will state the Runge-Gross theorem, which is the foundation of the method.
Then, | will state the time-dependent Kohn-Sham equations and finally, I will discuss the linear

response formalism, which is used in the TDDFT calculations performed.

The Runge-Gross theorem

The Runge-Gross theorem is the foundation of TDDFT and can be viewed as the time-
dependent analog of the Hohenberg-Kohn theorem. It states that there is a one-to-one mapping
between the time-dependent external potential v_ (r,t) and the time-dependent electron density

p(r,t) up to a phase factor C(t). This means that if two different time-dependent potentials

B
ext

ve‘;t(r,t) and v__ (r,t) are applied on a system in its ground state at t=t,

A B
(v (r,t)=v

.o (1) + C(t)), the two resulting time-dependent electron densities p"(r,t) and
p°(r,t) will be different at any time t;>to. Similar to the Hohenberg-Kohn theorem, this means

the external potential can be expressed as functional of the electron density (there is a one-to-one

correspondence) and all properties of the system can be obtained.

The time-dependent Kohn-Sham equations

Like we did for the time-independent scheme, we now define a non-interacting system
with an electron density ps equal to the electron density of the real system p. The non-interacting
system is represented by a single determinant '(r,t). If for instance an electron is excited from

an orbital y to an orbital v, we have:

(0 =y (r Opd (0.5 (n w4 (1) (2.37)
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The electron density can be calculated from the time-dependent Kohn-Sham orbitals y,(r,t):

p(rt)=p(r,t)= z f; |‘//i (I’,t)| (2.38)

f.is the occupation number of the spatial orbital v/, . The time-dependent density can be obtained

by solving the time-dependent Kohn-Sham (TDKS) equations until self-consistency is reached.
The TDKS have the following form:

SO =y (2.39)

where

h s (r,1) :—%vf +Vv,[p](r,1) (2.40)

The time-dependent potential of the non-interacting system can be written as a sum of three

terms:

VS [p](r’t) = Vext [p](r1t) +VHartree[p](r’t) +ch[p](r1t) (241)

The external potential v

ext

includes the potential from the nuclei and the potential generated by

for instance an external electromagnetic field.
The Hartree potential is written as:
Viree (1,1 = [ 4°, 2t (2.42)
h2
The TDKS equations can be solved iteratively until self-consistent like in the static case. Two
questions remain: 1) how do we define self-consistency? 2) What is the exchange-correlation

potential v, ? We first answer question 1). Contrary to static DFT, the density and energy are not

conserved quantities and we cannot derive an equivalent to the Hohenberg-Kohn variational
principle. Instead, we have to find the state that corresponds to a stationary point of the quantum

mechanical action integral A, which is a functional of the density:
t
1 . 5 n
A1 = [ (¥ 0)  - A (| PLoltr) (243)
()

H is the Hamiltonian, which is written as a sum of the kinetic energy and electron-electron

repulsion term:

20



H= _i%vf +i§N:£ (2.44)

i1 i1 joi T

The exact density can be determined by solving the Euler equation:
oAl _
op(r,t)

The action integral can be rewritten in the following form:

(2.45)

Ao =B, [p1- [ [ a0, 00, (1,0 -7 [ [, 202D a1y 4y

Bs is the universal functional for the non-interacting system:

YLoI(r,1)) (2.47)

B, [o1 = [t (el 2T ()

where T is the time-independent kinetic energy operator. The first three terms of 2.46 can be
readily evaluated. The fourth term of equation 2.46 is the exchange-correlation functional and it
is unknown. This leads us to question 2: what is the exchange-correlation part of the potential?
The exchange-correlation part of the potential can be expressed as:

ALp]
op(r,1)

The first approximation for the action functional is the adiabatic approximation, where the time-

Vye (r,1) = (2.48)

dependent exchange-correlation functional is replaced by a time-independent one (eg. 2.32). This

is a good approximation if the probability density changes slowly with time.

Time-dependent density function response theory (TD-DFRT)
The following section summarizes the formalisms used in TD-DFRT used in ADF and is
based on Ref'?!. The derivation of properties like excitation energies and polarizabilities only
require the linear density response of the system. The linear response of a system to a time-

dependent electric field is given by:

=10+ o (@) E; (@) (2.49)
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where g is the dipole moment in direction i at time t and ,ui(o) is the dipole moment in direction i
(i=x, Y, 2) at t=0 (molecule in the ground state). o () is the linear dipole polarizability tensor,
which has poles at the vertical excitation frequencies , .

We need the first-order change in the time-dependent density of the spin o electrons p®
in order to derive the polarizabilities. The first order time-dependent density in terms of KS
orbitals in given by:

PO (r, ) = Z[ (@)W (W, (D +PE (@), (N, ()] (2.50)

The indices i, j, k... and a, b, c... denote occupied and unoccupied orbitals respectively. The
indices o and z denote electron spins. P is the first order density matrix. Expanding the KS
equations to first order of the applied field yields the following set of equations that can be

solved to determine the density matrix elements:

Zlié‘aré‘ljé‘ab g +a) + Klaa Jbr] +Z Klaa jbr Jb ext]iacy

jbr jbr

(2.51)
Zl:aardlj 5ab ~ s + Cl) + KaIO' bjT:I + Z Kala jbr jb 5Vext ]aio-
jbr jbr

where & is the Kronecker delta,  is the frequency of the electromagnetic wave, and ¢ are KS

orbital energies. The matrix elements of the external field [V, ] _are given by:

[Ver Ly =[0Vert Ly = [ AN, (N30, (N, (1) (2.52)

In the dipole case, the external potential can be written as:

0, (I o) =, /%ﬂ Era cos(wt) (2.53)

where E is the amplitude of the field and « is the polarization of the field (= x, y, 2).

The matrix K is the coupling matrix and is defined as:

1
Kiao.jor = [ A6 [ 073, (10 (1) X =71, (5,04, (1) +
h (2.54)

[dn [dry, (0w, () £ (6.1, o)y, (1), (1)
The first term of the sum is the Hartree part and the second term is the exchange-correlation part.

The xc kernel 27 is given by:
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5VXC (rl’tl)
op, (1,,t,)

If the adiabatic approximation is used and we choose real KS orbitals, we have K

fo (hh 4 —t,) = (2.55)

iac, jbr — Kiaa,bjz— :

Equation 2.51 can now be greatly simplified. The excitation energies , and oscillator strengths f;

(I here labels the excited state number) can now be derived from a simple eigenvalue equation:
OF, = o/F, (2.56)
where the matrix elements Q are given by:
2
Qg ibr = 0,:0,0 (‘9a — & ) + 24\/(‘% —& )Kiaa,jbm[(gb —&j ) (2.57)
The oscillator strength can be derived from the eigenvectors F;:
2 - _ _ ~ 2
]“I = g(‘)ﬁ(TSq/zFl ‘2 _,_‘y’rsfl/zFl ‘2 _,_‘Z’rsfl/zFl ‘2)/“:' ‘ (2.58)

0 0.0
where S. ot 1 “ab

iac, jor — ( fjr — fbr)(gbr _gjf)

If we assume that the products y,_(r)w,, (r) are linearly independent and the ground state

wavefunction is a single determinant (eq.2.24) we can expand the excited state wavefunction as a

linear combination of singly excited configurations ¥:

f,—f. >0
ic_'ac & —& R R

R Y L PR (259
iac |

where &"and & are the creation and annihilation operators respectively. ¥ represents singly
excited wavefunctions defined in eq.2.37. F!_ represents the contribution of the one-electron
transitiony;, . — v, . We can now also express the oscillator strength (2.58) of each excited state
as a combination of the elements F!_and therefore assign each single-particle transition a

contribution to the total oscillator strength.

Configuration interaction
Configuration interaction (ClI) is a quantum mechanical method used to determine the

correlation energy of a system in its ground state and can also be used for excited states. The

23



essence of the method is to diagonalize the N-electron Hamiltonian in a basis of N-electron Slater

determinants. The CIl wavefunction is given by:

¥ = ZN: AD, (2.60)

where A; are weighing coefficients and ®; are the Slater determinants. The Slater determinants
can be the ground state determinant but also singly excited (CIS), doubly excited (CISD), triply
excited (CIDST)... In order to determine the energy E and wavefunction ¥ of the state of

interest, we solve the eigenvalue problem:

A

<q)1||:||q)1> <q)1 H cD2> <q)1 H (DN> A A
<CD2||?||CI)1> <CI)2||_:||CDZ> <CD2 H cDN> Az —E Az (2.61)
<CDN H q)1> <(DN||:||®2> <(DN||:||®N> A Ay

In principle, if we expand the wavefunction in an infinite basis and includ all possible
excited determinants (singly, doubly, triply, quadruply...), the solution to the CI gives the exact
wavefunction with the exact energy. Computationally, this is of course not possible and the level
of accuracy obtained depends on the level of theory used. For commonly investigated systems
(in the order of 10 atoms), it is difficult to go beyond CISD. Alternative methods have been
developed to include triply excited configurations at a lower cost by including them
perturbatively. This is called CISD(T). The CI method is not highly used due its high
computational cost and the fact that it is not size consistent. However, it is one of the best to

describe highly correlated systems.
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Chapter 3 - Theoretical analysis of the optical excitation spectra of

silver and gold nanowires

Guidez, E. B.; Aikens, C. M. Nanoscale 2012, 4, 4190
Reproduced by permission of The Royal Society of Chemistry

Abstract

The excitation spectra of linear atomic chains of silver and gold with various sizes have
been calculated using time-dependent density functional theory. Silver chains show longitudinal
and transverse peaks as well as a low-intensity d-band. The longitudinal peak, corresponding to
the HOMO-LUMO transition (along the main axis of the chain), shifts linearly to the red as the
length of the system increases, consistent with the particle-in-a-box model. The transverse peak
remains at approximately constant energy for all systems studied and corresponds to > n—11n
transitions in the xy plane perpendicular to the chain. As the chain grows, transitions arising from
d orbitals contribute to the transverse peak, which affects its oscillator strength. Contrary to
silver, gold chains display a strong d-band that converges to a distinct pattern at a chain length of
about twelve atoms. The transitions involved in the d-band originate from localized d-orbitals

with a d_, character since they have the right symmetry to give transitions into the LUMO,

LUMO+1... which have . symmetry. Transitions arising from these localized d-orbitals also
affect the position of the longitudinal peak and generate a wide transverse band. Although the
majority of the transitions involved in the transverse band have a d>—][] or d[[—>X character,

they are hidden by much stronger excitations of d[[—]] character in gold nanowires.

Introduction

Noble metal nanoparticles (e.g. Ag, Au) have been recently studied for applications in

122,123

sensing, catalysis*®* as well as the environmental*® and biomedical fields.**3*!%¢12” One of

the attractive properties of 10-100 nm noble metal nanoparticles is that they show a strong

absorption peak in the visible-IR region that can be tuned by varying their size,** shape,**®*?°

or
chemical environment.?® This is due to the concerted excitation of the conduction electrons in the
presence of an electric field, or surface plasmon resonance (SPR).>**213%132 As the nanoparticle

size decreases (down to hundreds of atoms), molecular properties arise and the absorption
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spectrum becomes more complex. Quantum-mechanical calculations have been used to model
the optical properties of noble metal clusters. In particular, time-dependent density functional
theory (TDDFT) has been shown to provide insights regarding the origin of the discrete
absorption spectra of noble metal clusters.®*?®8133134 Molecular excitations obtained with
TDDFT for small clusters show intense peaks analogous to the plasmon excitations of larger
nanoparticles and correspond well with peaks described in the Mie theory framework or with
other classical electrodynamics methods.”®® For example, tetrahedral Ag,o exhibits an intense
peak that arises from a collective sp - sp intraband transition.**
Significant progress has been achieved in synthesizing gold and silver nanoparticles with

a wide variety of shapes including spherical,®® cylindrical,*** decahedral,"*® icosahedral,*" and
triangular."*® Cylindrical nanoparticles (nanorods and nanowires) are of particular interest since
their optical properties are very sensitive to their aspect ratio.”*****!*° Studies of linear atomic
chains of alkali metals (Na, K) and noble metals (Ag, Au) showed two main plasmon
resonances: a longitudinal mode along the main axis of the chain and two transverse modes
perpendicular to that axis.****? The energy and intensity of the longitudinal mode can be tuned
by changing the length of the chain. The two transverse modes correspond to plasmon
resonances at the end-atoms and inner atoms of the chain respectively. Therefore, the behavior of
the electrons on the more exposed end-atoms is very distinct from the central atoms. The
transverse plasmon resonance of gold nanowires was previously shown to strongly enhance two-
photon absorption.'*® Both alkali metals and noble metals have a single electron in their valence
shell. However, d electrons affect the plasmon resonance of the noble metal clusters, especially
for gold due to relativistic effects.>*¢14

The aim of this work is to compare the absorption spectra of gold and silver nanowires (NWs),
here defined as a linear chain of atoms, using time-dependent density functional theory and show
how they are affected by the length of the nanowires. Orbitals involved in the main longitudinal

and transverse excitations are discussed in detail for both silver and gold nanowires.

Computational details

All calculations in this work are performed with the Amsterdam Density Functional (ADF)

110

package.”™ All the geometry optimizations are run using the generalized gradient approximation
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(GGA) Becke-Perdew (BP86) exchange-correlation functional'®*® and an all-electron double-
zeta (DZ) basis set. Scalar relativistic effects are included with the zeroth-order regular
approximation (ZORA).">® In order to have closed-shell species, positively and negatively
charged species are considered for nanowires with an odd number of atoms. Excitation spectra
are calculated using time-dependent density functional theory (TDDFT) with the statistical
average of orbital potentials (SAOP)*** and LB94* model potentials. An all-electron double-
zeta basis set is used for the SAOP calculations. With the LB94 potential, a frozen core is
considered and the basis set used is DZ.4p for silver and DZ.4f for gold. The absorption spectra
are convoluted with a Gaussian with a full width at half maximum of 0.2 eV. Orbitals are

represented with a contour value of 0.02.
Results and discussion

Silver nanowires
The excitation spectra of silver nanowires are analyzed in this section. The spectra of the
neutral silver nanowires are analyzed first at the SAOP/DZ and LB94/DZ levels of theory,

followed by a comparison with the positively and negatively charged nanowires.

Neutral nanowires
The absorption spectra of silver nanowires Ag, (=2, 4, 8, 10, ..., 20, and 40) show three
distinct features: a sharp low-energy longitudinal peak, a low-intensity d-band and a transverse
peak at about 6.3 eV (197 nm). The excitation spectrum of Agao is presented in Figure 3-1A.

Figure 3-1. Excitation spectra of A) Ag,, nanowire and B) Ag,, nanowire at the SAOP/DZ

level of theory.
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The rest of the spectra are shown in Appendix A. The longitudinal peak corresponds to the
HOMO—LUMO transition (2—Z). At the SAOP/DZ level of theory, this peak red shifts linearly
from about 358 nm (3.46 eV) to 1562 nm (0.79 eV) as the length of the wire chain increases, as
shown in Figure 3-2A.

Figure 3-2. Longitudinal and transverse peak wavelengths (nm) for A) neutral B) positively

charged and C) negatively charged silver nanowires.
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The linear shift of the longitudinal peak is in accordance with the particle-in-a-cylinder model, as
previously discussed by Johnson and Aikens.” A similar linear relationship is observed at the
LB94/DZ level of theory but with a slightly smaller magnitude (Figure 3-2A). Note that the
transition energies tend to occur at higher wavelength with the exchange-correlation model LB94
than with SAOP as previously observed elsewhere.®*"® An analogous red-shift of the

longitudinal absorption peak with increasing aspect ratio is observed for noble metal nanowires
synthesized experimentally.®*'*” As the aspect ratio increases, the energy of this peak tends to
zero and its wavelength increases. Nanowires with very high aspect ratios can be transparent in

the visible and near-IR regions.*’ In the linear atomic chains, the HOMO-LUMO gap will
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eventually approach zero which means that the system will become metallic as in the bulk
material.

The HOMO and LUMO orbitals both have a strong delocalized s character as shown for Ags
in Figure 3-3. These delocalized orbitals originate from the linear combination of the singly

occupied 5s electron of the silver atoms.

Figure 3-3. Kohn-Sham orbital energy diagram of Ag, at the BP86/DZ level of theory.
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Since the 5s orbital of silver lies much higher in energy than the 4d orbitals, the HOMO-
LUMO transitions are well defined and separated from the rest of spectrum (about 1.1 eV gap for
Agyo). We also note that the HOMO-LUMO transition starts splitting at a chain length of six
atoms due to some contribution of the HOMO-2—LUMO transition, which is close in energy.
As the nanowires grow longer, the splitting between the two peaks becomes smaller. The
intensity of the longitudinal peak varies linearly with the length of the wire (and thus the number
of electrons), as shown in Figure 3-4. The peak intensities tend to be somewhat higher at the

LB94/DZ level of theory but follow the same trend.
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Figure 3-4. Oscillator strength* of A) the longitudinal peak of silver nanowires with
SAOP/DZ; B) the transverse peak of silver nanowires with SAOP/DZ; C) the longitudinal
peak of silver nanowires with LB94/DZ; D) the transverse peak of silver nanowires with
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* The maximum intensity of the Gaussian convolution was considered.

In the nanowire case, the longitudinal peak corresponds to a single HOMO-LUMO
excitation. On the other hand, the longitudinal peak of silver nanorods with a larger diameter
arise from several transitions involving delocalized orbitals.” For example, for the pentagonal
Agys™, the strong longitudinal peak appears at 3.40 eV and corresponds to a linear combination
of three “single-particle transitions” (a term referring to an electronic transition between an
occupied and an unoccupied orbital) of [T->IT (HOMO-1 - LUMO+4) and £2>% (HOMO-2 ->
LUMO and HOMO-2 > LUMO+2) character.”® The HOMO-LUMO transition is not allowed by
symmetry.” The mixed transition at 3.40 eV arises when the z-components of the transition
dipole moment combine in-phase; two weak peaks at 1.85 eV and 2.07 eV also arise from a

linear combination of the same three single-particle transitions but have low oscillator strength
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and are not observable in the excitation spectrum because of a destructive interference of the
transition dipole moments.” The coupling between those transitions and the mechanism by
which they form a single peak is yet to be understood, but appears to be the key factor in
connecting the excitations of smaller clusters with the plasmon resonance of larger nanoparticles.
The longitudinal peak for the nanowires examined in this work corresponds mainly to a single
excitation, leading to a very sharp single peak. The peak assigned as plasmon for larger systems
involves more transitions leading to broadening of the peak, especially for systems with partially
filled shells.*™ Thus, it appears that a plasmon may be understood as a combination of single-
particle transitions that constructively interact; in addition, multiple peaks in the same energy
region can contribute. It is also important to note that we can expect the electron density of these
nanorods in the excited state to be delocalized on the surface similar to the surface plasmon
resonance, as explained by Harb et al for spherical silver clusters.*

The next transition observed for the small nanowires Agn (4< n <8) corresponds to a
transition out of the d-band. The energy between the start of the d-band and the HOMO-LUMO
peak varies between 1.56 eV (Ags) and 1.73 eV (Ags). For the larger nanowires Ag, (10< n <20),
a second longitudinal peak appears below the d-band transitions. Its energy lies between 1.1 eV
(Ag2o) and 1.6 eV (Agio) higher than the HOMO-LUMO peak. As the nanowires grow longer,
energy gaps become smaller due to the increased number of interactions between the orbitals.
Therefore, additional peaks appear and a greater number of d-band transitions are revealed.
However, the intensities and energies of the d-band transitions remain constant, contrary to the
main longitudinal peak. The d-orbitals are localized as shown in Figure 3-3. As a result, the
energies and intensities of the transitions originating from these orbitals are not greatly affected
by the size of the nanowires. The d-band also appears smaller as the nanowires grow longer since
the intensity of the main longitudinal peak increases uniformly with the chain length. For very
long nanowires, the d-band practically disappears as observed in the Agso case (Figure 3-1B) in
which only the longitudinal and transverse peaks can be seen. This is in accordance with what is
observed experimentally for silver nanorods with diameters in the several-tens of nanometers
range.**®

The transverse peak corresponds to transitions in the xy plane (X m—11Im, where m is a quantum
number). Since the diameter of the nanowires does not change, the energy of this peak remains
relatively constant, only varying between 6.1 eV (204 nm) and 6.4 eV (195 nm) at the SAOP/DZ
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level of theory, as shown in Figure 3-2A. As discussed previously, transitions are shifted to
smaller wavelengths with LB94/DZ and the energy of the transverse peak varies between 6.6 eV
(186 nm) and 6.9 eV (178 nm). Table 3-1 shows the transitions involved in the main transverse
peak at the SAOP/DZ level of theory. For Ag,, the number of >.—1 I, transitions is n/2.
Therefore, the longer the nanowires are, the higher the number of transitions that can contribute
to the transverse peak. For instance, the transverse peak of the nanowire Agg has contributions
from 21—, 20— 12 23—I1s and 24—I14. The dipole moment contributions for each
transition add constructively. For n>10, the trend continues but only the first few transitions are
shown in the table. Additionally, we can see that the transverse peak has a large intensity (at least
three times as large as the d-band). Although the intensity of the peak generally increases with
length, it shows some oscillations as shown in Figure 3-4B. Note that this oscillatory behavior is
a little different at the LB94/DZ level of theory (Figure 3-4D). These oscillations can be
explained by some contributions of the d-band to the peak. In fact, starting at a length of six
atoms, d-transitions start to mix with the Xn—[ I, transverse transitions as shown in Table 3.1.
Although the main contribution to the dipole moment originates from >.,—II transitions, the
weights of the d-transitions that participate are large enough that the contribution to the peak
intensity is non-negligible. However, the individual d-band contributions to the dipole moment

are rather small.
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Table 3.1. Transitions contributing to the high-intensity transverse peak in silver
nanowires at the SAOP/DZ level of theory.

Agn | Energy (eV) Transitions t;)r/gieti%fn Weight gi%rglgbn:g?nne;(:
2 6.06 106" y(HOMO)—6m, | X1—I1; | 0.9269 2.2276
4 6.17 196", (HOMO)—11ng | Xo—Il2 | 0.4742 -1.5740

' 196" 4(HOMO-1)—11n, | X3—[1; | 0.3838 -1.4066
131,—3067 d-band | 0.4017 -0.1888

6 6.20 296" y(HOMO)—17n, | Xs—Ils | 0.1873 0.9849
' 286" (HOMO-1)—16my | >o—I[1, | 0.1340 0.8309

286" ,(HOMO-2)—16m, | >1—I1; | 0.1071 0.7391

376" (HOMO-2)—22n; | Yo—Tls | 0.2632 0.1029

386" (HOMO)—22n; | Y4—Ils | 0.1583 0.8980

8 6.29 376'y(HOMO-3)—21m, | X3—I1; | 0.1036 0.7217
376", (HOMO-2)—=21mg | Xo—I1, | 0.0971 0.7008

386" ,(HOMO-1)—-22m, | Y3—Ils 0.0909 0.6796

21ng—49c", d-band | 0.4215 -0.2309

10 6.5 221;—495", d-band | 0.1269 0.1588
' 486" (HOMO)—28m, | 2s—IIs | 0.1106 0.7517

475" (HOMO-1)—>27r, | 2a—I1s | 0.0938 0.6919

27my—59c", d-band | 0.3018 0.0745

12 6.26 576'g(HOMO-1)—34n, | 2s—I[l; | 0.1418 0.1009
' 576" (HOMO)—33ny | Xe—Ils | 0.1061 -0.7348

576" (HOMO-1)—33m, | Ys—II5s | 0.0806 -0.6399

30m,—696 " d-band | 0.4543 0.2564

14 6.27 670" g(HOMO)—40m, | Y;—[I7 | 0.0401 -0.4511
' 31m,—696", d-band | 0.0896 -0.1321

666" ,(HOMO-1)—39r, | Xe—Ils | 0.0346 -0.4185

36my—79c", d-band | 0.3422 -0.0875

16 6.28 760", (HOMO)—45n; | Xs—Ils | 0.1085 -0.0582
' 766" (HOMO)—44n, | Xs—Ils | 0.0720 0.6037

766" o(HOMO-1)—44n, | >,—I1; | 0.0599 0.5499

38my—88c", d-band | 0.4372 -0.2608

18 6.28 39my—88c", d-band | 0.1469 0.1669
' 866 ((HOMO)—50m, | 2o—Ils | 0.0519 0.5125

856" ,(HOMO-1)—49r, | Xs—lls | 0.0457 0.4804

4415—98c", d-band | 0.4078 -0.0984

491;—996", d-band | 0.0564 -0.0071

20 6.34 437‘cg—>986+u d-band 0.0553 0.1042
' 916" y—55m, d-band | 0.0490 0.0028

956" ,(HOMO)—55n; | Z10—Il10 | 0.0376 -0.4333

956" (HOMO-1)—55m, | Xo—Ils | 0.0356 -0.4215
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Positively and negatively charged nanowires

The absorption spectra of the positively charged silver nanowires Ag,* (n=3, 5, 7,9, ..., 19)
and their negatively charged counterparts Ag, (n=3, 5, 7,9, ..., 19) share many similar features
with the spectra of the neutral nanowires: they also have a longitudinal peak corresponding to the
HOMO-LUMO transition, a low-intensity d-band, and a transverse peak that corresponds to one
or more >.n—] I transitions. We note that the HOMO-LUMO gap of the positively charged
nanowires decreases much slower than the HOMO-LUMO gaps obtained for the neutral and
negatively charged species. In fact, the slope of the absorption wavelength of the longitudinal
peak is distinctively smaller for positively charged nanowires, as shown in Figure 3-2. Figures 3-
4A and 3-4C shows that the more negatively charged the nanowires is, the larger the intensity of
the longitudinal peak. This may be explained by the larger electron density for the negative
species. On the other hand, the energy of the transverse peak is not very affected by the charge of
the nanowires. The intensity of the transverse peak shows similar oscillations for the positively
charged and negatively charged species as those encountered for the neutral species (Figure 3-4B
and 3-4D). The energy and intensity of the d-based transitions are also not affected by the charge
of the nanowires, which can be explained by the fact that the d orbitals are localized.

Gold nanowires
In this section, the absorption spectra of gold nanowires are analyzed and compared with
their silver analogs. The absorption spectra of gold nanowires also exhibit longitudinal and
transverse peaks as well as transitions arising from the d-band, as shown with Auyg in Figure 3-
5A. The spectra of the neutral species are first discussed with an additional focus on the d-band,

followed by a brief comparison with the positively charged and negatively charged species.
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Figure 3-5. A) SAOP/DZ excitation spectrum of the Au,; nanowire. B) Subset of SAOP/DZ
transverse excitation modes for the Au,, nanowire.
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Neutral gold nanowires

Contrary to the silver case, transitions originating from the d-band are important for the
gold nanowires since they highly affect the longitudinal and transverse peak energies and
intensities. In fact, the 5d orbitals of the gold atom lie closer in energy to the 6s orbital than do
the 4d orbitals of silver to the 5s. Figure 3-6A shows the wavelengths of the longitudinal peak for
neutral gold nanowires. A red shift of the longitudinal peak is observed. A similar observation
was found at the PW91/LANLDZ level of theory.*** At the SAOP/DZ level of theory, a break in
linearity occurs at ten atoms (eights atoms with LB94/DZ), which is the size where the

longitudinal peak becomes distinguishable from the d-based transitions.
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Figure 3-6. Wavelengths of main longitudinal peak for A) neutral B) positively charged and

C) negatively charged gold nanowires.
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At that system length, the peak intensity becomes stronger than the intensity of the transitions
originating from the d-band. The HOMO-LUMO transition couples with the d-based transitions
because they have the same symmetry. As a result, a splitting of the longitudinal peak occurs.
We can adjust for this effect by considering the weighted average of the transition dipole
moment of the HOMO-LUMO transition from several excitation peaks. As shown in Figure 3-
7A, the linear relationship between the wavelength of the HOMO-LUMO transition and the
number of atoms in the chain is recovered. This shows that the longitudinal transitions of gold
nanowires still follow the particle-in-a-cylinder model but the d-band splits the HOMO-LUMO
peak. Since the d-band energy does not vary much with size whereas the energy of the
longitudinal peak red shifts with length, the energy difference between the d-based transitions
and the longitudinal peak increases as the nanowires grows from Auso to Au,g and this difference
reaches about 1 eV for Auy. However, this energy difference is more than 1 eV smaller than the

one discussed previously with the silver nanowires.
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Figure 3-7. Weighted average of the HOMO-LUMO transition for A) neutral B) positively

charged and C) negatively charged gold nanowires.
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It should be noted that the d-band mixing is also reflected in the intensity of the longitudinal
peak. As shown in Figure 3-8, the intensity of the longitudinal peak starts increasing linearly
with chain length at 8-10 atoms. This corresponds to the size where the longitudinal peak starts

to separate from the d-based transitions.

Figure 3-8. Oscillator strength of the longitudinal transition energy of gold nanowires with
A) SAOP/DZ and B) LB94/DZ.

A B
25
—~20 , .
S # Neutral nanowires i ¢ Neutral nanowires
© = 20 *
=15 > © ®
S iti 7 S— 1 =
= > - -POSItIV?vahﬂQ,Cd > 15 < M Positively charged
@ o nanowires F =] ;
210 = ' B 10 ‘n nanowires
9 8 Negatively charged c om )
£ 5 *°m nanowires g 5 | om Negatively charged
N c ol nanowires
e e _om - *nm
0 o m ® 0 ol W
0 10 20 0 5 10 15 20
Number of atoms Number of atoms

37



Contrary to the silver case, a transverse peak can only be distinguished in the two-atom chain.
For the longer nanowires, a broad band begins at about 6 eV instead. This band shows a similar
pattern for all the nanowires and starts converging at a system length of about twelve atoms. The
high-intensity transitions involved are mainly d[ [—]] transitions, as shown in Table 3.2. These
transitions arise from localized d-orbitals to delocalized s-based [] orbitals. Because of the

symmetry of these transitions, they will be excited by z-polarized light.

Table 3.2. Transitions with the highest oscillator strength occurring between 6 and 7 eV for

the Au,g nanowire.

Oscillator Contribution
Energy (eV) Transition Weight to the dipole
strength

moment
5.99 0.76 801y —81m, 0.9530 2.8721
7913—81my 0.5901 -0.1782
6.10 060 80m,—81my 0.3476 -1.6479
791, —81my 0.5308 0.1957
6.28 0.46 791y —82m, 0.3315 1.4809
6.31 0.54 791y — 827, 0.4586 1.7373
6.85 0.52 78my —83m, 0.6392 1.6190

Figure 3-5B displays only the transverse excitations of Auyg, which correspond to excitations
across the short axis of the wire (xy-plane). Transverse peaks begin at a wavelength of about 6.3
eV and their oscillator strength is about ten times smaller than the d[[—[1 excitation. Those
transverse modes are mainly d>—[[ and d[ [—>2 transitions and they all have high contributions

to the dipole moments, although not quite as high as the d[ [~ transitions (Table 3.3).

38



Table 3.3. dY—[1 transitions involved in the transverse band of the Auy, hanowire at

SAOP/DZ level of theory.

Oscillator Contribution
Energy (eV) Transition Weight to the dipole
strength

moment
6.29 0.013 129c5+g —81my, 0.2369 -1.0961
6.43 0.019 1306 ;—82m, 0.5052 -1.4817
6.53 0.030 1306", —82my 0.4212 1.3255
6.62 0.023 132"y, —83my, 0.4002 1.1708
6.79 0.018 131", —83my 0.4873 -0.7199

The d>—[1 and d[[—2 transitions are the majority in the 6-7 eV range but they are hidden by a
few more intense d[ [—]] transitions described above. It should be noted that a band of
transverse dipole excitation modes between 5 and 6 eV was previously observed at the
PW91/LANL2DZ level of theory with a frozen orbital picture.*** Moreover, we expect that the
intensity of this transverse band would increase as the diameter of the system increases. An
investigation of the effect of the diameter on the excitation spectra is currently underway.

Since the d-band is so important for gold species, it is discussed in more detail here. As
the wire grows longer, the d-band forms a distinct pattern. In order to study this pattern, all the d-
based transitions between the longitudinal peak and transverse band are plotted for the neutral
nanowires with 12 to 20 atoms, as shown in Figure 3-9A. Two main transitions occur at about 2
and 2.8 eV. A series of transitions with lower oscillator strength occur between 3.5 and 5.5 eV.
The transition energies shift slightly depending on the size of the nanowires but the overall
pattern is apparent. A density of states diagram showing the d orbitals for gold nanowires with
12 to 20 atoms is also shown in Figure 3-9B. We note that the two figures are practically mirror
images of one another. However, the density of states diagram is broader than the excitation
spectrum. This can be explained by the fact that the density-of-states diagram includes all the d

orbitals (i.e with d,,, d,,, d,,, d. . and dcharacter). However, the transitions involved in

Xy ! Xz yz 1

the excitation spectrum originate from d orbitals with d , character. In fact, they are the only d

orbitals with the right symmetry to contribute to transitions into LUMO, LUMO+1, LUMO+2,
LUMO+3 and LUMO+4 orbitals, which have 2. character.
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Figure 3-9. A) d-band of the neutral nanowires starting at a wire length of twelve atoms. B)

Density of states of the d orbitals of gold nanowires. This data was plotted with SAOP/DZ.
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Positively and negatively charged nanowires

The positively charged and negatively charged gold nanowires display similar trends as
the neutral ones. The wavelength of the longitudinal peak also shows a break in linearity at five
atoms for the positively charged systems and at seven atoms for the negatively charged species,
as shown in Figures 3-6B and 3-6C. In a similar manner as the neutral case, linearity is recovered
by taking the weighted average of the HOMO-LUMO transition, as shown in Figures 3-7B and
3-7C. However, Auz* does not fit the trend for the positively charged nanowires. In fact, the
HOMO-LUMO transition for this system is at much lower energy. Similarly to the silver case,
the wavelength of the HOMO-LUMO transition increases more rapidly with size for the neutral
and negatively charged nanowires than for the positively charged nanowires. Also, similarly to
the neutral case, the coupling between the HOMO-LUMO transition and the d-band is reflected
in the intensity of the longitudinal peak. In fact, there is a bump in the peak intensity between
three and seven atoms for the charged species (Figure 3-8). After that, the peak intensity varies
linearly with the chain length, similarly to the silver case. The d-band pattern is also recovered
for the positively charged and negatively charged species. Since these orbitals are fairly
localized, this is expected. The transverse band at 6 eV also compares fairly well with the neutral
species, which suggests that the transitions involved originate from similar orbitals as the neutral

case.
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Conclusions

The excitation spectra of linear chains of silver and gold have been studied for systems
with lengths between two and twenty atoms. Neutral, positively charged, and negatively charged
nanowires typically follow the same patterns. For silver, a series of delocalized 2., and [ I,
orbitals formed from 5s orbitals lie near the HOMO-LUMO gap. Localized 4d-based orbitals are
well separated in energy. The excitation spectra for both silver and gold exhibit a main
longitudinal peak corresponding to the HOMO-LUMO excitation along the chain. This peak
shifts to the red as the chain length increases. The shift is linear for silver, which is consistent
with the particle-in-a-cylinder model. However, the d-band of the gold species affects the energy
of this peak because of coupling due to symmetry; this can be treated by taking a weighted
average of the transition dipole moment contributions for all peaks with some HOMO-LUMO
contribution. Silver nanowires show a transverse peak with nearly constant energy that is
formed from delocalized >.n—1 I, transitions whose transition dipole moments add in a
constructive manner in analogy to the transverse plasmonic peak of larger nanoparticles.
Transitions arising from the d-band also tend to contribute to this peak as the chain becomes
longer. The gold species show a wide transverse band corresponding to d2—][ and d[[—X
transitions. This band is mostly hidden by d[ [—]1 transitions with oscillator strength about ten
times higher than the transverse excitations. Silver nanowires show a low-intensity d-band that
essentially goes away for systems of longer length. On the other hand, the excitation spectra of
the gold species show a strong d-band that converges to a specific pattern at a chain length of

about twelve atoms. This d-band also affects the position of the main longitudinal peak.
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Chapter 4 - Diameter-Dependence of the Excitation Spectra of Silver

and Gold Nanorods

Reproduced with permission from:
Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 12325.
Copyright 2013 American Chemical Society.

Abstract

An analysis of the excitation spectra of silver and gold nanorods with different cross-
sections, lengths and diameters was performed using time-dependent density functional theory at
the LB94/DZ level. Silver nanorods show a strong longitudinal peak, corresponding to
excitations along the main axis (z axis) of the nanorods, and a smaller transverse peak,
corresponding to excitations in the xy plane of the nanorods. For systems with a large cross-
section (star-shaped and large pentagonal nanorods), the single transverse peak is split into a
wide band. The orbitals involved in these transitions are delocalized cylindrical orbitals.
Constructive addition of the dipole moments of these transitions is observed for the strong
longitudinal and transverse peaks, which is likely at the origin of the surface plasmon resonance
phenomenon. The wavelength of the longitudinal peak increases linearly with increasing length,
crossing over the transverse peak or transverse band, which remains at nearly constant energy.
The intensity of the longitudinal peak increases with increasing system length due to the
increasing number of electrons being collectively excited. The energy of the longitudinal peak
for systems of identical length also tends to increase as the diameter of the system increases,
which can be correlated to a decreasing aspect ratio. Gold nanorods display more complex
excitation spectra due to the presence of transitions originating from the d-band. Such transitions
may also mix with cylindrical orbital-based transitions, especially for systems with low aspect
ratios, splitting the longitudinal peak into several peaks of lower intensity. As the aspect ratio
increases, the energy of the longitudinal peak decreases and its intensity increases. It then
becomes separated from the d-band transitions which remain approximately constant in intensity
and energy. Consequently, the amount of d-band coupling to the main cylindrical orbital-based

excitations decreases, which leads to a strong isolated longitudinal peak similar to the silver case.
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No strong transverse peak is observed for gold nanorods at this level of theory. Instead, the

transverse excitations are hidden by the d-band transitions.

Introduction

3,149,150 Optl cal 151-156 and

Gold and silver nanoparticles show unique catalytic,

157,161-167

electrochemical®™’ properties that can be used in the biomedical,**2"1>"1% sensing and

imaging™*® fields. Possible biomedical applications include cancer diagnostics,**%'%°

35,170,171

cancer
therapy, and tissue imaging.*’? Noble metal nanoparticles with sizes on the order of 10-
100 nm display a strong peak in the excitation spectrum near the visible region that is due to their
unique surface plasmon resonance (SPR).*"%#17317¢ This phenomenon is formally defined as a
collective excitation of the electrons under the application of an electric field. The plasmon
resonance can enhance the SERS signal of small molecules like HCN*"” and enhance the circular
dichroism signal generated by chiral molecules.*®**"® In addition, when attached to a receptor,
the localized surface plasmon resonance of gold nanoparticles can be spectrally tuned after

180-182

binding of the receptor to the analyte.'” The size,****"'"* shape,”'"* and composition of

174

the nanoparticle as well as the dielectric constant™™ of the medium can help tune the SPR.

Significant progress has been achieved in the synthesis of nanoparticles'® and it is now possible

184-186 187-189 \vith a narrow size

to produce particles with a wide variety of shapes and sizes
distribution.
Optical properties of noble metal nanorods have been intensively studied both

experimentally®17>189-194

and theoretically.®*"*"4193197 The absorption spectra of gold and
silver nanorods show one low-energy peak that corresponds to a superposition of transitions
along the main axis of the system (longitudinal).2>** This peak shifts to lower energy, as
explained by the particle-in-a-cylinder model,**® and its intensity increases as the aspect ratio of
the rod increases.®*'* The absorption spectra also show a second peak at higher energy and of
lower intensity, which corresponds to transitions across the short axis of the system
(transverse).®

Gold and silver atoms have a single electron in their valence s orbital. Frontier orbitals of
silver and gold nanoparticles are a linear combination of these s orbitals and are delocalized over
the entire structure. 1801919202 The main difference between the two types of nanoparticles is

due to relativistic effects.***% |n silver systems, the d-band is much lower in energy than in
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the case of gold. Gold nanowires show a strong d-band compared to their silver counterparts,
which affects the energies and intensities of the longitudinal and transverse peaks, leading to a
more complex excitation spectrum.'#+2%

The objective of this work is to quantitatively determine how the absorption spectrum of
silver and gold nanorods is affected by the shape and diameter of the system. In order to do that,

four different systems are compared: nanowires®®

(linear atomic chains), nanorods with a
pentagonal cross-section of two different diameters and nanorods with a star-shaped cross-
section. These shapes are chosen because silver and gold nanorods are known to have a
pentagonal structure.®?%” In addition, the pentagonal and star-shaped structures are a subset of

Marks decahedra, which form the cores of nanoclusters.*>

Computational methods

All calculations in this work are performed with the Amsterdam Density Functional
(ADF) program.*® Geometry optimizations employ the generalized gradient approximation
(GGA) Becke-Perdew exchange-correlation functional.’®*!% A double zeta Slater-type basis set
with the frozen core approximation is used for all calculations. Scalar relativistic effects are
included with the zeroth-order regular approximation (ZORA).****® Multiple charge states
leading to closed-shell electronic structures are considered in this work. Since some of the
highest occupied orbitals are degenerate, this is taken into consideration when determining the
available charge states. Most structures optimized with Ds, symmetry except for Auze™, Augs ™,
Alzg™, Ause™, Agas™, Agae™, Agae™and Agae™, which utilized Cs, symmetry. These structures
are local minima but may not be global minima for their respective sizes; as discussed in the
introduction, these systems are of interest due to their symmetry and their relationship to
experimental nanorods and nanoparticles. Excitation spectra are calculated using time-dependent
density functional theory (TDDFT) with the asymptotically corrected LB94 model potential %
HOMO-LUMO gaps are also reported at the LB94/DZ level of theory. The absorption spectra
are convoluted with a Gaussian with a full width at half maximum of 0.2 eV. All individual
excitation spectra are available in Appendix B.
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Results and discussion

Silver nanorods

In this section, silver nanorods with four different cross-sections are compared: the
nanowires studied in Ref'*, the small pentagonal nanorods studied in Ref™, the star-shaped
nanorods and the large pentagonal nanorods calculated here. Figure 4-1 shows an end view and a
side view for each of these systems as well as the length and radius considered. We note that for
the silver and gold nanowires, the radii considered are 145 pm and 136 pm respectively, which
correspond to their covalent radii. For each of these systems, several lengths are considered.
Tables 4.1 to 4.4 show the systems considered and their aspect ratios. Since some of the highest
occupied orbitals are degenerate, this is taken into consideration when determining the charge

states of interest. The charges considered here all lead to closed-shell systems.

1

Figure 4-1. Side view and end view of A) Age™ nanowire B) Ags;™ small pentagon C) Agzs*
star-shaped silver nanorod and D) Agss** large pentagon-shaped nanorod. The length and

radius considered for each system are noted L and R respectively.
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Table 4.1. Peak energies and HOMO-LUMO gaps of silver nanowires.

Svst Aspect ratio Longitudinal peak® | Transverse peak® HOMO-LUMO
ystem
(L/2R) (nm) (nm) gap (eV)
Ags™ 1.84 565.63 181.16 0.90
Ag;™ 5.52 775.69 180.54 0.54
Agyt 9.19 1022.63 178.20 0.39
Agas™ 12.85 1249.32 178.62 0.30
Ago™ 16.52 1484.22 179.19 0.25
a. Ref™

Table 4.2. Peak energies and HOMO-LUMO gaps of small positively charged pentagon-

shaped silver nanorods.

System Aspect ratio Longitudinal peak | Transverse peak HOMO-LUMO
(L/2R) (nm) (nm) gap (eV)

Agio™t 1.62 305.88 261.02 0.24

Ags ™t 2.85 366.53 259.38 0.38

Agss™t 3.94 434.97 256.70 0.35

Agss' 5.16 506.29 254.07 0.13

Agsr" 6.24 560.82 254.07 0.22

Table 4.3. Peak energies and HOMO-LUMO gaps of positively charged star-shaped silver

nanorods.
Aspect o HOMO-
) Longitudinal | Transverse peak 1 | Transverse peak
System ratio LUMO gap
peak (nm) (nm) 2 (hm)

(L/2R) (eV)
Agis™ 0.72 255.52 298.25 257.94 0.73
Agao™ 1.12 285.03 290.81 259.02 0.29
Agso*’ 1.47 302.47 285.88 257.94 0.13
Ags: ™t 1.82 317.85 283.26 255.81 0.18
Age; ™’ 2.20 351.78 281.98 265.11 0.19
Agrs 2.58 375.19 279.44 260.10 0.018

46




Table 4.4. Peak energies and HOMO-LUMO gaps of large positively charged pentagon-

shaped silver nanorods.

Aspect o HOMO-
) Longitudinal peak |  Transverse Transverse
System ratio LUMO gap
(nm) peak 1 (hm) | peak 2 (nm)
(L/2R) (eV)
Agas™t 0.60 225.99 294.50 272.49 0.11
Ags™ 0.89 261.75 279.87 263.80 0.58
Agss 1.18 283.26 270.71 249.47 0.74
Agnt 1.49 302.05 273.09 255.11 0.14
Agsr" 1.78 326.76 273.70 249.97 0.03

The HOMO-LUMO gaps of most silver systems are larger than 0.1 eV, as shown in
Tables 4.1 to 4.4. The large star-shaped nanorod Agzs™ and the large pentagonal nanorod Agg;**
have HOMO-LUMO gaps of 0.018 eV and 0.03 eV respectively, which are comparable to KT
(T=300K). However, other large systems such as Ags;"* have HOMO-LUMO gaps on the order
of 0.22 eV. The HOMO-LUMO gaps for these systems do not monotonically decrease in this
size regime, which is due to energy spacings between the orbitals that vary due to quantum
confinement effects (more information about this is available in the SI of Ref 2%).
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Figure 4-2. Excitation spectra of silver A) nanowires

195 B) small pentagonal nanorods™ C)

star-shaped nanorods and D) large pentagonal nanorods at the LB94/DZ level of theory.
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*The key shows the systems considered and their aspect ratios.

The absorption spectra of positively charged silver systems are narrow and show few

strong peaks, as shown in Figure 4-2. The two main features of these spectra are the low-energy

longitudinal peak, which shifts to the red and grows in intensity as the system becomes longer

for a given radius, and the transverse peak, which does not shift or grow significantly. For

nanowires and small pentagonal nanorods (Figures 4-2A and 4-2B respectively), these two peaks

are far apart in the spectrum and can be easily identified. Tables 4.1 and 4.2 show the wavelength

of the longitudinal and transverse peaks of these systems. The transverse peak is at 6.9 eV (180

nm) for the nanowires and at 4.8 eV (257 nm) for the small pentagonal nanorods. The
longitudinal peak of the nanowires shifts from 2.19 eV (565.6 nm) to 0.84 eV (1484 nm) with
increasing length. The longitudinal peak of the small pentagonal nanorods shifts from 4.05 eV
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(305.9 nm) to 2.21 eV (560.8 nm). These trends are similar to what was previously observed at
the SAOP/DZ level of theory.”®!%°

For the wider systems (star-shaped nanorods and large pentagonal-shaped nanorods), the
transverse peak is strongly split, giving a transverse band between 4 and 6 eV. Four main peaks
can be identified in the transverse band for the star-shaped nanorods. The first two strong peaks
making up the band are given in Table 4.3 with the longitudinal peak. We can see that this band
seems to slightly grow in intensity as the length of the system increases, due to an increasing
density of states in the band. The longitudinal peak shifts from 4.86 eV (255.5 nm) to 3.31 eV
(375.2 nm) with increasing length. It is lower in energy and has a higher intensity than the
transverse band for systems with an aspect ratio larger than one as shown in Figure 4-2C and
Table 4.3. As the aspect ratio decreases, the longitudinal peak becomes higher in energy and
starts to overlap with the transverse band. Additionally, the intensity of the longitudinal peak is
similar to the intensity of the transverse band for systems with a small aspect ratio, making the
longitudinal peak less easily identifiable. For instance for Agas*, which has an aspect ratio of
1.12, the longitudinal peak at 4.35 eV (285.0 nm) overlaps the first peak making up the
transverse band at 4.27 eV (290.8 nm). For Ag:s™, which has an aspect ratio smaller than one
(0.72), the first transverse peak making up the transverse band is at 4.16 eV (298.3 nm), which is
lower in energy than the longitudinal peak at 4.85 eV (255.5 nm). The longitudinal peak overlaps
the second peak of the transverse band at 4.81 eV (257.9 nm).

Two main peaks are observed in the transverse band of the large pentagonal nanorods.
The energies of these two peaks and the longitudinal peak are given in Table 4.4. The
longitudinal peak shifts from 5.49 eV (226.0 nm) to 3.80 eV (326.8 nm) with increasing length.
Like the star-shaped nanorods, the systems with a higher aspect ratio (Ag7:™ and Ags;™) show a
strong identifiable longitudinal peak that is lower in energy than the transverse band. For
instance, the longitudinal peak of Ag7,™ occurs at 4.11 eV (302.1 nm) while the first peak of the
transverse band appears at 4.54 eV (273.1 nm). For Agss™, which has an aspect ratio close to
one (aspect ratio=1.18), the first transverse peak in the transverse band at 4.58 eV is close in
energy to the longitudinal peak which is at 4.38 eV. Therefore, we only see one peak in the
spectrum. Agxs** has an aspect ratio of 0.60. The range of the transverse band for this system is
from 4 to 5 eV, which is lower energy than the longitudinal peak at 5.49 eV since the aspect ratio

is smaller than one.

49



The excitation spectra of negatively charged star-shaped and large pentagonal nanorods
(Appendix B) show similar features and trends as their positively charged counterparts, which
has been observed previously for negatively and positively charged nanowires.'*® The intensity
of the main features tends to be higher for negatively charged systems due to the larger electron
density, as explained previously for silver nanowires.**® The negatively charged small

pentagonal silver nanorods were not calculated but similar features are expected.

Analysis of the longitudinal peak

The longitudinal peaks for all the positively charged systems considered in Figure 4-2 are
now analyzed in more detail. Longitudinal peaks have A’ symmetry for Ds, Systems and A,
symmetry for systems in which Cs, symmetry was applied. Transitions involved here take place
along the length of the nanorods, as will be discussed in the next section. Figure 4-3 shows the
wavelength of the longitudinal peak as a function of the number of core atoms. For all systems,
the wavelength of the longitudinal peak increases linearly with the length of the rod. Such
behavior was previously explained with the particle-in-a-cylinder model.” Despite the fact that
the charge of the individual rods is not constant for the star-shaped systems, the linearity is very
good, suggesting that the longitudinal peak energy is not significantly affected by the charge for

these systems.
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Figure 4-3. Longitudinal peak wavelengths of positively charged silver nanorods at the
LB94/DZ level of theory.
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The wavelength of the longitudinal peak tends to decrease as the diameter of the system
increases. This can be correlated to the fact that for a system with a given length, the aspect ratio
decreases as the diameter increases. In addition, the slope of the line tends to decrease as the
diameter of the system increases, meaning the red shift of the peak with increasing length
becomes smaller as the diameter of the system increases. This is because the aspect ratio of a
system with a larger radius increases slowly with increasing unit length compared to a system
with a smaller radius. The change in wavelength of the longitudinal peak with increasing length
is slightly smaller for star-shaped than for the large pentagon-shaped nanorods, although the
large pentagons have a larger radius than the stars. This observation may be explained by the
different shape of the two systems. Figure B-6 shows the energy of the longitudinal peak as the
function of the number of core atoms for positively and negatively charged star-shaped and large
pentagonal nanorods. The positively charged systems considered are the same as in Figure 4-2.
The negatively charged systems considered, along with their HOMO-LUMO gap, longitudinal
peak energy and transverse peak energy are shown in Table B1 and B2 of appendix B for the
star-shaped nanorods and large pentagonal nanorods, respectively. The positively and negatively
charged systems exhibit a very similar behavior and the position of the longitudinal peak does
not significantly vary for the different charges. As mentioned above, this data also supports the
fact that the charge does not significantly affect the excitation spectra for silver nanorods. The
HOMO-LUMO gaps for the negatively charged systems are mostly larger than 0.1 eV, like the
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positively charged systems. The main exceptions are Agss > and Agss >, which have HOMO-
LUMO gaps of 0.02 and 0.04 eV, respectively. On the other hand, the positively charged systems
Agss™t and Agss™! have much higher HOMO-LUMO gaps of 0.58 and 0.74 eV, respectively.

Analysis of the transverse peak

Transverse peaks have E;’symmetry for Ds, systems and E; symmetry for Cs, systems.
As mentioned above, the nanowires and small pentagonal nanorods display a strong, identifiable
transverse peak at 6.9 eV and 4.8 eV respectively. On the other hand, the transverse peak of the
star-shaped rods and large pentagonal rods is split into a broad band between about 4 and 6 eV.
We see that the transverse peak of the nanowires has a much shorter wavelength (higher energy)
than the transverse peak of wider systems. However, the strong splitting of the transverse peak
for the star-shaped and large pentagonal nanorods makes it difficult to derive a more quantitative

relationship for the relationship between diameter and transverse peak wavelength.

Analysis of the Ag,;” spectrum

The excitation spectrum of the large pentagonal nanorod Agz:™ shown in Figure 4-4A is
described in detail here.

Figure 4-4. Excitation spectra of A) Ags:® and B) Auz; at the LB94/DZ level of theory.
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This system is chosen since it is the longest system with a large pentagonal cross-section
whose gold counterpart was also obtained (Figure 4-4B). One intense sharp feature, the
longitudinal peak, is observed at about 4 eV. This main feature is comprised of four peaks with
energies varying between 3.98 and 4.12 eV. These four high-intensity peaks are of A’
symmetry, describing transitions along the main axis of the nanorod. The energy, oscillator
strength and transitions involved are displayed in Table 4.5. Most of the orbitals involved in
these transitions are very delocalized and located near the HOMO-LUMO gap, as shown in
Figure 4-5. Due to the cylindrical symmetry of these system, these orbitals can be described with
upper case Greek letters X, IT, A, @, I', H, ..., and correspond to linear combinations of the
valence s orbitals of the silver atoms. The subscript corresponds to the number of axial nodes
plus one. The number before the upper case Greek letter corresponds to the number of radial
nodes plus one. For instance, the LUMO+2 is a I1-like orbital with two axial nodes and one
radial node giving the notation 2IT3. The transitions with the highest dipole moments involved in

these four longitudinal peaks are Xn—Xm+1, Im—TIn+1, Am—>Am+1, €tc.

Figure 4-5. Kohn-Sham orbitals involved in the high intensity transitions for Ag;; at the
LB94/DZ level of theory. Contour value=0.01.
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Table 4.5. Energy, oscillator strength and transitions of the main A,’’ peaks of Ag;™.

Zz-component

Peak Energy | Intensity of transition

number (&V) (a.u) Transitions dipole Weight
moment (a.u.)

A4 (HOMO-2) — @5 (LUMO+31) -0.4687 0.3678

Y5 (HOMO-4) — %; (LUMO+6) 0.8446 0.0182

1 3.9826 | 1.9463 |24 (HOMO-2) — As (LUMO+11) 1.2746 0.0278

235 (HOMO-6) — 2%, (LUMO+3) 0.5793 0.0122

Ils (HOMO-1) — II; (LUMO+7) | 10255 | 0.0201
3 (HOMO) — @, (LUMO+9) 0.8015 | 0.0179

As (HOMO-2) s (LUMO+31) | -0.4747 | 0.383

®, (HOMO-3) 52, (LUMO+23) | -0.0918 | 0.3249

%% (HOMO-4) — 3, (LUMO+6) | -0.6387 | 0.0106

A, (HOMO-2) = As (LUMO+11) | -0.9434 | 0.0155

2| 40435 | 16048 15 HOMO-6) — 25, (LUMO+3) | -0.4565 | 0.0077
Ils (HOMO-1) — Ils (LUMO+7) | -0.7803 | 0.0118

®3 (HOMO) — @, (LUMO+9) 20.5601 | 0.0089

2T, (HOMO-3)— 21T, (LUMO+2) | -0.4491 | 0.007

%6 (HOMO-4) — 3% (LUMO+26) | -0.0938 0.2189

@, (HOMO-5) —2d;(LUMO+23) |  -0.0992 | 0.3833

, 20784 | 20185 |s (HOMO-4) =%, (LUMO+6) 0.9078 0.0216

As (HOMO-2) — As (LUMO+11) 1.3674 0.0327

235 (HOMO-6) — 2%, (LUMO+3) 0.5941 0.0132

Tls (HOMO-1) — IIs (LUMO+7) 1.1183 0.0244
%6 (HOMO-4) — 3%, (LUMO+26) 0.1353 0.4609
6 (HOMO-4) — ¥, (LUMO+6) 1.1479 0.0349

As (HOMO-2) — As (LUMO+11) 1.8721 0.0621

4 41268 | 5.1423 | 2X3 (HOMO-6) — 2%, (LUMO+3) 0.8478 0.0271

Tls (HOMO-1) — Ils (LUMO+7) 15081 0.045

@3 (HOMO) — @, (LUMO+9) 1.0964 0.0347

211, (HOMO-3) — 2[1;(LUMO+2) 0.8278 0.0242

For these four strong longitudinal peaks, the transitions with high dipole moments add up
constructively, as shown in Table 4.5. This constructive addition of one-electron transitions leads
to the sharp high intensity band observed in the excitation spectra and can be correlated to the
plasmon resonance, which is described as a collective oscillation of the electrons in response to
an electric field. Several other peaks at lower energy arise from the same transitions, as shown in
Table 4.6. However, their dipole moments add up in a destructive manner, giving peaks of very
low intensity. Similar trends were observed for silver nanowires'*® and small pentagonal

nanorods,’® as well as tetrahedral,?®® octahedral,”* and icosahedral” silver clusters.
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Table 4.6. Energy, oscillator strength and transitions of the low intensity A,’’ peaks

involving the same transitions as the main A’ peaks for Agr:~.

Peak

Energy

Intensity

z-component
of transition

number | (eV) (a.u) Transitions dipole Weight
moment (a.u.)
Y6 (HOMO-4) — ¥; (LUMO+6) -0.1652 0.0002
A4 (HOMO-2) — As (LUMO+11) 0.316 0.0006
233 (HOMO-6) — 2%, (LUMO+3) 0.5052 0.0032
1 1.3505 | 0.00787 | TIs (HOMO-1) — ITs (LUMO+7) 2.1431 0.0297
®3; (HOMO) — @4 (LUMO+9) 2.6221 0.0649
211, (HOMO-3) — 2113 (LUMO+2) -7.8803 0.7165
@3 (HOMO) — 2A, (LUMO+10) 1.1095 0.0522
Y6 (HOMO-4) — ¥; (LUMO+6) 2.0691 0.04
A4 (HOMO-2) — As (LUMO+11) 1.3857 0.012
2' 1.4565 | 0.00294 | 2%; (HOMO-5) — 2%, (LUMO+3) 0.5556 0.0041
I1s (HOMO-1) — ITs (LUMO+7) -9.3167 0.6058
@3 (HOMO) — @4 (LUMO+9) 5.4624 0.304
Y6 (HOMO-4) — ¥; (LUMO+6) -2.3424 0.0582
A4 (HOMO-2) — As (LUMO+11) -5.7698 0.2364
: 233 (HOMO-5) — 2%, (LUMO+3) -2.754 0.1148
3 16538 | 0.03393 I1s (HOMO-1) — ITs (LUMO+7) 2.745 0.0597
@3 (HOMO) — @4 (LUMOH9) 4.9901 0.288
211, (HOMO-3) — 2113 (LUMO+2) 2.4314 0.0835
Y6 (HOMO-4) — X7 (LUMO+6) 1.3719 0.0224
: A4 (HOMO-2) — As (LUMO+11) 3.9595 0.1248
4 18546 | 0.00245 2%3 (HOMO-5) — 2%, (LUMO+3) -5.1325 0.447
211, (HOMO-3) — 2113 (LUMO+2) -0.3946 0.0025
Y6 (HOMO-4) — ¥; (LUMO+6) 7.4579 0.6743
A4 (HOMO-2) — As (LUMO+11) -5.4239 0.2388
5 1.8905 9.03E- | 2X3 (HOMO-5) — 2%, (LUMO+3) -1.1173 0.0216
04 211, (HOMO-3) — 2113 (LUMO+2) -0.4078 0.0027
@3 (HOMO) — @4 (LUMOH9) -0.9412 0.0117
ITs (HOMO-1) — ITs (LUMO+7) 0.4744 0.002

Three transverse peaks are observed between 4.37 and 4.78 eV, as shown in Table 4.7.

Their intensities are lower than the longitudinal ones because they have lower transition dipole

moments. Contrary to the longitudinal case, we get the following transitions: £—II, [I-X, ®—T

as well as IT—-® or II—H. For the nanowires, the main transitions involved in the transverse
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peak are of the type Zm—IIn.**® For the small pentagonal nanorods, the transverse excitations are
mainly of the type Tn— 11y, [Ihn—Zn, IIn—An etc., where the change in the azimuthal quantum
number is +1.”° For the wider systems, we get more flexibility due to the fact that the cross-
section is not spherical and due to the higher number of states available. For instance, we see
some 2IT1;—H; and ®3—3I1;3 transitions, where the changes in the azimuthal quantum number
are +4 and -2 respectively. The quantum numbers m and n may also change. Nevertheless, we
still see some ®p— 1y transitions, which have a higher transition dipole moment than the others.
We note that the unoccupied orbitals involved here are much higher above the LUMO than for
the longitudinal case, which contributes to the higher energy of the transverse peak compared to
the longitudinal peak. The excitations involved in peak 3 at 4.78 eV show a constructive
interference of the transition dipole moments and the peak is therefore more intense than the

other two where there is some destructive interference.

Table 4.7. Energy, oscillator strength and transitions of the main E;’ peaks of Agr; ™.

X_
component
Peak | Energy | Intensity . of transition _
number | (eV) (a.u) Transitions dipole Weight
moment
(a.u.)

®; (HOMO-10) — 311, (LUMO+19) | -0.2474 | 0.3646
211, (HOMO-7) — 3%; (LUMO+1) | 0.2936 | 0.0059

1 437 | 0.9199
211, (HOMO-3) — 3%, (LUMO+8) 0.256 0.0046
235 (HOMO-6) — I1; (LUMO+25) | 0.1024 | 0.0223
ITs (HOMO-1) —H; (LUMO+35) 0.2982 | 0.3445
@3 (HOMO) — 3113 (LUMO+37) 0.1667 | 0.2092
2 458 | 0.8743
®; (HOMO-10) — I'; (LUMO) -0.4572 | 0.0084
21; (HOMO-7) — H; (LUMO+21) | -0.1287 | 0.0063
2T; (HOMO-7) — H; (LUMO+21) |  -0.172 | 0.0118
211, (HOMO-3) — H, (LUMO+29) | -0.1483 0.01
3 478 | 1.5949
®; (HOMO-10) — I'; (LUMO) -0.5507 | 0.0128
®3 (HOMO) — s (LUMO+12) -0.2411 | 0.0051
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Gold nanorods

The gold equivalents of the small pentagonal nanorods, star-shaped nanorods and the large
pentagonal nanorods are modeled. The charge of the systems is usually the same as their silver
counterpart except for the star-shaped Aus, ™ and Auzs* and the large pentagonal Au7; . These
systems do not have a +1 charge contrary to their silver equivalent studied in the previous section
because a closed-shell occupation was not obtained for the singly positively charged system.
Figure 4-6 shows the absorption spectra of the gold nanowires,'* small pentagonal nanorods,
star-shaped nanorods and large pentagonal nanorods examined in this work. Tables 4.8 to 4.11
show the HOMO-LUMO gaps and longitudinal peak energies of the systems considered in
Figure 4-6.

195

Figure 4-6. Excitation spectra of gold A) nanowires— B) small pentagonal nanorods C)

star-shaped nanorods and D) large pentagonal nanorods at the LB94/DZ level of theory.
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*The key shows the system considered and their aspect ratio.
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Table 4.8. Longitudinal peak energy and HOMO-LUMO gap of gold nanowires.

) o . | HOMO-LUMO gap
System | Aspect ratio (L/2R) | Longitudinal peak (nm) V)
e
Auz™t 1.92 489.55 0.38
Au;t 5.85 1177.77 0.35
Aup 9.74 1315.58 0.27
Augs™t 13.64 1553.74 0.22
Al 17.54 1795.49 0.18

a) Ref'™
Table 4.9. Longitudinal peak energy and HOMO-LUMO gap of small positively charged

pentagon-shaped gold nanorods .

] Longitudinal peak | HOMO-LUMO gap
System Aspect ratio (L/2R)
(nm) (eV)
Al 1.63 390.27 0.24
Aug 2.80 424.21 0.32
Augst 3.90 511.40 0.30
Alss 5.07 545.11 0.13
Algr ™ 6.16 598.55 0.03

Table 4.10. Longitudinal peak energy and HOMO-LUMO gap of positively charged star-

shaped gold nanorods.

) Longitudinal peak HOMO-LUMO gap
System | Aspect ratio (L/2R)
(nm) (eV)
Augt 0.75 328.91 0.83
Al 1.12 340.10 0.34
Algo™ 1.47 436.59 0.16
Aug, 1.82 438.31 0.04
Alg,™? 2.19 457.51 0.01
Aus" 2.53 450.65 0.19
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Table 4.11. Longitudinal peak energies and HOMO-LUMO gap of large pentagon-shaped

gold nanorods.

] Longitudinal peak HOMO-LUMO gap
System | Aspect ratio (L/2R)
(nm) (eV)
Al 0.64 235.51 0.18
Auze™ 0.90 298.02 0.43
Auss™ 1.17 379.20 0.78
Auq” 1.47 397.21 0.34

The HOMO-LUMO gaps of gold systems are generally larger than 0.2 eV and can be as
high as 0.83 eV. The star-shaped nanorod Auso™ has a HOMO-LUMO gap of 0.16 eV at the
LB94/DZ level of theory and 0.17 eV at the BP86/DZ level of theory, which is 0.1 eV smaller
than the more compact Auso nanorod studied by Liu et al.?*° This emphasizes the fact that the
HOMO-LUMO gaps do not correlate with the number of atoms in the system. On the other hand,
the small pentagonal nanorod Aug;**, and the star-shaped nanorods Aus;, ™ and Aus, " have very
small HOMO-LUMO gaps (smaller than 0.04 eV). Excitation spectra for gold nanorods are
much broader and exhibit a multitude of transitions out of the d-band compared to their silver
counterparts. Transitions out of the d-band occur in gold systems because of relativistic effects:
the heavy nuclei of gold atoms induce a contraction of the valence s electrons, which brings the
valence s orbitals close to the d-band.??°*?** The effect of the d-band was previously studied in
detail for gold nanowires.***1*2*% The longitudinal peak is less obvious than for the silver case
for systems with a low aspect ratio since the transitions originating from the d-band have a
similar intensity. As the aspect ratio increases, the longitudinal peak becomes stronger and shifts
to the red, making it more easily identifiable. Systems with an aspect ratio larger than 2.80 for
the small pentagon-shaped nanorods and 2.19 for the star-shaped nanorods show a strong,
distinguishable longitudinal peak. We note that for the large pentagons, the longest system that
could be studied at this level of theory has a 1.47 aspect ratio and therefore the main longitudinal
peak is difficult to identify. For systems with very high aspect ratio, only the main longitudinal
peak is strong and the d-band seems to disappear since these transitions have a constant intensity.
However, we cannot see any strong transverse peak for these gold systems at this level of theory,

which is in contradiction with experiment.®*” The transverse peaks are weak and blend in with

59



195 More investigations need to be

the d-band, similar to what was observed with gold nanowires.
performed on these gold nanorods and new computational methods need to be developed to

provide a better description of their plasmonic properties.

Figure 4-7. Longitudinal peak wavelengths of positively charged gold nanorods.
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Number of core atoms

The wavelength of the longitudinal peak of positively charged gold nanorods as a
function of the number of core atoms is shown in Figure 4-7. Longitudinal peak energies,
HOMO-LUMO gaps and aspect ratios of these systems are presented in Tables 4.8 to 4.11. The
data for the nanowires is from Ref'®. All nanowires considered have a +1 charge. We note that
just like in the silver case, the charges of the star-shaped nanorods considered vary. All the other
systems considered have a +1 charge except for the large-pentagon Auz; . The excitation
spectrum of the positively charged Auz; ™ system could not be obtained. The relationship
between the peak wavelength and number of core atoms is not as linear as the silver case. This
was explained for the nanowires by the coupling of d-band transitions with the main HOMO-
LUMO transition, which splits the HOMO-LUMO (longitudinal) peak and affects the peak
energy.'® The linearity was recovered by taking the weighted average of the energy of the
HOMO-LUMO transition. A similar effect is observed for the larger systems. In fact, excitations

from the d-band contribute to the main longitudinal peak for systems with a low aspect ratio,
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splitting the longitudinal peak. As the nanorods grow longer, the contributions from the
excitations out of the d-band decrease and the main longitudinal peak grows stronger, just as it
does for the silver case. This will be discussed in more detail in the next section. Similar to the
silver case, we can see that the energy of the longitudinal peak tends to increase as the diameter
of the system increases. However, the longitudinal peaks of star-shaped and small pentagon-
shaped nanorods of similar length have similar energies. This discrepancy may be due to the

different shapes of the two systems and also possibly to the contributions of the d-band.

Analysis of the Auy;™ nanorod

The spectrum of Auz1 is much broader than its silver counterpart, as shown in Figure 4-
4B. Nevertheless, a few peaks are slightly more intense than the rest and are analyzed in more
detail in this section. Five peaks of A,’” symmetry with oscillator strength between 0.11 and 0.31
appear at low energy between 2.96 and 3.58 eV (Table 4.12). We note that the contributions of
the transition dipole moments are not as high as the silver case. In addition, there is also more
destructive addition of the transition dipole moments. Many transitions are of X,—Xm+1,
[Im—TIn+1 Or Ay—Am+1 Character, involving delocalized orbitals around the HOMO-LUMO gap
that are shown in Figure 4-8. We note that these orbitals have a small amount of d-character
mixed in. We also see some excitations like ®; — @, or 2X3 — Xg, where the azimuthal quantum
number does not change but Am is larger than 1 and An is larger than zero. Peaks 1 through 4
display some common excitations, suggesting some splitting has occurred. These longitudinal
peaks also display high contributions from transitions out of localized d-band orbitals, which are
closer in energy to the delocalized cylindrical orbitals than in the silver case, again due to
relativistic effects.’>?%® Peak number 5 is comprised only of transitions from the d-band and its
intensity is slightly higher than peak 1 which only has contributions from delocalized orbitals. In
fact, we can see that d-band transitions have a similar dipole moment to the delocalized orbital-

based transitions or even higher. Two of these d-band orbitals are also shown in Figure 4-8.
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Table 4.12. Energy, oscillator strength and transitions of the main A,’* peaks of Auy; ™.

z-contribution

Peak | Ener Intensit . of transition .
number (eV?y (au) g Transition dipole Weight
moment (a.u.)
Y5 (HOMO-4) — 3%3 (LUMO+16) 0.3802 0.6639
®; (HOMO-10) — @4 (LUMO+9) 0.2062 0.1206
1 206 0114 Y5 (HOMO-4) — X7 (LUMO+6) -0.4679 0.0051
Y5 (HOMO-11) — 234 (LUMO+5) -0.2744 0.0296
I1s (HOMO-1) — 3114 (LUMO+23) 0.2121 0.0101
I1s (HOMO-1) — 2114 (LUMO+18) -0.1668 0.0099
d-orbital— T'; (LUMO) 0.308 0.2794
2%3 (HOMO-5) — Xg (LUMO+15) -0.2033 0.1391
I1s (HOMO-1) — 3114 (LUMO+23) -0.8633 0.1744
2 3.1 0.265 Y5 (HOMO-4) — %7 (LUMO+6) 0.6281 0.0097
2%3 (HOMO-5) — 234 (LUMO+5) 0.5101 0.0082
A4 (HOMO-2) —As (LUMO+10) 1.0967 0.0171
I1s (HOMO-1) — ITs (LUMO+8) 0.4603 0.0062
d-orbital — I'; (LUMO) 0.25 0.2926
3 3.5 0.1944 I1s (HOMO-1) — 3114 (LUMO+23) -0.6312 0.0978
2%3 (HOMO-5) — 234 (LUMO+5) -0.4253 0.006
A4 (HOMO-2) — As (LUMO+10) -0.8805 0.0116
d-orbital — 3%; (LUMO+1) -1.0268 0.4271
d-orbital — I'; (LUMO+2) 0.317 0.1318
d-orbital — I'; (LUMO) 0.1291 0.079
4 3.29 0-3057 d-orbital — 2A; (LUMO+3) 0.239 0.0694
I1s (HOMO-1) — 3114 (LUMO+23) 0.3999 0.0398
Y6 (HOMO-4) — X7 (LUMO+6) 0.456 0.0054
d-orbital — X7 (LUMO+6) 0.173 0.1942
d-orbital — 2A; (LUMO+3) 0.7514 0.1872
° 3.58 0.1814 d-orbital — 2A; (LUMO+3) -0.2858 0.1661
d-orbital — @4 (LUMO+9) -0.2683 0.067
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Figure 4-8. Kohn-Sham orbitals involved in the high intensity transitions for Au;,™ at the
LB94/DZ level of theory. Contour value= 0.01.
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For systems with a low aspect ratio like this one, excitations out of the d-band tend to mix
with transitions from the delocalized orbitals and split the longitudinal peak into peaks of lower
intensity, making it less identifiable. For systems with a high aspect ratio such as the small
pentagon-shaped nanorod Aug; ™, there is no contribution of the d-band to the longitudinal peak.
The transitions from the cylindrical orbitals have a high dipole moment and add up
constructively, leading to a strong, easily identifiable longitudinal peak similar to the silver case.
The transitions involved in the main longitudinal peak of Aug;** are mainly Zm—Zms1, n—TIn+1
and An—Anm+1 also like in the silver case. We note that the longitudinal peak has a contribution
from the X1;—2%, transition, which involves An=1 and Am=-7. All these transitions are
summarized in Table B3 of Appendix B and pictures of the orbitals involved are shown in Figure
B7 of Appendix B. It should be noted that the cylindrical orbitals also have a small amount of d

character mixed in contrary to the silver case.

Conclusions
Silver and gold nanorods with different lengths and diameters were analyzed in this work.
The excitation spectrum of silver nanorods shows two main strong peaks: a longitudinal peak

corresponding to transitions along the main (z) axis of the nanorods and a transverse peak,
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corresponding to transitions in the xy plane of the nanorod. The longitudinal peak increases in
intensity and shifts to lower energy as the length of the system increases. The dipole moments of
the single electron excitations involved in this main peak add up constructively, which can be
related to the surface plasmon resonance of noble metal nanoparticles. The increasing intensity
of this peak may be explained by the increasing number of one-electron excitations adding
constructively. The transitions involved are of Z—X, IT—II, A—A, etc. character where the
upper case Greek letter is a label for the cylindrical orbitals. For a system with a given length, the
energy of the longitudinal peak increases as the diameter increases, due to the decreasing aspect
ratio. The red shift of the longitudinal peak with increasing length becomes smaller as the
diameter of the system increases, which correlates with the smaller increase of the aspect ratio
for each added unit length to the system. The transverse peak is narrow and well separated from
the longitudinal peak for systems with a small diameter such as nanowires and small pentagonal
nanorods. For the star-shaped and large pentagonal nanorods, the transverse peak is split into a
broad band. The transverse peak or band stays at nearly constant energy and intensity for each
system of a given radius. The transitions involved are of X—II, ®—T, etc. character for the
nanowires and small pentagonal nanorods, but additional transitions such as II—H also occur for
the wider systems. The transition dipole moments have a smaller magnitude than for the
longitudinal peak. For systems with an aspect ratio smaller than one, the longitudinal peak is
higher in energy than the transverse peak; as the aspect ratio increases, these two peaks cross in
the excitation spectrum so that the longitudinal peak becomes the lowest in energy. Gold
nanorods show a much wider excitation spectrum due to the high density of transitions
originating from the d-band. The longitudinal peak shifts to lower energy and increases in
intensity with increasing length, like in the silver case. However, the longitudinal peak of
systems with a low aspect ratio shows strong contributions from transitions originating from the
d-band in addition to the transitions originating from delocalized cylindrical orbitals. The amount
of d-band mixing decreases as the aspect ratio increases and the longitudinal peak shifts away
from the d-band. At the LB94/DZ level of theory, the transverse peaks are hidden in the d-band.
While the LB94 functional usually works well for gold and silver systems, no strong transverse

peak is shown for the gold nanorods studied here, which contradicts experiment.
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Chapter 5 - Origin and TDDFT Benchmarking of the Plasmon

Resonance in Acenes

Reproduced with permission from:
Guidez, E. B.; Aikens, C. M. J. Phys. Chem. C 2013, 117, 21466.
Copyright 2013 American Chemical Society.

Abstract

The origin of plasmon resonance in acenes is described by analyzing the excitation
spectrum of naphthalene in terms of configuration interaction. The strong longitudinal f-peak in
the UV region of the spectrum results from a constructive interaction of the transition dipole
moments of two degenerate configurations V; and V,. V; corresponds to the excitation of an
electron from the HOMO to the LUMO+1. V; corresponds to the excitation of an electron from
the HOMO-1 to the LUMO. The weak longitudinal a-peak in the visible results from a
destructive interaction of the dipole moments of the same two configurations. Previous TDDFT
calculations showed a similar behavior for silver and gold nanoparticles but often with more than
two interacting configurations. The plasmon occurs at the frequency where all configurations
interact constructively. The B-peak of acenes can therefore be identified as the plasmon peak.
The natural transition orbitals involved in the a- and - peaks of naphthalene have identical
shapes, which reflects the fact that the transitions involved in these two peaks are similar, but
they may have opposite phases. An analysis of the transition density of the f-peak of naphthalene
reveals that the electron density moves from one side of the molecule to the other upon
excitation, as expected for a dipolar plasmon. The plasmonic character of the f-peak is compared
to the single-particle transition character of the transverse p-band. Several exchange-correlation
functionals have been benchmarked. Hybrid functionals give the best description of the B-peak
and the a-peak. The couplings between the two interacting configurations at all levels of theory
are similar to experimental values. On the other hand, long-range corrected functionals give the

most accurate energies for the transverse p-band.
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Introduction
Polycyclic aromatic hydrocarbons have been studied for almost a century due to their
environmental impact and their role as carcinogens.?**#*? Linear polycyclic aromatic
hydrocarbons, or acenes (Figure 5-1), have recently attracted more attention due to their potential

use as semi-conducting materials such as field-effect transistors.?*3%

Figure 5-1. Linear polycyclic aromatic hydrocarbons (acenes).

Naphthalene OOOOO R —

Anthracene OOOOO Hexacene
OOOO Tetracene

Acenes with up to five fused aromatic rings can be easily synthesized with a procedure
readily available in the literature.?** However, the synthesis of longer acenes is more difficult due
to their increasing instability in solution as the number of rings increases.?*?** Octacene and
nonacene were synthesized in a cryogenic argon matrix in 2010.? Computational methods are

223-225 and

therefore necessary to study the electronic structure of acenes in the ground state
excited state.””*?® Despite their long history, the electronic properties of acenes are still subject
to some controversy. For instance, Houk et al. predicted a singlet ground state for acenes shorter
than nonacene and a triplet ground state for acenes longer than nonacene using density functional
theory?®® while Bendikov et al. predicted a singlet ground state with a strong diradical nature for
acenes larger than hexacene.?** Chan et al. showed than the polyradical character increases with
increasing number of rings.?*

The excitation spectra of acenes show three main features: the B-band, a-band and p-
band.?*?* The o- and B-bands are comprised of two transitions polarized along the long axis of
the system (HOMO—LUMO+1 and HOMO-1—LUMO) and have B3, symmetry.”** The p-band
corresponds to transitions polarized along the short axis of the system (B, symmetry), where the
main component is the HOMO-LUMO transition.?**?** The a- and p-bands are also known as the

1Ly, and 1L, states, respectively. The B-band is in the UV region of the spectrum and has a very
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large oscillator strength while the p-band and a-band are in the visible and are very weak.?** All
three bands shift to lower energy as the number of rings increases.*** However, the shift of the
p-band is larger than the shift of the a-band and consequently the two peaks cross. The a-band of
naphthalene is lower in energy than the p-band whereas the a-band is higher in energy than the
p-band for anthracene and longer acenes.?** Several models involving configuration interaction
have been used to describe the excited states of acenes. These methods include configuration
interaction calculations using the free-electron approach,?**?*® as well as configuration
interaction using a linear combination of atomic orbitals approximation with neglect of

237 More recently, Sony and Shukula used the

differential overlap between atomic orbitals.
Pariser-Parr-Pople (PPP) Hamiltonian in conjunction with the configuration interaction method
to reproduce the excitation spectrum of acenes.?®® Time-dependent density functional theory has
also been used to calculate the excited states of acenes. But in 2003, Grimme and Parac
determined that standard GGAs and hybrid functionals used in time-dependent functional theory
calculations tend to strongly underestimate the energy of the p-band with increasing acene
length, which is why these standard functionals do not give the correct ordering between the a-
band and p-band.??® In the last three years, Wong and Hseih and Herbert et al. employed several
long-range corrected exchange-correlation functionals to obtain the correct ordering between the
o and p-bands for all acenes.”®®*?* Later, Ziegler et al performed an all-order constricted
variational density functional theory calculation and obtained excitation energies for the a-and p-
bands in good agreement with experiment.?*?

Several experiments have suggested that carbon nanotubes and graphene exhibit a
plasmonic behavior.?***® Since acenes are building blocks of these systems, it is important to
understand their properties. Recently, Manjavacas et al. showed that polycyclic aromatic
hydrocarbons exhibit plasmons that are highly dependent on the charge of the molecule.?*®
Plasmons, defined as a collective oscillation of electrons under an electromagnetic field, have
previously been widely studied in noble metal nanoparticles.?%74151:192.209.247248 Tha gecyrrence
of plasmons in organic molecules opens many doors for plasmonic devices and an understanding
of the origin of this phenomenon is essential in order to enhance its applications.

The majority of the theoretical studies of acenes in their excited states focus on the a- and

228,240,249,250

p-band since they lie in the visible region. However, very few studies focus on the p-

peak which shows strong resonance. The goal of this study is to show that the B-peak is
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plasmonic and to theoretically derive the origin of this plasmon in naphthalene (i.e. acene with
two fused benzene rings) using configuration interaction. We will also briefly compare the
plasmonic character of the B-band with the single-particle excitation character of the p-band.
Finally, we will benchmark exchange-correlation functionals for the plasmonic -peak for the

acene series up to hexacene.

Computational methods

The Q-Chem software was used to perform time-dependent density functional theory
(TDDFT) calculations on acenes.?®! The acenes studied are naphthalene (two fused aromatic
rings) up to hexacene (six fused aromatic rings). The geometries used to perform the TDDFT
calculations were the ones optimized at the B3LYP/6-31G* level by Richard and Herbert.?*® The
exchange-correlation functionals used for the TDDFT calculations are the GGAs BP86'%%1% and
BLYP,*21% the hybrid functionals PBE0*® and B3LYP,*%!% and the asymptotically corrected
functional LB94,*® as well as three long-range corrected functionals ®PBEh,?*?> uBLYP?*° and
CAM-B3LYP.?? For oPBEh, we use the same parameters as Herbert et al as they were found to
give accurate energies for the o and p-bands of acenes.?*® For uBLYP, we use a Coulomb
parameter p=0.17 ag"* which was also used by Herbert on acenes®*® and by Wong on Courmarin
dyes.?®* For CAM-B3LYP, the original parameters by Yanai et al. are used.?*® A cc-pVTZ*®
basis set was used for all these calculations. Natural Transition Orbitals (NTOs) were also
obtained using Q-Chem?®® and visualized using MacMolPlot.*’ The Amsterdam Density
Functional package (ADF)**
corrected SAOP°/TZP, LB94/TZP and LB94/QZ4P levels of theory. The transition densities
were calculated with ADF using the excitations at the LB94/TZP level of theory and visualized

using VMD.?*®

was used to perform TDDFT calculations at the asymptotically

Results and discussion

Theoretical explanation of plasmon resonance in acenes
In this section, we will derive the plasmon resonance of naphthalene using a
configuration interaction approach. The single-electron excitations making up the longitudinal a-
and p-peaks are HOMO—LUMO+1 and HOMO-1—LUMO.?* Only singly excited

configurations are considered in this derivation. Both transitions have Bs, symmetry. In the
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neglect of differential overlap model, these transitions are exactly degenerate. We note that this
configuration interaction approach was previously performed by Pariser,?*” but we expand on the
important steps here to make a link to the origin of the plasmon effect. The excited state

wavefunctions for the a- and - peaks are given by the configuration interaction expression:

Y, =AV,+AV, (5.1)
where V; and V, designate the singly excited determinantal configuration functions where an
electron is excited from the HOMO to the LUMO+1 and from the HOMO-1 to the LUMO
respectively.

The configuration interaction secular equations that must be solved are:

H,-E H
11 2 1_¢ (5.2)
H21 H22 E
H,-E H A
|: 11 12 :||: 1:|:0 (53)
H21 sz -E Az
2
where the matrix elements Hj; are defined by H; = J'\/i*[Hfj"’e +%Zf— dv and p and g
PAd “pg

designate the atomic p,-orbitals. The neglect of differential overlap is used to simplify the
Coulomb integrals. In addition to the neglect of differential overlap and the neglect of multiply

excited configurations, only nearest neighbor resonance interactions were considered for the

calculation of the coupling elements H{™ Penetration integrals are constant or neglected for the

core integrals H:>"* 27 Using these approximations, the configurations V; and V, are degenerate

and we have Hy1=H,, and H1,=H.1.%*" The numerical values calculated from the configurational
secular equations for Hyy, Hip, Hio and Ha, are:?*’

H11=H2,=5.17 eV

Hio= H2,=0.93 eV
By solving equation 5.2, two excitation energies arise that correspond to the a and 3 peaks:
E* =H;;-H;p=4.24 eV and E” =H;;+H1,=6.10 eV. Now solving for the coefficients A; and A,
yields A =—A, forE“and A = A, for E”. Therefore we get excited state wavefunctions for the a

and [} peaks; after normalizing coefficients A; and A, these wavefunctions are:
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1 1

e =$A1—$Az (5.4)
p =%A1 Jr%A2 (5.5)

Now, we can calculate the dipole moment of electronic transitions from the ground state to these
two excited states. The transition dipole moments are directly related to the oscillator strength of
the peaks observed in the excitation spectrum. The transition dipole moment between the ground

state and an excited state is given by:
M., _[‘P MY _do (5.6)
with

M :Zetrt (57)

t
where e; and r; are the charge and position of the t™ particle. Also, since the a and B excitations
take place along the z-axis (long axis) of the molecule, we can simplify M by considering only

the z-component of the transition which gives us:
M= Zt:etzt (5.8)
The transition dipole moment to the a state is given by:
M,, :J.‘P;M‘Padu:J.VJZetz{ 12 }d
J_-[V D ez Vdo- \/_J‘V D ez V,dv= \/_(ml m,)~0

(5.9)

where my = [@romo IM|DLumo+1] and my = [Bromo-11M|PLumo]. Using the approximations
mentioned above, m;=m, and equation 5.9 is exactly equal to zero. The transition dipole moment

to the P state is given by:
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. . 1 1
Mo, :J.\POM‘Pﬁdu:J‘VOZetZt{$Vl+$vz}du

1 . 1 N 1
_ EJVO Z,etzt\/ldwﬁjVoZetthzdu =$(m1 +m,)~~2m,

(5.10)

How does this relate to the plasmon resonance? We see that the transitions involved in the a- and

B-bands are identical but interact constructively in one case, giving the high-energy B-band, and

destructively in the other, giving the low-intensity a-band. The TDDFT calculations performed

for acenes from naphthalene to hexacene at the LB94/TZP level also display this behavior, as

shown in Table 5.1.

Table 5.1. Excitation energies of a and P peaks of acenes, transitions involved, and their

transition dipole moment contributions at the LB94/TZP level of theory.

Transition

(a.u.)
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|| @ | 000052 it o [odss0 | 27512
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, | e | 0007 iet e gz |5 1ads
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(| Ss@pea | 0002 5Nt o [0 dses | 356
85 (90 | 2508 oNon T | 051t | 2006

| 2O7@pe | 00088 iouo” o pads T asie
2000 | 212 ovion Tomo-T | 05168 | -abiss

In fact, Table 5.1 shows that the HOMO—LUMO+1 and HOMO-1—LUMO bhoth contribute

essentially equally to the - and a-peaks. The transition dipole moments have similar amplitudes
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but opposite signs for the a-peak, which explains why this peak is weak. On the other hand, the
transition dipole moments have the same sign (and again similar amplitudes) for the B-peak,
leading to a strong peak. Both transitions have similar weights for both the a-peak and the j3-
peak. We note that the theoretical derivation described above yields a zero oscillator strength for
the a-peak but this peak is observed both experimentally and with TDDFT. This is because, as
mentioned above, the theoretical derivation used some approximations like the neglect of
differential overlap that do not exactly apply in a real system. In a real system Hj; is not exactly
equal to Hyp, which will affect not only the energies of the a- and - peaks but also their
oscillator strengths. Thus, the oscillator strength of the a-peak is not exactly equal to zero
although it remains small. This constructive versus destructive addition of the transition dipole
moments giving the - and a-peak in acenes also occurs in noble-metal nanoparticles as shown
by several TDDFT calculations.®*"*"+1%2%% |n the case of the acenes studied here, only two
configurations interact, but many configurations may interact for silver and gold nanoparticles.
The higher the number of interacting configurations, the more excitation peaks are obtained. For
instance if four configurations interact, four peaks are obtained. At a specific frequency all of
these configurations interact constructively, leading to the strong peak (the plasmon peak)
observed in the excitation spectrum of these systems. Therefore, the B-band in acenes can be
identified as a plasmon band in which only two configurations contribute. It is worth pointing out
that the intensity and the wavelength of the B-peak (the plasmon peak) increase with increasing
number of rings the same way the intensity and the wavelength of the longitudinal plasmon peak
in noble metal nanorods do with increasing length.>>° In the hypothetical example with four
interacting configurations, the other three peaks, resulting from a destructive interaction of the
dipole moments of these configurations, are weaker but their oscillator strengths may vary from
one another depending on the total resulting dipole moment. These peaks are analogs of the a-
peak observed in acenes.

Natural transition orbitals (NTOs) calculated for both the a and  peaks of naphthalene at
the LB94/cc-pVTZ and oPBEh/cc-pTZV levels of theory are shown in Figure 5-2 and Figure C-
1 of Appendix C, respectively. NTOs are used to express an excitation in terms of a single
electron-hole pair of orbitals. The “hole” represents the orbital where the electron density is

excited from and the “electron” represents the orbital the electron density is excited t0.%°
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Figure 5-2. Natural transition orbitals involved in the a and p-peak at the LB94/cc-pVTZ

level of theory.

B-peak
Hole 1 Electron 1 Hole 2 Electron 2
amplitude =0.5906 (44.7 %) amplitude=0.5866 (44.1%)
a-peak
Hole 1 Electron 1 Hole 2 Electron 2

388
3

§§
3

amplitude = 0.7009 (50.0%)  amplitude = 0.6987 (49.7 %)

*An edge view and a face view of each orbital are presented.

At both the LB94 and wPBEh levels, a single pair could not be obtained but two pairs of
delocalized orbitals with approximately equal amplitude were obtained. We can see that the two
orbital pairs involved are the same for both the a- and B-peaks. This again results from the fact
that the two single-electron configurations involved in both peaks are the same but may interact
constructively or destructively. We also note that the orbitals are the same at both levels of
theory examined here. At the LB94/cc-pVTZ level of theory, we can see that the two holes of the
a-peak have the opposite phase as the two holes of the B-peak. In addition, electron 1 of the -
peak has the opposite phase as electron 1 of the a-peak. Electron 2 of the a-peak and electron 2
of the B-peak are in phase. At the ®PBEh/cc-pVTZ level of theory, only hole 1 of the a-peak has
the opposite phase as hole 2 of the B-peak. All other NTO pairs are in phase. It is likely that this
behavior is related to the fact that the wavefunctions describing the a- and -peaks differ by a
negative sign (equations 5.4 and 5.5). The holes are the eigenvectors that diagonalize the matrix
TT"and the electrons are the eigenvectors that diagonalize the matrix T'T where T is the

transition density matrix defined by:*®
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T, =(4]|T(D|4,) (5.11)

with

T(r)= N_H‘P ((HANS )G A (AN

The indices i and a define occupied and unoccupied orbitals respectively. ¥ corresponds to the

dr,..dr, (5.12)

excited state (here a or B) and ¥ labels the ground state.
The transition densities corresponding to the a- and B-peaks of naphthalene are plotted in

Figure 5-3.

Figure 5-3. Edge view and side view of the transition densities for the a- and p-peaks of

naphthalene.

a-peak

*In blue is the region of the molecule where the electron density decreases. In red is the

region of the molecule where the electron density increases. [Isovalue (a—peak)|=0.005. |Isovalue
((B—peak)|=0.05.

For the B-peak (the plasmon peak), we can see that upon excitation, the electron density moves
from one end of the molecule (blue region) to the other (red region). This is what we expect for
this dipolar plasmonic excitation, where the valence electrons are coherently excited.?*® For the
a-peak, we can see that the region of the naphthalene molecule where the electron density is
depleted upon excitation is not concentrated at the ends of the molecule, but is spread throughout
the ring system. The same observation can be made for the part of the molecule where the
electron density accumulates upon excitation. We note that the amplitude of the isovalue used to
plot the B-peak transition density is ten times larger than for the a-peak. This choice was made in

order to be able to visualize the transition density of the a-peak. This indicates that the a-peak
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involved a much smaller charge redistribution upon excitation than the B-peak. In summary, we
can see that the plasmon peak involves a high charge redistribution from one end of the
naphthalene molecule to the other, which results from the constructive addition of the transition
dipole moments of the HOMO-1—LUMO and HOMO—LUMO+1 excitations. On the other
hand, the a-peak involves a small rearrangement of the electron density upon excitation due to
the destructive addition of the dipole moments of the HOMO-1—LUMO and
HOMO—LUMO+1 transitions.

Single-particle versus plasmonic character of the p-band

We have demonstrated above that the B-band and a-band result from the interaction
between the HOMO—LUMO+1 and HOMO-1—LUMO configurations which have the same
symmetry and similar energies. The dipole moments of these two transitions have similar
amplitudes but interact constructively in one case, which yields the high-intensity f-band in the
UV, and destructively in the other, yielding the low-intensity a-band in the visible. We now
briefly focus on the p-band, which involves transitions perpendicular to the main axis of the
system. Like the a-band, the p-band is in the visible and has low oscillator strength. It also shifts
to lower energy with increasing system length.=*% |t is known that the HOMO—LUMO
transition, which has B,, symmetry, is the main component of the p-band.?*® Table 5.2 shows the

transitions contributing to the p-band in naphthalene at the LB94/TZP level of theory.

Table 5.2. Transitions with By, symmetry for naphthalene at the LB94/TZP level of theory.

Energy (eV) stgzgtlrl\??;.) Transitions Weight T:ﬁg;‘}gg? ((;'.E.C;Ie
HOMO—LUMO 0.9173 -1.8247
3.99 (p-band) 0.0416 HOMO-2—LUMO+2 | 0.0413 0.5384
HOMO-1-LUMO+1 | 0.0311 0.3996
HOMO-1-LUMO+1 | 0.8877 1.7760
5.75 0.129 HOMO-2—LUMO+2 | 0.0673 -0.5720
HOMO—LUMO 0.0145 0.1909
HOMO-2—LUMO+2 | 0.8602 -1.8060
7.38 0.503 HOMO—LUMO 0.0494 -0.3111
HOMO-1-LUMO+1 | 0.0485 -0.3663
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The HOMO—LUMO transition indeed has a very high dipole moment but two other transitions
are also involved in the p-band: HOMO-1—-LUMO+1 and HOMO-2—LUMO+2. These two
transitions of course also have By, symmetry. They have a smaller dipole moment and a lower
weight than the HOMO—LUMO transition. Two other peaks in the excitation spectrum are
comprised of these three transitions, as shown in Table 5.2. For the peak at 5.75 eV and the p-
band at 3.99 eV, the dipole moments of these transitions interact destructively with the dipole
moment of the HOMO—LUMO. These peaks therefore have moderately low oscillator strength.
Even so, the p-band is observed experimentally.?*! The peak at 5.75 eV is very close in energy to
the strong B-band and therefore cannot be easily resolved experimentally. For the higher energy
peak at 7.38 eV, the dipole moments of the three transitions interact constructively and this peak
has a higher oscillator strength than the other two. However, it is at such a high energy that it is
not observed experimentally. This behavior is what we expect for three interacting transitions:
two low-energy and low-intensity peaks resulting from the destructive addition of the three
transition dipole moments and one high-energy peak resulting from the constructive addition of
the three transition dipole moments. Does this mean that this high energy peak is plasmonic?
By looking at the weights and dipole moments of the transitions involved in these peaks, it is
obvious than one transition strongly dominates the other two. For the p-band, the
HOMO—LUMO transition dominates with a weight of 0.9173 and a dipole moment of -1.8247
a.u. On the other hand, the HOMO-1—LUMO+1 and HOMO-2—LUMO+2 transitions have
much lower weights (0.0413 a.u. and 0.0311 a.u. respectively) and lower dipole moments
(0.5384 and 0.3996 a.u. respectively). In a similar way, we can see that for the second peak at
5.75 eV, the HOMO-1—LUMO+1 transition dominates and for the peak at 7.38 eV, the HOMO-
2—LUMO+2 transition dominates. This behavior can be explained by the fact that these three
transitions have very different energies and therefore do not mix as efficiently as the transitions
involved in the o and B-bands. These transverse peaks are therefore best described as single-
particle excitations. However, there is a small amount of plasmonic character mixed in, which

makes the peak at 7.38 eV peak gain some oscillator strength.

Benchmarking of exchange-correlation functionals
The B-band is the strongest excitation peak and was shown in the first section to have

plasmonic character. However, most previous theoretical studies on acenes have focused on the
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o- and p-bands since they lie in the visible region.?**?*° Therefore, benchmarking of a variety of
DFT exchange-correlation functionals is performed for the f-peak.

Several GGAs, hybrid and long-range corrected exchange-correlation functionals were used
to calculate the excitation energies and oscillator strengths of acenes with two to six rings. The
wavelength of the a-, B- and p-bands obtained as well as experimental values are shown in
Figures 5-4A to 5-4C. Tables 5.3 to 5.5 show the excitation energy values calculated with

different functionals for all three bands as well as the Mean Absolute Error (MAE) calculated in
comparison with experiment.

Figure 5-4. A) B-band B) p-band and C) a-band excitation energies of acenes with two to

six rings at various levels of theory.

A B

Wavelength (nm)
Wavelength (nm)

Number of rings

Number of rings

Wavelength(nm)

Number of rings

*Due to convergence issues, the excitation energies of tetracene at the uBLYP/cc-pVTZ level of

theory could not be obtained. Experimental data is obtained from Ref®.
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Table 5.3. TDDFT wavelength of the a-band of acenes with various exchange-correlation

functionals.
Number of rings 2 3 4 5 6 MAE
(nm)
SAOP/TZP 293.87 | 343.47 | 385.35 | 420.69 | 450.49 10.28
LB94/cc-pVTZ 301.58 | 353.15 | 396.57 | 433.81 | 463.42 16.60
LB94/TZP 303.43 | 354.70 | 397.73 | 433.07 | 464.01 16.74
LB94/Qz4P 302.86 | 354.52 | 398.00 | 434.48 | 465.06 17.36

B3LYP/cc-pVTZ 279.17 | 323.21 | 359.66 | 389.50 | 413.58 22.52

PBEO/cc-pTZV 274.28 | 317.10 | 352.45 | 381.48 | 404.95 29.49

oPBEh/cc-pVTZ 269.82 | 308.48 | 339.45 | 364.16 | 383.73 | 42.41

CAM-B3LYP/cc-pVTZ | 264.91 | 303.21 | 335.02 | 361.41 | 383.15 | 46.00

uBLYP/cc-pVTZ 282.91 | 323.64 | NA® |379.82 |398.68 | 29.80°

BP86/cc-pVTZ 292.97 | 343.36 | 385.94 | 421.92 | 452.18 11.18

BLYP/cc-pVTZ 294.77 | 345.25 | 387.94 | 423.95 | 454.25 11.66

Experiment’ 307.65 | 347.29 | 373.45 | 406.51 | 442.80

a. Data could not be obtained due to convergence issues.
b. Data from Ref?®®
c. MAE calculated with four systems (tetracene omitted)

Table 5.4. TDDFT wavelength of the -band of acenes with various exchange-correlation

functionals.
Number of rings 2 3 4 5 6 MAE® (nm)
SAOP/TZP 215.96 | 250.53 | 282.48 | 312.72 | 341.35 7.66
LB94/cc-pVTZ 220.31 | 256.26 | 289.66 | 321.29 | 350.40 9.65
LB94/TZP 221.23 | 257.30 | 290.71 | 322.33 | 352.20 10.52
LB94/Qz4P 222.67 | 258.47 | 291.71 | 323.18 | 353.00 11.63

B3LYP/cc-pVTZ 208.27 | 238.48 | 266.09 | 291.19 | 313.21 11.37

PBEO/cc-pTZV 205.35 | 235.13 | 261.24 | 286.01 | 307.71 15.44

oPBEh/cc-pVTZ 202.20 | 228.80 | 251.82 | 271.85 | 289.24 23.71

CAM-B3LYP/cc-pVTZ | 198.28 | 223.41 | 245.28 | 264.41 | 281.11 29.53

uBLYP/cc-pVTZ 210.19 | 238.93 | NA® | 285.21 | 303.86 13.63°

BP86/cc-pVTZ 215.44 | 250.36 | 282.60 | 313.15 | 342.11 7.97

BLYP/cc-pVTZ 216.22 | 251.14 | 283.48 | 314.16 | 343.28 8.06

Experiment” 220.61 | 255.11 | 274.30 | 299.48 | NA

Data could not be obtained due to convergence issues.

Data from Ref*®

Hexacene omitted for MAE calculation since no experimental data is available for the  peak
MAE calculated with three systems (tetracene and hexacene omitted).

o0 ow
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Table 5.5. TDDFT wavelength of the p-band of acenes with various exchange-correlation

functionals.
Number of rings 2 3 4 5 6 MAE (nm)
SAOP/TZP 302.80 | 422.38 | 569.32 | 754.34 | 992.29 145.04
LB94/cc-pVTZ 310.83 | 436.09 | 590.85 | 786.85 | 1040.92 | 169.92
LB94/TZP 311.10 | 434.71 | 586.61 | 777.61 | 1022.99 163.42
LB94/Qz4P 312.25 | 437.55 | 592.31 | 788.08 | 1041.55 | 171.16

B3LYP/cc-pVTZ 285.09 | 389.37 | 514.22 | 664.15 | 844.29 76.24
PBEO/cc-pTZV 279.03 | 379.88 | 500.02 | 643.31 | 813.60 61.60
oPBEh/cc-pVTZ 265.91 | 350.65 | 445.27 | 548.70 | 659.03 11.87
CAM-B3LYP/cc-pVTZ | 257.49 | 334.48 | 421.21 | 517.29 | 621.79 32.73
uBLYP/cc-pVTZ 283.08 | 378.12 | NA? |598.18 | 720.34 30.32
BP86/cc-pVTZ 304.06 | 426.44 | 578.55 | 772.34 | 1025.76 | 158.25
BLYP/cc-pVTZ 305.63 | 427.86 | 579.42 | 771.91 | 1022.55 | 158.29
Experiment” 283.07 | 366.82 | 457.51 | 555.98 | 652.55

Data could not be obtained due to convergence issues.
Data from Ref**®
c. MAE calculated with four systems (tetracene omitted).

oo

All three peaks display a linear increase of their wavelength with increasing length. The
longitudinal peak of noble metal nanorods exhibit a similar behavior which was explained by the
particle-in-a-cylinder model.”® The o- and B-peaks show similar trends, which is not surprising
since they are comprised of the same one-electron transitions.

We now compare the excitation energies obtained for the a- and B-peaks with the different
functionals. GGAs (BP86 and BLYP) and asymptotically corrected functionals (LB94 and
SAOP) give a- and B-peak wavelengths that are very close to experiment for small systems
(naphthalene and anthracene). However, the error increases with increasing length and the peak
wavelengths tend to be highly overestimated for the longest systems. We note that the energies
calculated at the LB94/cc-pVTZ level of theory with Q-Chem and the energies calculated at the
LB94/TZP with ADF are very similar, as shown in Tables 5.3 and 5.4. Also, the energy values
calculated at the LB94/QZ4P level of theory are very similar to the LB94/TZP values, which
suggests that there is almost no basis set dependence on the energies of the a- and B-peaks.
Hybrid functionals (B3LYP and PBEO) tend to underestimate the a- and B-peak wavelengths but
the difference between theory and experiment remains nearly constant with increasing system

length. This is shown by the fact that the slope of the linear fit for these functional is nearly equal
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to the slope of the linear fit for experimental data (Table 5.6). B3LYP shows mean absolute
errors of 11.37 nm and 22.52 nm in comparison with experiment for the B- and a- peaks
respectively. The MAE values are slightly larger for the hybrid functionals than for the
asymptotically corrected functional and GGAs but hybrid functionals give a better description of
the a- and B-peak energies with increasing size. The long-range corrected functionals ®PBEh
and CAM-B3LYP tend to underestimate the wavelength of the a- and B-peaks. This
underestimation tends to become larger with increasing system size, as shown by the fact that the
slope of the linear fit for these functional is smaller than the slope of the linear fit for the

experimental data (Table 5.6).

Table 5.6. Slope of the linear fits from Figure 4 (in nm/ring).

Functional a-band B-band p-band
SAOP/TZP 39.05 31.30 171.09
LB94/cc-pVTZ 40.44 32.52 181.09
BP86/cc-pVTZ 39.70 31.61 178.93
BLYP/cc-pVTZ 39.77 31.72 177.79
B3LYP/cc-pVTZ 33.51 26.26 139.32
PBEO/cc-pTZV 32.57 25.56 133.26
oPBEh/cc-pVTZ 28.35 21.71 98.43
CAM-B3LYP/cc-pVTZ 29.47 20.67 91.14
uBLYP/cc-pVTZ 28.77 23.36 109.46
Experiment® 32.95 25.58 92.81

a. Data from Ref*®

These long-range corrected functionals display the largest MAE values: 23.71 and 29.53 nm
for ©PBEh and CAM-B3LYP respectively. The long-range corrected functional uBLYP, which
does not contain any Hartree-Fock exchange contrary to the other two, gives peak wavelengths
close to the ones obtained with hybrid functionals and also a similar MAE value. But like the
other long-range corrected functionals studied here, the error increases with increasing system
length.

We now briefly look at the p-band. GGAs and asymptotically corrected functionals tend
to strongly overestimate the wavelength of the p-band and the overestimation strongly increases
with system size, as also observed previously by Grimme.??® This is illustrated by MAE values

larger than 145 nm. We can make a similar observation for hybrid functionals, although the error
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does not increase as fast as for the GGAs and asymptotically corrected functionals, which is
shown by smaller MAE values (61.60 and 76.24 nm for PBEO and B3LYP respectively). We
note that similar to the longitudinal peaks, the energies calculated at the LB94/cc-pVTZ level of
theory with Q-Chem and the energies calculated at the LB94/TZP with ADF for the p-band are
very similar, as shown in Table 5.5. However, the difference between the energy values
calculated at the LB94/QZ4P level of theory and the values calculated at the LB94/TZP level of
theory tends to increase with increasing size. The p-band energies therefore exhibit some basis
set dependence. Long-range corrected functionals give an improved description of the p-band but
not the a-band or B-band. The wavelengths for the long-range corrected functional ®PBEh and
the experimental data nearly overlap each other. The MAE is 11.87 nm, which is smaller than all
other functionals. It is also known that the ®PBEh functional gives the correct ordering between
the o and P peak for all acenes.”*® CAM-B3LYP tends to underestimate the p-band wavelength
but the difference between theory and experiment is approximately constant with increasing size,
as shown by the slope of the linear fit which is similar to the slope of the linear fit of the
experimental data. The long-range corrected functional uBLYP overestimates the p-band
wavelength and the overestimation gets larger as the system size increases. The MAE values for
CAM-B3LYP and uBLYP (32.73 and 30.32 nm respectively) are twice as large as the MAE
calculated for ®PBEh (11.87 nm). Overall, hybrid functionals provide the best energies of the a-
and B-bands whereas the long-range corrected functional @PBEh provides the best energies for
the p-band.

The matrix elements Hp, were calculated at the BP86, B3LYP, LB94, and ®PBEh levels
of theory and for the experimental data using the expressions for E* and E” reported above:
E* =Hy;-Hi, and E# =H11+H1,. The values of Hii=Hx=Y2(E“+EP) and Hio=Hz=Y2(EP-E®) are
reported in Table 5.7.
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Table 5.7. Matrix elements Hy; and Hy, of the secular equation 5.2 in eV for acenes with
various exchange-correlation functional and cc/pVTZ basis set.

LB94 B3LYP BP86 oPBEh Experiment?

Number
ofrings | Hy | Hiz | Hy | Hiz | Hy | He | Hig | He | Hy Hio
2 487 | 0.76 | 5.20 | 0.76 | 499 | 0.76 | 5.36 | 0.77 | 4.83 0.80
3 417 | 0.66 | 452 | 0.68 | 4.28 | 0.67 | 4.72 | 0.70 | 4.22 0.65
4 3.70 | 058 | 405 | 061 | 3.80 | 0.59 | 429 | 0.64 | 3.92 | 0.60
5 3.36 | 050 | 3.72 | 054 | 345 | 051 | 3.98 | 0.58 | 3.60 | 0.55

6 311 | 043 | 3.48 | 048 | 3.18 | 0.44 | 3.76 | 0.53 | NA NA
a. Experimental values calculated from the o and p bands in Ref*>>

Both Hj; and Hy, values decrease with increasing system size. This is in accordance with the
decreasing orbital energy gaps with increasing length. The relative amount of coupling (H12/H11)
seems to remain constant with increasing size. We see that the coupling matrix elements Hi, are
similar at all levels of theory, which suggests that the amount of coupling between the two
configurations V; and V, does not vary significantly between different levels of theory. On the
other hand, the matrix elements Hy; can fluctuate between different levels of theory. The
energies of the configurations V; and V, are therefore affected by the level of theory used. The
asymptotically corrected LB94 functional gives accurate values of Hy; for naphthalene and
anthracene compared to experiment (the difference is 0.04 eV) but the error strongly increases
with increasing system length (the difference is 0.24 eV for pentacene). The hybrid B3LYP
functional gives a large difference with experiment for the H;; value but the error seems to
decrease with increasing system length (from 0.37 eV for naphthalene to 0.13 eV for hexacene).
A similar observation can be made for the long-range corrected ®PBEh functional, where the

difference between theory and experiment is 0.54 eV for naphthalene down to 0.39 eV for
hexacene.

Conclusions

This work presents a TDDFT analysis of the excitation spectrum of acenes and shows the
origin of their plasmon resonance. The interaction between the quasi-degenerate
HOMO—LUMO+1 and HOMO-1—LUMO transitions yields two peaks in the excitation
spectrum: the B-peak and the a-peak. We have shown that the B-peak, which has a high energy
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and high intensity, originates from a constructive interaction of the two transition dipole
moments and can be identified as a plasmon peak. The low-energy a-peak originates from a
destructive interaction between the two transition dipole moments and is therefore weak. The
configuration interaction singles analysis with the neglect of differential overlap approximation
performed by Pariser®®’ reproduces these features. We note that silver and gold nanoparticles,
which are known to exhibit plasmon resonances, display a similar configuration interaction
behavior to that described here although more than two transitions may interact. The frequency
where the dipole moments of all the transitions involved interact constructively is the plasmon
resonance. The natural transition orbitals were calculated for naphthalene and we saw that two
electron-hole pairs of similar amplitudes were needed to describe the a- and B-peaks. The NTOs
involved in both the a- and -peaks are identical but may have opposite phases. An analysis of
the transition densities shows a strong charge redistribution where electron density moves from
one side of the molecule to the other upon excitation for the B-peak (plasmon peak). On the other
hand, the a-peak involves much less charge redistribution upon excitation. In contrast to the
plasmonic character of the longitudinal -band, we show that the transverse p-band can be best
described as a single-particle transition. Since very few theoretical studies have previously
examined the B-peak, a benchmarking of several functionals was performed. Hybrid functionals
give the best description of the a- and p-peaks but highly overestimate the p-band for long
systems. The long-range corrected functional ®PBEh gives an accurate energy for the p-band but

does not provide good excitation energies for the a- and B-peaks. The couplings between the two

interacting configurations HOMO-1—LUMO and HOMO—LUMO+1 are similar to experiment

regardless of the functional considered.

The occurrence of plasmon resonances in organic systems is very important as they can
be used to make lighter optic devices compared to metallic nanoparticles. While our analysis
focuses only on acenes, a wide variety of polycyclic aromatic hydrocarbons may display
plasmon resonances.”*® Like noble metal nanoparticles, the plasmon resonances in these systems

can be tuned for applications of interest.
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Chapter 6 - Plasmon Resonance Analysis with Configuration

Interaction

Abstract

Plasmon resonances are described using configuration interaction (CI). A fictitious system
of three interacting configurations is considered, which yields three excited states. Excited states
energies and oscillator strengths are derived from the eigenvalues and eigenvectors of the Cl
matrix, where the diagonal elements «; (i=1,2,3) correspond to the interacting one-electron
transition energies and the off-diagonal elements p;; correspond to the coupling between these
configurations. The plasmonic state is easily identified by its higher energy and much larger
oscillator strength. This high oscillator strength is due to a constructive addition of the
eigenvectors contributing to this state. The maximum oscillator strength enhancement of the
plasmon peak is equal to the number of configurations in the Cl matrix (three here), which
occurs in the ideal case where all a elements are equal and all 5 elements are equal. When the
transitions involved in the CI have different energies (different « values), the oscillator strength
of the plasmon peak becomes smaller and its energy is shifted in comparison to the ideal case.
Increasing all the coupling values from O up to the point where the coupling is similar in
magnitude to the difference in « values leads to a rapid rise of the plasmon peak oscillator
strength whereas its energy slightly blue-shifts. A further increase of the coupling values does
not affect the oscillator strength of the plasmon peak, which remains near its maximum
enhancement value, but drastically affects its energy, which rapidly rises. The plasmonic
behavior of noble metal model systems is successfully described using configuration interaction.

Introduction

The plasmon resonance is defined classically as a collective oscillation of the conduction
electrons of a system upon irradiation with light at a specific frequency. The plasmonic behavior

of sodium clusters has been studied for several decades.*"*#2°%2%* This phenomenon has also

been intensively investigated in noble metal nanoparticles both theoretically>0:40->%64.68:88:265-267

15,16,165,271 15-17,165,179,271

and experimentally®*®2>3340267271 gor applications in imaging, sensing, ,

6,170,171,271

cancer therapy and light harvesting devices.'**3%"2 More recently, polycyclic aromatic

246,273

hydrocarbons and graphene®**?™27 have been described as plasmonic as well, which
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indicates that plasmons are not limited to metallic nanoparticles and opens additional doors for
applications.?"*2

Identification of plasmon modes is of course very important for the design of plasmonic
materials. However, one question that still remains unanswered is: what is the quantum
mechanical origin of these plasmons? One recent time-dependent density functional theory
(TDDFT) study performed by Jacob et al. describes plasmon resonances as zero modes of the
dielectric function €, which depends on the coulomb kernel.”*® Plasmon modes can therefore be
distinguished from single-particle transitions by scaling the electron-electron interaction. As a
complementary interpretation, other studies suggest that plasmon resonances can be described as
a constructive interaction of multiple one-electron transition dipole moments.”® 19273277 Qne-
electron transitions may interact if they have the same symmetry and if they are close in energy.
Using a configuration interaction approach, the energy and relative oscillator strength of the
resulting peaks in the absorption spectrum can be determined.*"?”® The constructive interaction
of the individual transitions leads to a strong, high-energy peak in the absorption spectrum (the
plasmon peak). This is observed for several systems such as silver and gold nanoparticles’®%>%"*
as well as polycyclic aromatic hydrocarbons.?*"?"® For instance, two one-electron excitations
with Bs, symmetry are involved in the longitudinal plasmon mode of acenes.?"?"® The
constructive interaction between these two transition dipole moments yields a strong peak in the
UV region called the B-peak (the plasmon peak) whereas the destructive addition of these two
transition dipole moments yields the weak o-peak in the visible region.?”* More than two
interacting configurations may be involved for noble metal nanoparticles, which leads to several
peaks in their absorption spectrum with low intensity in addition to the higher-energy plasmon
peak. For instance, TDDFT calculations show that the linear atomic chain Age has a strong
transverse plasmon peak at 6.20 eV at the SAOP/DZ level of theory.'®® This peak arises from a
constructive addition of the dipole moments of three single-particle transitions between
delocalized cylindrical orbitals: $3—I1;, —1I1, and Z3—1I15.** Two peaks in the spectrum
located at 5.18 and 5.29 eV are composed of the same transitions, but they have low oscillator
strength since their transition dipole moments add destructively.

The objective of this work is to determine how the relative energy between different
transitions and the degree of coupling between these transitions affects the excitation spectrum of

a plasmonic system. In order to do that, a fictitious system with three interacting transitions is
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considered. We will only consider dipolar plasmon modes. The eigenvalues of the secular
matrix, corresponding to the energies of the peaks in the absorption spectrum, are calculated. The

eigenvectors of this matrix are also solved to determine the oscillator strength of each peak.

Methods
We consider a plasmonic system with three interacting configurations such as the Ags
nanowire described above. V; (i=1,2,3) defines the singly excited singlet determinantal function
for each configuration.?*’ The three excited state wavefunctions resulting from the interaction

between these three configurations can be written in the form:
Y =AV, + AV, + AV, (6.1)
where the coefficients A, A, and As are eigenvectors of the 3X3 configuration interaction (CI)

secular matrix:

o Po Pa
P & P (6.2)

By B
=237

The matrix elements ;; correspond to the coupling between transitions i and j:

By = [V HVdo, (6.3)
where V; and V; correspond to the singly excited determinantal configuration functions for

transitions i and j respectively and H is the Hamiltonian. In this case, we consider V" =V, and

therefore f;= ;. The diagonal matrix elements ¢; are defined as:**’
a, :J'Vi*l—l\/idu. (6.4)

These values may be approximated in a Koopman-like approach by an orbital energy difference
of the two singly occupied orbitals that represent the singly excited determinant V;. The
eigenvalues Ej, E; and E3 of the Cl matrix are the excited state energies. The eigenvectors
corresponding to each eigenvalue can be used to construct the excited state wavefunctions, as
shown in equation 6.1. All eigenvalues and eigenvectors of the CI matrix are calculated for
different values of a; and g using Matlab 7.0.1.

If it is assumed that the transition moments between the ground and excited

237,273 th

configurations are equal, which is a reasonable first approximation for these systems, e
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sum of the eigenvectors for each eigenvalue is proportional to the transition dipole moment

between the ground and excited state (yp°|2| e ) where /i is the transition dipole operator and

P° is the ground state Slater determinant. Since the oscillator strength of the peak in the
absorption spectrum is proportional to (y°|z]| \yeX>2, the value |A;+A,+Ag|* is the oscillator

strength enhancement due to CI and will be referred to as “oscillator strength” for the remainder
of this paper.

Results and discussion

Case 1: Ideal case.
Let us first consider the special case where all values of o and all values of £ are equal.

This yields the matrix:

a p p

B a B (6.5)

p P a
This matrix is a special case of a Toeplitz matrix and of a circulant matrix, which have been
studied for applications in various mathematical, physical and chemical problems.?’®2%! The
eigenvalues of this matrix are E;=a-f; E;=a-f; Es=a+2f. For these systems, we assume that £ is
positive, so Ej is the highest energy eigenvalue. For higher n-dimensional matrices with a
similar form, the lowest (n-1) states are degenerate with eigenvalue -4, and the highest state has
energy a+(n-1)A. For E; and E,, the requirement for the eigenvectors is that (A;+A,+A3)=0. For

Es, A1=A,=As. One set of normalized eigenvectors is reported in Table 6.1.

Table 6.1. Eigenvectors of matrix (6.5).

Ei=a-p Ex=a-p Es=a+2f
As —1/\/5 —1/\/5 ]/\/§
A, 12 0| Y8
As 0 132 1/\3
|AL+A+AS] 0 0| 3.0000

For the two lowest eigenvalues E; and E,, which are degenerate, the eigenvectors interact

destructively and the oscillator strength of these two states is 0. For the third eigenvalue Es, the
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eigenvectors interact constructively, yielding an oscillator strength value of 3. This state is the

plasmon and the wavefunction has the form:

L1 1 1
v :$Vl+£vz+$v3. (66)

The oscillator strength of this excited state can be written as:

(wo i)’ ={%B‘PO|fl|V1>+<‘P°|ﬁ|Vz>+<‘P°|fl|V3>ﬂ - (6.7)

As mentioned in the methods section, we use the assumption that the transition moments

between the ground state and all excited configurations are equal:

<‘PO|/&|V1> :<‘PO|/&|V2> :<‘I’O |/A1|V3> (6.8)

Therefore we have:

gvﬁ]} =3x (0| V,)*. (6.9)

(wolalwe)" = [%[3%\?0

The oscillator strength enhancement of the plasmonic state due to Cl is therefore a factor of 3.
For n-dimensional matrices similar to this one, it can be shown that the enhancement due to Cl is
a factor of n, which is the number of transitions involved in the CI.

A similar behavior has been observed for silver and gold nanoparticles: one high-energy,
high-intensity peak (plasmon) results from the constructive addition of the single-particle
transitions and multiple low energy weaker peaks result from the destructive addition of the same
transitions.”®"*%*27" For real systems such as these noble metal nanoparticles, all values of « and
S are not identical and deviations from this ideal case occur. A simple analytical solution for
matrices with different values of a (a1£ax#as) and S (B12£623713) cannot be obtained, although
analytical solutions with different values of o with constant § ($12=/23=/13) are possible.
Therefore, in order to analyze the effect of varying the values of « and $ on the absorption
spectrum, we will give a and £ numerical values that we will vary in a systematic fashion.

First, we consider a matrix like (eq. 6.5) above but we set a1= a,= az=5 eV and f1= f13= fa3=
0.5eV:
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5 05 05
05 5 05
05 05 5

(6.10)

The chosen values for « and f are similar to those obtained in the configuration interaction
treatment of acenes.”®’ The eigenvalues of this matrix are E;= 4.5 eV, E,= 4.5 eV and E3= 6.0
eV, corresponding to a-f for E; and E; and a+2p for Ej, as expected. The rows and columns of
the eigenvector matrix are orthogonal. As derived analytically, the oscillator strength is O for E;
and E,. The peak at E3 has an oscillator strength of 3.0000, as expected (Table 6.2).

Table 6.2. Eigenvectors of matrix (6.10).

Ei=45eV | E;=45¢eV | Es=6.0eV
Aq 0.1201 0.8076 0.5774
A, 0.6394 -0.5078 0.5774
Az -0.7595 -0.2998 0.5774
|A1+A+AS 0 0 3.0000

Case 2: Vary a, only.
We now consider the case where one of the values of « is different from the others. We still

consider all values of f to be the same. The resulting matrix is:

o B B
g a p
B B «a

where a;=a+e. ¢ can be a positive or negative number. The eigenvalues for such a system are:

(6.11)

E,=a-4, E, —a+l(5+ﬂ)——\/9/3 —2Be+&?and E, —a+; (e+p)+ \/9,8 —2fe+&

281 \We see that E; does not depend on ¢ and its value therefore remains constant. On the other
hand, E; and E3 both depend on .

We now analyze the peak oscillator strengths by considering numerical values for ¢ of £0.05,
+0.25, £0.5, £1.0, £1.5, £2.0 and +2.5 eV. This corresponds to changes in a; by +1, £5, £10, +20,
+30, +40 and +50% of the value used in case 1 (5 eV). All other matrix elements remain the
same as in case 1 (5=0.5 eV and a,= az= 5 eV). The resulting matrix is:

91



a, 05 05
05 5 05 (6.12)
05 05 5

where a;= 2.5, 3.0, 3.5, 4.0, 4.5, 4.75, 4.95, 5.05, 5.25, 5.5, 6.0, 6.5, 7.0 and 7.5 eV. The peak
energies E; (i=1, 2, 3) and oscillator strengths S; (i=1, 2, 3) are shown in Figure 6-1A and 6-1B

respectively.

Figure 6-1. A) Peak energies and B) oscillator strengths for different values of a; (case 2).
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The computed values of the energies and oscillator strengths are reported in Table D-1 of
Appendix D. Just as in the ideal case, the high-energy excited state E3 with high oscillator
strength corresponds to the plasmon. We can see that the degeneracy between E; and E; is lifted
when «; shifts away from the 5 eV value of case 1. This can be explained by the e-dependence of
E.. For =0, E,=E;= 4.5 eV, which corresponds to the ideal case discussed above. E; remains at
4.5 eV (a-p) and does not depend on &, as derived analytically, and its oscillator strength remains
0. We note that E; is larger than E; when o< 5eV and smaller than E, when a;> 5eV. This is
because these excited states are labeled to correspond to the analytical results and not by
increasing energies. E, quickly rises when o, increases from 2.5 to 5.5 eV and then slowly
stabilizes for higher values of a;. On the other hand, E;3 slowly increases when o, shifts from 2.5
to 5.5 eV and quickly rises when a; is larger than 5.5 eV. A more detailed discussion on the
origin of this behavior is given in the discussion of the analytical solution in Appendix D. For

values of a; smaller than 5.5 eV (& < ), ¢ contributes mainly to the energy of the E, state. When
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oy becomes larger than 5.5 eV (e > f3), E3 takes advantage of the increasing ¢ value to raise its
energy. The oscillator strength S, of E, grows as the value of a; changes from the 5 eV resonance
value where a1= a,= a3 (the ideal case 1). On the other hand, the oscillator strength Sz of the
plasmon peak reaches a maximum for this value of a;. S; therefore “borrows” less oscillator
strength from S, when a;#a. We note that S; always has a larger value than S; in the a3 range
considered. The eigenvectors of all the matrices studied are reported in Appendix D (Tables D.4-
D.17). The coefficients A; contributing to the plasmon peak (with energy E3) all have the same

sign. The constructive interaction of the individual transitions making the plasmon therefore
remains. We see that for E;, A =0, A, = and A, =- regardless of the value of a;.
A0 A S A g

This reflects that only transitions 2 and 3 contribute to that peak and their contributions remain
constant. This is not surprising since ax=a3=5 eV and all coupling constants are equal for all
values of a;. For E; and E3, the contributions of transitions 2 and 3 are identical regardless of the
value of a1 (A2 = Asz). As a1 becomes larger, the contributions of transitions 2 and 3 increase for
E. and decrease for E3. On the other hand, |A;| increases for E3 and decreases for E,. This shows
the growing contribution of transition 1 to E3 as a; becomes larger. For a;>> «, it would be
reasonable to expect that only transition one will contribute to the peak at energy Es. E3 will then
be labeled as a single-electron transition and no longer be a plasmon. Only transitions two and
three will mix efficiently and a high-intensity plasmon peak at 5.5 eV will result from the
constructive interaction of these two transitions. Another peak with zero oscillator strength will
occur at 4.5 eV. This illustrates why the configurations in the CI must be close in energy to
create a plasmon. Overall, changing one of the values of  not only lifts the degeneracy between
E:1 and E;, but it also increases the oscillator strength of the peak at energy E,, which would
make it observable in the absorption spectrum. The increase in oscillator strength for E; also
leads to a decrease in oscillator strength for E3, which is the plasmon peak. The plasmon peak is
therefore stronger when all the contributing transitions have identical values of a. The closer in
energy the one-electron transitions involved in the plasmon are, the stronger the plasmon peak
will be (up to its ideal value). In noble metal particles with a common diameter (2-100 nm), a
high density of states is available and many allowed transitions with similar symmetry have very

similar energies.?® The strong plasmon peak commonly observed experimentally® can thus result
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from the interaction between these transitions. The low-intensity peaks associated with the same

transitions also occur but are usually too small to be observed experimentally.

Case 3: Vary a; and as.

We now analyze the effect on the absorption spectrum of changing both a; and as. In this
case, we change a1 by 20% and a3 by £1, £5, £10, £20, £30, £40 and £50% of the value used in
case 1 (5 eV). All other matrix elements remain the same as in case 1. The resulting CI matrix is:

a, 05 05
05 5 05 (6.13)
05 05 a
where a;= 6.0 eV and a3= 2.5, 3.0, 3.5, 4.0, 4.5, 4.75, 4.95, 5.05, 5.25, 5.5, 6.0, 6.5, 7.0 and 7.5
eV. The peak energies and oscillator strengths are reported in Figure 6-2A and 6-2B respectively.

Figure 6-2. A) Peak energies and B) oscillator strengths for different values of a3 (case 3).
(a1=6.0 eV).
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Table D.18 of Appendix D displays all energies and oscillator strengths of the three peaks. When
all three values of « are different, all three peaks have non-zero oscillator strength. All three peak
energies tend to increase with increasing value of a3, which makes sense since the total energy
a1taztag increases. Again, the peak at E3 has higher energy and oscillator strength than the other
two and corresponds to the plasmon peak. E; and E3 behave in a similar way as E; and E3 in case
2. The energy of the plasmon peak E3 slowly blue shifts until a3 reaches a value of
approximately 5.0 eV and then grows much more rapidly. On the other hand, E; quickly rises
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until a3 reaches a value of about 5.0 eV and then increases very slowly. When a3 is between 2.5
and 5.0 eV, a3 contributes mainly to E; and does not contribute significantly to E; or E; as these
two values remain nearly constant. When a; shifts between 5.0 and 7.5 eV, it contributes mainly
to the plasmon peak energy Es, as shown by the rapid increase of Es. It no longer contributes as
meaningfully to E; since E; remains nearly constant for these values of a3. We can see that E;
increases slightly as well but seems to stabilize when a3 becomes larger than 7 eV. This indicates
that the contribution of a3 to this state becomes larger when ajz increases from about 5 to 7 eV
and then remains nearly constant.

The eigenvectors Ay, A; and Az are shown in Tables D.19 to D.32 of Appendix D. When
az becomes very small (2.5 eV) or very large (7.5 eV), we can see that one transition dominates
over the others for each peak. For instance, for a3=2.5 eV, transition 3 dominates for the peak at
energy Ej, as shown by the large value of A;=0.9800 compared to the small values of A; and A;
of -0.1120 and -0.1643, respectively (Table 6.3).

Table 6.3. Eigenvectors of the CI matrix in case 3 where a3=2.5 eV, a;=6.0 eV and ,=5.0
eV. All g values are equal to 0.5 eV.

E;=2.3590 6V | E,=4.8207eV | E3=6.3202 eV
Aq -0.1120 -0.4248 -0.8983
A; -0.1643 0.8995 -0.4048
As 0.9800 0.1023 -0.1706
IA+A+AL 0.4952 0.3329 2.1718

We note that Az is very small for both E; and Es, which suggests that transition 3
contributes very little to the peaks at E; and E3. At a3=7.5 eV, transition 3 dominates for the

plasmon peak at energy E;3 (Table 6.4).
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Table 6.4. Eigenvectors of the CI matrix for case 3 where a3=7.5 eV, a;=6.0 eV and a,=5.0

eV. All g values are equal to 0.5 eV.

E;=4.7629 eV | E,=5.9437 eV | E5= 7.7934 eV
Ay 0.3339 0.8871 0.3188
A -0.9362 0.2726 0.2220
As 0.1100 -0.3726 0.9215
|AT+A+AS|” 0.2423 0.6195 2.1380

This is consistent with the fact that a3 contributes mostly to the peak at energy E; when it
is small but contributes mainly to the plasmon peak energy when it is large. These results
confirm that as the value of a3 increasingly differs from the other a values, the mixing between
transition 3 and the other two becomes smaller. In other words, the further apart in energy the
contributing transitions are, the less efficiently they will mix.

When a3 becomes close to the other values of « (which occurs around 5.0 and 6.0 eV), it
contributes to all three excited states due to the strong coupling that occurs. The oscillator
strength of the plasmon peak tends to grow as a3 gets closer to the value of a; (6.0 eV). When a;
and o3 are equal (transitions 1 and 3 are in resonance), the oscillator strength of the plasmon peak
reaches a maximum. This maximum is less than the 3.0 value of the ideal case since all a values
are not in resonance. On the other hand, the oscillator strength S, of the peak at energy E;
reaches its minimum value of 0 when a;= a3 We note that when a3=5.0, we have as= a3 and the
oscillator strength of peak 1 reaches its minimum value of 0. In that case, transitions 2 and 3 are

in resonance.

Case 4: Vary f1, only.
We now investigate how changing the coupling values £ affects the absorption spectrum
of the system. First, only the coupling between transitions 1 and 2 is changed. The CI matrix

studied in this section is:

5 f, 05

B, 5 05 (6.14)
05 05 5

96



The values of 1, considered are varied by +1, +5, +10, £20, £30, +40 and +50% of the value
used in case 1 (0.5 eV), which gives f1,= 0.25, 0.30, 0.35, 0.40, 0.45, 0.475, 0.495, 0.505, 0.525,
0.55, 0.60, 0.65, 0.70 and 0.75 eV. The peak energies and oscillator strengths are reported in
Figure 6-3 and in Table D.33 of Appendix D. The eigenvectors for each matrix studied in this

section are reported in Tables D.34 to D.47 of the supporting information.

Figure 6-3. A) Peak energies and B) oscillator strengths for different values of g1, (case 4).
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The state E3 has the highest energy as well as the highest oscillator strength due to a constructive

addition of its eigenvectors. Like in the previous cases, this state is the plasmon. One of the three
excited states has A =-A, =]/ J2 and As= 0 for all values of P12 (except in the ideal case where

S12=0.5 eV, due to the normalization of the eigenvectors). This state is labeled with energy E;
and it has zero oscillator strength. It crosses with E; at f1,= 0.5 eV. The amplitude of the
variation of the peak energies is very small (less than 0.5 eV), due to the fact that the values of
considered are only approximately 10% of the values of a. We can see that the energies of states
2 and 3 increase linearly with increasing f1, whereas the energy of state 1 decreases linearly. E;
and Ej3 use the intensifying coupling between transitions 1 and 2 to increase their energy, which
results in a decrease of E;. The decrease in E; (indicated by the slope of the linear fit of E; as a
function of f1,) is equal to the increase of E; plus the increase of E;. The oscillator strengths of
the three excited states are nearly identical to those obtained for the ideal case regardless of the
value of f1,. The plasmon state oscillator strength grows as 1, approaches the 0.5 eV value of
the ideal case. However, the change is so small that the oscillator strength appears constant. The

oscillator strength of state 2 slightly increases as the value of S, differs more from the original
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0.5 eV value but it remains so small that it is essentially zero. We can also see that A; = A, for
the eigenvalues E; and E; regardless of the 1, value, reflecting the identical contributions of
transitions 1 and 2. As S, increases, we see that |A;| and |A,| decrease whereas |Az| increases for

E, and vice versa for Es.

Case 5: Vary p1, and f3.
We now consider a matrix where all coupling elements are different. The CI matrix
studied in this section is:

5 p, 05
Bo 5 Pxn (6.15)
05 pB, 5
In this case, p12= 0.6 eV and the values of S,3 considered are varied by +1, 5, +10, 20, +30,
+40 and £50% of the value used in case 1 (0.5 eV), which gives f,3= 0.25, 0.30, 0.35, 0.40, 0.45,
0.475, 0.495, 0.505, 0.525, 0.55, 0.60, 0.65, 0.70 and 0.75 eV. The peak energies and oscillator
strengths are reported in Figure 6-4 and in Table D.48 of Appendix D.

Figure 6-4. A) Peak energies and B) oscillator strengths for different values of f,3 (case 5).
(ﬂ1220.6 EV)
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Again, we can see that the plasmon peak (peak 3), which corresponds to a constructive addition
of the eigenvectors A, A, and As, has a much higher energy and oscillator strength than the other
two. Its energy increases linearly with increasing value of f,3. Like in the previous case, the

oscillator strength of all three peaks is nearly equal to the values obtained in the ideal case: 3 for
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the plasmon and 0 for the other two. There is a slight growth of the plasmon peak oscillator
strength up to $»3=0.55 eV and then a slight decrease. The change is again so small that the
plasmon peak oscillator strength appears to remain constant. Its maximum value of 2.9981 is
slightly less than 3 since all these transitions do not couple equally. Peaks 1 and 2 both have
very low oscillator strength. From £,3=0.25 to 0.5 eV, E; becomes larger. From f,3=0.5 to 0.75
eV, E; decreases. The opposite behavior is observed for E,. From $,3=0.25 to 0.6 eV, E,
becomes smaller. From $23=0.6 to 0.75 eV, E; increases. Therefore, the plasmon peak of energy
Es and the peak of energy E; use the ascending value of S23 up to the 0.5 eV (which is equal to
[13) to increase their energy in a similar way as in the previous case. This results in a drop of the
E, energy. On the other hand, when f,3 reaches 0.6 eV (value of 1), E; takes advantage of the
large coupling value to increase its energy, which leads to a decreasing value of E;. E; reaches a
maximum at f,3=0.5 eV where f3=f13, and S; attains its minimum value of zero. E; reaches a
minimum at f$,3=0.6 eV where £,3=f12, and S; attains its minimum value of zero. The
eigenvectors associated with each eigenvalue are displayed in Appendix D (Tables D.49-D.62).
We can see that as f»3 increases, A; decreases for the plasmon peak whereas A, and Az increase;
overall, |A;+Ax+As|” (the oscillator strength) remains nearly constant.

Case 6: Varying the p/a ratio.

We now consider a system where all three values of « are different and all coupling
elements are identical, as in case 3. The values of a considered (¢1=5.0 eV, a,=5.1 eV and a3=5.2
eV) are similar to the values obtained for the nanowire Agg.'* This time, we investigate the
effect of increasing all three coupling values from 0 to 2.0 eV on the peak energies and oscillator

strength. The CI matrix considered is:

50 B p
5 51 pB (6.16)
B B 52

The values of 5 considered are: =0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 and 2.0
eV. Figure 6-5 shows the excited state energies and oscillator strengths as a function of the

coupling. Table D.63 of the Appendix D gives the numerical values.
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Figure 6-5. A) Peak energies and B) oscillator strengths for different values of
P=P1.=P13=P»3 and a;=5.0 eV, a,=5.1 eV, a3=5.2 eV (case 6). Inset in A is an enlarged version

of the region in the black square.
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For =0 (no coupling), the three excited states energies are equal to a1, a, and az and their
oscillator strength is equal to 1. These states are therefore qualified as single particle transitions
and there is no plasmon. When $>0, the eigenvectors add constructively for the highest energy
peak E3 and destructively for the other two peaks (Tables D.64 to D.75 of Appendix D). The
energy of Ej rises linearly as the coupling grows whereas the energy of the other two states
decreases; the slope for the change in energy of Ej is twice that of the other two states. For
£<0.1 eV, the peak energies do not differ significantly from the a values (e.g. less than 0.1 eV,
Figure 6-5A inset). In that range, the oscillator strength of the highest energy peak rapidly
increases and the oscillator strength of the other two peaks rapidly decreases (Figure 6-5B). As
the coupling grows larger, the oscillator strength rapidly converges to a value close to 3 for the
highest energy peak (now the plasmon peak), and O for the other two peaks. When f reaches a
value close to the difference in energy of the « values ($=0.1-0.2 eV), the oscillator strength of
the plasmon peak is already in the 2.80-2.95 range. We note that since the three transitions do
not have the same energy, the plasmon peak oscillator strength will never identically reach the
maximum value of 3, but strong coupling values do lead to oscillator strengths of essentially 3.
Overall, the oscillator strength is highly sensitive to small coupling values and rapidly converges
to its maximum (or minimum) value whereas the excited state energies are only significantly

affected by large coupling values.

100



Case 7: Mixed-coupling systems.

In real systems, some transitions with similar & values may couple strongly while others
couple weakly. For example, noble metal nanoparticles (especially gold) may have interband (i.e.
excitations from the d-band into the sp-band) transitions that can mix with sp-band transitions of
similar energy and affect the plasmon peak energy and oscillator strength. However, these
interband excitations typically have significantly smaller dipole moments. We postulate that the
coupling values between interband and sp-band transitions are smaller than the coupling values
between sp-band transitions. In order to model this, we consider a matrix similar to the one in
case F. Transitions 1 and 2 will be considered to be sp-band and we give them a large coupling
value of $1,=0.5 eV. Transition 3 will be considered to be interband and the coupling values
between this transition and the other two are identical but smaller than the coupling between the

two sp-band transitions: f=13=23<f12. The resulting Cl matrix is:

50 05 S
05 51 f (6.17)
BB 52

The values of 4 considered are =0, 0.001, 0.005, 0.01, 0.05 and 0.1 eV. Peak energies and
oscillator strengths are given in Table 6.5.

Table 6.5. Excited states energies and oscillator strengths for a system with a;=5.0 eV,
a;=5.1¢eV, a3=5.2 eV, $1,=0.5 eV and different values of f13 =3 (case 7).

P13 =F23(eV) | E1(eV) | Si(au) | Ex(eV) | So(a.u.) | Ez(eV) | Ss(a.u.)
0.0000 45475 | 0.0050 | 5.2000 | 1.0000 | 5.5525 | 1.9952
0.0010 45475 | 0.0050 | 5.2000 | 0.9888 | 5.5525 | 2.0062
0.0050 45475 | 0.0049 | 5.1999 | 0.9440 | 5.5526 | 2.0512
0.0100 45475 | 0.0048 | 5.1994 | 0.8889 | 5.5531 | 2.1063
0.0500 45475 | 0.0043 | 5.1864 | 0.5108 | 5.5661 | 2.4847
0.1000 45474 | 0.0038 | 5.1505 | 0.2267 | 5.6021 | 2.7696

The first excited state remains at nearly constant energy with a low oscillator strength, which
reflects the fact that within this range of coupling values, this state arises from the destructive
combination of the two sp-band excitations. This is confirmed by the fact that A; and A; are
much larger than A; for this state (Tables D.76 to D.81 of Appendix D). As in all the other cases,
the high energy state Ejs is the plasmon, as reflected by the constructive addition of its
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eigenvectors; however, it should be noted that for small values of 3, it is only a constructive
combination of the two sp-band states and its oscillator strength is approximately 2. E, becomes
slightly smaller and E3 becomes slightly larger with increasing 5. The energy change is small
(less than 0.05 eV) but still observable. This in accordance with the observations made in case 6.
The mixing of the interband transition therefore only has a small effect on the excited states
energies. We can see that S, drastically decreases and S3 drastically increases as 8 grows, again
in accordance with previous observations (case 6). As a result, a small interband mixing can
highly affect the oscillator strength of the plasmon peak. One must note that several interband
transitions may occur in real gold clusters due to the higher density of states of these transitions.
When a large proportion of interband excitations mix with the sp-band excitations, it is
reasonable to expect more significant energy variations of the excited states. This has previously
been observed in gold nanorods.*®#"" For accurate predictions of oscillator strengths, the
difference in the transition dipole moment between the sp-band and interband transitions must

also be considered.

Conclusions

In summary, we used configuration interaction to study plasmonic systems with three
contributing transitions. The diagonal elements of the CI matrix correspond to the energy of
each contributing transition whereas the off-diagonal elements correspond to the couplings
between the transitions. In the ideal case where all the diagonal elements « are equal and all the
off-diagonal elements f are equal, two degenerate low-energy peaks with zero oscillator strength
occur as well as one high-energy peak with large oscillator strength. The latter arises from a
constructive addition of the eigenvectors and is identified as the plasmon peak. On the other
hand, the former two peaks result from a destructive addition of the eigenvectors. The same
qualitative behavior is observed in TDDFT calculations on silver and gold nanoparticles where
multiple configurations mix to yield a high-energy, high-intensity plasmon peak and multiple
low-energy low-intensity peaks.’®® In these real systems, all values of a and /3 are not equal. This
leads to deviations from the ideal case. We therefore considered systematic variations from the
ideal case.

As we change one (or two) of the « values, the degeneracy between the two low-energy

peaks is lifted and one (or two) low energy peak(s) gain(s) some oscillator strength. The a values
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can be related to the single-electron transition energies. As these energies increasingly vary from
each other (i.e. their energies diverge from the ideal case), the mixing between the transitions
becomes smaller. Therefore, the plasmon peak oscillator strength decreases and the oscillator
strength of the other two peaks increases as we deviate from the ideal case. Changing one or two
of the coupling constants within a 50% range has a small effect on peak energies and oscillator
strength. If the coupling between two transitions becomes larger, the plasmon peak energy
increases in a linear fashion. Its oscillator strength remains nearly constant with a value slightly
smaller than its maximum value of 3. The other two peaks have nearly zero oscillator strength.
The maximum oscillator strength enhancement due to Cl is equal to the number of
configurations involved (3 in the cases considered here) and occurs only in the ideal case where
all transitions have identical energies and couplings.

We then considered a system with three different values of a and identical values of g
that were varied in a systematic fashion. When the coupling elements increase up to
approximately the difference in a values, the oscillator strength of the plasmon peak rapidly
increases to a value near its maximum enhancement. However, its energy remains near the
highest energy configuration. For higher coupling values, we get a high increase of the plasmon
peak energy but its oscillator strength remains near the maximum value of 3. We also modeled a
system similar to a real nanoparticle by considering two sp-band excitations and one interband
excitation in the CI matrix. The interband character is modeled by taking a small coupling value
between this transition and the two sp-band transitions. We found that the excited states energies
are not as affected as the oscillator strength. However, we suggest that multiple interband
transitions in the CI matrix (as would be expected in gold nanoparticles) might lead to larger
variations in the excited state energies (including the plasmon), due to a highly split spectrum.
Overall, we show that configuration interaction is a useful concept for understanding the

coupling of single-particle transitions into a strong plasmon peak.
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Chapter 7 - Development of a charge-perturbed particle-in-a-sphere

model for nanoparticle electronic structure
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Abstract

The complex surface structure of gold-thiolate nanoparticles is known to affect the
calculated density functional theory (DFT) excitation spectra. However, as the nanoparticle size
increases, it becomes impractical to calculate the excitation spectrum using DFT. In this study, a
new method is developed to determine the energy levels of the thiolate-protected gold
nanoparticles [Auzs(SR)1s]” , Aui02(SR)a4 and Au144(SR)so. A 3 nm thiolate-protected
nanoparticle is also modeled. The particle-in-a-sphere model is used to represent the core while
the ligands are treated as point charge perturbations. The electronic structures obtained with this
model are qualitatively similar to DFT results. The symmetry of the arrangement of the
perturbations around the core plays a major role in determining the splitting of the orbitals. The
radius chosen to represent the core also affects the orbital splitting. Increasing the number of
perturbations around the core shifts the orbitals to higher energies but does not significantly
change the band gaps and orbital splitting as long as the symmetrical arrangement of the
perturbations is conserved. This model can be applied to any gold nanoparticle with a spherical

core, regardless of its size or the nature of the ligands, at very low computational cost.

Introduction

In the past decade, many thiolate-protected gold nanoparticles (NPs) of various sizes

have been synthesized’®?8%2°

290,291

and studied for possible applications in areas such as
biology, catalysis®®” or biosensing.?*® Nanoparticles with tens to a few thousands of atoms
are of particular interest since their properties lie between those of molecules and bulk materials.
The structure, luminescence, and magnetic properties of several stable clusters such as
Auzs(SR)18” ™, Auss(SR)2s, A02(SR)as and Augss(SR)eo have been intensively studied. 2430
Gold nanoparticles show complex absorption spectra, which is due both to interband transitions

and geometric effects on electronic structure. Density functional theory (DFT) calculations on
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such systems can be expensive or unachievable for the larger sized nanoparticles. Therefore, the
need for a simpler model arises in order to determine the electronic structure of these
nanoparticles. This work focuses on nanoparticles with spherical shape. The inherent stability of
spherical gold nanoparticles was recently explained by the superatom model: spherical systems
with a “magic number” (n=2, 8, 18, 34, 58...) of core electrons tend to be particularly stable.®

The magic numbers correspond to shell-filling numbers for particles in a spherical
potential.”® Orbitals near the HOMO-LUMO gap in gold nanoparticles have characteristics of S,
P, D, etc. superatomic orbitals, which are delocalized throughout the nanoparticle core.®%83

A charge-perturbed particle-in-a-box model was effectively used by Goldsmith et al.** to
explain the optical activity of several gold clusters such as Auzs(SG)16. The gold core was
modeled with non-interacting electrons confined to a cubic box and the ligands were described as
perturbations using point charges. In this work, a similar method is used to predict the electronic
structure of several thiolate-protected spherical gold NPs: the core is modeled as a spherical well
and point charges representing the ligands act as perturbations. The spherical systems
investigated in this work are Auzs(SR)1s’, AU102(SR)as, AU144(SR)s0 and a 3 nm nanoparticle with
uniformly dispersed S-Au-S perturbations.

Method
A particle-in-a-sphere (P1S) model is used in this work to represent the spherical core of
the nanoparticles. We consider a single unpaired electron in the core to be trapped in a spherical
potential: V=0 inside the sphere and V= outside the sphere. The PIS zeroth order wave

functions have the following form:

Wi (0.4:7) =Y, (0.6) J,, (1) (7.1)
where Y] (6,¢) are the normalized spherical harmonics with quantum number | and m such that

1=0,1,2...where 1=0 corresponds to an S orbital, I=1 is a P orbital, I=2 is a D orbital, etc. and m=-
I,-1+1,...,+/. n is the quantum number of the electron shell. j, (r) are the normalized spherical
Bessel functions with n=1,2,3... and again 1=0,1,2... The spherical Bessel functions can be

written in the form:

. 2 1 V4
k)=, % ——= /—J (K
Jn,l( r) R3 JnyHg (OfnJ) Zkr n,I+§( r) (72)
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where Jy+172 is a standard Bessel function, k = a, /R, R is the sphere radius in A and oy is the
root of j,,. The zeroth order energy of the particle in a sphere is:
2

o,
E = 2RIZ (7.3)

The atoms constituting the ligands are considered as point charge perturbations. First-order
degenerate perturbation theory is applied for all orbitals with I>1. A non-degenerate version of
the code is used to calculate the energy of the S orbitals.

In the presence of a perturbation, the correct zeroth order wavefunction of degenerate energy

levels is a linear combination of the zeroth order non-degenerate wavefunctions:

PV =CW eV e oW (7.4)
By solving the secular equation, we can obtain the first order energy and the zeroth order
wavefunction (eigenvectors ci, C;...) of each energy level. The secular equation has the
following form:
Ac=E% (7.5)
Where ¢ represents the eigenvectors, EY the first order energy and A is a square matrix of

dimension (21+1):

<‘//n,|,—| |\7 ‘//n,|,—|> <Wn,|,—| |\7 ‘//n,|,+|>
A= : : (7.6)
<l//n,l,+l |\7|‘/’n,|,—|> <'//n,|,+| |\7|Wn,|,+|>
V7, the total perturbation exerted by the ligands, is:
N —({.
V= i (7.7)

;J(x—xi)z Y-y +(2-2)
where N is the number of perturbations, (xi,yi,zi) are the coordinates of the i perturbation, and g
is the charge of the i perturbation. It should be noted that I and A are Hermitian. Each matrix

element of the secular equation corresponds to a triple integral over r, dand ¢ coordinates:

[ [T w1 a(r.0.0Np,, o (r.6,9)r* sin drded (7.8)

In this equation, V is expressed in spherical coordinates. The triple integration was found to be
impractical to solve analytically. Therefore, the integration was performed numerically. The

sphere is divided into a grid. Using spherical coordinates to create the grid inside the sphere
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(evenly dividing r, 8, ¢ coordinates) yielded very inaccurate results since a larger density of
points are generated near the poles than near the equator. In order to fix that issue, a Cartesian
grid was created. Another advantage of the Cartesian grid is that it is not necessary to convert the
perturbation V into spherical coordinates.

For each case studied in this work, the chosen grid size is the one for which the first order
energy is converged for the highest I considered. As I increases, the number of nodes increases
and therefore the grid size needs to be smaller relative to orbitals with smaller I. Although the
grid is divided based on Cartesian coordinates, the coordinates of each point within the sphere
are converted to spherical coordinates in order to calculate the wavefunctions for the orbitals of
interest. We note that the center of mass of the nanoparticle must be located at the origin.

However, there is no need to align the primary axis of the nanoparticle along the z axis.

Computational details
All energy calculations are computed with a code written in FORTRANO90. Bessel
functions and Legendre Polynomial subroutines are taken from Fortran numerical recipes.®
Calculation of the eigenvalues and eigenvectors of the secular matrix A are run using the zheev.f
subroutine from the LAPACK 3.2 package.****% The roots of the spherical Bessel functions
were determined using an online calculator.®® The test cases figures and the orbitals of the first
test case are drawn using Matlab. Auzs(SR)1s", Au102(SR)a4, Au144(SR)so and the 3 nm sphere

perturbations are drawn using MacMolPlot.?*’

The perturbation coordinates for the Au144(SR)eo
spherical case and the 3 nm NP are generated using a Matlab program written by J. Bowman that
generates uniform points on a sphere.*’ Since a few of the resulting S-Au-S units are bent and a
few sulfur atoms overlap some gold atoms, the sulfur atoms are manually arranged around the
gold atoms to get linear S-Au-S units. Consequently, the arrangement of the units is not perfectly

uniform. The density of states (DOS) spectra are fit with a Gaussian of 0.1 eV FWHM.
Description of the model systems

Test cases
In order to verify that the program is working correctly, five simple test cases are
designed in which the spherical core is perturbed by negative point charges (Figure 7-1). These

test configurations include axial (Case 1), square planar (Case 2), octahedral (Case 3), planar
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with eight perturbations (Case 4) and approximately spherical with eighteen perturbations (Case
5). In order to verify that no alignment along the z axis is necessary, two different possibilities
are considered for Case 1: 1a) the two perturbations are along the z axis and 1b) the two
perturbations are on opposite sides of the sphere but at a random orientation. The coordinates of
the perturbations for each case are given in Appendix E. The core is a 3.00 A radius sphere
centered at the Cartesian coordinates (0,0,0) and divided using a 0.1 A grid. Each perturbation is
a single negative charge located 4.5 A away from the center of the spherical core. The 1P and 1D

orbital energies are calculated for each case by adding zeroth order and first order energies.

Figure 7-1. Test cases. A) Case 1a: Axial with perturbations aligned along the z axis. B)
Case 1b: Axial with perturbations along a random axis. C) Case 2: Square planar. D) Case
3: Octahedral. E) Case 4: Planar with eight perturbations. F) Case 5: Quasi-spherical with

18 perturbations.
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Auzs(SR)1g
The structure of Auys(SR)18 (SR=SCH,CH,Ph, SCHjs... and q=0,-1,+1) has been subject
to numerous investigations.”**%1 |t was eventually shown to have a Auy; icosahedral core with

73,309,310

six Au,(SR)3 protecting units arranged in a quasi-tetrahedral fashion , @ shown in Figure

7-2. The negatively charged cluster has a fully occupied 1P shell and is therefore very stable.

Figure 7-2. Optimized Xo/TZP.4f structure of the Au,s(SR)1g™ cluster.

*The R group is not shown here. Orange: Sulfur. Yellow: Gold. Coordinates from Ref’.

In order to model this nanoparticle, a 4.2 A sphere is used to represent the core. This distance
corresponds to the experimentally determined’®*'° and DFT calculated’® bond length between
the central gold atom and the outer gold core atoms (2.8 A, close to the bulk Au-Au distance of
2.88 A) plus half this bond length, which correlates to an approximate atomic radius for the outer
gold core atom. The R group is not considered as a perturbation since its effect is likely to be
much smaller than the gold or sulfur atoms. However, it must be remembered that depending on
the nature of the R group, this perturbation may not be negligible. Gold atoms from the staples
are considered perturbations with a +1 charge and sulfur atoms are considered perturbations of -1
charge. However, it should be noted that Au-S bonding is fairly covalent and therefore the
magnitude of the partial charges on these atoms may be expected to be less than 1. The
converged grid size is 0.2 A. In order to investigate the influence of the size of the core in the

energy level splitting, another set of calculations are run with a spherical core radius of 3.0 A.

AU102(SR)44
The crystal structure of Au;02(SR)44 With R=para-mercaptobenzoic acid (p-MBA) was
determined by Jadzinsky in 2007."° The structure of the cluster is shown in Figure 7-3. Itis
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made of an Aurg decahedral core protected by two Auz(SR)sz units similar to those discussed in
the Au,s(SR)1s case and 19 linear RS-Au-SR units. All those units constitute the perturbations.
The partial charges considered are the same as for Aus(SR)1s”. We should emphasize that again
the R group is not considered in this work. The distance between the center of mass of the cluster
and the outer gold atom of the core is about 6.1 A."® A 7.2 A radius is considered to represent the
spherical core. A grid size of 0.1 A is used. The first order and zeroth order energies of the 1F,
2P, 1G, 2D, 1H, 3S and 11 orbitals are calculated and compared with the DFT data obtained by
Walter et al.*

Figure 7-3. Au102(SR)a4 Crystal structure.

*The R group is omitted. Orange: Sulfur. Yellow: Gold. Coordinates from ref "

Au144(SR)g0

DFT studies on Au144(SR)s0 Suggest a structure with an icosahedral Au;i4 core and thirty
surrounding Au(SR), motifs.*** The optimized structure is shown in Figure 7-4A, with the R
group omitted. The distance between the center and the outer gold atoms of the core is 7.10 A3
In this work, Au144(SR)eo is modeled with a 8.5 A core sphere, which corresponds to this
distance plus half a Au-Au bond length. The S-Au-S perturbations are treated as point charges,
similar to the two previous cases. The converged grid size is 0.1 A. The first order and zeroth
order energies of the 1S, 1P, 1D, 2S, 1F, 2P, 1G, 2D, 1H, 3S, 2F, 1l, 3P and 2G orbitals are
calculated and compared with the data obtained by Lopez-Avecedo et al.*** This range covers all
occupied and several lowest unoccupied orbitals.

In order to determine how symmetry influences the splitting of the orbitals, a second
geometry is examined in which the S-Au-S staples are uniformly spread out around the spherical

core as shown in Figure 7-4B. In the DFT optimized structure, the average distance between the
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center of the sphere and the perturbations is 9.30 A. Therefore, each perturbation in this case is

located 9.30 A away from the center of the sphere. The same set of orbital energies is calculated.

Figure 7-4. A) Au144(SR)s0 Optimized structure. B) Spherically spread out perturbations.
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*The R group is omitted. Orange: Sulfur. Yellow: Gold. Coordinates of A) from Ref>"".

3nm nanoparticle
In order to create a nanoparticle in which the Au atoms in the S-Au-S unit lie at a
distance of 1.5 nm from the center of the core, a radius of 1.415 nm is chosen for the spherical
core. Therefore, the distance between the surface of the core and the perturbations is 0.85 A,
which is similar to the Au144(SR)so nanoparticle. To determine the number of S-Au-S
perturbations for this system, the ratio corresponding to surface area / number of units was

considered to be identical to the Au;44(SR)go System:

A(Auy, (SR),,)  A(3nm NP)

N (Auy, (SR),,) N(3nm NP)

where A is the surface area and N is the number of S-Au-S units. The surface area is proportional
to the radius squared of the nanoparticle. We consider r =R -1.4 where 1.4 is half of the Au-Au
bond length in A and R is the radius of the spherical core also in A. The number of S-Au-S

perturbations considered is:

r2(3nm NP) (14.15—1.4)2
N (Al (SR), ) =] ==2"=2| x30 =96
r? (Auy, (SR),,) (At (SR)er) = 5514 )

The 96 S-Au-S motifs are uniformly spread around the sphere at a distance of 1.5 nm from the

center of the sphere (Figure 7-5A). A similar nanoparticle with 64 S-Au-S motifs is also
modelled (Figure 7-5B) in order to determine the effect of the number of perturbations on the

electronic structure. The number of electrons in these clusters is estimated based on the electron
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density of the Aui44(SR)eo Cluster and calculated to be 388. However, this would lead to a
partially filled shell. On the other hand, a cluster with 398 electrons would entirely fill up 25
shells. The zeroth order and first order energy of the 3F, 4P, 2I, 3G, 4D, 5S, 1N, 2J, 1L, 1M, 3H,
2K and 4F orbitals are calculated. They correspond to the six highest occupied and the seven
lowest unoccupied orbitals, which would be the ones involved in electronic transitions. The
converged grid size used for these calculations is 0.35375 A, which was chosen to evenly divide

into 1.415 nm.

Figure 7-5. Perturbations of the 3 nm sphere. A) 96 perturbations. B) 64 perturbations.
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*Orange: Sulfur. Yellow: Gold.

Results and discussion

Test cases

Figure 7-6 shows the total energy (sum of zeroth order and first order) of the 1P and 1D
orbitals for each of the five cases. The orbitals are labeled with the familiar notations Py, Py, P,
Dyy, Dx... except for the test case 1b since the alignment of the main axis with the z-axis is not
respected. Instead, they are labeled P’y, P’y, P’;, D’yy, D’x;... The splitting of the orbitals is as
expected for all the test cases. Test case 1a shows that the P, orbital lies higher in energy than
the P, and Py orbitals, which are degenerate. The D,z orbital’s energy is higher than the Dy, and
Dy orbitals (which are degenerate), which lie higher in energy than the D,y and Dyz.,2 (which are

also degenerate). Case 1b shows identical orbital splitting as case 1a. The P orbitals are plotted
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for these two cases in Appendix E. In each case, the three P orbitals are orthogonal with one of
them pointing toward the perturbations.

As expected for the square planar case, the Py and Py energies are degenerate and lie
higher in energy than the P,. The energy of the Dyzy2 orbital is higher than the energy of the Dyy
orbital. The Dy, and Dy, orbitals come next and are degenerate, followed by the D,2. For the
octahedral case, all P orbitals are degenerate. The Dy,, Dy, and Dy, are degenerate. The Dy2.2and
D2 are also degenerate and lie higher in energy. As expected, the fourth case shows a similar
splitting as the square planar case except that the Dy, and Dyz.,2 are degenerate. The last case
shows an octahedral splitting. However, the energy difference between the two sets of D orbitals
(0.12 eV) is about twice as small as the standard octahedral case (0.23 eV). The eighteen
perturbations are arranged in an almost spherical manner and as a result, the energy of the orbital
splitting is lower; however, the perturbations are not perfectly spherical so the splitting is found
to be nonzero. The results from Figure 7-6 are consistent with known ligand-field splitting
patterns. Since the splitting among P orbitals (max=0.64 eV) and among D orbitals (max=1.32
eV) are much less than the P-D energy difference (~5 eV), the perturbations should be weak
enough that perturbation theory is valid. First order perturbation theory is sufficient to predict

these patterns.
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Figure 7-6. Orbital splitting for the test cases. A) Axial with perturbations along the z axis.
B) Axial with perturbations along a random axis. C) Square planar. D) Octahedral. E)
Planar with eight perturbations. F) Quasi-spherical with 18 perturbations. The orbital

energies are in eV.
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Au,s5(SR)1s
Figure 7-7A shows the 1P and 1D orbitals and their energies for Au,s(SR);1s” with a spherical
core radius of 4.20 A. These energies are calculated by adding the zeroth order and first order
energies. The energies lie between 17.08 and 20.15 eV. These large positive values are due to the
fact that we are considering a simple PIS model: the nuclei are not included. The 1P orbitals
(HOMO) are degenerate. The 1D orbitals are split into 2 sets. The Dyy, Dy, and Dy, orbitals
(LUMO+1) are 0.54 eV higher in energy than the D2,z and D,z orbitals (LUMO). The HOMO-
LUMO gap is 2.49 eV.
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Figure 7-7. A) Auas(SR)1s” 1P and 1D orbitals and their energies in eV for a 4.2 A spherical
core. B) Au,5(SR)1s” 1P and 1D orbital energies in eV for a 3 A spherical core.
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*Qrbitals are in dark green. Each Au,S3 unit is represented with a different color. The bigger dots
represent gold atoms and the smaller ones represent sulfur atoms.

This splitting agrees with the quasi-tetrahedral arrangement of the Au,(SR)3 units. As in the DFT
calculations, "' the orbitals making up the HOMO, LUMO and LUMO+1 levels are nearly
degenerate, although a slight splitting occurs since the symmetry of the NP is not rigorously Tj.
The DFT splitting between the two sets of D orbitals is 0.82 eV and the HOMO-LUMO gap is
1.48 eV. Therefore, the PIS model gives an orbital splitting that is comparable to DFT values but
not quantitatively accurate. A few reasons for this may include the fact that the PIS model
calculates the energy of orbitals within the core of the NP. Although the 1P and 1D orbitals are
mainly located within the core of the nanoparticle, there is some ligand contribution.” In
addition, electrons in the real case can spill out of the core, whereas they are constrained by an
infinite potential in the PIS model. Other contributions to the inaccuracy of the energy gaps
might include the absence of nuclei or the fact that orbital occupancies are not considered.

Nevertheless, good qualitative results are obtained, including the right degeneracies and the
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correct orbital orderings. The PIS orbitals are very similar to the ones obtained with DFT:"® the

HOMO level is made of orbitals with a P character, the LUMO level is made of orbitals with

Dy2.2 and D,2 character and the LUMO+1 is made of orbitals with Dyy, Dy, and Dy, character.
However, the alignment of these orbitals is not always identical to DFT. In fact, some of these
orbitals are oriented in a slightly different set of axes.

The orbital energies are between 21.28 and 26.86 eV for the 3.0 A case, as shown in
Figure 7-7B. The difference in range compared to the 4.20 A case is mainly due to the zeroth

order energy, which is inversely proportional to the radius of the spherical core squared (eq. 7.3).

The Dyy, Dy, and Dy, orbitals (LUMO+1) are 0.14 eV higher in energy than the Dy2.y2 and D,2
orbitals (LUMO) and the HOMO-LUMO gap is 5.43 eV. Consequently, as the core radius
increases, the orbital splitting for a given shell increases but the energy between two different
shells decreases.

Silver has a free-electron character similar to gold. Since the d band plays less of a role in
silver than gold, the PIS model (which does not discriminate between elements) may provide
more quantitative results. According to DFT, the silver cluster Agzs(SR)1s” shows similar
splitting as its gold counterpart.”® The DFT calculated HOMO-LUMO energy gap is found to be
1.43 eV and the LUMO-LUMO+1 gap is 0.55 eV." Thus, the HOMO-LUMO gap for both gold
and silver is overestimated somewhat by the PIS model but the LUMO-LUMO+1 splitting for
silver is well-reproduced by the PIS model. In the future, we may discriminate between elements
by including the d-band or different spill-out parameters depending on the metal considered.

AU102(SR)44
Figure 7-8A shows the density of states diagram of Aui02(SR)a44 calculated with the PIS model.
Figure 7-8B shows the DFT projected density of states within the Aug core from Walter et al 2
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Figure 7-8. A) Aui2(SR)44 density of states spectrum using the PIS model. B) Projected
density of states within the gold core region.
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8 (Copyright 2008 National Academy of Sciences, U.S.A.).

Both the PIS model and DFT show a set of occupied 1F orbitals followed by the 2P orbitals,
which partially overlap the 1G. A gap of 0.4 eV occurs between the 1G and 1H orbitals with the
two methods. It corresponds to the HOMO-LUMO gap. With the PIS model, the 2D orbitals
partially overlap the 1H orbitals. However, there is a distinct set of 1H orbitals that does not
overlap the 2D set with DFT. This feature is not reproduced with the PIS model. Additionally,
contrary to DFT, the PIS model gives a large gap (0.7 eV) between the 1H and 11 orbitals. The

orbital splittings are given in Table 7.1.

Table 7.1. Energy splitting (eV) of each set of orbitals of the Aui02(SR)44 Nanoparticle.

Orbitals| PIS model DFT
1F 0.8 0.2
2P 0.5 0.3
1G 0.9 0.5
2D 0.5 0.6
1H 1.1 0.8
11 1.0 0.4

*Ref0

Overall, the splitting tends to be overestimated with the PIS model. In general, the PIS model
gives good qualitative agreement with DFT but lacks quantitative accuracy. It should be

emphasized that the core of this cluster has a decahedral symmetry which is not as spherical as

118



the core of Auys(SR)1s” or Aui44(SR)so Which have icosahedral symmetry. Additionally, the p-
MBA groups, which are not considered here, may influence the energy splittings and gaps. These
calculations have also been run with a core radius of 7.5 A, which corresponds to the distance
between the center of mass of the cluster and the outer gold atom of the core plus half a gold-
gold bond length. This DOS spectrum did not show any gap between the 1G and 1H orbitals,

which again stresses the importance of the choice of radius.

Au144(SR)eo
Figure 7-9A shows the density of states diagram calculated with the P1S model for the optimized
structure. Figure 7-9B shows the DFT projected density of states within the Auyi4 core from
Lopez-Acevedo et al.*** and Figure 7-9C shows the density of states diagram calculated with the
PIS model for uniformly spread perturbations. Tables 7.2 and 7.3 show the band gaps and energy
splitting of the orbitals respectively for each of those three cases. The electronic structures
obtained with the PIS model (Case A) and with DFT (Case B) for the DFT optimized structure
are first discussed, followed by a discussion of the electronic structure obtained with the PIS

model for uniformly distributed perturbations (Case C).
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Figure 7-9. A) Au144(SR)so density of states spectrum using the PIS model. B) Projected
density of states within the gold core region. C) Au144(SR)eo density of states spectrum using

PIS model with uniformly spherically spread out perturbations.
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*Red: S. Green: P. Blue: D. Magenta: F. Turquoise: G. Yellow: H. Black: I. B) is reproduced
with permission from Ref*®(Copyright 2009 American Chemical Society)

Comparison between the PIS model and DFT electronic structures for the optimized structure

(Cases A and B).

Similar features between the two spectra are observed. First, the 1S, 1P and 1D orbitals
show similar splitting. The gap between the 1S and 1P orbitals is 0.50 eV with both the PIS
model and DFT. The PIS model overestimates the gap between the 1P and 1D orbitals by 0.16
eV. The next higher-energy orbitals are 2S, 1F, 2P and 1G. In the DFT calculations, the 2S, 1F
and 2P orbitals overlap the d-band. The d-band originates from d electrons localized on the gold

atoms and is not calculated with our model. The 1G orbital splitting is overestimated with our
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model. This could possibly be explained by the fact that the 1G orbitals partially overlap the d
band in DFT calculations. A gap of 0.58 eV (Table 7.2) appears between the 1G and 2D orbitals
with the PIS model, which is a bit larger than the 0.45 eV gap predicted by DFT for these
orbitals. The 2D orbitals are split over 0.11 eV with the PIS model (Table 7.3) and about 0.06 eV
with DFT. With DFT, the 1H orbitals are split into two main sets and the 2D orbitals fall
between those two sets of 1H orbitals. Our model also predicts the splitting of the 1H orbitals
into 2 sets but the 2D orbitals lie slightly lower in energy (0.03 eV) than the first set of 1H
orbitals. The splitting of the 1H orbitals is underestimated by 0.27 eV with the PIS model. DFT
calculations show that the 3S orbital overlaps the second set of 1H orbitals. With the PIS model,

the 3S orbital falls between the two sets of 1H orbitals.

Table 7.2. Band gap energies (V) of the Au144(SR)so Nanoparticle.

Orbitals| Case A Case C Case B®
1S—1P 0.50 0.48 0.50
1P—1D 0.60 0.54 0.44
1D—2S| 0.26 0.22 NAP
2S—I1F| 0.33 0.38 NAP
1IF—2P| 0.29 0.37 NAP
2P—1G| 0.15 0.19 NAP
1G—2D 0.58 0.55 0.45, 0.16°
IH—2F| 0.64 0.75 0.76, 0.10°
2F—3P 0.29 0.37 0.18
3P-2G 0.75 0.78 0.18

a) Ref™

b) These orbitals overlap with the d band and therefore their energies could not be

determined.
c) 1G—1H
d) 1H—1I
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Table 7.3. Energy splitting (eV) of each set of orbitals of the Auy44(SR)so Nnanoparticle.

Orbitals| Case A Case C Case B*
1P 0.08 0.12 0.02
1D 0.12 0.21 0.07
1F 0.41 0.25 NA
2P 0.07 0.11 NA”
1G 0.41 0.34 0.27
2D 0.11 0.19 0.06
1H 0.47 0.44 0.74
2F 0.37 0.22 0.53
11 0.58 0.49 0.63
3P 0.07 0.11 0.02
2G 0.35 0.30 0.38

a) Ref™
b) These orbitals overlap with the d band and therefore their energies could not be
determined.

The PIS model shows a large gap of 0.64 eV between the 1H and 2F orbitals. Therefore, the
filling of the 1H shell would lead to a very stable cluster. However, Au144(SR)go Only possesses
84 metallic electrons according the superatom complex model.*** According to the PIS model,
84 electrons would fill orbitals up to the 3S. There is a significant gap of 0.12 eV between the 3S
orbitals and the second set of 1H orbitals that would contribute to the stability of the cluster.

The PIS model shows that the 2F orbitals strongly overlap with the 11 orbitals. DFT also shows
some overlap between the 2F and 11 orbitals but the 11 orbitals tend to have lower energies than
the 2F orbitals. Similar to the 1H orbitals, the splitting of the 2F orbitals is underestimated by

0.16 eV with the PIS model. The splitting of the 11 orbitals with the PIS model (0.58 eV) is
somewhat smaller than the one obtained with the DFT calculations (0.63 eV) but in the right
range. Similarly to DFT calculations, the 3P and 2G orbitals appear at higher energy than the 2F
and 11 orbitals. The gap between the 2F and 3P orbitals is 0.29 eV with the PIS model but only
0.18 eV with DFT. However, the gap between the 3P and 2G orbitals is much larger with the PIS
model (0.75 eV) than with DFT calculations (about 0.18 eV). Most band gaps tend to be
overestimated with the PIS model, but within a reasonable range. The only exception is the gap
between the 3P and 2G orbitals which is overestimated by 0.57 eV.

Generally, the PIS model can reproduce many of the features of the density of states
spectrum. However, since the charge-perturbed PIS is a rough model, accurate quantitative

results are not obtained.

122



Comparison between the DFT optimized structure and uniformly spread perturbations (Cases
A and C).

The PIS orbital energies for the uniformly spherically spread out perturbations are shown
in Figure 7-9C and compared to those obtained using the DFT optimized structure (Figure 7-9A).
The peaks in Figure 7-9C are sharper than those obtained on Figure 7-9A: the orbital energies for
each set of orbitals are not as spread out as those calculated for the DFT optimized structure.
This observation is particularly obvious for high | quantum numbers (F, G, H and | orbitals) as
shown in Table 7.2, since these orbitals have many lobes and the perturbations are uniformly
spread out around the spherical core. On the other hand, lower | (P and D orbitals) tend to look
more spread out in the spherical case, which can be explained by the fact that they have fewer
lobes and that the perturbations are not perfectly uniform around the sphere.

Additionally, the orbitals are shifted to higher energies (about 2 eV) in Figure 7-9C. This is due
to the fact that in the uniformly arranged perturbations case, all the perturbations are chosen to be
equidistant from the center of the sphere, which is not the case for the DFT optimized structure.
Another interesting feature is that most of the gaps between different shells vary by less than
0.11 eV. Therefore, these energy gaps are not as affected by the arrangement of the
perturbations as the orbital splitting is.

The data shows that the symmetry of the system plays a major role in determining the density
of states spectrum, since it strongly influences orbital splitting. On the other hand, band gaps are
not very affected by the arrangement of the perturbations.

3 nm NP

Figure 7-10 shows the density of states spectrum of the 3 nm nanoparticle with 96 and 64
perturbations. The two spectra are very similar, which shows that the number of perturbations
does not significantly affect the electronic structure. As shown in Table 7.4, the splitting of the
orbitals remains almost identical as the number of perturbation changes. We shall note that the
orbital splitting is in general lower for this large nanoparticle than for the Au144(SR)so Cluster for
a specific I. In fact, we can expect a decrease of the splitting of the orbitals as the radius of the
nanoparticle increases and the arrangement of the perturbations become more and more
spherical. We also note that, as found in the Au,s(SR)1s” case, if the core radius is decreased to

13.15 A, the splitting of the orbitals becomes much lower. For instance, the splitting of the 1N
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orbitals decreases by 0.13 eV. The spectrum shifts to higher energy as the number of
perturbations increases, which is expected since the orbital energies increase proportionally to
the charge of the perturbations and each S-Au-S unit has a net negative charge. Both spectra
show three main regions with a very large density of states. It is known that a large HOMO-
LUMO gap and completely filled shells increase the system’s stability: the electrons in the filled
HOMO shell have low energy and cannot be easily removed. The LUMO has a high energy
which means the system cannot accept any electrons. If this particle had 338 core electrons, it
would be expected to be more stable since all the shells up to 21 would be completely filled and
there is a gap of 0.09 eV between the 21 and 1M orbitals for the 96 perturbations case. In the 64
perturbation case, this gap increases to 0.13 eV. Similarly, this nanoparticle would also be quite
stable if it had 452 electrons since there is an energy gap of 0.05 eV between two sets of 1N
orbitals in the 96 perturbation case (0.06 eV in the 64 perturbation case). However, this
arrangement does not lead to a fully occupied electronic shell. Overall, the size of the orbital

gaps decreases as the particle becomes larger, and the 3 nm NP is closer to being “metallic” than

Au144(SR)s0.

Figure 7-10. Density of states spectra using PIS model of a 3 nm nanoparticle with A) 96
and B) 64 S-Au-S units.
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Table 7.4. Energy spread of each set of orbitals for the 3 nm nanoparticle.

Orbitals Orbital energy splitting | Orbital energy splitting
(eV) with 96 perturbations|(eV) with 64 perturbations
3F 0.23 0.16
1L 0.44 0.41
4P 0.10 0.10
21 0.28 0.24
1M 0.46 0.40
3G 0.22 0.22
2] 0.29 0.29
4D 0.14 0.12
IN 0.46 0.42
3H 0.23 0.24
2K 0.31 0.30
4F 0.23 0.16

Final considerations

All the calculations performed in this work took no longer than a few minutes for each
value of I, which makes this method very effective. The computational time required of course
still depends on the size of the particle studied, the number of electron shells of interest, the
number of perturbations considered and the grid size chosen. The results are qualitatively similar
to those obtained with DFT, but quantitative accuracy in splitting energies and band gaps is still
lacking. This model can potentially be improved by including interactions with the nuclei, for
example by using a Jellium model, which would significantly lower the orbital energies. Another
way to improve this model is to consider each atom in the ligand (the R group in our example).
Finally, we could also include the d-band and introduce different spill-out parameters to
discriminate between silver and gold, as explained in the results and discussion section. Of

course, this would increase the computational time required.

Conclusions
In summary, a charge-perturbed particle-in-a-sphere model was created using first-order
degenerate perturbation theory to calculate orbital energies of ligand-protected spherical gold
nanoparticles. Atoms constituting the ligand motifs are described as point charge perturbations
and the core is treated as a spherical well. Since spherical nanoparticles can be described with the

|'22

superatom model,** the program uses the PIS model in conjunction with perturbation theory to
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determine the density of states of several spherical gold nanoparticles. The results are
qualitatively similar to those obtained with DFT. The orbital energies are in agreement with
expected ligand-field splitting patterns. The calculations performed on the Au,s(SR)sg™ cluster
show that the core radius plays a major role in the determination of the orbital splitting. The data
obtained for the Au144(SR)so nanoparticle shows that the symmetry of the perturbations greatly
influences the electronic structure. However, the number of perturbations does not play a major
part as long as the symmetry remains constant, as shown with the 3 nm nanoparticle case. As the
nanoparticle size increases, the degree of orbital splitting decreases, which is most likely due to
the nearly spherical arrangement of S-Au-S units. In addition, the energy gaps become smaller
and the particle takes a metallic character.

A great advantage of this method is that it is computationally cheaper than DFT. The
computational time required depends on the size of the particle studied, the number of
perturbations considered and the grid size chosen. This model can be used for a wide variety of
gold nanoparticles and ligands, if one is interested in getting the order of the superatom orbitals
of a specific nanoparticle. The charge of the perturbations can be modulated depending on the
atoms considered.
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Chapter 8 - Applications of the configuration interaction

interpretation and extension to large nanoparticles

Introduction
In this section, we combine the findings described in the previous chapters to describe the
evolution of the optical behavior of noble metal nanoparticles. We show that the CI model
described in chapter 6 can reproduce the absorption features of several silver clusters and can be
applied to any system size. In addition, we discuss the extension of this model to large noble

metal nanoparticles.

Applications of the CI interpretation

In chapter 5, we showed that the high-energy, high-intensity 3-band in acenes can be
qualified as a plasmon. The reason for this is the constructive addition of the single-particle
states HOMO-1—-LUMO and HOMO—LUMO+I. In addition, we saw that the electron density
shifts from one end of the molecule to the other upon excitation, as expected for a dipolar
plasmon mode. Another excited state with lower energy and low oscillator strength (the a state)
is also made of the same single-particle transitions. In this case, their dipole moment
contributions interact destructively, explaining the low oscillator strength of the o state. This data

is summarized in Table 8.1.
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Table 8.1. Longitudinal modes of naphthalene at the LB94/TZP level of theory.?”

_ Dipole
Oscillator N
Energy . moments Transition
Peak strength Transitions o . [Isovalue|
eV) contributions | densities*
(a.u)
(a.u)
HOMO -1— LUMO 22022 VY7 )
0} 4.09 | 0.000032 ; ‘ 0.005
HOMO— LUMO+1 -2.1736 !
HOMO -1— LUMO -1.8247 r ¥
B 5.60 1.107 m 0.05
HOMO —-LUMO+1 -1.8267

* The region where the electron density increases is in red. The region where the electron density

decreases is in blue.

Application of the CI interpretation to the nanowire Age
Is this behavior reproduced in noble metal nanoparticles? We already described the
plasmon features of noble metal nanorods in terms of the constructive addition of single-particle
transitions but we have not yet looked at the transition densities. We now take a closer look at
the Ages nanowire described in chapter 3. Table 8.2 shows the longitudinal and transverse excited
state energies and oscillator strengths. The single-particle transitions and their contribution to the

dipole moment of these excited states are also displayed.
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Table 8.2. Longitudinal (L) and transverse (T) peak energies, oscillator strength and

transition densities of the nanowire Agg at the LB94/DZ level of theory. Single-particle

states and dipole moments contributing to each peak are also given.

: Dipole ..
Oscillator . . Transition
Energy I moment Transition density .
Peak strength Excitations oo o density [Isovalue|
(eV) contribution side view >
(a.u.) @u) end view
L 1.98 1.74 I,—Z, -6.3581 @ ® [¢) 0.06
2 —1II 0.6997
L e o ®
T1 6.86 0.67 X —IL 1.0356 ® 00000 ® 0.04
) (&% @
z, — I 0.9631
z, — I 0.3590 ®
0000 0@ @
T2 5.75 0.0011 z,—~ 1L 1.5259 g @ 0.017
z, — I -1.8127
X —I -1.9817
- - 0 .o ‘ct ¢ 00
¢ @
T3 5.82 0.0013 z,—~ 11, 1.1369 [ O ) 0.015
z,— I 0.6165

* The region where the electron density increases is in red. The region where the electron density

decreases is in blue.

Only one single-particle transition contributes to the longitudinal mode. The electron density
oscillates from one end of the molecule to the other, again as expected for a dipolar plasmon. As
discussed in chapter 3, three ,,—I1, (m=1, 2, 3) single-particle transitions contribute to the main
transverse peak (labeled T1) and their dipole moment contributions add constructively. The
electron density moves across the short axis of the system (as expected) and it is focused on the
extremities of the wire. The same X, —II, transitions contribute to two other transverse peaks in
the absorption spectrum (labeled T2 and T3). However, their dipole moments add destructively,
explaining the lower oscillator strength of these states. The transition densities of these two states

also reveal the oscillation of the electron density across the short axis of the system. The electron
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density involved in these two states is much lower than the one involved in T1. This is shown by
the lower isovalues used to plot these orbitals.

We now apply the CI model discussed in Chapter 6 to the transverse peak of this system.
The values of a used correspond to the DFT calculated energy difference between the I, and X,
orbitals. At the LB94/DZ level of theory, these values are: ay =E(I1;)- E(£1)=5.59 eV, a,= E(I1)-
E(2;)=5.69 eV and az= E(I13)- E(X3)=5.79 eV. The coupling g values are assumed to be all equal
and a value of 0.36 eV is taken to obtain the best fit with TDDFT. The best fit here is determined
by the energy gap between the excited states. The Cl and TDDFT results are given in Table 8.3.

Table 8.3. Comparison between TDDFT and CI excitation energies and oscillator strengths
for the three excited states in Ags resulting from the combination of the single-particle
states X, — 1, (M=1, 2, 3).

TDDFT (LB94/DZ) CI?
Peak Energy (V) Oscillator Energy (V) Oscillator
strength (a.u.) strength® (a.u.)
T2 5.75 0.0013 5.27 0.0081
T3 5.82 0.0011 5.38 0.0089
T1 6.86 0.6653 6.42 2.9830

*The a values used for the CI matrix in eq. 6.2 are a; =5.59 eV, ,=5.69 eV, a3=5.79 eV and
$=0.36 eV.
®The value given here is actually the oscillator strength enhancement, as explained in Chapter 6.

The excited state energies obtained with CI tend to be about 0.5 eV lower than the TDDFT
values. The oscillator strengths enhancements give trends in very good agreement with TDDFT.
Since the values of o are not exactly equal, the excited states T2 and T3 are not exactly

degenerate and their oscillator strength is slightly higher than zero, as explained in chapter 6.

Application of the Cl interpretation to the nanorod Ags;™
Only one single-particle transition contributes to the longitudinal peak of the nanowires
such as the Age described above. On the other hand, multiple transitions contribute to the

longitudinal peak of wider systems, as discussed in chapter 4. Multiple single-particle transitions
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out of delocalized cylindrical orbitals contribute constructively to the high intensity longitudinal
peak at 4.13 eV for the nanorod Agy: . Multiple low-energy excited states occur between 1.1 and
2.6 eV, arising from a destructive interaction of the same single-particle transitions. Again, these
peaks are too weak to be observed experimentally. The strong longitudinal peak (plasmon) and
one of these low-energy peaks are analyzed in Table 8.4. The electron density shifts from one
end of the nanorod to the other in both of these excited states. This kind of motion is expected for
a dipolar plasmon. However, we again note that the electron density involved in the strong
longitudinal peak is higher than for the small peak, as suggested by the larger isovalue used to
plot these orbitals. A direct application of the CI interpretation, as was done for Agg, is more
difficult here since not all single-particle excitations out of the cylindrical orbitals contributing to
this peak are printed out in the ADF program. In addition, a larger number of d-band orbitals
may mix in due to their increased density of states with increasing system size. However, it is

clear that the optical behavior of this system can be described in a similar way.
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Table 8.4. Two longitudinal peak energies, oscillator strength and transition densities of the
nanorod Agr; ™ at the LB94/DZ level of theory.

Oscillator Contribution i o Transition
Energy o ] Transition density side .
strength Excitations to dipole . density end | |Isovalue|
(eV) view ]
(a.u.) moment (a.u.) view
X 1.1479
o _© 09&
AN 1.8721 Sa oo
8 o%
413 | 514 [ PHT | 0848 730N 0.015
1 1.5081
o - 1.0964
200, — 210, 0.8278
z z
6 <7 2.0691 c s s
A —A petéses
= @8 | @
1.46 00029 | 2%, — 2%, 0.5556 o 6wt d 0.005
L] [ ] L
0 — 1 -9.3167
o, -0 5.4624

* The region where the electron density increases is in red. The region where the electron density

decreases is in blue.

Application of the CI interpretation to the tetrahedral cluster Agyo.

We discussed how the CI treatment can describe the plasmonic features of elongated
systems. Can we apply it to any shape? The tetrahedral cluster Ag,o was previously studied using
TDDFT.72% At the LB94/TZP level of theory, this system has one strong peak in its absorption
spectrum at 4.14 eV. Nine single-particle transitions between frontier orbitals contribute to this
peak, as shown in Table 8.5. Their dipole moment contributions add constructively, giving this
state a high oscillator strength. The same single-particle transitions contribute to eight other
excited states between 2.17 and 3.12 eV, as shown in Table 8.6. These states have low oscillator
strengths due to a destructive addition of the same single-particle transitions. The transitions

densities of the strong peak and one of these weak states are shown in Table 8.5.
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Table 8.5. Excited state energies, oscillator strength and transition densities of the
tetrahedral Agyo cluster at the LB94/TZP level of theory.

Energy Oscillator Dipole
V) strength Transitions moments Transition density* [Isovalue|
(a.u.) (a.u.)
HOMO-1 -LUMO+1 -1.576
HOMO — LUMO+2 2.8284
HOMO-2 — LUMO -1.1909
HOMO — LUMO+2 0.6464 0
2.74 0.0192 HOMO-1 -LUMO -0.9814 ©e0 0.010
HOMO —LUMO+3 -0.4312 s i
HOMO-1 LUMO+3 0.3975 “ % Ve ‘
HOMO-2 — LUMO+3 -0.2251
HOMO — LUMO 0.0608
HOMO-2 — LUMO -1.1957
HOMO —-LUMO+3 -1.5952
HOMO-1 -LUMO+2 -1.3647
HOMO-1 -LUMO -1.4425
4.14 3.0047 HOMO — LUMO+2 -0.818 0.044
HOMO-1 -LUMO+1 -0.686
HOMO-1 -LUMO+3 -0.2421
HOMO-2 — LUMO+3 -0.1266
HOMO — LUMO -0.0801

* The region where the electron density increases is in red. The region where the electron density

decreases is in blue.

For the state at 4.14 eV, the electron density moves from one edge of the cluster to the

opposite one. The electron density change tends to be larger at the vertices of the system. For the

state at 2.74 eV, a similar shift of the electron density is observed. Again, the electron density

involved in the excitation is higher in the 4.14eV state, as shown by the higher isovalue used in

the plot. The strong peak at 4.14 eV can therefore be attributed to a plasmon according to the

scheme used so far.

The Cl interpretation is applied to this system as well. The nine single-particle transitions

shown in Table 8.5 are considered in the CI matrix. As in the Age case discussed above, the



diagonal elements a of the CI matrix are the DFT energy differences between the two orbitals
involved in the transition. At the LB94/TZP level of theory, these values are: a;=2.41 eV,
a2=2.63 eV, 03=2.64 eV, 04=2.27 eV, 05=2.46 eV, 05=2.55 eV, 07=2.80 eV, 05=2.95 eV and
09=2.09 eV. The coupling g considered is 0.15 eV. This value is chosen in the same manner as
the one chosen for Ags (such as to obtain the best splittings in comparison with TDDFT). Both
Cl and TDDFT results are reported in Table 8.6. Both methods show excellent agreement. Like
in the Ags case, the excited state energies are lower with CI. In addition, both Cl and TDDFT
show that the oscillator strengths of the 8 lower excited states are very low whereas the excited
state of the high energy state is very high. Again, since the nine single-particle transitions are not

exactly degenerate, the 8 low-energy excited states have non-zero oscillator strength.

Table 8.6. Comparison between TDDFT and CI excitation energies and oscillator strengths

for the excited states in the tetrahedral cluster Agyo.

TDDFT (LB94/TZP) CP®
Energy (V) Oscillator Energy (V) Oscillbator
strength (a.u.) strength” (a.u.)

217 2.69E-03 1.97 0.048
2.36 3.03E-03 2.15 0.039
2.54 7.54E-03 2.28 0.011
2.65 4.01E-04 2.35 0.032
2.74 1.92E-02 243 0.024
281 6.88E-03 2.49 0.00055
2.93 1.33E-08 2.60 0.069
3.12 1.62E-02 2.75 0.078
4.14 3.0047 3.78 8.70

*The « values used for the CI matrix in eq. 6.2 are a;=2.41 eV, a,=2.63 eV, a3=2.64 eV, 0,=2.27
eV, as=2.46 eV, 0s=2.55 eV, a7=2.80 eV, 05=2.95 eV, ag=2.09 eV and $=0.15 eV.
®The value given here is the oscillator strength enhancement, as explained in Chapter 6.
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Discussion: Extension of the CI interpretation to large nanoparticles

We showed in this chapter that the CI formalism in chapters 5 and 6 can successfully
model the optical behavior of metallic clusters of various shapes. The plasmon of metallic
clusters results from a constructive addition of nearly degenerate single-particle transitions.
These transitions occur between delocalized orbitals resulting from a linear combination of the
valence s orbitals of the metal atoms. As the size of the cluster increases, the number of single-
particle transitions contributing to the plasmon peak increases due to the increasing density of
states of these orbitals. This density of states increase was shown using the charge-perturbed
particle-in-a-sphere model for gold nanoparticles in chapter 7 (Figures 7-7 to 7-10). For large
nanoparticles, a large number of transitions between these delocalized orbitals have the same
symmetry and similar energies. They can interact constructively to make a plasmon, as described
above. The intensity of the plasmon peak increases with the number of single-particle
contributions (Chapter 6). Therefore, the intensity of the resulting plasmon peak will become
very high for large systems. Thus, one cause of the evolution from the discrete absorption
spectrum of clusters to the plasmon peak of nanoparticle can be assigned to the increasing
number of transitions involved in the CI. (As shown in chapter 7, another cause of the evolution
is the decreased ligand-field splitting as the nanoparticle increases in size.) For small clusters, the
density of states of delocalized orbitals is small. Few allowed transitions are close enough in
energy to interact and make a plasmon. A discrete absorption spectrum is therefore obtained. We
emphasize that for small gold clusters, excitations out of the d-band also contribute to the
absorption spectrum since these localized orbitals may be close in energy to the delocalized ones.
Overall, as the size of the system increases the number of transitions that can interact increases,
giving birth to the plasmon.
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Chapter 9 - Effects of Silver Doping on the Geometric and
Electronic Structure and Optical Absorption Spectra of the Auys.
Agn(SH)1s (n=1, 2, 4,6, 8,10, 12) Bimetallic Nanoclusters

Reproduced with permission from:
Guidez, E. B.; Mékinen, V.; Hékkinen, H.; Aikens, C. M. J. Phys. Chem. C 2012, 116, 20617.
Copyright 2012 American Chemical Society.

Abstract

The effect of silver doping of the Au,s(SH)1g™ nanoparticle is studied by investigating Augs.
nAdn(SH)15" (N =1, 2, 4, 6, 8, 10, 12) systems using density functional theory (DFT). Forn=1,
doping of the icosahedral shell of the metal core is energetically more favorable than doping of
the metal-thiolate units or the center of the core. For n > 2, only doping of the core surface is
considered and arrangements where the silver dopants are in close proximity tend to be slightly
less favorable. However, energy differences are small and all conformations are accessible under
experimental conditions. Boltzmann-averaged excitation spectra for these systems show similar
features to the undoped Aus(SH)1g". The main differences include a blue shift of the low-energy
HOMO-LUMO (1P—1D) peak and an increased intensity of the peak at 2.5 eV as the number of
doping silver atoms increases. Silver doping lowers the energy of ligand-based orbitals and
facilitates the transitions between the superatom orbitals. Silver-doped systems show broader

excitation spectra due to a breaking of the symmetry of the superatom orbitals.

Introduction
Small thiolate-stabilized gold and silver nanoparticles with diameters on the order of 1-2
nm exhibit structured optical absorption spectra with multiple peaks rather than the single, sharp
peak of larger nanoparticles.®***** These optical characteristics provide a fingerprint of the
nanoparticle core size and lead to interesting applications related to luminescence, nonlinear
optical properties, etc.*>*'® The geometric structures of several nanoparticles in this size range
have been characterized by x-ray crystallography, including Auzs(SR)1s™, 2% Auss(SR)zs,™

and Au1o2(SR)as,”® and it is now known that these systems are composed of a metal core
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surrounded by oligomeric —S—Au—S- or —-S—-Au-S—Au-S— motifs often called “staples”. This
Au-S interface structure is found also in certain cases in self-assembled monolayers of thiolates
on Au(111) (for a recent review, see Ref **'). The Au,5(SR)1s nanocluster has a 13-atom
icosahedral core surrounded by six —-S—-Au-S—-Au-S— units. Because the outermost valence
electrons of gold (6s) and silver (5s) are relatively free-electron-like, these nanoparticles exhibit
electron shell structure similar to that of sodium or other simple metal clusters; however for
ligand-stabilized nanoparticles, the “free-electron” count n, of a cluster with stoichiometry Au(or
Ag)nXuLs® (X = one-electron-withdrawing or -localizing ligand; L = Lewis base type ligand) can
be determined by n = N — M — z, where N is the number of valence s electrons from the metal
atoms and z is the global charge of the cluster.**?®*Au,s(SR):s™ has n. = 8 corresponding to an
electronic shell structure with three highest occupied P-like orbitals and five lowest unoccupied
D-like orbitals that can be revealed either by using a projection onto spherical harmonics
approach or by examining Kohn-Sham orbitals.”*%#3% sych orbitals are sometimes referred to
as “superatom” orbitals since they originate from the linear combination of the gold 6s orbitals in
the cluster and look like the familiar atomic orbitals. These superatom orbitals are delocalized
over the core.® In the Au,s(SR)1s” system, the D-like orbitals split into two or more sets
depending on the arrangement of the ligands.??%3

Doping of these nanoparticles has been of interest since Murray and co-workers
demonstrated via mass spectrometry that a single Pd atom could be doped into the Au,s(SR)1s
cluster.®'® Density functional theory (DFT) calculations showed that the resulting cluster is most
stable if Pd replaces the central core atom rather than gold atoms in the outer core or staple
motifs.3**3% A later combined experimental and theoretical study further supported the idea that
the most stable cluster is indeed Pd@Au,4(SR)1s, proposed a neutral charge state, and suggested
that this nanoparticle is more stable than the pure Au,s(SR)1s™ system;** other recent work from
this group indicates that the two central atoms of Auss(SR)24 can also be replaced by Pd, leading
to a cluster with greater stability than the pure system.**> Because of the interest in doped
nanoparticles, the properties of M@Au4(SR)1s” core-shell clusters with over 15 different metal
atoms M including Ag, Cu, Pt, and Mn as the central atom have been studied by a number of
researchers using DFT.323326
Silver doping of gold nanoparticles is of interest since silver nanoparticles typically have

strong plasmonic properties; in addition, the lattice constants of silver and gold are nearly
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identical so the two noble metals can be mixed in various proportions. Previous DFT work on
doping of a single Ag atom into Aus(SR);s” indicated that the most favorable position for the
silver atom is on the surface of the core rather than at the center of the core or in the staple
motifs.**® Other atoms such as Cd and Mn also appear to be most stable in this position. 320327
Recently, it has been shown that approximately 11 silver atoms can be doped into Au,5(SR)1g”
[Ref 181 and up to 60 silver atoms can be doped into the Auas(SR)so System.®® Using DFT
calculations, Malola and Hékkinen showed that the most favorable sites for silver doping of the
icosahedral Aui44(SR)go Nanoparticle are on the surface of the metal core, and this enhances the
electronic shell structure of the particle.**® Monte Carlo calculations using a MAEAM potential
also find that silver atoms preferentially segregate to the surface layer of larger bare Au-Ag alloy
nanoparticles,®* which suggests that this phenomenon is not restricted to small thiolate-
stabilized nanoparticles.

Previously, Negishi et al. reported a continuous change in the low-energy intraband
transitions in silver-doped Au,s(SR)1s” nanoparticles.'® They found that the optical absorption
spectrum of their most highly doped system is close to the theoretical time-dependent DFT
calculations of Aikens on a related AgisAu12(SH)1s” nanoparticle.®® In this work, we examine the
absorption spectra of a series of Auzs.nAgn(SH)18" (N =1, 2, 4, 6, 8, 10, 12) bimetallic
nanoparticles in order to determine the origin of the observed continuous change of the electronic

structure and optical absorption.

Computational details

Calculations were run using density functional theory as implemented in the codes
ADF2010.01*° and GPAW.***%? |n the ADF program, a triple-zeta polarized basis set with the
frozen core approximation was used for all calculations. Relativistic effects were considered
using the zeroth order regular approximation (ZORA).*>1¢ All geometry optimizations were
performed with the LDA functional Xa since LDA functionals reproduce Au-Au distances well.
Single point energies are also reported at the LB94/TZP level of theory**® using the Xa
geometries. Excitation calculations were run at the LB94/TZP level and the frozen core
approximation was also used. Excitation spectra were convoluted using a Gaussian with a
FWHM value of 0.2 eV. A set of test calculations were run also with the GPAW code, by using
the LDA parameterization by Perdew and Wang (LDA-PW).'%* The code uses the projector
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d** in a real-space grid. A grid spacing of 0.2 A was used.

augmented wave (PAW) metho
Ag(4d™°5sY), Au(5d*°6s") and S(3s%3p*) electrons were treated as valence and the inner electrons
were included in a frozen core density. The setups for Au and Ag include scalar-relativistic
effects. In geometry optimizations, 0.05 eV/A convergence criterion for residual forces in atoms
was used without any symmetry constraints.

Geometry optimizations and excitation calculations were performed on several isomers of
each Auzs.nAgn(SH)1s cluster (n=1, 2, 4, 6, 8, 10, 12, 13). All the isomers studied are shown in
Appendix F. Except for n = 1, only dopants on the surface of the core were considered since it is
the most favorable position, as shown in the next section. For each even value of n between 2
and 10, the excitation spectra of the different isomers were Boltzmann-averaged using the
procedure described here. The Boltzmann weight (BW) of each isomer (i) at room temperature

was calculated using the following formula:

e-kT

BW (i) = 3
> ek
J
where k is the Boltzmann constant (8.6173324 x 10” eV/K), T the temperature (298 K), and E; is

the energy of the isomer relative to the most stable structure. The sum j is over all isomers for a
specific value of n. The intensity of each LB94/TZP excitation was multiplied by the Boltzmann
weight of the isomer considered. The Boltzmann-averaged excitation spectrum was generated by
convoluting all the obtained transitions for each n value with Gaussian functions with a FWHM

of 0.2 eV.

Results and discussion

The effect of the position of the doping atom on the geometry, stability and excitation

spectrum of the cluster will be addressed in detail in this section.

Auz,Ag(SH) 18
One silver dopant can occupy three distinct positions: on the surface of the core (1a), in one of

the protecting staples (1b) and in the center (1c), as shown in Figure 9-1.
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Figure 9-1. Geometry of the AuzsAg(SH)1s™ isomers at the Xa/TZP level of theory.

(1b) (1¢)

*Key: Yellow=gold, gray= silver, orange= sulfur, white= hydrogen

Table 9.1 shows the relative energies and HOMO-LUMO gap of these relaxed systems at three
levels of theory. Although the Xa, LDA-PW, and LB94 numbers differ, the trends are the same.
1a is the most stable structure, followed by 1b and 1c, in qualitative agreement with Ref *?°. This
is in contrast to the PdAu,4(SR)1s° case where the palladium occupying the central position was
found to be the most stable, followed by the core surface position and the ligand shell position
(calculated with the PBE and TPSS exchange-correlation functionals).*"® Experiment also

suggests that the center position is preferred for Pd.***

Table 9.1. Relative energies and HOMO-LUMO gaps of the silver mono-substituted
AuyAg(SH)1s™ clusters (eV).

Relative energies HOMO-LUMO gap
Xa LDA-PW | LB9% Xo LDA-PW LB94
la 0 0 0 1.32 1.39 1.39
1b 0.11 0.14 0.30 1.32 1.36 1.41
1c 0.65 0.40 0.78 1.12 1.18 1.21

The HOMO-LUMO gaps obtained with LDA-PW and LB94 are comparable and Xa gives only
slightly lower values. The HOMO-LUMO gaps for complexes 1a and 1b are similar, with values
of 1.39 and 1.41 eV respectively at the LB94 level of theory. The HOMO-LUMO gap of
complex 1cis 1.21 eV, which is 0.18 eV lower than isomer 1a. In comparison, the
PdAu,4(SR)1s> case exhibits a 1.25 eV HOMO-LUMO gap for the center doping position.** In

140



contrast, the core surface and ligand shell doping positions showed considerably lower HOMO-
LUMO gaps of 0.91 and 0.86 eV respectively.**® Since large HOMO-LUMO gaps are often
associated with stability, these results show that the silver dopant prefers to occupy the core
surface whereas the palladium prefers to occupy the center. Jiang and Dai demonstrated that
silver has a lower interaction energy with the Au,4(SR)1s framework than palladium at the
PBE/def2-TZ\VP level of theory,”® which is in accordance with our observations. The energy of
the substitution reaction Au,s(SR)1s” + NAg = Auzs.n(SR)1s” + NAu was calculated for all the
values of n considered and for all the positions of silver, as shown in Table 9.2. For n =1, the
reaction energy is much higher for the substitution of the center gold atom than any other
position. DFT calculations on silver-doped Au144(SR)eo also show that it is more favorable for
silver to occupy the outer shell of the cluster core.*® Silver doping in the inner icosahedral shell
of the core and in the staple units of Au4(SR)s0 leads to much less stable clusters.*® Average
bond distances between the center atom and the surface of the core as well as distances between
the edge sulfur atoms of each unit and the adjacent gold or silver atom of the core are shown in
Table F.1 of Appendix F. Doping of the Au,s(SH)1s™ system somewhat affects the geometry of
the cluster. The average length between the center atom and the core surface is 2.78 A for 1c and
2.79 A for 1a and 1b. For system 1c, all center-surface distances are almost equal, with a
deviation up to 0.01 A. However, center-core distances of 1a are 2.78 + 0.04 A. This larger
deviation is due to the fact that the bond length between the center gold atom and the silver atom
on the surface is 2.83 A. Additionally, the bond length between the core gold atom opposite to
the silver atom and the center atom is 2.82 A. This 0.05 A elongation is interesting since gold
and silver have approximately the same size and similar bulk lattice constants. Similar to 1c, 1b
shows little variation in the center-core distances. The average bond length between sulfur atoms
and the adjacent atom on the surface of the core is 2.41 A for 1b and 2.42 A for 1c, with a very
small deviation for both cases. The average for case 1a is 2.42 A but a large deviation of 0.09 A
occurs. This deviation is due to the long distance between silver and sulfur (2.51 A). This is very
comparable to the Ag-S distance at the metal core — sulfur interface (2.52 A) found in the PBE
calculation of the most stable silver-doped Aui44(SR)eo Cluster which has a core-shell
composition of AussAges(RSAUSR)g0. 3%
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Table 9.2. Auzs+nAg 2> Auys,Ag + nAu reaction energies per silver atom in eV at the
Xa/TZP level of theory.

n configuration AE/n

a (surface) 0.79
1 b (unit) 0.90
c (center) 1.44

a 0.79
0.80
0.81

0.81
0.82
0.82
0.83
0.83
0.85

0.84
0.84
0.84
0.85
0.85
0.85
0.86
0.86

0.86
0.86
0.86
0.86
0.86
0.87

0.86
0.87
C 0.87

(O |=h|D QO | T|QD|STQ | =D |0 [([T|QD|=h D QO |T|D|O|T

10

12 surface 0.88

Excitation spectra of the three silver-doped species are shown in Figure 9-2. The Auzs(SH)1s”
excitation spectrum was also calculated at the LB94/TZP level of theory (Figure F-1 of

Appendix F) and is similar to the one previously calculated at the SAOP/TZP level of theory.®®
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Figure 9-2. Excitation spectra of the A) 1a, B) 1b and C) 1c AuxAg(SH)1g™ isomers at the
LB94/TZP level of theory.
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The first peak at 1.60 eV is assigned to transitions originating from the approximately triply
degenerate 1P superatom orbitals (HOMO) to the doubly degenerate set of 1D orbitals (LUMO),
which corresponds to the peak at 1.63 eV at the SAOP/TZP level of theory.?® The peak at 2.48
eV is assigned to transitions from an approximately triply degenerate set of a, orbitals originating
from the staple motifs to the LUMO. This peak also occurs at 2.48 eV at the SAOP/TZP level of
theory and corresponds to transitions from the triply degenerate HOMO-2 to LUMO.® Orbitals
below the HOMO are composed of sulfur p orbitals and of d orbitals from the gold on the
staples. The peak at 2.55 eV is assigned to transitions from the HOMO to the LUMO+1 orbitals
(a triply degenerate set of 1D orbitals) and corresponds to the peak at 2.60 eV at the SAOP/TZP
level.®* At 2.66 eV, we have transitions from the HOMO orbital to the LUMO+2 orbital,

corresponding to the 2S superatom orbital %

The excitation spectrum of 1c is very similar to the
spectrum of the undoped system described above. The sharp low-energy HOMO-LUMO peak

appears at 1.39 eV. The peak at 2.31 eV corresponds to interband transitions from the triply
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degenerate ligand-based orbitals (here HOMO-1) to the LUMO. The peak at 2.40 eV is assigned
to HOMO-LUMO-+1 transitions. The peak at 2.58 eV corresponds to transitions from the HOMO
to the LUMO+3 orbital (1P—2S). Higher energy peaks are assigned to additional interband
transitions. System la shows an excitation spectrum that is much broader than 1c, although the
main features are similar to the undoped system. This can be explained by the breaking of the
symmetry of the system when the doping silver occupies the surface of the core. For instance, the
low energy peak of 1a, corresponding to a HOMO-LUMO transition in the Auzs(SH)1g™ system,
extends from 1.56 to 1.70 eV. The silver atom splits the degeneracy of the superatom orbitals,
leading to a broader spectrum. Case 1b also shows a slightly more split spectrum than 1c. Since
the silver atom is in a staple unit, it does not change the core orbitals very much. However, the
ligand orbitals that contribute are affected,® leading to some splitting in the spectrum.

AU,3Ag>(SH) 18
We now consider two silver atoms doping the surface of the icosahedral core of the
system. Three configurations are obtained, as shown in Figure 9-3.

Figure 9-3. Geometries of the Au,3Ag2(SH)1s™ isomers at the Xa/TZP level of theory.

* Color coding same as Figure 9-1.

Case 2a has two silver atoms aligned with an axis through the gold center, giving a system with
higher symmetry than the other two cases. Case 2b has two nonadjacent silver atoms. Case 2¢
has two adjacent silver atoms on the surface of the core. Bond lengths follow similar trends as
case la discussed previously (Table F-2 of Appendix F). Distances between the center core and
the silver atoms are 0.08, 0.05 and 0.03 A longer than distances between the center gold and
another gold atom on the surface for cases 2a, 2b and 2c respectively. The distance between
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silver and the neighboring sulfur are also 0.11 A longer than corresponding gold-sulfur distances
for case 2a and 0.1 A for cases 2b and 2c. Relative energies and HOMO-LUMO gaps are given
in Table 9.3.

Table 9.3. Relative energies and HOMO-LUMO gaps of the silver bi-substituted
AU3Ag2(SH)1s™ cluster (V).

Relative energies HOMO-LUMO gap
Xa LDA-PW LB94 Xa LDA-PW LB94
2a 0 0 0.04 1.25 1.30 1.30
2b 0.03 0 0 1.36 1.41 1.43
2¢C 0.05 0.04 0.05 1.37 1.39 1.44

We note that the relative energies of the three systems are much closer than in the uni-doped
case, within a 0.05 eV range. Moreover, substitution reaction energies are very similar for the
three systems. Therefore, all configurations can potentially occur under experimental conditions.
Xa, LDA-PW and LB94 give slightly different trends. With Xa, longer distances between the
silver atoms lead to more stable systems. With LB94 single point calculations at the Xa
geometries, the non-adjacent arrangement (2b) of the silver atoms is more favorable than the
opposite arrangement (2a). LDA-PW data shows that 2a and 2b have the same energy. However,
it should be again emphasized that the energy differences are in the order of hundredths of an
electronvolt. The HOMO-LUMO gap of 2a is 0.13 eV smaller than 2b with LB94, and 0.11 eV
smaller than 2b with Xo and LDA-PW. 2b and 2c show similar HOMO-LUMO gaps. High
HOMO-LUMO gaps lead to increased stability since removal of an electron from the HOMO or
addition of an electron in the LUMO becomes difficult. 2a has a significantly lower HOMO-
LUMO gap than the other two isomers but only a slightly lower energy.

The excitation spectra are shown in Figure 9-4. The main features are also similar to the
Auys(SH)18~ system described above. Although 2a has the highest symmetry, it shows a higher
splitting than 2b and 2c.
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Figure 9-4. Excitation spectra of the A) 2a, B) 2b and C) 2¢ AuxAg2(SH)1s isomers at the

LB94/TZP level of theory.
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Table 9.4. Superatom orbital splitting of the three Au23Ag2(SH)1s

LB94/TZP level of theory.

" isomers (eV) at the

2a 2b 2c
1P (“HOMO”) 0.292 0.159 0.159
First 1D set (“LUMO”) 0.165 0.075 0.061
Second 1D set (“LUMO+1”) | 0.139 0.063 0.063

Orbital energy splittings for these three cases are summarized in Table 9.4. The splitting of the
1P orbitals is identical for cases 2b and 2c but almost twice as high for 2a. The two sets of 1D
orbitals also show a much higher splitting for 2a than 2b and 2c. This is in accordance with the

fact that 2b and 2c¢ show similar excitation spectra and 2a has a significantly split spectrum.

Figure 9-5 shows the frontier orbitals of case 2a. The lobes of the 1P orbitals are not exactly

aligned with the axis pointing at the two silver atoms but instead are aligned along an axis
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pointing toward silver and an adjacent gold atom. The energy of this orbital is more affected by
the silver atoms than the other two 1P orbitals, which causes the greater observed energy
splitting. The 1D,*like orbital is oriented similarly to the 1P orbital discussed above. One 1D
orbital in the second set has two lobes pointing almost directly at the silver atoms. Therefore, the
orientation of the superatom orbital is determined by the position of the silver atoms and the

silver atoms affect the spread of the orbital energies.

Figure 9-5. Frontier orbitals of Au,3Ag2(SH)1s™ (2a) at the LB94/TZP level of theory.

1P (HOMO)

1D (LUMO)

1D (LUMO+1)

Key: Yellow: sulfur, pink: gold, black: silver. Contour value=0.02

Auys ,Agn(SH).g" (n=4, 6, 8, 10)

A number of configurations with 4, 6, 8 and 10 silver atoms doping the surface have been
studied. All the isomers for each value of n are shown in Figure F-2 to F-5 of Appendix F.
Tables 9.5 to 9.8 show relative energies and HOMO-LUMO gaps for n = 4, 6, 8 and 10 at the
Xa, LDA-PW and LB94 level of theory. All three levels of theory give similar results.
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Table 9.5. Relative energies and HOMO-LUMO gaps of the silver tetra-substituted
AU21Ag4(SH)1s cluster (eV).

Relative energies HOMO-LUMO gap

Xa LDA-PW | LB9% Xa LDA-PW LB94
4a 0 0 0 1.44 1.44 1.49
4b 0.02 0.01 0.01 1.42 1.43 1.47
4c 0.03 0.06 0.01 1.35 1.34 1.40
4d 0.07 0.06 0.06 1.24 1.29 1.29
4e 0.07 0.08 0.07 1.43 1.44 1.49
4f 0.14 0.16 0.13 1.33 1.33 1.40

Table 9.6. Relative energies and HOMO-LUMO gaps of the AuioAgs(SH)1s cluster (eV).

Relative energies HOMO-LUMO gap

Xo LDA-PW | LB9% Xa LDA-PW LB94
6a 0 0.02 0.02 1.56 1.56 1.61
6b 0.01 0 0.01 1.56 1.60 1.62
6¢ 0.02 0.03 0 1.51 1.56 1.57
6d 0.05 0.04 0.11 1.52 1.56 1.58
6e 0.05 0.07 0.05 1.51 1.58 1.58
of 0.07 0.08 0.04 1.23 1.30 1.27
69 0.12 0.12 0.13 1.51 1.52 1.57
6h 0.13 0.18 0.16 1.53 1.56 1.60

The relative energies are again relatively close for each isomer, which shows that there is no
strongly preferred arrangement of the silver atoms at the surface of the core. However, we can
see that the arrangements where the silver atoms are close to each other tend to be slightly less
favored. For instance, 4f has four silver atoms connected at the surface of the core and its energy
is 0.14 eV higher than the lowest energy structure at the Xa level of theory. Similarly, for six
silver dopants, the capped structure where all the silver atoms are adjacent (6h) is 0.13 eV higher
in energy than the lowest-energy isomer. The second highest energy isomer 6g is similar to 4f

but with an additional two silver atoms also adjacent.
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For n = 8, there are more silver atoms in the core than gold. The structures with the most packed
arrangement of the silver atoms are slightly less favored but the relative energies are all within
0.08 eV at the Xa level. These trends are somewhat reflected in the substitution reaction
energies. Substitution reactions become less favorable as more gold atoms are substituted, as

displayed in Table 9.2.

Table 9.7. Relative energies and HOMO-LUMO gaps of the Au;7Ags(SH)1s cluster (eV).

Relative energies HOMO-LUMO gap

Xa LDA-PW | LB94 Xa LDA-PW LB94
8a 0 0 0 1.51 1.52 1.57
8b 0.01 0.03 0.02 1.41 1.41 1.44
8c 0.01 0.03 0.02 1.54 1.54 1.59
8d 0.04 0.08 0.04 1.42 1.42 1.45
8e 0.05 0.08 0.07 1.53 1.53 1.58
8f 0.08 0.1 0.14 1.39 1.39 1.43

We note that for n = 10, the three possible isomers are similar to those obtained with n = 2 (with
silver and gold swapped on the surface of the core). 10a is the most favorable at the Xa level of
theory while 10b is the most favorable at the LB94 level. It is interesting to note that the opposite
arrangement of gold atoms around the core is the least favorable at the LB94 level.

Table 9.8. Relative energies and HOMO-LUMO gaps of the AuisAgio(SH)1g™ cluster (eV).

Relative energies HOMO-LUMO gap
Xa LDA-PW | LB9% Xa, LDA-PW LB94
10a 0 0 0.07 1.51 1.52 1.56
10b 0.06 0.06 0 1.61 1.60 1.65
10c 0.1 0.08 0.03 1.59 1.62 1.64
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It should be emphasized that the relative energy differences of all isomers for a specific n are
small and all structures may be accessible at room temperature. Consequently, we looked at the

Boltzmann-averaged spectra for all n, as displayed in Figure 9-6.

Figure 9-6. Boltzmann-averaged excitation spectra of Au,s.,Agn(SH)1s nanoclusters at the
LB94/TZP level of theory.
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Individual excitation spectra are shown in Appendix F (Figures F-6 to F-9). The individual
spectra are very split but the Boltzmann averaged curves show similar features to the Au,s(SH)1s
system. Although silver and gold atoms have a singly occupied s orbital, their optical properties
differ due to the strong relativistic effects in gold. Relativistic effects lead to the contraction of
the electron cloud of gold. As a result, the 5d orbitals of the gold atom are very close to the
singly occupied 6s orbital. On the other hand, there is a large gap between the 4d and 5s orbitals
of silver. For highly doped species, the superatom orbitals become more separated from ligand-
based orbitals. The low-energy peak, which corresponds to the intraband HOMO-LUMO
transition, shifts from 1.60 eV to 2 eV as the number of doping silver atoms increases. This is in
accordance with the observed increasing HOMO-LUMO (1P-1D) gap with increasing n. The
peak intensity remains almost constant. This blue shift of the HOMO-LUMO peak (from 1.59 eV
to 1.85 eV) with increasing n was previously observed experimentally by Negishi et al. for

similar Auys..Agn(SR)1s clusters.'®! The intensity also remained quasi-constant.'®" The
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transitions responsible for the 2.5 eV peak originate from ligand orbitals to LUMO for the
undoped system, as discussed previously. As n becomes larger, 1P— 1D and 1P— 2S transitions
take over. These transitions are more intense than the interband transitions. We note that the high
contribution of the superatom orbitals for this peak was previously observed for the fully-doped
core system at the SAOP/TZP level of theory.®® The peak at 3.3 eV shifts to 3.5 eV as the
number of silver atoms increases and its intensity increases as well. This peak corresponds
mainly to interband transitions. This can also be explained by the fact that the ligand orbitals

become lower in energy and more separated from the superatom orbitals.

AuU13Ag12(SH) 18
The system with 12 silver atoms on the core surface has also been studied (Figure 9-7). The
bond length between the center gold atom and the silver atoms is 2.79 A, similar to the distances
obtained for the mono-substituted systems. The distance between silver and the adjacent sulfur is
2.54 A, which is 0.03 A longer than the silver-sulfur distance for the mono-substituted system
la.

Figure 9-7. Geometry of the Au;3Ag:2(SH)1s” nanocluster at the Xa/TZP level of theory.

(12)
* Color coding same as Figure 9-1.

The excitation spectrum of Au13Ag12(SH)1s™ is shown in Figure 9-8. The peak at 1.97 eV is the
HOMO—LUMO (1P—1D) peak, similar to the other spectra. The peak at 2.51 eV corresponds
to HOMO—LUMO+1 (1P—1D) transitions. The peak at 2.61 eV corresponds mainly to 1P—2S
transitions. Similar features were obtained at the SAOP/TZP level of theory for the fully doped
core Agi3AU12(SR)1g” system.®® The HOMO-LUMO peak of the AgisAusa(SR)1s™ System is at
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1.83 eV, the HOMO—LUMO+1 peak at 2.34 eV and the HOMO— LUMO+2 (1P—2S)
transition at 2.53 eV.2* The substitution of the center atom does not significantly affect the
spectrum, which is in accordance with the results obtained above for case 1c.

Figure 9-8. Excitation spectrum of the Aui3Ag12(SH)1s” nanocluster at the LB94/TZP level
of theory.
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Conclusions

The surface of the core is the preferred position for silver doping into Auzs(SH)15™. The
core center position is highly unfavorable. Several isomers of silver-doped Auzs.nAgn(SR)1s”
nanoparticles have been studied with n =1, 2, 4, 8, 10 and 12 doping silver atoms. For n > 2,
only doping of the core surface was considered. In general, arrangements where the silver atoms
are close to each other tend to be less favorable but all isomers should be accessible under
experimental conditions. However, their relative abundance in the experiment may depend on the
details (kinetic factors) of the growth that cannot be addressed in this study. Silver doping on the
surface of the core does not affect the overall shape of the optical absorption spectrum but gives
some additional orbital splitting due to the breaking of the symmetry of the nanoparticle. The
optical gap determined by the position of the HOMO—LUMO peak (1P—1D) shifts to higher
energy with increasing n, which is in qualitative agreement with the experiment of Negishi and
co-workers.'®! The intensity of the peak at 2.5 eV increases as the number of silver doping atoms
increases due to the increasing contribution of superatom 1P— 1D and 1P—2S transitions. The
high energy peak that corresponds to interband transitions shifts to higher energy as the number

of doping silver atoms increases. During nanoparticle growth, any possible arrangement of the
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silver atoms in the nanoparticle may possibly occur, leading to a mixture of isomers. However, if
one can control the number of silver atoms in the nanoparticle, it could be possible to tune

optical properties such as the HOMO-LUMO gap and the shape of the optical absorption spectra.
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Chapter 10 - Conclusions

In summary, | showed that the absorption spectra of silver and gold clusters can be
directly related to the plasmonic behavior of larger nanoparticles using time-dependent density
functional theory. The frontier orbitals of silver and gold clusters are delocalized over the entire
structure and result from a linear combination of the singly occupied s orbital of the atoms. They
look like the familiar hydrogen-like orbitals for spherical clusters and are labeled 1S, 1P, 1D, ...
| showed that the splitting of these orbitals due to the ligand field can be qualitatively reproduced
by a charge-perturbed particle-in-a-sphere model. For nanorods, the frontier orbitals have
cylindrical symmetry and are labeled %, I1, A, ... The strong absorption features of noble metal
clusters can be assigned to a constructive addition of single-particle transitions between these
delocalized orbitals. As the size of the particle increases, the density of states of these orbitals
increases. Therefore, the number of interacting single-particle transitions increases, resulting in
the strong plasmon peak observed in larger nanoparticles.

A simple CI treatment can reproduce the main absorption features (plasmons) of noble
metal particles of various sizes. Cl was previously used by Pariser to explain the absorption
spectrum of linear polycyclic hydrocarbons and | showed that plasmons also occur in these
systems.

The TDDFT absorption spectra of silver and gold nanorods with up to 71 atoms were
compared. Two main plasmon modes occur in these systems: the longitudinal mode which
corresponds to the constructive addition of the dipole moment contributions of —X, II—-II, A—
A, ... single-particle transitions and a transverse mode, which corresponds to the constructive
addition of the dipole moment contributions of ¥— II, II— X, IT — A, ... single-particle
transitions. Gold nanorods have a much broader absorption spectrum due to the numerous
excitations out of the d-band. In addition, transitions out of the d-band orbitals and cylindrical
delocalized orbitals may interact for systems with low aspect ratios since they have similar
energies, making the longitudinal plasmon peak difficult to identify. As the aspect ratio
increases, the energy gap between the cylindrical orbitals involved in the longitudinal mode
decreases. Therefore, transitions within these orbitals become lower in energy than the
excitations out of the d-band and the plasmon peak becomes well-defined.
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| finally analyzed the effect of silver doping on the absorption spectrum of the
Augs(SH)15™ cluster. Doping at the core surface is energetically preferred. An increased silver
content yields a blue-shift of the low energy HOMO-LUMO peak and an increased intensity of
the high energy absorption peaks. With increasing silver content, the d-band excitations become
higher in energy, which results in a larger contribution of intraband excitations to the absorption

spectrum.
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Appendix A - Supporting information for “Theoretical analysis of

the optical excitation spectra of silver and gold nanowires”

Silver nanowires

Figure A-1. Neutral silver nanowires excitation spectra with SAOP/DZ.
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Figure A-2. Positively charged silver nanowires excitation spectra with SAOP/DZ.
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Figure A-3. Negatively charged silver nanowires excitation spectra with SAOP/DZ.
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Figure A-4. Neutral silver nanowires excitation spectra with LB94/DZ.
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Figure A-5. Positively chaged silver nanowires excitation spectra with LB94/DZ.
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Figure A-6. Negatively charged silver nanowires excitation spectra with LB94/DZ.
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Gold nanowires

Figure A-7. Neutral gold nanowires excitation spectra with SAOP/DZ.

Intensity(a.u)

Intensity(a.u)

Intensity(a u)

0.6

04

02

Aug

Energy (eV)

Augg

Energy (eV)

Auyp

186

Intensity(a.u)

Intensity(a.u)

Intensity(a.u)

Ay

4
3
2
| A /J
n bl ‘
1 2 3 4 5 ] 7 ]
Energy (eV)
Augg
| AAJ.
] 3 4 5 6 7 B
Energy (eV)
Auygg
d 0
5 -
4
3
2
'L
0 | | ul 2 ) u|L ]
1] 1 2 3 4 5 ] 7 5
Energy (V)



Intensity(a.u)

Intensity(a.u)

-
=

B o= i e s i S - ¥ 8

Auyy

Energy (V)

Augg

Ml

Energy (eV)

Intensity(a.u)

Intensity(a.u)

187

AU15
| .
0 1 2 3 4 5
Energy (eV)
Augg

1%

16
14
12
10

]

1]

4

2

* LI ]

2 3 4
Energy (eV)




Figure A-8. Positively charged gold nanowires excitation spectra with SAOP/DZ.
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Figure A-9. Negatively charged gold nanowires excitation spectra with SAOP/DZ.
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Figure A-10. Neutral gold nanowires excitation spectra with LB94/DZ.

Aup Aupy
f T T T T T 10 T T T T T T
g. L
E 5 F 1 :,:_3\ ek
g ol | § T}
£ g oo
£ 3| 1 & 7
— E 4 b
-E 2} - R 3k
5 B
-oa E 2 L
= L ]\ i L A\A
N i L -
0 2 4 6 3 10 L 2 # 6
Enerzy (V) Enetrgy (V)

191



Aug Aupg

Intensity (arbitmry units)

! | \||||I

Ll 1
||||Ir.I J
|I

Il
Il
lll..'lu l‘-m’l*JII _/rul. I|| ] || Iul '\m l"'T\...

Intensity (arbitrary units)
[
wn [N

AL

2 4 § 8 10 o
Energy (V)

i { 4 3 4 5 fi
Energy (eVW

Ay Augo

Intensty(an)

Intensity (arbitrary units)

Intensity (arhitrary units)

I‘II |
|

1\ J |I'J U}

|

| I U

i 2 4
Energy( e'\f)

Augy

A

1 2 3 4
Eneray (W)

192

Intensity (arbitrary units)

T

|
|'.|||||
(L

| ||'u | |'|| |
| I |
|I || I| | |
VLY M\J/I‘r\ma. }

16

14t
12
1ot

2 3
Enarﬁv (e

Augg

I

(=} b = (=3 ca
T T T T

2 3 4 5
Energy (V)




1% —— 20 . . : . . . :

1%+ g 1% + J
e 1% 16¢ ]
: 1zt 18 1
3 &
£ ot 18 127 1
E s 15 I
B = BT 1
7 & :
g g 6 _
E 4 k= 4k

z .l ‘

o o | ll .JJIM L, ,l

i] 1 2 3 4 5 & 7

Energy (V) Eneray (V)

Figure A-11. Positively charged gold nanowires excitation spectra with LB94/DZ.
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Figure A-12. Negatively charged gold nanowires excitation spectra with LB94/DZ.
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Appendix B - Supporting information for “Diameter-Dependence of

the Excitation spectra of Silver and Gold Nanorods”

Figure B-1. Excitation spectra of star-shaped silver nanorods at the LB94/DZ level of

theory.
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Figure B-2. Excitation spectra of large pentagon-shaped silver nanorods at the LB94/DZ
level of theory.
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Figure B-3. Excitation spectra of small pentagon-shaped gold nanorods at the LB94/DZ

level of theory.
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Figure B-4. Excitation spectra of star-shaped nanorods at the LB94/DZ level of theory.
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Figure B-5. Excitation spectra of large pentagon-shaped gold nanorods at the LB94/DZ

level of theory.
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Figure B-6. Longitudinal peak wavelengths of positively charged and negatively charged A)
star-shaped and B) large pentagon-shaped silver nanorods.
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Table B.1. Longitudinal and transverse peak energies of negatively charged star-shaped

silver nanorods.

Aspect o HOMO-
_ Longitudinal | Transverse peak | Transverse peak 2
System ratio LUMO gap
peak (nm) 1 (nm) (nm)

(L/2R) (eV)
Agig” 0.88 263.01 278.15 276.94 0.76
Agao™ 1.17 287.51 285.32 267.39 0.58
Agso” 1.53 303.51 284.91 254.76 0.21
Ags;® | 1.78 322.65 290.47 260.10 0.29
Age;” 2.12 349.26 287.15 268.55 0.14
Agrst | 2.46 365.57 287.26 261.20 0.06
Aggs” 2.80 392.76 286.95 257.94 0.19

Table B.2. Longitudinal and transverse peak energies of negatively charged large

pentagon-shaped silver nanorods.

Aspect HOMO-
_ o Transverse peak 2
System | ratio | Longitudinal peak | Transverse peak 1 (m) LUMO gap
nm

(L/2R) (nm) (nm) (eVv)
Agps” 0.56 226.41 314.68 258.30 0.18
Agso” 0.94 267.97 283.91 267.39 0.02
Agss® | 1.15 286.54 288.34 270.71 0.04
Agr” 1.48 300.64 303.88 258.30 0.24
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Table B.3. Energy, oscillator strength, and transitions involved in the main longitudinal

peak of the small pentagon-shaped Aug;™ nanorod.

) z-component of
Energy | Intensity

Transitions transition dipole | Weight
(eV) (a.u)
moment (a.u.)
I1g (HOMO-4) — I1g (LUMO+3) -8.0604 0.2901
¥11 (HOMO) — X1, (LUMO+7) -3.0604 0.1007
2.0714 | 8.5160

%11 (HOMO) — 2 &4 (LUMO+9) -2.3431 0.0934

Az (HOMO-1) — A4 (LUMO) -1.7648 0.0536

Figure B-7. Kohn-Sham orbitals for the transitions involved in the high intensity

longitudinal peak of the small pentagon-shaped nanorods Aug;™*. Contour value=0.01.
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Appendix C - Supporting information for “Origin and TDDFT
Benchmarking of the Plasmon Resonance in Acenes”
Figure C-1. Natural transition orbitals involved in the a and g-peak at the @PBEh/cc-

pVTZ level of theory.

B-peak
Hole 1 Electron 1 Hole 2 Electron 2

358 288 B
38 ONe o530

amplitude =0.6094 (46.3 %) amplitude=0.6051 (45.7 %)

32

a-peak

Hole 1 Electron 1 Hole 2 Electron 2

B8 88 338
R R

amplltude 0.7470(49.3 %) amplitude = 0.7449 (49.0 %)

8§

213



Appendix D - Supporting information for “Plasmon Resonance

Analysis with Configuration Interaction”

Table D.1. Energies and oscillator strengths for varying values of a; (case 2). Case 1 is

shown in red.

Aoy (%) o1 (V) | E1(eV) | S1(au) | Ex (eV) | Sz (a.u) | E3 (eV) S3 (a.u)
-50 2.5 4.5 0 2.3417 | 0.4448 | 5.6583 | 2.5552
-40 3.0 4.5 0 2.8139 | 0.3684 | 5.6861 | 2.6315
-30 3.5 4.5 0 3.2753 | 0.2752 | 5.7247 | 2.7248
-20 4.0 4.5 0 3.7192 | 0.1661 | 5.7808 | 2.8338
-10 4.5 4.5 0 4,134 | 0.0566 | 5.866 2.9433
-5 4.75 4.5 0 4.3246 | 0.0164 | 5.9254 | 2.9836
-1 4,95 4.5 0 4.4663 | 0.0007 | 5.9837 | 2.9991

0 5.0 4.5 0 4.5 0.0000 6 3.0000
1 5.05 4.5 0 4,533 | 0.0008 | 6.017 2.9991
5 5.25 4.5 0 4.6569 | 0.0203 | 6.0931 | 2.9798
10 5.5 4.5 0 4.7929 | 0.0858 | 6.2071 | 2.9142
20 6.0 4.5 0 5 0.1044 6.5 2.8958
30 6.5 4.5 0 5.134 | 0.1245 | 6.866 2.8751
40 7.0 4.5 0 5.2192 | 0.1945 | 7.2808 | 2.8056
50 7.5 4.5 0 5.2753 | 0.3334 | 7.7247 | 2.6664
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Analytical derivation of the behavior of the energies E; and E3 with increasing value of a;
(case 2).

The second and third eigenvalue expressions can be divided into two e-dependent terms. The

firsttermisT, =« +%(g + f3), which increases linearly with . This term is the same for both E;

and Es. The second termis T, = i%\/Q,BZ —2ps+¢&” . The plus sign is for E3 and the negative

sign is for E,. The expression under the square root is quadratic. We note that the value

\/9,6’2 — 2B +&” is always positive regardless of the value of ¢ since g is real. For the
eigenvalue E,, T, increases with increasing ¢ until it reaches its maximum value ¢ = =0.5.

For &>, T, decreases. As a result, E; is expected to become larger until & reaches the value of 5.
Due to the opposite sign of T,, the opposite behavior is expected for Es. E3 therefore becomes
larger with increasing ¢ when & > f3.

The values of Ty and T, for the E, and E3 peaks for the CI matrix given by eq. 12 are given in
Tables S2 and S3. When o; increases from 2.5 to 5.5 eV, both T; and T, become larger and
therefore E, does as well. When a; becomes larger than 5.5 eV (¢ > j8), T, starts to decrease and
E, starts to stabilize. The peak at E3 (the plasmon peak) shows the opposite behavior: its energy
slowly increases when a; shifts from 2.5to 5.5 eV (e < ) and quickly rises when a; becomes

larger than 5.5 eV, as explained by the opposite sign of T, in the analytical expression.
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Table D.2. Values of T, and T, for the E, peak (case 2).

a1 (eV) e (eV) Ex (eV) | T1 (eV) | T2 (eV)
2.5 -2.5 2.3417 | 4.0000 | -1.6583
3 -2 2.8139 | 4.2500 | -1.4361
3.5 -1.5 3.2753 | 4.5000 | -1.2247
4 -1 3.7192 | 4.7500 | -1.0308
4.5 -0.5 4.1340 | 5.0000 | -0.8660
4.75 -0.25 4.3246 | 5.1250 | -0.8004
4.95 -0.05 4.4663 | 5.2250 | -0.7587
5 0 4.5000 | 5.2500 | -0.7500
5.05 0.05 45330 | 5.2750 | -0.7420
5.25 0.25 4.6569 | 5.3750 | -0.7181
5.5 0.5 4.7929 | 5.5000 | -0.7071
6 1 5.0000 | 5.7500 | -0.7500
6.5 1.5 5.1340 | 6.0000 | -0.8660
7 2 5.2192 | 6.2500 | -1.0308
7.5 2.5 5.2753 | 6.5000 | -1.2247

Table D.3. Values of T; and T, for the E; peak (case 2).

a1 (eV) ¢ (eV) Es(eV) | T1 (eV) | T, (V)
2.5 -2.5 5.6583 | 4.0000 | 1.6583
3 -2 5.6861 | 4.2500 | 1.4361
3.5 -1.5 5.7247 | 4.5000 | 1.2247
4 -1 5.7808 | 4.7500 | 1.0308
4.5 -0.5 5.8660 | 5.0000 | 0.8660
4.75 -0.25 5.9254 | 5.1250 | 0.8004
4.95 -0.05 5.9837 | 5.2250 | 0.7587
5 0 6.0000 | 5.2500 | 0.7500
5.05 0.05 6.0170 | 5.2750 | 0.7420
5.25 0.25 6.0931 | 5.3750 | 0.7181
5.5 0.5 6.2071 | 5.5000 | 0.7071
6 1 6.5000 | 5.7500 | 0.7500
6.5 1.5 6.8660 | 6.0000 | 0.8660
7 2 7.2808 | 6.2500 | 1.0308
7.5 2.5 7.7247 | 6.5000 | 1.2247
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Table D.4. Eigenvectors of the CI matrix for case 2 where a;=2.5 eV.

E;=4.5eV E,=2.3417eV E3=5.6583 eV
AL 0 0.9758 0.2185
A, 0.7071 -0.1545 0.6900
As -0.7071 -0.1545 0.6900
IAr+Ag+Ag 0 0.4448 2.5552

Table D.5. Eigenvectors of the CI matrix for case 2 where a;=3.0 eV.

Ei=45eV E,=2.8139 eV E;=5.6861 eV
Ay 0 0.9671 0.2546
A, 0.7071 -0.1800 0.6838
As -0.7071 -0.1800 0.6838
IAr+As+As 0 0.3684 2.6315

Table D.6. Eigenvectors of the CI matrix for case 2 where a;=3.5 eV.

E;=4.5eV E,=3.2753 eV E3;=5.7247 eV
Ay 0 0.9530 0.3029
A, 0.7071 -0.2142 0.6739
As -0.7071 -0.2142 0.6739
IAr+As+AS 0 0.2752 2.7248

Table D.7. Eigenvectors of the CI matrix for case 2 where a;=4.0 eV.

Ei=4.5eV E,=3.7192 eV E;=5.7808 eV
A 0 0.9294 0.3690
A, 0.7071 -0.2610 0.6572
As -0.7071 -0.2610 0.6572
ArtAotAf 0 0.1661 2.8338
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Table D.8. Eigenvectors of the CI matrix for case 2 where a;=4.5 eV.

E;=45eV E,=4.1340 eV E3=5.8660 eV
AL 0 0.8881 0.4597
A, 0.7071 -0.3251 0.6280
As -0.7071 -0.3251 0.6280
IAr+Ag+Ag 0 0.0.0566 2.9432

Table D.9. Eigenvectors of the CI matrix for case 2 where a;=4.75 eV.

Ei=45eV Eo=4.3246 eV E3;=5.9254 eV
Ay 0 0.8569 0.5155
A, 0.7071 -0.3645 0.6059
As -0.7071 -0.3645 0.6059
IAr+As+As 0 0.0164 2.9836

Table D.10. Eigenvectors of the Cl matrix for case 2 where a;=4.95 eV.

E;=45eV E,=4.4663 eV E3;=5.9837 eV
Ay 0 0.8254 0.5646
A, 0.7071 -0.3992 0.5836
As -0.7071 -0.3992 0.5836
IAr+As+AS 0 0.0007 2.9991

Table D.11. Eigenvectors of the Cl matrix for case 2 where a;=5.05 eV.

Ei=4.5eV E,=4.533 eV E;=6.017 eV
A 0 0.8072 0.5902
A, 0.7071 -0.4174 0.5708
As -0.7071 -0.4174 0.5708
ArtAotAf 0 0.0008 2.9991
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Table D.12. Eigenvectors of the CI matrix for case 2 where a;=5.25 eV.

E;=45eV Eo= 4.6569 eV E3=6.0931 eV
AL 0 0.7662 0.6426
A, 0.7071 -0.4544 0.5418
As -0.7071 -0.4544 0.5418
IAr+Ag+Ag 0 0.0203 2.9798

Table D.13. Eigenvectors of the CI matrix for case 2 where a;=5.5 eV.

Ei=45eV E,=4.7929 eV E;=6.2071eV
Ay 0 0.7071 0.7071
A, 0.7071 -0.5 0.5
As -0.7071 -0.5 0.5
A +AL AL 0 0.0858 2.9142

Table D.14. Eigenvectors of the CI matrix for case 2 where a;=6.0 eV.

E;=4.5eV E,=5.0eV Es;=6.5¢eV
Ay 0 0.5774 0.8165
A, 0.7071 -0.5774 0.4082
As -0.7071 -0.5774 0.4082
IAr+As+AS 0 0.3334 2.6663

Table D.15. Eigenvectors of the CI matrix for case 2 where a;=6.5 eV.

Ei=4.5eV E,=5.134 eV E;= 6.866 eV
A 0 0.4597 -0.8881
A, 0.7071 -0.628 -0.3251
As -0.7071 -0.628 -0.3251
ArtAotAf 0 0.6341 2.3664
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Table D.16. Eigenvectors of the CI matrix for case 2 where a;=7 eV.

E;=45eV E,=5.2192 eV Es=7.2808 eV
Ay 0 0.369 -0.9294
A, 0.7071 -0.6572 -0.261
As -0.7071 -0.6572 -0.261
IAr+As+As 0 0.8938 2.1066

Table D.17. Eigenvectors of the CI matrix for case 2 where a;=7.5 eV.

Ei=4.5eV E,=5.2753 eV Es=7.7247 eV
Ay 0 0.3029 -0.953
A, 0.7071 -0.6739 -0.2142
As -0.7071 -0.6739 -0.2142
IAr+As+AS 0 1.0918 1.9083

Table D.18. Energies and oscillator strengths for different values of a3 (case 3).

Das®) | as(€V) | Ex (V) | Si(au) | Ex(eV)| Sp(au) | Es(eV) (;E)
50 | 25 | 2359 | 04952 | 48207 | 03329 | 6.3202 | 2.1718
40 3 | 2836 | 04273 | 48272 | 03408 | 6.3368 | 2.2317
30 | 35 | 33038 | 03407 | 48373 | 03520 | 6.3589 | 2.3074
20 4 | 37554 | 02200 | 48554 | 03681 | 6.3892 | 2.4028
10 | 45 | 41723 | 00018 | 48946 | 03846 | 6.4331 | 2.5236
5 | 475 | 43532 | 00284 | 49339 | 03785 | 6.4628 | 2.5031
1 | 495 | 44741 | 00012 | 49841 | 03469 | 6.4919 | 2.6517
0 50 | 45 0.0000 5.0 0.3334 65 |2.6664
1 | 505 | 45241 | 00012 | 50174 | 03173 | 6.5085 | 2.6814
5 | 525 | 46015 | 00279 | 51014 | 02331 | 65471 | 2.7390
10 | 55 | 46624 | 00832 |52304 | 01160 | 6.6072 | 2.8009
20 6 | 47192 | 01661 55 0.0000 | 6.7808 | 2.8338
30 | 65 | 47420 | 02070 | 5714 | 01151 | 7.0431 | 26778
50 | 75 | 47620 | 02290 | 59437 | 03681 | 7.7934 | 2.4028
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Table D.19. Eigenvectors of the CI matrix for case 3 where a;=2.5 eV.

E;=2.3590eV | E;=4.8207 eV Es=6.3202 eV
A -0.1120 -0.4248 -0.8983
A, -0.1643 0.8995 -0.4048
As 0.9800 0.1023 -0.1706
IAr+As+As 0.4952 0. 3329 2.1718

Table D.20. Eigenvectors of the CI matrix for case 3 where a3=3.0 eV.

E;=2.8360eV | E;=4.8272¢eV E;=6.3368 eV
Ay -0.1227 -0.4338 -0.8926
A, -0.1964 0.8922 -0.4067
As 0.9728 0.1254 -0.1947
IAr+AZ+HAG 0.4273 0.3408 2.2317

Table D.21. Eigenvectors of the CI matrix for case 3 where a;=3.5eV.

E;=3.3038eV | E;=4.8373eV E;=6.3589 eV
A -0.1329 -0.4477 -0.8843
A, -0.2440 0.8795 -0.4086
As 0.9606 0.1615 -0.2261
IAg+A+ASP 0.3407 0.3520 2.3074

Table D.22. Eigenvectors of the CI matrix for case 3 where a;=4.0 eV.

E;=3.7554 eV | E;=4.8554 eV E;=6.3892 eV
A -0.1371 -0.4706 -0.8716
A, -0.3213 0.8535 -0.4103
As 0.9370 0.2238 -0.2683
Ag+A+ASP 0.2290 0.3681 2.4028
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Table D.23. Eigenvectors of the CI matrix for case 3 where a;=4.5 eV.

E;i=4.1723eV | E;=4.8946 eV Es= 6.4331eV
A -0.1141 -0.5122 -0.8512
A, -0.4623 0.7858 -0.4109
As 0.8794 0.3466 -0.3265
IAr+A+ASP 0.0918 0.3846 2.5237

Table D.24. Eigenvectors of the CI matrix for case 3 where a3=4.75 eV.

E;=4.3532eV | E;=4.9339eV Es= 6.4628eV
Ay -0.0734 -0.5434 -0.8363
A, -0.5738 0.7088 -0.4102
As 0.8157 0.4497 -0.3639
IAL+AZ+HAS 0.0284 0.3785 2.5931

Table D.25. Eigenvectors of the Cl matrix for case 3 where a3=4.95 eV.

Ei=4.4741eV | E;=4.9841eV E;=6.4919 eV
A 0.0172 0.5708 -0.8209
A, 0.6803 -0.6084 -0.4088
As -0.7328 -0.5514 -0.3988
IAg+A+ASP 0.0012 0.3469 2.6517

Table D.26. Eigenvectors of the CI matrix for case 3 where a3=5.05 eV.

E;1=4.5241eV | E;=5.0174 eV E;= 6.5085 eV
Ay -0.0181 0.5836 0.8118
A, 0.7332 -0.5443 0.4076
As -0.6798 -0.6026 0.4180
Ag+A+ASP 0.0012 0.3173 2.6814
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Table D.27. Eigenvectors of the CI matrix for case 3 where a3=5.25 eV.

E;=4.6015eV | E;=5.1014 eV Ez=6.5471eV
AL -0.0929 -0.6056 0.7903
A, 0.8219 0.4014 0.4042
As -0.5621 0.6870 0.4605
IAr+A+ASP 0.0279 0.2331 2.7390

Table D.28. Eigenvectors of the CI matrix for case 3 where a3=5.5eV.

E;=4.6624 eV | E;=5.2304eV | E3=6.6072 eV
A -0.1721 -0.6318 0.7558
A, 0.8877 0.2332 0.3971
As -0.4271 0.7392 0.5207
IAr+As+As 0.0832 0.1160 2.8009

Table D.29. Eigenvectors of the CI matrix for case 3 where a3=6.0 eV.

E;=4.7192 eV | E;=5.50 eV E;=6.7808 eV
Ay 0.2610 0.7071 0.6572
A, -0.9294 0 0.3690
As 0.2610 -0.7071 0.6572
IAr+As+AS 0.1917 0 2.8338

Table D.30. Eigenvectors of the CI matrix for case 3 where a3=6.5 eV.

E1=4.7429eV | E;)=5.7140eV | Es=7.0431 eV
A 0.3005 0.7928 -0.5302
A, -0.9365 0.1398 0.3217
As 0.1810 -0.5932 0.7844
IAr+A+ASP 0.2070 0.1151 2.6778
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Table D.31. Eigenvectors of the CI matrix for case 3 where a3=7 eV.

Ei=4.7554 eV | E;=5.8554 eV | Es=7.3892 eV
Ay 0.3213 0.8535 0.4103
A, -0.9370 0.2238 0.2683
As -0.1371 -0.4706 0.8716
IAg+As+Ag[? 0.2290 0.3681 2.4028

Table D.32. Eigenvectors of the CI matrix for case 3 where a;=7.5eV.

Ei=4.7629eV | E;=5.9437eV | Es=7.7934 eV
Ay 0.3339 0.8871 0.3188
A, -0.9362 0.2726 0.2220
As 0.1100 -0.3726 0.9215
IAs+Ag+AS 0.2423 0.6195 2.1380

Table D.33. Energies and oscillator strengths for varying values of £, (case 4).

AB12(%) | f12 (€V) | E1(eV) | Si(a.u) | Ex(eV) | Sy (a.u) Es(eV) | Ss(a.u)
-50 0.25 4.75 0| 4.4069 0.0203 | 5.8431| 2.9798
-40 0.3 4.7 0| 4.4272 0.0128 | 5.8728 | 2.9870
-30 0.35 4.65 0| 4.4466 0.0071| 59034 | 2.9929
-20 0.4 4.6 0| 4.4652 0.0031| 59348 | 29971
-10 0.45 4,55 0 4.483 0.0008 5967 | 2.9991

-5 0.475 4,525 0| 4.4916 0.0002 | 59834 | 2.9998
-1 0.495 4,505 0| 4.4983 7.29%10° | 509967 | 2.9998

0 0.5 4.5 0 4.5 0.0000 6| 3.0005

1 0.505 4.495 0| 45017 7.84*10° 6.0033 | 3.0002

5 0.525 4.475 0| 4.5082 0.0002 | 6.0168 | 2.9998
10 0.55 4.45 0| 45163 0.0007 | 6.0337 | 2.9991
20 0.6 4.4 0| 4.5319 0.0028 | 6.0681 | 2.9971
30 0.65 4.35 0| 4.5468 0.0062 | 6.1032 | 2.9936
40 0.7 4.3 0 4,561 0.0107 6.139 | 2.9894
50 0.75 4.25 0| 4.5746 0.0164 | 6.1754 | 2.9836
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Table D.34. Eigenvectors of the CI matrix for case 4 where $1,=0.25 eV.

Ei=4.75eV E,=4.4069eV | Es=5.8431eV
AL 0.7071 0.4544 0.5418
A, -0.7071 0.4544 0.5418
As 0 -0.7662 0.6426
IAr+Ag+Ag 0 0.0203 2.9798

Table D.35. Eigenvectors of the CI matrix for case 4 where f1,=0.3 eV.

E;=4.70eV E,=4.4272eV | Es=5.8728 eV
Ay 0.7071 0.4451 0.5494
A, -0.7071 0.4451 0.5494
As 0 -0.7770 0.6295
IAr+As+As 0 0.0128 2.9870

Table D.36. Eigenvectors of the Cl matrix for case 4 where $,,=0.35 eV.

Ei=4.65eV E,=4.4466 eV | E3=5.9034 eV
Ay 0.7071 0.4358 0.5568
A, -0.7071 0.4358 0.5568
As 0 -0.7875 0.6163
IAr+As+AS 0 0.0071 2.9929

Table D.37. Eigenvectors of the Cl matrix for case 4 where $1,=0.40 eV.

E;=4.60 eV E,=4.4652eV | E3=5.9348 eV
A 0.7071 0.4266 0.5640
A, -0.7071 0.4266 0.5640
As 0 -0.7975 0.6033
ArtAotAf 0 0.0031 2.9971
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Table D.38. Eigenvectors of the CI matrix for case 4 where $1,=0.45 eV.

E;=4.55eV E,=4.483 eV E3;=5.967 eV
A 0.7071 0.4174 0.5708
A, -0.7071 0.4174 0.5708
As 0 -0.8072 0.5902
IAr+Ag+Ag 0 0.0008 2.9991

Table D.39. Eigenvectors of the CI matrix for case 4 where $,,=0.475 eV.

E;=45250eV | E;=4.4916eV | E3=5.9834 eV
Ay 0.7071 0.4128 0.5741
A, -0.7071 0.4128 0.5741
As 0 -0.8119 0.5838
IAr+As+As 0 0.0002 2.9998

Table D.40. Eigenvectors of the Cl matrix for case 4 where f,,=0.495 eV.

Ei=4.5050 eV | E;=4.4983eV | Es=5.9967 eV

N 0.7071 0.4092 0.5767
A -0.7071 0.4092 0.5767
Aq 0 -0.8156 0.5786
A HA A 0 7.29*10° 2.9998

Table D.41. Eigenvectors of the CI matrix for case 4 where $,,=0.505 eV.

Ei=4.495eV | E,=4.5017eV | Es= 6.0033 eV
N 0.7071 0.4073 0.578
A -0.7071 0.4073 0.578
Ay 0 -0.8174 0.5761
AHA+A 0 7.84*10° 3.000
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Table D.42. Eigenvectors of the CI matrix for case 4 where $,,=0.525 eV.

E;=4.475eV | E;=4.5082eV | E3=6.0168 eV
A 0.7071 0.4037 0.5805
A, -0.7071 0.4037 0.5805
As 0 -0.821 0.571
IAr+Ag+Ag 0 0.0002 2.9998

Table D.43. Eigenvectors of the CI matrix for case 4 where f#1,=0.55 eV.

Ei=4.45¢eV E,=4.5163eV | Es=6.0337 eV
A 0.7071 0.3992 0.5836
A, -0.7071 0.3992 0.5836
As 0 -0.8254 0.5646
IAr+As+As 0 0.0007 2.9991

Table D.44. Eigenvectors of the Cl matrix for case 4 where $,,=0.60 eV.

E;=4.40eV E,=4.5319eV | Es=6.0681 eV
Ay 0.7071 0.3903 0.5896
A, -0.7071 0.3903 0.5896
As 0 -0.8338 0.5520
IAr+As+AS 0 0.0028 2.9971

Table D.45. Eigenvectors of the Cl matrix for case 4 where $,,=0.65 eV.

E;=4.35eV E,=4.5468 eV | E3=6.1032 eV
A 0.7071 0.3816 0.5953
A, -0.7071 0.3816 0.5953
As 0 -0.8419 0.5396
ArtAotAf 0 0.0062 2.9939
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Table D.46. Eigenvectors of the CI matrix for case 4 where $1,=0.70 eV.

E;=4.30eV E,=4.5610eV | Es=6.1390 eV
A 0.7071 0.3730 0.6008
A, -0.7071 0.3730 0.6008
As 0 -0.8496 0.5274
IAr+As+As 0 0.0108 2.9891

Table D.47. Eigenvectors of the Cl matrix for case 4 where $,,=0.75 eV.

Ei=4.25eV E,=4.5746eV | E3=6.1754 eV
Ay 0.7071 0.3645 0.6059
A, -0.7071 0.3645 0.6059
As 0 -0.8569 0.5155
IAr+As+AS 0 0.0164 2.9836

Table D.48. Energies and oscillator strengths for varying values of f,3 (case 5).

Aﬁzg(%) [))23 (eV) E; (eV) S1 (a.u) E, (eV) Sy (a.u) E; (EV) S3 (a.u)
-50 0.25| 4.3303 0.0220 | 4.7551 0.0077 | 5.9146 | 2.9705
-40 0.3 | 4.3493 0.0144 | 4.7069 0.0067 | 5.9438 | 2.9787
-30 0.35| 4.3669 0.0084 | 4.6593 0.0059 | 5.9737 | 2.9856
-20 04| 4.3825 0.0039 | 4.6131 0.0051 | 6.0045| 2.9912
-10 0.45| 4.3946 0.0010 | 4.5695 0.0042 | 6.0359 | 2.9950

-5 0.475] 4.3985 0.0003 | 4.5496 0.0036 | 6.0519 | 2.9960
-1 0.495 | 4.3999 0.00001 | 4.5352 0.0030 | 6.0649 | 2.9971

0 0.5 4.4 0.0000 | 4.5319 0.0028 | 6.0681 | 2.9971

1 0.505 | 4.3999 0.00001 | 4.5287 0.0027 | 6.0714 | 2.9974

5 0.525 | 4.3981 0.0002 | 45174 0.0019 | 6.0845 | 2.9977
10 0.55| 4.3918 0.0009 | 4.5072 0.0010 6.101 | 2.9981
20 0.6 | 4.3654 0.0021 4.5 0.0000 | 6.1346 | 2.9977
30 0.65| 4.3268 0.0027 | 4.5043 0.0009 | 6.1688 | 2.9964
40 0.7 | 4.2828 0.0028 | 4.5135 0.0035 | 6.2037 | 2.9939
50 0.75| 4.2363 0.0027 | 4.5245 0.0071| 6.2392 | 2.9901
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Table D.49. Eigenvectors of the CI matrix for case 5 where f23=0.25 eV.

Ei=4.3303 eV | E;=4.7551eV | E3=5.9146 eV
Al 0.7573 0.0717 0.6491
A, -0.5431 0.6211 0.5650
As -0.3627 -0.7804 0.5093
Ar+A+AGP 0.0220 0.0077 2.9705

Table D.50. Eigenvectors of the CI matrix for case 5 where $,3=0.30 eV.

Ei=4.3493 eV | E;=4.7069 eV | E3=5.9438 eV
Ay 0.7647 0.0960 0.6372
A, -0.5515 0.6091 0.5700
As -0.3334 -0.7872 0.5188
IAs+Ag+AS 0.0144 0.0067 2.9787

Table D.51. Eigenvectors of the Cl matrix for case 5 where £23=0.35 eV.

E;=4.3669 eV | E;=4.6593 eV | E3=5.9737 eV
Ay 0.7696 0.1296 0.6253
A, -0.5665 0.5903 0.5750
As -0.2946 -0.7967 0.5277
IAr+AL+AS 0.0084 0.0059 2.9856

Table D.52. Eigenvectors of the Cl matrix for case 5 where $23=0.40 eV.

E1=4.3825eV | E;=4.6131eV | Es=6.0045 eV
A 0.7692 0.1792 0.6133
A, -0.5926 0.5591 0.5799
As -0.2390 -0.8095 0.5362
IAr+A+ASP 0.0039 0.0051 2.9912
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Table D.53. Eigenvectors of the CI matrix for case 5 where f$,3=0.45 eV.

E;=4.3946 eV | E;=4.5695eV | E3=6.0359 eV
AL 0.7559 0.2598 0.6014
A, -0.6371 0.5021 0.5848
As -0.1507 -0.8252 0.5443
IAr+A+ASP 0.0010 0.0042 2.9950

Table D.54. Eigenvectors of the CI matrix for case 5 where $23=0.475 eV.

E;=4.3985¢eV | E;=4.5496eV | E3=6.0519 eV
A 0.7383 0.3166 0.5955
A, -0.6690 0.4556 0.5872
As -0.0854 -0.8320 0.5482
Ag+A+AS 0.0003 0.0036 2.9960

Table D.55. Eigenvectors of the Cl matrix for case 5 where f3=0.495 eV.

E;=4.3999eV | E;=4.5352eV | Es=6.0649 eV
Ay 0.7147 0.3743 0.5908
A, -0.6991 0.4051 0.5891
As -0.0188 -0.8341 0.5513
IAr+AL+AS 0.00001 0.0030 2.9971

Table D.56. Eigenvectors of the Cl matrix for case 5 where f23=0.505 eV.

E1=4.3999 eV | E;=4.5287 eV | Es=6.0714 eV
A 0.6987 0.4070 0.5884
A, -0.7152 0.3746 0.5901
As -0.0197 -0.8331 0.5528
IAr+A+ASP 0.00001 0.0027 2.9974
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Table D.57. Eigenvectors of the CI matrix for case 5 where $23=0.525 eV.

E;=4.3981eV | E;=4.5174eV | E3=6.0845 eV
AL 0.6562 0.4781 0.5837
A, -0.7470 0.3026 0.5920
As 0.1064 -0.8245 0.5557
IAr+A+ASP 0.0002 0.0019 2.9977

Table D.58. Eigenvectors of the CI matrix for case 5 where f£,3=0.55 eV.

E;=4.3918 eV | E;=4.5072eV | E3=6.1010 eV
Ay 0.5846 0.5695 0.5779
A, -0.7797 0.1973 0.5943
As 0.2244 -0.7980 0.5593
IAr+As+As 0.009 0.0010 2.9981

Table D.59. Eigenvectors of the Cl matrix for case 5 where f$23=0.60 eV.

E;=4.3654 eV | E;=4.5000eV | E3=6.1346 eV
Ay -0.4235 -0.7071 0.5663
A, 0.8008 0 0.5989
As -0.4235 0.7071 0.5663
IAr+As+AS 0.0021 0 2.9977

Table D.60. Eigenvectors of the Cl matrix for case 5 where £23=0.65 eV.

E;=4.3268 eV | E;=4.5043 eV | E3=6.1688 eV
A -0.3061 -0.7736 0.5548
A, 0.7883 0.1207 0.6034
As -0.5338 0.6220 0.5729
IAr+A+ASP 0.0027 0.0009 2.9964
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Table D.61. Eigenvectors of the CI matrix for case 5 where $,3=0.70 eV.

E;=4.2828 eV | E;=4.5135eV | E3=6.2037 eV
A -0.2347 0.8060 0.5435
A, 0.7724 -0.1849 0.6077
As -0.5902 -0.5624 0.5791
IAr+A+ASP 0.0028 0.0035 2.9939

Table D.62. Eigenvectors of the CI matrix for case 5 where $,3=0.75 eV.

E;=4.2363 eV | E;=4.5245eV | E3=6.2392 eV
Ay -0.1898 0.8250 0.5323
A, 0.7598 -0.2200 0.6118
As -0.6219 -0.5205 0.5851
ArtAs AL 0.0027 0.0071 2.9901

Table D.63. Energies and oscillator strengths for varying values of £ (case 6).

p (eV) Ei (eV) S; (a.u) E; (eV) Sz (a.u) Es (eV) Sz (a.u)
0 5.0000 1.0000 5.1000 1.0000 5.2000 1.0000
0.001 5.0000 0.9704 5.1000 0.9994 5.2000 1.0300
0.005 4.9996 0.8578 5.1000 0.9853 5.2004 1.1569
0.01 4.9986 0.7331 5.0998 0.9426 5.2016 1.3241
0.05 4.9755 0.2291 5.0855 0.3681 5.2389 2.4031
0.1 4.9325 0.0832 5.0461 0.1160 5.3214 2.8009
0.2 4.8370 0.0245 4.9520 0.0295 5.5110 2.9460
0.3 4.7387 0.0114 4.8539 0.0130 5.7074 2.9756
0.4 4.6396 0.0066 4.7549 0.0072 5.9055 2.9863
0.5 4.5401 0.0043 4.6555 0.0046 6.1044 2.9912
1 4.0412 0.0011 4.1566 0.0011 7.1022 2.9977

2 3.0417 0.0003 3.1572 0.0003 9.1011 2.9995
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Table D.64. Eigenvectors of the CI matrix for case 6 where #=0.

E;=5.0000 eV | E;=5.1000eV | E5=5.2000 eV
A 1 0 0
A, 0 1 0
As 0 0 1
ArtAs A 1 1 1

Table D.65. Eigenvectors of the CI matrix for case 6 where #=0.001 eV.

E;=5.0000 eV | E;=5.1000eV | Es=5.2000 eV
A 0.9999 0.0099 0.005
A, -0.0099 0.9999 0.01
As -0.0049 -0.0101 0.9999
ArtAs AL 0.9704 0.9994 1.0300

Table D.66. Eigenvectors of the Cl matrix for case 6 where =0.005 eV.

Ei=4.9996 eV | E;=5.1000 eV | Es=5.2004 eV
Ay 0.9985 0.0473 0.0262
A, -0.0486 0.9975 0.051
As -0.0237 -0.0522 0.9984
IAr+AL+AS 0.8579 0.9853 1.1569

Table D.67. Eigenvectors of the Cl matrix for case 6 where =0.01 eV.

E;=4.9986 eV | E;=5.0998 eV | E5s=5.2016 eV
A 0.9946 0.0884 0.0544
A, -0.0937 0.9902 0.1031
As -0.0447 -0.1077 0.9932
IAr+A+ASP 0.733078 0.942647 1.32411
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Table D.68. Eigenvectors of the CI matrix for case 6 where =0.05 eV.

Ei=4.9755eV | E;=5.0855eV | E3=5.2389 eV
A 0.937 0.2238 0.2683
A, -0.3213 0.8535 0.4103
As -0.1371 -0.4706 0.8716
IAr+A+ASP 0.2291 0.3681 2.4031

Table D.69. Eigenvectors of the CI matrix for case 6 where =0.10 eV.

Ei=4.9325eV | E;=5.0461eV | Es=5.3214 eV
Ay 0.8877 0.2332 0.3971
A, -0.4271 0.7392 0.5207
As -0.1721 -0.6318 0.7558
IAL+AZ+HAS 0.0832 0.1160 2.8009

Table D.70. Eigenvectors of the Cl matrix for case 6 where =0.2 eV.

Ei=4.8370eV | E;=4.9520eV | Es=5.5110 eV
Ay 0.846 0.2261 0.4828
A, -0.4973 0.6611 0.5618
As -0.1922 -0.7154 0.6718
IAr+AL+AS 0.0245 0.0295 2.9460

Table D.71. Eigenvectors of the Cl matrix for case 6 where =0.3 eV.

E;=4.7387 eV | E;=4.8539eV | Es=5.7074 eV
A 0.8288 0.2219 0.5137
A, -0.5231 0.6333 0.5703
As -0.1988 -0.7414 0.641
IAr+A+ASP 0.0114 0.0130 2.9756
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Table D.72. Eigenvectors of the CI matrix for case 6 where =0.4 eV.

Ei=4.6396 eV | E;=4.7549eV | E3=5.9055 eV
AL 0.8195 0.2195 0.5295
A, -0.5364 0.6193 0.5734
As -0.2021 -0.7538 0.6252
IAr+A+ASP 0.0066 0.0072 2.9863

Table D.73. Eigenvectors of the CI matrix for case 6 where =0.5 eV.

Ei=4.5401 eV | E;=4.6555eV | E3=6.1044 eV
Ay 0.8136 0.218 0.539
A, -0.5444 0.6109 0.5748
As -0.204 -0.7611 0.6157
IAr+As+As 0.0043 0.0046 2.9912

Table D.74. Eigenvectors of the Cl matrix for case 6 where =1.0 eV.

Ei=4.0412eV | E;=4.1566 eV | Es=7.1022 eV
Ay 0.8015 0.2148 0.5581
A, -0.5608 0.5941 0.5767
As -0.2077 -0.7752 0.5966
IAr+AL+AS 0.0011 0.0011 2.9977

Table D.75. Eigenvectors of the Cl matrix for case 6 where =2.0 eV.

E;=3.0417 eV | E;=3.1572eV | Ez=9.1011 eV
A 0.7952 0.2131 0.5677
A, -0.569 0.5857 0.5772
As -0.2095 -0.782 0.587
IAr+A+ASP 0.00028 0.00028 2.9995
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Table D.76. Eigenvectors of the CI matrix for case 7 where f13= f23=0.

Ei=4.5475¢eV | E;=5.2000 eV | E3=5.5525 eV
AL -0.7415 0 0.671
A, 0.671 0 0.7415
As 0 1 0
IAr+Ag+Ag 0.0050 1 1.9952

Table D.77. Eigenvectors of the CI matrix for case 7 where f13= $23=0.001 eV.

Ei=4.5475¢eV | E;=5.2000 eV | Es=5.5525 eV
Ay 0.7415 0.0026 0.671
A, -0.671 0.003 0.7414
As -0.0001 -1 0.004
IAL+AZ+HAS 0.0050 0.9888 2.0062

Table D.78. Eigenvectors of the CI matrix for case 7 where f#13= f23=0.005 eV.

Ei=4.5475¢eV | E;=5.1999eV | Es=5.5526 eV
Ay 0.7415 0.013 0.6709
A, -0.671 0.0152 0.7413
As -0.0005 -0.9998 0.02
IAr+AL+AS 0.0049 0.9440 2.0512

Table D.79. Eigenvectors of the CI matrix for case 7 where f13= $23=0.01 eV.

Ei=4.5475¢eV | E;=5.1994eV | Es=5.5531 eV
Ay 0.7415 0.026 0.6705
A, -0.671 0.0304 0.7408
As -0.0011 -0.9992 0.04
ArtAotAqf 0.0048 0.8889 2.1062
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Table D.80. Eigenvectors of the CI matrix for case 7 where f13= $23=0.05 eV.

Ei=4.5475¢eV | E;=5.1864 eV | Es=5.5661 eV
A 0.7417 0.1231 0.6593
A, -0.6707 0.1441 0.7276
As -0.0054 -0.9819 0.1894
IAr+A+ASP 0.0043 0.5108 2.4847

Table D.81. Eigenvectors of the CI matrix for case 7 where f#13= 23=0.1 eV.

Ei=4.5474¢eV | E;=5.1505eV | Es=5.6021 eV
Ay 0.7425 0.2142 0.6347
A, -0.6698 0.2531 0.6981
As -0.0111 -0.9434 0.3314
IAL+AZ+HAS 0.0038 0.2267 2.7696
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Appendix E - Supporting Information for “Development of a
charge-perturbed particle-in-a-sphere model for nanoparticle

electronic structure”

Coordinates of the perturbations for the test cases

e Case la: P1(0,0,4.5); P2 (0,0,-4.5)

e Case 1b: P1(-1.2287,-2.3450,-3.6388); P2 (1.2287,2.3450,3.6388)

e Case 2: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0)

e Case 3: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(0,0,4.5); P6 (0,0,-4.5)

e Case 4: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(3.18198,3.18198,0); P6
(3.18198, -3.181980); P7(-3.18198,-3.18198,0); P8 (-3.18198, 3.18198,0)

e Case 5: P1(0,4.5,0); P2 (0,-4.5,0); P3(4.5,0,0); P4 (-4.5,0,0); P5(0,0,4.5); P6 (0,0,-4.5);
P7(-3.18198,-3.18198,0); P8 (-3.18198, 3.18198,0); P9(3.18198,3.18198,0); P10
(3.18198, -3.181980,0); P11(0,3.18198,3.18198); P12 (0,3.18198, -3.181980); P13(0,-
3.18198,-3.18198); P14(0,-3.18198, 3.18198); P15(3.18198,0,3.18198); P16 (3.18198,0, -
3.181980); P17(-3.18198,0,-3.18198); P18(-3.18198,0,3.18198)

Figure E-1. A) P orbitals of test case 1a and B) P orbitals of test case 1b. Green: Orbitals.

Magenta: Point charge perturbations.
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Appendix F - Supporting information for “Effects of Silver Doping
on the Geometric and Electronic Structure and Optical Absorption
Spectra of the Au,s.,Agn(SH)1s (N =1, 2, 4, 6, 8, 10, 12) Bimetallic

Nanoclusters”

Table F.1. Auz4Ag(SH)15 bond lengths calculated at the Xo/TZP level of theory.

Isomer Center-Surface (A) Sulfur-adjacent core atom (A)
1a (Surface) 2.79 (x0.04) 2.42 (x0.09)
1b (Unit) 2.79 (x0.02) 2.41 (x0.01)
1c (Center) 2.78 (x0.01) 2.42 (x0.01)

Table F.2. AuxAgy(SH)1s average bond lengths (in A) calculated at the Xa/TZP level of
theory.

Opposite Non-adjacent Adjacent
Au(center)-Ag 2.85 2.83 2.81
Au(center)-Au (surface) 2.77 2.78 2.78
S-Ag 2.53 2.51 2.51
S-Au (surface) 2.42 2.41 2.41

Figure F-1. Excitation spectrum of Auzs(SH)1s™ at the LB94/TZP level of theory.
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Figure F-2. Geometries of the Au21Ag4(SH)1s™ isomers at the Xo/TZP level of theory.
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Figure F-4. Geometries of the Aui7Ags(SH)1s isomers at the Xa/TZP level of theory.
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Figure F-6. Excitation spectra of the A) 4a, B) 4b and C) 4c D) 4d E) 4e and F) 4f
AU, Ags(SH)1g™ isomers at the LB94/TZP level of theory.
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Figure F-7. Excitation spectra of the A) 6a, B) 6b and C) 6¢ D) 6d E) 6e and F) 6f G) 6g

and H) 6h AujoAgs(SH)1s™ isomers at the LB94/TZP level of theory.

A s

Intensity(au)

(=}

3
Z
2]
=
3
0
V.
=
>
=
5
0
0.
o
>
B
2
o
0.

<

©

1=

B :s

-

Intensity(au)

0 0.5 5 2 2 3 35 4 0 0.5 35 2 3 35 B
Ensrzv (=V Enzrzy (2V
23
5
E 5
=
8
I Al 0 i J ul 1
0 0.5 15 2 23 3 3.3 4 0 0.5 15 2 235 3 33 B
Ensrzy (=V Enzrzy (=V)
14
5
2 1
£ 08
=)
=
5 06
T 04
l .
02
il I! 1 l 0 I sl 1y I
0 0.5 2 23 3 35 4 0 0.5 5 2 25 3 335 -
Ensrzv (=V Ensrzy (V)
23
”
i .
=
b=
) |’
||I s 0 I”
0 0.5 5 2 25 3 3.5 4 0 0.5 35 2 25 3 35 B
Enzrzv (V) Enzrzv (V)

243



Figure F-8. Excitation spectra of the A) 8a, B) 8b and C) 8c D) 8d E) 8e and F) 8f
Au;7Ags(SH)1g™ isomers at the LB94/TZP level of theory.

A . B

R s Ao 5
L A ]
T T T

[ e S =
QN GO s b ks OV D bO

= =
g 08 .
2 2 U
= 0.6 = 5
V.
04 | 2
| 02
n"n
V. C b
0 0.3 1 15 2 25 3 35 - e 0 03 ¢
Enarzy (2V)

1
18 3
16
1.6
= 14
= 12 = 1
.;_ 1 =
= ‘Z 0
= =
£ 08 = 08
2 = 0.6
= 0‘6 Lo V.
: ’ “J : 1
1 )
0o o ||
V. N
| A M}M ol e v
0 05 5 % a3 95 4 Bl bR S a3
’ - 'Y’ﬂ 4
Enerzy (V) Energy (V)

pon e
[= N

3 14
= 1.2 = 12
'z n ‘B 0
E.; \.LS .’:’: \J.S
= 05 = 08

04 02

02 02 J |

o = IM
0 03 0 03 1 13 2 25 3 35 4

Energy (eV)

244



Figure F-9. Excitation spectra of the A) 10a, B) 10b and C) 10c AuisAg10(SH)1g™ isomers at
the LB94/TZP level of theory.

A : . . B

235
25 N
= 2 =
= = =
= 3 o
2 =
.
)5
0.3
B \ ’
g YA S I ||
0.5 135 2 25 3 335 4 0 0.5 1 135 2 25 3 33 4
Energy (V)

Energy (eV)

Inte nsityau)

Energy (eV)

245



