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Abstract 

Porcine Reproductive and Respiratory Syndrome Virus (PRSSV) is one of the most 

economically important diseases in the global swine industry, costing producers an estimated 

$660 million annually. PRRSV is genetically diverse with a low replication fidelity, due to it 

being an RNA virus, resulting in multitudes of isolates being produced. This virus has a tropism 

for cells of the monocyte/macrophage lineage. Cluster of Differentiation 163 (CD163) is 

considered the primary PRRSV receptor located on porcine alveolar macrophages (PAMs). 

CRISPR/Cas9 technology was utilized to knock out CD163 via a frameshift mutation, resulting 

in pigs of the CD163 Null genotype. Also, a domain of porcine CD163 was deleted and replaced 

with the insertion of a CD163 homolog of human-like domain and neomycin cassette to serve as 

a genetic marker. This swap resulted in pigs that possessed a CD163L1 domain 8 mimic of 

porcine homolog human CD163-like (hCD163L-1) of SRCR domain 8. Previous work has 

demonstrated that CD163 Null pigs were resistant to one genotype 2 PRRSV isolate. An in vivo 

study was performed to observe whether hCD163L-1 pigs were also resistant to infection. 

Various diagnostic tests were performed to determine the presence or absence of PRRSV viremia 

levels in serum, CD163 receptor surface expression levels on PAMs, IgG antibody levels and 

haptoglobin (Hp) levels in serum. hCD163L-1 pigs did not support genotype 1 PRRSV 

replication, but were susceptible to genotype 2 PRRSV infections.  In addition, in vitro infection 

experiments were performed on PAMs and macrophages derived from peripheral blood 

mononuclear cells (PBMCs) to determine resistance to multiple isolates. hCD163L-1 

macrophages showed reduced infection with genotype 2 and no infection with genotype 1 

PRRSV during in vitro infections. Null PAMs and PBMCs derived macrophages did not support 

infection towards any isolate of either PRRSV genotype. 



 

iv 

 

Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................ vii 

Acknowledgements ...................................................................................................................... viii 

Chapter 1 - Literature Review of the PRRS Virus, the Macrophage Receptor CD163, and Genetic 

Editing via the CRISPR/Cas9 System ..................................................................................... 1 

Introduction ................................................................................................................................. 1 

The Arteriviridae Family ............................................................................................................ 3 

The Arterivirus Genus ................................................................................................................ 3 

PRRS Virus ................................................................................................................................. 4 

Economic Impact ................................................................................................................ 4 

Viral Organization .............................................................................................................. 4 

Genotypes ........................................................................................................................... 7 

Transmission ....................................................................................................................... 7 

Clinical Signs ...................................................................................................................... 9 

Pathogenicity..................................................................................................................... 10 

Pathological Lesions ......................................................................................................... 11 

Detection of PRRSV ......................................................................................................... 11 

Prevention and Control ..................................................................................................... 12 

The Peripheral Blood Mononuclear Cell (PBMC) and Macrophage ....................................... 13 

The PRRSV receptor: CD163 ................................................................................................... 15 

Structure ............................................................................................................................ 15 

Physiological Properties.................................................................................................... 15 

Soluble CD163 .................................................................................................................. 16 

Virus-Receptor Interaction................................................................................................ 16 

The CRISPR/Cas9 System........................................................................................................ 17 

CRISPR/Cas9: A Genetic Engineering Breakthrough .............................................................. 17 

Designing of Genetically Edited Animals ................................................................................ 18 

Genetically Edited Pigs Are Protected from PRRSV ............................................................... 19 

Purpose ...................................................................................................................................... 21 



 

v 

 

Tables and Figures .................................................................................................................... 23 

Chapter 2 - Materials and Methods ............................................................................................... 32 

PAMs Collection ....................................................................................................................... 32 

PBMC Isolation ........................................................................................................................ 32 

Isolates ...................................................................................................................................... 33 

Flow Cytometry of PAMs ......................................................................................................... 33 

PAMs In Vitro Infection (End-Point Dilution) ......................................................................... 34 

PAMs In Vitro Infection (Percent Infection) ............................................................................ 34 

Cultured Macrophages Derived from PBMCs In Vitro Infection ............................................ 35 

Freezing of Cultured Macrophages from PBMCs .................................................................... 36 

Tables and Figures .................................................................................................................... 38 

Chapter 3 - Results ........................................................................................................................ 40 

CD163 Surface expression levels on PAMs ............................................................................. 40 

In Vitro PRRSV Infection of PAMs (End-Point Dilution) ....................................................... 41 

In Vitro PRRSV Infection of PAMs (Percent Infection) .......................................................... 41 

In Vitro PRRSV Infection of Cultured Macrophages Derived from PBMCs .......................... 41 

In Vitro Fluorescence of Frozen Macrophages Derived from PBMCs .................................... 42 

Tables and Figures .................................................................................................................... 43 

Chapter 4 - Discussions and Conclusion ...................................................................................... 50 

Chapter 5 - References .................................................................................................................. 52 

 

  



 

vi 

 

List of Figures 

Figure 1.1: Representation of the PRRSV genome ...................................................................... 23 

Figure 1.2: Schematic representation of the PRRSV virion ......................................................... 24 

Figure 1.3: Diagram of macrophage receptor porcine CD163 ..................................................... 25 

Figure 1.4: Regulation of inflammation via CD163 SRCR 3 breaking down Hp-Hb complexes 26 

Figure 1.5:Various genetic constructs of pigs by CRISPR/Cas9 system...................................... 27 

Figure 1.6: Lung scores of PRRSV infected pigs ......................................................................... 28 

Figure 1.7: Average viremia levels in serum of PRRSV infected pigs by real time RT-PCR at 

log10 templates/ reaction. ...................................................................................................... 29 

Figure 1.8: Median fluorescence intensity level of CD163 antibody produced in serum of 

PRRSV infected pigs. ........................................................................................................... 30 

Figure 1.9: Haptoglobin levels in serum of WT, hCD163L-1, and Null pigs .............................. 31 

Figure 3.1:Receptor Expression Levels of CD163 and CD169 on PAMs .................................... 43 

Figure 3.2:In Vitro infection of PAMs measured in units of TCID50 ........................................... 44 

Figure 3.3:In Vitro infection of PAMs measured in units of TCID50 ........................................... 45 

Figure 3.4: In Vitro infection of PAMs measured in percent infection ........................................ 45 

Figure 3.5:In vitro infection of PMBC derived macrophages ...................................................... 47 

Figure 3.6:Images of PBMC derived macrophages infected with VR-2332 and stained with 

Alexafluor 594. ..................................................................................................................... 47 

Figure 3.7:Figures of frozen cultured macrophages from PBMCs ............................................... 48 

 



 

vii 

 

List of Tables 

Table 2.1: Conjugated antibody types for flow cytometry ........................................................... 38 

Table 2.2:Viruses used for In Vitro PAM Infections .................................................................... 39 

 

  



 

viii 

 

Acknowledgements 

I would like to thank Dr. Rowland for giving me the opportunity to participate as a 

member in his lab under his guidance and expertise in swine virology. Thank you, Drs. Davis, 

and Niederwerder for agreeing to be on my committee and your support in my thesis project. I 

would also like to thank everyone in the Rowland Research Laboratory that has helped with my 

research project. Thank you, Dr. Prather, and your entire team at the University of Missouri for 

inspiring me to explore another realm of the sciences beyond the macro level of animal 

husbandry and allowing me the opportunity to work for such a great group of scientists. Finally, 

thank you to my parents and siblings for being the greatest support group I could have ever asked 

for and raising me with the mentality to never quit, no matter how difficult the endeavor may be. 

 



 

1 

 

Chapter 1 - Literature Review of the PRRS Virus, the Macrophage 

Receptor CD163, and Genetic Editing via the CRISPR/Cas9 System 

Introduction 

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has plagued the global 

swine industry since the early 1980s. It was first termed Mystery Swine Disease, as it caused a 

variety of clinical signs in pigs. Veterinarians were unable to determine the etiologic agent in the 

United States (Keffaber, 1989), and the syndrome later appeared in Europe. However, the first 

isolate was characterized in 1991 (Benfield et al., 1992). The etiological agent was identified and 

sequenced in Europe in 1991 and called Lelystad virus (Wensvoort et al., 1991). Clinical signs 

ranged from reproductive failure in breeding age females, reduced weight gain and pneumonia in 

post weaning pigs, and increased mortality among all age groups (Hill, 1993). Transmission 

occurs via contact (Willis et al., 1997), boar semen (Yaeger et al., 1993), and as well as through 

fomites such as boots and coveralls (Otake et al., 2002). Annual productivity losses associated 

with PRRSV in the U.S. were estimated to be $660 million in 2011 with 45% of the cost coming 

from losses in the breeding herd (Holtkamp et al. 2011; Neumann et al., 2005).  

Many to combat PRRSV have focused on vaccine development and selective mating of 

potential PRRSV tolerance in pigs. Both modified-live virus (MLV) and killed vaccines have 

been evaluated for efficacy and protection against PRRSV. MLV vaccines have been shown to 

provide heterologous protection against respiratory disease associated with PRRSV over killed 

autogenous vaccines (Roof et al., 1999). More recently, a MLV vaccine was shown to reduce 

viremia levels, PRRSV-induced lesions, and decrease nasal shedding of virus from challenged 

pigs (Park et al., 2014). However, most vaccines on the market are not completely effective at 

eliminating virus replication, as different responses of vaccinated animals have been observed.  
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Certain genotypes of pigs from various genetic lines have been observed to show a production of 

PRRSV-neutralizing antibodies (NA) against isolates as well as better growth and performance 

in mass infection studies (Rowland et al., 2012). Nevertheless, genetic progress of these breeding 

lines with regard to tolerance via artificial selection can prove to be a timely process.  

 Genetic modification of animals through laboratory manipulation has been utilized for 

over 20 years via gene targeting with the predominant method being the use of zinc finger 

nucleases (ZFNs) and transcriptor activator like endonucleases (TALENS) (Capecchi, 1989). 

Unfortunately, these processes are time consuming have mediocre gene targeting efficiency. It 

was not until recently that a new and more efficient genetic editing system termed clustered 

regularly interspersed short palindromic repeats (CRISPR) paired with CRISPR associated 

protein 9 (Cas9) became available for genetic use, and has proved beneficial through quick and 

accurate genome editing (Jinek et al., 2012).  

Pigs are one of the many animal species that have undergone specific genetic 

manipulation through the CRISPR/Cas9 system, including the alteration of the PRRSV receptor, 

CD163. Genetic alteration of CD163 in macrophages of pigs has been proven successful, 

however many genotypes were produced (Whitworth et al., 2013). A previous study 

demonstrated that one of the many genotypes of genetically edited pigs exhibited resistance to 

infection of a single PRRSV isolate (Whitworth et al., 2015), however evaluation of disease 

resistance to the other produced genotypes as well as other isolates of PRRSV remained 

unknown.  
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The Arteriviridae Family 

Arteriviridae is a family of enveloped positive-stranded RNA viruses which include 

Arterivirus, the only genus in the family. Arteriviridae, in addition to Coronaviridae, 

Toroviridae, and Roniviridae, comprise the order, Nidovirales. These virus families have 

characteristics that are distinct to each, such as Coronaviridae, Toroviridae, and Roniviridae 

comprising some of the largest known RNA viral genomes (23 to 26kb), while Arterividae RNA 

genomes are smaller (13-16kb). However, due to the organization and expression of their 

genomes, there was ample evidence to group these families under the same order. That evidence 

includes a nested subgenomic mRNA for expression of the 3’ proximal ORFS, which encodes 

for the most conserved structural proteins and was the basis for the order (den Boon et al., 1995; 

Gorbalenya et al., 2006).  

The Arterivirus Genus 

Arteriviruses have a tropism for monocytes and macrophages of mammalian lineage and 

can cause persistent or subclinical infections in addition to respiratory disease in an acute phase 

(Snijder et al., 2013). Three other viruses that compose the Arterivirus genus in addition to 

PRRSV are equine arteritis virus (EAV), lactate dehydrogenase elevating virus (LDV), and 

simian hemorrhagic fever virus (SHFV) (Plagemann et al., 1992). Natural hosts of arteriviruses 

range from pigs (PRRSV), horses and donkeys (EAV), mice (LDV), and numerous genera of 

Asian and African monkeys (SHFV). PRRSV is categorized into two distinct genotypes, 

genotype 1 (termed European strain) and genotype 2 (termed North American strain), consisting 

of approximately 60% nucleotide identity thus allocating a wide variation of genetic diversity 

(Forsberg et al., 2002, Chen et al., 2011).
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PRRS Virus 

 Economic Impact  

The United States has been plagued with PRRSV in hog barns for well over 30 years. 

The reproductive losses associated with PRRSV infection are substantial. In 2013, it was 

recorded that breeding herds had reduced reproductive efficiency by 1.44 pigs weaned per sow 

per year. The total annual cost of productivity losses measured up to $302.06 million, equivalent 

to the loss of $52.19 per breeding female or $2.36 per weaned pig for the entire U.S. inventory. 

In 2005, the total annual losses were around $493.57 million in the growing pig population, and 

a loss of $66.75 million in breeding herd However just four years ago, PRRSV cost the industry 

$4.67 for every pig that was marketed leading to an annual cost of $663.91 million or $1.8 

million per day. (Holtkamp et al., 2013; Neumann et al., 2005)..  

 Viral Organization 

The PRRSV genome is comprised of positive-stranded polyadenylated RNA of about 15 

kilobases in size which varies based on the isolate of the virus (Conzelmann et al., 1992). The 

genomic RNA contains a 3’polyadenylated tail which follows the 5’ cap. The untranslated region 

(UTR) of the 5’ end has demonstrated a critical role in subgenomic RNA synthesis as a 

component in translational mechanisms (van den Born et al., 2005). The 3’ poly A tail has been 

considered important for initiation of RNA-dependent RNA polymerase and replication (Godeny 

et al., 1993). Due to its positive stranded properties, PRRSV does not require RNA polymerase 

in its virion and is capable of being directly translated by the host during protein synthesis., thus 

not requiring RNA polymerase in the virion (Meulenberg et al., 1993). Ten open reading frames 

(ORFs) have been identified: ORFs 1a, 1b, 2a, 2b, 3, 4, 5a, 5b, 6, and 7 (Figure 1.1) (Firth et al., 
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2011; Johnson et al., 2011). Multiple ORFs perform a variety of functions and encompass the 

PRRSV virion (Figure 1.2) 

 ORF 1a and ORF 1b encode for the RNA-dependent RNA polymerase and genes coding 

for two large polyproteins (pp1a and pp1ab) that cleave into 14 nonstructural protein (Nsp) 

coding regions by a cascade for four virally encoded proteins (Fang and Snijder, 2010; Ziebuhr 

et al., 2010). The Nsps inhabit 75% of the genome and are required for virus replication. 

Nomenclature for these Nsp’s range from Nsp 1 to Nsp 12.  pp1a is thought to produce Nsp1α, 

Nsp 1β, and Nsp 2 to Nsp 8. Nsp1 and Nsp 7 are further broken down into Nsp 1α and Nsp 1β, 

and Nsp 7α and Nsp 7β, respectively. Papain-like proteases (PLPs) encoded by Nsp1α and Nsp 

1β, Nsp 2, and a chromotrypsin-like serine protease encoded by Nsp 4, perform the entire 

polyprotein processing (den Boon et al., 1995; Han et al., 2009; Tian et al., 2009). Nsp 9 through 

12, products of pp1ab, are associated with virus replication and transcription and are translated 

when the virus enters the cell. They are then processed by proteinases into at least 12 mature 

Nsps and intermediate precursors. These precursors and mature Nsps are potentially accountable 

for RNA synthesis via virus-induced double membrane vesicles (den Boon et al., 1995; Snijder 

and Meulenberg, 1998; van Dinten et al., 1997). 

 ORFs 2 through 7 encode for viral structural proteins (Allende et al., 1999). ORF 2a 

encodes GP2a, a minor glycosylated envelope viral protein that is essential for virus infectivity 

and attachment (Wissink et al., 2004). Minor non-glycosylated viral envelope protein E is a 

product of ORF 2b. Reverse genetics utilizing EAV infectious clones have shown the potential 

function of protein E is required to produce infectious virions, however the exact function is still 

unknown (Snijder et al., 1999). ORF 3 encodes the minor glycosylated envelope viral protein 

GP3. GP3 is considered to be the most variable PRRSV proteins and is highly antigenic. It is also 
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considered to partake in viral neutralization (Cancel-Tirado et al., 2004; Gonin et al., 1998). GP4 

is the product of ORF 4. GP4 is another minor glycosylated envelope viral protein in addition to 

GP3. ORF 4 has been found to be crucial for virus replication via studies involving transfections 

of PRRSV permissive cells with ORF 4 deleted infectious cDNA clones (Welch et al., 2004). 

The ORF 5 gene encodes GP5 glycoprotein and is one of the most variable regions in the PRRSV 

genome (Andreyev et al., 1997). GP5, being one of the most important structural proteins, is a 

major glycosylated envelope viral protein and contains epitopes involved in protection and virus 

neutralization (Ansari et al.,2006). In vivo, most of the neutralizing antibodies are directed to 

GP5 (Gonin et al., 1999) However, studies have found evidence that glycosylation of GP5 has a 

role in escaping or decreasing the neutralizing antibody response by N-glycan shielding (Johnson 

et al., 2003; Wei et al., 2003). Additionally, GP5 appears to be involved with antibody 

dependent enhancement, allowing increased infection of macrophages via the fc receptor on 

PRRSV antibodies (Cancel-Tirado et al., 2004). Inducing apoptosis of the macrophage is another 

function of GP5. During PRRSV infection, specific apoptotic enzymes are activated resulting in 

death of the cell and promoting the release of more PRRSV (Gagnon et al., 2003; Suarez et al., 

1996). ORF 6 encodes the M membrane envelope protein and is one of the most conserved 

structural proteins.  The M protein likely plays a role in virus assembly and budding 

(Meulenberg et al., 1993). The nucleocapsid, or N, protein is encoded by ORF 7 and is highly 

immunogenic in pigs (Meulenberg et al., 1995) The N protein encapsulates the genome and is 

the sole component of the capsid, comprising of approximately 20% to 40% of total viral 

proteins. The C-terminus of the protein plays an essential role in conformational epitopes 

(Meulenberg et al., 1998). The N protein is the most commonly used protein in diagnosis via 

detection of the virus by N-specific antibodies due to its highly conserved immunogenic 
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properties, and being the target of the early immunological response in infected pigs (Loemba et 

al., 1996; Meulenberg et al., 1998). Part of the N protein localizes itself in the nucleus and 

nucleolus of the cell which may play a role in viral pathogenesis such as cell gene expression 

(Rowland et al., 1999). N protein has also demonstrated protein binding that is independent of 

other binding proteins via the formation of an N protein/ importin complex, which was 

discovered by an in vitro pull-down assay (Rowland and Yoo, 2003).  

 Genotypes  

  PRRSV falls into two distinct genotypes with multiple isolates in each, termed the 

European strain (genotype 1) and North American strain (genotype 2). The study of polyclonal 

antisera indicated a difference was present between the two genotypes (Wensvoort et al., 1992). 

Comparison studies have also been performed by sequencing genomes from isolates of each 

genotype. At the genome level, both isolates constitute 60% nucleotide identity. However, major 

differences have been detected at the protein level. Variations include at level of the 5’ and 3’ 

non-coding regions, and in the non-structural coding regions of Nsp and capsid protein 4 (CP4) 

located in ORFs 1a and 1b. Nsp 2 has appeared to possess only 32% amino acid identity and 

included 120 extra residues, while CP4 shared only 42% amino acid identity between the two 

genotypes (Allende et al., 1999).   

 Transmission 

PRRSV has historically been known to be a highly infectious pathogen, needing less than 

1 X10 1 tissue culture infectious dose (TCID50) to infect pigs via the intramuscular route (Yoon et 

al., 1999). Transmission of PRRSV is primarily through close contact between diseased and 

naïve animals. Nose-to-nose contact with urine and feces are the main routes of transmission 

(Rossow et al., 1994; Wills et al., 1997). The minimum infectious dose (MID) varies with the 



 

8 

 

route of viral exposure. For exposure to PRRSV genotype 2 isolate VR-2332 via oral and 

intranasal routes, the infectious dose 50 (ID50) was 105.3 and tissue culture infectious dose 50 

(TCID50) was 104, respectively (Hermann et al., 2005). There are also reports of virus being 

isolated from semen six days post inoculation and may persist up to 92 days in infected boars. 

Transmission of the virus via insemination has also been detected. PRRSV can replicate in male 

testicular germ cells, induce death via apoptosis, and alter spermatogenesis (Christopher-

Hennings et al., 1995; Reicks et al., 2006; Sur et al., 1997; Yaeger et al., 1993). However, higher 

infectious doses (2 X 105) are needed for transmission via semen as compared to infection via the 

intranasal route (Nelson et al., 2002). PRRSV can also infect fetuses via replication in the 

endometrium of the female and then crossing the maternal-fetal interface, ultimately infecting 

the fetuses. However, not all fetuses may be directly infected with virus. Due to the 

compartmentalizable nature of the placenta with each fetus receiving individual blood and 

nutrient supply and are at different distances from the uterine body, each fetus of which may 

attempt to induce an antiviral response (Karniychuk and Nauwynck, 2013; Rowland, 2010). 

Additionally, normal pig behavior plays a role in PRRSV transmission. Tail and vulva bites, 

scratches, and abrasions can all result from pigs fighting. Aggressive behaviors, especially in 

sows, have shown to promote PRRSV transmission to other animals in the specific pen the 

infected animal is housed in (Bierk et al., 2001). Differences in infectivity have also been 

observed in various isolates, such as aerosol exposure to a genotype 2 isolate, MN-184. The 

recorded ID50 was less than 2, indicating MN-184 is far more infectious than VR-2332 (Cutler et 

al., 2011).  Fomites have served as vectors of PRRSV transmission including but not limited to: 

boots, tools, coveralls, and contaminated needles (Otake et al., 2002a). Mechanical transmission 

of PRRSV from infected pigs to naïve pigs via the species of mosquito, Aedes vexans has also 
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been reported. However, it has not been verified whether mosquitoes could serve as biological 

vectors for the virus (Otake et al., 2002b). Houseflies, particularly the species Musca domestica 

Linnaeus, can harbor PRRSV in their intestinal tract for up to 12 hours after feeding on infected 

animals (Otake et al., 2003). Aerosol transmission of PRRSV has also been measured in 

controlled conditions as a means of pathogen quantification (Hermann et al., 2009).  

 Clinical Signs 

Clinical signs vary betweein the developmental stages of pigs. The hallmarks for signs of 

infection lie with reproductive and other various systemic signs. Particularly for breeding age 

gilts, sows, and boars, reproductive problems are the most obvious and may last 1-4 months post 

infection. These signs include: reduced conception rates, weak-born piglets that lead to higher 

pre-weaning mortality, mummified fetuses, abortions, stillborns, and premature farrowings. This 

age range can also experience lethargy, anorexia, malaise, respiratory distress, and potential 

vomition. Infected boars have produced semen of poor quality, low sperm motility, and a 

reduced number of spermatozoa with normal acrosomes. Infected suckling piglets are known for 

“thumping”, which is associated with dyspnea, and being febrile. Postweaning pigs may have 

chronic infections leading to, rough hair coats, anorexia, lethargy, cutaneous hyperemia, and an 

85% reduction in average daily gain which leads to uneven size within groups.  Secondary 

opportunistic bacterial infections have also been observed in PRRSV infected pigs which 

include: Streptococcus suis, Mycoplasma hyopneumoniae, Escherichia coli, Haemophilus 

parasuis, and Salmonella Choleraesuis (Dee, 2016; Prieto et al., 1996; Zimmerman et al., 2012).  
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 Pathogenicity 

Interactions between PRRSV and its pig host are comprised of a variety of viral 

pathogenesis mechanisms. Detection of a vigorous anti-PRRSV antibody response can be as 

early as 7 to 9-day post infection (DPI). However, this production of early response antibodies 

has been found to promote the infection rather than work in neutralization, thus increasing 

viremia levels (Lopez et al., 2007; Yoon et al., 1996).  Due to the mediocre cell mediated 

immune response, a persistence of infection results due to suppressed T lymphocyte recognition 

of infected macrophages (Xiao et al., 2004).  Subacute viremia covers approximately 28 days 

with mechanisms of respiratory distress and the releasing of cytokines to induce inflammation. A 

failure within the protective immune effectors allow the acute replication of the virus in the 

animal due to the late response of PRRSV neutralizing antibodies and PRRSV specific gamma 

interferon-producing cells (Meier et al., 2003). Following peak viremia around day 7, the 

presence of virus tends to fade slightly with the periodical reappearance of viremia around day 

28 (Boddicker et al., 2011). Virus replication has a tendency to decrease from 9 DPI in the lungs 

potentially due to the appearance of anti-PRRSV antibodies, lack of susceptibility of penetrated 

monocytes, and the shortage of macrophages available for infection (Labarque et al., 2000). 

PRRSV has been found to persist for up to 150 days post infection with persistent shedding 

during the asymptomatic period. Eventually the virus replication levels decrease to minimal and 

undetectable levels and are cleared from the body, however the mechanism responsible for this is 

not clear (Horter et al., 2002, Rowland et al., 2003b). The genetic stability of both non-coding 

regions (NCRs) in the PRRSV nucleocapsid as well as genes coding for the M protein and 

glycoproteins have been found to possess mutations which may account for the persistence of the 

virus (Allende et al., 2000).   
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 Pathological Lesions 

Due to the nature of PRRSV, there are multiple lesions that occur prior to and upon 

necropsy, indicating that the results of infection are multisystemic. Gross lesions at necropsy 

include lymphadenopathy, encephalitis, myocarditis, vasculitis, pneumonia. Lymph node lesions 

are variable but may consist of germinal center hypertrophy and hyperplasia, lymphocyte 

necrosis, and multifocal cystic spaces. Light microscopic lesions can be found in the lymph 

nodes, blood vessels, lung, and heart. The greatest number of lesions under light microscopy can 

be found in the alveolar cells in the cranial lung lobes, with interstitial pneumonia being the 

primary lesion. Alveoli appear to be the most affected with lysed macrophages, syncytial 

alveolar cells, and karyorrhectic debris (Rossow et al., 1995). However, there are no gross nor 

microscopic pathognomonic lesions. Aborted fetuses and stillborns have little value for 

diagnosis. For pigs in all age groups, systemic hypertrophic lymph nodes and interstitial 

pneumonia can be observed upon necropsy (Lager and Halbur, 1996; Stevenson et al., 1993). 

Additionally, genotype 2 PRRSV has been observed to be more pneumovirulent than genotype 1 

based on respiratory clinical signs and lesions both on the gross and microscopic level (Martinez-

Lobo et al., 2011.) 

 Detection of PRRSV 

Diagnostic methods for PRRSV include real time reverse transcription-polymerase chain 

reaction (RT-PCR), enzyme linked immunosorbent assays (ELISA), microbead assay (MBA), 

indirect fluorescent antibody test (IFA), serum neutralization (SN), direct fluorescent antibody 

test (DFA), immunohistochemistry (IHC), and virus isolation. For PRRSV detection in live 

animals, a serum sample is the preferred retrieval method. Real time RT-PCR has been found to 

produce rapid, highly sensitive results with detection of low levels of PRRSV in serum. Real 

time RT-PCR can also detect the strain of PRRSV that is present. However, ELISAs have been 
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the gold standard for detection due to high sensitivity and specificity. Serum is utilized in an 

ELISA and antibodies can be detected 9-13 DPI. ELISAs are less costly than real time RT-PCR, 

however serum samples must be taken later to get a detectable amount of PRRSV antibodies. 

Also, the strain of PRRSV cannot be detected by ELISA. (Collins et al., 1996; Lurchachaiwong 

et al., 2007; Rovira et al., 2007). More recently, microbead assays were developed as a means of 

measuring lower antibody levels and have the capability for simultaneous detection of antibodies 

for more than one disease that may be present in the sample serum (Lin et al., 2011.) A historical 

diagnostic method of PRRSV is through IFA, which can detect PRRSV antibodies restricted to 

PRRSV infected cells. SN branched from IFA and could detect antibodies earlier with higher 

titers, and can differentiate between PRRSV isolates (Yoon et al., 1994). However, both methods 

are used less today, due to in part more rapid results of real time RT-PCR. IHC is a standard 

tissue diagnostic method for deceased animals which has capabilities in detecting PRRSV 

antigen, particularly in the lung (Yaeger, 2002).  

Prevention and Control 

Prevention of the introduction of PRRSV is the utmost important strategy for farms that 

are free of the virus. Biosecurity is key when attempting to prevent an outbreak. Current 

protocols in use include: personnel entry via the Danish entry system or shower-in systems, 

proper facility upkeep with rodent and insect control, quarantine areas for incoming animals, 

sanitation and drying of equipment and trucks, and the use of filtration systems for barn air 

movement (Dee and Deen, 2006; Zimmerman et al., 2012). Immunizations to defend against 

PRRSV have been in the market for many years, particularly modified live virus vaccines. Field 

virus inoculations have also been practiced inducing PRRSV in a region of farms with goals of 

immunizing all present animals. Unfortunately, vaccination has been unable to prevent a virus 
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outbreak. However, there have been reports of vaccinated animals that were infected with 

PRRSV showing reduced nasal shedding, decreased viremia levels, and less extensive lesions 

(Corzo et al., 2010; Park et al., 2014). Unfortunately, one or more of the above protocols is 

breached and the farm may become PRRSV positive. Many control measures can be utilized. 

Total herd depopulation/repopulation, partial depopulation, and herd closure have been shown to 

successfully eliminate PRRSV from a facility (Torremorell and Christianson, 2002). 

Additionally, unidirectional pig flow has shown promise in controlling disease spread. Ensuring 

diseased animals do not come back in contact with their previous locations is critical for 

management of a PRRSV outbreak (Dee and Philips, 1998).  

The Peripheral Blood Mononuclear Cell (PBMC) and Macrophage 

Peripheral blood mononuclear cells (PBMCs) are immune cells circulating in the blood 

with a round nucleus. Monocytes, and lymphocytes comprise the PBMC category. Isolation of 

PBMCs depends on the density of the PBMCs and the other components in whole blood. 

Successful isolation includes the use of a density gradient medium such as Ficoll™ 

(Riedhammer et al., 2014). Porcine 2A10 antigen expressed on tissue macrophages has been 

found to possess sequence homology with human CD163. However, most blood monocytes are 

negative 2A10. Receptor expression on porcine macrophages can be measured via the 

application of 2A10 mab (Bullido et al., Sanchez et al., 1999). If measuring particular receptor 

expression to evaluate its function, a means of cell stimulation is necessary. The use of colony 

stimulating factors are common to differentiate monocytes into macrophages. Colony stimulating 

factors (CSF) are essential for the survival of blood monocytes during in vitro cell culture. 

Granulocyte-monocyte cell stimulating factor (GM-CSF), is a useful tool for maturing blood 

monocytes to obtain differentiated macrophages that resemble alveolar macrophages (Akagawa, 
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2002; Metcalf, 1986). Under specific culture conditions, GM-CSF can be used to differentiate 

blood derived monocytes into mature macrophages, thus upregulating the expression of 2A10 

and increasing the opportunity to measure CD163 expression with 2A10 mab. 

Macrophages are derivatives of bone marrow cells and are a hallmark component of the 

innate as well as adaptive immune responses due to their phagocytic properties with engulfing 

large particulate matter. Macrophages ingest bacteria, viruses, fungi, immune complexes, and 

cellular debris. Additionally, they aid in the process of restoring homeostasis and are also 

involved in disease (Aderem and Underhill, 1999; Dale et al., 2008). Healing and tissue repair 

has also been discovered as a physiological component of macrophages via the release of 

angiogenic propagators and nitric oxide (NO) (Stallmeyer et al., 1999).  

Macrophages have the capacity to differentiate and mature in response to various stimuli. 

Adapted from T lymphocyte nomenclature, macrophages can be classified as M1 and M2 based 

on the type of activation that was evoked (Mills et al., 2000). M1 macrophages are considered to 

be classically activated, as they perform phagocytosis and promote inflammation. M1 

macrophages are stimulated via gamma interferon combined with lipopolysaccharide (LPS) or 

tumor necrosis factor (TNF). M1 macrophages participate in inflammatory immune responses. 

Alternatively, macrophages may be of the M2 phenotype, and are broken down into three 

subclasses. M2a macrophages are stimulated by IL-4 and IL-13. M2b macrophages are 

stimulated by immune complexes coupled with toll-like receptor. M2c macrophages are 

stimulated by secretion of IL-10. M2 macrophages are involved in immunoregulation, Th2 

activation, and tissue remodeling (Mantovani et al., 2004; Murray et al., 2014; Sang et al., 2015; 

Singleton et al., 2016.)  
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The PRRSV receptor: CD163 

 Structure 

Cluster of Differentiation 163 (CD163) is a 130 kDa long protein plays many roles in 

various biological processes in mammals. Expression of CD163 is restricted to cells specifically 

of the macrophage/monocyte lineage (Van den Huevel et al., 1999). CD163 is a member of the 

scavenger receptor cysteine rich (SRCR) superfamily specifically Class B consisting of nine 

SRCR domains, 17 exons, 16 introns, two Proline Serine Threonine (PST) domains, and a 

cytoplasmic tail (Law et al., 1993).  

 Physiological Properties 

CD163 was first identified as a macrophage membrane receptor for the endocytosis of 

haptoglobin-hemoglobin (HpHb) complexes and acts as a scavenger for free haptoglobin as a 

preventative measure of oxidative toxicity (Kristiansen et al., 2001). Particularly, SRCR domain 

3 is the main determinant in coupling and interaction with endocytosis of HpHb complexes 

(Madesn en et al., 2004). Additionally, metabolites are released following HpHb degradation. 

They include bilirubin, CO, and free iron and possess strong anti-inflammatory as well as anti-

oxidative effects (Figure 1.2). The result of the release of these metabolites is a negative 

feedback loop that reduces inflammation (Soares and Bach, 2009). Macrophages are a crucial 

component to clearing infection, but can generate tissue damage if left unchecked. As a response 

to inflammation, CD163 on macrophages produces an anti-inflammatory effect via the secretion 

of IL-10, an anti-inflammatory cytokine, and creates a positive feedback loop. The result is the 

upregulation of IL-10 expression to induce an anti-inflammatory effect to the inciting stimulus, 

thus reducing the macrophage immune response  (Figure 1.2) (Buechler et al., 2000; Philippidis 

et al., 2004). However, pro-inflammatory cytokines such as IL-1β, IL-6, GM-CSF, and TNF-α, 
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are also produced through the cross-linking of CD163 with bacteria or antibodies. An increased 

inflammatory response will promote more macrophage activity, thus creating risk of tissue 

damage (Fabriek et al., 2009, Polfliet et al., 2006,).  

Soluble CD163 

 In addition to membrane-bound CD163, a soluble form of CD163 (sCD163) is present in 

serum and other fluids (Moller et al., 2002). HbHp complexes have been found to also bind to 

sCD163, but at a much lower affinity when compared to membrane CD163 (Møller et al., 2010). 

sCD163 has been found to be a result of shedding as a part of normal physiology and by a 

number of inflammatory mechanisms. These include the induction of toll-like receptor (TLR) 4 

activation from exposure to LPS, thrombin, oxidative stress, and crosslinking of the Fcγ on 

antibodies (Chung et al., 2011; Hintz et al., 2002; Møller et al., 2002; Sulahian et al., 2004; 

Timmermann and Hӧgger, 2005). The actual function of sCD163 is still unknown. However, it 

can serve as a useful biomarker of macrophage activation in response to inflammation with a 

variety of diseases (Møller et al., 2012).  

 Virus-Receptor Interaction 

Porcine CD163 plays a role as a key mediator for infection of PRRSV (Calvert et al., 

2007). Of the 17 exons, exon 7 codes for SRCR domain 5, and serves as the critical facilitator for 

PRRSV infection and is therefore a potential target for genetic manipulation. (Van Gorp et al., 

2010). The PRRSV major envelope protein, GP5, was thought to bind to the alveolar 

macrophage receptor sialoadhesin (Sn/SIGLEC/CD169) prior to internalization of PRRSV (Van 

Breedham et al.2010). Pigs that were genetically edited to completely lack the once intact 

sialoadhesin receptor on alveolar macrophages revealed it is not required for PRRSV infection 

(Prather et al., 2013).  However, a heterotrimer (consisting of GP2, GP3and GP4 of the PRRSV 
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virion) interacts with SRCR domain 5 of CD163 on the extracellular membrane of macrophages 

resulting in propagation of virus uncoating and replication leading to eventual infection (Das et 

al., 2010, Van Gorp et al., 2010).   

 

The CRISPR/Cas9 System 

The CRISPR/Cas9 system has recently become an efficient genetic editing tool and was 

awarded the 2015 science breakthrough technology of the year due to incredibly precise and 

efficient genome editing. First discovered in 1987, CRISPRs were identified in Escherichia coli 

with a sequence element series consisting of 29-nucleotide repeats separated by 32-nucleotide 

‘spacer’ sequences (Ishino et al., 1987). However, this discovery was of interest in genetics in 

the 2000s when they were identified in many prokaryotes with multiple CRISPR-associated 

(Cas) proteins (Jansen et al., 2002, Mojica et al., 2000).  

 

CRISPR/Cas9: A Genetic Engineering Breakthrough 

Prior to CRISPR/Cas9 usage in genetic manipulation strategies, the primary route of 

genetic modification was through gene targeting with homologous recombination (Capecchi, 

1989). However, this method is rather inefficient and was eventually replaced with customized 

zinc finger nucleases (ZFNs) and meganucleases which work by cleaving specific DNA target 

sequences in vivo and creating double stranded breaks at pre-selected sites. The breaks are then 

repaired via homologous recombination or non-homologous end joining (NHEJ) (Bibikova et al., 

2003; Cathomen and Joung, 2008). ZFNs had the spotlight of genetic engineering for many years 

until transcription activator-like effector nucleases (TALENs) showed signs of significant 
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improvements of traditional genetic modifications with increased applicability of targeting the 

desired edited sequence through larger amino acid modules compared to ZFNs (Boch et al., 

2009; Christian et al., 2010).  

Until a few years ago, the use of ZFNs or TALENS were considered the only method of 

genetic alteration. The CRISPR/Cas9 system has been found to be an efficient alternative for 

inducing targeted genetic editing. The editing mechanism is achieved through short segments of 

foreign DNA, also known as “spacers”, which are incorporated with the CRISPR genomic loci 

and are then transcribed and processed into short CRISPR RNAs (crRNAs). Pathogenic DNA is 

then silenced by Cas proteins due to the crRNAs annealing to trans-activating crRNAs 

(tracrRNAs) producing sequence-specific cleavage (Figure 1.3). It has been found that the Cas9 

protein requires a baseline sequence within the crRNA and a conserved dinucleotide-containing 

protospacer adjacent motif (PAM) sequence upstream of the crRNA binding region in order to 

perform target recognition and double stranded breaks (Jinek et al., 2012). By re-designing the 

crRNA, the CRISPR/Cas9 system can be re-targeted to cleave practically any DNA sequence.  

Designing of Genetically Edited Animals 

Prior to genome editing of eukaryotes, prokaryotes were the first subjects of use for 

application of CRISPR technology for bacterial strain typing, particularly for Mycobacterium 

tuberculosis (Groenen et al., 1993). In 2002, many CRISPR associated (Cas) proteins were 

found to be invariably adjacent to a CRISPR locus indicating a functional relationship as stated 

previously (Jansesn et al., 2002). It was not until 2005 that CRISPRs were described to protect 

prokaryotes from invading foreign DNA, potentially from plasmids or viruses through a 

mechanism that is analogous to eukaryotic RNA interference mechanisms (Makarova et 

al.2006). The type II CRISPR/Cas9 adaptive immune system has been shown to facilitate RNA-
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guided site-specific cleavage of DNA, which is now the tool in current use for CRISPR/Cas 9 

system genetic targeting (Deveau et al., 2010; Horvath and Barrangou, 2010; Makarova et al., 

2011; Bhaya et al., 2011). A successful attempt at reconstituting a CRISPR system derived from 

Streptococcus pyogenes in a mammalian cell line, facilitating efficient genome editing occurred 

in 2013 with a later study confirming high efficiency RNA-genome targeting in several human 

and mice cell lines (Cong et al., 2013; Mali et al., 2013). CRISPR/Cas9 technology has 

exponentially skyrocketed in the genome editing realm and many animal species have now been 

subject to such manipulation ranging in species from: mice (Cong et al., 2013), pigs (Whitworth 

et al., 2013) cattle (Tan et al., 2013), mosquitoes (Gantz et al., 2015), and even dogs (Arnott et 

al., 2015).  

Genetically Edited Pigs Are Protected from PRRSV 

In Whitworth, et al. 2013, the CRISPR/Cas9 system was utilized to produce genetically 

edited pigs from in vitro derived oocytes and embryos (Figure 1.5). After manipulation of 

somatic cells through homologous recombination (HR) or non-homologous end joining (NHEJ) 

by CRISPR/Cas9, the cells were used to produce genetically edited pigs through somatic cell 

nuclear transfer (SCNT). The edited embryos or oocytes were then surgically implanted into 

surrogate gilts via embryo transfer (ET) and an array of genotypes were produced. Challenge 

studies performed by Whitworth et al. 2015 revealed that pigs lacking the CD163 receptor, due 

to manipulation by the CRISPR/Cas9 system, were resistant to a single strain of PRRSV, a 

genotype 2 isolate NVSL 97-7895.  

Proceeding with an additional in vivo study, more gene edited pigs were challenged 

against a genotype 1 strain of PRRSV, SD 13-15, and again with the genotype 2 strain, NVSL 

97-7895. In addition to the Null pigs being challenged, hCD163L-1 pigs which have a swapped 
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domain of SRCR domain 5 with a human-like CD163 SRCR domain 8, were challenged as well. 

Blood was collected intravenously on days 0, 4, 7, 11, and 14 post infection. On day 15, pigs 

were euthanized and lung lavages were performed to collect PAMS.  

Lung tissue was also collected at necropsy and aliquoted in 10% formalin, embedded in 

paraffin, and processed for histopathology. A board-certified pathologist performed 

histopathology. Scores ranged 0-4 with 0 for no microscopic lesions to 4 for severe interstitial 

pneumonia that includes ~75 to 100% of lung tissue. WT and hCD163L-1 lung scores ranged 

from 1 to 4 ranging from mild to severe interstitial pneumonia while the Null pigs presented 

scores of 0 with normal lung architecture. (Figure 1.6) 

Viremia levels in serum determined by RT-PCR are shown in figures 1.7 A and B as 

averages per genotype in units of Log10 templates per reaction. The minimum threshold of 

determining infected sera was set at 500 relative fluorescence units (RFU). Figure 1.7 A 

represents viremia levels of genotypes of pigs challenged with PRRSV genotype 1 isolate SD 13-

15. The WT group showed a typical PRRSV viremia curve with peak viremia approximately 7-

11 DPI. The Null and hCD163L-1 group did not show signs of virus replication. Figure 1.7 B 

shows viremia levels of genotypes of pigs challenged with PRRSV genotype 2 isolate NVSL 97-

7895. WT and hCD163L-1 pig groups revealed values of virus replication with a typical PRRSV 

viremia curve for both groups. The Null group did not show any signs of virus replication or 

viremia (Wells et al., 2017).  

IgG antibody levels were determined via a multiplex assay in figure 1.8, and are 

represented in units of net Median Fluorescent Intensity (MFI) based on parameter from the bead 

sets that were used. For genotype 1 PRRSV, only WT pigs were observed to have a recognizable 
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MFI. For genotype 2 PRRSV infections, WT and hCD163L-1 pigs both had an observable MFI. 

MFI levels of Null pigs were unobservable for both PRRSV genotypes. (Wells et al., 2017).  

CD163 performs a physiological function by scavenging HpHb complexes, as a means of 

prevention of oxidative toxicity (Kristiansen et al., 2001). Questions were raised regarding the 

Hp levels of CD163 gene edited pigs, and the animal’s homeostatic status. A double antibody 

sandwich ELISA was performed to measure Hp levels in the serum of PRRSV negative WT, 

hCD163L-1, and Null pigs. Elevated Hp levels were found in the gene edited pigs, while WT 

were shown to have less circulating levels of Hp (Figure 1.9) (Wells et al., 2017). This may be in 

part due to the receptor being rendered nonfunctional in Null pigs and less expressive in the 

hCD163L-1 pigs. However, when observed on the hoof, both edited genotypes of pigs appeared 

to be bright, alert, and responsive, just like their WT cohorts.    

In Wells et al., 2017, it was concluded that pigs with a replacement of porcine CD163 

SRCR domain 5 with a CD163-like homolog, also termed hCD163L-1 pigs, were resistant to 

genotype 1 PRRSV but not genotype 2 PRRSV. Additionally, we found the Null pigs to also be 

resistant to the genotype 1 PRRSV. These results led to the use of in vitro challenge studies to 

evaluate PRRSV resistance in a larger quantity.  

Purpose 

The purpose of this study was to evaluate the potential resistance that macrophages from 

gene edited pigs may have to multiple isolates of genotype 1 and 2 PRRSV. However, alternative 

methods for macrophage collection besides animal sacrifice has also warranted investigation. 

The low replication fidelity of PRRSV leaves it to be an international virus that has yet to be 

prevented. Control efforts have been in place for a number of years leading to some success for 

eventual eradication of PRRSV from individual hog sites, but eradication on a larger scale has 
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not been achieved. Unfortunately, a preventative cure has yet to established. The verification of 

gene edited pigs posing resistance to a breadth of PRRSV isolates may hold the key to 

propagating these animals into the worldwide hog commodity market. 
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Tables and Figures 

 

Figure 1.1: Representation of the PRRSV genome 

The PRRSV genome consists of 10 open reading frames 10 (ORFs). ORFs 1a and 1b produce 

polyproteins to generate nonstructural proteins. ORFs 2a and 2b as well as 3 through 7 produce 

viral structural glycoproteins. 

 

 

Courtesy of Benjamin Trible 
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 Figure 1.2: Schematic representation of the PRRSV virion 

The PRRSV virion is consists of an envelope, N protein, M protein, as well as major 

glycoprotein 5 and minor glycoproteins 2a, 3, and 4. Das et al.2010 and Van Gorp et al.2010 has 

shown that GP2a, and GP4 interact with domain 5 of CD163 for attachment and internalization. 

 

 

 

  

  

 Courtesy of Benjamin Trible 
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Figure 1.3: Diagram of macrophage receptor porcine CD163 

 

(A) Diagram showing CD163 protein SRCR (ovals) and PST (squares) domains and 

corresponding gene exons. (B) Peptide sequence comparison of porcine CD163 SRCR 5 with the 

HCD163L1 SRCR 8 homolog.   The figure is based on GenBank accession numbers AJ311711 

(pig CD163) and GQ397482 (hCD163L-1).  
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Figure 1.4: Regulation of inflammation via CD163 SRCR 3 breaking down Hp-Hb 

complexes 

 

After breaking down Hp-Hb complexes, the macrophage incorporates the products in the 

lysosome where they are metabolized and excreted as metabolites of either free iron, carbon 

monoxide, or bilirubin which in turn reduces inflammation. 
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Figure 1.5:Various genetic constructs of pigs by CRISPR/Cas9 system.  

From Wells et al. 2017. Various genetic constructs of WT, and CD163 edited pigs.  
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Figure 1.6: Lung scores of PRRSV infected pigs 

 Post mortem lung scores are below. WT and hCD163L-1 lung scores ranged from 1 to 4 

ranging from mild to severe interstitial pneumonia while the Null pigs presented scores of less 

than 1 with normal lung architecture. hCD163L-1 pigs infected with a type 2 isolate were 

observed to have a higher lung score than those infected with a type 1 isolate.  
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Figure 1.7: Average viremia levels in serum of PRRSV infected pigs by real time RT-PCR 

at log10 templates/ reaction.  

Genotypes challenged include CD163 hCD163L-1, Null, and WT. A) Viremia levels of Type 1 

(SD 13-15) infected pigs. Only WT pigs showed noticeable levels of viremia. B) Viremia levels 

of Type 2 (NVSL) infected pigs. Only pigs of the Null genotype showed no detectable levels of 

viremia.  
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Figure 1.8: Median fluorescence intensity level of CD163 antibody produced in serum of 

PRRSV infected pigs.  

Genotypes challenged include hCD163L-1, Null and wildtype (non-edited) pigs. The Y-axis 

indicates median fluorescence intensity of the parameter of microbeads in regard to hCD163L-1 

to antibody levels, specifically IgG. The X-axis indicates DPI. A) Antibody levels of Type 1 (SD 

13-15) infected pigs. B) Viremia levels of Type 2 (NVSL) infected pigs. 
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Figure 1.9: Haptoglobin levels in serum of WT, hCD163L-1, and Null pigs  

 Circulating haptoglobin levels for HL11m (hCD163L-1), and Null pigs were higher than WT 

pigs, potentially due to lower or no expression levels of CD163, a scavenger receptor that 

recycles haptoglobin  
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Chapter 2 - Materials and Methods 

PAMs Collection 

PAMs were collected 15 DPI at necropsy. Three collection tubes each containing 50 mL 

of phosphate buffered saline (PBS) were used to perform lung lavages to collect the PAMs and 

then temporarily stored on ice until further aliquoted. Lung tissue from each pig was also 

collected and stored in 200 mL sample cups with 150 mL formalin for histopathology. Lungs 

were removed from euthanized pigs and lavaged by pouring 100 ml of cold PBS into the trachea. 

The trachea was clamped with hemostats and the lungs gently massaged for a minimum of 30 

seconds. The alveolar contents were poured into 50 ml centrifuge tubes and stored on 

ice. Macrophages and other cells were removed by centrifugation at 1200 x g for 10 minutes at 

4°C. The resulting pellet was resuspended in cold sterile PBS and was washed once. The cell 

pellet was resuspended in freezing media comprised of 50% RPMI 1640, 50% FBS, and 10% 

DMSO (Thermofisher Scientific, Lenexa, KS, USA), and 45% FBS (Sigma Aldrich, St. Louis, 

MO, USA) then stored in liquid nitrogen until use.  

PBMC Isolation 

Peripheral blood mononuclear cell (PBMC) isolation was performed using 50 ml 

SepMate50 PBMC isolation tubes (Stem Cell Technologies, Vancouver, British Columbia, 

Canada). 3.5 ml Ficoll-Paque Premium™ density gradient medium (GE Healthcare Life 

Sciences, Pittsburgh, PA, USA) was added to empty 50 ml SepMate50 tubes. 15 ml blood 

samples were diluted with 15 ml PBS with 2% FBS. Diluted blood samples were pipetted down 

the sides of the of the SepMate50 tubes. SeptMate50 tubes with blood samples were centrifuged 

at 1200 x g for 20 minutes at room temperature. The top layer of mononuclear cells (MNCs) was 
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poured off into a new 50 ml conical tube and was washed with PBS with 2% FBS. MNCs were 

centrifuged at 300 x g for 8 minutes at room temperature and repeated once. MNCs were then 

resuspended in freezing media with 45% FBS, 45% DMEM, and 10% DMSO and stored at -

80°C in 1ml aliquots in 1.5 ml Nalgene System 100 Cryogenic Tubes (Thermofisher Scientific, 

Lenexa, KS, USA). 

Isolates 

PRRSV isolates (Figure 2.2) grown from Marc-145 cell lines were titrated from 101 to  

106  infectious units/ml. 100 µl of PRRSV isolate was added to 900 µl of RPMI culture media 

creating a 1:10 dilution. 100 µl of diluted PRRSV isolates were then added in triplicate to the to 

appropriate wells of naïve PAMs. Plates were incubated overnight at 37°C with 5% CO2. 

Isolates were chosen based on their genotype, different nucleotide and peptide sequences, date of 

initial isolation, and level of virulence ranging from low virulence to atypical (highly virulent).  

Flow Cytometry of PAMs 

For antibody staining, approximately 1X106 PAMs were placed into 12 mm x 75 mm 

polystyrene flow cytometry (FACS) tubes and incubated for 15 minutes at room temperature in 

1ml of PBS with 10% normal mouse serum.  Cells were pelleted by centrifugation and re-

suspended in 100 µl PBS and 1% BSA along with 5 µl of FITC-conjugated mouse anti-porcine 

CD169 mAb and 5ul of PE-conjugated mouse anti-porcine CD163 mAb (Abd Serotec/Bio-Rad 

companies, Hercules, CA, USA) (Table 2.1). After a 30-minute incubation, the cells were 

washed twice with PBS containing 1% BSA (Fraction V; Hyclone) and immediately analyzed on 

a BD LSR Fortessa flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) with FCS 
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Express 5 software (De Novo Software, Los Angeles, CA, USA).  A minimum of 80,000 

macrophages were analyzed for each sample.  

PAMs In Vitro Infection (End-Point Dilution) 

Frozen cells were thawed on ice, counted using a Scepter™ 2.0 handheld automated cell 

counter (EMD Millipore, Temecula, CA, USA) and adjusted to a concentration of 5x105 cells/ml 

of media (RPMI 1640 with 10% FBS, PenStrep, and Fungizone: RPMI-FBS) (Gibco, 

Thermofisher Scientific, Lenexa, KS, USA). PAMs (100 ul/well) were plated onto 96 well plates 

and incubated overnight at 37°C in 5% CO2. The cells were gently washed and infected by adding 

serial 1:10 dilutions of PRRSV, in triplicate to rows in the 96 well plate. After an overnight 

incubation at 37°C in 5% CO2, cells were washed and then fixed for 10 min with 80% acetone. 

After drying, 50uL per well of the PRRSV specific SDOW-17 mAb (Rural Technologies Inc., 

Brookings, SD, USA), diluted 1:1000 in 1% fish gelatin (Sigma Aldrich, St. Louis, MO, USA) 

was added to each well. After a 30-minute incubation at 37°C, the antibody was removed and cells 

washed with PBS. Cells were stained with Alexafluor 488 mAb (Thermofisher Scientific, Lenexa, 

KS, USA) and diluted 1:200 in 1% fish gelatin. Cells were incubated for 30 minutes away from 

light at 37°C, then washed with sterile PBS, and viewed under a fluorescence microscope.  

PAMs In Vitro Infection (Percent Infection) 

Frozen cells were thawed on ice, counted using a Scepter™ 2.0 handheld automated cell 

counter (EMD Millipore, Temecula, CA, USA) and adjusted to a concentration of 5x105 cells/ml 

of media (RPMI 1640 with 10% FBS, PenStrep, and Fungizone: RPMI-FBS) (Gibco, 

Thermofisher Scientific, Lenexa, KS, USA). PAMs (500 ul/well) were plated onto 48 well plates 

and incubated overnight at 37°C 5% CO2. The cells were washed and infected with 1:100 diluted 
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PRRSV of both Type 1 and Type 2 genotypes in singlicate to rows in the 48 well plate. After 

incubation, overnight at 37°C in 5% CO2, cells were washed then fixed for 10 min with 70% 

acetone. After drying, 250uL per well of the PRRSV specific SDOW-17 mAb (Rural Technologies 

Inc., Brookings, SD, USA), diluted 1:1000 in 1% fish gelatin (Sigma Aldrich, St. Louis, MO, 

USA) was added to each well. After a 30 minute incubation at 37°C, the antibody was removed 

and cells washed with PBS. Cells were then stained with 250µl/well Alexafluor 488 mAb 

(Thermofisher Scientific, Lenexa, KS, USA) diluted 1:200 in 1% fish gelatin. Cells were incubated 

for 30 minutes away from light at 37°C, then washed with sterile PBS. Cells were viewed under a 

fluorescence microscope and percent infections were recorded in counts of three windows/well 

counting 60-80 cells per window.  

 

Cultured Macrophages Derived from PBMCs In Vitro Infection 

Aliquoted PBMCs of uninfected WT, hCD163L-1 and Null pigs in freezing media with 

50% FBS, 50% DMEM, and 10% DMSO were thawed from liquid nitrogen, washed and 

resuspended in 5ml of culture media RPMI 1640 with penstrep, 7%FBS, fungizone, and 

gentimicin and plated on a Costar® 6 Well Clear TC-Treated cell culture plate (Corning Inc., 

Corning, NY, USA) with a minimum cell concentration of 3X106 cells/well. 24 hours later 

culture media was replaced with fresh media containing 20ng/ml of 1:100 diluted 

granulocyte/monocyte colony stimulating factor (GM-CSF) (Life Technologies, Carlsbad, CA, 

USA). Blood monocytes were cultured for approximately for three days with fresh media with 

GM-CSF being added on day one after initial plating. On the fourth day, fresh media was added 

along with 250 µl per well Type 2 isolate VR-2332 in a 1:20 dilution and incubated for 24 hours. 

After incubation, cells were washed with sterile PBS and fixed with 70% acetone for 15 minutes 
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and then washed with PBS Tween and PBS prior to application of 1ml per well of 1:2000 diluted 

PRRSV tagged mAb SDOW and 1:200 diluted fAb Alexafluor 594. Following fixation and 

staining, plates were evaluated on a fluorescence microscope to determine percent infection.  

Freezing of Cultured Macrophages from PBMCs 

PBMCs were isolated via the protocol above and then cultured in media (RPMI 1640 

with 10% FBS, PenStrep, and Fungizone: RPMI-FBS) (Gibco, Thermofisher Scientific, Lenexa, 

KS, USA) for six days at 37°C, being stimulated with GM-CSF (Life Technologies, Carlsbad, 

CA, USA) every three days. On the sixth day, cells were washed with PBS and treated with 5 

mls of Versene solution (Gibco, Thermofisher Scientific, Lenexa, KS, USA) and incubated at 

37°C for 20 minutes. Cells were then removed with cell scrapers that consisted of a 25cm handle 

and 1.8cm blade (BD Biosciences, Franklin Lakes, NJ, USA), and then aliquoted into 15 ml 

conical tubes. The samples were then centrifuged at 800Xg for 10 minutes. The supernatant was 

decanted and the cells were resuspended in freezing media (50% C80 EZ (Cryocrate, Columbia 

MO, USA)), 50% DMEM, 10% DMSO), and aliquoted into 1 ml Nunc™ Cryotube™ vials 

(Thermofisher Scientific, Lenexa, KS, USA). Samples were frozen at -80°C in a Nalgene™ Cryo 

1°C Freezing container (Thermofisher Scientific, Lenexa, KS, USA) for 24 hours. After the 

freezing period, samples were thawed and suspended in culture media and centrifuged at 800Xg 

for 10 minutes. Samples were then resuspended in culture media and plated on a Costar® 24 

Well Clear TC-Treated cell culture plate (Corning Inc., Corning, NY, USA) at 1ml per well. 24 

hours later, cells were washed with sterile PBS and fixed with 70% acetone for 15 minutes and 

then washed with PBS Tween and PBS prior to application of 1ml per well of 1:500 diluted 

Invitrogen™ CD163/M130 mab (Thermofisher Scientific, Lenexa, KS, USA) and 1:200 diluted 
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fAb Alexafluor 594. Following fixation and staining, plates were evaluated on a fluorescent 

microscope to determine percent fluorescence.
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Tables and Figures 

 

Table 2.1: Conjugated antibody types for flow cytometry 

 

Antibody Isotype Concentration Flurochrome 

CD163 Mouse Anti-pig IgG1 .1mg/ml PE 

CD169 Mouse Anti-pig IgG1 .1mg/ml FITC 
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Table 2.2:Viruses used for In Vitro PAM Infections 

 

 

Virus Type Year 

Isolated 

GenBank 

Acc# 

NVSL 97-7895 2 1997 AY545985 

KS06-72109 2 2006 KM252867 

P129 2 1995 AF494042 

VR2332 2 1992 AY150564 

CO90 2 2010 KM035799 

AZ25 2 2010 KM035800 

MLV-ResPRRS 2 NA* AF066183 

KS62-06274 2 2006 KM035798 

KS483 (SD23983) 2 1992 JX258843 

CO84 2 2010 KM035802 

SD13-15 1 2013 NA 

Lelystad 1 1991 M96262 

03-1059 1 2003 NA 

03-1060 1 2003 NA 

SD01-08 1 2001 DQ489311 

4353PZ 1 2003 NA 

*NA, Not available 
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Chapter 3 - Results 

CD163 Surface expression levels on PAMs 

Surface expression levels of CD163 and CD169 were evaluated using flow cytometry. 

PAMs were prepared with PE and FITC conjugated antibodies for CD163 and CD169 

respectively and ran through the flow machine. The machine was programmed to detect 

macrophages and monocytes in each sample that exhibit CD163 and CD169 surface expression. 

Dot plots were created in cooperation with the running samples to detect forward scatter (FSC) 

for cell granularity and side scatter (SSC) for cell size. A population of macrophages and 

monocytes was selected from the FSC/SSC dot plot and evaluated on another dot plot for CD163 

expression on the y-axis and CD169 expression on the x-axis. Quadrants were divided up as Q1 

(CD163 +/CD169 -), Q2 (CD163 +/CD169 +), Q3 (CD163 -/ CD169 -), and Q4 (CD163 -

/CD169 +).  WT macrophages showed an average of 80% of selected cells expressing both 

CD163 and CD169 in Q2. hCD163L-1 macrophages showed an average of 40% in Q2 and 50% 

in Q4. Null pigs showed an average of over 90% of selected cells negative for CD163 yet still 

expressing CD169 in Q4.  PAMs from the CD163 Null pigs did not show evidence of CD163 

surface expression, but expression levels of CD169 were normal.  For the hCD163L-1 pigs, both 

CD163+ and CD169+ were detected on PAMs (Figure 3.1). However, expression of CD163 was 

reduced compared to the WT PAMs.  Surface expression levels for CD163 on the CD169-

positive cells ranged from no detectable CD163 expression to cells possessing moderate levels of 

CD163 expression.  The results for the hCD163L-1 pigs suggest there is presence and location of 

a PGK-Neo marker which may have influenced the reduced expression of CD163. 
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In Vitro PRRSV Infection of PAMs (End-Point Dilution) 

Infection rates for PAMs were assessed with the 50% tissue culture infectious dose 

(TCID50)/ml and was calculated using the Reed-Muench method (Reed and Muench, 1938). Figure 

3.2 compares all three genotypes challenged against both type 1 and type 2 PRRSV isolates. 

hCD163L-1 PAMs measure one half fold less TCID50 values than WT PAMs. Null PAMs failed 

to support any PRRSV infection. Figure 3.3 also shows hCD163L-1 (HL11) PAMs measuring one 

half fold less TCID50 values compared to WT PAMs when infected with only type 2 isolates.  

In Vitro PRRSV Infection of PAMs (Percent Infection) 

Infection rates for PAMs were assessed by calculating percent infection in three windows 

per well consisting of 60-80 cells per window at 40X magnification. In concurrence with TCID50 

measurements in the previous result, Figure 3.3 A reveals hCD163L-1 is one half fold less in 

percent infection compared to WT PAMs when infected with Type 2 isolates. Figure 3.3 B 

shows hCD163L-1 domain 8 mimic PAMs are resistant to Type 1 isolates.  

In Vitro PRRSV Infection of Cultured Macrophages Derived from PBMCs 

After three days of culture and stimulation by GM-CSF, mature macrophages were 

derived from PBMCs that were isolated from whole blood. Percent infections were counted in 3 

windows/ well consisting of 40-60 cells per window. Due to decreased concentration of cultured 

PBMCs compared to PAMs there were less available cells to count in each window. Following 

the PBMC infections, in Figure 3.4 approximately 91% of WT macrophages were infected, 39% 

of hCD163L-1 macrophages were infected, and Null cells did not sustain any infection. No 

infection of Null cells is a likely result of the cultured macrophages lacking the expression of 

CD163 and the hCD163L1 domain 8 mimic (HL11m) cultured macrophages having an altered 
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CD163 receptor due to a domain swap and and potentially from the insertion of a PGK neomycin 

cassette.  Figures 3.5 A, B, and C, represent images of PBMC derived macrophages under 

microscopic fluorescence. These images support figure 3.4 regarding pig genotype and PRRSV 

infectivity.  

In Vitro Fluorescence of Frozen Macrophages Derived from PBMCs 

Macrophages were cultured from PBMCs in whole blood and were frozen at -80° for 24 

hours. Cells were then thawed, fixed with 70% acetone, and stained with CD163/M130 mab 

instead of being infected with PRRSV. Cells were then stained with a fluorescent antibody for 

CD163 positive cell detection. Figure 3.6 A exhibits the percentage of cells that expressed 

fluorescence in accordance with individual pig genotype. Figure 3.6 B shows the average percent 

fluorescence of cultured macrophages. Macrophages of the hCD163L-1 genotype exhibit 

approximately a half fold less fluorescence than WT macrophages, indicating an altered CD163 

receptor. Null macrophages did not express any fluorescence.  

Successful culture and infection of MNCs has exhibited results similar to in vitro 

infections of PAMs derived from sacrificed animals. Fixation and staining of the macrophages 

with a mab and fab led to the result of fluorescent cells under a fluorescent microscope, 

indicating CD163 was present on WT cells. Macrophages of the gene edited pigs showed little or 

no fluorescence, which portrayed similar results to in vitro PRRSV infection of cultured 

macrophages that were not stored, and in vitro infection of PAMs. However, further studies need 

to be conducted to account for the loss of cell numbers potentially due to freezing and thawing.  
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Tables and Figures 

Figure 3.1:Receptor Expression Levels of CD163 and CD169 on PAMs 

Receptor expression levels were observed via flow cytometry with FITC, (fluorescein 

isothiocyanate) and PE (PE-Cy7). A) The majority of WT PAMS fell into quadrant 2, indicating 

that both CD163 and CD169 was being expressed. The majority of hCD163L-1 PAMS fell into 

quadrants 2 and 4, indicating that both CD163 and CD169 was being expressed, but not at very 

high levels. The majority of Null PAMS fell into quadrant 4, indicating that CD163 is not 

expressed, but CD169 was being expressed. B and C) Levels of fluorescence for CD163 or 

CD169 on a linear scale. The black line indicates background fluorescence, while the red line 

represents the level of fluorescence indicated for the labeled antibody CD163. The Null PAMS 

did not show any observable level of fluorescence for CD163. There was an observable 

fluorescence for CD169 in Null PAMs. 
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Figure 3.2:In Vitro infection of PAMs measured in units of TCID50 
Comparing WT, hCD163L-1, and Null pig PAM infections in units of TCID50. A and B) 

hCD163L-1 pigs showed one half fold less infectivity compared to WT pigs when compared 

across seven various PRRSV isolates. C) Null PAMs failed to support virus infection.  
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 Figure 3.3:In Vitro infection of PAMs measured in units of TCID50 
From Wells et al. 2017. Comparing HL11 (hCD163L-1) pigs to WT pig in units of TCID50. 

HL11 pigs showed one half fold less infectivity compared to WT pigs when compared across 

seven various PRRSV isolates.  
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Figure 3.4: In Vitro infection of PAMs measured in percent infection 

Comparing hCD163L-1 pigs to WT pig in percentage of PRRSV infection. A) There was no 

infectivity of hCD163L-1 pigs with genotype 1 PRRSV isolates. B) hCD163L-1 pigs showed 

one half fold less infectivity compared to WT pigs when compared across nine various genotype 

2 PRRSV isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

 

 Figure 3.5:In vitro infection of PMBC derived macrophages  

WT macrophages demonstrated almost full virus replication, while cells of the hCD163L-1 

genotype displayed slightly less than one third of WT percent infection. Pigs of the Null 

genotype did not support virus replication.  
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Figure 3.6:Images of PBMC derived macrophages infected with VR-2332 and stained with 

Alexafluor 594. 
A) WT PBMCs expressing almost full fluorescence. B) hCD163L-1 PBMCs expressing 

markedly less fluorescence, but is still somewhat observable. C) PBMCs of the Null genotype 

showing no fluorescence. 
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Figure 3.7:Figures of frozen cultured macrophages from PBMCs  

Cultured macrophages from PBMCs that were frozen as a means of potential 

storage/transportability. Windows indicate the number of cells that were counted in the specific 

well. A) Individual percent fluorescence with windows of allotted pig genotypes. B) Average 

percent fluorescence of stained macrophages.  

 

A) 

B) 
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Chapter 4 - Discussions and Conclusion 

The objective of this study was to verify the disease resistance capabilities of 

macrophages derived from genetically edited pigs when exposed to not only one isolate of 

PRRSV, but multiple isolates. Since CD163 was found to serve as the main receptor for PRRSV 

incorporation into the macrophage, many studies have been undergone as an effort to better 

understand the receptor and ways to manipulate it. The manipulation of CD163 was performed 

and successful by utilizing the CRISPR/Cas9 gene editing system (Calvert et al. 2007; 

Whitworth et al. 2013)  

  Previously, an in vivo challenge was performed on WT pigs and pigs that were 

genetically edited with CRISPR/Cas9 technology. Null gene-edited pigs were found to be 

resistant to both genotype 1 and 2 PRRSV isolates. Additionally, it was found that hCD163L-1 

pigs were completely resistant to genotype 1 (European) but not to genotype 2 (North American) 

PRRSV (Wells et al., 2017). The results from this study warranted further investigation of the 

resistance capabilities of Null and hCD163L-1 genotypes.  

The discovery of newfound resistance led to in vitro challenges of PAMs to multiple 

isolates of PRRSV, either from genotype 1 or 2 lineage. Results from the in vitro challenges 

indicated that the Null pig genotype is completely resistant to all PRRSV isolates (both genotype 

1 and 2), while the hCD163L-1 genotype is completely resistant to multiple genotype 1 PRRSV 

isolates, and reduced infection with genotype 2 isolates. (Wells et al., 2017).  However, in vitro 

experiments showing reduced infection of hCD163L-1 PAMs did not reflect the results from the 

in vivo PRRSV challenge. hCD163L-1 pigs infected with the genotype 2 virus had a mean 

viremia like the WT pigs, indicating the reduced of permissiveness of PAMs did not translate 
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back to the pig. There are limitations of deducing in vitro model results back to the live animal, 

and these results have proven correct of these limitations. 

Extraction of PAMS from pigs requires a terminal procedure consisting of lung lavages. 

Upon necropsy, care must be taken to avoid PAM contamination from other bodily fluids or 

tissues. The isolation of PBMCs from whole blood can serve as an alternative option of using 

macrophages for in vitro experiments. Eventual differentiation of macrophages in culture from 

isolated PBMCs do not require the sacrifice of an animal.  

The demonstration of CD163 gene edited pigs, showing no support of infection from 

multiple isolates of PRRSV from either genotype, can infer their potential resistance to a vast 

number of more isolates (Wells et al., 2017). Cell culture models can prove a valuable resource 

for evaluating the pathogenesis of PRRSV and the expression of CD163. Additionally, in vitro 

experiments have the capability of producing results in a more cost effective and timely fashion. 

Procedures for further in vitro investigations regarding the gene edited pig can expand our 

understanding of not only the CD163 receptor, but potentially other genes that have the 

capability of being edited by CRISPR/Cas9 technology. PRRSV resistant pigs emphasizes the 

outstanding opportunity to create a preventative cure for one of the most significant diseases 

affecting the pork industry throughout the globe.  
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