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INTRODUCTION

With the advent of high-speed electronic digital computers it became

feasible to solve large systems of equations. Many techniques have been

developed to solve these equations. One of these involves calculating the

inverse of the coefficient matrix. This report will consider eight different

methods of calculating the inverse of a matrix.

Before proceeding with the discussion of matrix inversion, it will be

necessary to define several terms. A matrix can be defined as a rectangular

array of elements. For this report, the matrix will be square and its elements

will all be either real numbers or smaller matrices that may be rectangular.

Capital letters will be used to denote matrices, and small letters will be

used to denote the elements. The individual elements of a matrix A will be

designated by a^ , where the subscript r indicates the row in which the ele-

ment is located, and the s the column. For a shorter notation the matrix A

will be denoted by

A - (a^g).

The size, or dimension, of a matrix with n rows and m columns will be de-

noted as n X m. When A is equal to (aj.s), then the transpose of A, denoted

A' , is equal to (agj.) . The diagonal elements of a square matrix are those

whose row and column subscripts are the same. The trace of a square matrix

A, denoted T(A), is the sum of the diagonal elements of the matrix A, If a
"

square matrix has zeros for all elements not on the diagonal then it is

called a diagonal matrix. If all the possible non-zero elements of a diago-

nal matrix are equal, the matrix is called a scalar matrix. The product of



a scalar c and a matrix A is given by .

^

cA " (caj.g).

This means that the constant c is multiplied by every element of A, A sub-

matrix of a matrix A is an array formed by deleting one or more rows and/or

columns of A. Partitioning a matrix is simply dividing the matrix into

several submatrices. This dividing can be accomplished by drawing vertical

lines between some of the columns and/or drawing horizontal lines between

some of the rows* All matrices partitioned in this report will be divided

into four submatrices by drawing one vertical line between two columns and

one horizontal line between the corresponding rows. These submatrices then

become the elements of* the matrix and are denoted by capital Aj.s«

If two matrices A and B are the same size and a^^ = b^g for all r aot

s, then A B, The sum of two matrices is given by

A + B - (a^s +bj.s).

This means that to add two matrices, it is necessary to add corresponding

elements of each of the matrices. The set of all matrices the same size

forms a commutative group. The identity matrix for matrix addition is the

matrix Z, which has zeros for each of its elements. The product of two

matrices A and B of dimension n x m and m x p, respectively, is given by

m
A.B - AB - (21 arkbks)

k=l

where AB is of dimension n x p. This means that the element of AB in the



r-th row arxi the s-th colvmn will have the above suitmation for its value.

Matrix mxiltiplication is not always curomutative; however, it is associative*

The identity matrix, denoted by I, for multiplication is a scalar matrix with

the value 1 for the diagonal elements. When the matrix A is multiplied by

itself A*A, it is denoted by A . Multiplying A^ times A would be A^. In

other words, powers of a matrix are similar to powers of a number x in the

real number system. The matrix A is defined to be the identity matrix I,

For some square matrices there exists another square matrix denoted A" such

that

AA-1 » A"^A = I.

This matrix A~ is called the inverse of the given matrix, A square matrix

that has an inverse is called a nonsingular matrix. Even when the inverse

of a given matrix exists it is not always easy to fini.

For every square matrix there exists a number of the system of the ele-

ments which can be associated with it. In this paper the number will always -

be real. This number, denoted |A| , is called the determinant of the matrix.

The determinant of a 2 x 2 matrix is defined to be

lAl
-
an ai2

agi a^2
(^11 ^2 " ^12 ^1^'

The determinant of a square submatrix of a matrix A is called a minor of A,

If only the r-th row and the s-th column are deleted to form the submatrix

the minor is denoted as m^.^. The cofactor c of the element a^. is given by

(-1) mj.g. The cofactor differs from the minor only by sign when either r



or s (but not both) is an odd integer.

For any square matrix A, and for any choice of r and s, the determinant

of A can be defined as

n n
lAl - ^ a^i c^ - 21 a^s «Js

i»l o"l

where the c^4 and the c . are the cofactors of the elements a_. and a.^ of the
ri js ^-^ J«

matrix A, The first expression is said to be the expansion by cofactors along

the r-th row of A, and the second is the expansion by cofactors along the s-th

column. By applying this definition to the cofactors, it is possible to eval-

uate the determinant of any size of matrix by calculating the determinant of

a number of 2 x 2 subraatrices. The cofactor matrix, denoted by C, can be de-

termined by replacing every element of A by its corresponding cofactor.

Primarily, this report uses notation as adopted by Fuller in his book

Basic Matrix Theor;^, (li), where a much more conplete discussion of the pre-

ceding definitions can be found.

Using matrix notation, a system of n linear equations in n unknowns can

be written in the matrix form

. AX - G,

From this form it is easy to see hovx the inverse of the coefficient matrix,

if it exists, can be used in solving a system of equations. By ntultiplyLng

-1 '

both sides of the equation by A
*-,.

IX - A'-'-G

X - A'-'-G.



Thus the solution for the system can be found by one matrix multiplication.

The matrix A ;d.ll be used as an example to illustrate the different methods

of matrix inversion in the next three sections where

A

1 -1 -1

2 k 3

-il -2 3

2 1 k

INVERTING MATRICES USING ELEI^SNTABY OPERATIONS

Before going into methods of computing the inverse of a matrix it will be

necessary to discuss what is meant by elementary operations. Elementary opera-

tions are operations which can be performed on a system of equations that will

yield a new system of equations with the sarae solution as the original system.

When these operations are used on a matrix, they are called the elemen-

tary row operations for a matrix and are defined as follows:

1. Interchange of the i-th and j-th row denoted by R(i, j).

2. Multiplication of the elements of the i-th row by the non-
zero constant c, denoted by cRi.

3. Adding to the elements of the i-th row, k times the corre-
sponding elements of the j-th row, denoted by Ri + kRj.

If the word row is replaced by the word column and if the R is replaced

by C everyvrtiere in the above definitions, then one has the definitions for

elementary column operations.

Of all the methods discxissed in this paper for calculating the inverse

of a matrix, those methods which involve elementary operations are the most

easily adapted to machine computation. The method, (l), involved in this



section is the most general, for it uses both elementary row and column

operations *

It will be shown that if A, P and Q are nonsingular matrices such that

PAQ = I, then

a"-'- = QP. -

First premultiplying both sides of the equation PAQ =• I by Q

QPAQ = Q.

Since Q is nonsingular, postmultiply both sides by Q~

QPA = I.

Therefore by definition of matrix inverse

a"""" - QP.

This method gives a technique for computing the two matrices P and Q

using elementary operations. If the matrix A is reduced to I by a series

of elementary row and column operations, then one obtains a matrix P by

applying the same row operations to I and a matrix Q by applying the same

column operations to I. These two matrices, P and Q, are the ones desired

for calculating the inverse.

In the actual computation of A~ by this method, it is not necessary to

keep track of the operations that are made. Instead, by setting up the matrix



B =
A I

I Z

where Z is the zero matrijc, it is possible to operate on I at the same time

A is being operated on by both row and column operations. It is important

to remember that all of the operations must occur on A and that the matrix

B is used merely to keep track of the result of the operation on I, Once A

has been reduced to I

B^>
I P

Q Z

and P and Q have been determined.

One advantage of this method is that it can be checked at any stage. If

one has obtained

B

V m

A I
<->
\ n"

[z z\ M Z

then the work is correct if

NM h'

As an example of tiiis method, consider the matrix A given in the intro-

duction.



First fom

B
A I

I Z

1 -1 -1 -1 I 1
I

-2 h 3 OlOlOO
i

-U -2 3
I

1

2 1 UJOOOI

1 '

I

1 I

I
z

1
I

1
I

Now using elementary operations

1

2 1 -2

-U -2 3

3 2 6

C2 + ICl
C3 + ICl

1 1 1 1

CU + ICl
R2 + 2R1

1

Rli - 2R1 1

1

10 1

12 10 1 1 -2

I

1 -2 -2 3

-2

1

1

V

1

1 2

1

6

C2 -103 1

1

Z
1

-1 1

1

10
2 10

10
-2001



< >
C3 - 1C2

Cli + 2C2

R3 + 2R2
Ri; - 1R2

1 1

1 2 1

-1 u 2 1

1 8 -1; -1 1

1 1 1

1 -1 2

Z
-1 2 -2

1

r

1 1

1
1 2 1

1 7 t
1 1 1

1 8 -U -1 1

< >
R3 + IRli

1 1 1

\'- "'
'

-"^

1 -1 2

z

,

-1 2 -2

1
L m

CU
Rli

—

>

7C3

1R3

1 1

1 2 1

1 1 1 1

1

--
-U -2 -1

1 1 -6

1

-1

-1

2

9
1

-16
Z.

1
L _̂ *

which gives

, 1
I*

1 1 -6

P =«

2 1

1 1 1
Q -

1

-1

-1

2

9

-16

-ij -2 -1 1



Therefore

10

-1
A QP

10 1-6

1-19
0-12 -16

1

1

2

-ii

1

1 1

-2 -1

25 13

•31; -18

62 33

-h -2

7 1

-10 -1

18 2

-1

This value of A can be checked in the equation AA~ " I.

If no elementary column operations are performed on A, the matrix Q

will remain equal to I. Once A has been reduced to I, the inverse of A can

still be calculated by

-1
A - QP.

However, since Q is equal to I,

A similar argument would show that when no row operations are performed on

A the inverse of A is given by

-1
Q.

These are only two of the many variations of the method of elementary

operations. One distinct advantage of both of these special cases is that

it is not necessary to form the product QP,
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METHODS INVOLVING THE DETERMINANT OF A MATRIX

Calculating the Inverse Using the Adjoint Matrix

The adjoint of a matrix A is given by adj A - C where C is the trans-

pose of the cofactor matrix. The following principal, (U), pp. 1G3-1H,

makes it possible to use the adjoint matrix for finding the inverse:

A • adj A - adj A • A - |A|I.

If |A|?^ 0, then this eq^uation can be written as

adl_A adiA
^ |A| |A| ^ ^'

Therefore, by definition of the matrix inverse

_1 adj A
^

|A|

This method can be used for all matrices whose determinants are nonzero. It

can be shown that the nonvanishing of the determinant of a matrix is a neces-

sary and sufficient condition for the matrix to be nonsingular. Therefore if

a matrix has an inverse it can be found using this method.

It is obvious that once the adjoint matrix is obtained, finding the in-

verse id.ll not be difficult. Multiplying the k-th colunm of A by the k-th

row of adj A will give the lAl . All that remains is to divide the adj A by

|A|. The usefulness of this method, therefore, depends upon the ease with

which the adjoint matrix is obtained. In the case of a 2 x 2 matrix the

adjoint matrix can be written down immediately. For given
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then

Therefore

A

^1 ^22

^2 "^21

-^ ^11

adj A = C
^2 "^

"^21 ^1

In other words, to find the adjoint of a 2 x 2 matrix, interchange the

diagonal elements and change the signs of the remaining two elements. How-

ever, in the case of a U x li matrix, it is necessary to find the deterroinants

of sixteen 3x3 matrices, and for a 5 x 5 matrix the determinants of twenty-

five 1; X U matrices are needed. Because of the increasing difficulty of ob-

taining the adjoint matrix, this method should not be used for large matrices.

As an example of this method of finding the inverse consider the laatrix A

given in the introduction. Its cofactor matrix is
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25 -3U 62

13 -18 33

7 -10 18

1-12

-U

-2

-1
idj A

25 13 7 1

•3U -18 -10 -1

62 33 18 2

-h -2 -1

A good method of checking the computations for adj A is to form its product

with A, For this example this gives

A'adJ A

1 -1

-2 1;

-h

2 1

-1 -1

3

-2 3

I

25 13 7 1

-31 -18 -10' -1

62 33 18 2

-li -2' -1

10
10
10

1
J •

The adjoint matrix is incorrect if the product is not a scalar matrix.

The !Al is equal to the value of the diagonal elements of the product

of A • adj A. In this exanple,

lAl = 1.

Hence

A •» adj A.

Inversion of a Matrix using the Characteristic Equation

The following method, (5), like the method using the adjoint matrix, is
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not advantageous except with small matrices or matrices for which the charac-

teristic eqiiation is known. The basis for using the characteristic equation

to find the inverse is the Hamilton-Cayley theorem, which states that every

matrix satisfies its characteristic eqiiation.

The characteristic equation of the matrix A is the polynomial equation

|rl -A
I

» 0. The characteristic equation of the example matrix A is

|rl -A|

r-1 1 +1 -1

2 r-U -3

1; r+2 -3

-2 -1 T'h

0.

Evaluation of this determinant gives

|rl -At « r^ -7r^ + l8r^ -2$r + 1 =

which Is the characteristic equation of the matrix A,

According to the Hamilton-Cayley theorem, "satisfying" the characteristic

equation means that this same equation with corresponding powers of A will

give the zero matrix when A is defined as I, Therefore, in the example

A^ - 7A^ + 18A^ - 25a + I = Z

subtracting I from both sides of the equation leaves

A^ - 7A^ + 18A^ - 25a » -I.

Factoring out an A on the right side of the equality gives

. (A^ - 7A^ + 18a - 25l)A - -I



'y-'i-f!

25

then

(-A-^ + 7A^ - 18a + 251)A = I.

Since the product on the ri^t is eqxial to the identity matrix, the inverse

of A is by defixu-tion:

a"-'- = (-A^ + 71? - 18a + 251)

.

The inverse of any non-singular iratrix could be calculated in a similar

manner once the characteristic equation is known. All that remains to com-

-1 "^

pute A is to substitute the values of A-', A^j A and I into the equation ard

add.

A-1

11

-36

-21;

9 3

-13 -12

-k 13

-26 -8 -

39

78

111

•51

7 -Hi

-70 li2

98 -35

56 U2

-m -56*

56 77

-56 Ii2

7 98

-18 18 18

36 -72 -5U

72 36

-36 -18

18

-72

25

25

25

25

,-1

25 13 7 1

•3U -18 -10 -1

62 33 18 2

-1; -2 -1
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This value checks with results calculated previously. One disadvantage of

this method is that there are no checks on the calculations until they are

completed.

For some matrices there exists an equation, which the matrix satisfies,

vrhose degree is lower than the characteristic equation. If this is the case

then this minimum equation may be used to fini the inverse instead of the

characteristic equation.

Matrix Inversion Using the Trace of a Matrix

The last method discussed in this section is a method for computing the

inverse which involves the trace of the matrix. The fact that it requires a

greater number of operations than most of the methods discussed in this paper

is a disadvantage, but it has two definite advantages. First, it is not affec-

ted by individ;ial peculiarities of different matrices such as zero elements on

the diagonal or determinants of submatrices being equal to zero. Second, as

a by-product this method will give the characteristic equation and the charac-

teristic vectors of the matrix; therefore, if any or all of these are desired

this method could be used to advantage.

Let the n x n matrix A have the following characteristic equation:

. in - Al - r^ - p.r^-1 - p.r^-2 ..... p
pi . p12 -^n-l *^n

with characteristic roots being denoted as r^^, r2, . . ., r . Let the follow-

ing series be equal to Sj^:

^k-^l*^2*---^^n. '
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1^

These are the sum of the characteristic roots of A so

Sk=T(A^),

Once the s, are known, the coefficients of .the characteristic equation can be

calculated using Nevrton's recursion formula.

Pi ' ^1

2P2 - S2 - P^s^

^k " ^k Pl\-1 - • • • - Pk-1^1

^Pn = ^n - Pl^n-1 Pn-1^1

where the pj^ are the coefficients of the characteristic equation. This is a

way of deriving the characteristic equation in which it is first necessary to

compute the po>;ers of A.

A method, (3), has been developed that eliminates the necessity of com-

puting the powers of A and that will also give the inverse of A, Instead of
""

the powers, a set of n matrices A^, Ap, . . . , A will be computed using the

following formulae:

C]_ - T(AAq) A^ - AAq - C3_I

Cg - 1/2 T(AA^) Ag = AA^ - Cgl
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<^ = 1/k T(AAj^_i) Aj, = AAi^_-L - Cj^I

c^ = 1/n T(AAn_i) An » AA^.i - c^I

where A- is defined to be I. It will be shown that

^k
° Pk k » 1, 2, . . . , n

and that

An = Z.

If A is nonsingular and Cj^ j^ 0, then

^-1 = ^n^

Therefore

A" = An_i/cn.

Hote: The first step of the above proof shows that the matrix AAj^_-j_ ,is a

scalar matrix. This fact will be used later as a check for this method.

Mathematical induction will be used to prove that c-^ is eqxial to pj^.

First of all by choice:

ci - T(AAq) = T(AI) = T(A) - SI - pi
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also

2 2
AA-j_ " A(AAq -c^I) = A -c-j^A = A - p-^A

so

2c2 = T(aA3_) - T(a ) - PiT(A) - Sg - P^s^ - 2p2.

Therefore

Cg " P2'

Next {13 2 3 2
A(AAq -c-]_I) - C2I "A - c-j_A - C2A "A - P]_A - P2A

so

3 2
3C3 = T(AA2) = T(A ) - PiT(A ) - P2T(A) = s^ - P1S2 - P2S-L - 3p.

Therefore

3"P3

AAj^ - A(AAj^_^ - Cj^) - ArA(AAj^_2 - Cj^_tl^) - Cj^l - A^*^ - P3_A^ - . . . - Pj^A

(k+l)cj^^;j_ = T(AAj^) = TCa^""^) - VjlU^) Pj^T(A)

" ^k+l - Pl^k - . . . - Pk^i - (k+l)Pk+i .



Therefore

°k+l " Pk+1*

Also by the induction

A2

A^ = A - P3_I

2
AAi - P2I = A - p^A - P2I

^n " ^n-1 - Pn^ " ^"^ " ^1^'"'^ - . . . - P^I.

By the Hamilton-Cayley theorem then,

^l

20

As an example of this method, consider again the matrix A, Jlrst com-

puting

ci = 1/1 T(AAq) = 7

h AA^ - 71

-6 -1 -1 -1

-2-3 3

-k -9 3

2 10-3

Cg = 1/2 T(AA^) = -18

12 $ S -1

A2 - AA^ + 181 -
h

111 23

-13

2U

11

-15

-6 -1 1 h
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c^ = 1/3 TiAA^) = 25

^3 " ^2 ' ^^"^
"

-2$ -13 -7 -1

31 18 10 1

-62 -33 -13 -2

U 2 1

AAq

1

-1

-1

-1

c^ = lA T(AA3) " -1

If AA^ had not been a scalar matrix then this woiild have indicated an error

in the calciilation.

Finally,

,-1 A _/c = A^/c,
n-r n 3 U

25 13 7

-3U -18 -10

62 33 18

J. -2 -1

1

2

Substituting the above values of c,, c«, c- and c, into the characteristic

equation gives

|rl - Al = r'̂ - 7r3 . iSr"^ - 25r + 1 « 0.

This value of the inverse of A checks with results calculated previously.
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II'JVERSION OF A MTRIX BY PARTITIONING

Partitioning of a Matrix to Compute the Inverse

The motivation for the method of inversion by partitioning is the fact

that smaller matrices are easier to invert than large ones. With this method,

(2), it is possible to invert a matrix by computing the inverses of two

smaller matrices and performing some matrix multiplication and addition. Two

different sets of equations vd.ll be developed which -id-ll each give the in-

verse . ...
Let D be the inverse of the matrix A, Partition A between a pair of

rows and corresponding columns. Also partition D and I similarly. The product

HD can then be written as

^1 ''^2 ^11,^12

^21 °22

I Z

Z I

Performing the matrix multiplication results in the follox-jing equality:

%°11 " ^12^21 hl^ * ^12°22

^1^11 ^ ^2^1 ^1^ ^ ^2^22

I Z

Z I

In order for these two matrices to be identical, the corresponding sub-

matrices must be equal; that is, the follox-ang matrix equations must hold;

1) ^22Pll * ''12^21 "^ 2) A-j2D2_2 * -^12^22 " ^

h} A22P22 * -^2^22 = ^
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'mJhen the product AD is reversed a different set of four matrix equations will

result. The equations for the reversed product, DA, are given below.

^')
^ll\l ^ ^2^1 = ^ 2') D^i^ . D^i^2 = 2

3') D2iA^ -^ D22A21 = Z U') D^^A^ + D22A22 = I

To find D it is necessary to solve the ttro sets of matrix eqxiations for

^11* '^12* ^21 ^"^ ^22* ^l"^^g ^o^ JD]_2 in equation 2, and for D21 in

equation 3 gives

5) D12 = -A1XA12D22 6) Dg-L - -^22^1^11-

Substituting the value of D-j^ in equation ^ into equation 1; one obtains

^l(-%^12JD22) * ^2^22 = I-

Collecting coefficients of D22 gives

^-^1%%* ^2)^22 " ^•

By definition of the inverse of matrix

D22 - (A22 - ^2.hlh2^

or

7) D22 = (A22 -
^j^^l^)'^.

Solving for D^ in equation 1 gives

8) Di3_ - A^i - a{iAi2D2i.
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Using equations $, 6, 7 and 8 one can calculate D. In this case it is

necessary to fiixi the inverses of two matrices, A-^^^ and the inverse of the

matrix in equation 7. If either of these txTO matrices are singular then

this set of equations can not be used. However, by using a different combina-

tion of the original two sets of equations, another set of foxir equations may

be obtained in which two different inverses must be found. These equations

are the folloTdlng:

7- ) D^j = Ajl - ql^^I,^^ B') D^ - (^ - A^4^i)-^

In this set the inverses of A and the matrix in equation 8 must be cal-

culated. This shows that in order to use partitioning to compute the inverse

of a matrix at least one of the diagonal matrices must be non-singular.

It is interesting to note that by using equations 5, 6 , 7 and 8 it is

also possible to calculate D, However, in this case the inverses of all fovir

of the matrices discussed above would have to be calculated. Besides the

difficulty of calculating two additional matrices, this set of equations is

more restrictive since it requires two more matrices to be non-singular.

An example of a matrix for which partitioning would be advantageous is

a U X li matrix. This matrix could be divided into fovoc submatrices with

2x2 matrices on the diagonal. As was shoira in the '.second method of this

report, the inverse of a 2 x 2 matrix is easy to compute using the adjoint

matrix.

Below is an example of this procedure using the first set of equations.

Suppose that the matrix A is partitioned so that
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hi h2

hi h.2

1 -1 1 -1

-2 h 1 3

-h
i

-2

2 1
1

°

3

U

-1
Next calculate A-q \ising the adjoint matrix

-1
All VIA;111

k 1

2 1
1/2

i; 1

2 1

-1
and check by substituting into Ai-]_Ai]_ I:

1 -1 \ 1 1

•1

1/2 S3

-2 h 2 1 1

(It is important to check every inverse matrix that is computed. However, to

save space in this paper the check will not always be shown.)

Now find
'

-1 \ -1" -1 -1 "-1
-u'

A11A12 - 1/2
2 1
L J

3
= 1/2

1 -2

A2lAn " 1/2
-h \ 1"

-1/2

"-8
-k

2 1 2 1 10 3
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^Ai^i2 ' ^/2

"o -u"
"-1

-l" -2 U"

-2 1 1 -2 -1/2 -5

A22 - '^i^n^
-2 3

+
2 -li^ -1

U X/2 5 1/2 9

Finally

-1
D22 » (A22- A2iAi3_Ai2) - 2

H M

9 1 18 2

1/2 -1
w «

Next fiixi

-1D^ = -^^\2 " -1/2

-1 'k 18 2
a

7 1

1 -2 -1 -10 -1
• ' . . - .

-1
'21 = -^22^1% " -^/2

18 2 -8 -li" 62 33

-1 10 3 -i; -2

^%2^21 - V2
-1 -li"

'62
33

= 1/2
'-k6 -25'

1 -2 -1; -2 70 37

^11 ^ - ^^%1- V2
"ll

1"

2 1
+ 1/2

"ii6

-70

25"

-37

s:

"25

-31;

13

-18
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Therefore

A-^ = D =
211

^1

D-L2

D22_

=

25 13

-3U -18

62 33

-h -2

7 1

-10 -1

18 2

-1
J »

This value for A~ checks with results computed previously.

The example shows how this method can be used to aid in hand calcula-

tion of the inverses of small matrices. It also has advantages for calcu-

lating inverses with digital computers. Assume that it is necessary to

find the inverse of a 100 x 100 matrix. The storage capacity of the avail-

able computer limits the size of the matrix to be inverted to 60 x 60 and

the size of matrices to be multiplied to 50 x 50. By partitioning the 100

X 100 matrix into four 50 x 50 submatrices it would be possible to calculate

the inverse part by part and assemble the final result outside the computer.

This shows that by the use of partitioning a computer's capacity for finding

the inverse is almost doubled.

This method can be extended by repeated partitioning to compute the in-

verses of any size of matrix. As an illustration consider the following

6x6 matrix:

-^11 "'^12

i2i A22

^11 ^12 ^13 ^11;

^21 ^22 ^23 ^21;

"31 "32 ^33 ^3h

%1 %2 %3 ^hh

'51 "52 ^53 ^Sh

^61 ^62 ^63 ^61;

^15 ^16

"25 ^26

^3B "36

V %6

'S5 "56

^6^ ^66^
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After A has been subdivided in the above rianner. A,, can be subdivided into

four 2x2 matrices. The inverse of A^ can then be calculated using the

method of partitioning. Once aT-, is known the inverse of A can be computed

using equations 5, 6, 7 and 8. By using this process the inverses of all the

matrices to be inverted are easy to compute. However, the increase of the

number of matrices to be inverted is 2n where n is the number of times the

original matrix is partitioned.

The Inversion of a Matrix by Bordering

As will be seen shortly, bordering is very closely related to the method

of partitioning described in the first part of this section. In this method

the given matrix Aj, will be regarded as the result of bordering a matrix of

order n-1. This submatrix will be designated by A ., and its inverse A~_-,

will be assumed to be known. Thus

^1
Vl \2n

^In ^nn

^1 a^ ••• a;j_^^_^
I

a.^

^1 ^22 '•• ^,n-l I ^n

where
^j2n ^^ ^ colvimn matrix and Ap-j^ is a row matrix.

The inverse of A^^^ will be designated by D^^ and will be partitioned in

the form

Dn
Dn-1 Cl2n

D21n dn
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where D^-i is a matrix of order n-1, D]_2n is a column matrix, E^^^ is a row

matrix, and d^^ is a number. The product A^^ can then be varitten as

Vl %.2n

''^In %in

^n-1 %n I Z

Z I
aJ •

Substituting the elements into equations $, 6, 7 and 8 from the method of

partitioning gives

"n

Vl * (Vl^l2n^lnVl)^n "Vl^ian^n

-^InCl'^ dn

where d^^ = (a^ - ^iViAig)' .

The inverse of a matrix A can be obtained by using the above equation to

compute successively Dj^, D2, D^, . , . , D where -....

-1

% - [-11]

-1

D2
^11 1^15

^21
I
^2

^11 3-12 ' ^13

a2i a22
|

a23

^31 ^32
I

^33

-1
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-1

Dn

^11 a.j2
• • • ^l,n-l l-m

^1 ^2 • • • ^,n-l ^n

^-1,1 ^-1,2 • • • n

^ S2 • • • '^n,n-l Sn

As an example of this method consider the following matrix:

K

1 -1 -1 -1

2 h 3

-h -2 3

2 1 h

To compute Dj^ using this method it would first be necessary to find the

inverses of the following three matrices:

^1 [^] A2

•1 1 -1 -1
1 -1

A3- -2 ii 3
-2 h

-1 -ii -2

However, since it is easy to find the inverse of A2 using the adjoint matrix

this will be done, and will leave only two borderings necessary to find Dr.

Bordering Ao gives
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^2 ^123

'^13 ^33

1 -1 [ -l"

1

2 Ul 3

7^.^_

where

Aj^ = 1/2
h 1

2 1
J •

First find -aT A223 and ~^i^^ «

"^ ^123 ~ ~ '

k 1

2 1

-1

3

-1/2

-1

1
-^13^"'' = -^/2[o -i^] = -l/2[-8 'h]

Next , as a check on these values, calculate •Aon-sC"-^ ^123^ ^^ ^~'^13'^"'^'^123

^13^-4^23) = -l/2rO -1;] = 2 (-^i3^'^)^23
'^ -Vsf-S . -Ul

-1

3

-1
Since these valiies are equal, calculate d, where

S ° ^33 "^

^"-'^W '^12^ =-2+2=0.

Notice from the equation for computing D, that every term of D^ must be

multiplied by d,, which in this case is undefined. Since this is impossible.
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the inverse of Ai cannot be computed in its present form by this method.

Remembering that two rows of A may be interchanged when finding the inverse

if after the inverse is calculated the corresponding columns of the inverse

are changed back; Ay will be rewritten by interchanging row 3 and row k»

1 -1 -1 -1

2 k 3

2 1 h

-ii -2 3

Since ^2 remains the same, the first step is to border A.^. This gives

H'
h ^123

^•213 ^33

1 -1-1

-2 lil 3
1--

2 1
I

As A^ has already been calculated, solve again for -A^ k-^^ and -^213-'^ •

^ A3_23 -1/2
\ 1'

-1
= -1/2

-1

2 1 3 1

-^13^^ = -l/2[2 1
h 1

2 1
-i/2rio 3.1

Next calculate A2i3(-iJ A-i_23) and i-i^i^k^ ^hly
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w-'i\2i'> - -'4'
']

-1

1
1/2

(-^13^^^^3 " -^/^[lO 3]

-1

3

1/2

-1
Since these are eqiial, solve for d^ where

d^^ - a^^ + (-A2i3A^'^\23^ = + 1/2 = 1/2.

Hence

dj-a

Now

D2 - Aj- + (^"^^3^03^^^^ " ^/2
U 1

2 1
+2 (-1/2) (-1/2)

-1

1
[X0 3]

"-6 -2 -3 -1

1/2 m

12 h 6 2

-1.

^123 " -^ ^123S
=

1

-1 ^213 " -^2]3^S" [-^° -^]



Therefore

3U

^"' " ^3
=

D2 D123

D2-L3 d3

-3 -111
I

6 2 1-1

-10 -3I 2

Next, repeat this process after bordering \,

\
A3 ^121;

1 -1 -11 -1

2 U 3
I

2 1 I|

-1; -2
j

3

Solve for -aT jUpi and -^2-1 kAo .

-A3
A;i_2i^

- -1

-3 -1 1 -1 -7

6 2 -1 ss 10

10 -3 2 U -18

-hllih^ -
[

li 2

-3 -1 1

6 2 -1

10 -3 2

[ua 0]

-1 -1
Check by shovang that A2]j^(-A3 A-L2i^) and (-A2i^A3 )A-L2ij are equal.
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\ll}-'th20 -h -]

-7

10

-18

= "^
(-^1U^"'^-\21.

" [i^ 2 o]

-1

ii

-k

Now solve for
-1

\
.-1 -1V 'kk

* '-^ii.V,^u> - 3 - 1. = -1

d^.-l

Next calculate D , D , and D , ,

-3 -1 1 -7

6 2 -1 - 10

10 -3 2 -18

[k 2 O]

25 13 1

-3U -13 -1

62 33 2

°12U
-1

.
-7 7

10 B -10

-18 18

^211" -iFii 2 ol = l-h -2 o]

Therefore

=3 "l2U

25 13 1
]

7

•3it -18 -1 1 -10

62 33 2 I 18

-li -2
j

-1
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All that remains in calciilating D, is to interchange column three and

column four of Di . Thus

25 13 7 1

•31; -18 -10 -1

62 33 18 2

-k -2 -1

This value checks with results computed previously.

One advantage of this method is the fact that the computations may be

checked when calculating each d^ and after every D is computed. One disad-

vantage, as illustrated in the example just completed, is that it is un-

desirable to have a submatrix on the diagonal which does not have an inverse,

ITERATIVE METHODS OF I-ilTRIX INVERSION
'

Direct methods of matrix inversion, were considered in the three pre-

vious sections of this report. Since it is possible for roundoff errors and

errors in computation to occur, a method of iteration for improving the

accuracy of the inverse of a given matrix >ri.ll be presented. Iterative

methods are characterized by a cyclicing process in which the same equations

are used repeatedly to obtain the inverse. An initial matrix for the inverse

must be given. V/hen the desired accuracy is obtained the process is stopped.

Before this method of iteration is discussed, the basic principle, (U), pp.

177-182, of the method will be developed.

This principle involves the raising of an error matrix to higher and

higher powers. In order for the approximations for the inverse to approach
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the desired accxiracy, the elements of these higher povrers of the error matrijc

must become numerically smaller and approach zero. It will be shown that if

the sums of the absolute values of the elements in each raJ' or each column of

a given matrix are less than 1, then the elements of the higher poi'Xers of the

matrijc approach zero. The r-th row sxm of an n x n matrix, rRSA, is defined

as this sum of the absolute values of the elements in the r-th row, A sim-

pler statement of the above theorem is, "powers of a matrix whose rov; sums

are less than 1 will approach Z," The proof to be given will consider the

case of the "row sums" only. The proof of the column sums would follow in a

similar manner.

Consider a matrix B vrii.ose row sums are less than 1, Then there will

exist at least one row sum of B of Largest value p where p<l. It will be

shown that the row sums of B^^ are no larger than p"^. This is done by noting

that all rov; sums of a product of two matrices AB are no larger than p times

the corresponding row sums of A, It will follow that all the row sums of b"

approach as m is increased because p^ will approach 0,

This result will be proved for the product of two n x n matrices A and

B. The product is given by

,m

n

^ = (^s^^^rs) " ^T. a^k^^).
k=l

Considering only the elements in the r-th row; that is, the elements ob-

tained for a fixed r and for s varying from 1 to n.

rRSAB
n

k=:

n_ n

Sk^kl

n

Sk^k2

n

k=l

s"! k"l s=l k=l
ark ^ks
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<
n

^rk 3=1
^ks

n

z
k=l

'rk
(kRSB)

< > p
k=l

Sk
n

-p>
k=l

^rk
= p(rRSA).

This result shows that the row suns of AB are no greater than the product

of the maxiravun row sum of B and the corresponding row sum of A,

If the matrix A = B, the discussion above indicates that the row sums of

2
B are less than or equal to the product of p and the corresponding row sum

2
of B. This means for this case that the row sums of B are no larger than

2 2 3
p . Next letting A=B , one can conclude that the row sums of B are no larger

2
than the product of p and the corresponding row sum of B , Since the largest

2 2 _3
row sura of B is not greater than p , the row sums of B^ are all less than or

3 k
equal to p , Similarly, one can conclude by letting A = B that the row sums

k+1
of B are no larger than the product of p and the corresponding row sums of

k k k k+1
B , Since the row sums of B are no larger than p , the row sums of B are

k+1
no larger than p . Since p was assumed to be less than 1, the powers of p

must approach 0. Since this is the case, there must exist an m such that p

is approximately equal to 0. This means that for this m the row sums of B

must be approximately equal to 0. Since by definition the row sums are the

sum of the absolute values of the elements, the row sum approaching as the

power is increased implies that each element must approach 0, Therefore, if

the row sums of B are approximately equal to 0, then B is approximately

equal to Z, Thvis, the theorem is proven for the row sum. As was stated

earlier, the part for the column sums can be proven in a similar manner using

column sums instead of row suns.
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Improving the Acciiracy of the Inverse of a Matrix

With the background knowledge of matrices whose powers approach the

zero matrix, the basic iterative procediire, (li), pp. 182-187, for improving

the accuracy of the inverse of a matrix will be discussed. The first ap-

proximation of the inverse of A will be designated by Dq. This approximation

will be improved upon using the following sequence:

D^ - (21 - DqA)Dq

Dg = (21 - -^A.)!)^

\ = (21 - D^.lA)D^.l.

It is obvious that the error matrix for Dq can be written as

Eq - C - I - DqA.

It can be shown that the error matrices of subsequent approximations of the

inverse are given by

pin

Therefore if the first approximation is such that the row stuns or column suras

of the error matrix C are all less than 1, then the higher powers of C will

approach Z. Since the error matrix decreases geometrically xjith successive

Dj^, the accuracy should improve rapidly. Once the elements of E are equal

to zero X'/hen rounded to the desired number of decimal places then D_ will be
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equal to A~ to the desired accuracy.

As an example of this method consider .the follov;ing matrix:

B

1 -2 -1

U -3 1

3 -1 -2
J •

As a first approximation of the inverse, let

-0.3 0.2 0.2

-0.5 0.0 0.1

-0.2 0.3 -0.3

Form the product

DoB =

-0.3 0.2 0.2

-0.5 0.0 0.1

-0.2 0.3 -0.3

1 -2 -1

i; -3 1 =

3 -1 -2

1.1 -0.2 0.1

-0.2 0.9 0.3

0.1 -0.2 1.1

Subtracting this product from the identity matrix gives the error matrix

I-DqB

10
10 -

1
J

1.1 -0.2 0.1

-0.2 0.9 ,0.3

0,1 -0.2 1.1

-0.1 0.2 -0.1

0.2 0.1 -0.3

-0.1 0.2 -0.1
J •
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Since the row sums of C are all less than 1, this value of Dq will work.

If six place accuracy is desired compute certain powers of C to determine how

many iterations will be necessary. These powers will also serve as a check on

the computations. The powers needed are

0.06 -0.02 -O.Oii

0.03 -0.01 -0.02

0.06 -0.02 -O.OU

c^ =

0.0006 -0.0002 -o.oooU

0.0003 -0.0001 -0.0002

0.0006 -0.0002 -O.oooU

0.00000006 -0.00000002 -o.oooooooU

0.00000003 -0.00000001 -0.00000002

0.00000006 -0.00000002 -O.OOOOOOOli
J •

8 -1
Since C equals Z to six places Do will equal B to the same accuracy. To

compute Do it is first necessary to compute D^^.

D-L
- (21 - DqB)Dq -

0.9 0.2 -0.1

0.2 1.1 -0.3

-0.1 0.2 0.9

-0.3 0.2 0.2

-0.5 0.0 0.1

-0.2 0.3 -0.3

and

D^B

-0.35 0.15 0.23

-0.55 -0.05 0.2U

-0.25 0.25 -0.27

1 -2 -1

U -3 1 =

3 -1 -2

0.9U 0.02 O.Oli

-0.03 1.01 0.02

-0.06 0.02 I.OU
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As a check D,B subtracted from the identity matrix should equal C • It is

easy to see that this is true.

The computation for D^ and D^B gives

D2 « (21 - D^B)D^

1.06 -0.02 -O.Oii

0.03 0.99 -0.02

0.06 -0.02 0.96

-0.35 0.15 0.23

-0.55 -0.05 0.21;

-0.25 0.25 -0.27

and

DgB

-0.3500 0.1500 0.2U98

-0.5500 -0.0500 0.2U99

-0.2500 0.2500 -0.2502

1 -2 -1

h -3 1

3 -1 -2

0.999U 0.0002 O.OOOl;

-0.0003 1.0001 0.0002

-0.0006 0.0002 l.OOOU

In comparing this with the identity matrix one sees that the difference is

equal to C . Finally

D^ = (21 - D2B)D2

1.0006 -0.0002 -O.OOOU

0.0003 0,9999 -0.0002

0.0006 -0.0002 0.9996

-0.3500 0.1500 0.2^98

-0.5500 -0.0500 0.2lt99

-0.2500 0.2500 -0.2502

-0.35000000 0.15000000 0.2U999998

-0.55000000 -0.05000000 Q.2h999999

-0.25000000 0.25000000 -0.25000002
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If the product D^B is. formed and subtracted from the identity matrix, the

Q

result will equal C . This is a final check of computational errors.

Since six place accuracy was desired Do can be rounded off sis

"3

-0.350000 0.1^0000 0.250000

.-0.550000 -0.050000 0.250000

-0.250000 0.250000 -0.250000

In this case Do is the exact inverse of B.

It is interestir-g to note what would happen if some Dj^ is the exact

solution so that Dj^ = I. If this is the case then,

^k+1 = (21 - Dj^)Dj^ = (21 - 1)D^ = IDk = Dk-

Thus one criterion for halting the iteration process is that two subsequent

approximations are equal. Another process for determining the number of

iterations needed is the one used in the example. This was computing the

powers of C until an error matrix vrLth small enough elements is obtained.

Inversion Method for Strongly Diagonal tiatrices

For certain matrices it is easy to guess an initial approximation of the

inverse which leaves the row siims of the error matrix C, less than 1, • These

matrices, (U), pp. 187-189, are called strongly diagonal matrices. Tciey are

characterized by diagonal elements whose absolute values are larger than the

sums of the absolute values of the remaining elements of each of their rows,

that is, iRSA < 2|a^^ I for each row. If each of the rows of a strongly

diagonal matrix is divided by the diagonal element then the row sums of the
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new matrix are less than 2, If this matrix is subtracted from the identity-

matrix then the row sums of the resulting matrix are less than 1, Remembering

the equation for the error matrix is I - DA it follows that the matrix to

pick for D is

^11 . . .

3^2 . . .

.
nn

This value for Dq makes C the matrix described in the above paragraph whose

row sums were less than one.

As an example of a strongly diagonal matrix consider the following matrix:

B =

h -2 -1

3 -5 1

-2 h 8

First checking the rows gives

row 1: 1 + 2 = 3 < ii

row 2: 3+l = i|<5

row 3: 2+U = 6<8

which verifies that matrix B is indeed a strongly diagonal matrix. Let



h$

^0
=

0.25

-0.2

0.125

Then

C = I - DqA

1

m

1 -

1

1.0 -0.5 -0.25

-0.6 1,0 -0.2

-0.25 0.5 1.0

0- 0.5 0.25

0.6 0.2

0.25 -0.5

Checking the row sums of C

IRSC = 0.50 + 0.25 = 0.75

2RSC = 0.60 + 0.20 = 0.80 .

3RSG = 0.25 + 0.50 = 0.75 .

Since for this value of D- the error matrix C satisfies the property described

in the introduction of this section, B "^ can be found using the iterative

method discussed earlier in this section.

This method can be used for calculating the inverse of a matrix -that is

not strongly diagonal if the matrix can be transformed into a strongly diagonal

matrix by interchanging rows. The first step is to place the element of

largest absolute value on the diagonal. This can be done by interchanging

two rows. Next, eliminate the row and column where this element is contained,

and place the element of largest absolute value in the remaining submatrix on

the diagonal. Continue this process until the size of the submatrix is one.
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Next, check the row sums of the newly formed matrix to determine whether the

matrix is strongly diagonal. If so, then its inverse can be computed using,

the procedure discussed in this part. To find the inverse of the original

matrix, it is necessary to interchange the corresponding columns of the cal-

culated inverse in reverse order.

Instead of interchanging rows, it would work equally well if the columns

of the original matrix were interchanged. Then the corresponding rox^s of the

calculated inverse XTOuld be interchanged in reverse order. An obvious disad-

vantage of this procedure is the necessity of remembering the interchange and

their order.

CONCLUSION

Only a few of the many different methods of computing the inverse of a

matrix are given in this report. Some of the methods not included are varia-

tions of those contained here and others are methods which can only be used on

special kinds of matrices.

Solving the system of linear equations

AX = G

using the inverse of the coefficient matrix A is only one technique of solu-

tion. It becomes advantageous to use this technique only when the coefficient

matrix is large or when the same coefficient matrix A is used for several dif-

ferent constant matrices G,
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With the advent of high-speed electronic digital computers it became

feasible to soIvb large systenis of equations. Many techniques have been

developed to solve these equations. One of these involves calculating the

inverse of the coefficient matrix.

Using matrix notation, a system of n linear equations in n unknowns

can be ^•nritten in the matrix form: •
' -

AX = G.

-1By multiplying both sides of the equation by A

A~\x = A'h,

X = A"-^.

Thus, if the value of the inverse of the coefficient matrix is knovxn, the

solution for the system can be found by one matrix multiplication.

The purpose of this report is to consider eight different methods by

which the inverse of the coefficient matrix may be calculated. For each

method an effort is made to explain the method, prove its validity, and givB

an example using the method. Also, for most of the methods advantages aM '

disadvantages are given. The eight different methods of matrix inversion

are discussed in four sections. The first section considers matrix inver-

sion using elementary operations. Of all the methods discussed in this

paper, those methods which involve elementary operations are the most easily

adapted to machine computation. Only the most general case of these methods

is discussed here.



The second section considers methods of matrix inversion involving

the determinant oi a matrix. The three methods incliided use the adjoint

matrix, the characteristic equation, and the trace to calcvdate the inverse.

The inversion of a matrix by partitioning and a special case in.which

the niatrix is partitioned by bordoring ara developed in the third Gsetion.

Iterative methods of matrix inversion are considered in the fourth

section. These methods are important for they can be used to improve the

accuracy of inverses calculated by other methods, A basic method of itera-

tion and a particular type of matrix for i-rhich a good starting value is

easily determined are discussed.

Only a few of the many different methods of computing the inverse of

a matrix are contained in this report. Some of the methods not included

are variations of those contained here ssd others are methods which can

only be used on special kinds of matrices.

Solving a system of linear equations using the inverse of the coeffi-

cient matrix is only one technique of solution. It becomes advantageous

only when the coefficient matrix is large or when the same coefficient

matrix A is used for several different constant matrices G,


