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liYTRODUCTION

A time series can be defined as a sequence of discrete observations

taken at uniform intervals on a time scale. Since time series occur

frequently in industrial and economic situations and since many decisions

are based on the predictions of the future values of these time series it

is an important decision aid to develop a method for forecasting these time

series.

In order to treat the time series analytically it is described as the

sum of two components. The first is the process which generates the series

and the second is some superimposed random noise, or variation in the obser-

vations. Hence, the time series can be represented as

y(t) i(%) + e(t)

where £(t) is the value of the process at time t and e(t) is the random

noise associated with the observation at time t. The distribution of the

noise samples has the following properties:

(1) The expected value is zero, i.e.

E(e(t)) =

(2) The noise samples have no series correlation, i.e.

E(e(i)e(j)) =0 for i 4 j

Considering the nature of the time series the object of the forecasting

technique is to provide a forecast that will

(1) Dampen, or smooth, the effect of the random noise,

(2) Reflect any trends which the time series might be undergoing,

i.e. the time series need not be stationary,

and

(3) Provide an unbiased estimate of the time series.



Hence, a forecasting technique is sought which will seek a balance between

the response to secular trends in the process and the errors caused by the

random noise.

The process which generates the time series can be described by two

components. These are the secular trend of the mean and the periodic com-

ponent of the series. Along with the trend which the mean of the time

series might be undergoing the periodic component might also contain trends.

These latter trends are of two types

(1) Changing amplitudes

(2) Shifting phase angles

Therefore, the forecasting model must adequately represent the time series

and be able to adjust to these trends. It is found that forecasting models

conposed of polynomials , trigonometric functions and multiples of these

functions fulfill the requirements of the forecasting model.

These forecasting models can be represented in vector form as

y(t) = a'f(t)

where a is a vector of coefficients and f(t) the vector of fitting functions

evaluated at time t. The requirements of the forecast are satisfied in the

method by which the vector of coefficients is estimated. The estimation of

this vector is performed by the use of general exponential smoothing. In

this process the estimate of the coefficients is based on the discounted

least squares criterion. That is, the sum

I B
J (y(-t) - y(-t-l))

is minimized where y(t) is the value of the time series at time t.



y(t-l) is the forecast of this value at the previous

period,

8 is a positive constant less than« one

.

This forecasting technique has the following properties:

(1) The weight given the observations in the forecast is discounted

on a time scale at a rate which can be controlled by the value

of the discount factor B, thereby yielding control of the re-

sponsiveness of the forecast.

(2) All past data is contained in a single word of information.

(3) A simple recursive relationship can be developed for re-evaluating

the estimates of the vector of coefficients with each observation.

The justification for the use of general exponential smoothing lies

in the proof that if the forecasting model is a true representation of the

process then the expected value of the vector of coefficients obtained by

exponential smoothing will be the true value of this vector. The problem,

then, becomes that of determining the forecasting model. It is found that

the trend of the mean can be represented by a polynomial. To this end

polynomial regression is used to fit the curve representing the trend of

the mean to the data. Having performed this regression both qualitative

and quantitative estimates for the terms in the forecasting model which

represent the trend of the mean are available. The regression curve is then

subtracted from the data, an operation referred to as detreuding •

Making the data available in the "detrended" form is the first phase in

the analysis of the periodic component. I&aentially "detrending" allows

the periodic component to be observed sepernlely . The second analysis per-

formed on the periodic component is autocorrelation analysis. The auto-

correlation function is defined and shown to have a maximum at the basic



period of the data. Moreover, autocorrelation analysis can be used as a

test of significance that a process exists.

The basic theorem of Fourier series states that if a discrete series

is basically periodic then the coefficients of a series of sines and cosines

of the fundamental harmonics of that period can be determined so that the

Fourier series yields the data points. This analysis is extended to a

trigonometric series which includes all the frequencies in the data and then

to a least squares evaluation of these coefficients. It is shown that a

measure of the contribution of each frequency in describing the time series

can be expressed as a function of these coefficients and that using this

measure the periodic component can be adequately expressed as a limited

number of these frequencies.

A study is made of the sensitivity of the forecasts obtained through

the use of exponential smoothing. The sensitivity analysis is carried out

on the following parameters

(1) The fitting functions used to describe the forecasting model,

(2) The basic period of the forecasting model, and

13) The value of the discount factor.

It is found that the choice of each of these parameters significantly affects

the accuracy of the forecasts. In the case of the smoothing constant a

literature search reveals that no method of determining the optimal value of

this constant has been presented. This research does not attempt to develop

such a method. It is felt, however, that a local optimal value for the

discount factor might exist for a particular time series and set of fitting

functions. Hence, a parametric investigation of the smoothing constant is

carried out.



A general program to perform exponential smoothing was written. This

program has the ability to

(1) Change the forecasting model,

(2) Change the basic period of the forecasting model,

(3) Change the value of the smoothing constant and

(U) Change the time series.

This program has the dual purpose of serving as a medium for carrying out

and evaluating the effectiveness of general exponential smoothing for fore-

casting a time series and determining the feasibility and economy of per-

forming this forecasting technique using a Fortran type of processor.

Moreover, the results can be compared with those obtained by Brown (l)

to verify the consistancy and accuracy of the program. The general nature

of the program is necessary in order to carry out the sensitivity analysis

on the forecast parameters and the parametric investigation of the smoothing

constant. Furthermore this type of general program can serve to illustrate

that the requirements of an industrial situation wherein many and varied

time series are encountered can be satisfied.

Using the I.B.M. lUlO system at Kansas State University the program

for general exponential smoothing can not be accomodated in the available

core storage capacity. Hence, phasing of the program is necessary. The

system at Kansas State University is programmed internally with PR-155 and

has seven magnetic tape drive units which makes phasing possible. Each

phase is run independently and upon its completion the processor auto-

matically clears core and loads in the next phase. Any information required

for following phases is written onto a work tape. In this system one work

tape is available, however, after the program is compiled two more of the



tapes can be used as scratch files. These three tape units are the min-

imum required to perform the internal data transmission between phases.

Two time series are used in the application of the forecasting

techniques. The first is the number of miles traveled on international

airline routes measured at monthly intervals from January 1949 to December

I960. This data was obtained from Smoothing Forecasting and Prediction of

Discrete Time Series by Robert Goodell Brown. The second time series used

was the sheep population in England and Wales measured in yearly intervals

from 1867 to 1939- This data was obtained from The Advanced Theory of

Statistics Volume II by M. G. Kendall.



1. REPRESENTATION OF THE TIME SERIES

1.1 The Time Series Model

A time series is a sequence of observations taken at equal time

intervals. For the purpose of analysis the time series can be considered

to be made up of two elements

(1) The process which generates the time series

(2) Some superimposed random noise

Thus the time series may be represented on the following manner

y(t) = £(t) + e(t)

where 5(t) is the process

e(t) is the noise in the t observation.

The distribution of e(t) has the properties

EU
t

) =

E(e
t
e ) =0 for i ? J

= o 2 for i =
J

where o 2 is the variance of the noise distribution.

Recognizing that the noise in the time series is random, no attempt is made

to represent it. The techniques of representing the time series are con-

cerned with the process. Due to the conditions which generate time series

it is generally adequate to describe the process in terms of two components

(1) The trend which the mean of the series is following,

(2) A cyclical component which is superimposed upon this trend.

The trend component may be represented by the following functions

(1) Polynomials,

(2) Exponentials,
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whereas the periodic component must necessarily be represented by

trigonometric functions. This representation is based on the Fourier

analysis which deals with functions, either continuous or discrete, by means

of a series of fundamental harmonics. The principal theorem of Fourier series

may be stated as follows:

If f(t) is a single-valued function which has a

derivative throughout the interval -a<t<a except for

a finite number of points at which it has finite dis-

continuities, and for other values of t is defined by

the equation

f(t + 2a) = f(t)

then f(t) can be represented by means of the Fourier
series

y = !jA + A cos(nt/a) + A cos(2Ht/a) +

+ A cos(3Ht/a) + . .

.

+ B. sin(Ht/a) + B sin(2JIt/a)

+ B sin(3nt/a) + ... (1:1:1)

See appendix A for the development of the Fourier analysis.

In the application of the Fourier series to representing the periodic

part of the time series only the terms in (1:1:1) which are shown to be

significant will be used. A limited number of terms are necessary to strike

a balance between the accuracy of the model and the length of the compu-

tations. Hence a general representation of the time series is:

y = trend + A(T) cos(2nt/T) + B(T) sin(2Ut/T)

(1:1:2)
+ A(T' ) cos(2nt/T' ) + B(T') sin(2nt/T')

where T and T' are the periods of the harmonics which show significant con-

tribution to the representation of the time series.



The general model, (1:1:2), is adequate for representing a time series

which displays a secular trend in the mean and a periodic component super-

imposed on that trend. In some time series, however, two other types of

trends may appear in the periodic component

(1) Shifting phase angles,

(2) Growing amplitudes.

The technique for representing these trends is to include in the model a

set of terms of the form

(a + at) cos(2Ht/T) + (a + a^t) sin(2IIt/T) (1:1:3)

where T is the harmonic in which either or both of the above trends occur.

An example of the representation of a time series might be sighted as

follows. Consider the time series in figure (1:1:1)

1949 1950 1951 1952 1953 1954 1955 1956 1957 1956 1959 i960

Fig. 1:1:1 International Airline Passenger Data

Looking ahead in the analysis momentarily this time series might be ade-

quately represented by a linear trend with a periodic component of 12 months.

Moreover, and without any Justification at this point, a harmonic at o months
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might be significant. Furthermore, the amplitude of the periodic com-

ponent seems to be increasing. With these ideas the terms included in

the model would he:

(1) a + at to represent the linear trend,

(2) (a + a^t) sin(2nt/12) + U
3

+ a
?
t) cos(2nt/12)

to represent the 12 month periodic component with

increasing amplitude,

(3) a
6
sinUnt/12) + a

?
cos(l*Ht/12)

to represent the harmonic.

1:2 Trend Analysis of a Time SerieB

The previous section showed that an adequate representation of the

time series depended on proper evaluation of the trends that the series

was following. These trends are of two types:

(1) Trend of the mean

(2) Trend of the periodic component.

Moreover, the analysis of the periodic component was treated independently

of the time series. In effect this independent treatment is equivalent to

evaluating the series with the trend of the mean removed. The purpose of

trend analysis of the time series, then, is twofold.

(1) Trend analysis provides a quantitative estimate of the trends

in the time series

.

(2) Trend analysis removes the trend of the mean from the time

series. This "detrended" form of the data is used in further

analysis

.
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The mechanism used for trend analysis is polynomial regression.

(see appendix B). In the expression for time time series

y = 6(t) + e(t)

the process S(t) can be written as

£(t) = trend + periodic component

If the trend component is expressed as y" then the expression for the time

series with the trend removed is

y' = C(t) + e(t) - y"

= y _y" (1.2.1)

where y" is the value of the regression curve. Hence y' is the periodic

component of the time series.

In selecting the regression curve to represent the trend of the mean,

care must be taken not to include any of the periodic component in the trend

to be removed. The trigonometric functions can be expressed as a series

3 5 7
t
J

. t
J V

3int = t-2T+5T-yr + •••

t
2

t
U

t
6

cost = i-2T+-^r-^r +

(1.2.2)

Now suppose the regression curve is taken to be a polynomial of

degree k.

2 k
y = a + a t + a t + . . . + &t (1.2.3)
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If, in fact, the time series consists of a trend component which can be

expressed as a polynomial of degree k', where k' < k, and a periodic com-

ponent which can be expressed as

y' = A(T) cos(2nt/T) + B(T) sin(2JIt/T)

then considering (1:2:2) the series y can be expressed as a polynomial

of degree k" , where k" > k.

y = a
Q

+ &1t + a
2
t
2 .... a^t*"

Hence if the order of the regression takes on the value k, where k > k'

then the regression curve obtained can be expressed as the sum of two series

ya
= a +

"l
t + a

2
t2+ ••• + \*

k

y
8

= 6 + V +8
2
t2+ "• + Vk

where y is the series contributed by the secular trend of the mean and y
6

is the series contributed by the periodic component. Hence, the value

obtained for the regression curve will be

y" = y" + y"

where in fact it should be

Therefore if k > k' then part of the periodic component will be removed

from the data in "detrending" and the trend analysis will give a distorted

picture of the data. That is the "detrended" data will be

y' = y - (y y
g

)

instead of
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r = y - ya

An example of trend analysis can be found in its application to the

time series in figure (1:1:1). In this case the secular trend of the

mean is taken to be a linear relationship. That is the expression for the

trend of the mean is taken to be

y" = a + V
where a and a are the coefficients to be determined by regression analysis.

Appendix B gives the expressions for the least squares estimate of these

coefficients as

n n

I ty - I ly
i=l 1=1

n „ n n „

I t
2

- 2t I t + I (t)
2

1-1 i-1 i-1

Hence the expression for the detrended time series is

y'(t) = y(t) - t Bj

where t denotes the t value in the time series

Thus far the trend analysis has fulfilled the purposes of providing

the time series in detrended form and providing qualitative estimates for

the secular trend in the mean. A third purpose of trend analysis is that

of providing quantitative estimates for the trends of the periodic component

of the time series. With the time series expressed in the form
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y' = y - y"

the periodic component can be looked at directly without any effect of the

secular trend of the mean. Thus if the amplitude of the periodic component

is undergoing a secular trend the series would appear in the detrended form

as

,-ff^o"

°oo o°

Fig. 1:2:1 Example of "detrended" time series

in which case the slope of the line A'A' can be easily determined. If

however, the mean is following a secular trend which could be expressed as

2
' "l" ' ~2"y" = a„ + a, t + a„t

the series before trend analysis is applied might look like figure (1:2:2).

Hence, the preceeding analysis would be much more difficult to perform.
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o o

o o
o

°°OoO

°o oo

Fig. 1:2:2 Series Before "Detrending"

1.3 Autocorrelation Analysis of the Time Series

In the previous section the time series was expressed as

y(t) = C(t) + e(t)

where £(t) is the process

e(t) noise samples, where e(t) is the t sample

from a probability distribution with zero mean

The application of the principal theorem of Fourier series is based

on the assumption that a periodic component of the time series exists which

can be represented as

f(t + 2a) = f(t)

The purpose of autocorrelation analysis is to answer three questions

about the time series

(1) Does a process exist?

(2) Does a periodic component exist?

(3) What is the basic period of the time series?
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The mechanism used in answering these questions , correlation analysis , is

developed in Appendix C.

Consider the term

T

I r.y. k
(1.3.1)

j=k+i J J K

where y is the J observation in the time series

j = 1,2,..., T

k is the lag between the terms in the summation

The expected value of this term is denoted as the average lagged product.

In particular, if the sequence y has been adjusted so that the expected

value, E(y) = 0, then the average lagged product is

T

the autocovariance.

The variance of a sequence of numbers that have been adjusted to have

a mean value of zero i3 Just the expected value of the squares of these

o
numbers. This can be expressed as E(y ) which is effectively R (0).

Moreover, the autocovariance expressed in normalized form

p(k) = R
xx

(k)/R
xx

(0) (1.3.10

is merely the autocorrelation coefficient. The set of values for the auto-

correlation coefficient for all lags,
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k- 1, 2,

is defined as the autocorrelation function. Hence, the autocorrelation

function for a lag k=0 is one. Three other properties of the autocor-

relation function are of significance in the analysis.

(1) The range of p is between + 1.

(2) Pure random noise will have zero correlation between samples

not identically equal to each other.

(3) If whenever y is positive so is y . And whenever y^ is

negative so is yt+v - Then the autocovariance will be large

and positive. In this case, pairs of observations k units

of time apart in the sequence are highly correlated and one can

be used to forecast the other. In a similiar manner if y

positive usually implies that yt+k
is negative (and vice versa),

one can still be used to forecast the other. The autocovariance

in this case will be large and negative (l,39 1*).

In the application of autocorrelation analysis Brown (1,395) suggests

the following proceedure. Plot the observations to see if you should

expect a secular trend or a significant cyclical pattern. If there is a

secular trend, fit a straight line to the data by least squares. Using this

least squares fit adjust the data to zero expected value. Compute the

autocovariances using (1:3:2).

R
xx

(k) = (l/T-l-k)

jk+iVj_k

This suggested method of Browns can be applied more discretly by

taking advantage of the trend analysis in the previous section. In that

section the data was obtained in the detrended form as



18

y = y - y

where y is the time series

y" is the secular trend of the mean

Moreover, since the time series can be expressed as

y = trend + periodic component + random noise

it follows that

y' = periodic component + random noise

It was shown in appendix A that by the principal theorem of Fourier

series the periodic component can be represented by the series

y
1 = hk + A cos(nt/a) + A cos(2nt/a) + A cos(3nt/a) + ...

+ B, sin(nt/a) + B sin(2IIt/a) + B sin(3nt/a) + ...

Note that the expected value of this series is merely h&~- If this

expected value is subtracted from the "detrended" series the following is

obtained.

y = y' - hk
Q

+ e(t)

where e(t) is the noise sample

The expected value of this series can be expressed as

K(y) = E(y' - isAj + E(e(t))

Now since the expected value of the first term on the right was shown to

be zero and since by definition the expected value of the noise is zero,

then

K(y(t)) =

and this series satisfies the conditions for the application of (1.3.2),

the autocovariance

.



19

'

To facilitate the use of the autocorrelation function in answering

the question previously posed in this section, i.e.

(1) Does a process exist?

(2) Does a periodic component exist?

(3) What is the basic period of the series?

some of the properties of this function must be noted.

An example of autocorrelation analysis is given bt H. T. Davis

+ 1.00

+ 0.50

-0.50

-

+ 0.50

-0.50

- 1.00

-

/

-

"'•1?70-r60 ""~3o -»> " W0 »» «! '"

Figure 1:3:1 Autocorrelation function for industrial stock

prices, t measured in months

Referring to this plot Davis comments:

' "It will be observed from the graph that the function

damos rapidly. It changes from positive to negative at ap-

proximately t = + 10, and again becomes positive at t - + W.

As we shall show
-
later on this may be interpreted as indicating

a cycle of 1*0 months." (3.356)

Hence the autocorrelation function will reach its maximum at the basic

period of the series. The above characteristic may be proved as follows.
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The autocovariance (1.3.2) may tie expressed as

T
,k) = 11m——-

xx

1
R
xx

(k) = llm
2T * 1 t y(t+k) y(t)

t-*» t=-T

where the series y(t), t = 1,2,... T, has been adjusted so that the expected

value is zero. But the series adjusted in this manner can be expressed as

y'(t) = y(t) - y"(t)

where y"(t) is the secular trend of the mean. Therefore, the adjusted

series can be expressed as

y'(t) = periodic component + noise

In Appendix A it is shown that the periodic component can be expressed as

a Fourier series

n n

y'(t) = a„ + ) a. cos id. + ; b. cos id.
. <•, i i .

L
, i i

1=1 i=l

Making the transformation from the general formulation of the Fourier

series above to an infinite series of cosines (this change will only

simplify the calculations), the autocovariance may be re-expressed as

, T n n

R
xx

(k)

£
lm

2TTI j_T
l
=1

^Vj "(-!*] «•(•!<«*>] + Vt+k

since the cross product between the noise and the cosine signal have

expected value zero. The expected value of all terms of the form

cos(w t) cos (id t)

is also zero for i 4 J. Therefore, ttie autocovariance reduces to
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R (k) h 7 a. cos w.k + R (k)
xx * 1 1 ee

If the assumption is made that the noise has no serial correlation then

R
EE

(k) = o*6(k)

R (k)
and the autocorrelation function p(k) = j—nrr

;

will have a local maximum
xx

at R = (2Jl/u. ). This completes the proof. (1,396)

The autocorrelation function can be used to determine if a process

exists. Davis (Jjl'O) provides an example of the autocorrelation function

for a completely random series. The random series was constructed in the

following manner. The percentages of trend of the Dow-Jones industrial

averages for the prewar period (1897-1913) were written on cards and these

cards were drawn at random to form a series of 20i» items, that is N '= 20I4.

The polt of the autocorrelation function was determined to be:

Fig. 1:3:2 Autocorrelation of a random series- the dotted
lines define the standard error band
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The standard error band is computed by the relationship

S
2

. gi (82 _ *2 s
2

)yx U-2 y x

where b is given by the regression formula (5)

b = .

x
2

- ([ x.)
2
/N

The standard error band varies from +0.070 at the beginning vhere N = 204,

to +.0076 at the end, where H = 20k - 30 = Ilk. Hence the distribution

of the lagged values is seen to meet the test of randomness in a satis-

factory manner.

1:U Spectral Analysis of the Time Series

The original definition of the time series took the form

y = t(t) + e(t)

where t(t) is the process

e(t) is the random noise

Moreover, the process £(t) can be expressed as

t(t) = trend + periodic component

The purpose of this section is to investigate the periodic component of

the series

.

The principal theorem of Fourier series (appendix A) shows that the

periodic component of the time series can be represented to any desired

accuracy by the series
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y' = ijA + A
±

cos(nt/a) + A
2

cos(2nt/a) + A cos(3nt/a) + ...

+ B
1

sin(nt/a) + Bg sln(2nt/a) + B sin(3nt/a) + ...

(l:lt:l)

The terms of the above series represent the harmonics of the basic

period of the time series. In the general case the process can be represented

more accurately by increasing the number of terms in this series. However,

these harmonic terms together with the terms which represent the secular

trend of the mean form the forecasting model. Hence, as the number of terms

in the Fourier series increases the time series is discribed more accurately

but the calculations for the forecast are also increased.

The study of harmonic analysis shows that the frequencies represented

in (l:U:l) differ in their contribution to representing the time series.

The purpose of the spectral analysis is to obtain a measure of the contri-

bution of each frequency. This measure is used as a basis for selecting

the frequencies of the periodic terms to include in the forecasting model.

The analysis of the representation of the periodic component of the

time series by the Fourier series (lsbtl) is based on the variance of the

approximation. In this analysis the inequality of Bessel is used to express

the variance of (l:lt:l) in terms of the Fourier coefficients.

In order to derive this inequality assume that the process y'(t) has

been approximated by the first N harmonics of the Fourier series (1:U:1),

that is

N N
y'(t) * hk

Q
+ [ A cos(nnt/a) + [ B sln(nllt/a) (l;l»-2)

n=l n=l
n
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If the right-hand member of (l:U:2) is represented by yn
(t) and the

intergal of the square of the residual is considered, then

2

I = i/a
(y'(t) - y (t)) dt

a -a w n '

By expansion

=
a" £ ^y

' 2(t) _ * , <*^n(t) + ynU) ^ "

Taking account of the integrals

/
a

sin(mnt/a) sin(nllt/a) dt = / cos(mnt/a) cos(nHt/a) =

for m 4 n

- !
&

sin
2
(nnt/a) dt = - f

&
cos

2
(nnt/a) dt = 1

a -a a -a

/
a

sin(mnt/a) cos(nHt/a) dt = 0,
-a

and observing the definitions of the Fourier coefficients given in

Appendix A. The expression for the integral I can be obtained as

* = zil*'*M dt - {hA
l

+ R
i

+ R
2

+
-

+ 4 ]

2 2 2
where R = A + B

n n n

Moreover, since the integrand of the integral is positive or zero the integral

itself is positive or zero, and thus the Bessel inequality for Fourier

coefficients is obtained. (3,65)



25

^0 + R
l

+ R
2

+
• • •

+ 4 " ha(f(t »
2

dt (1«*«SJ

By noting that the arithmetic average of y'(t) is equal to %k , the

At = y'(t) - yn
(t)

is given by

O - *C - H I (Hf) - h \(t? + J?) (a:U:U)
n=l n=l

The term which is used as a measure of the contribution of each harmonic

is

2o 2

where R
2
(T) = A

2
(T) + B

2
(T)

T is the period of the harmonic

a 2 is the variance of the data.

From Bessel's theorem, the variance a 2 , of the series after n terms

have been removed; that is, equivalent^, if the series were corrected for

these harmonics, is (3,71)

0* - (1 - [E
n )

2

Hence, the energies of the harmonics as expressed by (l:U:5) are strictly ad-

ditive if the harmonics belong to the Fourier sequence. If the harmonics do

not belong to the Fourier sequence then this expression is only approximately

correct. Hence, E(T) is an appropriate measure of the contribution of a

harmonic.
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The following expressions for the Fourier coefficients for the case of

a discrete series are given in Appendix A.

?
T

A = -
I f cos(2nnt/T)

n X
t=l

*

(1.1.. 6)

?
T

B =| I
f sin(2nnt/T)

" t»l

where T is the number of observations in the period of

the harmonic

f is the time series evaluated at time t.

Upon consideration of these formulas a major objection is noted. The

frequencies evaluated by equations (l.U.6) reflect only those frequencies

which are present in the Fourier sequence. Since the purpose of harmonic

analysis is to measure the contribution of all frequencies present, another

approach must be considered.

To facilitate a more through approach to the harmonic analysis reference

is made to an analysis by U.S. Carslaw under the topic of practical harmonic

analysis and periodogram analysis. The objection sighted above was overcome

by substituting for the Fourier series a trigonometric series with a limited

number of terms. This is done in the following manner. Having the values

of the time series for one period given at the points

0, a, 2a, ... , (m-l)a

where ma = 211

the equidistant points on the time axis at which the observations are taken

are denoted by
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V *!»•••. Vl
and the corresponding values of the observations by

y , y± > y2 > • • >
v
m_i

The time series is then represented by the sequence

f (x) = a + a, cos x. + a„ cos 2x + . . . + a
n X ± & 1 n

cos nx

+ b sin x + b sin 2x + . . . + b sin nx

If 2n+l=m the fourier coefficients can be determined sc i that

f(x ) = y when r = 0,1,2,. ,.,2n
r r

The 2n+l equations which yield this determination are

a. + a, + . . . +a +. . . + a
1 p n

= yo

a, + a, cos x, + + a cos px
n

+... + a cos nx ,0,1. 1 , p . 1 , . n . 1}
+ b.sin x, +... + b'sin t>x, +. . . + b sin nx,11 p - 1 n 1

= yl

a + a cos i +... + a. cos px„ +... + a cos lix ,0.1. 2n . , p . 2n t n . 2n)
+ b.sin x_ +... + Vsin px„ +... + b sin nx.

1 2n p 2n n 2n

=
' y2n

By adding the above equations

2n

(2n+l)a = J,
r=0

since 1+ cos pa + cos 2pa +...+ cos 2npa =

and sin pa + sin 2pa +...+ sin 2npa =

when (2n + l) = 2H.

Furthermore •

1+ cos(pa)cos(ra) + cos(2pa)cos(2ra) +. .

.

+ cos(2npa)cos(2nra) =0 p ^ r

cos(pa) sin(ra) + cos(2pa) sin(2ra) +... p=l,2,.
+ cos(2npa)sin(2nra) = r=l,2,.

. .n

. .n
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and

1 = cos
2
(pa) + cos (2pa)+...+ cos (2npa) = 5j(2n+l)

Hence, if the second equation is multiplied by eoslpx^, the third by

cos(px ), etc. and added the result will be

2n

Js(2n+l)a = y y cos(pra)
p r^O

r

In a similiar manner it can be determined that

2n
!-s(2n+l)b =

I y sin(pra)
P r=l

Hence, a trigonometric series is formed whose sum takes the required values

at the points

0, a, 2a, ..., 2na where (2n+l)a = 21!

If a period contains an even number of observations the relationships take

the following forms . The interval of one period is denoted by

0, a, 2a, ..., (2n-l)a, where na = 2n

and the corresponding values of the observations are

yQ > y1> y2
»--- y2n+i

In this case the values of the 2n constants in the Fourier series

f (x) = a + a,cos(x) + a„cos(2x) + ... + a cos(n-l)x
n 1 2 n-1

+ a cos(nx)
n

+ b,sin(x) + b„sin(2x) + ... + b ,sin(n-l)x
1 2 n-1

So that this series yields the points in the time series are (9)
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l
2n+l

r=0

, 2n-l
=

„ I yr
cos Pra . if p i n

p r=0

2n-l

"h 2n57 I y„ cos rn

r=0

2n-l
b
B " „ I yr

sin pra
r=l

where a = n/n

For the purpose of time series analysis the above equations while

better than (l.lt.6) are still inadequate. The expressions above depend on

the criterion that the number of observations in the period is equal to the

number of Fourier coefficients to be determined. In the application of

Fourier analysis to the time series it is often desirable to determine the

Fourier coefficients in a series in which m > 2n+l. That is, the number of

coefficients in the series is less than the number of observations in the

basic period. There are two justifications for the above condition

(1) The computation time for considerinc all m frequencies in the

Fourier series may not be Justifiable.

(2) The forecasting technique used involves matrix manipulation.

Since the calculation time for matrix manipulation increases

exponentially with the order of the matrix, and since the order

of the matricies increases by 2 with each periodic term added to

the forecasting model, these terms must necessarily be limited.
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For the purpose of determining the Fourier coefficients for a series

in which in > 2n+l the previous analysis vhich depends on 2n+l = m is, of

course, no longer applicable. The result is a movement from the deter-

ministic evaluation of the coefficients to an approximation of the coef-

ficients based on the theory of least squares. That is, the coefficients

V V •"' V V ••" b
n

are determined so that f (x) approximates as closely as possible

yo> yr ••• ym+i
at V V •••' Vi

The theory of least squares shows that the closest approximation is

obtained by making the function

m-1

I (y -f (x )f
r=0

r n r

a minimum. Where the above sum is regarded as a function of

V V •"' V \ b
n

The conditions which make this sum a minimum are given by Carslav (2)

m-1

I (y -f (x )) = o

1

£ (y
r "W C0S pX

r
= °

r=0

m-1

£ (yr " fn
(xr^ sin px

r
=

°
r=0

where the above expressions are evaluated for p = 1, 2, ... n. The con-

ditions above lead to the following values for the coefficients
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m-1
ma

Q
r=0

r

m-1

^p = UT
r=0

r

m-1

cos prx
P

P r=l
sin prx

P

where p = 1, 2, ... n and m is odd.

But if m is even, the coefficient a (where p
P

= 5sn) LS

m-1

ma,
55m

= lrr
r=0

cos rll

Although these expressions for the coefficients of the periodic terms

are adequate for the time series analysis, one more improvement can be made.

Instead of limiting the range of the summations from to (m-l), this range

can be taken as the largest integral multiple of the period of the harmonic

in the time series. The corresponding equations are given by Davis (3,57)

A(T)
2 ? 2nt

. F J^
yt

cos —
(1:U:7)

B(T) 1

N'
2 r , 2Ilt

F JQ

v
t

sin —

where T is the period of the harmonic considered

N 1 is chosen equal to the largest multiple

of T in the time series •
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1:5 The Case for "Detrending" the Time Series

In order to investigate the effect of the secular trend of the mean

on the harmonic analysis consider the case of a linear trend. This

development is given by Davis (3,75).

Suppose the time series in the interval

-a < t < a

has the trend

y = yQ
+ mt

Suppose also that the harmonic analysis reveals that the time series has a

harmonic term of the form

h(t) = A(T) cos 2|i+ B(T) sin^fi

where T is the period of the harmonic. If y, above, is expanded in a

Fourier series in the interval

- a < t < a

the result is

y =
yo

+ ^<»inf-%sin fU| 8in -|5*..., ( 1:5:1)

Now if in h(t) the period T belongs to the Fourier sequence, that is, if

there is an integer n such that n = 2a/T, then the corresponding term in

(1:5:1) must have been included in the coefficient of the sine term B(T)

obtained by the Fourier analysis. Hence, the coefficient of sin(2nt/T)

which belongs to the true harmonic, independent of the trend, must be B(T)

diminished by that part due to the trend.
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Since the influence of the trend upon the harmonic is the term

, . ,n 2ma 1 , ,n mT
;

n n " l ;
n

the true harmonic is the function

h'(t) = A(T) cos S^+ B'(T) sin ^
where

B'(T) = B (T) + (-l)
n

f- ( 1:5 . 2)

If o 2 is the variance of the original series, then the variance o 2

reduced by the trend and the harmonic term will be

°1
=

°
2

" °T " °H

where a 2 is the variance due to the trend

a 2 is the variance due to the harmonic term

It has been shown in (1 : U: U) that

o 2 = *s(A
2
(T) + B'

2
(T)) .

For the trend

n 2 3 J

If the series is defined over the interval

< t < 2a

instead of the interval
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- a <_ t _< a

then the only modification in the above analysis is merely that B'(T-) as

given in (1:5:2) is replaced by

B'(T) = B(T) +51

In the case in which 2a/T is not an integer, the period T does not

belong to the Fourier sequence. In this case the above analysis vill yield

only an approximation to the reduced variance o^.

The above analysis for a linear trend can be easily extended to other

types of trends. However, trend analysis described in section 1:2 provides

a method for removing the secular trend of the mean from the time series

.

Hence, if the data is in the "detrended" form then harmonic analysis gives

a true representation of the periodic component of the time series.
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2.0 FORECASTING THE TIME SERIES

2.1 Moving Averages

Up to this point the object of the analysis has been to determine the

forecasting model. The analysis has taken the following forms

(1) Trend analysis using regression to determine the trend

of the mean and to put the data in "detrended" form.

(2) Autocorrelation analysis to determine the basic periocity

of the time series.

(3) Spectral analysis to choose the periodic terms in the model

The next step in the analysis is forecasting the value of the time

series for the future period. Considering again the representation of the

time series

y(t) = C(t) + e(t)

where y(t) is the observed value of the time

series at time t.

C(t) is the process which the time series

is following.

The criterion for the forecasting technique is to give an estimate of

the process by effectively damping out the superimposed noise. Thus, a

technique is needed which will seek a balance between the ability to respond

to secular changes in the process and the effect of error in the forecast

due to the random variation.

A3 an illustration of such a technique the moving average method can

be considered. In this case the process is considered to be, at least locally,

constant. Hence, the process can be described locally as
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E(t) = a

By including the random noise the time series can be represented as

The technique of the moving average gives the following estimate of the

process (7,96)

yt
+ yt+l

+ yt+2 ' ' ' yt+N-l
M
t

=
5

where M is the average of the H most recent periods in the data. If the

autocorrelation analysis (1.3) shows that the time series is basically

periodic then for the best results K should be some multiple of the period

in order to negate the effect of periocity on the value M .

The rate of response of the moving average is controlled by the value

of N. Since each of the N most recent observations is given the weight

1/H, as N is increased the response of the model to the most recent obser-

vation is decreased. This response can be seen more clearly by writing the

recursive relationship for the moving average.

y
t ™ yt-N

t t-1 N

Suppose that the time series is following a constant process with super-

imposed noise about a mean a' . Then suddenly the process Jumps to a new

mean a". Brown notes that it would take N observations for the moving

average to fully adapt to this change. (1,99)
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2.2 Exponential Smoothing

The lag in the rate of response to a change in the process is one of

the most critical characteristics of the forecasting technique. Moreover,

even though the rate of response of the moving average can be altered by-

changing the value of H, the calculations involving this change must be

carried out over the vhole range of the observations. Thus a more palitable

approach to the forecasting method is needed.

The recursive relationship for the moving average

yt " yt-N
M = M +
t t-1 H

can be approximated by the relation

M
t " 1/N

*t
+ (1 " 1/N) M

t-1

where M is used to denote the estimated value of M . The underying as-

sumption in this case is that y can be reasonably estimated by

1/N (M . ) . Brown uses S for smoothing instead of M for moving average

and obtains the relation (1,107).

S
t
(y) = ay

t
+ (l-o)S

t_1 (y)
(2.2.1)

where s (y) is termed the smoothed statistic

evaluated at time t

.

a is an undimensioned ratio similiar,

but not equal to 1/N.

The carrying out of the above relationship is called exponential smoothing.

By rearranging the expression for exponential smoothing an interesting

observation can be made. Expressing (2.2.1) as
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B
t
(y) =s

t_x
( y ) «(yt -8t_1(y))

the current value of the smoothed statistic is expressed as the previous

smoothed value plus a fraction of the difference between the value of the

time series at the present time and the forecasted value at the previous

period. This idea of updating the current estimate of the time series as

a function of the error of the previous estimate is found to be quite con-

sequential in later development.

Up to this point no sound Justification is presented for the use of the

smoothed statistic as a representation of the process. This Justification

is found in the definition of expectation. Hogg and Craig define expectation

as follows (7). Let X be a random variable having a P.D.F. f(x), and let

u(X) be a function of X such that

/" u(x)f(x)dx

exists, if X is a continuous type of random variable, or such that

I u(x)f(x)
X

exists, if X is a discrete type of random variable. The integral, or the

sum, as the case may be, is called the mathematical expectation (or expected

value) of u(X) and is denoted by e(u(X)]. That is

E(u(X)) =
I u(x)f(x)
x

if X is a discrete type of random variable

Brown uses expectation to obtain the following proof of the validity

of exponential smoothing. (1,101) The following expansion is first

performed
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S(y) = uy
t

+ (l-«)(«Vt_a
+ (1-a) s

t_2 (y>)

= oy
t

+ o(l-o) yt_x
+ (l-a)

2
(ay

t_2
+ (l-a) S

t_ 3
(y))

= ay
t

+ a(l-a) y + a(l-a) yt_2
+ . . .

a(l-a)
n

y
t_n

+ . . . + (l-a)* yQ

t-1
= a I (l-a)

k
yt _v

+ (l-a)\
k=0

The expected value of the above expression is then

E(s(y)) = a I fob
o -*

E(y) 01 X 8
k
- —S— E(y) = E (y)

(1-8)

where, for convenience, B=(l-a). Hence, the Justification of using the

smoothed statistic as a forecast of the time series lies in the fact that

the expected value of the smoothed statistic is the time series

.

In the comparison of the technique of the moving average with exponential

smoothing it is important to consider the weights given to the observations.

In the case of the moving average the M most recent observations are given a

weight of 1/N while all other observations are given weight zero. In
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exponential smoothing the current observation is given a weight of a and

the weight of all previous observations decreases geometrica-ly with age.

Moreover, in the moving average technique N observations must be car-

ried "on the books" at all times. This can be a disadvantage when N is

large and when a large number of time series are being considered. Further-

more, the moving average assigns no weight to any observation beyond the

last N observations even though the contribution of these older terms may

be significant. In contrast, exponential smoothing carries in one word of

data all the history of the time series.

On the topic of sensitivity, it is a simple matter to change the value

of a at any time and thus alter the response of the smoothed statistic.

Again the moving average technique falls short. Although, the response of the

moving average can be altered by changing the value of N this change neces-

sitates recomputation throughout the whole range of the data. On the basis

of these comparisons further consideration of the moving average technique

is ignored.

2.3 General Theorem of Exponential Smoothing

The previous analysis assumes that the process can be adequately rep-

resented by a constant model. The next step is the application of exponential

smoothing to models other than the constant model. In the application, of expo-

nential smoothing to the constant model the recursive relationship (2.2.1)

a = S
t
(y) = ay

t
+ (l-a) S^ly)

where the process is £(t) = a

gave a method of re-evaluating the estimate of the coefficient in the model

with each observation. If this technique is extended to more complicated
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models then a method must be determined for recursively re-evaluating the

coefficients in those models. Brown develops the extension of the model

to an n degree polynomial (1,132). In this case the process is repre-

sented by

£(t) = a
Q

+ ajt + a
2
/2 (t

2
) + . . . + a

n
/n : ( t

n
)

The Taylor series expansion about the t
th

observation yields an esti-

mate of the future observations as follows

where y is the k derivative evaluated

at time t, (in this case t is taken to

be the current value)

y. is an estimate of y

_(k) m& I

y
* dt

k '*

t is the forecast interval

Thus the Taylor series expansion yields the following estimate for the next

observation

n k Mn ty, n k

t+T .'. k! ,1 k .

k=0 k=0 K •

Hence, the forecast is in terms of the current estimates of the derivatives

of the model. These derivatives correspond to the coefficients that are

required. The Mediate goal then is to estimate these derivatives through

the technique of exponential smoothing.
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The expression for the smoothed statistic is given in (2.2.1) as

S
t
(y) = oty

t
+ (1-a) S

t_x
(y)

If this is referred to as single smoothing and double smoothing is defined

as

s]
2
)(y) = asW(y) + (1-a) s|f)(y)

Then multiple smoothing of order k can he defined as

S
t
W (y) = sM)(y) + (1-a) SW(y) (2.3.1)

The fundamental theorem of exponential smoothing given in Appendix D

states that if the observations y can be represented by the model

k (kl

t+T
k=o k!

then the general smoothed statistic can be represented as

k

%WW- ! ("D^fer I
jVi«*Jli (2.3.2)

The significance of the fundamental theorem to the goal of representing

the time series by a polynomial is as follovs

.

(1) The general smoothed statistic was defined in (2.3.1).

(2) For any polynomial of degree n, by (2.3.2) n+1 smoothed statistics

can be written in terms of the n+1 derivatives.
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(3) Using the n+1 simultaneous equations from (2), the values of

the derivatives y^ ' can be solved for as linear combinations of

the smoothed data.

Hence, a method is provided for recursively estimating the values of

the coefficients in the polynomial model. Looking at the computational ef-

fort, however, for each observation in the series the n+1 smoothed statistics

have to be recalculated and the n+1 simultaneous equations solved for the

n+1 derivatives. The next effort, therefore, is to simplify these operations.

2.U Matrix Representation of Exponential Smoothing

From Appendix D the fundamental theorem of exponential smoothing can

be expressed in matrix form as

S = Ma (2.4.1)

where S is the nxl vector of smoothed statistics

a is the nxl vector of coefficients

M is a nxp matrix with elements involving infinite

sums of powers of the smoothing constant (where

by virtue of the fundamental theorem n=p)

With the expression for the fundamental theorem expressed' in the form

(2.!*.1) the vector of coefficients can be easily solved for as (1,137)

a = S M"
1

where M is the inverse of the corresponding

square matrix

This type of recursive relationship is quite adaptive to computer pro-

gramming.
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Brown shows that Just as in the case of the constant model the

validity of the recursive, relationship for the coefficients in the poly-

nomial model can be proved by using expectation (1,138). Suppose that the

time series can be described by the polynomial

yt
= a + bt + ct + . . . + gt" + e

5(t) + e
t

where e is the noise sample

£(t) is the process

Since smoothing is a linear operation

S(y) = S(0 + 8(e
t )

But by definition

e(s(e)) =

and it was shown that exponential smoothing yields the expected value of

the data so that

E(s(y)J = S(5)

Up to this point the only forecasting model that has been developed

is the polynomial. The reason for beginning with this limitation is, of

course, that the fundamental theorem expresses the general smoothed

statistic in terms of the derivatives

h
dt
k '*
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which are the coefficients of the polynomial model. The polynomial model

is by no means adequate in representing the time series . To be an effective

representation of the process of the time series the model must contain

terms which express both the trend component of the mean and the seasonal

component . As seen in the section on representing the time series , the

seasonal component is most adequately described by sine and cosine terras.

Hence, a transition must be made for recursively estimating the coefficients

in a more general model.

Suppose that the process can be represented by

5(t) = «
1

*'

1
(t) + a

2
f
2
(t) + . . . + a

n
f„(t)

= I a.f.(t) (2. k. 2)
fa i 1

i=l
x

Where the functions f. (t) are of the types

(1) Polynomials

(2) Trigonometric functions

(3) Exponential functions

(h) Emperical functions

In some cases it might be advantageous to use fitting functions that

are emperical such as the number of building contracts let 6 years ago.

The only criterion that these emperical functions are required to meet is

that their value be known both at the time the forecast is made and at the

time in the future for which the forecast is required. However, emperical

functions lead to computational difficulties far beyond those of the other

types. Both because of these computational difficulties and for reasons

of interest the emperical functions are avoided here.
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The method for this general case is required to serve tvo objectives

(1) Provide a simple iterative proceedure for revising the estimates

of the coefficients in the forecasting model

(2) Provide a means for discounting the weights given to the obser-

vations according to a time scale.

The expression for the forecast is given by Brown (l,l6l).

y(t+t) - a
1
(t)f

1
(t+x) + a

2
(t)f

2
(t+i) + . . .

+ a
n
(t)f

n
(t+t)

n

= I a (t)f (t+r) (2.1*. 3)
i=l

The residual in this case is defined as

y(T-j) - y(T-j) = e(T-j) {2.k.k)

where y(T-j) stands for the model in which the

coefficients are evaluated with all the data through time

T but with the model evaluated J periods earlier

Appendix B gives the expression for the coefficients that minimize

the sum

f 2 2

till
'* ^ (2 - U " 5)

where w
t

is the weight given the residual at time t as

>'•?»?' F"
1

(2.U.6)

where W is a T x T matrix in which W. . is the
11

square root of the weight w given the

residual for time i, and all off diagonal

elements of W are zero.
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2 is an n x I matrix of elements

f.(t), the value of the i fitting

function at time t.

F is the n x n symmetric matrix

T
9

F = (*W)(*W)' = I vf f(t) f'(t)

t-1
Z

If the data is discounted as in the case of exponential smoothing

then the weight w in expressions (2.U.5) and (2.U.6) above must satisfy

the relationship (1,163)

v
2 =8J

T-j

and (2.1*. 5) becomes

T n . 2

I 8
J (y(T-j) -

I a(T) f (T-j)) (2.U.7)

j=l 1=1

The F matrix becomes

t-1

^u^' = I B t,(X-3) fv (T-j)
w 1=0

Hence a method for discounting the weights given to the observations and

recursively updating the vector of coefficients is developed for the gen-

eral model.

Since the major part of the calculations involved in updating the

vector of coefficients is the formation of the F matrix, this matrix is

chosen for further consideration. The value of the F matrix depends on

three factors

.
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(1) The total number of observations in the time series, T.

(2) The fitting functions contained in the forecasting model

f.(t) i = 1, 2, . , n
i

(3) The weighting function v vhich in this case is given by the

relationship

w
2

= B
J

T-J

Hence, the F matrix does not in any way depend on the values of the

observations in the time series. Brown (1,163) uses this independence

to develop a recursive relationship for the F matrix.

F(t) = f(t)f'(t) + BF(t-l) (2.U.8)

Referring to expression (2.4.6J the next computational effort to be

considered is the formation of the data vector defined as

g(T)

g
2
(T)

g„(T)

y V Mg

,th
Then the i component of the data vector can be written as

T-l

gl
(T) =

I S
J y (T-j) f^T-j) (2.U.8)

J=0

Brown (l,l6U) develops a recursive relation for this vector as

g.(T) = y(T) f.(T) + 8 Ei (T-l)

Hence, from (2.U.6), after n observations the coefficients can be estimated

by
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a' = a(T) = g(T) F
-1

(T)

Hence, a reasonable forecast for the general model is (1,16k)

y(T+t) = a'(T)f(T+T)

n
= J a. (T)f.(T+r)

i=l
x X

Stopping for a moment to evaluate the progress of the forecasting

development the following is noted.

(1) A scheme is developed for applying exponential smoothing to

the case in which a locally constant process is assumed.

(2) The technique of exponential smoothing is extended from the

case of a constant model to a general polynomial by means of

the definition of general smoothing and the general theorem

of exponential smoothing.

(3) Discounted multiple regression is introduced. This technique

enables the further extension from the case of the general

polynomial to a model which contains both polynomials and tran-

sendendental functions

2.5 Computational Considerations

At this point the development of the forecasting model is complete.

That is, the time series under consideration can be adequately represented

by a model composed of polynomials and transendentals . Next, consideration

is given to improving the computational efficiency of the forecasting scheme.

If a comparison is made between the method of estimating the coef-

ficients in the polynomial model and the method using discounted multiple

regression an important difference is noted. In discounted multiple regres-

sion the coefficients of the model are estimated with respect to a fixed
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time origin. On the other hand, in the case of the polynomial model time

is measured with respect to the most recent observation.

Applying the concept of the moving time origin to discounted multiple

regression and taking t+1 = T observations Brown (1,168) notes that the

error criterion in (2. It. 7) becomes

t , 2

min I e
J (f'(-j)a(t) - y(t-j))

J=0

This is the same as the error criterion given in (2.1*.T) except that time

is counted with the current value as the origin.

If the same change in the time origin is applied to the data vector

in expression (2. k. 8) the result is

g.(t) =
I B

j
f.(-J)y(t-J) (2.U.8)

1
J=0

and in the same manner as the development for the fixed time origin the

expression for the coefficients that minimize the error is

a' = y W
2
*2F

-1
(2. J*. 9)

with the criterion that there be at least n observations. The coefficients

in the forecasting equation are estimated as before by

a(t) = F
_1

(t)g(t) (2.1*. 10)

2.6 Recursive Fitting Functions

With certain types of fitting functions the value of the vector of

fitting functions can be obtained as linear combinations of the value of

that vector at the previous time period. In the cases in which this recursive

relationship holds the functions are said to have a fixed transition matrix.
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That is, there are a set of coefficients L which do not depend on time

such that

f
x
(t+l) = Lnfl (t) L

12
f
2
(t) . . . L

ln
f
n
(t)

f
2
(t+l) = L2lfl (t) L

22
f
2
(t) . . . L

2n
f
n
(t)

f (t+1) = L ,f,(t) + L „f„(t) + . . . + L f (t) (2.6.1)
n nl 1 n2 2 nn n

If the transition matrix is represented as L then (2.6.1) can be

represented in matrix form as

f(t+l) = Lf(t) (2.6.2)

The only restriction placed on this transition matrix is that it have an

inverse L . The fitting functions for which such a transition matrix exists

are the polynomials, exponentials and sinusoids. Hence, if the transition

matrix is specified along with the vector of fitting functions at time

t=0 then the value of the vector of fitting functions at any other time t

can be determined by the relation

f(t) = I^ftO) (2.6.3)

Three types of transition matricies used in combination are found to be

quite useful for the time series considered. Brown (l,l65) gives the trans-

ition matrix for a polynomial as an n x n matrix with ones on the diagonal,

ones in the first element to the left of the diagonal, and zeros everywhere

else. For example, the transition matrix and initial vector of fitting

functions for the cubic model are
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10
110
110
11

f(0)

Note: In the case of the polynomial model

the coefficient is the binomial coefficient

t!

(t-k)I k!

If the fitting functions are trigonometric both the sine and cosine

of each harmonic must be included (see Appendix A). Thus the fitting

functions are

f (t) = sin wt f (t) = cos cut

Brovn (l,l66) gives the transition matrix and initial vector of fitting

functions as

f(0) =

The third type of transition matrix is for the case in which growing

amplitudes and shifting phase angles are included in the periodic terms

(see Appendix A). Suppose the example above is expanded to include the

fitting functions

f (t) = t sin uit f, (t) = t cos tot

Brown (1,166) gives the transition matrix and initial vector of fitting

functions in this case as
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cos lo sin to

-sin to cos oj

cos oj sin w cos w sin uj

-sin u cos w -sin w cos to

f(o) =

The rule for generating transition matricies for forecasting models

whose fitting functions are linear combinations of the three types of fit-

ting functions described above is:

RULE FOR GENERATING GRAND TRANSITION MATRIX

Place the basic submatricies of the three types described above on the

main diagonal of the grand transition matrix and fill in the required

positions with zeros

.

For example, suppose the model chosen to represent the time series

is a growing sinusoidal model with a harmonic. The mathematical expression

for the model is then

£(T+x) = (a
x

+ a
g
t) + (a

3
+ a

?
t) sin(2nt/12)

+ (a, + a
fi

t) cos(2nt/12) + a sin(l»Ht/12)

+ a„ cos ( knt/12)

where the basic period is 12. The basic submatricies, then, used in

building the grand transition matrix must represent

(A) A polynomial with two degrees of freedom.

(B) A growing sinusoid with frequency

2nt/12

(C) A harmonic sinusoid with frequency

Unt/12
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The schematic representation of the grand transition matrix is given in

Fig. 2.1.

Fig. 2.1 Schematic of Grand Transition Matrix.

where the O's represent the required zero level terms.

Making the appropriate substitutions the grand transition matrix

is

1

1 1

/3/2 1/2

-1/2 /%/S.

/3/2 1/2 /3/S 1/2

-1/2 /3/2 -1/2 /3/2

1/2 ^3/

2

^3/2 1/2
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Using the transition matrix and the nev method of counting time the

calculations for revising the estimates of the coefficients in the general

forecasting model can be simplified. The expression for the data vector

(2.1*. 8) can he written in the following form (1,169).

t

g(t) = y(t)f(0) +
I S

J f(-j) y(t-j) (2.6.1.)

J=l

If successive values of the vector of fitting functions are generated with

the transition matrix by the relation

f(-j) = L
_1

f(-j+l) ( 2 - 6 -5)

expression (2.6.1*) can be written as

t .

g(t) = y(t)f(0) +
I 8

J IT
1

f(-J+l) y(t-j) (2.6.6)

By changing the index of summation by the relation k=J-l, the recursive

relation for the data vector can be written as

g(t) = y(t)f(0) + S L
_1

g(t-l) (2.6.7)

In the above expression the effect of the new method of counting time can

be seen. In expression (2.6.7) the current observation is weighted by the

function vector f(0). In the previous method of counting time, with a

fixed time origin, the current observation is weighted by the function vector

f(t).

Two major improvements in the calculations are generated by changing

the time origin and using the transition matrix.
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(1) The only time dependent value in expression (2.6.7) is the

observation. Hence, the components of the data vector no

longer depend on absolute time and can be tabulated as constants.

(2) A simple recursive relationship for the data vector is developed.

Turning attention to the F matrix, Brown (1,170) determines the re-

cursive relationship as

F(t) =
I B

J f(-j)f'(-j) = F(t-l) + B* f(-t)f'(-t) (2.6.8)

J=0

Even with these simplifications, however, the computations have not

yet significantly decreased. The major advantage in changing from a fixed

time origin to a moving time origin is found in the following property of

the F matrix. In the cases considered the fitting functions are either

trigonometric functions or polynomials and 3 is less than one. Under these

conditions B* tends toward zero faster than f(-t) can grow so that the F

matrix reaches a steady state condition. Hence, F inverse can be determined

in its final form for any set of fitting functions of the types considered.

The expression used to describe this convergence is

F(t) = F(t-l)

Brown (1,170) notes the following properties of this convergence

criterion. If a fitting function is used which takes the form of a decreasing

exponential i.e.

f(t) = e-
at

,

the F matrix will reach a steady state only if past data is discounted at

a very rapid rate, that is if

B < e"
2a

.
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Moreover, if the fastest growing function in the model is t , then the

number of periods taken for this convergence is given approximately by

7 (5.l)n
~

(LB)
" 95

Since the steady state conditions are assumed to have "been reached the

time notation is dropped. Moreover, if the steady state condition is as-

sumed the conditions for F to have an inverse will necessarily insue.

Therefore the coefficients in the model can be estimated by

a(t) = F
-1

g(t)

Therefore, the forecast of future observations is given by

y(t+t) = a'(t)f(T)

= (F-
1
g(t))'f(T)

= g'(t) F
_1

f(T)

= g'(t)c(T)

where T is the forecast period

g'(t) is the transpose of the current data vector

c(t) is a column vector of coefficients that

depend only on the values of the fitting

functions at time t, but not on absolute

time

2.7 General Exponential Smoothing

The simplification of the calculations for the general model up to

this point depend on the convergence of the matrix of weighted fitting
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functions F(t). This convergence expressed as

F = F(»)

requires two conditions

(1) Successive values of the vector of fitting functions can be

generated by a fixed transition matrix L

(2) The origin of time is taken at the present

Furthermore, the data vector can be defined recursively by the relation

(2.6.1.)

g(t) = y(t)f(0) + 8L"
1

g(t-l)

Using these results the recursive estimates of the coefficients

a(T) = (a^T), a
2
(T), . . . , ^(T))

used in the forecast equation

y(T+t) = a'(T)f(t)

(2.7.1)

=
I a (T)f (t)

i=l
x

can be obtained.

From Appendix D the minimum discounted squared residual sum is at-

tained when

F(T)a(T) = g(T)

Furthermore, when F(T) has an inverse the vector of coefficients can be

expressed as

a(T) = F
_1

(T) g(T)
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and if the convergence criterion is met, namely

f, (t) < S
-t/2

for all i

the F matrix reaches a steady state

F = F(-) =
I B

J f(-j)f'(-j)

J=0

Brown (1,177) substitutes this minimum steady state solution into the

recursive relation for the data vector (2.6. H). The result is

Fa(T) = y(T) f(0) + SlT
1

Fa(T-l)

If this expression is premultiplied by F~

a(T) = y(T)F
_1

f(0) + 8F"
1
L
_1
Fa(T-l) (2.7.2)

This expression can be analyzed in the following manner. Defining the

time independent vector

h = F
-1

f(0)

and the time independent matrix

H = BF"
1
L
-1
F

expression (2.7.1) can be rewritten as

a(T) = hy(T) + Ha(T-l)

Considering

and postmultiplying the definition of the F matrix by L' L
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J=0

= i(F-f(0)f'(0))L'
p

Hence

H = 3F
_1

L
-1

F = (l-F
_1

f(0)f' (0}f (0))L'

But the h vector is defined as

h = F
-1

f(0)

so

H = L' - h(Lf(0))' V - hf'(l)

Moreover, (2.7.2) can "be written as

a(T) = hy(T) + Ha(T - l)

= hy(T) + L'a(T - l) - hf ' (l)a(T - l)

Since f'(l) a(T-l) = y(T-l) is the forecast of what the observation at

time T will "be, as of the data received through tine T-l. The above

expression may be written as

a(T) = L'a(T - l) + h(y(T) - y(T - 1)) (2.7.3)

and hence the final form for the recursive relation for the estimates of

the coefficients in the general forecasting model is expressed as a

function of the value of the vector of coefficients at the previous period

and the error of the forecast made at the previous period.

Exponential smoothing provides an estimate of the coefficients a(T)

from the observations y(0), y(l), . . . , y(l'). If there is no noise in

the data and if the fitting functions represent the process then if
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exponential smoothing is applied over a long enough range the computed

values of the coefficients vill equal the true values. By definition,

hovever, the time series does contain noise. The representation of the

time series is given as

y(t) = 6(t) + e(t)

where y(t) is the observed value at time t

£(t) is the process

e(t) is the noise in the t observation.

The distribution of e(t) has the properties

EU
t

) = ,

E(e
i
e ) = for i i }

= o 2 for i = J,

where a 2 is the variance of the noise

distribution.

Exponential smoothing yields a forecast whose expected value is shown to be

the process, S(t). Brown (1,393) also uses expectation to investigate the

estimates of the coefficients.

Suppose the process can be exactly represented by some linear combin-

ation of fitting functions

5 = a

where the vector a is the true set of coefficients. The expected value of

the forecast when the least squares criterion is used is shown to be

B(y ) = af(t)

Substituting the least squares estimates of the coefficients {2.k,9) into

the expression for the expected value of the coefficients the following is
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obtained.

E (a') = E(y W^F-1
}

But since the expected value of the time series is

= 5W
2
.?F"

1

= a'^W^F"1

= a'

the process

Hence, the expected values of the estimates of the coefficients are the true

coefficients.

The estimates of each coefficient, therefore, is some distribution

whose mean is the true value of that coefficient. Next, the variance of the

distribution :Ls considered. The correlation coefficient between two random

variables X. sind X„ as defined previously is

E (X
1

- u
1

) (X
2

- Ug)

p12
=

1°2

where y is the expected value of X

y„ is the expected value of X
2

o is the variance of X

a is the variance of X

Hogg and Craig (T) define the covariance of these variables as

E^ - »
x

) (X
2

- u
2 ))

Moreover , the variance - covariance matrix is defined by Hogg and
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Craig (7) as follows. Given the N random variables

X
l' V • • • ' h

and calling the variance - covariance matrix V, the elements on the principal

diagonal of V are respectively the variances 0. . = a?, i = 1, 2, . . . , N.

The elements not on the principal diagonal of V are the covariances

o. , = p. ,0.0,

Exploiting the idea of the variance - covariance matrix, the corres-

ponding matrix for the variation in the estimated coefficients a caused by

the noise e » y - £ in the observed data is

E(a -a)(a - a)' = F
_1

W'
2

(x - 5) ' (x - K) W
2
,? ' F

_1

Since the noise is defined to have no serial correlation and assuming that

all the noise samples have the same variance a 2 , then (1,393)

E(x - %)< (x - t) = la 2

and the covariance matrix for the coefficients reduces to

(2.7.10

F-^W2 (7W2
)

1 F
-1

o 2 = F"
1

K F"
1

o 2

e e

where K = (^W2 ) (7W2 )'

The K matrix, then, can be represented as

K- I 8
2J f(-j) f'(-j) (2.7.5)

J=0

Moreover, the variance - covariance matrix for the coefficients can be

expressed in terms of the variance of the noise as
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Vo 2 = F"
1

K F
_1

o 2 (2.T.6)
£ E

The (i,j) element of V is the covariance between a. and a
l J ^ J

cov{a. , a, } = V. o 2

vhere a 2 is the variance of the (uncorrelated) noise. The variance of
e

the i coefficient is

var{a. } = cov{a. , a. } = V..o 2

1 11 il e

Hence, the elements V are the variances of the coefficients expressed as

a multiple of the variance of the noise o 2 .
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3.0 COMPUTER PROGRAMS

The analysis presented in the first two chapters, trend analysis,

autocorrelation analysis, spectral analysis and exponential smoothing

can only be carried out practicably through the use of automatic computing

equipment. The facility available for this study is the I.B.M. lM.0 system

at Kansas State University. This system consists of the following equipment;

an I.B.M. lUlO computer with kOK storage capacity, a 1U23 card reader and

card punch, a ll*22 printer, an I.B.M. lltOl computer and seven T330 magnetic

tape drive units

.

The 1410 system is internally programmed with PR-155. This system al-

lows programming in either Autocoder or Fortran. In this study Fortran is

used. The processor occupies 10K leaving 30K for the compiled program and

the calculations. This limitation of storage would be prohibitive to the

application of the preceeding analysis except that the PR-155 system allows

phasing of the program. Phasing consists of writing the program, which

itself is too large for the available memory capacity, into parts, or phases.

These phases are then run independently and anything that must be retained

from one phase for following phases is read onto a "scratch" file. At the

completion of a phase the processor automatically clears core and loads in

the next phase.

Phasing the program does, however, have its associated limitations.

There are, basically, two limitations which must be considered. The first

limitation of phasing is concerned with time. Since each phase is compiled

independently, compiling time is increased. Moreover, running time is in-

creased because the data which must be retained between phases must be written

on and read off tapes. The second, and most crucial limitation is concerned
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with the nature of the program. Phasing is limited to programs which can

he devided into independent parts which can be accomodated in the memory

capacity of the available facilities.

The programs incorporated in this analysis provide a twofold function.

First, these programs serve the function of a medium for carrying out and

evaluating the analysis of the first two chapters. Secondly, these programs

serve the function of analyzing the practicability and economy of applying

the forecasting techniques to a digital computing system with a Fortran type

of processor.

3.1 The program for general exponential smoothing

In the application of general exponential smoothing to computer simu-

lation a general program is required. This program must have the ability

to (l) perform general exponential smoothing on a time series, (2) change

the forecasting model and (3) vary the significant parameters in the fore-

casting model. In the last requirement these parameters are taken to be,

(a) the basic period of the model and (b) the value of the smoothing constant.

Moreover, it is required that the program for the application of general

exponential smoothing perform these functions in a reasonable amount of time,

with the ability to handle a wide range of fitting functions and time series

and provide output in the desired form.

Considering the operations involved in general exponential smoothing the

following independent phases are suggested. The first phase, phase I, is

named INCONT and executes the functions of

(1) Reading the time series into memory,

(2) Providing the description of each forecasting model and

(3) Evaluating estimates for the initial values of the coefficients

for each model and time series combination.
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Upon completion of the first phase the following information will he

available to the insuing phases

(1) Control parameters

(a) The basic period of the forecasting model, P

(b) The number of fitting functions, H

(c) The number of observations in the time

series, ND

(2) The time series X(l), where I = 1,2,. ..,ND

(3) The transition matrix TM(I,J)

where 1=1, 2,...,

H

J=l,2 »

(U) The initial vector of fitting functions,

F(I), where 1=1, 2,...,

H

(5) The initial value of the vector of coefficients C(l),

where I =1,2,...,N

(6) The change vector, CHK(l), 1=1, 2,..., N.

Evaluating the above requirements 1,2 and U can be adequately performed by-

normal read operations. If a general program is to be maintained, however,

requirement 3 and 5 must be considered more thoroughly. Considering re-

quirement 3, it was noted in Chapter 2 that the elements of the transition

matrix which are included to describe the periodic terms in the model take

the form

+ cos id , + sin w

where oj = 2II/P, and P i3 the basic period of the model. Hence, these terms

must be adaptable to a change in the basic period of the model. Moreover,

the initial values of the coefficients for the periodic terms in the fore-

casting model are given by Brown ( 1,19k) as
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P
a = 2 /p I yk

sin \n
k=1

* k

for the coefficient of the sine terms and

P

a = 2/P I y cos u>

n
k=1

k x

for the coefficients of the cosine terms. Hence, provision for calculating

3 and 5 for each forecast is made.

Considering 6, the change vector has not yet been discussed. In section

2.6 the recursive relation for the vector of fitting functions is given in

(2.6.2) as

f(t+l) = Lf(t)

where L is the transition matrix and f(t) is the vector of fitting functions

evaluated at time t. However, because of the moving time origin the F matrix

for general exponential smoothing is defined in (2.6.1*) as

F(t) =
I B

j f(-J)f'(-J) = F(t-l) + B
J f(-t)f'(-t)

The transition between the recursive relation for the vector of fitting

functions defined for the fixed time origin and the recursive relation for

the same vector defined for a moving time origin results in expression (2.6.5)

f(-t) = L
_1

f(-t+l)

Hence, it would seem that the requirements of the F matrix necessitate storing

the inverse of the L matrix. The objection with using the inverse of the

transition matrix is based on the recursive relation for the vector of coe-

fficients (2.7.3)
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(T) = L'a(T-l) + h(y(T) - y(T-l))
,

This relationship is executed in the last phase of the program. Hence,

the original transition matrix and its inverse would have to be carried

in the program. This dual storage is an obvious burden, if not a lim-

itation, on the program.

Thus, the change vector is introduced to avoid the calculation and

storage of the inverse of the transition matrix. Advantage is taken of

the trigonometric identities

cos(-x) = cos(x)

sin(-x) = -sin(x)

and the relation

t for n even

(-t)'

-(t ) for n odd

The fitting functions used for the time series considered are either simple

povers of t or trigonometric functions or multiples of these functions. In

the case of the general polynomial

y = a
Q

+ a^t) + a
2
(t

2
) + a

3
(t

3
) + . . . + a

n
(t

n
)

the vector of fitting functions is

(1)

(-t)

(-t
2

)

(-t
3

)

(-t
n

)
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As an illustration of a more complicated model the example in section 2.6

can be considered. The expression for this model is given as

C(T+t) = (a + a
g
t) + (a

3
+ a

?
t) sin(2JIt/12)

+ (a, + a,t) cos(2Ht/12) + a sin(Unt/12)

+ a„ cos(Unt/12)

The vector of fitting functions in this case is

1

(-t)

sin(u) (-t))

cos(u) (-t))

(-t) sind^-t))

(-t) cos(u (-t))

sin(u_(-t)

)

costoigt-'t)

)

where id = 2Ilt/12 and io„ = Unt/12. From these examples it can be seen that

f^-t) = + fjU)

vhere f.(t) is the value of the i fitting function evaluated at time t.

In order to facilitate this relationship in the computer program the change

vector CHK(I), where I = 1,2,...,N, is introduced. This vector satisfies

the relationship

= for f.(-t) = f.(t)

CHK(l)

= 1 for f.(-t) =-f.(t)
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Thus, the transition from a fixed time origin to a moving time origin is

made without the use of the inverse of the transition matrix.

The functional value of this vector can he seen in the following

example. Suppose the transition matrix is of the order 10 x 10. If a

percision of ten decimal places is used this matrix, or its inverse, would

require

10 x 10 x 10 = 1000

core locations for storage. In contrast the storage of the change vector

of fixed point numbers requires only 10 core locations.

Finally, all the required information from the first phase is written

onto a work tape, making it available for following phases. The flow dia-

gram for phase I is shown in Fig. 3.1 and the program is shown in Appendix E.

The second phase, named RAY, has three functions, they are

(1) Calculating the F matrix,

(2) Calculating the K matrix, and

(3) Checking for convergence of the F matrix.

The expression for the F matrix as given in (2.6.8) is

t

F(t) =
I B

J f(-j)f'(-j) = F(t-l) + B
t
f(-t)f'(-t)

As shown in section 2.6 this matrix converges under specified conditions.

That is, F = F(»), or F(t) F(t-l). The convergence criteria used in this

application is that suggested by Brown (1, )

F
i1

(t) = F
il

(t-1}
6_iJ , JJ < -if,-
6
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for all i and J. Moreover, the K matrix is given in (2.7.5) as

K = I S
2J f(-j)f(-j)

1=0

Again a recursive relation for this matrix can be formulated as

K(t) = K(t-l) + B
2t

f(-t)f'(-t) .

The calculations required to form these matricies are quite extensive.

Therefore, it is necessary to reduce the calculation time for these oper-

ations. The first reduction in computing time can be attained by noting

that both the F and K matricies are symmetric. Moreover, the recursive

relation for the K matrix can be expressed as

K(t) = K(t-l) + (B
t
f(-t)f'(-t))s

t

By defining the term

8
t
f(-t)f'(-t) = Z(t)

the two recursive relationships can be written as

F(t) = f(t-l) + Z(t)

K(t) = K(t-l) + 8*Z(t)

But since Z is also a symmetric matrix the calculations are reduced to

computing half of Z for each iteration. Moreover, by taking advantage of

the recursive relationship

the calculations are further reduced.

The check for convergence requires the formation of the quotients
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Z .

J
(t)/F.

J
(t-l)

for i=l,2,...,n j=l,2,...,n, and checking to see if these terms exceed

10~
. The calculation for this convergence check can be reduced in two

ways

(1) By noting that the convergence criteria must he met for all

the elements in the F matrix, the program can be written to

exit from this check routine as soon as it finds one element

which has not converged.

(2) The operations involved in checking for convergence are quite

extensive. If this check is made each time the F matrix is

updated the calculation time will be increased considerably.

Hence , the program can be written to make this check at

specified intervals. These intervals are taken to be each

50 iteration.

The flow diagram for phase II is given in Fig. 3.2 and 3.3 and the

program is given in Appendix E.

The third phase, named MATINV, performs the functions of

(1) Taking the inverse of the F matrix,

(2) Forming the h vector and

(3) Determining the variance of the coefficients.

The recursive relation for the coefficients using general exponential

smoothing is given in equation (2.7.3) as

a(T) = L'a(T-l) + h[y(T) - y(T-l))

where

a(T) is the estimate of the coefficients at time T
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L is the transition matrix,

h is the h vector,

(y(T) - y(T-l)) is the error of the forecast made at the

previous period.

The vector h is defined as

h = F
_1

f(0)

where F is the inverse of the F matrix and f(0) is the vector of fitting

functions evaluated at time t=0. It is found that the most convenient method

for performing the three functions required by this phase is to write the

program for determining the h vector as a subprogram of the main program

for finding the inverse of the F matrix and calculating the variance of the

coefficients. Again, taking consideration of the memory requirements it is

noted that in future operations the F matrix is not needed. That is, only

the inverse of the F matrix will be required after this phase. Hence, space

can be conserved in core by replacing the F matrix by its inverse. This is

equivalent to reading the inverse of the F matrix over the F matrix.

In section 2.7 the variance-covariance matrix is defined as

Vo 2 = F"
1
KF

-1
a 2

E E

where o 2 is the variance of the noise distribution. By using this matrix
E

the variance of the coefficients expressed as multiples of the variance of

the noise can be obtained from

var{a. } = cov{a. ,a. } = V a 2

1 11 ii e

That is, the elements on the diagonal of the covariance matrix provide the

required information. It is found, however, more convenient to calculate

the entire V matrix than to calculate the diagonal elements alone. The flow
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diagram for phase III and the subprogram for calculating the h vector

are shown in Fig. 3.1* and 3.5, and the programs are shown in Appendix E.

The fourth phase is the phase which actually makes the forecast,

With the h vector calculated all the information required for this phase

is available. The initial estimates of the coefficients are obtained in

phase I. With these starting values the format for forecasting the time

series is

(1) Make the forecast according to (2.7.1)

y(T+x) = a'(T)f(-r)

=
I a (T)f (t)

i=l

where y(T+i) is the forecast for one period

in the future

,

a(T) is the estimate of the vector

of coefficients made at the present

period
,

f(-r) is the vector of coefficients eval-

uated at time x - where t is the

forecast period

.

(2) Update the vector of coefficients in terms of

(a) The previous vector of coefficients and the

forecast period,

(b) The error of the forecast made in the previous

period.

The recursive relation for the vector of coefficients is

given in equation (2.7.2)
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a(T) = L'a(T-l) + hfy(T) - y(T-l))

where a(T) is the present estimate of the vector of

coefficients,

a(T-l) is the vector of coefficients used to make

the forecast in the previous period,

L' is the transpose of the transition matrix,

h is the vector of constants defined in

section 2.7,

y(T) is the present value of the time series,

y(T-l) is the forecast made at the previous period.

(3) Return to step (l)

The two auxiliary functions of the fourth stage are to

(1) Calculate the sum of squares of errors and

(2) Calculate the variance of the forecasts.

The expression for the variance of the forecasts is given in section h.k as

N

A (yf yt'
2 - t=l

>2

F N

l*t
t=l

*

where y is the observation at time t and y is the forecast made for time t.

The flow diagram for phase four is given in Fig. 3.6 and the Fortran program

is given in Appendix E

The last phase of the program, phase V, makes a plot of

(1) The time series,

(2) The forecasts and

(3) The absolute error of the forecast.
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This phase is named "PLOTTER". The actual plotting is done in a sub-

routine "PLOTS".

It is found that a serious limitation is imposed on the length of the

time series that can he accomodated in the program if the value of the

forecast, the observations and the errors are stored in memory at one time.

In the preceeding phase the forecast and the error of the forecast were

calculated for each period. However, if these sets of values were stored

in this phase the length of the time series that could he used would he too

short for the investigation. Hence, some method must be devised to make

the values of the forecasts and the forecast errors available to the plot-

ting phase without storing them in the previous phase. In the case of the

forecast this problem was solved in the following manner. Referring to

Fig. 3.6, as each value of the forecast is calculated in phase IV it is

written onto a work tape. There will be then, at the completion of this

phase, N forecasts on the tape for each model used; where N is the number

of observations in the time series. In the plotting phase these values

can be read in and transformed into the subscript variable FCST(l), where

1=1, 2,..., N, making them available for the subroutine "PLOTS". In the

case of the errors this difficulty is overcome since the subroutine "PLOTS"

calculates the absolute value of the errors independently along with plotting

the three values.

This subprogram provides a vertical plot of the three variables. The

horizontal axis on which the three variables are measured is limited by the

ll*22 printer. The printer is capable of printing 133 characters on a line.

Hence, the scale for the three variables must be transformed to an integer

scale with a range of from zero to 133. In this case an upper limit of 130

was actually used. The vertical scale contains one line for each period
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in the time series. This scale does not have an upper limit.

The plotting function is carried out in Fortran IV by means of a write

statement. For each period in the time series the statement

WRITE(3,1) (MP(L),(L=1,130))

is executed. This statement can be interpreted as writing, by means of

the 11*22 printer (symbolic unit 3), by the accomodating format (7), the

subscripted variable MP(L) which ranges from 1 to 130. Now if for each

line of the plot L takes on only three values corresponding to the ob-

servation, the forecast and the error for that period on the integer scale,

then the required plots can be obtained. One of the characteristics of

Fortran IV is that a variable can be set equal to an alphebetic or special

character. Hence, if a method is provided to set each of the three values

of the subscripted variable MP(L) equal to the corresponding symbol for the

plot, then the requirements for a plotting routine are fulfilled. The flow

diagrams for the program "PLOTTER" and the subprogram "PLOTS" are shown in

Fig. 3.7 and 3.8 and the programs are given in Appendix E.

The second phase of the program is the most critical with respect to

time. The controlling factors in this phase are the value of the smoothing

constant and the size of the matrix being handled. The calculation time

increases factorialy as the order of the matrix.

The relationship of the value of the smoothing constant to calculation

time can be demonstrated a3 follows. The recursive relation for the elements

of the F matrix is given in equation (2.6.5) as

F(t) = F(t-l) + B
t
f(-t)f'(-t)
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Since for any given set of fitting functions the rate of growth of

f (-t) is fixed the rate of convergence of the F matrix depends on the

speed at which B goes to zero. From the experience of this investigation

a value of the smoothing constant of 0.7 will yield convergence for the F

matrix for a given set of fitting functions five times as fast as a value

of 0.9.

In this section the flow diagrams for the separate phases of the

forecasting program are shown. It is noted that phasing the program depends

on the ability of the system to retain information between the phases by

means of "work" or "scratch" tapes. Moreover, it is noted that phasing

also depends on the ability to write the program in independent parts or

phases that can be run separately. In this investigation one more limitation

on phasing a program is found. Phasing the program depends on the ability

to write the program into phases in such a way that the information from

any phase can be made available for the following phase or phases which

require it. This limitation can best be illustrated in the context of the

program under investigation. Due to the complexity of the internal read

and write statements between phases no attempt was made to represent them

in the previous flow diagrams of this section. Figure 3.9 shows the data

transfer statements for the "scratch" files. In this program three "scratch"

files are required. These tapes are referred to in the listings of the

forecasting program in Appendix E as symbolic units 5,6 and 7. It is found

that it would not be possible to U3e any less than three tapes since the

available memory capacity of the system would not allow the required data

transfer.

The read and write statements shown in Fig. 3.9 are given in the pro-

gram using free style formats. Thus each of the read and write statements
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refer to a physical record representing one model. This technique is

necessary to permit a multimodel program. This type of multiphase pro-

gramming is considered to be a significant contribution of this investi-

gation.

As a check on the validity and accuracy of the results obtained from

the program for general exponential smoothing Table 3.10 is constructed.

This table gives the values of the h vector and the variance of the coef-

ficients for several models. For each model these values are obtained

using three values of the smoothing constant 0.70, 0.90 and 0.95. The

results are shown to 6 decimal places and the difference betveen those ob-

tained by Brown (l,l81*-193) are shown. This table indicates that the

results obtained are in essential agreement with those obtained by Brown.
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3.2 The Program for Calculating the Autocorrelation Function and

"Detrending"

In section 1.3 the autocovariance is defined as

T

R W = I y,y, k / (T-k+i)

where k is the lag for which the autocovariance

is calculated

T is the range of the series

y is the series which has been adjusted to

have an expected value of zero

The normalized form of the autocovariance is defined as

p(k) = R
xx
W/R

xx
(o) •

This is the autocorrelation coefficient. The set of values for the auto-

correlation coefficient for all lags, k = +1, +2, ... , is defined as the

autocorrelation function.

This expression as it stands does not readily lend itself to computer

programming. A method for adapting the calculation of the autocorrelation

function to computer programming is developed "by Raymond W. Southworth (8).

This method is based on the definition of the autocorrelation coefficient

as ,

N-k N-k N-k

((N-k) I (y,)
2

- ( I y.)
2

)

1=1 1=1

i=l i=l
x

i=1
- .-

i=1
-

i=1
— N^k a N-k „.l/2

(3.2.1)
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If the data is first put in the normalized form then this expression

reduces to the one above.

The value of expression (3.2.1) is found in its adaption to computer

programming. First the following sums are defined.

N-k N-k
2

\ = J/i+k \ - j/i

N-k H-l

F
k " J/i

c
*

=
J^Vi*

Then it is noted that recursive relationships can be developed for the

first four sums.

T
k " T

k-1 " yk

F
k

= F
k-1 " yN-k+l

S
k " S

k-1 " yk

2
G
k

= G
k-1 " 7N-k+l

The flow diagram for the computer program for calculating the autocorrelation

function is given in Fig. 3.11. This flow diagram illustrates how these

recursive relationships reduce the calculations extensively.

This program also removes the trend of the mean from the time series.

The "detrending" is performed in a subprogram named "TREND". As described

in section 1.2 this operation basically consists of fitting a polynomial

regression model chosen to represent the trend of the mean, to the data.
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This regression curve is then subtracted from the data. In the time series

considered in this investigation the linear regression model is found to

be adequate . This model can be represented as

y(t) = a + b(t)

where y(t) is the value of the regression

model at time t and a and b are the

coefficients to be estimated by re-

gression

The expression for the constant term in this model is given in Appendix B

as

N

a =
I y(i)/N

i=l

where N is the number of observations in the time series. The expression

for the coefficient for the linear term is given as

N K

I U)y« - (I) I y.

. i=l i=l
x

I [if - 2(1) I (l) I (3

1=1 1=1 1=1

Since the independent variable in this case is the uniform time axis this

expression can be reduced to

N N N

I (i)y - 1/H I (i)
I y

N „ N

I [if - 1/N( I (i))'
1=1 1=1'

The flow diagrams for the program to calculate the autocorrelation

function and the subprogram to "detrend" the time series are given in

Fig. 3.11 and 3.12 respectively. The programs are given in Appendix E.
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3.3 The Program for Calculating the Power Spectrum

The basic functions of this program are calculating the coefficients

of the harmonics of the time series and calculating the energy term for

each frequency in the spectrum. The expressions for the coefficients are

given in section l.k as

N'

A(T) = 2/N' I y cos(2nt/T)
t=0

*

N'

B(T) = 2/N' I y sin(2nt/T)
t=0

Z

vhere T is the period of the harmonic.

N' is the largest multiple of T in the series.

In section l.k the energy term for measuring the contribution of the

frequencies is given as

E(T) = Sfill

2o 2

where R
2
(T) = A

2
(T) + B

2
(T),

T = the period of the harmonic,

o 2 = the variance of the data.

For convenience the value of R(T) is taken as a measure of the contribution

of the frequencies. This is compatable with the spectral analysis found in

the literature.

The input to this program is the detrended data from the program in

section 3.2. The flow diagram for the program to calculate the power

spectrum is given in Fig. 3.13 and the program is given in Appendix E.
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PHASE I INCONT

WRITE ONTO WORK TAPE 7

X(I) = The Time Series

ND = The Number of Observations

NTOU = The Basic Period

N = The Number of Fitting Functions

F(I) = The Initial Value of the Vector of Fitting Functions

C(I) = The Initial estimate of the Vector of Coefficients

MN = The Model Number

CHK(I) = The Change Vector
TM(I,J) = The Transition Matrix

PHASE II RAY

READ FROM WORK TAPE 7

THE PHYSICAL RECORD WRITTEN IN PHASE I

WRITE ONTO WORK TAPE 6

N = The Number of Fitting Functions

ND = The Number of Observations

C(I) = The Initial Values of the Vector of Coefficients

F1(I) = The Value of the Vector of Fitting Functions Evaluated

for One Period From the Time Origin

X(I) = The Time Series

BETA = The Value of the Smoothing Constant

MN = The Model Number

TM(I,J) = The Transition Matrix

WRITE ONTO WORK TAPE 5

H = The Number of Fitting Functions

F(I) = The Initial Value of the Vector of Fitting Functions

(BETA) = The effective Value of the smoothing Constant

F(I,J) = The F Matrix
K(I,J) = The K Matrix

Fig. 3. 10 Internal Data Transmission Between Phases
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Fig. 3.10 CONTINUED

PHASE III MATINV

READ FROM WORK TAPE 5

THE PHYSICAL RECORD WRITTEN ON PHASE II

WRITE ONTO WORK TAPE 7

F = The Inverse of the F Matrix

h = The h Vector

PHASE IV FORECAST

READ FROM WORK TAPE 6

THE PHYSICAL RECORD WRITTEN IN PHASE III

READ FROM WORK TAPE J

THE PHYSICAL RECORD WRITTEN IN PHASE III

WRITE ONTO WORK TAPE 5

ND = The Number of Observations

X(l) = The Time Series

PHASE V PLOTTER

READ FROM WORK TAPE 5

THE PHYSICAL RECORD WRITTEN IN PHASE IV
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Fit:. 3.11 Flow Diagram for Program to Calculate Autocorrelation
Function
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APPLY THE RECURSIVE
RELATIONS

T
k

= Vl-Y(k)

F
k

Fk-rY(M-k+1 >

s
k

= s
k-l-

lY(k))

G
k

= G
k-1~ ( Y ( ;,

'-k+]-)>
2

FOR k=l,P

CALCULATE
N-k

C =
I Y(I)Y(l+k)

* 1=1

FOR k=l,P

CALCULATE FOR k=l,P

(S-k)C - T, F

((N-k)G
k
-(F

k
)^)

x ((N-k)S
k
-(T

t
.)

2
)

Fig. 3.11 continued
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CALCULATE THE CONSTANT TERM
IN THE REGRESSION LINE

a =
I (Y(D)AJ

1=1

CALCULATE THE LINEAR COEFFICIENT

S $ K

I (I)Y(I) - 1/K I (I) V Y(I)

I (i)
2

-
( ? (i))

2

i=i i=i

REMOVE THE TREND FHOK
THE DATA

Y(l) = Y(I) - (l)o

FOR 1=1,

N

PRINT THE DATA AND
DETRENDED DATA

RETURN TO THE MAIH
PROGRAM

Fi(». 3.12 Flow Diaf-ran for Subroutine "TKEJID"
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U APPLICATIONS

The application of the analysis in the first three chapters is carried

out on two time series. The first time series under consideration is the

international airline data (Fig. !».l) and the second time series is the

sheep production data (Fig. k.2). The application takes the following

form. First, "detrending" is performed to allow the data to be viewed

without the effects of the secular trend of the mean. Second, autocor-

relation analysis is performed (l) to determine if there is significant

evidence that the time series is generated by a process and (2) to determine

the basic period of the time series. Third, spectral analysis is applied

to determine the contribution of the harmonics contained within the basic

period. Fourth, the time series is represented by a model. Finally,

general exponential smoothing is performed.

Within the context of the application of general exponential smoothing

and the preceeding analysis the effectiveness and sensitivity of each

technique is investigated. In the case of trend analysis the questions to

be answered are:

(1) Does the "detrended" form of the data permit more effective

analysis of the time series?

(2) Can trend analysis be used to effectively determine the trend

of the mean of the time series?

(3) Can trend analysis be used to provide quantitative estimates

for the trends of the periodic component of the time series?

As an aid to the trend analysis a Fortran program written for the I.B.M.

Il4l0 computer is provided which plots the "detrended" data to make the

results more useable.
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In the case of the autocorrelation analysis the application to the

two series provides answers to the questions

(1) Does the autocorrelation function give a true measure of the

basic period of the process?

(2) Can the autocorrelation function be used as a test of signif-

icance that a process exists?

In the case of the international airline data (Fig. U.l) it is auite

evident that a process exists. Moreover, it is quite evident that the basic

period of the periodic component of the time series is around twelve months.

In this case autocorrelation analysis can be verified in view of the expected

results. The sheep data (Fig. k.Z), however, is not quite as obvious. In

this case the trend of the mean seems to be following a decreasing function,

but there is no immediate indication of the basic period of the periodic

component or, as a matter of fact, that a periodic component exists at all.

In contrast to the international airline passenger data in which the results

of the autocorrelation analysis can be immediately evaluated, the results of

the analysis in the case of the sheep data can be evaluated only in the final

stage of the analysis, the forecasting stage, when the effects of the choice

of the basic period and the forecasting model can be tested.

Using spectral analysis it is determined in section l.ll that the contri-

bution of each harmonic within the basic period can be measured. This analysis,

it is proposed, will lead to the most optimal selection of the periodic terms

to include in the forecasting model. However, no evidence is given in section

l.ll that the application of spectral analysis to an actual time series will

lead to the obvious distinction between the contribution of the harmonics.

That is, it is not yet shown that the application of spectral analysis yields

results which justify the selection of a limited number of harmonics to
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adequately describe the periodic component of the time series.

In section 1.5 the effect of a linear trend in the mean of the time

series on spectral analysis is considered. This analysis provides suf-

ficient evidence that the "detrended" form of the data should be used for

the spectral analysis. The application of spectral analysis to the "de-

trended form of the two time series under consideration investigates the

effectiveness of this method.

The final point to be investigated in spectral analysis is its relation

to autocorrelation analysis. In section 1.3 it is shown that the autocor-

relation function has a local maximum at ok , the periods of the harmonics

which describe the periodic component of the time series. Hence, if spectral

analysis is carried out over a wide enough range the basic period of the

time series as indicated by autocorrelation analysis should agree with the

first harmonic of the series as indicated by spectral analysis

In summary, then, the application of spectral analysis investigates

the following questions

:

(1) Can spectral analysis be effectively used to determine the

periodic terms to be included in the forecasting model?

(2) Is the use of the "detrended" form of the data an effective

method of spectral analysis?

(3) Do the results of spectral analysis verify the results of auto-

correlation analysis?

Continuing to the final 3tage, the analysis of general exponential

smoothing which forms the contents of Chapter 2 presupposes the following:

(1) An adequate choice of the fitting function which make up the

forecasting model can be determined.
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(2) The basic period of the forecasting model can be adequately-

determined.

(3) A proper choice of the smoothing constant can be determined.

In the application of general exponential smoothing, trend analysis, auto-

correlation analysis and spectral analysis can be effectively used to help

determine (l) and (2). It is veil recognized, however, that the results

obtained by these measures are only approximations. Therefore, the effects

of errors in these parameters should be investigated. This investigation

takes the form of sensitivity analysis.

Furthermore, no method is available in the existing literature for

determining the optimal value to the smoothing constant. As a matter of

fact, no evidence is available to substantiate the existence of a singular

optimal value of this constant. This research does not attempt to find this

optimal. It is recognized, however, that a local value of the smoothing

constant might exist for each particular time series and set of fitting

functions. Hence, a parametric investigation of the smoothing constant is

carried out for each time series.

The application of general exponential smoothing then, investigates

the following questions:

(1) How sensitive is general exponential smoothing to the choice of

fitting functions used in the forecasting model?

(2) How sensitive is general exponential smoothing to the choice of

the basic period in the forecasting model?

(3) How sensitive is general exponential smoothing to the choice of

the smoothing constant?
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U.l The Application of Trend Analysis

In the case of the international airline passenger data (Fig. k.l) a

linear trend seems to best represent the mean of this time series. The flow

diagram for the computer program to "detrend" the time series is shown in

Fig. 3.12 and the program itself is shown in Appendix E. The results of

this program give a value of 112.0 for the constant term in the regression

model and a value of 2.6 for the coefficient of the linear term. The detrended

data is given in Fig. U.3. Line A-A which is given as y = 112.0 suggests

that the "detrending" has successfully removed the secular trend of the mean

from the data.

The vertical dashed lines in Fig. k.3 are constructed at twelve month

intervals in order to indicate the basic period of the data. The most

important information gleaned from the trend analysis of the international

airline data, however, is the trend of the periodic component. Line B-B

connects the peaks of the periodic component. Since the secular trend of

the mean has been removed from the data the slope of the line B-B indicates

the rate of growth of the amplitude of the periodic component.

Figure U.lt is the plot of the "detrended" sheep data. In this case the

linear trend is again assumed and the results yield a constant term of 2207.0

and a value of -12.2 for the coefficient of the linear term in the regres-

sion model. The line A'-A' which can be represented as y = 2207.0 also

indicates that the linear model is a good representation of the trend of the

mean. The "detrended" form of the sheep data does not obviously yield any

further information at this point.
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U.2 Application of Autocorrelation Analysis

The flow diagram for the computer program for autocorrelation analysis

is given in Fig. 3.11 and the computer program is given in Appendix E. The

autocorrelation function for the international airline passenger data is

given in Table k,l and the plot of this function is given in Fig. 4. 5. It

can be seen that this function reaches its maximum at 12 periods and multiples

thereof. Thus, the autocorrelation analysis bares out the results expected

from the trend analysis. The peak of the autocorrelation function is a

maximum at 12 months and decreases at multiples of this period. This decrease,

or decay, in the maximum values of the autocorrelation function is due to the

trend in the amplitude of the periodic component and further serves to verify

the effectiveness of autocorrelation analysis.

In the case of the sheep data the autocorrelation function is given in

Table h.2 and the plot of this function is given in Fig k.6. This function

reaches a local maximum at 25 and again at 4o months. The maximum value at

Uo months, however, is much more predominent. The range of the autocorrelation

function for the sheep data is taken as 50 months . This range is not extended

because the available range of the data is only 73 months.

1».3 Application of Spectral Analysis

The application of spectral analysis is performed on the "detrended"

data. Hence, any distortion of the analysis due to the secular trend of the

mean is eliminated. The computer program for the application of this analysis

is given in Appendix E and the flow diagram is given in Fig. 3.13. As pro-

posed earlier the purpose of spectral analysis is to determine the contrib-

uting frequencies in the time series. The plot of the power spectrum for the

international airline data is given in Fig. 1».7 and the power spectrum is
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given in Table U . 3 - The power spectrum for this series has a clear maximum

at both 6 and 12 months . This analysis indicates a 12 month period with a

harmonic. Moreover, since one of the purposes of spectral analysis is to

verify the results of autocorrelation analysis this basic period of 12

months obtained is quite significant. The clear distinction of the 6 month

harmonic indicated by spectral analysis suggests a more thorough analysis

of the periocity of the time series using this method.

In the case of the sheep data another interesting result is obtained.

Figure h.8 and Table U . It give the power spectrum and the plot of the power

spectrum for this time series. The power spectrum reaches a local maximum

at 18 months and a maximum at 36 months. In this case, however, the results

do not agree with those obtained by autocorrelation analysis which indicates

a basic period of 40 months. At this point no conclusion can be drawn about

the validity of the two techniques. The discussion of the comparison of

the two methods must be curtailed until the effectiveness of the forecasting

models can be considered.

k.h Application of Exponential Smoothing

The flow diagram for the computer program used in exponential smoothing

is given in Fig. 3.1 through 3.7 and the program is given in Appendix E.

Using this program the results of trend analysis, autocorrelation analysis

and spectral analysis can be investigated. Moreover, the effect of the

value of the smoothing constant on the forecast can be investigated.

The application of general exponential smoothing is aimed at determining

the parameters which influence th^ forecast and the sensitivity of the fore-

cast to those parameters. The parameters chosen for investigation are
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(1) The fitting functions used to describe the process

(2) The basic period of the forecasting model

(3) The smoothing constant

In the comparison of forecasts a measure of the effectiveness of each

forecast must be provided. Brown (1,393) suggests the following measure

of the effectiveness of the forecast

I (y
t
-y

t )

2
/(T-n)

t=l
l t

where y is the observation at time t

v is the forecast for time t

T is the total number of observations in the

time series

n is the number of fitting functions in the

forecasting model

Upon consideration of this measure of effectivenss proposed by Brown the

following objection is incurred. Although the above measure of effectiveness

is useful for comparing forecasts of the same time series it cannot adequately

compare forecasts between different time series. The reason for this in-

adequacy lies in the fact that as the size of the observations in the time

series increases, the size of the term above increases even though the errors

may not be proportionately as large. Hence, a new measure of the effectiveness

of the forecast is devised as

f (y
t-y// I yt

^• u - l)

t=i
t

* t=i
t

with this new measure of effectiveness the forecasts for different time

series can be compared on an equal basis.
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The application of general exponential smoothing begins with the con-

struction of the forecasting model (see section 1.1). This model represents

the process which generates the time series. In the selection of the fitting

functions used to represent the process the results of trend analysis, auto-

correlation analysis and spectral analysis are utilized. Beginning with the

international airline data two models are chosen. The first model repre-

sents a growing sinusoid with a basic period of 12 months and the second

model represents a growing sinusoid with a basic period of 12 months plus

a harmonic at 6 months.

The mathematical representation of the first model is

y(T+x) = (a +a t) + (a +a t) sin(2nt/12)

+ (aj+agt) cos(2nt/12)

where the terms

:

(a + at) represent the linear trend of the mean

a sin(2Ilt/12) + a, cos(2Ht/12) represent the

12 month periodic component

(at) sin(2nt/12) + (a
g
t) cos(2nt/12) represent

the growing amplitude of the periodic

component,

The last set of fitting functions also give the model the ability to adapt

to shifting phase angles. In the case of the second model the only dif-

ference in the fitting functions is that the terms

a, sin(l»nt/12) + a„ cos( liITt/12)
7 o

are included to represent the harmonic at 6 months.
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The initial estimates of the coefficients for the terms which repre-

sent the linear trend of the mean are obtained from the regression analysis

as a^ = 112.0 and a = 2.6. In the case of the coefficients a and a,- of

the terms which represent the growth in the amplitude of the periodic com-

ponent trend analysis is used. In section U.l these coefficients are esti-

mated through the use of Fig. It. 3 as 1.9. The initial value of the coef-

ficients of the periodic terms a , a, , a and a„ are estimated by the method

proposed by Brown (l,19H).

P

\ = 2 /p I yv sin u(k)
* k=l

*

for the coefficients a and a7 and

P

\ • 2/P I y. cos u (k)X
k=l

*

for the coefficients a, and a„.

The purpose of this investigation is to determine the increase in ef-

fectiveness of the forecast due to the inclusion of the harmonic term as

indicated by the spectral analysis, and the effect of the value of the

smoothing constant on the forecasts. The results of this application are

shown in Table It. 5. The results are reported according to the forecasting

model, the value of the smoothing constant, 8 and the basic period, P, of

the forecasting model. The measure of effectiveness given for each fore-

cast is the variance of the forecast (U.it.l).

In this application the effective value of the smoothing constant is

reported. That is,

B
n

= 8
(effective)

where n is the number of degrees of freedom in the model. Along with the

results In Fig. It. 5 the other results obtained for each forecast are given
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in Table k.6. This table gives the following values for each forecast

EFFECTIVE BETA

F INVERSE

h VECTOR

VARIANCE OF THE COEFFICIENTS

The advantage of tabulating these results is that once the h vector is cal-

culated for one set of fitting functions and a particular value of the

smoothing constant then, since the value of this vector is independent of

the time series, it can be used to forecast any time series where the same

fitting functions and smoothing constant are used.

The results of Table U.5 clearly indicate that the value of the smoothing

constant and the choice of the fitting functions are significant parameters

in the forecast. In the case of this data a value for the smoothing constant

of 0.70 is far superior to a value of 0.90 for either of the two models.

However, it is interesting to note that the growing sinusoidal model fares

better for a value of the discount factor of 0.90 than doe- the harmonic

model. When the discount factor is reduced to 0.70 the situation is reversed.

The most important information obtained from these results is that the best

forecast is obtained using the harmonic model. This varifies the results of

spectral analysis.
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The effect on the trace of the forecast for a change in the smoothing

constant can he seen in Figs. U.9 and It. 10. These figures clearly indicate

that the peaks of the periodic component of the forecast are cut down as

the value of the smoothing constant is increased. This analysis of the

smoothing of the peaks of the forecast is one of the most important outcomes

of this investigation.

In Fig. I*. 9 the ability of the model to adjust to a phase change can

be clearly noted. At the beginning of the forecast the trace is clearly

out of phase vith the observations. However, at the end of the time series

the trace is exactly in phase.

In the case of the sheep data three forecasting models are used

(1) Linear

(2) Linear plus sinusoid

(3) Linear plus sinusoid plus harmonic

Along with the investigation of the choice of fitting functions ; and the

value of the smoothing constant, in this model the choice of the basic period

is also investigated. The investigation of the basic period is noteworthy

in this case because of the results of the autocorrelation analysis and

spectral analysis noted in section U.3.

The mathematical representation of the models used in forecasting this

time series are

LINEAR

C(T + t) = au + a
2
t

LINEAR WITH SUPERIMPOSED SINUSOID

t(T + t) = a
±

+ &gt + a sin(2Itt/P) + a^ cos(2nt/P)
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LINEAR MODEL WITH SUPERIMPOSED SINUSOID AND HARMONIC

t(T + t ) = a + ftgt + a sin(2nt/P) + a^ cos(2nt/P)

+ ar sin(Unt/P) + a, cos(Unt/P)

where P is the "basic period of the forecasting model and t is the forecast

period. In contrast to the models used- in the international airline pas-

senger data these models are presented in a more general manner to allow

for the parametric study of the choice of the basic period. Table k.J gives

the results of this study.

Just as in the case of the forecasts for the international airline pas-

senger data these results indicate that the value of the discount factor and

the choice of the fitting functions are significant parameters in the fore-

cast. In this case the effectiveness of all the models used increases as

the discount factor decreases

.

The most interesting study in this time series, however, is the study

of the choice of the basic period. The significance of choosing the correct

basic period can be seen from Table U.7 which indicates that if the basic

period is chosen incorrectly at 12 months then the linear model is more ef-

fective. Hence, an incorrect choice of the basic period negates the effect

of the periodic terms in describing the time series and even makes the in-

clusion of these terms, at the cost of increasing the calculations, detrimen-

tal to the forecast.

With the results of the application of exponential smoothing available

the results of autocorrelation analysis and spectral analysis on the shee-o

data can be reinvestigated. Although the basic period of 36 given by spectral

analysis is more effective than the result of Uo given by autocorrelation

analysis the harmonic model suggested by spectral analysis is less effective
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than the basic sinusoidal model. These discrepancies, however, can be

partially explained by the range of the available data. The international

airline passenger data in which the results of the analysis are compatible

contains 12 periods of data while the sheep data contains barely 2. Hence,

it is felt that the results of this study indicate one more criteria for

the use of general exponential smoothing. The data should cover enough

basic periods to allow the smoothing technique to become effective.
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Table It. 5 The Results of the Forecasts of the International Airline

Passenger Data Using General Exponential Smoothing

MODEL GROWING SINUSOID P = 12

BETA VARIANCE OF FORECASTS

0.70 2.977

0.90 8.77*

MODEL GROWING SINUSOID WITH HARMONIC

P = 12

0.70 1.681

0.90 13.3»t3
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Table It. 7 The Results of the Forecasts of the Sheep Data Using General
Exponential Smoothing

LINEAR MODEL

BETA VARIANCE OF FORECASTS

0.75 9-025

0.90 11 . Ul7

LINEAR 1MODEL WITH SUPERIMPOSED SINUSOID

P = 12

0.75 11.001*

0.90 13.212

P = 36

0.70 7.550

0.75 7.61*1*

0.90 9.352

0.95 12.295

P = Ho

0.70 9-393

LINEAR MODEL WITH SUPERIMPOSED SINUSOID AND HARMONIC

P = 36

0.70 10.196

P = III)

0.70 1 .
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The results of Luis investigation indicate that exponential smoothing

can be used successfully una practicably in forecasting time series,

nowever, the effectiveness of exponential smoothing must be qualified by

three conditions

(1) The correct choice of the parameters of the forecasting model,

(2) An adequate choice of the value of the smoothing constant and

(3) An adequate range of the data.

If any of these conditions is not met, exponential smoothing will not yield

accurate forecasts.

Brown presents the application of general exponential smoothing as a

means for forecasting a time series. This investigation is concerned with

developing techniques to aid in the selection of the forecasting model

and demonstrating the sensitivity of the forecasts obtained by exponential

smoothing to the parameters of the forecast. Trend analysis was developed

and it was found that this technique is quite useful in selecting the terms

in the model which describe the trend in the mean and the trends in the per-

iodic component. In the time series considered linear trend removal was

used. However, general polynomial trend removal was developed and it is ex-

pected tnat this extension can be very useful.

Spectral analysis is another technique used for determining the fore-

casting model. This technique is compared with the autocorrelation analysis

presented oy Brown and found to be much more effective for selecting the per-

iodic terms in the forecasting model. The combination of spectral analysis

with "detrending" to remove the effect of the trend of the mean is an orig-

inal contribution of this research and is considered one of the most
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important developments. In the case of the sheep data it was shown that an

incorrect choice of the basic period of the forecasting model negates the

effect of the terms which describe the periodic component of the time series

and even makes the inclusion of these terms detrimental to the forecast.

When the correct choice of the basic period is obtained by spectral analy-

sis, however, these terms increase the accuracy of the forecasts.

The comparison of the forecasts obtained from the airline data and the

sheep data indicates that the range of the available data is of primary im-

portance in the application of general exponential smoothing. Through the

use of spectral analysis and autocorrelation analysis it was determined that

the sheep data contained barely two basic periods whereas the airline data

contained twelve periods. Kence, it was determined that the more accurate

results obtained in the case of the airline data were due to the requirement

that exponential smoothing must be carried out over a sufficient range of

the data to be effective.

The effect of the choice of the smoothing constant on the forecasts

can be seen in the case of the airline data. When a value of 0.7 was used

the forecasts successfull adjusted to the trends in the data. On the other

hand a value of 0.9 for this constant relulted in forecasts which degenerated

in accuracy with time. This investigation did not propose a method for

choosing the value of the smoothing constant but merely points out that a

local optimum for a particular time series and set of fitting functions does

not exist and that a study of the choice of this constant merits further

investigation.

This investigation did not make any assumption about the normality of

the distribution of the forecast errors. If the normality assumption was
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made then a statistical test of significance such as the F test could be

made on these errors. It was noted that the normality assumption, if made,

would have to be preceeded by the assumption that the forecasting model is

a true representation of the time series and this assumption was considered

invalid.

The results of the programs presented demonstrant that the analysis of

the data, trend analysis, autocorrelation analysis and spectral analysis

can be successfully and economically carried out. Moreover, the program

presented for general exponential smoothing shows that a general program

which can accomodate changes in the forecasting model, the basic period

of the model, the value of the smoothing constant and the time series can

be developed and is a valuable decision aid in industrial and economic

situations.
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APPENDIX A FOURIER ANALYSIS

The following definition of Fourier analysis Is given by Harold

Thayer Davis (2,6l)

"The problem of Fourier series is that of representing

a function, either continuous or with a finite number of

finite discontinuities as exhibited by a set of discrete data,

by means of a series of fundamental harmonics."

The above statement refers to a harmonic in the form:

y = A cos(2IIt/T) + B sin(2Ilt/T)

where T is the period of the harmonic. This expression can be written

in the form

y = A
2

+ B
2

cos(2nt/T - a

)

where a is the lag angle given by

a = arc tan B/A

An example illustrating the representation of a harmonic is given iri Fig. 1A.

24 211

Fig. 1A Representation of a harmonic term
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y = 6 cos(2nt/12) + 8 sin(2nt/12)

= f'V (6)
2

+ (8)
2

] cos ((am/12) - a)

where T is the period of the harmonic

,

1/T is the frequency,

(A
2

+ B
2

)** is the amplitude,

a is the phase angle -

The purpose of defining the harmonic term lies in the ability to

represent a function by a series of these harmonic terms. The series

composed of these harmonics is called the Fourier series. The value of

the Fourier series lies in the following basic theorem

If f(t) is a single-valued function which has a

derivative throughout the interval -a < t < a except for

a finite number of points at which it has finite discontinu-

ities, and for other values it is defined by the equation

f(t) = f(t + 2a)

then f(t) can be represented by the series

y = SjA + A cos(nt/a) + A
2

cos(2nt/a) + A cos(3nt/a) + . . .

+ B sin(nt/a) + B sin(2nt/a) + B sin(3nt/a) + . . .

This series is the Fourier series. The coefficients are determined from

the integrals

A = 1/a /
a

f(s) cos(nns/a)ds ,

n -a

B = 1/a f
a

f(s) sin(nns/a)ds
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In the case above the continuous series is considered. When

analyzing data such as a time series a transformation to the discrete

case is in order. Moreover, it is often useful to convert from the sym-

metric form shown above to another, more suitable form. Since in a time

series the data is given over the range

< t < 2a

the transformation

g(t) = f(t-a)

is made and the integrals are rewritten as

2a
A^ = 1/a ^ g(t) cos(nnt/a)dt ,

2a
B^ = 1/a / g(t) sin(nHt/a)dt .

If the data is given in the form

tv f
2

, f
3

, . . . , f
N .

Then the Fourier coefficients can be conviently represented in the form

given by Davis (2.610.

B
A
n

= 2 /N I f
t

cos(2nt/N)

B
B = 2/N I f sin(2nt/W)

t=l
t



154

APPENDIX B REGRESSIOH ANALYSIS

In the case of linear regression a straight line is fitted to the data

in such a way as to minimize the sum of the squares of errors (6)

.

In this

case the error is defined as the difference between the actual data . point

and the value obtained by the straight line at that point.

The equation for the straight line is utilized in the form

y' = a + b(x - x)
B--1

where b is the slope of the line and a is the Y intercept on the line

x = x. The problem is to determine the parameters a and b so that the sum

of the squares of the errors of estimation will be a minimum. Let the co-

ordinates of the i point be denoted by (x
i
,y

i
). Then the term to be

minimized is

I br
4

- r[f
i=l

where y! is determined by B-l.
1

If this function is denoted by G(a,b) and written as

G(a,b) =
I [y, - a - b(x -x)j

1=1
X

then the conditions for the above expression to be a minimum are that its

partial derivatives vanish. Hence a and b must satisfy the equations

|£ «
l 2 (y - a - b(x-x)) ( -l) =

|2. -
I 2 (y - a - b(x-x)) [

- (x-x)) =
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When the summations are performed term by term and the sums that involve

y are transposed, these equations assume the form

an + b£ (x-x) =
][y

&l (x-x) + b£ (x-x) = £(x-x)y

Since £(x-x) = 0, the solution of these equations is given by

I(x-x)y
a = y and b = ;r

I(x-x)
2

For computational purposes, it is convenient to change the form of the

expression for b in the following manner

£xy - x£y
b =

lx
2

- 2x£x + Ix

£xy - nxy

"
v 2 -2
lx - nx

The concept of linear regression can be easily extended to polynomial

regression. (6) Let the degree of the polynomial be k and let the equation

of the polynomial be written in the form

*' = C + C
1
X + C

2
X2 +

• • •
+ c/

Aa in the case of linear regression the unknown coefficients are estimated

by the method of least squares. This is equivalent -to minimizing. the sum
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I (y. - y:t
.

L
. 1 1

Since it is more convenient to work with variables measured froir. their

sample means than with the variables themselves, the following definitions

are made

y = Y - Y

x. = X. - X.
J J J

If y' is defined by y' = Y' - Y, then

Y - Y' = y + Y - (y' + Y) = y - y'

If now the capital X's and Y's are expressed in terns of the small x's and

y's the polynomial regression model can be written in the form

y' = a
Q

+ a
1
x + a

2
x + . . . + a, X £-2

Since minimizing £(Y - Y' ) is equivalent to minimizing £(y - y') it is

just as well to determine the a's to minimize the latter sum which because

-of 13-2 may be written as

G(aQ) a^ . . . aj =
J[ (y

- a
Q

- <yc - . . . - a^)
2

If this function is to have a minimum value, it is necessary that its partial

derivatives vanish there. Hence, the a's must satisfy the equations

3G _ _3G _ _3G
3a

Q
3&1

" • • " 3^
"

This differentiation produces the equations
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l2{y - a
Q

- a
x
x . . . Vk

](-l) =

My - a
Q

- alX - . . . - a^) (-x) =

[2(y-a - V - . . . - Vk
)[-J) =0

If these equations are multiplied by \, the summations performed term by-

term, and the first sum transfered to the right side, these equations

will assume the form

V + aJx +
• • •

+ \Ix b

a Ix + a
llx + • • •

+ \lx [xy

V k r k+1 ^ r 2k V k
a Zx + a

x2.
x + • • • + a^x = £x y

Since

and

5>
J = £(XJ - X) =

^ - Id - 1) o

,

all terms in the first equation except the first term vanish. This implies

that a = 0, and thus the number of equations to be solved has been reduced

by one. The problem is now reduced to solving the equations
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ajx2 a
2
[x

3
. . . + ajxk+1 =

Jxy

V a
2^-

x
• • • Vx = lx y

r k+1 r k+2 . r 2k r k
\l x + a

2 i
x +

• • • + ajx =jxy

Having developed the expressions for the coefficients in the regression

model for the general polynomial, the next step is to consider a more

general regression model. Suppose the model contains terms of the following

types

(1) polynomials

(2) trigonometric functions

(3) exponential functions

(U) emperical functions

In this case the vector of coefficients can be represented as

and the fitting functions are represented in vector notation as

f^t)

f(t)

f
2
(t)

tjt)
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where f.(t) is the value of the i fitting function evaluated at time t.

Hence, the data is represented by the model

X. »
I a.f.(t) = a'f(t)

t ,
fc
, 1 i

1=1

The criterion for the selection of the coefficients is taken as

T
V 2 2

mln L w
t

e
t

t=l * '

where e(t) is the residual defined as

e(t) = x(t) - a'f(t)

and w is the weight given the residual at time t.

The above expressions can easily be put into matrix form. A matrix

—r i \ th? is defined as an m x T matrix of elements f. (t), the value of the i

fitting function at time t. A row vector x is defined to be the sequence

(x. , x , . . . , x,^) of values given by the model a' . Moreover, e is

defined as the sequence (e., e , ... , e ) of residuals, where

e
t

= xt" \ = xt" »•<*>«*)

In order to find the expression for the coefficient vector that

satisfies the regression criteria matrix notation is continued. Let V be

a TxT matrix in which W. . is the square root of the veight given the

residual at time i. All off diagonal elements of W are zero- Noting that

the expression of the model is

a'y m x - e

the residuals can be expressed as
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e = x - a 1 2".

New for a particular choice of a the sum of squares is

Sa = ee' = (xW - a',?W)(xW - a'^W)'

= x
2 WW - 2a'xS'WW' + (a')

2 (S«)(3V)

The particular set of coefficients that minimize this sum is found from

oa

Hence

xWW' 2' = a'7WW'y

By denoting the nxn symmetric matrix as

T

I
t=l

then

2W(?W)' =
I

w
2

f(t)f'(t) = F

xWW',?' = a'F B-3

Now the conditions for F to have an inverse are

(1) There are at least as many observations, x,

as degrees of freedom in the model

(2) The fitting functions are linearly independent.

If the above two conditions hold true then by postmultiplication of B-3

by F
-1

2 -1
a' - xW «7'F

-"-

This is the expression for the vector of coefficients that minimize the

weighted sum of squared residuals.
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APPENDIX C Correlation and Autocorrelation

Given the tvo variables

h " *r x

yi
= yl' y2' ' ' ' '

yn

The correlation coefficient r may be expressed as

r =
I (x. - x)(y - y) / (n)S S

1=1
1 X X y

where S^ J (x. - x)
2

/ n
,

C-l

i=l

S
2
g = I (y, - yr / n

.y i=l

If the variables are first converted to standard form then C-l may be

expressed more conveniently. That is if

u
i

= Cx
i

" x) I S
x

V. = (y. - y) / S
y

then
n

r =
I u v /n C-2

1=1
x 1

Tvo properties of the correlation coefficient are significant

(1) -1 _< r <_ + 1

(2) r = +_ 1 only if the points lie on a straight line.

Hence, the correlation coefficient is a measure of the strength of the

linear relationship between the two variables. If the correlation coef-

ficient is 1 then the two variables are directly linearly related. If it is

-1 then an inverse linear relationship exists. A correlation coefficient
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of zero indicates that no linear relationship exists between the tvo

variables

.

The idea of correlation betveen two variables can be extended to the

consideration of the lag correlation of a single variable. Consider the

variable x(t), t = 1,2, ..., n, where x(t) represents the value of x at

time t. The idea of autocorrelation is a measure of the correlation, or

the strength of the linear relationship, between x(t) and xCt+k). Consider

the expression

T

I x(j)x(j-k)

where T is the range of the series. The expected value of this tern is

called the average lagged product. Moreover, if the series has been adjusted

so that the expected value, E(x), is zero, where x denotes the adjusted

series, then the average lagged product is the autocovariance

T
R (k) = V x 4 x, , / T-l-k

J=k+1 J J"k

where R (k) is the autocovariance evaluated for lag k.

Since the variance of a sequence of numbers which have been adjusted

to have an average value of zero is Just the expected value of their

"2
squares, E(x ), by virtue of the notation Just defined this can be expressed

as R (0). Hence, by C-2 the autocorrelation coefficient can be expressed

as

p(k) = R (k)/R (0) .

XX XX

The set of values of this function for all lags k = + 1, + 2, ... is called

the autocorrelation coefficient.
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APPENDIX D Exponential Smoothing

The smoothed statistic for exponential smoothing is defined as

S (x) = ox(t) + (l-a)S^ , (x)

o < I ± ±
where x(t) is the observation at time t

r
q( is an undimensioned positive ratio less than 1.

If the above definition of exponential smoothing is defined as single

smoothing then double smoothing can be defined as

sJ
2
J(x) = asW(x) + (l-a)s|f}(x) .

Similiarly multiple smoothing of order k is defined as

sW(x) = sf-
1
)(x) (l-a)sW(x)

The fundamental theorem of exponential smoothing proves that it is pos-

sible to estimate the (n+l) coefficients (derivatives) in an n
th

order poly-

nomial model by linear combinations of the first n+l smoothed statistics.

THE FUNDAMENTAL THEOREM OF EXPONENTIAL SMOOTHING

If the observations x(t+t) are represented by the model (1,133)

t
k

x
(k'

where t is the forecast period then

dt+T) =
I x

k
x
;

k
Vk:

k=0
t

'(x) = l (-l)
k

(x<
k)

/k!) ap/( P-l)! J j

k
S
J (p-l+j)!/j:

k=0 *—nk=0 J=0

where x is the k derivative evaluated at time t.

As a proof to the fundamental theorem of exponential smoothing two vec-

tors are defined, a vector x which represents the infinite sequence of obser-

vations x(t) for t = -,...-1,0,1,...,-., and a vector S with components
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(t < 0)

oB (t >0) .

Exponential smoothing can be represented as a convolution of the two vectors

x * S which has the components

(x * S)
t

= S
t
(x) =

I
x(t-j)S = a I 3

J x(t-j)

J=0 - j=0

Having defined the convolution relationship for single smoothing, since the

convolution operation is associative, multiple smoothing of order p is equiv-

alent to the convolution x * S p where Sp necessarily has the components

(t < 0)

(sW)
t

=

aV ( P-i+t):/t:(p-i) (t > o)

Therefore

S.
p (x) = [x(t-j) (aV(p-l+j):)/j(p-l): .

1
J=o

But since

c(t-j) =
I (-i)(x<

k)
/k:) j

k

k=o *

the theorem is proved.

The first five smoothed statistics can be written as
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x
(k)

s.U) = I (-i)
k
\r-« I jVz

k=0 J=0

' k=0 * -

J=0

x
(k)

3

S (3)( X)= £(.!)* JL-f- [ j
k

( J+l)( J+2)8
J

* k=0
K " "* J=0

f,\ n x'
k

' It »

S.W(x) = I (-l)
k
4r-f- I J

k
(j+D(j+2)(J+3)6

J

1
k=o

k
- ° 2=0

W- £(_i)
k JL«

J J
k
(j+I)(j+2)(J +3)(J+1*)B

k=0
k

- ^
J=0

From the structure of these terms the following is determined.

(1) The p order of smoothing is given as the alternating sura of

the n coefficients in the Taylor series

xf>/k:

(2) The coefficients of these derivatives are infinite sums in-

volving the smoothing constant.

By referring to the closed form of the infinite sums (1,135).
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Form

Zjs
j

IjV

v >• i

ZJ
6
B
J

1/1-B

8/(1-6)'

B(i-e)/U-s)

b(i+hb+b
2
)/(i+s)

B(1+11B+11S
2
+B

3
)/(1+B)

B(1+26s+66s
2
+26b

3
+S )/(l+B)

B(l+5Te+302S
2
+302B

3
+57B +S )/(l+B)

'

and writing the vector of coefficients as

4°

4"

(t)
x
t

/n.

the fundamental theorem can be expressed as

S = Ma
D-2

vhere M is an nxp matrix with elements involving infinite

sums of cowers of the smoothing constant

ik nrrrr I*
k Dj (i-n-.Q:

J!
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. ta
where M., is the element in the i row ar.d .<

Ik

column of the matrix M'

S is the vector of the p smoothed statistics evaluate

at time t. 3y nrcessity n*p.

a is the vector of the coefficients

With the fundamental theorem in matrix fcrr. the ti+1 simultaneous

equations in the n+1 derivatives given in .1-1 can he solved To- these

derivatives in terms of the n-*-l smoothed statistics. If 3-2 is post-

multiplied by M~ the result is

a = Sjf1 .
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APPENDIX E

The purpose of this appendix is to present the computer programs.

The programs are referred to by figure numbers in the following manner.

E-l The first phase of the program for general exponential

smoothing - "INCONT"

K-2 A model for a linear trend plus a superimposed sinusoid

(included in Phase I)

E-3 Phase II - "RAY"

K-U Phase III - "MATINV"

E-5 The subprogram to calculate the h vector - "HVEC"

E-6 Phase IV - "FORCST"

E-7 Phase V - "PLOTTER"

E-8 The subprogram to plot the observations, forecasts and

errors - "PLOTS"

E-9 Monitor cards used for phasing in the PR-155 system

E-10 The program for calculation the autocorrelation function

E-ll The subprogram to remove the trend from the time series -

"TREND"

E-12 The program to calculate the power spectrum
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I^CNS? JCR
V £ fvi <r t ASGN vjn, 1 7

von?* ASGN MGCi 16
yonst "ODF GC.T r ST
WOWS FXEQ FORTRAN, , ,09

DIMENSICMCHKI

!

0)

D I MENS I ON X ( SOL )

DIMENSIONCI (9) ,A<9 .1!. TM(9
910 FORMAT ( IX . 1 C F 1 . 5 !

999 FORMAT! IX ,6! 1C )

998 FORMATf IX ,F?0. 7)

9?° FORMAT ( F5 .1)

447 FORMAT ( 50 X,!4)

INCCNT

.9)

i FORMAT 114]
CHOOSE TH^ NEXT MODEL T

PFWIND7
NNN=1

READ IN THE OBSERVATIONS
PEADfl.ll IND)
DC4X4I=1 ,ND

414 READ! 1 .929) (X( I )

)

Ptah IN THF PFRICD NTOU
R r AD( 1.1) (NTC'J )

6?^ IFtNNN-? ) 77,88,88
88 STO°
77 GO TC( 31 ,66) ,NNN

BF TRIFP

FIG. F-l
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»3.14*8/TCU)

. 14*B/TCU)

'3 CONTINUE
v N = 4

N = 4

C I ( 1 > a ? 2 7 a

rr<2)»-l?.?
r I < 3 1 = o . o

CI(4)=C.O
DC3I=1 ,NTCU
TCU*NTCU
8 = 1

C3 = X( I )*SIN( 2.

C r ( 3 ) =C I

(

3!+C3
C4 = X(

I

)*CCS<2.*3.
3 c: (4i = ci ( 4i+o

C I ( 3 ) = (2. /TCU)*CI t 3 )

C! (4) = (2. /TCUI*CI C»)

ad, 1 1=1.
A (?,] )=0.
6 (3,1 )=C.
A ( A , 1 )=1.
CHK (11=0.0
CHK (2 1=1.0
CHK (31=1.0
CHK (4) =0.0

RFAD IN THF TRANSITION MATRIX
TM( 1,1 )=1.0
Tv( 1,21=0.0
TNM 1,3 1=0.0
T"'( 1,41=0.0
T W < 2 , 1 1 = 1.0
T*M ?,?) = ] .0
TM ( ? , 3 ) = .

TM(2.4)=0.C
Tf(3tl l=O.C
Tf(3i21"0.0
Ty(3,3)=CCS(2.*3.]4/TC'J>
TM<3»41=SIN(2.*3.14/TCU)
TV ( 4, i

) = .0
TV (4, 2 1=0.0
TW(A,3)=-<;IN(?.»3.14/TCU)
TM(4,4 )=C05< ?.*3.]4/TCU)
O^TORi 8

f-f, CCNTINIIF
8 I 8 v:R I TF ( 7 1 NO ,NTCU» N • ( A ( I • 1 1 , I = 1 » N 1

• {XU)»I-l»ND)»(CI<l)»I-l»N)»NNNi
1KN» (CHK( I 1 , I = 1,N1
DOB 171 = 1 ,N

817 V R I T F ( 7 ) ( T v ( I , J ) , J = 1 , N )

NNM=NNN+1
GO TO 625
rND

FIG.
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MOM** FXFO FORTRAN. . ,0§». . .PAY
J NTFGFRRNP
PI MFN'C I ON A t ( 1 r . 1 )

n t v r v c i « v r *•
( o , 9 j . r y l (9,0)

p r vcvc
; ONA ( 9 . 1 ! . D ! 1 , 9 ; ,C] ( 9.Q ) , F(<

D I M ENS I ON C 1 ( 9 )

DIMENSI0NX(5UG) .CI (9) .A1I9.1) »H<9.1]

1

111

11?
990
900
91 -

6A?
'l A I,

?.l) .TM<9»9! .AF<9»1 )

A)

STAPTING
9.7

DIMENS10NA
FORMAT ( 14 )

FORMAT (
n X , ]C'F1 1

r OPMAT ( 1X.I4)
r ORMAT( IX, 6! 10)
"CPMATM X.F3C.7)

CP«AT(irx .121
,

r ;on«T
(
r-F 1 =.

. 5 )

6?<j FOPMAT ( 1 X , ]
?F°.^

)

75 F0PMAT(3( X.F2 >.A]

2? FORMAT (5F 20. 4)
2 A FORMAT! 1UX »5F20. 4

)

624 FORMAT! 1X.18H F INVERSE
REWIND7
pfw r \ir> 5

RFWIND6
MPMsl
D MD = ^

'"**#-}< A rift.' MOOFL IS PFAP T A'

C»##**RETA I
c !N!T T 2L!ZFn tq

Aft A 9 F T A -
; . 7 (j

"="" A '3 ( 7 IND.NTOU »N» ! A( I • 1 ) . I
=

: . <X( I ) • 1 = 1 ..ND) . (CI t I ) , I*1,N)
IMN. (CHK( I ) ,I»1 .N)
D08 171=1 ,N

817 RFAO (7) (TM( I ,J) ,J«1 ,N)
T M = N
A p = ( 1 . / TN )

r av'" THF INITIAL VALI
Pp9^6 1=1

.

M

9 *
'.
", T(n='"i(r)

r»*nncn v c THF IMITIAL VALUFS
O*hhh<0F THF FITTING FUNCTIONS

rT77I = 7 ,N

77 A0(I»1)=AII»1)
( »##**STAPTING HERE TUT
C*»***»FCAt CUt ATFD WITH

67 9"FTA= ( AHETA ) **AP
C*****PfINITIALIZE THF VFCTOR
C**#**CF FITTING FUNCTIONS

P04? 1 = 1 .N

f*I ( I I
^r^.'

( I 1

h 7 AA(J.1)=&0(T.11

HFRF

>N )

NNNi

F THF CONSTANTS

VATr> ix I

?

NEW !?FTA

F I r,

.
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id

Di'Tf THF f i/JTRIX F"°
"^^ri f.:ir> ^ rtr pcta

[ r 1 , N

J s 1 . «

! .J! =0.0
. j ) = :; . i.

A » 1 .

1 = 1 . N

, I )=A( I ,1 )

I = 1 , M

"1
(

TN

'=1

c*»*
c»**
c»»*

ft

A

I.J)=A ( !»1 )*B( 1 »J )*( nc TA

)

TINUE
31=1 »N

3J=^»N
( I ,J)=C] ( I ,J)*:J ETA
K-l )66 ,16,66
C< THr CONVERGENCE CF THE
ATRIX AT EACH 5CTH ITERATIt
S ROUTINE CHFC*:S UNTIL IT
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r
-

c t A R

1

1 1 2 F n

CNT-50. ) I 6. A/. ,1 ft

1 = 1 tN

C»»*
c**»

^ * s *

c*#«
c»*«

TPI

Lj = r-
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RATI
TIN'I
'' A

!

V A
|

X »E

J)

.J!

M/DFNM
.10000] >80»80.16

IAS

)Cg

. = 1

DCH
: K (

(

I

.'Q T

. (A

Tft

" TH
PFTF
TIT
PFI

71=2
-!

7J = 1

I ..J)

• J )
=

TC(ft

1(1,
r i = l

TT(ft

[T FROM THIS L""n OCCURS
T (jp || rvrt'T'. OF THF F N»A-

THF CONVERGENT CRITERIA.
OCCURS TH r F "AT^IX I s

r>Y ^YMJiFTRY ANH THI- PPCGRAY
SEE ~F t ljf RANGE Cr F1ETA

cc:v r RF:

^ c "
( J, I

)

F ( J , I )
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.N) •

M , i A i
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'">
I T F (

r-,

) V , ( ,1 C ( I , I ) . I = 1 . N ) . r « c T A

i>f>68!s] .N
r. r l»

,<»ITF{MfFU»J)»J«1»N)
00481=] ,N

/. » WITFt^l (FK( I»J) ,J«1 ,N)
C#**»*PARAMETRIC 0*i PETA

IF(ARETA-0.70)102»45>45
45 RNR=RNR+]

I F( OMR-tvQM )46,i 4, t /4

] 4 STOP
J f\ 2 A n r T A

.
= A ^ETA+0.20

C«»»**R CPLFNISH THP VFCTCR C p

c*#***fitting functions and use a mfw
C#*#**R PTA

PC T " ft 7

C-»»#**THF PROGRAM PRANCHFS TC HERE WHEN
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16 P05U = 1 iN
fW = J

D050J=M,N
FK ( I ,J)rFK( I.JI+CIK! .J)

5^ F( ! ,J)=F ( I .J)+C1 ( I .J)
C*****UPDATF TH C VPTTCR "F FITTING FUM-
C*«*««CT!CN< USING THF TRANSITION ,va-

C##***TPIX
r>03] 1 = 1 »N

?] AF( I , ] 1=0.0
00901=] .N

D090J=] .N
9" AF( I,1)=TK( I.J)*AA( J,l )+AFt 1,11

rr;f: r
i = ' ,n

DC1C0J=1 ,N
AA(I,1 1=AF(I,1)

100 MI,] )=AF( 1,11
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r>**»*"F FITTING FUNCTIONS EVALUATFD FOP
{#**»« fiych TIME ORIGIN TO THF V c rTPP
C#»**»P\/ALUATFn rCP A MOVING TIT ORIGIN

[>063I = ] «N
rv =r\-tv

; I )

I F ( C- I . ) 6? . 55 .ft'

55 A( I ,1 ) =-A ( I , ] )

63 CONTINUE
C SAVF F( 1 1 1 OR FCRbCAST

!F(K-1 162,??, 62
?? D062I=! ,N

A](I,])rAA(I,l)
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FIG. r -? (CONTINUFD)
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BFTA*CSETA*
CNT«CNT+J .

< «K+1
G ° T " 99
STOP
Ff>'D

:TA

-1 (CONTINUED)
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7? 7

4 44
777

8P8
8P9

MSN'S
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[5 I

>.-'

CI'-'

r> TV
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n i

«

F^r?

66

67

33

1THF
FOR
FC"
PNR
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RFW
R F'.»>

pes

rice
Q FA

DC3
RFA
DC6
D06
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NM1
DO
ALL

ERR
SIC
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SI"
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M/
TIF
TI9
T ( /

CEF
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FX
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NFK
NV?
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fn

F ! 3

//!
FIC
//l
//2

CO FORTRAN. vat i,\y
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In many industrial and economic situations a series of discrete ob-

servations are taken on a uniform time scale. This sequence of obser-

vations is called a time series. The object of this investigation is to

develop a method for forecasting these time series.

If the series of observations is not merely random it can be described

as being the sum of two components. One component is the process vhich

generates the time series and the other is the variation, or superimposed


