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INTRODUCTION

The functions $Lx\ and )Ux) are said to be orthogonal to

one another on the closed interval £a,b} if

b

Jo. <K*>vV0O h ~- c 1

Or if x assumes only discrete values this condition can be

written

5[cjj(x) too - o

i • • • ,
where S denotes summation over the given values Xq, Xp

xn-l °^ x »

It was Fourier who first used an expansion in a series

of orthogonal functions in his treatment of trigonometric series.

The first expansion in orthogonal polynomials was preformed by

Legendre. In Legendre's polynomials the variable x is a contin-

uous variable on a closed interval 1-1,1], Orthogonal polyno-

mials with respect to a discontinuous variable xq, x^, ... ,

xn-l were deduced by Tchebysheff who treated the particular

case of two orthogonal polynomials with respect to equidistant
2

variables. R. A, Fisher (1921) was one of the first to use

a numerical method of curve fitting by means of orthogonal

2Angus E. Taylor, Ad vanced Calculus , p. 722
Charles Jordan, "Approximation and Graduation According

to the Principle of Least Squares," Annals of Mathematical
Statistics . 1932, 3:257



polynomials.

This report will illustrate how a system of orthogonal

polynomials with respect to a discrete variable can be obtained

and how some methods for obtaining them are derived. It will

also show how these polynomials can be very useful in curve

fitting.



NUMERICAL METHOD FOR GENERATING ORTHOGONAL POLYNOMIALS

This method utilizes ordinary finite differences (Stanton,

196l). It must therefore be assumed that x
Q , x-,, ... , x -,

differ by some constant h. They may then be coded so that

the values are taken to be 0, 1, ... , n-1.

Using the method of differencing, an equation for P , a

polynomial of degree r, can be written

(1)

?r
- A"+ XA' + J^iJl. A

a
t . . . t

y(«-0...U-rt,l ^
where x=0, 1, ... , n-1 and A represents the k'th ordinary

difference of Pp with respect to an initial value, Pr (0).

A statement that Pr is orthogonal to powers of x up to

(r-1) can be written

(2)

jl (x+.iUxta.) . . . (K+<j_-n ip J - o,

where q=l, 2, ... , r and the sum is over the values of x

from to n-1. Now substituting the expression for P from

equation (1) this condition is

luiKu*K..(>u 1-.)]LnxA'K.. v*'»- ' S, (*~rH > A"K

If these two terms in the summation of equation (3) are com-

bined and the resulting expression is summed a general term

would be

C r f**l)( X4Q.1 . . . t\\-c^-i\ \( X-|\ . , . U-pV 1 ) a > ~j



To sum this term multiply numerator and denominator by the

quantity (x+q)-(x-p). This then changes expression (if) to

J<LL(x +iKX-p)]p!llUv^-0.. . (Xt-i)X(X-i)..,(ViiV)\]uUj;)-U-p)] ),

(5)

and multiplying by the quantity (x+q)-(x-p) in the numerator

and subtracting the quantity (x-p) from (x+q) in the denomin-

ator the expression is

£
(«fp) pi U^^lUV^-^ ,,.UtOxU-i)...(x-pfl)-(X^-ih..(Ki-lU(t-ii...(*-pl

!6)

The term
(q+pjpj

does not contain the index x . It may there-

fore be factored out of the summation leaving

(7),

l^+P* pi MLixt5[';(xvii\...(x+i\xh-i)...(x-pi.i\-(xv^-i)...cxH)x(x-n...a-p

Proforming the indicated summation,

oJq^n^2t^rH--pJ^XlrPjtl)__^ (q-D(q-2)...(-p+l)(-p)

q+l)Tq7Tq=l h~rv-

Tn^+-qi^-3^-)^^lnipJ^^ n^^~(n^q-)Tr^-n-l^pJIn-2-p;

(n-l+q) (n-2+q) . . . (n-p+1) (n-p) ^1^2+qUxi^^^

the remaining term is -(q-1) (q-2). . . (-p+1) (-p) + (n-l+q) (n-2+q). .

.

(n-p+1) (n-p) multiplied by . .
A

, However, (q-1) (q-2). .

.

* SI Sr * Sr
J

(-p+l)(-p) mu3t contain a factor of zero. This can be seen

by referring to (7) and observing that (x+q-1) is decreased



by one until the quantity (x-p) is obtained. The factor x

must therefore be contained in this expression, and with the

substitution of x=0 the quantity must also equal zero.

The general term expressed by (lj.) can now be written

or as a further simplification,

(h^-.U A
? (9)

oi (*>- p-01 (<5_tp)

Using this derived general term the condition for orthogonal-

ity expressed by (2) or (3) can be replaced by the sum of the

general term as p goes from to r. Written algebraically,

expression (2) or (3) is equivalent to

7 AP (10)

where q=0, 1, ... , r.

It can be seen from equation (10) that the condition of

orthogonality is only dependent on A , all other terms on the

right side of equation (10) being positive. If a term can

therefore be found for A
?

which satisfies equation (10), it

can be substituted into equation (1) and the resulting expres-

sion can be used to generate orthogonal polynomials for suc-

cessive values of r.

The quantity A may be found in the following manner.

A polynomial function U of degree r may be written



Ui - C U.ViWx+aO . . . Ui-r) . (11)

Substituting a given value for x the function is

(12)

Using Lagrange's interpolation formula ( Stanton, 1961)

,

With equation (10) in mind x=-q is now substituted in equation

(13) v/hich gives

(1U

Now if

.f-p »p

u
f>

' K- P -i)i
'

(15)

(16)

(ll|.) becomes c

IL^'-H)' 5_t^ti)...('^r) 1 pii(n- p-iM (pfq_)
*

Referring back to the original equation of Ux (11), it is

apparent that U_
q is equal to zero for values of q=l, 2, ... ,

r. The resulting equation is

\- /- &" (17)

C ~ (-
1 ) qj_( <j_ t n . - . U + r ) Z p H h - p - n I

( p i- ^ )

P-o

Di -riding both sides of equation (17) by the non zero quantity



r
(-1) q(q+l). . . (q+r), the equation becomes the condition of

orthogonality first derived in (10), ie.

,

ry aP (18)

p^o

This condition for orthogonality is satisfied when, from

equation (if?),

p-r . (19)

A ? U- P )i
' *

Up is given by (12), and in order to hold to the convention

of the coefficient of x being unity in a system of orthogonal

polynomials, C is set equal to

(Pi)"
(20)

( a r ) I ( v> -. r- i- ) I

p
Rewriting the expression for A with U

p and C replaced by the

stated quantities,

?-c (21)

f _ (v^-p-)V.(pir)i . (pi) L-\)

A
p! (r-p)l (vw-i)l (ar)l

'

p
Substituting this quantity for A in (1) and evaluating

the terms for successive values of p=0, 1, ... , r, it can be

seen that

p PUn-r-iil «Pl| ^ II (r-i)| (h-r-Dl MDI * r
• • • »

(-' f" (/win (-ii-r)l (n ^
II (f-.;

:; (v-,-r- i j| Ur)| al a(^"1) +"
, . . .

(22)



8

Or expressing Pr in summation notation the general recursion

formula is

The assumption made at the beginning of this section

is also assumed fox* the recursion formula, namely the x's

differ by some constant h.



ALGEBRAIC METHOD FOR GENERATING ORTHOGONAL POLYNOMIALS

In the method presented here no assumptions need be made

about the variable x. However, if the assumption of constant

differences between the x's is made the arithmetic procedures

are greatly reduced.

The expression used for P is

(1)

r= 1 A**
5

~- ArX
r

i A 1M r' i.... + A. .

s = *

where r=0, 1, ... , n-1. The condition of orthogonality con-

sidered is

sIx
k
(P

r)l=0, (2)

where k=0, 1, ... , r-1, and the summation is over all values

of x. Substituting (1) into (2) the condition of orthogonal-

ity becomes

x
K

'(ArX
r

vA,.,x
r"

f-. . +A.)I,= Q .

Now letting k=0, 1, ... , r-1, the set of r equations obtained

is

k=0 S(A
rx

I,
+A

r_1
xr

"1
+...+A )=0, (lj.)

k=l S(Arx
r+1

+Ar_1x
r
+...+A x)=0,

k=2 S(Arx
r+2

+Ar-1x
r+1

+...+A x2 )=0,

• •

k=r-l S(Arx
2r"1+A^

1
x
2l>-2

+.:. +A xr
-1

)-0.

Sunning the left side of the r equations and dividing both

sices by n the set of equations can be expressed as
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l\vMr +Ar-i,u P _, -V . - „+Ao- C
t

• •

Ar,Ua'M+Af.,,l(aiua+ - - . *A.lLi- O,

where Mk is "the k'th moment about the origin of x. Consid-

ering the original equation of Pr (1) and the r equations

given by (5), a set of r+1 equations may be written which

have r+1 unknowns, Ar , Ar-1 , ... , AQ . If the assumption is

made that Ar=l, this set of homogeneous equations is

U'.-B.VAr * x
p-

A.-, + .-.'.>> A* -- o,
(6)

MrAr +' ilr-i Ar-j 1 - • .-
+" Ao - O,

XUAr ••- Alp Ar-, -\ . • .4;.;>li,A."= O,
C ft

For this set of equations to have a non-trivial solution, the

determinant of the coefficient matrix must equal zero. Writ-

ten algebraically, this statement is

U'-fi.) X
P
-' f ... 1

(7)

/A,"* /Up-I y'Up-J, ... 1

Mr*\ AAr ,Ui--i , Mi = O
V

* * *

M*M Ma^--^ Ma<-3 • . g /Apm

This statement of equality can be used to obtain the n orthog-

onal polynomials ?v which satisfy equation (2). Replacing the
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given values for r in equation (7) the following results are

obtained:

(8)
r=0,

r=l,

r=2,

K° ~ ? ^ C —7 p

X'-fi X°

- o
,«> .Aa<,

f- fc X* x°

/Wo. X(, Mo

Mi >u* A,

--
\

=' Pi - x-,u,

- o

o

'i y v

r=3,

where

<VP. x* X' x
a

/LU XU Xl, /Uo

/U H- il 3 XLW* /U.

A* XU jUa >U*

- o

i - Mi *MiM++ki-M*M+-AMMiM
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The derived expressions for P r, r=0, 1, 2, 3, and the

generating equation (7) are true for any spacing of the var-

iable x. If the spacing is constant the equations (7) and (8)

can be simplified by subtracting the mean "x from each variable

x l> x 2> ••• * x a*
This v/ould make ,u K the k'th moment about

the mean, x. The odd moments JUz*n , i=0, 1, ... , are then

zero. Substituting A^, =0 and Xu -1 in the expressions for

Pq, Pj_, P 2» and Pi, the resulting equations are

K -
1

,

R - x

.

The x's in these equations (9) are the original x»s minus "x.

Pjj_ can be obtained by equation (7), but if the XU-i + i
are set

equal to zero, the equation is simplified to

(10)

- O

K
1

P4 x
5

K^ 'X' i

ki\ o /Ux G i

G xu o XU G

XU jU4 o ,iu

XU /u o

lluX^utiUJii-Xl XU ~ii\)

To obtain a generating function for the case of equal

spacing of x the observation is made that
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Po - x°.
(11)

p,
--

x',

r, - )C v e,,o x°.

I3 = X
3

f C 3 .

;

xi
v

P«
-- *

+
K*» e f C^o X .

Considering the equations express*3d by (11) and the determin-

ant in equation (7) with ^.3
-

t) =o,
, a general expressiion can

be written for P . When i is odd

(12)

' aj \ T v^^
/

ji,-*x'-H'(U.,*>-4 X 4- . .• ^ T V>i,X
and when i is even

(13)

U r X
" 1 •

-.1 K° V Cl, t--^ a r. . . + <U oX°
•

Again oons:Ldering the equations expressed by (11) it can be

seen that

i?, -- x*- p _ p Po,
(14)

XP* - X
3
t-C^oX- Pi ^£ , i

X t C.^
/

X - P» + <X} "

>

xP, = X
4
tC,^vC^-- ft *&,- c^ }Mc, a L 4; -2

or

- c,.,V"*u) 1

xP4 -

= Lh t D<.,
1

1 <o-
1 t V irh i 0-3 * . .

* >

(15)

where from equation (14)
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If Do p were expanded it would be found to equal zero.
'

1+3
Equation (15) expresses x(P i ) as the sum of "2 orthog-

i+2
onal polynomials if i is odd, and —p~ orthogonal polynomials

if i is even. To obtain a generating function, (15) is sub-

stituted in the expression

(16)

5u Pi PK )='S( B.+, & + &,&& t'O^ft-. 3 V-..I;

If i+l^-k or k+l^-i this expression will sum to zero because

of the orthogonality condition on the P's. However, if suc-

cessive values of k=i-3, i-5, i-7, ... were substituted in

the left side of equation (16), and the P's were commuted

and summed, a term would be left of the form:

S(X Po Pi-, ) ^(PiV.R.-a t b.J.t + DiAUiit« )=

bi., s(?A)

Prom the fact that the sum of xP
i
P^ is equal to zero for one

p
arrangement to ? ± and Pk while equal to some quantity D,

CT
S(P„)

j-i g q

when the P's are commuted, it can be inferred that the D, ,
! s

j>l must be zero. If i=k the quantity on the left in expres-



1$

2
sion (16) would be S(xP.,), and examining the right side of the

equation it can be seen that this would sum to zero. The only

poasible combination of i and k left to consider is k=i+l and

k=i-l for which the expression would be

S(xP„p„J-$(Rt, + &MM + ...)= S(£,),

and

or

Hence

Ui-' "
5(P.-, ) " S(R.

a
-,) SlKTi

with all other D* .=0.

Substituting these values of D* , in equation (15), the

equation becomes

x ? - ?, t ^ P-" ) P

which implies

u -
1

P. - v P - S (
?<*

^ ?
(21)
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Equation (21) is a recursion formula for Pi+1 in terms of

lower order orthogonal polynomials.

This recursion formula can be used quite easily as it

stands. However, if an expression is needed for P^+t in

terms of n, StP^) must be evaluated for the general case.

This can be done with the aid of the material from Section

One.

From Section One, equation (10), the condition for orthog-

onality of P to a polynomial of degree r-1 is

(22)
P

, q= 0, 1, . .. , r.

If in equation (22) q is set equat to r+1, the results would

2
be the expression for the sum of Pr . This can be seen by

referring back to equation (2), Section One. Algebraicly the

expression would be

(23)

JUr
^ £. (vvip-Ot (pt.-'hl

•

Also, it can be seen from expressions (llj.), (15), and (16) of

Section One that

(2k)

U-^o ~- C(-r)C-rMi) . . . (I),

or

U-(p„>= Ct-if t\ ,

and
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{

or

t
p |qpH ) 1 % .

A
P

[/ -
/ ,f (arfri ) 1 4

,

A
(

lA_oni}~u) pi L P! (vn- p-i )l (ptrf i) '

where -x=q=r+l. Setting the two equations of (2lj.) equal the

results are

C r > _ (arf i)l

{

j
—n aL

(25)

PI L PI LM-p-| J I ^p
pro I

And solving for

I <*>
4 y,

/ p 1 ( a - p -

1

) [ (
f> i- r t- »

t>3 o

it is found equal to

i* /I , x
4 (27)

Or h ) I (^r)i (arti)i (n-r-i)l

p
To obtain the needod expression for S(P ) the expression (26)

and (27) are multiplied by (n+r). The resulting expression is

(28)

( r l )

f
(^ tr)j

(.ID! Ur+.i;)! (n-r-i)l
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...V-r 1
) .

Hence, from (19),

(29)

and the recursion formula v/ould be

(30)

P. - v P _ l**-i»)
:

- p

•
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ORTHOGONAL POLYNOMIALS FOR UNEQUAL INTERVALS

One method was shown for generating orthogonal polyno-

mials for any interval in Section Two. Equation (7) of that

section was derived with no restrictions on the independent

variable x. It can be seen from that equation that if n is

large, even of size if, the work involved becomes prohibitive.

The methods presented in this section will not completely

solve this problem. In fact there is no method available at

present v/hich treats unequal intervals in which the work is

not prohibitive for large n.

Robson (1959) presented a method in which he stated Pr

can be constructed recursively from the relation

4-o fcs I

(1)

where c is the normalizing constant

c; -- i Uf - I Pv i * ft )

.

The polynomials generated by this method will be orthonormal

satisfying the conditions:

Grandage (1958) in an answer to a question by G. W.

Snedecor illustrates another method. The method described by

Grandage is similiar to the use of equation (7), Section Two.

It requires the solution of r linear equations for the construe-
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tion of Pr. The method utilized is to construct the succeed-

ing polynomials subject to the constraints of orthogonality.

For example, if P 1 is set equal to x+a the given values of x

could be substituted into the equation for P 1# The condition

S(Pq?1)=0 could than be utilized to solve for a, where Pq=1.

2
Similarlly in the equation ?2=x +b2X+a2» &2 anc* ^2 can ^e

solved for subject to the constraints S(PqP2)=0 and SfP-^J^O.

Wishart and Metakides (1953) illustrates a method for

orthogonal polynomial fitting by abbreviated schemes for invert-

ing matrices. The method described in this artical can also

be used if there are unequal weights at the different levels.

The method is clearly explained in the artical cited and will

not be covered in this report.

In the Appendix an example is shown for the derivation

of orthogonal polynomials for some artificial data by the

three methods presented in this section.
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UNDERLYING ASSUMPTIONS IN CURVE PITTING BY ORTHOGONAL

POLYNOMIALS

Given n points (x,y) where x is the independent variable

and y is the dependent variable it may be desirable to fit a

polynomial of degree r to these observations, where r is less

than n.

The general regression polynomial that is to be fit Is

of a general form

(1)

- Z. r\ l> V'k)
f

<-o

where P. is a polynomial of degree i subject to the conditions

of orthogonality, and A.^ is determined by the method of least

squares.

The P^'s can be obtained by any of the methods presented

in this report with, of course, the restriction on the inter-

val of the x's determining which particular method is used.

These methods are simply a way to determine the P^'s so that

the following equations are satisfied

(2)

S ( R P, V= o

,

SCR; K)- O,

S(P, P,)--o,
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Or in general S(P
i
Pj)=0 where i=0, 1, ... , J-l, and S is the

summation over all values of x. Pq is set equal to 1.

To evaluate the coefficients A^, the method of least

squares is utilized, that is, the deviations of y about the

regression polynomial are to be minimized by the selection of

the A^'s. The sum of the deviations of y about the regression

polynomial is expressed by the equation

(3)

sii l, - luX) - su l, - (.a.?, i- a. p. f . . .
f Ar?r in

.

The A^s are now selected to minimise equation (3). Taking

repeated derivitives with respect to AQ , A-j_, ... , Ar , the

equations obtained are

f^---
SUlr (A Ra,p, + ...+A,.i

:

?)(-Po)]l,
ik)

j A,-

Multiplying through the right side of (!}.) by the respective

P-^'s, the expressions are greatly simplified because of the

orthogonality of the P's. Setting the derivitives equal to

zero, the equations are

SIijR-yLfN b,

(5)
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SLR -A.P,
a
]- c

S[^?„ - ArP/Ko.

Summing the given expressions in (f?) and solving for the A's

(6)

A = 3 (up, )

A - SfuP.I
^ ii?f) •

In testing the goodness of fit of the derived polynomials,

the deviations from regression sum of squares is needed. This

is obtained from equation (3).

If the expression

c r. \ (7)

u - I Ai P. i '

c-o

is squared, the quantity would be

if t At P/HA'P* t ... + AJ P* - ^CvjA.P- ^A,P, f
<8)

.

.

TllArPp] tl-LU.RP, +A.AaP.Pa.+...+An.iR,Prl.



2k

However, when summed, the cross product terms involving P^

P* would go to zero because of the orthogonality of Pj_ and

P ., leaving the term

^u^ik\?:-x{
r

iMh?,]}.
(9)

Utilizing the expression for Aj. shown in (6), the quantity

becomes

- Xu l\o\c - .iu A i
I

i

~ ... " 3j M An I r i
#

Summing over all values of x and factoring the constant values

-out of the summation, the results are

$(\£) \ Ao%^: f A,4^

-AArStuPrV;
Combining terms, the sum of squares of the deviations from

regression can now be expressed

It can be seen from equation (12) that the reduction in

the residual sum of squares is caused by the term AjPj,, by

the quantity ZA^StyP^, or by an equivalent expression, ZSUfpf).
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CONCLUSION

If n points of (x,y) are to be fit by a polynomial of

degree r where r is less than n, the method used would be to

derive successive polynomials of degree 0, 1, ... , r, stop-

ping where contributions made by the succeeding polynomials

are deemed insignificant* It is realized that if r is not

postulated in advance a slight bias is introduced in the

p
estimate of a (Anderson and Bancroft, 19^2). If a method

such as least squares is used to determine these successive

polynomials all coefficients would have to be determined for

each polynomial. For example, if linear regression was first

tried, the least squares equation would be

(1)
y=A+Bx,

where the coefficients A and B are determined by the equations

(2)

1 y ~- hA -V B i. I
\-

1

and

In the case of orthogonal polynomials, by utilizing the
partition theorem for the X"

2
" -distribution (Cochran, 193£)

the sum of the deviations about the regression polynomial can
be shown to be equal to the sum of Q^, Q2, ... $ 0^, variables
which are stochastically independent and distributed as %\ .

A valid 'F' test can then be made on the reduction due to lin-
ear regression, then on the additional reduction due to para-
bolic regression and 30 on up to the additional reduction due
to the regression of the polynomial of degree r-1.
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If the deviations from the linear case were found to be sig-

nificant, a quadratic may be fit to the data. The least

squares equation would be

(3)
y=C+Dx+Ex ,

where the letters C, D and E are used to emphasize the fact

that C does not equal A, and D does not equal B. C, D and E

can be determined by the equations

\ u. -- hC+ d'Iu t e'i xt, w

ZXMi " C iu + D i X- f hi Xi
,

is) 1 .C-i **l v-l

IxiUi-s.Clx* \ D'i x! + El Xo
*.S:j I i-s| t.c| *.-Z[ *

From these equations it can be seen that if r was larger than

two, the work involved solving successive regression polynomi-

als could be prohibitive.

The solution of this problem of recalculation all coef-

ficients for each polynomial can be solved by the use of

orthogonal polynomials. As stated in this report, the regres-

sion polynomial can be written

y-- i a. a,

where ?± is a polynomial of degree i subject to the conditions

of orthogonality and A± is determined by the method of least

squares. The P»s can be obtained by the methods outlined in
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this report. If the x's are evenly spaced, tables have been

constructed for n up to lolj. and ?d (Anderson and Houseman,

191+2 ). The coefficients, A^,, which caused the trouble in other

methods can be determined separately in the case of orthog-

onal polynomials can greatly reduce the work involved in

curve fitting.
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APPENDIX

Given the set of ordered pairs (0,9), (1,5), (2,6),

Ob 11), (5,15), (6,17), (8,8) and (10,-1), a polynomial is

to be fit to this data. Plotting the points it appears that

the desired regression polynomial is a cubic, Pig. (1). The

form of the regression polynomial is then

(1)

y- \ /up..

The first method used to obtain the regression polyno-

will be that of Section Three. The equations needed from

that section are

D , (2)
o

R -- X-Xc,,

p - \-x j_ x LJjl* -Xc, k±) r Lkz-M> Xu)

p -
tf -jLiMtUs tWtis+JJLsU^-MiJlJls'UXIlrMM)

l ilMiuZiUiiLlu'+kt ->Mr -titlW-^klu)
J

wnere

d- il.? I XCiU 4-Xly-i/.vXU - -i U
t XU XL.

To obtain the orthogonal polynomials the values of the respec-
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tive moments are substituted into the given equations. Prom

the given points the following values are obtained

(3)
.U, >

a, --^-- -tt£k-.

XI, -- JJf - Iff 7-H .

Substituting into the given formulas (1) the equations obtained

for the orthogonal polynomials are

P. -
1 .

(W

P3 - )'*
1

X( * a/sH tHp "— ' * )
1 <+s A I TTX : ^ , ,i

tf
a

8

-- X'
1
- W"f):X f

I

For ease in further computation ?± is multiplied by \± , chang-

ing the orthogonal polynomials to the form
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P,
' - Po -

i
,

(5)

?:
1

- IF? - a, x. - 1

,

V - SP, -- Sxa -?S x +
i

p,' »./flf»'r if I x
3-a,;i1 X** n,iu,x--^

•

In solving for the coefficients of the regression poly-

nomial the following

Table 1

table is set up,»

x y p'o pi p5 p'i yPo yPi yP? yP'^

9
1 5
2 6

4 11
5 15
6 17
8 8

10«-1

1
i
1
1
1
1
1
1

-9 105
-7 35
-5 -19
-1 -79
1 -85
3 -75
7 -7

11 125

-4,308
1,666
4,228
2,500

-98
-2,72k
-4,676
3,412

21*1 8 336 1+7,376 91,192,904 70
1 2 8 1I4.I

-46 -2,594 -66,172 2yPi

•

From Section i-'ive the

•

equation for the coe:fficients in the

regression
;

polynomial i3
1

A. _ S(uP„ )

•

(6)

The cooffic;ients for 1;his example will therefore be

(7)

A > A z
^3, US

,



A

k '
-- - ^-

,

A' -- - \W*
/ i. ik S ' / v

: the derived quantities, and P* in equation

i • the d si •< , regression polynomial is

y-- 4f («] tf^fjUi-i) f-^J(Sx- 7jx+ i6i-)
(8)

t -/. -/iuffi,, ]
( '*n *

3
- -i m x

a n, ju, »
- feat )

If an 1 Ls of variance is now to be preformed on

- the needed quantities can be obtained from

(1). , a seen in Section Five the residual sum of

- as can be expressed

SSI l - 5 /LP-li= S(SY-
r

i AiS(u?J
) ><.-o

J
i-o I

•

It can be seen from tl uation that the reduction in the

sidual sum of squares is caused by each successive term,

<%). These tei AjSCyP^, i->0 represent the reduction

3 of
j
area caused by linear above the mean, quad-

bove linear and so on to the r'th degree above the

For the illustrated example Table (2) shows

respective sum of squares.
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Table 2.

Sourse of variation
J2

Degrees of
freedom

Sum of squares

Total, Zy 7
Correction 1

for mean
Deviations from 6

mean

Linear 1
regression

Deviations from 5
linear regression

Second degree 1
term

Deviations from l\.

quadratic regression

Third degree 1
term

Deviations from third 3
degree regression

A' s(yPb) = (35A) (70)=6l2.5

81|2-6l2.5=229.5

A
/

1S(yP
,

1 ) = (-23/l68)(-l+6)=6.298

229.5-6.298=223.202

A'2s(yP2)=(-l, 297/23, 688) (2,594)=
ll|2.030

223. 202-ll|2. 030=81. 172

X,S(yP;)=(-l6,5l4-3/22, 798) (-66,172)=
J J

48.016
81.172-48.016=33.156

The next method used will be Robson's, Section Pour.

'If equation (1) of Section Four is expanded it can be seen

that

Co lo " I r

c. P, = X-T,

c a ?, -- x
a'-p. nx

?o~ p, i^P,,

C 3 f3 ="xVrP.a
8>.-P

l .ix
5

Pi " P< H 3 P^.

(9)

The equations for cQ P and c^ can be written directly as

(10)

Co 'u

c ? = X - -i-
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0^2 can be obtained from the table,

2
C
Q
P Cl?

1
2

I
8

10

1

ifc

n
100

1
1
1
1
1
1
1
1

-9/2
-7/2
-5/2
-1/2
1/2
3/2
7/2
11/2

x C P * c
l
p
l

CjL=: SCciPi) V8 V336A 2il.6 1,638/2

By substituting the given quantities into equation (8),

c * a /rlrrJ
_kAl
FF U

/k-33
.^

T"

--x--4x v-i#

Setting up a similiar table, C3P3 can be obtained.

x cnPDjLQ. dPILL o?P? X CqPq X CtP111.

(11)

x c 5P2L2

1
8

6k
12?
216
512

1,000

1
1
1
1
1
1
1
1

-9/2
-7/2
-5/2
-1/2
1/2
3/2
7/2

11/2

105/8
35/8
-19/8
-79/8
-85/8
-75/8
-7/8

125/8
VS V5WI? V47,376/6i| 1926 15,21+6/2 89A18/8 #

Substituting in the equation (8)

t^-.t-f^] (X
.In

J

1.2
•

1
9-

/ b~ a 4- u
^

(12)
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(X^-^fx t
loS

)

r 81,41*

" X
/ 4 1

X
' /4 1

x
Ki *

If the c^P^'s are multiplied by \^ x s the polynomials ^c-jP^

are identical to those found by the first method shown.

With Robson's orthonormal polynomials

A. -- S>(uPi).

(13)

If however, this formula was changed so that it contained

ci pI i-fc would be identical to equation (J?) and the regression

polynomial formed would be equivalent to equation (7).

The last method to be used is that of Grandage. Util-

izing the constraints on the orthogonal polynomials that the

products must sum to zero the tables are constructed so that

on substituting the given values of x and summing the products

equal zero.

PO Plax+ai Ml. Pl=2P!=2x-9

1

2

*
8

10

1
1
1
1

1
1
1
1

1+a-L
2+&1

?
+al

o+ai
8+a£

12+SL.

-9
-7
-5
-l
l

3
7

11
36+8a1=0

ai=-9/2



*

38

It can be seen from the table that a^ is solved for subject

to the constraint of orthogonality. P-j=2x-9, is therefore

orthogonal to Pq. In a similiar manner P2 is 1 obtained.

x P Pi Pp=x +bpx+ap PqP? PnPp01-911-7
2 1 -5
k 1 -1

5 11
6 1 3
8 17

10 1 11

a2
l+lb2+a2
k+2b2+a2
l6+kb2+a2
25"J"|t>2+a2
36+6b2*a2
6ij.+8b2+a2

100+10bp+ap

2i|.6+36b2+8a2=0 l,638+l68b2=0

a2=36(39)-4(2^6)A(8) b2=-1,638/168

Therefore

and

£ = 2 P.- 8xM** + 1 >r.

P can be found subject to the constraints

s(p p3 )=o,
8(P1P3)»0,
S(P2P3)=0,

•

from a similiar table. It is equal to,

The orthc)gonal polynomials are the same as those found
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in the first method and therefore the work outlined for

Obtaining fcho regression polynomial will be identical.

Figure (1) page I4.O shows the original set of points and

.ved regression polynomials. The graph indicates how

much the succeeding contributions of above the mean, above

linear and above quadratic make to the regression polynomial.

If the x's in the preceding example had been evenly

c >d the quantities Pt_, P2, and P3 evaluated at the given

x's could have been obtained from Anderson and Houseman (I9I4.2).

.. values of S(] re al30 listed in this reference. If

t i orthogonal polynomials are needed, P-^ through P^ are

en in this reference and any higher degree can be obtained

from the r Lon formula, equation (21) or (30) Section

Throe of this report. The v/ork needed to do the analysis of

. an e or that of obtaining ch& regression polynomial would

hav t ".-.. a fraction of the time needed for this example.

oly .paced x's Table (1) could have been set up

directly, -'no . .ould be obtained as shown for the case

of the unequal intervals as well as the sum of squares for

successive reduction:.; due to each term A^P^. 1
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ABSTRACT

The functions !-|(k) and ]Kx) are said to be orthogonal

to one another on the closed interval [&>*>] lf

X l$U)lMl* ~- c.

Or if x assumes only discrete values this condition can be

written

S(f(x)^U) )=0
t

• • • »where S denotes summation over the given values x^, x2 ,

xn of x. This latter condition of orthogonality, orthogon-

ality with respect to discrete variables, is the one dis-

cussed in this report.

The- derivation of a number of methods for generating

orthogonal polynomials for both equal spacing of the variable

x and for unequal spacing are shown. Recursion formulas are

derived to generate orthogonal polynomials for equal spacing

of x.

Given the regression polynomial

V- i L P.

,

/ r.u *

where P is a polynomial of degree i subject to the conditions

of orthogonality, and A^ is determined by the method of least

squares, it is shown that the coefficients can be independently

obtained. Utilizing this, numerical methods of curve fitting



can be greatly simplified.

It was the desire of the writer of this report to give

the reader both an insight into the derivation of orthogonal

polynomials and also some knowledge of their use in curve

fitting. The majority of the report deals with the derivation

of the orthogonal polynomials with respect to discrete variables.


