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Abstract 

In this dissertation, we investigated three central questions to improve mesoscale soil moisture 

monitoring using the Kansas Mesonet. Our first question was: i) Can we improve the accuracy of 

soil moisture measurements and related soil water processes by characterizing site-specific soil 

physical properties? We developed a comprehensive database of site- and depth-specific soil 

physical properties for the Kansas Mesonet. We analyzed a total of 320 soil samples collected 

from four sensor depths at 40 stations of the Kansas Mesonet monitoring soil moisture and soil 

temperature. The resulting database comprises 14 site and depth-specific soil hydraulic 

properties and three soil thermal properties for 40 stations of the Kansas Mesonet. In addition, 

the database of soil physical properties allowed us to identify an improved calibration model for 

the soil moisture sensors used by the Kansas Mesonet. Our second question was: ii) Can we re-

construct precipitation events using changes in rootzone soil water storage to improve 

operational quality control and quality assurance of precipitation observations in mesoscale 

networks? Co-located hourly soil moisture and precipitation observations from May 2017 to 

December 2020 at 30 Kansas Mesonet stations were analyzed to test whether the rootzone can be 

used as a natural rain gauge. Precipitation events were back-calculated from soil moisture as the 

sum of hourly differences in profile soil water storage. The proposed soil moisture approach 

correctly flagged 82% of the precipitation events. Precipitation amounts and timing obtained 

from in situ soil moisture were more accurate than using precipitation observations from the 

nearest station when the nearest neighbor station was at a distance of >15 km. Our third question 

was: iii) Are traditional and modern laboratory methods for measuring soil water retention 

curves compatible? We compared water retention curves developed for a total of 24 soil samples 

from five different textural classes using traditional instrumentation (tension tables, pressure 



  

cells, and pressure plate) and modern instrumentation (precision tensiometers and a dew point 

water potential meter). Both traditional and modern methods resulted in similar water contents at 

saturation, field capacity, and permanent wilting point, but the traditional method had residual 

water content 125% higher than modern methods. 
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Abstract 

In this dissertation, we investigated three central questions to improve mesoscale soil 

moisture monitoring using the Kansas Mesonet. Our first question was: i) Can we improve the 

accuracy of soil moisture measurements and related soil water processes by characterizing site-

specific soil physical properties? We developed a comprehensive database of site- and depth-

specific soil physical properties for the Kansas Mesonet. We analyzed a total of 320 soil samples 

collected from four sensor depths at 40 stations of the Kansas Mesonet monitoring soil moisture 

and soil temperature. The resulting database comprises 14 site and depth-specific soil hydraulic 

properties and three soil thermal properties for 40 stations of the Kansas Mesonet. In addition, 

the database of soil physical properties allowed us to identify an improved calibration model for 

the soil moisture sensors used by the Kansas Mesonet. Our second question was: ii) Can we re-

construct precipitation events using changes in rootzone soil water storage to improve 

operational quality control and quality assurance of precipitation observations in mesoscale 

networks? Co-located hourly soil moisture and precipitation observations from May 2017 to 

December 2020 at 30 Kansas Mesonet stations were analyzed to test whether the rootzone can be 

used as a natural rain gauge. Precipitation events were back-calculated from soil moisture as the 

sum of hourly differences in profile soil water storage. The proposed soil moisture approach 

correctly flagged 82% of the precipitation events. Precipitation amounts and timing obtained 

from in situ soil moisture were more accurate than using precipitation observations from the 

nearest station when the nearest neighbor station was at a distance of >15 km. Our third question 

was: iii) Are traditional and modern laboratory methods for measuring soil water retention 

curves compatible? We compared water retention curves developed for a total of 24 soil samples 

from five different textural classes using traditional instrumentation (tension tables, pressure 



  

cells, and pressure plate) and modern instrumentation (precision tensiometers and a dew point 

water potential meter). Both traditional and modern methods resulted in similar water contents at 

saturation, field capacity, and permanent wilting point, but the traditional method had residual 

water content 125% higher than modern methods. 
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Chapter 1 - General Introduction 

Mesoscale in situ networks are an emerging hub of climate and near real-time 

environmental observations that are becoming widely used for research in meteorology, 

hydrology, and agriculture. A mesoscale network refers to a collection of monitoring stations 

with a horizontal spatial extent of a few to several hundred kilometers (American Meteorological 

Society, 2021) that are used to study climate trends and support natural hazard forecasting of 

mesoscale phenomena like wildfires, severe thunderstorms, flash flooding, and droughts. 

Currently, the United States of America has the largest number of mesoscale networks in the 

world with about 30 mesoscale networks having a combined total >2300 observation sites across 

the country (Quiring et al., 2016). The mesoscale networks in the US comprise both national and 

statewide networks. The national networks include the Soil Climate Analysis Network (Schaefer 

et al., 2007) with 190 stations and the U.S. Climate Reference Network (Bell et al., 2013) with 

114 stations across the country. At the state level, the two networks with the highest station 

density are the New York State Mesonet (Brotzge et al., 2020) that has 126 stations across 

141,297 km2, and the Oklahoma Mesonet (McPherson et al., 2007) that has 129 stations across 

181,038 km2. In the Southern Great Plains, the Kansas Mesonet (Patrignani et al., 2020a) is 

currently the second-largest mesoscale network after the Oklahoma Mesonet with 62 stations that 

covers an area of 213,100 km2, which makes the Kansas Mesonet the most important 

infrastructure for environmental monitoring in the state of Kansas, and an essential component in 

research and outreach efforts. In this dissertation, we investigated three central questions to 

improve mesoscale soil moisture monitoring and applications of soil moisture and temperature 

observations from the Kansas Mesonet:  
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i) In 1986, the Kansas State Research and Extension started the Kansas Mesonet with a 

total of 13 weather stations that were distributed across the agricultural research stations of 

Kansas State University. The Kansas Mesonet has expanded over the years and currently has 62 

stations distributed across the state of Kansas with at least one station in every two counties 

(Patrignani et al., 2020b). The Kansas Mesonet monitors standard climate variables in addition to 

soil moisture and soil temperature at intervals of 5 minutes, which is then aggregated into hourly 

and daily intervals (Patrignani et al., 2020a). The climate variables from the Kansas Mesonet are 

routinely used for agricultural extension programs and also for research studies in agriculture 

(Barkley et al., 2014; Tack et al., 2015; Lollato et al., 2020), meteorology (Miller et al., 2020), 

and hydrology (Brookfield et al., 2018). However, unlike the atmospheric variables, applications 

of the soil variables in fostering understanding of soil water and surface energy dynamics at the 

mesoscale level have been limited by a lack of site-specific information on soil physical 

properties co-located with the soil moisture and soil temperature observations. Can we improve 

the applications of the soil moisture and soil temperature observations from the Kansas Mesonet 

by developing a database of soil physical properties for each station? Can the accuracy of soil 

moisture measurements be enhanced by characterizing soil physical properties? 

ii) Precipitation monitoring in mesoscale environmental networks is typically carried out 

using tipping-bucket, weighing-bucket, and siphon rain gauges that are automated using 

electronic data loggers (McPherson et al., 2007; Shulski et al., 2018; Patrignani et al., 2020a). 

However, sporadic instrument breakdowns and clogging of the rain collector in automated rain 

gauges could result in missing precipitation records (Shafer et al., 2000; Michaelides et al., 

2009). Missing precipitation records could consequently affect the results of hydrologic studies 

that use precipitation as input (Tan and Yang, 2020). Missing precipitation records at a targeted 
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station are typically replaced by interpolating the precipitation records of the stations 

surrounding the targeted station (i.e. replacement using the same variable from different 

stations). Commonly used spatial interpolation methods for replacing missing precipitation 

events varies from simple methods such as nearest neighbor and Thiessen polygon (Mair and 

Fares, 2011; Bárdossy and Pegram, 2014) to more complex and sophisticated methods such as 

ordinary kriging and geographically weighted regression (di Piazza et al., 2011).  However, the 

naturally high variability of precipitation events in terms of space and timing of precipitation 

events at different locations implies that even sophisticated spatial interpolation methods could 

lead to errors in the estimated missing precipitation events, especially at sub-daily intervals (e.g. 

hourly) (Ciach and Krajewski, 2006; Cristiano et al., 2017). On the other hand, it is practically 

challenging to run a real-time precipitation quality control onboard station dataloggers using 

gridded precipitation products from remote sensing sources (e.g. radars, satellite sensors). To 

operationally run a real-time precipitation quality control at the stations that resolve the 

uncertainties related to spatial interpolation methods, can we use concurrent changes in situ soil 

moisture (i.e. a different variable from the same station) as an operational quality control 

approach to detect missing precipitation events in mesoscale networks? Can we quantify the 

changes in soil water storage during precipitation events to replace missing precipitation records 

at the same station? 

iii) While completing the soil physical property database for the Kansas Mesonet, we 

became curious about the compatibility between different laboratory methods for measuring soil 

water retention. Measurement of called soil water retention curve (also called soil water 

characteristics curve) is important in studies that rely on the energy state of water in the soil such 

as simulation of soil water fluxes (Skaggs; Wyatt et al., 2017), modeling transport of pollutants 
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(Gärdenäs et al., 2005), and quantifying plant available water (Parker et al., 2021). Water 

retention curve over the entire moisture range is typically measured by combining at least two 

different instrumentations due to the non-existence of one instrumentation that is capable of 

measuring water retention over the entire moisture range (Bittelli and Flury, 2009; Schelle et al., 

2013; Parker et al., 2021). For almost a century now, the most popular instrumentation for 

measuring soil water retention in the laboratory is the pressure plate (Richards and Fireman, 

1943; Richards, 1948, 1965), and thus the pressure plate has somewhat become the traditional 

water retention instrumentation in soil physics laboratories. Due to the long existence of the 

pressure plate, most of the commonly used models for predicting soil water characteristics in the 

literature were developed based on water retention measurements using the pressure plate (Arya 

and Paris, 1981; Schaap et al., 2001; Saxton and Rawls, 2006). However, the pressure plate is 

reported to produce inaccurate results at low matric potentials ≤ -1500 kPa due to problems such 

as lack of equilibration (Creswell et al., 2008), and poor contact between soil samples and the 

pressure plate (Gee et al, 2002). On the other hand, newer instrumentations such as the 

evaporation method based on mini-tensiometers and the dewpoint method based on water 

potential meter, which is now available in commercial quantities, are suggested to address the 

issues associated with the pressure plate (Bittelli and Flury, 2009; Schelle et al., 2013). However, 

there are still unanswered questions or concerns regarding the level of compatibility between full 

water retention curves measured using the pressure plate and water retention curves measured 

using the newer methods. Therefore, this study investigated some of the lingering questions, 

specifically: What is the level of compatibility between a full water retention curve measured 

using the pressure plate (i.e. traditional method) and a full water retention curve measured using 

the newer methods based on mini-tensiometers and water potential meter (i.e. modern methods)? 
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If the methods are not compatible, to what degree do the differences between the methods 

propagate into the estimation of plant available water? 
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Chapter 2 - A New Database of Soil Physical Properties for the 

Kansas Mesonet 

This work will be submitted to the Vadose Zone Journal 

Nathaniel Parker, Christopher Redmond, Gerard J. Kluitenberg, and Andres Patrignani 

 Abstract 

This study developed a comprehensive database of soil hydraulic and soil thermal 

properties to expand the applications of soil moisture and temperature observations from the 

Kansas Mesonet. The database comprises 14 site and depth-specific soil hydraulic properties 

(sand, clay, and silt contents; bulk density; particle density; total porosity; effective saturation; 

saturated hydraulic conductivity; and water retention at six matric potentials) and three soil 

thermal properties (thermal conductivity; volumetric heat capacity; and thermal diffusivity) for 

the 40 Kansas Mesonet stations that monitor soil moisture and soil temperature. Eight USDA soil 

textural classes (six fine and two coarse textures) were found in the Kansas Mesonet. Silty clay 

loam, silt loam, and silty clay dominated the fine soils while sandy loam and sandy clay loam 

were the only coarse soils captured. All the measured soil properties showed low variation within 

soil texture, except the saturated hydraulic conductivity, which varied from a median of 0.520 

±308 cm d-1 in clay soil to 47.1 ±119 cm d-1 in sandy loam soil. The uncertainty in the Kansas 

Mesonet soil moisture measurements improved by 29% using sensor calibration equations 

compared to the factory default sensor equation. Our soil physical property database offers new 

prospects to use the Kansas Mesonet soil moisture and temperature observations for agricultural 

and hydrological applications such as drought monitoring, drainage, and groundwater recharge 

estimations, and also for other applications in civil engineering and urban planning. 
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 Introduction 

The Kansas Mesonet is a mesoscale environmental monitoring network that was 

established by the Kansas State University Research and Extension in 1986. The Kansas 

Mesonet consists of 62 automated stations distributed across an area of 213,000 km2 and has an 

average distance between neighboring stations of about 35 km (Patrignani et al., 2020b). Each 

station of the Kansas Mesonet is instrumented with research-grade sensors that record 

atmospheric and soil variables, including soil moisture and soil temperature (Patrignani, et al. 

2020a).  Soil moisture and soil temperature are monitored at 5-minute, hourly, and daily intervals 

at 5, 10, 20, and 50 cm depths using soil water reflectometers (model CS655, Campbell 

Scientific, Inc.) and soil temperature probes (model CS107, Campbell Scientific Inc.). The soil 

temperature record at 5 and 10 cm depth spans a period of 35 years, while the soil moisture 

record based on the current sensor layout dates back to May 2017. 

Information from the Kansas Mesonet are routinely used for outreach activities through 

agricultural climate updates (climate.k-state.edu/ag/updates) and for research applications 

including climate risk assessment for crops (Barkley et al., 2014; Lollato et al., 2020), analysis of 

mesoscale convective systems (Miller et al., 2020), estimating crop yield gaps (Tack et al., 2015; 

Lollato et al., 2017), examining factors influencing the value of farm land (Tsoodle et al., 2006), 

determining the efficiency of alternative irrigation technologies on groundwater levels (Pfeiffer 

and Lin, 2014), estimating groundwater volumes from satellite-based models (Brookfield et al., 

2018), and simulating regional-scale surficial ecohydrological processes (Steward et al., 2011). 

While the number of agricultural and hydrological applications that use meteorological 

data is expanding, the lack of site-specific soil physical properties limits the use of soil moisture 

and soil temperature observations for studying and advancing our understanding of the 
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components of the soil water balance and the surface energy balance at the mesoscale level. 

Thus, there is a need for developing a comprehensive database of site-specific soil physical 

properties for the Kansas Mesonet. The objectives of this study were to determine site-specific 

soil hydraulic and thermal properties for stations of Kansas Mesonet equipped with soil moisture 

sensors. To illustrate an example application of the resulting dataset, we conducted a network-

wide validation of the soil water reflectometers used by the Kansas Mesonet. 

To our knowledge, only a few mesoscale networks have determined and made publicly 

available databases of site-specific soil physical properties, which include the databases of the 

North Carolina EcoNet, the Oklahoma Mesonet, and the US Climate Reference Network. In the 

case of the US Climate Reference Network and the North Carolina EcoNet, new soil databases 

were aimed at providing co-located ancillary soil physical properties to support soil moisture 

observations (Pan et al., 2012; Wilson et al., 2016). Similarly, the Oklahoma Mesonet soil 

database was aimed at improving the accuracy of soil moisture observations from heat 

dissipation sensors through better estimates of soil hydraulic parameters (Scott et al., 2013). 

While these databases contain detailed soil hydraulic properties, we are not aware of any soil 

physical property database also containing detailed information on soil thermal properties. 

 Materials and Methods 

 Field sampling campaign 

From September 2018 to November 2019, we visited 40 stations of the Kansas Mesonet 

equipped with soil moisture sensors (Figure 2.1). At each station, we collected duplicate 

undisturbed soil cores at 5, 10, 20, and 50 cm depth at about 1 m from the permanent array of 

soil moisture sensors to avoid disturbing the sensing area. The duplicate soil samples were 
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adjacent at about 1 m from each other. Undisturbed cores were collected using a soil core 

sampler (model C, Eijkelkamp Agrisearch Equipment) that had stainless steel rings with a 

volume of 100 cm3 (51 mm height and 50 mm i.d.). Before starting the soil sampling process, the 

top 2 cm of the soil were removed to eliminate any dense root system at or near the soil surface 

that could interfere with the sampling process (Scott et al., 2013). After collecting each soil 

sample, we measured the depth of the bore hole left in the soil and we compared it to the length 

of the soil sample to check for the occurrence of compaction. Rings with undisturbed soil were 

then covered with two plastic lids to prevent water loss and were placed in a carrying case to 

prevent disturbance during transportation to the laboratory. The mass of each core was measured 

within 12 hours of field sampling to record the field soil water content at the time of sampling. 

During lab analyses, soil samples were kept in a refrigerator at 6 ºC to reduce the rate of 

chemical reactions and microbial activity that could affect the soil's physical properties.  

 

Figure 2.1 Map showing the location of the 62 stations of the Kansas Mesonet as of December 

2020. Filled triangles represent the 40 stations with soil moisture sensors that were sampled in 

this study and open circles represent the remaining stations without soil moisture sensors. 
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 Soil hydraulic properties 

 

Figure 2.2 Flowchart of laboratory measurements in the development of the soil physical 

properties database for the Kansas Mesonet. The yellow-colored boxes represent the points at 

which thermal properties were measured. Note that some variables like field soil moisture and 

effective soil saturation are measured at the beginning of the process, but can only be determined 

near the end of the process when information about the oven-dry mass of the sample is available. 

 

Soil saturation and saturated hydraulic conductivity 

Soil samples were saturated in a 5 mM CaCl2 solution with ¾ of the ring height 

submersed in the solution (Reynolds and Elrick, 2002) (Figure 2.2). To prevent soil loss during 

the saturation process, a piece of cheesecloth was affixed with a rubber band to the face of the 

sample ring in the CaCl2 solution. The soil samples were left in the solution for a minimum of 

five days until they reached saturation. Samples that did not reach saturation after five days were 

placed under vacuum for 48 hours to facilitate saturation. Saturated hydraulic conductivity (Ksat) 

of the soil samples was determined with the constant head method (Reynolds and Elrick, 2002) 

using a close-path permeameter (Eijkelkamp Agrisearch Equipment) (Figure 2.2). In the case of 

soils with extremely low permeability, we used the falling head method (Reynolds and Elrick, 
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2002). Both Ksat measurements using the constant head and falling head methods were 

performed following the procedure detailed in the operational manual of the permeameter at a 

temperature of 21 ºC ±1 ºC. 

Soil water retention curve 

Soil water retention curves were determined by first measuring the volumetric water 

content at tensions of -2, -5, and -10 kPa using a tension table (model 08.01, Eijkelkamp 

Agrisearch Equipment) (Figure 2.2). Samples were left in the tension table until hydraulic 

equilibrium, which was confirmed by two consecutive days with a mass change <0.2%. A 

standard soil of known mass at hydraulic equilibrium (i.e. check soil sample) was included with 

every batch of water retention measurement in the tension table. Then, the undisturbed soil 

samples were placed in pressure cells (Tempe cell, Soil Moisture Equipment Corp.) connected to 

a controlled air pressure system to determine soil water retention at -33 and -70 kPa (Dane and 

Hopmans, 2002). After measuring soil matric potential at -70 kPa, the undisturbed samples were 

oven-dried at 105 oC for 48 hours, ground using a soil grinder (model 5K533A, Dayton Electric 

Manufacturing Co.), sieved through a 2 mm-sieve (ASTM E-11, Humboldt Manufacturing Co.), 

and then stored in paper envelopes inside plastic containers at room temperature. The last step 

consisted of determining water retention at -1500 kPa by placing approximately 15 g of the 

disturbed (pre-sieved) soil into a pressure plate extractor (model 1500F2, Soil Moisture 

Equipment Corp.) (Dane and Hopmans, 2002). A check soil sample was included with every 

batch of water retention measurement at -1500 kPa in the pressure plate extractor. Samples were 

left in the pressure plate extractor for a minimum of 21 days or until no water outflow was 

evidenced from the vessel for five consecutive days. Soil samples were oven-dried at 105oC for 

48 hours to determine the gravimetric soil water content. 
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Location- and depth-specific soil water retention curves were generated by fitting the van 

Genuchten (1980) model to observations of volumetric water content and soil matric potential 

using least-squares in Matlab R2020b (Mathworks). The model is given as: 

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
= [1 + (−𝛼ψ𝑚)𝑛]−𝑚                            [1] 

where θ (cm3 cm-3) is the volumetric water content, θs (cm3 cm-3) is saturated water content, θr 

(cm3 cm-3) is residual water content, ψm (kPa) is matric potential, α (kPa-1) is a parameter related 

to the inverse of air-entry pressure, n is a parameter related to the pore size distribution, and m 

was assumed to equal to 1–1/n (Schaap et al., 2001). 

 General soil physical properties 

Particle size analysis 

The fraction of sand (0.05 to 2 mm), silt (0.002 to 0.05 mm), and clay (<0.002 mm) were 

determined using the hydrometer method (Gavlak et al., 2005) (Figure 2.2). Briefly, the analysis 

consisted of placing 40 ± 0.05 g of pre-sieved and oven-dried soil into 250-ml plastic jars with 

100 ml of 0.08 M sodium hexametaphosphate solution that was used as a dispersing agent. 

Samples were agitated for 16 hours using a linear shaker and then transferred to 1-liter cylinders 

that were topped with de-ionized water at room temperature. Samples were manually agitated 

using a perforated plunger and the suspension density was measured at the 40 s mark using a 

Buoyoucos hydrometer (ASTM 152-H, Humboldt Manufacturing Co.). The agitation and first 

reading of the suspension density were repeated twice. A second reading of the suspension 

density was carried at around seven hours from the end of the agitation based on the laboratory 

temperature (~22 oC). A separate subsample of about 15 g was oven-dried at 105 ºC to correct 
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for any water gained by the pre-sieved soil samples while in storage. Similar to the previous 

analyses, a check soil sample of known soil texture was included with every batch. 

Bulk density, Particle density, Total porosity  

Bulk density was determined using the core method, which consisted of dividing the 

mass of the oven-dry soil by the ring volume (Grossman and Reinsch, 2002) (Figure 2.2). On the 

other hand, particle density was measured using the pycnometer method, which consisted of 

placing 10 ± 0.05 g of ground oven-dried soil into a Gay-Lussac pycnometer, that was then filled 

with degassed de-ionized water (Flint and Flint, 2002). The degassing process consisted of 

boiling 1 liter of de-ionized water for about 10 minutes on a hot plate and then allowing it to cool 

down at room temperature. Similar to particle size analysis, an additional 6 g of soil was used to 

correct for the initial mass of water in the oven-dried soil. The total porosity of the soils was 

computed using the measured values for both bulk density and particle density using the 

equation: 

∅ = 1 −
𝜌𝑏

𝜌𝑠
                         [2] 

where Ø (cm3 cm-3) is total porosity, ρb (g cm-3) is bulk density, and ρs (g cm-3) is measured 

particle density. 

 Soil thermal properties 

Soil thermal conductivity, volumetric heat capacity, and soil thermal diffusivity were 

measured during the determination of the soil water retention curves at saturation, -33 kPa, -70 

kPa, and oven-dryness using a KD2-Pro thermal properties analyzer with a dual needle of 1.3 

mm diameter each and 6 mm needle spacing (model SH-1, Decagon Devices Inc.) (Figures 2.2). 



17 

The three soil thermal properties were obtained from a single measurement with the KD2-Pro, 

allowing us to make a single measurement per soil core and minimize sample disturbance. The 

KD2 was vertically inserted into the center of the soil samples through the KD2-Pro needle 

spacer and was let to reach thermal equilibrium with the sample for five minutes before taking 

the measurements. After oven drying the samples, the existing needle holes shrunk and became 

partially sealed, so we used a tabletop vertical milling machine (model 5410, Sherline Products 

Inc.) to carefully re-drill the holes using a drill bit with 1.3 mm diameter to ensure close contact 

between the needles and the soil. In this study, we did not use any thermal grease. 

 Soil chemical properties and soil color 

Soil chemical properties were analyzed for one section of the soil cores from each sensor depth 

at each mesonet station. The soil analysis was done in the Kansas State University Soil Testing 

Lab using samples that were oven-dried at 60 oC until a constant mass, ground, and passed 

through 2 mm sieves. The properties analyzed comprise organic matter content, soil pH, total 

carbon, total nitrogen, pH buffer, and phosphorus, potassium, calcium, magnesium, and sodium 

contents. The soil organic matter content was analyzed by loss on ignition, pH was analyzed 

using 1:1 (soil: water), phosphorus was analyzed by Mehlich - 3, total nitrogen was analyzed by 

dry combustion, and the exchangeable cations were determined by atomic absorption 

spectrometry. All the chemical analyses mentioned above were performed following the 

procedures in the protocol book on Methods of Soil Analysis (Sparks et al., 1996). 

Soil color was determined for one section of our soil cores in terms of dry color and wet 

color using a Nix Pro 2 color sensor (Nix Sensor Ltd.). The soil color was presented in CIELAB 

color space, which represents a color with three values: L* for lightness from black (0) to white 

(100), a* from green (−) to red (+), and b* from blue (−) to yellow (+) (McLaren, 1976). Before 
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the measurements, we downloaded and installed a sensor-compatible software (Nix Pro Color 

Sensor software version 2.6.4) from Apple’s App Store, which allowed us to operate the color 

sensor via Bluetooth. For the dry measurements, we placed 4 g of oven-dry and pre-sifted soil 

into a 15-ml steel cup, leveled the soil to entirely cover the bottom of the steel cup using a rubber 

stopper, placed the color sensor on the surface of the soil in the cup, and then scanned the soil 

color using the Nix Pro. After the dry measurement, we mixed 1 g of deionized water (25%wt) 

with the dry soil to obtain a uniformly wet soil, leveled the soil surface with the rubber stopper, 

and then covered the soil with a lid for the water to redistribute in the soil for at least 12 h but 

<48 h. After the water redistribution, we placed the color sensor on the surface of the wet soil in 

the cup and then scanned the soil color with the sensor software to obtain the wet soil color. 

During both the wet and dry measurements, three readings were taken at different points in the 

steel cup and then averaged to obtain the representative soil color. In addition, we minimized 

measurement errors by ensuring that no external light passed underneath the interface between 

the color sensor and the soil surface. 

 In situ validation of soil moisture 

Soil water reflectometers, like other sensors based on electromagnetic principles, rely on 

functions relating the dielectric permittivity to the volumetric water content. The CS655 uses the 

model proposed Topp et al. (1980) as the factory default equation, which is given as: 

𝜃 =  4.3 × 10−6𝐾𝑎
3 − 5.5 × 10−4𝐾𝑎

2 +  2.92 × 10−2𝐾𝑎 − 5.3 × 10−2                     [3] 

where θ (cm3cm-3) is volumetric water content and Ka (unitless) is the soil's apparent bulk 

dielectric permittivity. Equation (3) has been extensively tested and usually provides acceptable 

errors in coarse texture and loam soils. However, the Topp model is well known for 
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overestimating volumetric water content in fine-textured soils at moderate to high volumetric 

water contents (Evett et al., 2005; Caldwell et al., 2018; Kargas and Soulis, 2019). New 

multivariate models that include ECb can reduce errors associated with ECb and temperature 

effects on the dielectric permittivity, hence, a site-specific validation was conducted to determine 

the uncertainty of the Kansas Mesonet soil moisture observations (Figure 2.2). In addition, we 

also validated three common empirical linear models developed for the same type of sensors 

(CS655 water reflectometer). The models are based on Ledieu et al. (1986), which is given as: 

𝜃 = 𝑎 + 𝑏√𝐾𝑎                                                 [4] 

where θ (cm3cm-3) is volumetric water content and Ka (unitless) is soil apparent bulk dielectric 

permittivity, and a and b are empirical coefficients; Evett et al. (2005), which is given as: 

𝜃 = 𝑎 + 𝑏√𝑘𝑎 +  𝑐√𝐸𝐶𝑏                                 [5] 

where 𝐸𝐶𝑏 (dS m-1) is the bulk electrical conductivity and a, b, and c are empirical coefficients; 

and Kargas and Soulis (2019), which is given as: 

𝜃 = 𝑎 + 𝑏√𝑘𝑎 +  𝑐𝐸𝐶𝑏                                  [6] 

We used values for coefficients a, b, and c determined from laboratory sensor calibration in an 

independent study using a dataset of ~300 observations and nine soil textural classes to validate 

equations 4 – 6. For this validation, the observed volumetric water content was estimated as the 

average of both soil cores at each station and sensor depth at the time of sampling. We also 

compared the accuracy of the independent laboratory sensor calibration coefficients to the 

accuracy of the least squares-fitted coefficients a, b, and c in equations 4 – 6, to determine the 

discrepancy between independent laboratory sensor calibration and field-based sensor calibration 

in site-specific soils.  
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 Results and Discussion 

The database of soil physical properties for the Kansas Mesonet spanned a total of 40 

stations with duplicate samples for each of the four sensor depths, resulting in a total of 320 

samples (40 sites x 4 depths x 2 cores). 

 General soil physical properties 

 
Figure 2.3 Distribution of USDA soil textural classes of the collected samples across 40 stations 

of the Kansas Mesonet. Abbreviated textural classes are sand (S), loamy sand (L S), sandy loam 

(S L), sandy clay loam (S C L), sandy clay (S C), clay loam (C L), silt loam, silty clay (Si C), 

and silty clay loam (Si C L). 

 

The soils of the Kansas Mesonet represented eight out of the twelve soil textural classes 

except for sand, loamy sand, sandy clay, and silt (Figure 2.3). Silty clay loam was the 

predominant soil texture of the dataset, representing 33% of the total number of samples, 
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followed by silt loam soils (23%) and silty clay soils (16%) (Table 2.1). Sandy clay loam and 

sandy loam soils were the least represented soil textural classes across the Kansas Mesonet, 

representing <10% of the total number of samples in our dataset. Overall, soils had a sand 

content that ranged from 6 to 66%, a clay content that ranged from 12 to 57%, and a silt content 

that ranged from 22 to 61% (Table 2.1). The database was predominantly represented by fine 

soils with 93% of the samples having greater than 20% clay content. Stations of the Kansas 

Mesonet with the highest clay content were found in eastern Kansas, where the soil parent 

materials originated from loess deposits (Gunal and Ransom, 2005). Stations with the highest 

sand content like Lakin, Lake City, and Meade stations are located in southwestern Kansas, 

where the soil parent materials originated from alluvial deposits of the Ogallala formation and 

dunes from the Arkansas and Cimarron river valleys (Layzell et al., 2016). The range of soil 

particle sizes in our database was narrower compared to the range of particle sizes in the 

Oklahoma Mesonet, where there were 10 to 82% sand, 7 to 53% clay, and 5 to 60% silt (Scott et 

al., 2013). Also, the predominant textural classes in the Oklahoma Mesonet were clay, clay loam, 

and loam soils, each representing 16% of the soils, whereas loamy sand and sandy clay were the 

least represented texture in the Oklahoma Mesonet each representing 1% of the soils.  

The average particle density by soil textural class ranged from 2.61 g cm-3 (SD = 0.09 g 

cm-3) in silt loam soils to 2.69 g cm-3 (SD = 0.05 g cm-3) in sandy loam and loam soils (Table 

2.1), a range that is similar to the particle density of quartz with a typical value of 2.65 g cm-3 

(Lipiec et al., 2007; Derakhshani et al., 2015). The particle density of our soils showed a 

negative correlation with soil organic matter content (r = -0.43) and ranged from 2.84 g cm-3 at 

10 cm depth in the Tribune station with 2% organic matter to 2.23 g cm-3 at 20 cm depth in the 

Garden City station with 3% organic matter. The trend in decreasing particle density with 
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increasing soil organic matter content has been reported in other studies in North America. For 

instance, in a study that analyzed 54 soil horizons sampled from 18 soil profiles across North 

America, soil particle density varied from 2.75 g cm-3 at 0% organic matter content and 

decreased with increasing organic matter to 2.31 g cm-3 at 23% organic matter content (McBride 

et al., 2012). Also, a 22-year study in a Rayne silt loam soil in Ohio reported that forest, pasture, 

and no-till land management systems resulted in a particle density of 1.79 to 2.35 g cm-3 due to 

their high organic matter build-up, whereas soil tillage with a moldboard plow, resulted in a soil 

particle density of 2.52 g cm-3 due to disruption of organic matter build-up (Blanco-Canqui et al., 

2006). The association of soil particle density with organic matter content occurs typically when 

the organic matter fraction in the soil, which has a lower particle density (~1.48 g cm-3) than the 

particle density of the mineral fraction (~ 2.65 g cm-3), is not removed from soil samples before 

the analysis of particle density (Flint and Flint, 2002; McBride et al., 2012). 

Table 2.1 Number of samples per soil textural class (N) and textural class mean of percent sand, 

percent clay, percent silt, particle density (ρs), bulk density (ρb), total porosity (Ø), effective 

saturation (θe), and median saturated hydraulic conductivity (Ks). Values in parenthesis are the 

standard deviation. Abbreviated textural classes are clay loam (C loam), sandy clay loam (S C 

L), sandy loam (Sandy L), silt loam (Si Loam), silty clay (Si Clay), and silty clay loam (Si C L). 

Textural 

class 

N Sand Clay Silt ρs ρb Ø θe Ks 

  % % % g cm-3 g cm-3 cm3 cm-3 cm3 cm-3 cm d-1 

Clay  10 7 (5) 57 (4) 36 (4) 2.68 (0.04) 1.40 (0.09) 0.48 (0.03) 0.46 (0.05) 0.52 (308) 

C loam 40 26 (3) 32 (3) 42 (4) 2.65 (0.07) 1.41 (0.09) 0.47 (0.04) 0.43 (0.04) 18.7 (172) 

Loam 15 39 (9) 20 (8) 41 (4) 2.69 (0.03) 1.44 (0.13) 0.47 (0.04) 0.40 (0.05) 41.0 (70) 

S C L 2 48 (0) 25 (0) 27 (0) 2.65 (0.02) 1.54 (0.15) 0.42 (0.05) 0.39 (0.07) 0.46 (0.49) 

Sandy L 24 66 (7) 12 (3) 22 (7) 2.69 (0.05) 1.67 (0.11) 0.38 (0.04) 0.34 (0.04) 47.1 (119) 

Si Loam 72 16 (4) 23 (4) 61 (5) 2.61 (0.09) 1.36 (0.11) 0.48 (0.04) 0.45 (0.05) 13.9 (709) 

Si Clay 52 6 (4) 46 (4) 48 (5) 2.63 (0.07) 1.35 (0.14) 0.49 (0.05) 0.47 (0.05) 1.5 (7211) 

Si C L 104 10 (4) 32 (3) 58 (4) 2.62 (0.07) 1.33 (0.15) 0.49 (0.05) 0.46 (0.05) 32.1 (2845) 

 

The average bulk density by textural class ranged from 1.33 g cm-3 (SD = 0.15 g cm-3) in 

silty clay loam to 1.67 g cm-3 (SD = 0.11 g cm-3) in sandy loam soils (Table 2.1). The bulk 
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density range of the soils in our database is similar to the bulk density of soils reported in other 

environmental networks such as the North Carolina ECONet, where bulk density ranged from 

1.10 to 1.69 g cm-3 (Pan et al., 2012), the Oklahoma Mesonet with a range in bulk density across 

117 stations of 1.48 to 1.67 g cm-3 (Scott et al., 2013), and the US Climate Reference Network 

with bulk density ranging between 1.30 to 1.53 g cm-3 (Wilson et al., 2016). The bulk density 

showed a negative correlation with soil organic matter (r = -0.64, p <0.00001) and clay content 

(r = -0.28, p = 0.0004), and also showed a positive correlation with sand content (r = 0.60, p 

<0.00001) (Figure 2.4), which is consistent with the observations in the literature (Saxton and 

Rawls, 2006; Botula et al., 2012). As expected, the sandy loam soil presented ~20% higher bulk 

density than the fine-textured soils in our database (Table 2.1), which is also consistent with 

other studies in the literature (Rawls et al., 1982; Reynolds et al., 2009; Schelle et al., 2013). 

Opposite to bulk density, the total porosity of the sandy loam was up to 29% lower than the 

porosity of the fine-textured soils. The average total porosity by textural class varied from 0.38 

cm3 cm-3 (SD = 0.04 cm3 cm-3) in sandy loam soils to 0.49 cm3 cm-3 (SD = 0.05 cm3 cm-3) in 

silty clay and silty clay loam soil (Table 2.1), which is similar to the typical soil porosity range of 

0.39 to 0.50 cm3 cm-3 reported for soils across 32 states in the contiguous U.S. (Rawls et al., 

1982), although the study by Rawls et al. (1982) did not include any soil from the state of 

Kansas. 

 Soil hydraulic properties 

As expected, the effective saturation for individual samples was slightly below total 

porosity values since soil samples even under laboratory conditions rarely attain full saturation 

due to air entrapment in soil micropores (Klute, 1965). The average effective saturation by 
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textural class varied from 0.34 cm3 cm-3 (SD = 0.04 cm3 cm-3) in sandy loam soils to 0.47 cm3 

cm-3 (SD = 0.05 cm3 cm-3) in silty clay soils (Table 2.1). 

Overall, the median textural class Ks in our database ranged from 0.520 to 47.1 cm d-1 

(Table 2.1). The highest saturated hydraulic conductivities were observed in sandy loam and 

loam soils, with maximum values reaching ~260 cm d-1. The lowest hydraulic conductivities 

were observed in clay and sandy clay loam soils, with values as low as 0. 116 cm d-1, which is 

close to the evaporation correction factor of 0.086 cm d-1 that is applied to the Ks method (Table 

2.1). The higher Ks in sandy loam and loam soils and the lower Ks in clay and sandy clay soils 

observed in our study is consistent with observations of Ks across soils from 32 states in the 

contiguous U.S. (Rawls et al., 1982). Occasionally, large Ks values occurred in some of our soil 

samples from the top 5 cm depth due to preferential flow and macropores. For instance, a silty 

clay soil sample for the Overbrook station at 5 cm depth that had cracks and root channels 

resulted in a Ks of 43,098 cm d-1 (Figure A1A in Appendix A). During the soil sampling at the 

Overbrook station, we observed in multiple soil profiles that the top 30 cm soil of the site had an 

angular blocky structure with cracks, hence the extremely high Ks value recorded at 5 cm depth 

was representative of the surface soil at the station. Also, macropores from worm activity and 

root channels in a silty clay loam soil at 5 cm depth collected at the Miami station resulted in a 

Ks of 9,500 cm d-1 (Figure A1B in Appendix A). High variability in Ks due to soil preferential 

flow was also reported in a previous study in Ontario that measured Ks in clay loam soils of a no-

till agricultural field in which soil cracks resulted in Ks spanning five orders of magnitude from 2 

to >10,000 cm d-1 (Reynolds et al., 2000). The wide range in Ks highlights the importance of 

measuring site-specific saturated hydraulic conductivity rather than estimating Ks from models 

since existing Ks models typically do not capture the effect of soil structure (Zhang and Schaap, 
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2019). The wide variability of Ks due to the influence of soil structure even in soils of the same 

texture suggests that either it is not a good idea to average Ks by soil textural class or it is better 

to represent textural class Ks by the median value (as we did in this study) to avoid a few samples 

with extremely large Ks values from masking the Ks values of the remaining samples.  

Table 2.2 Number of samples per soil textural class (N) and textural class mean of water 

contents at -10 kPa (θ-10), -33 kPa (θ-33), and -1500 kPa (θ-1500), and plant available water 

capacity (PAWC) calculated with upper limit taken at -10 kPa (PAWC-10) and -33 kPa (PAWC-

33). Values in the bracket are standard deviations. Abbreviated textural classes are clay loam (C 

loam), sandy clay loam (S C L), sandy loam (Sandy L), silt loam (Si Loam), silty clay (Si Clay), 

and silty clay loam (Si C L). 

Textural class N θ-10 θ-33 θ-1500 PAWC-10 PAWC-33 

  cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 

Clay 10 0.44 (0.05) 

0.39 (0.03) 

0.36 (0.05) 

0.36 (0.05) 

0.29 (0.05) 

0.40 (0.03) 

0.43 (0.04) 

0.41 (0.04) 

0.43 (0.06) 

0.34 (0.03) 

0.27 (0.05) 

0.33 (0.06) 

0.21 (0.03) 

0.34 (0.05) 

0.40 (0.05) 

0.35 (0.04) 

0.31 (0.05) 

0.21 (0.04) 

0.13 (0.06) 

0.16 (0.01) 

0.09 (0.02) 

0.16 (0.05) 

0.26 (0.06) 

0.20 (0.04) 

0.13 (0.03) 

0.18 (0.04) 

0.23 (0.05) 

0.19 (0.06) 

0.21 (0.06) 

0.25 (0.05) 

0.17 (0.07) 

0.21 (0.05) 

0.11 (0.03) 

0.13 (0.04) 

0.14 (0.04) 

0.16 (0.07) 

0.12 (0.02) 

0.18 (0.06) 

0.14 (0.07) 

0.15 (0.05) 

C loam 40 

Loam 16 

S C L 2 

Sandy L 24 

Si Loam 72 

Si Clay 52 

Si C L  104 

 

The water content at the permanent wilting point (i.e. θ-1500) showed a positive (r = 0.84) 

correlation with the clay content and a negative (r = -0.58) correlation with sand content in our 

soils (Figure 2.4), which agrees well with previous studies that evaluated pedotransfer functions 

for predicting soil water retention from easily observable variables (Botula et al., 2012). The 

average θ-1500 increased with clay content from 0.09 cm3 cm-3 in sandy loam to 0.31 cm3 cm-3 in 

the clay soil (Table 2.2). Interestingly, θ-1500 exhibited a weak positive correlation with soil 

organic matter with an r = 0.13 (Figure 2.4). The weak correlation between θ-1500 and organic 

matter may be explained by the strong dependence of particle surface area rather than soil 
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structure on soil water retention at matric potentials close to -1500 kPa. Water content at field 

capacity (i.e. upper limit for plant available water) is typically measured either at a matric 

potential of -10 kPa (θ-10) (van Lier, 2017; Parker et al., 2021) or -33 kPa (θ-33) (Rawls et al., 

1982; Saxton and Rawls, 2006; van Lier, 2017). Both measured θ-10 and θ-33 positively correlated 

with clay content and organic matter and negatively correlated with sand content (Figure 2.4), 

which is not surprising since clay and organic matter promotes soil aggregation (Bronick and 

Lal, 2005), which in turn affects soil water retention at the wet-end of the retention curve. In 

addition, both θ-10 and θ-33 positively correlated with θ-1500, suggesting that θ-1500 could be 

estimated using θ-10 and θ-33. In our study, the textural class average θ-10 ranged from 0.29 to 0.44 

cm3 cm-3 while the textural class average θ-33 ranged from 0.21 to 0.43 cm3 cm-3 (Table 2.2). The 

loam and sandy loam soils recorded the highest discrepancy between θ-10 and θ-33 (0.10 cm3 cm-

3), while the least discrepancy was observed in the clay soil (0.01 cm3 cm-3). The resulting 

textural class average plant available water capacity estimated using θ-10 ranged from 0.13 to 0.25 

cm3 cm-3, while the average plant available water capacity estimated using θ-33 ranged from 0.11 

to 0.18 cm3 cm-3 (Table 2.2). This implies that estimated plant available water capacity can 

change up to 43% in sandy loam soils and 39% in loam soils depending on the selected matric 

potential to denote field capacity. On the other hand, clay, sandy clay loam, and silty clay soils 

are less sensitive to the choice of an upper limit with discrepancies of 15% for clay, 16% for 

sandy clay loam, and 17% for silty clay (Table 2.2). The discrepancy in estimated plant available 

water capacity due to the choice of an upper limit suggests the need to either better document the 

matric potential values of the upper limit in research studies or use alternative approaches based 

on negligible drainage rates (Nachabe, 1998). 
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Figure 2.4 Graphical correlation matrix of a selected number of measured soil physical 

properties for the Kansas Mesonet (N= 160). 
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Table 2.3 Number of samples per soil textural class (N), textural class mean fitted hydraulic 

parameters of the van Genuchten (1980) model for the Kansas Mesonet soils. θs, is saturation 

water content, θr is residual water content, and α relates to the inverse of air-entry pressure, and n 

is a measure of pore size distribution. θs, and θr, are also results from the fitting exercise. Values 

in the bracket are standard deviations. Abbreviated textural classes are clay loam (C loam), sandy 

clay loam (S C L), sandy loam (Sandy L), silt loam (Si Loam), silty clay (Si Clay), and silty clay 

loam (Si C L). 

Textural class N θs θr α n 

  cm3 cm-3 cm3 cm-3 kPa-1 - 

Clay 10 0.46 (0.05) 

0.43 (0.04) 

0.40 (0.06) 

0.37 (0.05) 

0.34 (0.04) 

0.44 (0.05) 

0.47 (0.04) 

0.46 (0.05) 

0.10 (0.09) 

0.08 (0.09) 

0.07 (0.05) 

0.03 (0.02) 

0.03 (0.03) 

0.06 (0.07) 

0.10 (0.10) 

0.08 (0.08) 

0.05 (0.07) 

0.19 (0.25) 

0.11 (0.11) 

0.03 (0.03) 

0.20 (0.21) 

0.15 (0.23) 

0.24 (0.35) 

0.23 (0.31) 

1.15 (0.05) 

1.26 (0.14) 

1.60 (0.50) 

1.25 (0.10) 

1.41 (0.35) 

1.41 (0.30) 

1.20 (0.11) 

1.31 (0.40) 

C loam 40 

Loam 16 

S C L 2 

Sandy L 24 

Si loam 72 

Si clay 52 

Si C L  104 

 

Fitted textural class average soil hydraulic parameters of the van Genuchten (1980) 

model derived from the measured water retention curves varied from 0.34 to 0.47 cm3 cm-3 for 

saturated water content (θs), 0.03 to 0.10 cm3 cm-3 for residual water content (θr), 0.05 to 0.24 

cm-1 for α, and 1.15 to 1.60 for n (Table 2.3). The fitted θs were similar to the measured effective 

saturation of the soils and were slightly lower (4 to 12%) than the observed total porosity (Table 

2.1). On the other hand, θr was lower than the water content at the permanent wilting point in all 

soil textural classes (Table 2.2). Clay and silty clay soils had the highest θr = 0.10 cm3 cm-3, 

while the sandy loam and sandy clay loam soils had the lowest θr = 0.03 cm3 cm-3 (Table 2.3), 

which is consistent with the trend observed in other studies in US soils (Rawls et al., 1982; 

Schaap et al., 2001; Scott et al., 2013). Soil water retention curves developed using depth-

specific van Genuchten hydraulic parameters agreed with the measured water retention curves 

with an RMSE range of 0.0023 – 0.022 cm3 cm-3. Figure 2.5 shows representative depth-specific 
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soil water retention curves developed using van Genuchten parameters derived for four Mesonet 

stations with soil profiles dominated by silty clay, silty clay loam, loam, and sandy loam. The 

lowest station RMSE was 0.002 cm3 cm-3 recorded in the silty clay loam soil at 5 cm depth in 

Ashland Bottoms station (Figure 2.5B), whereas the highest RMSE was 0.022 cm3 cm-3 recorded 

in the sandy loam soil at 20 cm depth in Lake city station (Figure 2.5L).  

 

Figure 2.5 Measured soil water retention curve (markers) and fitted van Genuchten soil water 

retention model (lines) for the soil profiles at the Overbrook, Ashland Bottoms, Rossville, and 

Lake City stations. Abbreviated textural classes are silty clay (Si Clay), silty clay loam (Si C L), 

silt loam (Si L), and sandy loam (Sandy L). The highest RMSE of 0.022 cm3 cm-3 was observed 

at 20 cm depth in the Lake City station and the lowest RMSE of 0.002 cm3 cm-3 was observed at 

5 cm depth in the Ashland Bottoms station. 
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 Soil thermal properties 

A unique feature of the database in our study is the measurement of soil thermal 

properties, comprising thermal conductivity and volumetric heat capacity across a wide range of 

soil types and volumetric water contents. Soil thermal conductivity decreased with decreasing 

(i.e., more negative) matric potential and varied from 1.30 to 2.0 W m-1K-1 at soil saturation to 

0.41 to 0.69 W m-1K-1 at oven-dryness across eight textural classes (Table 2.4). The decrease in 

thermal conductivity with decreasing matric potential was due to the reduction of soil moisture, 

which decreases the contact area between the soil solids for heat conduction (Johansen, 1975; 

Ochsner et al., 2001; Lu et al., 2007). Soil thermal conductivity is primarily driven by soil water 

content, air-filled porosity, and bulk density due to their effect on the area of contact between 

soil particles (Ochsner et al., 2001; Tian et al., 2020). This implies that soil thermal conductivity 

increases with increasing water content and (or) increasing bulk density, whereas thermal 

conductivity also decreases with increasing air-filled porosity (Ochsner et al., 2001). In our soils, 

the coarse soils (sandy loam and sandy clay loam) had higher thermal conductivities than the 

fine-textured soils from saturation up to matric potential of -70 kPa, despite the coarse soils 

having comparatively lower water contents than the fine soils at the same matric potentials while 

having a similar air-filled porosity value at the same potentials, suggesting that the higher bulk 

density of the coarse soils (Table 2.1) had a major influence on the thermal conductivity of our 

soils than the water content did. The dry thermal conductivity, however, was similar in all the 

soils except in the sandy clay loam and the clay soils, which recorded slightly higher thermal 

conductivity values (Table 2.4). The similar dry thermal conductivity values might be due to the 

residual water content (Table 2.3) of the fine soils possibly offsetting the effect of bulk density 

on oven-dry soil thermal conductivity.  
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Table 2.4 Number of samples per soil textural class (N) and textural class mean of soil thermal conductivity (λ) and volumetric heat 

capacity (C) at saturation, at -33 kPa, at -70 kPa, and oven-dry conditions. Values in bracket are standard deviation. Abbreviated 

textural classes are clay loam (C loam), sandy clay loam (S C L), sandy loam (Sandy L), silt loam (Si Loam), silty clay (Si Clay), and 

silty clay loam (Si C L). 

Textural 

class 

N λsat λ-33 λ-70 λdry Csat C-33 C-70 Cdry 

  Wm-1K-1 Wm-1K-1 Wm-1K-1 Wm-1K-1 MJ m-3K-1 MJ m-3K-1 MJ m-3K-1 MJ m-3K-1 

Clay 10 1.30 (0.1) 1.26 (0.1) 1.25 (0.1) 0.58 (0.1) 2.75 (0.4) 2.41 (0.5) 2.39 (0.4) 1.33 (0.3) 

C loam 36 1.47 (0.1) 1.34 (0.1) 1.27 (0.2) 0.50 (0.2) 2.69 (0.3) 2.31 (0.4) 2.13 (0.3) 1.34 (0.2) 

Loam 16 1.52 (0.1) 1.43 (0.2) 1.35 (0.1) 0.41 (0.1) 2.59 (0.3) 2.14 (0.3) 1.92 (0.3) 1.14 (0.1) 

S C L 2 1.89 (0.3) 1.88 (0.1) 1.83 (0.1) 0.69 (0.0) 2.90 (0.2) 2.36 (0.5) 2.42 (0.2) 1.81 (0.2) 

Sandy L 24 2.00 (0.2) 1.70 (0.2) 1.64 (0.2) 0.51 (0.1) 2.61 (0.3) 2.10 (0.3) 2.02 (0.3) 1.27 (0.2) 

Si Loam 72 1.46 (0.2) 1.34 (0.3) 1.32 (0.3) 0.41 (0.1) 2.64 (0.3) 2.25 (0.3) 1.99 (0.3) 1.27 (0.2) 

Si Clay 52 1.31 (0.1) 1.24 (0.1) 1.21 (0.1) 0.48 (0.2) 2.78 (0.3) 2.36 (0.4) 2.27 (0.4) 1.30 (0.3) 

Si C L  104 1.32 (0.1) 1.21 (0.2) 1.15 (0.2) 0.43 (0.1) 2.78 (0.3) 2.37 (0.3) 2.16 (0.3) 1.36 (0.3) 
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Figure 2.6 Measured versus predicted A) thermal conductivity using the Johansen (1975) model 

and B) volumetric heat capacity using De Vries (1963) additive model for the 320 soil samples 

collected at stations of the Kansas Mesonet. The thermal conductivity predictions were made 

using a total of 428 observations (at -33 and -70 kPa) and the volumetric heat capacity 

predictions were made using a total of 1107 observation points (at saturation, -33 kPa, -70 kPa, 

and oven-dryness). The saturation and oven-dry thermal conductivity values were not included in 

Figure 2.6A because they represent the maximum and minimum points used in the normalization 

of the Johansen model. Positive MBE represents overestimation and negative bias represents 

underestimation by model. 

 

Due to the difficult nature of in situ measurements of soil thermal properties, researchers 

typically rely on models as a function of water content or other easily measurable soil variables 

(Lu et al., 2007). Hence, we validated a simple thermal conductivity model that assumes a linear 

relationship between the normalized soil thermal conductivity and the relative soil saturation 

based on the saturation and oven-dry thermal conductivities (Johansen 1975). The predicted soil 

thermal conductivity using the Johansen model across 428 soil samples at -33 and -70 kPa using 

resulted in an overall RMSE of 0.10 W m-1 K-1 and a bias of 0.012 W m-1 K-1 (Figure 2.6A). The 

error of the Johansen model in our study falls within the range of RMSE 0.073 to 0.203 W m-1 K-

1 reported in previous studies (Farouki, 1981; Lu et al., 2007; Zhang et al., 2018). The good 
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accuracy and the simplicity of the Johansen model appear as a promising alternative for 

predicting soil thermal conductivity along with the entire soil moisture range.  

Similar to the thermal conductivity, the soil volumetric heat capacity decreased with 

decreasing matric potential across the soil textural classes and varying from 2.59 to 2.90 MJ m-3 

K-1 at saturation to 1.14 to 1.81 MJ m-3 K-1 at oven-dryness (Table 2.4). Sandy clay loam had the 

highest values for volumetric heat capacity at all the matric potentials while the remaining soil 

textures recorded similar volumetric heat capacity values at all the matric potentials. We also 

observed that volumetric heat capacity increased linearly with increasing volumetric water 

content in the various soil textures. Based on the linear relationship between volumetric heat 

capacity and volumetric water content, we validated de Vries (1963) additive model for 

estimating volumetric heat capacity of soils using the volume fractions and volumetric heat 

capacities of water and soil solids. Overall, the de Vries model overestimated the observed 

volumetric heat capacity with a bias of 0.093 MJ m-3 K-1 (Figure 2.6B). The RMSE between 

predicted and observed volumetric heat capacity was 0.38 MJ m-3 K-1. The widely scattered 

points around the 1:1 line might be due to measurement error and variation in the volumetric heat 

capacity of soil minerals (Cm) across the soil textural classes because we represented Cm with a 

value of 1.92 MJ m-3 K-1 (de Vries, 1963) in all the soils, regardless of the soil texture, in the 

model validation because there is no well-defined value for Cm in the literature. Different values 

have been reported in the literature for Cm, including 1.92 MJ m-3 K-1 (de Vries, 1963), 2.13 and 

2.39 MJ m-3 K-1 (Bristow and White, 1994), and 2.0 and 2.5 (Ochsner et al., 2001). However, 

upon testing Cm values ranging from 1.92 to 2.5 MJ m-3 K-1 in the de Vries (1963) model, the Cm 

value of 1.92 MJ m-3 K-1 resulted in the best overall estimates of volumetric heat capacity in our 

soils (RMSE of 0.38 MJ m-3 K-1). To the best of our knowledge, this is the first published 
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database of soil physical properties for a mesoscale in situ network that includes soil thermal 

properties, enabling new opportunities for mesoscale research of coupled heat and water 

transport.  

 Soil chemical properties and soil color 

 

Figure 2.7 Pattern of soil organic matter content at the top 5 cm depth across the state of Kansas. 

The figure shows increasing soil organic matter across the state of Kansas from west to east.  

 

Overall, the top 5 cm soils in the Kansas Mesonet showed a pattern of increasing organic 

matter content across the state from west to east, ranging from 1.5 to 8.4% (Figure 2.7). The 

observed pattern of soil organic matter across Kansas is consistent with the annual precipitation 

gradient across the state, which varies from ~400 mm in western Kansas to ~1200 mm in eastern 

Kansas (Lin et al., 2017). The organic matter content of our soils also decreased with soil depth 

with an average of 3.5 ± 1.6% at 5 cm depth to 1.9 ±0.6% at 50 cm depth (Table 5). The trend of 

decreasing organic matter with soil depth in our soils is expected because the surface soil layer is 
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where organic matter accumulation and decomposition occurs. As expected, the soil total carbon 

showed a similar pattern to the soil organic matter content since organic carbon is a component 

of soil organic matter (Table 2.5). The total nitrogen and pH of our soils were similar in all the 

soil depths analyzed. Overall, our soils were neutral with a depth-specific average pH of 

approximately 7, which could be attributed to the high amount of organic matter (≥ 2%) and 

available basic cations (K, Ca, Mg, Na) in our soils (Table 2.5) that regulates the soil pH. 

Table 2.5 Number of samples per soil moisture sensor depth (N) and mean depth-specific soil 

chemical properties. Values in bracket are standard deviation. OM represents organic matter 

content, TC is total carbon, TN is total nitrogen, pHBuf is buffer pH, P is phosphorus, K is 

potassium, Ca is calcium, Mg is magnesium, and Na is sodium. 

Depth N OM TC TN pH pHBuf P K Ca Mg Na 

cm  % % %   ppm ppm ppm ppm ppm 

5 40 3.5 (1.6) 2.0 (0.9) 0.2 (0.1) 6.6 (0.8) 6.9 (0.4) 34 467 2713 328 46 

10 40 2.8 (1.1) 1.6 (0.6) 0.1 (0.1) 6.7 (0.8) 6.9 (0.4) 25 405 2758 342 49 

20 40 2.5 (1.0) 1.3 (0.5) 0.1 (0.0) 6.8 (0.9) 6.9 (0.4) 19 368 3017 409 58 

50 40 1.9 (0.6) 1.0 (0.4) 0.1 (0.0) 7.3 (0.9) 7.1 (0.4) 14 385 3750 620 126 

 

The soils analyzed in this study showed a similar color at the top 50 cm soil profile with 

similar wet and dry values for L*, a*, and b* (Table 2.6). The L* value, which represent the 

blackness of color (0 for black and 100 for white) (McLaren, 1976), varied from 27.3 ± 3.6 at the 

top 5 cm depth to 32 ±5.8 at 50 cm depth under wet condition, whereas at oven-dryness, L* 

varied from 47.7 ± 4.9 at the top 5 cm depth to 51.9 ±9 at 50 cm depth (Table 2.6). The pattern 

of lower L* in the top 5 cm soil layer than the deeper soil layers implies that the surface soil 

layer was darker than the deeper layers, which aligns with the pattern of soil organic matter 

variation with depth in our soils (Table 2.5). Similar to the organic matter distribution, the soil 

blackness increased across the state of Kansas from west to east (Figure A2 in Appendix A). 

Overall, the soil blackness (L*) showed a negative correlation with soil organic matter content, 
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regardless of soil moisture condition (Figure 2.8). The observed negative relationship between 

the L* and organic matter in our study agrees with the observations in previous studies 

(Spielvogel et al., 2004; Liles et al., 2013), which suggests soil organic matter is a useful variable 

for predicting soil color.  

 

Figure 2.8 Relationship between soil organic matter and soil color expressed in the CIELAB 

color space in terms of light- and darkness (L*) under A) wet conditions (L*wet) and B) Oven-dry 

conditions (L*dry). The lower the L* value, the darker the soil color. Both figures show that soil 

color gets darker as organic matter content increases, regardless of the soil moisture status. 

 

Table 2.6 Number of samples per soil moisture sensor depth (N) and depth-specific soil color 

expressed in the CIELAB color space. Values in bracket are standard deviation. Values for L* 

represent lightness in color from black (0) to white (100), a* represents a variation from green 

(−) to red (+), and b* represents a variation from blue (−) to yellow (+). 

Depth  N L*wet a*wet b*wet L*dry a*dry b*dry 

cm        

5 40 27.3 (3.6) 5.6 (1.5) 9.2 (2.0) 47.7 (4.9) 6.7 (1.9) 12.8 (2.4) 

10 40 27.3 (3.6) 5.4 (1.6) 9.0 (2.1) 46.6 (5.7) 6.6 (2.0) 12.8 (2.7) 

20 40 28.1 (4.0) 5.7 (1.9) 9.3 (2.3) 46.9 (5.0) 6.7 (2.3) 13.0 (2.8) 

50 40 32.0 (5.8) 6.8 (2.5) 12.0 (3.0) 51.9 (7.0) 7.4 (3.3) 15.0 (3.7) 
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 In situ validation of soil moisture 

The volumetric water content at the time of sampling was used to validate three common 

calibration models for the CS655 soil water reflectometers. The RMSE using the factory default 

calibration equation for the entire database was 0.084 cm3 cm-3 (Figure 2.9A; Table 2.7). On the 

other hand, the validation of the three common models for the entire database using coefficients 

(a, b, and c) derived from laboratory sensor calibration in an independent study resulted in a 

similar accuracy with RMSE of 0.062 cm3 cm-3 for Ledieu et al (1986), 0.060 cm3 cm-3 for Evett 

et al., (2005), and 0.061 cm3 cm-3 for Kargas and Soulis (2019) models (Figures 2.9B – 2.9D; 

Table 2.7). This implies that applying independent laboratory sensor calibration coefficients 

could improve the accuracy in soil moisture estimation by at least 29% compared to the factory-

default model that is based on Topp et al. (1980). As expected, all the models had a similar 

RMSE using the optimized parameters from the in-situ soil samples, which interestingly, were 

similar to the accuracy of using the lab-calibration coefficients that were derived from the 

independent study (Table 2.7). Overall, the least discrepancy between laboratory-based and field-

based calibration of the CS655 water reflectometer sensors in our soils suggests that an 

independent laboratory sensor calibration and field-based sensor calibration in site-specific soils 

are comparable. Thus, performing laboratory-based sensor calibrations could save mesonet 

managers from the laborious and daunting work associated with performing site-specific field 

sensor calibration across an entire network of stations.  
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Figure 2.9 Observed volumetric soil water content (θ) based on the thermogravimetric method 

versus θ of the CS655 soil water reflectometers at the time of sampling obtained using A) the 

factory default calibration equation of Topp et al. (1980), and separate laboratory sensor 

calibration coefficients derived in an independent study based on the linear models by B) Ledieu 

et al. (1986), C) Evett et al. (2005), and D) Kargas and Soulis (2019). The dashed line represents 

the 1:1 line. 
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Table 2.7 In situ validation of the CS655 soil water reflectometer sensor using common models 

for estimating volumetric water content from the apparent dielectric permittivity using 

coefficients (a, b, c, and d) derived from an independent laboratory sensor calibration in a 

separate study. The optimized coefficients were obtained from the least-squares fitting of the 

models to the water contents of the in-situ soil samples at the time of sampling. r represents the 

coefficient of correlation, RMSE represents the root mean squared error, and MBE represents the 

mean bias error. Negative MBE represents underestimation and positive MBE represents 

overestimation. 

Calibration model  a b c d r RMSE MBE 

      cm3 cm-3 cm3 cm-3 

Factory default        

Topp et al. 1980 -5.30×10-2 2.92×10-2 -5.50×10-4 4.30×10-6 0.76 0.084 0.03 

        

Independent study        

Ledieu et al. 1986 -0.080 8.25×10-2   0.77 0.062 -0.005 

Evett et al. 2005 -0.101 9.94×10-2 -7.67×10-2  0.80 0.060 0.003 

Kargas & Soulis 2019 -0.115 9.89×10-2 -5.72×10-2  0.79 0.061 0.009 

        

Optimized coefficients        

Topp et al. 1980 0.122 8.58×10-3 -3.30×10-6 -7.40×10-7 0.77 0.059  

Ledieu et al. 1986 7.80 ×10-3 6.30×10-2   0.77 0.058  

Evett et al. 2005 -9.70×10-3 8.81×10-2 -0.163  0.82 0.052  

Kargas & Soulis 2019 -3.81 10-2 8.19×10-2 -9.74×10-2  0.81 0.054  

 

Based on the overall RMSE of the factory-default calibration equation of the CS655 

water reflectometer in our soils, the overall uncertainty of the Kansas Mesonet soil moisture data 

is 0.084 cm3 cm-3. The uncertainty of our soil moisture data was higher than the overall 

uncertainty of the soil moisture data for other networks with RMSE of 0.053 cm3 cm-3 for both 

the Oklahoma Mesonet (Scott et al., 2013) and the Texas Soil Observation Network (TxSON) 

(Caldwell et al., 2018). The discrepancy between the uncertainty in our moisture data and the 

data of the other networks could be attributed to differences in the type of soil moisture sensor 

and differences in sample size used in the soil moisture validation. For instance, the Kansas 

Mesonet monitors soil moisture using a soil water reflectometer, whereas the Oklahoma Mesonet 

(McPherson et al., 2007) uses a heat dissipation sensor, which is based on soil matric potential. 

The TxSON on the other hand uses the same CS655 water reflectometer sensor and factory-
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default equation as the Kansas Mesonet had a larger number and range of soils than the TxSON 

moisture validation (Caldwell et al., 2018), which is only 5% of the 320 total samples across 40 

stations (at 5, 10, 20, and 50 cm depths) used in our moisture validation. The depth-specific 

RMSE using the default model in our soils increased with depth from 0.073 cm3 cm-3 at 5cm 

depth to 0.11 cm3 cm-3 at 50 cm depth, which is contrary to the trend of decreasing RMSE with 

depth from 0.061 cm3 cm-3 at 5 cm to 0.033 cm3 cm-3 at 75 cm depth reported for the Oklahoma 

Mesonet soil moisture data. Notwithstanding, the RMSE of the default equation at 5 cm depth 

(i.e. 0.073 cm3 cm-3) in our soils was equal to the RMSE reported in a laboratory calibration of 

the CS655 using the default equation and soil samples from the top 5 cm depth at five stations in 

the TxSON (Caldwell et al., 2018). To the best of our knowledge, the Kansas Mesonet and 

Oklahoma Mesonet are the only large-scale in situ networks that have been published in peer-

reviewed journals networkwide in situ soil moisture validation, making the Kansas Mesonet soil 

moisture observations one of the most reliable soil moisture databases in the world for mesoscale 

environmental research applications. 

 Conclusions 

We developed a comprehensive database of site-specific soil physical properties for the 

Kansas Mesonet, which is available at the KSU Soil Water Processes Lab upon request. Our soil 

database captured eight out of the 12 textural classes, which were dominated by fine soils with 

93% of our samples having >20% clay content. Silty clay loam, silt loam, and silty clay soils 

were the dominant fine-textured soils in the Kansas Mesonet, whereas sandy loam and sandy 

clay loam were the only coarse soils found. The average bulk density of our soils ranged from 

1.33 g cm-3 in silty clay loam to 1.67 1.33 g cm-3. The median textural class saturated hydraulic 

conductivity in our soil varied from 0.52 to 47.1 cm d-1 and the average plant available water 
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capacity ranged from 0.13 cm3 cm-3 in clay to 0.25 cm3 cm-3 in silt loam. The database of soil 

physical properties allowed us to determine the uncertainty in the Kansas Mesonet soil moisture 

data and also allowed us to identify a better calibration model for the soil water reflectometers. 

The uncertainty in the soil moisture data was 0.084 cm3 cm-3, which could be improved by at 

least 29% compared to the factory-default equation for the moisture sensor when independent 

lab-calibrated sensor coefficients based on the models of Ledieu et al. (1986), Evett al. (2005), 

and Kargas and Soulis (2019) are used in the moisture equation for the sensors. These new 

models will improve estimates of rootzone soil water storage that can be used to better assess the 

inventory of soil water across the state of Kansas. This database opens new opportunities to use 

the Kansas Mesonet soil moisture and temperature observations for drought monitoring and 

drainage and groundwater recharge estimations, and also for other applications in civil 

engineering and urban planning.  
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 Abstract 

Complete and accurate precipitation records are important for developing reliable flood 

warning systems, streamflow forecasts, rainfall-runoff estimates, and numerical land surface 

predictions. Existing methods for flagging missing precipitation events and filling gaps in the 

precipitation record typically rely on precipitation from neighboring stations. In this study, we 

investigated an alternative method for back-calculating precipitation events using changes in 

rootzone soil water storage. We hypothesized that using a different variable (i.e., soil moisture) 

from the same monitoring station will be more accurate in estimating hourly precipitation than 

using the same variable (i.e., precipitation) from the nearest neighboring station. Precipitation 

events were estimated from soil moisture as the sum of hourly changes in profile soil water 

storage. Hourly precipitation and soil moisture observations were obtained for a mesoscale 

network in the central U.S. Great Plains from May 2017 to December 2020. The proposed 

method based on soil moisture had a minimum detectable limit of 7.6 mm (95th percentile of 

undetected precipitation events) due to canopy and soil interception. The method was 

outperformed by the nearest neighbor (NN) interpolation method when neighboring stations 

were at distances of <10 km. However, the proposed method outperformed the NN method in 22 

out of 27 stations when the nearest stations were at distances >10 km. Using changes in soil 

water storage resulted effective in flagging and reconstructing actual missing precipitation events 
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caused by pluviometer malfunction, highlighting new opportunities for using readily available in 

situ soil moisture information for operational quality control in mesoscale environmental 

monitoring networks.  

 Introduction 

Precipitation is an atmospheric essential climate variable and its accurate quantification is 

crucial for agricultural, hydrological, and ecological research (Bojinski, et al. 2014). In the U.S., 

precipitation has been measured using manually-operated pluviometers since 1890 by the U.S. 

National Weather Service (NWS) Cooperative Observer Program (COOP) (Fiebrich 2009) and 

since 1997 by the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) citizen science 

network (Reges et al. 2016). With the advent of electronic dataloggers and the increasing need to 

record precipitation totals and precipitation intensity at higher temporal resolution (e.g., minute, 

hourly), automated pluviometers based on tipping-bucket, weighing-bucket, and siphon 

mechanisms have become standard instrumentation in automated weather networks (McPherson 

et al. 2007; Patrignani et al. 2020a; Shulski et al. 2018; Sun et al. 2018). However, human errors 

(in the case of manual pluviometers), and occasional instrument malfunctioning or failure due to 

normal wear and obstruction of the rain collector in both manual and automated pluviometers 

can go unnoticed, thus introducing gaps in the historical precipitation record (Shafer et al. 2000; 

Michaelides et al. 2009). These gaps in the historical precipitation record can ultimately 

propagate and affect the prediction accuracy of the soil water balance in land surface models, 

streamflow predictions, and runoff estimates from rainfall-runoff models (Chen et al. 2018; Tan 

and Yang 2020). 

Detecting missing precipitation events due to malfunctioning pluviometers often requires 

a combination of manual and automated quality control procedures. Manual checks typically 
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include auxiliary information collected during site visits (e.g. evidence of clogged pluviometer or 

faulty bearings in tipping bucket mechanism) and corroboration with rainfall observations in 

nearby stations and multi-sensor gridded precipitation products by trained operators (Shafer et al. 

2000; Patrignani et al. 2020a). Automated checks for gross errors in precipitation observations 

typically include i) range tests, which are aimed at flagging observations that fall outside a pre-

established range based on physically plausible values and climate extremes; and ii) step tests, 

which are aimed at identifying differences between successive observations to identify 

suspicious changes above an allowable threshold value (Fiebrich and Crawford 2001; Shafer et 

al. 2000). In the absence of co-located rain gauges, missing precipitation events are typically 

filled by spatial interpolation of precipitation information from nearby stations (i.e. gap filling 

using the same variable from different locations). Common spatial interpolation methods for 

filling missing precipitation records include nearest neighbor (Bárdossy and Pegram 2014), 

Thiessen polygon (Mair and Fares 2011), and inverse distance weight (di Piazza et al. 2011). 

These interpolation methods are simple to implement and are available in most software 

packages (Kashani and Dinpashoh 2012), but do not account for the spatial autocorrelation of 

precipitation among neighboring stations (Mair and Fares 2011). More sophisticated spatial 

interpolation methods based on geostatistical principles such as ordinary kriging (Bárdossy and 

Pegram 2014), kriging with external drift (Verworn and Haberlandt 2011), and geographically 

weighted regression (di Piazza et al. 2011) can solve this problem by accounting for the spatial 

structure of precipitation events. But, the inherently high spatial variability and the different 

timing of precipitation events among neighboring stations implies that even sophisticated spatial 

interpolation methods can result in inaccurate estimation of missing precipitation events, 

particularly at sub-daily scales (i.e. minute and hourly observations) (Ciach and Krajewski 2006; 
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Teegavarapu and Pathak 2008; Cristiano et al. 2017). As an alternative, neural networks trained 

using time series of precipitation events for the same station have shown promising results for 

replacing missing precipitation events, surpassing the accuracy of geostatistical interpolation 

methods (Teegavarapu and Chandramouli 2005; Kashani and Dinpashoh 2012). However, 

artificial neural networks typically rely on continuous precipitation time series without missing 

records, which is the very problem they are trying to solve. 

Other alternatives for filling missing precipitation events include the use of ground 

radars, multi-sensor gridded products, and remote sensors onboard orbiting satellites. For 

instance, the hourly and daily Next-Generation Weather Radar (NEXRAD) gridded precipitation 

products provide quality-controlled, multi-sensor (radar and rain gauge) precipitation data 

available at 4-km spatial resolution for the contiguous U.S. (Heiss et al. 1990; Young et al. 2000; 

Krajewski and Smith 2002). Multi-sensor gridded products provide areal average useful for 

hydrological and agricultural applications; however, gridded products may not always represent 

precipitation amounts at the point level (Figure B1 in Appendix B), and gridded products often 

result in large datasets that are not practical for real-time precipitation quality control onboard of 

station dataloggers. 

An alternative approach for flagging and filling missing precipitation events that can be 

implemented in dataloggers and post-processing routines that has the potential to resolve 

uncertainties related to horizontal spatial interpolation methods and the timing of precipitation 

events in neighboring stations is the use of soil moisture observations collected at the same 

station (i.e. gap filling using a different variable from the same location). The strong link 

between precipitation and soil moisture has been widely used to estimate surface and rootzone 

soil moisture from precipitation observations (Pan et al. 2003; Dorigo et al. 2013; Coopersmith et 
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al. 2015), but recent studies have suggested the possibility of doing just the opposite, to 

reconstruct precipitation events from changes in soil water storage (Crow et al. 2009; Brocca et 

al. 2013, 2015; Pellarin et al. 2020; Parker and Patrignani 2020; Filippucci et al. 2020). The 

concept relies on using the soil as a natural rain gauge by relating temporal changes in the soil 

water storage to precipitation. While this method relies on stations equipped with co-located 

pluviometers and soil moisture sensors, there is a growing number of statewide and nationwide 

mesoscale networks that monitor rootzone soil moisture. For instance, the North American Soil 

Moisture Database is a new high-quality observational soil moisture database that consists of 

1,800 stations across North America (Quiring et al., 2016), and similar initiatives have been 

developed for other parts of the world (Dorigo et al., 2011). This new wave of mesoscale 

networks that include soil moisture as a standard measurement opens new opportunities for 

leveraging readily available in situ soil moisture observations for quality control (QC) and 

quality assurance (QA) of other essential variables like precipitation. This is particularly relevant 

considering that the typical distance between neighboring stations in statewide mesoscale 

networks is >25 km and between 70 to 200 km in nationwide networks (Ochsner et al., 2013; 

Brotzge et al., 2020; Patrignani et al., 2020b). Thus, the objectives of this study were to test the 

accuracy of using changes in rootzone soil water storage as i) a qualitative quality assurance 

method for detecting the occurrence of false-negative precipitation events due to malfunctioning 

pluviometers and ii) as a quantitative method for filling gaps in precipitation records. We 

propose this approach as an alternative method for precipitation observations with the potential 

to complement existing QA and QC methods. The scope of this study is aimed at conceptualizing 

and testing the proposed method using the soil as a natural rain gauge in its simplest form, solely 

using sensor observations and without accounting for additional soil hydraulic properties or 
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sophisticated modeling procedures so that researchers and network managers alike can easily 

implement the method as part of routine operations. In other words, we evaluate whether changes 

in soil moisture storage at the same station can be used to flag and reconstruct missing 

precipitation events using a mesoscale in situ network in the U.S. Great Plains as a case study 

scenario. 

 Materials and Methods 

 Concept and assumptions 

The link between the change in soil water storage and precipitation is explicit in the 

equation describing the soil water balance, which for a rainfed system neglecting capillary rise 

can be represented as: 

∆𝑆 = 𝑃 − 𝐸 − 𝑇 − 𝑅𝑂 − 𝐷 − 𝐼                 [1] 

where ∆S is the change in soil water storage (mm), P is precipitation (mm), E is evaporation 

from the soil surface (mm), T is plant transpiration (mm), RO is surface runoff (mm), D is deep 

drainage (mm), and I is canopy and litter interception (mm). For the change in soil water storage 

to equate precipitation, ∆𝑆 ≅ 𝑃, several conditions need to be met, at least during the period of 

the rainfall event. For this reason, in this study, we used a soil water balance at an hourly time 

scale. During the occurrence of a precipitation event, the air near the land surface typically 

approaches the saturation vapor pressure (i.e. relative humidity ~100 %), dramatically reducing 

the vapor pressure deficit and the atmospheric water demand (Campbell and Norman 1998). 

Under these conditions and for this study, evaporative and transpirational losses were assumed 

negligible during the precipitation event (i.e. 𝐸 and 𝑇 ≈ 0). Considering the typically low 

rainfall intensity in the U.S. Central Plains (i.e. <5 mm h-1 average peak rainfall intensity in the 

region ) (Lee et al. 2017) and that stations of the Kansas Mesonet (see the section on 
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precipitation and soil moisture dataset below) are mostly located on landscapes with less than 1% 

slopes covered with natural vegetation, the runoff was also assumed to be negligible (i.e. 𝑅𝑂 ≈

0). If we further assume that most precipitation events in this region have a duration of only a 

few hours (typically <3 hours, Lee et al., 2017), then it results unlikely that precipitation that 

infiltrates the soil profile will move beyond the depth of the deepest soil moisture sensor at the 

stations of the Kansas Mesonet (i.e. 50 cm depth). Therefore, the drainage rate during the 

duration of precipitation events was also assumed negligible (i.e. 𝐷 ≈ 0). This assumption 

implies that we ignored any preferential flow through macropores and soil cracks. A brief 

discussion is presented in the section on testing of model assumptions below to discuss the 

magnitude of the drainage term by adding a simple hydraulic conductivity model. The soil 

moisture sensors of the Kansas Mesonet are installed under natural vegetation, so unlike the 

previous components of the soil water balance, the interception component cannot be assumed 

negligible (i.e. 𝐼 ≠ 0). Small precipitation events that are often intercepted by vegetation canopy 

and litter evaporate without reaching the soil surface. Even then, the precipitation water that 

reaches the soil surface still needs to enter the sensing volume of the topmost (i.e. 5 cm depth) 

soil moisture sensor to be detected. Thus, we know a priori that the proposed approach has a 

detectable limit below which cannot be used to predict the occurrence of precipitation events. 

Accounting for the interception component, equation (1) simplifies to: 

𝑃 = ∆𝑆 + 𝐼                      [2] 

In this study, the interception component in equation (2) was determined from a histogram of 

precipitation events that did not result in a measurable change in soil water storage (i.e. 

undetected precipitation events). We selected the 95th percentile of the precipitation amount of 

undetected events by the array of soil moisture sensors as an arbitrary, but a reasonable 
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approximation of canopy and litter interception. As mentioned earlier, the interception term in 

our study also accounts for a small fraction of soil water storage present near the soil surface that 

is beyond the sensing volume of the topmost sensor at 5 cm depth. In this context, the magnitude 

of the interception term represents the minimum detectable precipitation event using the 

proposed method. Undoubtedly, we made some important simplifying assumptions that would 

not hold under most field circumstances, but we hypothesize that these assumptions hold during 

typical precipitation events in the central U.S. with the aim of generating a first-order 

approximation of precipitation events based on changes in rootzone (i.e. top 50 cm) soil water 

storage. 

 Precipitation and soil moisture dataset 

Available hourly observations of precipitation and soil moisture were obtained from the 

Kansas Mesonet from the deployment of soil moisture sensors in 2017 to 31 December 2020. 

The Kansas Mesonet is an environmental monitoring network established in 1986 by the Kansas 

State Research and Extension that consists of 62 stations distributed across the state of Kansas 

(Patrignani et al. 2020a). The stations are located in long-term sites characterized by landscapes 

with <1% slope and permanent natural vegetation dominated by warm-season grasses. Stations 

of the Kansas Mesonet are located across precipitation gradient that ranges from 200 mm per 

year in the western portion of the state to 780 mm in the eastern portion of the state. Liquid 

precipitation is measured at all stations using a tipping bucket rain gauge (Model TE525, Texas 

Electronics Inc. Dallas, TX) with a resolution of 0.25 mm. We used hourly precipitation and soil 

moisture information from 30 stations of the Kansas Mesonet equipped with soil moisture 

records longer than one year and an additional 17 stations without soil moisture sensors were 

included to obtain precipitation for the nearest neighbor interpolation (Figure 3.1). The use of 
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hourly data was essential to meet the assumptions of the soil water balance components stated 

earlier. For this study, the minimum inter-event time (MIT) that defines individual precipitation 

events was assumed to be one hour (Dunkerley 2015; Medina-Cobo et al. 2016). 

 
Figure 3.1 Distribution of the 47 stations of the Kansas Mesonet considered in this study. Filled 

triangles represent stations with precipitation and soil moisture records (N=30) and open circles 

represent stations with precipitation and without soil moisture records (N=17) that were 

considered for the nearest neighbor approach. 

 

In stations of the Kansas Mesonet, volumetric water content is monitored at 5, 10, 20, and 

50 cm depths using soil water reflectometers (Model CS655, Campbell Scientific Inc., Logan, 

UT) since 2016. The soil moisture sensors were calibrated using soil samples collected from all 

the stations monitoring soil moisture between June and November 2019. The calibration 

equation was obtained by relating the volumetric water content (θ) of the soil samples 

determined with the thermo-gravimetric method as a function of the apparent dielectric 

permittivity (Ka, unitless) and bulk electrical conductivity (ECb, in dS m-1) (Evett et al. 2005) 
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reported by the soil moisture sensor at the time of soil sampling. The calibration equation used in 

this study is: 

𝜃 =  −0.025 +  0.091√𝐾𝑎 − 0.176√𝐸𝐶𝑏              [3] 

The RMSE of the calibration equation in our soils was 0.05 cm3 cm-3, which is 44% less than the 

RMSE of the sensor manufacturer’s equation based on the third-order polynomial proposed by 

Topp et al. (1980) (RMSE = 0.09 cm3 cm-3). 

 Computation of changes in soil water storage 

After computing the volumetric water content of each soil moisture sensor, the total soil 

water storage (S) in a soil profile was approximated using the trapezoidal rule of integration, 

which is a common approach in the literature for integrating vertical measurements of soil 

moisture to compute profile soil water storage (e.g. Nachabe et al. 2004; Gao et al. 2019): 

𝑆𝑡 = 𝜃1,𝑡𝑍1,𝑡 + ∑
𝜃𝑖−1,𝑡 + 𝜃𝑖,𝑡

2

𝑛

𝑖=2

(𝑍𝑖,𝑡 − 𝑍𝑖−1,𝑡)                                   [4] 

where t is time in hours, Zi (mm) is the depth of the i-th sensor, θi is the volumetric water content 

of the i-th sensor, and n is the total number of sensors in the soil profile. For the 0-5 cm soil 

layer, we assumed that the sensor placed at 5 cm depth represents the soil moisture of the surface 

layer (i.e. 0-5 cm). Then, the predicted precipitation from soil moisture was computed based on 

the sum of hourly changes in the soil water storage for each observed precipitation event. The 

approach for reconstructing precipitation events from changes in soil water storage is illustrated 

in Figure 3.2A using a 5-hour precipitation event from 14 May 2018 23:00 to 15 May 2018 

03:00 Central Standard Time (CST) recorded at the Parsons station. Figure 3.2A illustrates the 

use of the soil profile as a natural rain gauge, in which the soil water storage at each sensor depth 

changes as the rainfall event progresses. Then, the sum of hourly changes in rootzone soil water 
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storage can be used to reconstruct detailed cumulative precipitation dynamics (Figure 3.2B). In 

this particular example, the observed total precipitation was 46.5 mm and the estimated total 

precipitation based on changes in soil water storage was 48.7 mm (Figure 3.2B). In previous 

stages of this manuscript, we also considered reconstructing precipitation events using the 

difference in soil water storage between an hour before and an hour after the precipitation event. 

However, precipitation estimates were the same as using the sum of hourly changes in soil water 

storage. As a result, we favored the simplest approach based on the sum of hourly changes in soil 

water storage, which does not require knowledge of the start and end of a precipitation event, and 

thus can be easily implemented as a near-real-time precipitation quality control procedure 

onboard of common dataloggers (e.g. Supplemental code in Appendix B). 

 

Figure 3.2 Example illustrating changes in profile soil moisture during A) 5-hour precipitation 

event at the Parsons station of the Kansas Mesonet from 14 May 2018 23:00 to 15 May 2018 

03:00 Central Standard Time (CST), and B) the corresponding cumulative precipitation 

measured by the station pluviometer (Pobs) and the cumulative precipitation reconstructed using 

changes in soil water storage (ΔS). Times (t) are expressed in hours relative to the start of the 

precipitation event. Soil water content at time t = -1 h represents the water content of the soil 

profile at an hour before the start of the precipitation event and t = 6 h represents the soil water 

content at an hour after the end of the precipitation event. 
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For each precipitation event, we also obtained additional metrics such as antecedent soil 

water storage (mm), antecedent soil water deficit (mm), and antecedent relative saturation. The 

antecedent soil water storage was estimated as the soil water storage an hour before a 

precipitation event. The antecedent soil water deficit was computed as the difference between the 

saturation point and the antecedent soil water storage. The saturation point was approximated as 

the maximum value of the soil water storage time series for each station. The antecedent relative 

saturation was computed as the ratio of the antecedent soil water storage to the saturation point. 

Before evaluating the accuracy of the proposed soil moisture-based precipitation approach, we 

removed precipitation events smaller than the minimum detectable threshold of 7.6 mm (see the 

section on testing of model assumptions below). We also removed precipitation events during the 

winter season with soil temperature values ≤1 oC because of the change in the apparent dielectric 

permittivity of partially frozen soils that affects the estimation of volumetric water content 

(Figure B2 in Appendix B) (Zhang et al. 2003; Seyfried and Grant 2007). 

The accuracy of the proposed approach for reconstructing precipitation events from 

changes in rootzone soil water storage was evaluated both qualitatively and quantitatively. The 

qualitative evaluation involved the determination of true positive precipitation events correctly 

detected with changes in soil moisture storage and false-negative precipitation events that were 

not detected with the proposed approach. For this analysis, the occurrence of a precipitation 

event based on soil moisture was only considered when the changes in soil water storage were 

greater than 1 mm to avoid including small soil moisture fluctuations due to sensor noise and 

thermal gradients. The quantitative evaluation of the proposed approach was done using root 

mean squared error (RMSE), mean absolute error (MAE), and mean bias error (MBE). We 

selected RMSE because it is a commonly used error metric and allowed us to compare our 
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findings with other studies in the literature. The MAE was also included in our analysis as a 

robust error metric that is less sensitive to outliers compared to RMSE (Willmott and Matsuura 

2005). The MBE measures the tendency of a model to underestimate or overestimate 

observations and expresses the mean difference between predicted and observed variables 

(Harrison and Bales 2014). A negative MBE value represents underestimation and a positive 

MBE represents overestimation. All data analysis was performed using Matlab R2020b 

(Mathworks, Inc., Natick, MA).  

 Comparison with nearest-neighbor interpolation approach 

To assess the accuracy of the proposed method relative to common methods for filling 

missing precipitation events, we compared the quantitative accuracy of our soil moisture-based 

approach to the nearest neighbor interpolation approach. We evaluated the nearest neighbor 

approach using precipitation events greater than the minimum detectable threshold of the soil 

moisture approach obtained from all 47 stations considered in this study. The nearest neighbor 

interpolation method works by replacing missing precipitation events at a target station with 

precipitation records from the nearest station in terms of geographical distance. Similar to the 

soil moisture approach, the accuracy of the nearest neighbor approach was evaluated using 

RMSE, MAE, and MBE. 

 Results and Discussion 

 Testing of model assumptions 

Evaporation and transpiration assumptions 

One of the assumptions of the proposed method for reconstructing precipitation events 

based on changes in soil water storage is that soil evaporation and plant transpiration are 
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negligible during precipitation events. Since stations of the Kansas Mesonet also record air 

temperature and relative humidity at hourly intervals, we used these variables to compute the 

atmospheric vapor pressure deficit during the precipitation events. The median relative humidity 

(RH) recorded during all precipitation events was 95% (Figure 3.3A) and the median resulting 

vapor pressure deficit was 0.1 kPa (Figure 3.3B). Vapor pressure deficit is a primary driver of 

soil evaporation (Or et al. 2013) and plant transpiration (Sinclair et al. 2017), thus, the nearly 

zero vapor pressure deficit recorded during precipitation events provides some evidence for the 

assumption of negligible evaporation and transpiration. It is worth mentioning that while this 

assumption seems valid for hourly precipitation events, the assumption of negligible evaporation 

and transpiration will likely not hold at daily time steps, which could lead to precipitation 

underestimation when using the proposed soil moisture-based approach to reconstruct rainfall 

due to pre- and post-storm evapotranspiration resulting from hours of the day without 

precipitation. For instance, on 19 June 2020 at the Hays station of the Kansas Mesonet, the vapor 

pressure deficit increased from 0.1 to 1.0 kPa following a four-hour precipitation event (Figure 

3.3C). This assumption seems to work well in the U.S. Great Plains, but this assumption will 

need to be tested before implementation in other parts of the world. 
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Figure 3.3 Distribution of A) relative humidity and B) vapor pressure deficit precipitation event 

for 2497 hourly precipitation events across 30 stations of the Kansas Mesonet from 15 May 2017 

to 31 December 2020. C) Example of the lower vapor pressure deficit (VPD) during a 

precipitation event recorded at the Hays station of the Kansas Mesonet on 19 June 2020. Times 

are reported in Central Standard Time (CST). 

 

Interception assumption 

The interception threshold determined based on the 95th percentile of 9,031 precipitation 

events in all the stations monitoring soil moisture that did not result in a measurable increase in 

soil water storage was 7.6 mm. This value is higher than the canopy interception threshold of 4 

mm determined for prairie grass in the region (Zou et al. 2015), which is not surprising since the 

interception threshold derived in this study comprises canopy interception and a small amount of 

infiltrated water that likely did not reach the sensing volume of the topmost (i.e. 5 cm) moisture 
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sensor. During these small precipitation events, all soil moisture sensors typically exhibited 

negative changes in volumetric soil water content. Our findings imply that a precipitation event 

totaling >7.6 mm is required for the proposed approach based on changes in soil water storage to 

work in this region. As a result, the remaining analyses in this study were performed using a total 

of 2,497 precipitation events >7.6 mm. 

Drainage assumption 

To test the assumption of negligible drainage we approximated the magnitude of the 

drainage term for a typical rainfall event using the Campbell (1974) soil hydraulic conductivity 

model using a unit gradient assumption (i.e., gravity-driven flow). In this case, the hourly 

drainage rate at 50 cm depth was assumed to be equal to the hydraulic conductivity for that hour. 

Due to the lack of site-specific soil hydraulic properties for the Kansas Mesonet, we used soil 

hydraulic properties for the Campbell model for U.S. soils (Rawls et al. 1982; Rawls et al. 1992) 

corresponding to the predominant soil textural class at the 50 cm sensor depth across the Kansas 

Mesonet (i.e. silty clay loam, 𝐾𝑠𝑎𝑡= 1.5 mm h-1, b = 6.6). Overall, the median duration of the 

2,497 precipitation events analyzed in this study was 4 hours, which resulted in an estimated 

median drainage of 0.28 mm for the entire rainfall event, suggesting that assuming negligible 

drainage beyond the 50 cm sensor depth during typical precipitation events results in small errors 

that could be considered negligible for the purposes of this study. To quantify the impact of 

longer precipitation events on the proposed approach, a more detailed discussion is provided in 

the quantitative analysis section below. 
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 Distribution of precipitation events 

 

Figure 3.4 A) histogram of precipitation amount, and B) histogram of precipitation intensity for 

the 2497 precipitation events in the resulting dataset across 30 stations of the Kansas Mesonet 

from 15 May 2017 to 31 December 2020. Rainfall intensity was classified as light (rainfall 

intensity <2.5 mm h-1), moderate (rainfall intensity ≥2.5 to <10 mm h-1), and heavy (rainfall 

intensity >10 mm h-1) according to the classification by the World Meteorological Organization. 

The x-axes of the figures were truncated for visual clarity. 

 

Our study spanned an approximate area of 231,000 km2 across a gradient of 400 to 1200 

mm in annual rainfall. Based on the minimum detectable precipitation threshold, our dataset 

resulted in 2497 precipitation events with a median precipitation amount of 16 mm and a median 

precipitation duration of 4 hours (Figure 3.4A). The maximum precipitation amount was 187 

mm, which was recorded at the Ottawa 2SE station from 31 July 2019 at 22:00 CST to 1 August 

2019 at 07:00 CST. Similarly, the maximum sum of changes in soil water storage was 100 mm, a 

value also recorded at the Ottawa 2SE station at the time of the maximum precipitation event. 

The median precipitation intensity of the dataset was 3.9 mm h-1 and the maximum recorded 

precipitation intensity was 45.7 mm h-1 (Figure 3.4B), which was recorded at Miami station on 

29 January 2020 from 09:00 CST to 12:00 CST. Based on the precipitation intensity 
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classification system of the World Meteorological Organization (2017), 25% of the precipitation 

events were classified as light events (<2.5 mm h-1), 65% as moderate (≥2.5 to <10 mm h-1), and 

10% as heavy precipitation events (≥10 mm h-1). Our findings show that precipitation events in 

this region of the U.S Great Plains are largely dominated by light and moderate-intensity 

precipitation events, which accounted for 90% of the total precipitation events during the study 

period. 

 Qualitative analysis 

Overall, using changes in rootzone soil water storage correctly flagged 2,044 out of the 

2,497 precipitation events >7.6 mm, while the remaining 453 precipitation events were not 

detected by the soil (Table 3.1). This represents 82% accuracy in detecting precipitation events 

greater than the interception threshold. The remaining 453 (18%) undetected precipitation events 

typically occurred when the antecedent soil moisture was at or near saturation conditions, with 

an average antecedent relative saturation of the 453 undetected events of 0.82. The failure of 

soils at or near saturation conditions in responding to precipitation events was also documented 

in previous studies that estimated precipitation using in situ soil moisture (Brocca et al. 2013, 

2015) and satellite-based soil moisture products (Crow et al. 2011; Brocca et al. 2014, 2019; 

Pellarin et al. 2020) and is further discussed in the section on the quantitative analysis below. 

 

Table 3.1 Qualitative evaluation of precipitation detection by soil moisture using 2497 hourly 

observations that exceeded 7.6 mm from 30 stations of the Kansas Mesonet.  

Soil moisture response Number of precipitation events Percentage of total 

precipitation events 

Detected 2044 82 

Not detected 453 18 
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Interestingly, the proposed approach based on changes in soil water storage was able to 

identify actual missing precipitation events in the Kansas Mesonet precipitation record that 

remained unknown until this study. For example, a missing precipitation event that went 

unnoticed at the Gypsum station on 22 April 2019 from 00:00 to 03:00 CST was correctly 

identified using the proposed approach based on changes in soil water storage (Figure 3.5A). The 

sum of hourly changes in soil water storage for the same period totaled 24.3 mm whereas the rain 

gauge recorded no precipitation occurrence. Verification with a multi-sensor gridded 

precipitation product with 4-km spatial resolution generated by the U.S. National Weather 

Service (NWS, https://water.weather.gov/precip) for the same day revealed a precipitation event 

of 19.1 mm, suggesting that a missing precipitation event occurred at the Gypsum station. 

Further inspection of the visit sheets filled by the field technician of the Kansas Mesonet 

revealed that the rain gauge at Gypsum station was clogged during a posterior station visit 

(Figure B3 in Appendix B). Similarly, a malfunctioning rain gauge failed to capture multiple 

precipitation events during July 2017 at the Lake City station. During the same period, the 

estimated precipitation based on changes in the soil water storage totaled 50.2 mm (Figure 3.5B). 

Verification with the gridded precipitation product generated by the NWS for the corresponding 

days revealed multiple precipitation events totaling 50.8 mm. Again, crosschecking with a visit 

sheet filled by the field technician revealed that the rain gauge at the Lake City station was 

clogged on a posterior station visit (Figure B4 in Appendix B). The ability to flag missing 

precipitation events using the proposed approach coupled with the high (82%) accuracy of the 

proposed approach in flagging precipitation events shows a promising application of co-located 

soil moisture observations for precipitation quality control in mesoscale networks. The proposed 

approach could complement existing methods for precipitation quality control and quality 
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assurance such as the use of precipitation records from neighboring stations (Einfalt and 

Michaelides 2008) and multi-sensor gridded precipitation products (Shafer et al. 2000; Patrignani 

et al. 2020a). 

 

 
Figure 3.5 Examples of precipitation events that were effectively captured by the proposed 

approach based on changes in soil water storage, but that were missed due to a malfunctioning 

pluviometer at A) the Gypsum station on 22 April 2019 00:00 to 03:00 CST and at B) the Lake 

City station for July. Both figures comprise hourly results that have been aggregated into daily 

intervals for visual clarity. We also retrieved the precipitation total for the same dates obtained 

from the U.S. National Weather Service (NWS) 4-km multi-sensor gridded product that in both 

cases provided an independent precipitation observation. Pobs is the observed precipitation at the 

station and ∆S is the observed change in soil profile water storage at the station. Rain gauges in 

both stations were fixed during a time without rainfall. 
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 Quantitative analysis 

 

Figure 3.6 Comparison of rain gauge observation to predicted precipitation using A) change in 

soil water storage for all precipitation events (N = 2497), B) change in soil water storage for 

precipitation events lower than the antecedent soil water deficit (N = 1716), and C) nearest 

neighbor interpolation for precipitation events exceeding 7.6 mm from 15 May 2017 to 31 

December 2020. The soil moisture approach used precipitation events across 30 stations 

monitoring soil moisture while the nearest neighbor approach used 2497 precipitation events 

across all 47 stations of the Kansas Mesonet, including stations with and without soil moisture 

sensors. Dash lines represent the 1:1 line and solid lines represent fitted linear regressions (in 

both cases the linear model had p<0.001). 

 

Accuracy of precipitation estimation using in situ soil moisture 

The quantitative accuracy of the proposed approach for estimating precipitation based on the 

sum of hourly changes in soil water storage resulted in r = 0.57, an RMSE of 14.1 mm, and 

MAE of 8.0 mm, with a slight tendency to underestimate the total observed precipitation with an 
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MBE of -3.0 mm (Figure 3.6A). The RMSE of the proposed in situ soil moisture-based approach 

is similar to the range in RMSE of 11.8 to 16.4 mm reported in a previous study for 5-day 

accumulated global precipitation derived by coupling satellite-based global soil moisture 

products with the SM2RAIN algorithm (Brocca et al. 2014). Considering all stations and 

precipitation events >7.6 mm (i.e. interception threshold), the proposed approach based on soil 

moisture performed similarly to the nearest neighbor interpolation technique, which resulted in r 

= 0.55 an RMSE of 16.6 mm and MAE of 10.6 mm (Figure 3.6C). In addition, the nearest 

neighbor interpolation approach showed a higher precipitation underestimation than the soil 

moisture-based approach with an MBE of -5.8 mm (Figure 3.6C). The comparatively higher 

precipitation underestimation by the nearest neighbor interpolation than the soil moisture-based 

approach could be attributed to the inherently high spatial and temporal variability of 

precipitation events as a consequence of the distance between stations (Ciach and Krajewski 

2006; Sadler et al. 2017; Patrignani et al. 2020b), especially at sub-daily intervals. When we only 

considered precipitation events totaling less than the antecedent soil water deficit before the 

precipitation event, the accuracy of our approach improved by about 30%, with an RMSE of 7.7 

mm and MAE of 5.5 mm (Figure 3.6B). This improvement was not surprising since the soil 

profile had sufficient pore space to store infiltrating water, indicating that the proposed approach 

works best for precipitation events totaling less than the antecedent soil water deficit. Thus, the 

proposed approach has a minimum and a maximum precipitation detection threshold that can be 

obtained from the time series of soil moisture and precipitation itself. 

A major limitation of the proposed approach occurs when the soil moisture is at or near 

saturation conditions that limit the soil’s ability to store infiltrating water, leading to precipitation 

underestimation. For instance, in the near-saturation scenario in Ottawa 2SE station (Figure 3.7), 
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the inability of the soil profile to capture subsequent precipitation events after reaching near-

saturation conditions on 7 October 2018 resulted in a total change in soil water storage of 72 

mm, which amounts to only 29% of the observed total precipitation of 249 mm during the 

period. At near-saturation soil moisture conditions, the soil has negligible air-filled porosity to 

store additional precipitation and also the infiltrating water can drain beyond the deepest sensor 

depth without necessarily changing the storage of the soil profile, and if the rainfall rate exceeds 

the infiltrability of the soil, then part of the rainfall may also result in ponding or runoff (Brocca 

et al. 2014; Crow et al. 2011). The proposed soil moisture-based approach without a drainage 

term may have limited applicability in regions where soils are frequently at or near saturation 

conditions. 

 
Figure 3.7 Example of precipitation underestimation by the proposed approach based on 

changes in soil water storage caused by near-saturation conditions due to several consecutive 

precipitation events at the Ottawa 2SE station. Pobs is the observed precipitation and ∆S is the 

change in soil profile water storage. 
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Drainage beyond the deepest moisture sensor, especially under near saturation conditions, 

can be circumvented by adding a drainage term to the proposed equation based on hourly 

changes in soil water storage. In this study, the addition of a drainage term based on the 

Campbell model to the proposed approach resulted in RMSE = 13.0 mm and MAE = 7.7 mm, an 

error that is marginally lower (for a substantially more complicated method) than solely using the 

sum of hourly differences in soil water storage (Figure B5 in Appendix B). A previous study on 

different sites in Western Europe using a single soil moisture sensor near the soil surface (i.e. 5 

to 30 cm) and characterized by coarse-textured soils (e.g. sand and sandy loam; Brocca et al., 

2013), showed that drainage accounted for up to 30% of the precipitation estimates (Brocca et al. 

2015). The low drainage rates in our study are likely attributed to the deeper array of sensors and 

the predominantly fine-textured soils across Kansas that typically have hydraulic conductivities 

(𝐾𝑠𝑎𝑡 ~1.5 mm h-1) that are an order of magnitude lower than coarse-textured soils (e.g. 𝐾𝑠𝑎𝑡 for 

sand ~25.9 mm h-1, Rawls et al. 1982). 

We also observed that in precipitation events with intensities >10 mm h-1 underestimation 

could have been caused by high antecedent soil moisture conditions coupled with ponding and 

possible runoff. The case where high-intensity precipitation events are underestimated in high 

antecedent soil moisture conditions was also observed by Brocca et al. (2015). Out of the 2497 

precipitation events in our dataset, 781 events (31%) occurred when the antecedent soil water 

deficit (i.e. available air-filled porosity) before the start of the precipitation event was smaller 

than the total amount of the precipitation event.  
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Figure 3.8 Time series of observed (Pobs) and predicted cumulative precipitation from changes 

in soil water storage (∆S) (A and C) and the corresponding profile soil water content dynamics 

(B and D) for overestimated precipitation events. The top row illustrates an example for a sandy 

loam at the Lake City station from 5 July 2019 22:00 to 6 July 2019 03:00 CST and the bottom 

row illustrates an example for a silty clay loam soil at the Ashland Bottoms station from 29 June 

2017 04:00 to 29 June 2017 09:00 CST. Soil water content at time t = -1 h represents the water 

content of the soil profile at an hour before the start of the precipitation event and t = 7 h 

represents the soil water content at an hour after the end of the precipitation event. 

 

On some occasions, we also found that the proposed approach overestimated the 

observed precipitation amount. For instance, after a six-hour precipitation event totaling 27.7 

mm in a sandy loam soil with an antecedent water deficit of 39.1 mm at the Lake City station, 

the resulting changes in soil water storage totaled 35.5 mm, which is 28% above the observed 

precipitation (Figure 3.8A). Similarly, a 51.6 mm precipitation event in a silty clay loam with an 
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antecedent water deficit of 81.7 mm resulted in an estimated precipitation amount of 74 mm at 

the Ashland Bottoms station (Figure 3.8C), which is 43% above the observed precipitation. One 

possible reason for the precipitation overestimation could be attributed to the method for 

computing soil water storage using the trapezoidal rule, especially in the layer between the 20 

and 50 cm sensor depths, where small errors in volumetric water content could greatly affect the 

computed water storage in the 300 mm-thick layer. Another explanation for the overestimation 

might be due to additional water contribution from surface runoff, subsurface lateral flow, and 

water table rise (for stations located near rivers). However, because most stations of the Kansas 

Mesonet were deployed in vegetated landscapes with <1% slope and deep water tables, 

conditions prone to surface and sub-surface runoff and water table rise likely to occur at a few 

specific stations (e.g. Cherokee and Woodson stations, Table 3.2). 

Comparison with nearest-neighbor interpolation 

The comparison of the nearest neighbor interpolation and the soil moisture-based 

approach at each station that monitors soil moisture showed that the nearest neighbor approach 

consistently outperforms the proposed soil moisture-based approach when the distance to the 

nearest station is ≤10 km (Table 3.2). At distances ≤10 km, the nearest neighbor approach 

resulted in an average correlation of 0.84 (SD = 0.01) and an average MAE of 5.8 mm (SD = 

0.27 mm), while the soil moisture-based approach resulted in an average correlation of 0.53 (SD 

= 0.01) and average MAE = 8.5 mm (SD = 0.13 mm) (Table 3.2). At distances between 10 and 

15 km the two methods had comparable performance and were probably within the error of the 

method itself (Figure B6 in Appendix B). On the other hand, as the distance to the nearest 

neighboring station increased beyond ~10 to 15 km, the soil moisture-based approach 

outperformed the nearest neighbor approach in 22 out of 27 cases, exhibiting an average 
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correlation of 0.64 (SD = 0.03) and MAE of 7.5 mm (SD = 0.37 mm) compared to the mean 

correlation of 0.47 (SD = 0.03) and MAE of 11.4 mm (SD = 0.36) for the nearest neighbor 

approach (Table 3.2). This suggests that for stations with the nearest neighbor station located >10 

to 15 km, using the proposed soil moisture-based approach could be more accurate than using the 

nearest neighbor interpolation approach for filling the gap in missing precipitation at hourly 

intervals. This result is especially relevant in sparse networks where the distance to the nearest 

station can be several orders of magnitude larger than the range in spatial autocorrelation of 

precipitation events. For instance, a study in central Oklahoma using a dense network of 25 rain 

gauges over a 9 km2 area revealed that the distance at which precipitation events are no longer 

correlated is 4 km (Ciach and Krajewski 2006). In contrast, the median distance between nearest 

neighbor stations in the Oklahoma Mesonet (McPherson et al. 2007) is about 30 km, indicating 

that even in one of the densest statewide mesoscale networks in the U.S. there is an opportunity 

to further explore the use of co-located soil moisture information for QA and QC procedures and 

for filling missing precipitation records at hourly time scales in mesoscale environmental 

monitoring networks. The potential could be even greater for nationwide networks such as the 

Soil Climate Analysis Network (Schaefer et al. 2007) with a median distance between neighbors 

of 69 km and for the U.S. Climate Reference Network (Diamond et al. 2013) with a median 

distance of 197 km. The applicability of the proposed approach could be particularly helpful in 

sparse networks outside the U.S. in which high-resolution multi-sensor precipitation products are 

unavailable. 

 

 

 



74 

Table 3.2 Comparison of precipitation estimation error between the proposed soil moisture 

approach (SM) and the nearest neighbor interpolation approach (NN) for all precipitation events 

greater than 7.6 mm at each of the 30 stations of the Kansas Mesonet that monitors rootzone soil 

moisture. The predicted precipitation from soil moisture was computed as the sum of hourly 

changes in soil water storage + interception value of 7.6 mm. 

Station Nearest station Distance Events RNN RSM MAE NN   MAE SM   

  km    mm mm 

McPherson 1S McPherson 4 100 0.88 0.45 4.2 7.8 

Ashland Bottoms Manhattan 10 111 0.85 0.55 6.2 9.2 

Manhattan Ashland Bottoms 10 118 0.80 0.58 7.1 8.5 

Tribune Tribune 6NE 12 53 0.50 0.67 6.5 4.7 

Lakin Grant 27 63 0.51 0.86 10.6 4.4 

Viola Haysville 28 105 0.65 0.78 10.9 7.6 

Leoti Tribune 6NE 30 47 0.32 0.35 10.5 7.2 

Ottawa 2SE Overbrook 30 100 0.60 0.66 11.1 10.9 

Overbrook Ottawa 2SE 30 92 0.59 0.62 11.4 8.6 

Hodgeman Spearville 32 48 0.54 0.83 8.3 5.0 

Cherokee† Parsons 33 87 0.65 0.27 12.3 10.2 

Parsons Cherokee 33 117 0.59 0.51 12.9 11.6 

Hays La Crosse 35 77 0.25 0.74 14.3 8.2 

Miami Ottawa 2SE 35 108 0.35 0.30 13.5 11.8 

Jewell Scandia 36 75 0.48 0.69 9.2 7.8 

Garden City Lakin 38 55 0.35 0.53 11.8 6.4 

Cheyenne Sherman 39 11 0.09 0.55 15.4 7.8 

Colby Sheridan 40 58 0.47 0.78 10.5 6.3 

Clay Washington 41 90 0.33 0.63 11.3 8.0 

Washington Clay 41 86 0.45 0.61 9.5 6.3 

Satanta Haskell 41 60 0.22 0.69 13.2 6.1 

Gypsum McPherson 46 97 0.28 0.81 11.9 6.4 

Meade Satanta 47 61 0.58 0.82 11.5 4.6 

Osborne Jewell 49 72 0.69 0.84 8.8 5.3 

Butler Haysville 49 72 0.68 0.59 11.4 7.9 

Hutchinson 10SW McPherson 1S 56 48 0.66 0.68 10.4 8.4 

Lane‡ Ness City 59 55 0.00 0.67 14.9 6.2 

Harper Viola 60 92 0.57 0.81 12.0 6.4 

Lake City Harper 68 79 0.69 0.71 11.1 7.9 

Woodson† Parsons 70 78 0.60 0.23 11.6 9.5 
† Stations had a high water table from June 2019 to June 2020 and soil was at near-saturation conditions, 

leading to poor correlation with their common nearby station in Parsons, KS.  
‡ Station had the nearest neighbor correlation of -0.004434, which rounds up to 0.00 in 2 decimal places. 

 

To illustrate the limitations of using nearest neighbors to fill precipitation gaps at sub-

daily time scales we analyzed two precipitation events of similar amount and duration, but with 
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neighboring stations at different distances. For the case of close neighboring stations, during a 5-

hour precipitation event of 24.9 mm at Ashland Bottoms station on 18 May 2017 17:00 CST, the 

nearest neighbor station (i.e. Manhattan station, about 10 km away) recorded a precipitation 

event of 19.8 mm, which started at about an hour earlier than the soil moisture response at the 

Ashland Bottoms station (Figure 3.9A). The resulting sum of hourly changes in soil water 

storage at the Ashland Bottoms stations was 20.5 mm, indicating that when stations have close 

neighbors, the nearest neighbor approach shows comparable precipitation amount and timing to 

the soil moisture approach. For the case of a station with far neighbors, during a 5-hour 

precipitation event of 33.3 mm at Woodson station on 17 April 2019 15:00 CST, the nearest 

neighbor station (i.e. Parsons station, about 70 km away) recorded precipitation of 11.2 mm 

(Figure 3.9B) and the timing of the precipitation event was delayed by 2 hours. Similarly, the 

precipitation event at the Ottawa 2SE station (89 km away, second nearest station) started an 

hour earlier while the precipitation at the Butler station (97 km away, third nearest station) 

started two hours earlier than the precipitation at the Woodson station (Figure 3.9B). The soil 

moisture sensors at the Woodson station responded immediately to the precipitation event and 

the resulting sum of hourly changes in soil water storage was 30 mm. In other words, none of the 

nearest stations, which are located ≥70 km from the Woodson station was able to accurately 

capture both the amount and timing of the precipitation event compared to the soil moisture-

based approach. Future studies should consider testing the performance of soil moisture-derived 

precipitation against more sophisticated spatial interpolation methods and gridded precipitation 

products from multi-sensors, radars, and remote sensing satellites. 
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Figure 3.9 Timing of precipitation events within the same storm for a station of the Kansas 

Mesonet with close nearest neighboring stations (A, Ashland Bottoms) and a station with distant 

nearest neighboring stations (B, Woodson). The figure highlights that changes in soil water 

storage may constitute a better alternative to estimate both the amount and timing of precipitation 

events in stations with distant nearest neighbors compared to using information from nearest 

neighboring stations. Times are reported in Central Standard Time (CST). 

 

Our approach could be particularly useful in hydrological and mesoscale environmental 

monitoring networks equipped with co-located pluviometers and soil moisture sensors. In North 

America, mesoscale networks that include soil moisture as a standard measurement have been 

expanding as a consequence of state and federal initiatives (Quiring et al., 2016). This includes 
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new statewide networks like the West Texas Mesonet (Schroeder et al., 2005), the Alabama 

Mesonet (Kimball et al., 2010), New York State Mesonet (Brotzge et al., 2020), the Kentucky 

Mesonet (Mahmood et al., 2019), the Manitoba Agriculture Mesonet (Ojo and Manaigre, 2021); 

and federal networks like the U.S. Climate Reference Network (Diamond et al. 2013), the Soil 

Climate Analysis Network (Schaefer et al. 2007), and the National Ecological Observatory 

Network (Keller et al., 2008) that monitor precipitation and soil moisture at most stations. 

Outside North America, there is also a growing number of in situ networks that monitor soil 

moisture like the Czech Hydrometeorological Institute Network (Mozny et al., 2013), the Wales 

Soil Moisture Network (Petropoulous and McCalmont, 2017), the COSMOS-UK network across 

the United Kingdom (Evans et al., 2016) and the CosmOz soil moisture monitoring network 

across Australia (Hawdon et al., 2014). As the number of mesoscale networks that include soil 

moisture observations increases, there is an increasing potential to use the proposed approach for 

both quality control and quality assurance of precipitation observations, and as a more general 

method to guide the reconstruction of precipitation from soil moisture observations. 

 Conclusions 

We investigated a simple approach for reconstructing precipitation events at hourly time 

steps based on the sum of hourly changes in rootzone soil water storage. The proposed method 

was tested using 30 stations of the Kansas Mesonet equipped with co-located pluviometers and 

an array of permanent soil moisture sensors distributed along the rootzone. The use of changes in 

soil water storage proved effective as a qualitative method for flagging precipitation events 

(accuracy = 82%) and as a quantitative method (MAE = 8.0 mm, RMSE = 14.1 mm) for 

reconstructing precipitation events >7.6 mm. At the individual stations, the soil moisture 

approach proved more accurate than the nearest neighbor approach at stations with the nearest 
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station distance >15 km. Our findings highlight a promising application of in situ soil moisture 

information as a practical and complementary method for operational quality control and quality 

assurance of precipitation and as a method to fill gaps in the historical precipitation record 

without the need for horizontal spatial assumptions in mesoscale networks. 
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 Abstract 

Soil water retention curves describe the relationship between soil water content and soil 

matric potential that is key to understanding soil water processes such as soil water storage, soil 

water availability, and soil water flow. Traditional laboratory methods for measuring water 

retention typically consist of suction table, pressure cells, and pressure plates. However, the 

advancement of technology has resulted in the commercial availability of newer methods based 

on precision mini-tensiometers and water potential meters. This study investigated the 

discrepancy between water retention curves (SWRC) measured solely based on traditional 

methods and SWRC measured solely based on modern methods using 24 soils samples that span 

five textural classes. The SWRC measured using both traditional and modern methods were 

similar in all the soils at matric potentials close to saturation (i.e. 0 – 10 kPa), which resulted in 

similar saturation and field capacity water contents. At the dry-end of the retention curve, the 

traditional method resulted in higher water contents than the modern method in the fine soils, 

which resulted on average 120% higher residual water content and 25% higher permanent 

wilting point water content in the clay and silty clay soils, whereas no discrepancy was observed 

in the sandy loam soils. The higher water contents for the traditional method in the fine soils 

resulted in 35% less plant available capacity in the clay and 47% less PAWC in the silty clay 

soils compared to the modern method. 
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 Introduction  

 The soil water retention curve describes the energy-state of soil water from saturation to 

oven-dryness conditions, thus providing key soil hydraulic information for agricultural and 

hydrological research on the state and fate of soil water. For instance, soil water retention curves 

are often used as model inputs for simulating evapotranspiration and water redistribution 

(Skaggs, 1978; Garg and Gupta, 2015; Feki et al., 2018), estimating potential groundwater 

recharge rates (Solone et al., 2012; Wyatt et al., 2017), and modeling solute transport in the 

vadose zone (Vogel et al., 2000; Gärdenäs et al., 2005). Soil water retention curves are typically 

determined empirically by equilibrating water in soil samples with a body of water at a known 

potential. A pair of measurements of volumetric water content and soil matric potential 

represents a point in the soil water retention curve. Because the energy state of soil water spans 

multiple orders of magnitude, different principles, and thus different methods and instruments, 

are often required to complete the measurements from soil saturation to oven-dryness conditions 

(Bittelli and Flury, 2009; Parker et al., 2021).  

Traditional laboratory methods for determining soil water retention curves usually include 

the use of suction tables (range from 0 to -100 kPa) (Stackman et al., 1969), pressure cells (range 

from 0 to -100 kPa), and pressure plate apparatus (range from -100 to -1,500 kPa) (Richards and 

Fireman, 1943; Richards, 1948, 1965). The suction table (also known as sand/kaolin box) 

enables accurate measurements of soil matric potential in the wet end of the retention curve, 

typically from 0 to -10 kPa (sandbox) or 0 to -100 kPa (kaolin box), and is often used together 

with the pressure plate apparatus (Romano and Santini, 2002; Solone et al., 2012). Pressure cells 

and pressure plate apparatus comprise a porous ceramic plate on which soil samples are placed in 

an enclosed pressure chamber. A known positive pressure from compressed air is applied on the 
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soil samples in the chamber to drain out water from the samples through the ceramic plate until 

equilibrium is reached (i.e. when water no longer flows out of the vessel), then the corresponding 

volumetric water content is determined using the thermogravimetric method.  

More modern methods for measuring soil water retention curves include the evaporation 

method that relies on mini-precision tensiometers and the chilled mirror method using a water 

potential meter (Campbell et al., 2007). A key advantage of the evaporation method is that it 

provides a more detailed and continuous water retention curve from 0 to -90 kPa (Schindler et 

al., 2010). The modern dewpoint method based on the water potential meter operates by 

measuring the relative humidity of the air around a soil sample in a sealed chamber using a 

chilling mirror technique and then converting the relative humidity to total water potential using 

the Kelvin equation (Campbell et al., 2007). The combination of the evaporation and dew point 

methods allows measurement of soil water retention from saturation to -300 MPa, which is a 

much wider range than the traditional methods. 

Although the modern methods provide a more detailed and wider range of water retention 

measurements, the traditional methods are still predominantly used partly due to legacy 

instrumentation in soil physics laboratories and the ability to process large batches of soil 

samples in a single run than the modern techniques. Some previous studies have shown that the 

pressure plate apparatus may be prone to substantial errors at low (i.e. a more negative) matric 

potentials (Richards and Ogata, 1961; Campbell, 1988; Bittelli and Flury, 2009; Solone et al., 

2012). For instance, a study comparing the matric potential of pressure plate-equilibrated silt 

loam soils at -1,500 kPa with that obtained using a dew point potential meter resulted in up to 

81% higher (less negative) matric potential values than the targeted -1,500 kPa (Bittelli and 

Flury, 2009). Similarly, another group of researchers investigating possible errors of pressure 
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plate apparatus for measuring water retention curves found that in fine-textured soils the pressure 

plate apparatus overestimated the volumetric water content by up to about 40% compared to 

values obtained using a dewpoint water potential meter (Solone et al., 2012). The associated 

errors with the pressure plate apparatus at low matric potentials are typically attributed to loss of 

hydraulic contact between soil and the ceramic plate due to soil shrinkage (Campbell, 1988), 

water reabsorption by soil after releasing the pressure on the plate (Richards and Ogata, 1961), 

and failure to reach equilibrium within a reasonable period of a few weeks to a few months due 

to the inherently low hydraulic conductivity of soils at low matric potentials (Campbell, 1988; 

Gee et al., 2002). Since pressure plate apparatus has been the most widely used method in the 

scientific literature, existing knowledge in the form of pedotransfer functions has been strongly 

influenced also based on soil samples analyzed using this approach (Arya and Paris, 1981; 

Schaap et al., 2001; Saxton and Rawls, 2006; Vereecken et al., 2010). Previous studies 

investigating the discrepancy between traditional and modern methods for measuring soil water 

retention have primarily focused on the dry-end of the retention curves (Cresswell et al., 2008; 

Bittelli and Flury, 2009; Solone et al., 2012; Gubiani et al., 2013). Therefore, there is a need to 

investigate the magnitude of the discrepancy between soil water retention curves determined 

using traditional and modern methods over the entire range from saturation to oven-dryness. 

There is also a need to better quantify the implications of using different retention curves on 

estimations of plant available water (Gubiani et al., 2013; Schelle et al., 2013; Rahardjo et al., 

2019).  The objective of this study was to quantify the magnitude of the differences in soil water 

retention curves determined using traditional methods and modern methods. Are these two 

approaches interchangeable for soil physics research? What are the implications of using either 

method? Throughout this study, the term “traditional methods” is reserved for the combination of 
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suction table, pressure cells, and pressure plates; while the term “modern methods” is reserved 

for the combination of the evaporation approach using precision mini-tensiometers and a dew 

point water potential meter. 

 Materials and methods 

 Soil sampling 

For this experiment, undisturbed soil samples from 5 different soil textural classes were 

collected from three fields with perennial grassland and cropland on 8 June 2020. At each 

location, we collected at least five undisturbed soil samples with a volume of 100 cm3 each (i.e. 

height of 5.1 cm and 5 cm i.d.) from the top 80 cm profile using a core sampler (model C, 

Eijkelkamp Agrisearch Equipment). Before the sampling process, we scraped the top 2-cm soil 

to remove any dense root system that could affect the sampling process. Soils samples were 

immediately covered with plastic lids to prevent water loss and then placed in a carrying case to 

avoid disturbance during transportation to the laboratory. Soil samples were stored in a 

refrigerator at 6 ºC until samples were analyzed. 

 Laboratory soil water retention measurements 

Soil saturation and Saturated hydraulic conductivity 

The soils were saturated in a 5 mM CaCl2 solution in a desiccator with ¾ of the height 

immersed in the solution. Before the saturation process, we secured the face of the sample ring to 

be placed in the CaCl2 solution with a cheesecloth and a rubber ring to prevent soil loss. We left 

the samples to saturate in the CaCl2 solution for at least 5 days. After the 5 days, samples that did 

not attain saturation were put under vacuum suction for at least 2 more days to facilitate the 

saturation. Saturated hydraulic conductivity (Ksat) of the soils was measured using the constant 
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head method (Reynolds and Elrick, 2002) in a close-path permeameter (Eijkelkamp Agrisearch 

Equipment). For the samples with very low permeability, we used the falling head method 

(Reynolds and Elrick, 2002). Both the constant head and falling head Ksat measurements were 

carried out following the procedure in the operational manual of the permeameter at a 

temperature of 21±2 ºC. 

Soil water retention curve 

Soil water retention curves were determined for the soil samples using traditional and 

modern laboratory methods. The traditional method combined suction table (model 08.01, 

Eijkelkamp Agrisearch Equipment), pressure cells (Tempe cells, Soil Moisture Equipment 

Corp.), and pressure plate (model 1500F2, Soil Moisture Equipment Corp). The modern method 

combined the evaporation method based on mini-tensiometers (Hyprop II, Meter Group, Inc.) 

and dewpoint water potential meter (WP4C, Meter Group, Inc.). To minimize the effect of 

sample variability on the experiment and allow a fair comparison of the methods, the same 

samples were passed through both the traditional and modern water retention measurements. 

This is a distinct feature of our experiment that has not been implemented in previous studies 

comparing traditional and modern methods. 

We measured the water retention by first equilibrating the undisturbed soil samples at 

tensions of -0.1, -2, and -5 kPa using the suction table and then equilibrated the samples at 

tensions of -10, -33, and -70 kPa using pressure cells. The measurements in both the suction 

table and pressure cells were conducted following the procedures in Dane and Hopmans (2002). 

In both the suction table and the pressure cell measurements, we established hydraulic 

equilibrium after two consecutive days with <0.2% change in the soil mass. In addition, a check 

soil sample was included with the suction table measurements to verify the consistency of the 
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method. After the water retention measurement at -70 kPa in the pressure cell, the undisturbed 

samples were re-saturated in a 5 mM CaCl2 solution for at least 2 days and then again measured 

the saturated soil mass before starting the measurements using the evaporation method. The 

evaporation-based water retention measurements were done at pressures ranging from 0 to ~ -80 

kPa following the instructions in the Hyprop user manual. We deemed the evaporation 

measurements completed immediately after the air-entry potential of one mini-tensiometer cup is 

reached (Kirste et al., 2019). We then measured the equilibrium mass of the soil samples and 

then proceeded with the dewpoint water potential meter experiment. 

After dismounting the soil samples from the evaporation experiment, ten subsamples of 

10 g were collected along the hydraulic gradient of each soil sample and placed in stainless steel 

cups to measure the water potential using a dewpoint water potential meter. Before using the 

water potential meter, we first calibrated the instrument using a manufacturer-certified KCl 

solution of 0.5 mol Kg-1 concentration (Meter Group, Inc.). After reaching equilibrium in the 

water potential meter we recorded the water potential and then the samples were oven-dried at 

105oC for 48 hours to determine the gravimetric water content. The volumetric water content at 

the point of equilibrium with the water potential meter was estimated using the bulk density of 

the soil. To ensure the best results, all measurements with the water potential meter were done in 

“precise mode” following the user instructions in the user’s manual. After the dewpoint 

experiment, the soils were manually ground using pestle and mortar (model 60325, CoorsTek 

Inc.), passed through a 2 mm sieve (ASTM E-11, Humboldt Manufacturing Co.), and then stored 

in small paper envelopes inside a plastic container at room temperature.  

Since for soil samples the water potential is the additive result of soil matric and osmotic 

potential, knowledge of the osmotic potential is required to infer the soil matric potential. Thus, 
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we also determined the osmotic potential of each sample based on the bulk electrical 

conductivity of the saturated paste extract. The saturated paste extract was prepared by mixing 5 

±0.01 g of ground and sieved soil with 5 ±0.01 g of deionized water in a 10-ml tube (i.e. 1:1 soil 

to water ratio by mass), The mixture was then agitated on a linear mechanical shaker for 3 hours, 

and then the mixture was separated by centrifuging the mixture at 2500 rpm for one hour (model, 

FS3500, Cole Parmer, Inc.). We then extracted the clear solution into a 10-ml PYREX Griffin 

beaker and measured the electrical conductivity of the solution using an EC meter (model 

PC100, Cole Parmer, Inc.). The electrical conductivity reading (EC in dS m-1) approximates the 

osmotic potential of the saturated paste extract (ѱos in kPa ) by the equation (Campbell and Gee, 

1986): 

ѱ𝑂𝑆 = −36 𝐸𝐶                   [1] 

ѱos is then converted to the osmotic potential of the soil (ѱo) using equation 2, which is given by: 

ѱ𝑜 = ѱ𝑜𝑠 (𝜃𝑠 𝜃⁄ )                [2] 

Where was θs is the saturation water content of the soil and θs is measured volumetric water 

content of the soil sample. The osmotic potential of the soil samples was then subtracted from 

the values of soil water potential to obtain the matric potential of the soil.  

The final step was to determine the soil water content at -500, -1000, and -1500 kPa using 

the pressure plate apparatus (model 1500F2, Soil Moisture Equipment Corp.). We performed 

each of the pressure plate measurements using approximately 15 g of the sieved soil contained 

within a ring of 5 cm in diameter and 1 cm height following the procedure in Dane and Hopmans 

(2002). Three replicates per soil sample were run for the pressure plate experiment. After setting 

the ceramic plates in the pressure chamber, we covered the entire samples in the pressure plate 

with moist paper towels to prevent the compressed air from drying the soils during equilibration 
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in the pressure plate. The samples remained in the pressure plate for at least 15 days or until 5 

consecutive days with no measurable water outflow from the vessel. A check soil was added to 

each pressure plate. At end of the measurements, the soil samples were oven-dried at 105oC for 

48 hours to determine the gravimetric water content of the samples. For the samples equilibrated 

in the pressure plate at -1,500 kPa, we also verified the matric potential in the water potential 

meter to determine the deviation from the targeted -1500 kPa matric potential. 

For each soil sample, we fitted the van Genuchten soil water retention model van Genuchten 

(1980) using ordinary least-squares in Matlab R2020b (Mathworks, Natick, MA). The van 

Genuchten model is given as: 

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
= [1 + (−𝛼ψ𝑚)𝑛]−𝑚                            [3] 

where θ (cm3 cm-3) is volumetric water content, θs (cm3 cm-3) is saturated water content, θr (cm3 

cm-3) is residual water content, ψm (kPa) is matric potential, α (kPa-1) is a fitted parameter 

relating to the inverse of air-entry pressure, n (dimensionless) is a measure of pore size 

distribution, and m = 1–1/n (Schaap et al., 2001). 

2.2.3 Particle size analysis 

The fraction of sand, silt, and clay content of all the 24 samples was determined using the 

hydrometer method (Gavlak et al., 2005). The analysis was performed using 40 ±0.05 g of oven-

dry and ground soil that passed through a 2 mm sieve. Soil samples were mixed with 100 ml of a 

0.08 M of sodium hexametaphosphate as the dispersing agent. Then, samples were agitated using 

a linear shaker for 16 hours. The next morning, samples were transferred to 1-liter cylinders and 

the remaining volume of the cylinder was topped with de-ionized water at room temperature. 

Samples were manually agitated using a perforated plunger and the suspension density was 
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measured at the 40 s mark using a Buoyoucos hydrometer (ASTM 152-H, Humboldt 

Manufacturing Co.). This first reading of the suspension density was repeated twice. A second 

reading of the suspension density was carried at around seven hours from the end of the agitation 

based on the laboratory temperature (~ 22 oC). We also measured the gravimetric water content 

of the samples using 15 g of soil from each sample to account for any trace of soil moisture in 

the samples. As with previous procedures, one soil sample of known particle sizes was added to 

every batch of particle size analysis. 

 Results and Discussion 

 General soil physical properties 

The 24 soil samples in our dataset spanned five textural classes, which comprise clay 

loam, silty clay loam, silty clay, clay, and sandy loam soils. The highest sand content was 61%, 

which was recorded in the sandy loam soils of samples 22ABR and 23ABR, whereas the lowest 

sand fraction of 11% was recorded in the silty clay loam soils of 10AB and 11AB (Table 4.1). 

On the other hand, the highest percent clay of 44% was recorded in the clay soil of sample 09W, 

whereas the lowest clay content of 5% was recorded in the sandy loam soils (samples 15R - 19R; 

20ABR -21ABR). The organic matter of our soils varied from 0.9 to 2.8% with higher organic 

matter content overall in the fine-textured soils. Bulk density of the soils varied from 1.34 g cm-3 

in 23ABR to 1.73 g cm-3 in 08W (Table 4.1). Opposite to the bulk density, porosity varied from 

0.35 cm3 cm-3 in 08W to 0.50 in 23ABR cm3 cm-3. Interestingly, the clay and silty clay soils 

(samples 07W to 08W) had the highest values for bulk density and the lowest porosity values in 

our soils, which was likely due to compaction by the weight of the overlying soil layers due to 

the deeper depths (54 – 82 cm) from which the clay and silty clay samples were collected. 
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Indeed, in comparison to the textural class bulk density threshold for root-restricting conditions 

of the USDA (USDA-NRCS, 1996), the bulk density values of the clay, and silty clay soils 

suggest the existence of root-restricting conditions. The saturated hydraulic conductivity of the 

samples spanned three orders of magnitude, varying from 0.22 in the clay loam soil of sample 

02W to 180.54 cm d-1 in sample 23ABR sandy loam. As expected, the sandy loam soils had 

higher saturated hydraulic conductivity than the fine-textured soils due to the inherently higher 

macroporosity of sandy soils than fine soils (Campbell and Norman, 1998). 

Table 4.1 Sample location and measured textural class, percent sand, percent clay, percent silt, 

organic matter (OM), bulk density (ρb), total porosity (Ø), saturated hydraulic conductivity (Ks), 

osmotic potential (ѱos), and verified matric potential of samples equilibrated at -1500 kPa in the 

dewpoint water potential meter (ѱverify). Abbreviated textural classes are clay loam (C L), silty 

clay loam (Si C L), silty clay (Si C), clay (C), and sandy loam (S L). 

Sample 

code 

Soil depth Texture Sand Clay Silt OM ρb Ø Ks ѱos ѱverify 

   cm  ————— % ————  g cm-3 cm3 cm-3 cm d-1 — kPa— 

01W 3 – 8 C L 31 33 36 2.6 1.49 0.44 0.57 -25.6 -824 

02W 2 – 7 C L 29 33 38 2.7 1.50 0.43 0.22 -26.6 -713 

03W 3 – 8 C L 31 32 37 2.5 1.41 0.47 0.28 -25.3 -915 

04W 2 – 7 C L 31 32 37 2.7 1.41 0.47 0.26 -25.5 -815 

05W 2 – 7 C L 29 33 38 2.5 1.43 0.46 1.58 -24.3 -966 

06W 63 – 68 Si C L 18 40 42 1.2 1.46 0.45 5.57 -21.5 -379 

07W 54 – 59 Si C 19 41 40 1.0 1.66 0.37 0.31 -19.3 -291 

08W 69 – 74 Si C 18 41 41 0.9 1.73 0.35 0.29 -20.1 -390 

09W 77 – 82 C 17 44 39 0.9 1.64 0.38 0.43 -19.5 -381 

10AB 3 – 8 Si C L 11 36 53 2.7 1.50 0.43 3.09 -34.3 -376 

11AB 3 – 8 Si C L 11 34 55 2.8 1.55 0.42 0.41 -30.3 -490 

12AB 3 – 8 Si C L 13 33 54 2.7 1.53 0.42 0.64 -30.3 -540 

13AB 2 – 7 Si C L 13 32 55 2.7 1.55 0.42 3.89 -31.3 -529 

14AB 2 – 7 Si C L 13 34 53 2.6 1.49 0.44 28.0 -34.2 -546 

15R 3 – 8 S L 52 5 43 1.6 1.52 0.43 14.9 -16.4 -1584 

16R 4 – 9 S L 50 5 45 1.4 1.55 0.41 22.9 -13.1 -1777 

17R 3 – 8 S L 49 5 46 1.4 1.54 0.42 8.79 -20.4 -1920 

18R 3 – 8 S L 52 5 43 1.3 1.55 0.41 10.7 -13.3 -1747 

19R 3 – 8 S L 50 5 45 1.4 1.55 0.42 7.13 -15.1 -1975 

20ABR 3 – 8 S L 60 5 35 0.9 1.54 0.42 23.3 -10.1 -800 

21ABR 4 – 9 S L 60 5 35 1.1 1.52 0.43 64.7 -11.0 -779 

22ABR 5 – 10 S L 61 6 33 0.9 1.47 0.45 57.6 -9.43 -721 

23ABR 4 – 9 S L 61 6 33 1.0 1.34 0.50 181 -9.29 -831 

24ABR 4 – 9 S L 59 6 35 1.0 1.58 0.40 22.2 -9.97 -920 

Numbers in the sample code represent the ring number and letters in the sample code represent the name 

of the sampling location. W is Washington, AB is Ashland Bottoms, and ABR is Ashland Bottoms River.  
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Osmotic potential and verified matric potential of pressure plate-equilibrated 

samples at -1500 kPa 

The osmotic potential of our soils by saturated paste extract that was measured using an 

electrical conductivity meter varied from -9.3 kPa to -34.3 kPa in silty clay loam (Table 4.1), 

which are similar to the osmotic potential of soils in previous studies determined by saturated 

paste extract using dew point potential meter (Bittelli and Flury, 2009; Solone et al., 2012). In 

comparison with the accuracy of the dew point potential meter, all our osmotic potential values 

fell within the error margin of the water potential meter (±50 kPa error at 0 to -5000 kPa) and 

thus, confirms the assumption of negligible osmotic potential used in the previous studies that 

measured close to zero osmotic potential using the water potential meter (Bittelli and Flury, 

2009; Solone et al., 2012; Schelle et al., 2013). However, we did not assume the negligible 

osmotic potential for our soils in this study. 

Several studies have reported a lack of soil equilibration in water retention measured at -

1500 kPa using the pressure plate (Campbell and Gee, 1986; Gee et al., 2002; Cresswell et al., 

2008; Bittelli and Flury, 2009; Parker and Patrignani, 2021), so we also verified using the water 

potential meter the matric potential of the soils samples that were equilibrated at -1500 kPa using 

pressure plate. The verified matric potentials of 19 out of the 24 samples analyzed using the 

water potential meter resulted in matric potential values higher (less negative) than the -1500 kPa 

applied to the pressure plate with matric potentials > -1000 kPa (Table 4.1). These 19 soils that 

were wetter than the targeted -1500 kPa comprise all the fine-textured soils and 5 sandy loam 

soils of samples 20AB to 24AB, which is consistent with the observations in the previous studies 

that samples equilibrated in the pressure plate at -1500 kPa do not reach the targeted matric 

potential at equilibrium, especially in fine-textured soils (Campbell and Gee, 1986; Gee et al., 
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2002; Cresswell et al., 2008; Bittelli and Flury, 2009; van Lier et al., 2019; Parker and 

Patrignani, 2021). On the other hand, the verified matric potentials for the remaining 5 out of the 

24 samples, which are all sandy loam soils of samples 15R to 19R, resulted in lower (i.e. more 

negative) matric potential than the targeted -1500 kPa with values ranging from -1584 to -1975 

kPa (Table 4.1), suggesting that the period of two weeks for equilibration time may be slightly 

too long, causing the soils to dry by the compressed air. It is worth mentioning that while it was 

also possible for the compressed air in the pressure plate to have dried the sandy soil samples, we 

did not observe during our experiment that the compressed air was responsible for the lower 

matric potential in the five sandy soils since the moist paper towels used to cover the samples 

during the pressure plate experiment still appeared moist after opening the pressure plate upon 

equilibration. 
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 Traditional versus modern techniques 

 

Figure 4.1 Representative of measured (symbols) and fitted (lines) soil water retention curves 

determined using the combination of suction table, pressure cell, and pressure plate (traditional) 

and a combination of mini-tensiometers and dewpoint potential meter (modern) laboratory 

techniques in A) 10AB silty clay loam, B) 07W silty clay, C) 09W clay, D) 01W clay loam, and 

E) 15R sandy loam. Triangular symbols and solid lines represent the traditional techniques, 

while circles and dotted lines represent the modern techniques. 
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Five representative water retention curves for the soils measured by combining suction 

table, pressure cells, and pressure plate (traditional methods) and by combining mini-

tensiometers and water potential meter (modern methods) are shown in Figure 4.1. Both water 

retention curves measured using modern and traditional laboratory techniques resulted in similar 

water contents in all the soils at matric potentials close to saturation (from 0 to ~ -10 kPa). The 

modern method resulted in marginally higher water content than the traditional method in the 

silty clay loam soil at near saturation with a difference of 0.05 cm3 cm-3, which might be because 

the silty clay loam soil did not reach full saturation at the beginning of the traditional water 

retention experiment. The similarity between the water retention measurements at matric 

potentials near saturation indicates a good agreement between the suction table and pressure cells 

and the mini-tensiometer techniques in measuring soil water retention at matric potentials > -10 

kPa. At matric potentials between -10 kPa and -500 kPa, there were marked differences between 

the retention curves for the two methods with the traditional method having higher water 

contents than the modern method in all the soils. The largest discrepancy was recorded in the 

clay and silty clay soils, whereas sandy loam and silty clay loam soils resulted in the least 

discrepancy, which is consistent with observations made in soils of the same texture in previous 

studies that compared the pressure plate to the point potential meter (Solone et al., 2012) and 

inverse parameter estimation from evaporation experiment (van Lier et al., 2019). Interestingly, 

despite the pressure plate-equilibrated soils having greater (less negative) matric potential than 

the targeted -1500 kPa when verified with the water potential meter, the water retention curves 

for both traditional and modern methods converged at matric potentials from -500 to -1500 kPa 

in the sandy loam, silty clay loam, and clay loam soils. The convergence of both curves from -

500 and -1500 kPa implies that discrepancy between the verified matric potential and the 
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targeted matric potential of -1500 kPa in the pressure plate might not necessarily translate into a 

large discrepancy in water content at -1500 kPa as was also reported in the study by Cresswell et 

al. (2008). 

 Soil hydraulic parameters 

Table 4.2 Fitted hydraulic parameters of the van Genuchten (1980) model derived from the 

water retention measurements for the soil samples using traditional (suction table, pressure cell, 

and pressure plate) and modern (mini-tensiometers and dew point potential meter) laboratory 

techniques. θs, is saturation water content, θr is residual water content, and α relates to the inverse 

of air-entry pressure, and n is a measure of pore size distribution. θs, and θr, are also results from 

the fitting exercise. Abbreviated textural classes are clay loam (C L), silty clay loam (Si C L), 

silty clay (Si C), clay (C), and sandy loam (S L). 

   Traditional techniques  Modern techniques 

Sample code Soil depth Texture θs θr α n    θs   θr   α n 

  cm   —cm3 cm-3—   kPa-1 —  —cm3 cm-3— kPa-1 — 

01W 3 – 8 C L 0.44 0.18 0.02 1.64  0.43 0.05 0.19 1.14 

02W 2 – 7 C L 0.44 0.20 0.02 2.02  0.42 0.01 0.29 1.12 

03W 3 – 8 C L 0.45 0.01 0.07 1.20  0.43 0.01 0.34 1.14 

04W 2 – 7 C L 0.46 0.01 0.11 1.18  0.44 0.01 0.32 1.14 

05W 2 – 7 C L 0.47 0.01 0.10 1.18  0.45 0.01 0.34 1.13 

06W 63 – 68 Si C L 0.60 0.25 0.01 2.26  0.59 0.02 0.05 1.27 

07W 54 – 59 Si C 0.40 0.25 0.01 1.45  0.42 0.01 0.52 1.07 

08W 69 – 74 Si C 0.38 0.25 0.01 1.34  0.42 0.22 0.07 1.71 

09W 77 – 82 C 0.44 0.19 0.15 1.16  0.46 0.23 0.09 1.66 

10AB 3 – 8 Si C L 0.41 0.13 0.03 1.31  0.46 0.01 0.39 1.13 

11AB 3 – 8 Si C L 0.39 0.22 0.02 1.85  0.45 0.01 0.24 1.15 

12AB 3 – 8 Si C L 0.37 0.19 0.03 1.43  0.42 0.01 0.29 1.13 

13AB 2 – 7 Si C L 0.39 0.19 0.02 1.58  0.43 0.01 0.21 1.14 

14AB 2 – 7 Si C L 0.43 0.21 0.01 2.09  0.48 0.01 0.11 1.19 

15R 3 – 8 S L 0.37 0.01 0.10 1.43  0.37 0.06 0.08 2.11 

16R 4 – 9 S L 0.36 0.01 0.05 1.47  0.37 0.05 0.07 2.08 

17R 3 – 8 S L 0.38 0.01 0.05 1.51  0.40 0.06 0.08 2.16 

18R 3 – 8 S L 0.38 0.01 0.07 1.46  0.38 0.05 0.08 2.11 

19R 3 – 8 S L 0.38 0.01 0.04 1.53  0.40 0.06 0.08 2.08 

20ABR 3 – 8 S L 0.40 0.03 0.17 1.46  0.35 0.06 0.10 2.27 

21ABR 4 – 9 S L 0.34 0.06 0.15 3.25  0.28 0.04 0.13 2.62 

22ABR 5 – 10 S L 0.42 0.04 0.18 1.72  0.36 0.05 0.13 2.03 

23ABR 4 – 9 S L 0.45 0.01 0.27 1.37  0.39 0.05 0.13 1.91 

24ABR 4 – 9 S L 0.33 0.06 0.15 2.31  0.27 0.03 0.11 2.96 

Numbers in the sample code represent the ring number and letters in the sample code represent the name 

of the sampling location. W is Washington, AB is Ashland Bottoms, and ABR is Ashland Bottoms River.  
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The fitted soil hydraulic parameters of the van Genuchten (1980) model derived from 

water retention curves developed using traditional and modern laboratory techniques are 

presented in Table 4.2. The resulting saturated water content (θs) from the soil water retention 

curves were similar in all the soils with average θs of 0.41 cm3 cm-3 for both the traditional and 

modern techniques, which agrees with the water retention curves presented in Figure 4.1. Unlike 

θs, the residual water content (θr) showed significant differences between both methods at 5% 

significance level with an average θr of 0.11 cm3 cm-3 for the traditional method and 0.05 cm3 

cm-3 for the modern method, which implies 120% more θr on average for the traditional method 

than the modern method (Table 4.2). The largest discrepancy in θr between both methods was 

observed in the fine-textured soils with silty clay loam recording the highest mean difference of 

0.19 cm3 cm-3, whereas the sandy loam soils recorded similar values of θr between both methods. 

The significantly higher θr for the traditional method than the modern method, especially in the 

fine-textured soils, is consistent with the results in previous studies (Bittelli and Flury, 2009; 

Solone et al., 2012; van Lier et al., 2019). The α parameter, which is the inverse of air-entry 

potential was significantly lower in the retention curves for the traditional method with an 

average α of 0.08 kPa-1 than for the modern method with an average α of 0.19 kPa-1, which 

implies 58% less α for the traditional method compared to the modern method (Table 4.2). 

Similar to θr, the discrepancy in α between the methods was more pronounced in the fine soils 

than the sandy loam soils. Our result for α is contrary to the results of previous studies (Bittelli 

and Flury, 2009; Solone et al., 2012), which could be due to differences in the type of instrument 

used for the water retention measurements at the wet-end, since both studies by Bittelli and Flury 

(2009) and Solone et al. (2012) solely combined suction table and pressure plate (i.e. traditional 

method) for their wet-end water retention measurements, whereas we used mini-tensiometers in 
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this study. The water retention curves also showed marked differences in parameter n, which 

describe the slope of the water retention curve, between the traditional and modern methods in 

some of our soils. The traditional method resulted in a steeper slope (i.e. higher n values) than 

the modern method in the silty clay loam soils with a mean difference of 0.59. On the contrary, 

the modern method resulted in steeper slopes than the traditional method in the sandy loam 

(mean difference in n = 0.48) and clay soils (mean difference in n = 0.5) (Table 4.2). 

Plant available water capacity 

Overall, the water retention measurements from the traditional and modern techniques 

resulted in similar θ-10 in all the 24 soils analyzed with a mean difference of 0.01 cm3 cm-3 (Table 

4.3). The traditional method resulted in a marginally higher θ-10 in the clay loam soils (samples 

01W to 05W) with an average θ-10 of 0.04 cm3 cm-3, but the difference was not significant at 5% 

significance level. The similarity in θ-10 between both methods in all the soils was expected since 

the water retention curves for both methods were similar at matric potentials from 0 to -10 kPa as 

discussed in the traditional vs. modern techniques section. The observed similarity in θ-10 

between the suction table and evaporation method in our soils agrees with the result of Schelle et 

al. (2013). Unlike θ-10, the traditional method resulted in significantly higher θ-1500 than the 

modern method in fine-textured soils. The highest discrepancy of 0.06 cm3 cm-3 occurred in the 

clay soil (sample 09W), followed by the silty clay soils with an average of 0.055 cm3 cm-3, and 

the silty clay loam soil with 0.032 cm3 cm-3 (Table 4.3). The result suggests that measuring θ-1500 

using the pressure plate could result in up to 25% higher water content compared to using the 

water potential meter in fine-textured soil. On the other hand, a similar θ-1500 was observed 

between both methods in all the sandy loam and clay loam soils. Our result for θ-1500 is consistent 

with the reports in previous studies that using the pressure plate leads to higher water contents at 
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matric potentials close to -1500 kPa in fine-textured soils, but with a minimal impact in coarse 

soils (Bittelli and Flury, 2009; Solone et al., 2012; Schelle et al., 2013; van Lier et al., 2019). The 

previous studies attributed the higher water contents of pressure plate-equilibrated samples at 

potentials ≤-1,500 kPa to loss of hydraulic contact between soil samples and the ceramic plate 

due to soil shrinkage (Campbell, 1988), water reabsorption by soil after releasing the pressure in 

the pressure plate (Richards and Ogata, 1961), and lack of equilibration due to the extremely low 

hydraulic conductivity of soils at the dry end of the retention curve (Campbell, 1988; Gee et al., 

2002). During our pressure plate experiments, a slight push of the soil samples upon reaching 

equilibrium to check for loss of hydraulic contact showed that the soils were firmly seated on the 

ceramic plates, indicating no loss of hydraulic contact occurred in our experiment. Thus, the 

higher water contents of our fine soils in the pressure plate at -1,500 kPa was likely due to water 

reabsorption from the ceramic plates after releasing the pressure and (or) lack of equilibration of 

the soils at matric potentials ≤ -1500 kPa, as evidenced by the higher matric potential of the 

pressure plate samples when verified with the dew point potential meter (as shown in Table 4.1). 

The estimated plant available water capacity (PAWC) using θ-10 and θ-1500 that were measured 

using the traditional and modern methods was similar in almost all the soils, except in the clay 

soil of sample 09W and the silty clay soil of sample 08W, in which the traditional method 

resulted in 0.06 cm3 cm-3 (i.e. 35%) less PAWC for sample 09W and 0.08 cm3 cm-3 (i.e. 47%) 

less PAWC for sample 08W compared to the modern method (Table 4.3). The similarity in 

PAWC in most of our soils suggests that the marginal differences in θ-10, despite not being 

statistically significant at a 5% significant level using analysis of variance, were adequate to 

reduce the effects of the discrepancy in θ-1500 between both the traditional and modern methods 

on PAWC. On the other hand, the lower estimated PAWC resulting from the traditional method 
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than the PAWC from the modern method in the clay and the silty clay soils is consistent with the 

result of the previous study in which the higher θ-1500 in the pressure plate resulted in lower 

PAWC than the modern method in fine soils (Bittelli and Flury, 2009). 

Table 4.3 Water contents at field capacity (θ-10), permanent wilting point (θ-1500), and plant 

available water capacity (PAWC), and difference in plant available water capacity (∆PAWC) 

estimated from the water retention measurements for the soil samples using traditional (suction 

table, pressure cells, and pressure plate) and modern (mini-tensiometers and dew point potential 

meter) laboratory techniques. θs, is saturation water content, θr is residual water content, and α 

relates to the inverse of air-entry pressure, and n is a measure of pore size distribution. θs, and θr, 

are also results from the fitting exercise. Abbreviated textural classes are clay loam (C L), silty 

clay loam (Si C L), silty clay (Si C), clay (C), and sandy loam (S L). 

   Traditional techniques  Modern techniques  

Sample code Soil 

depth 

Texture θ-10 θ-1500 PAWC  θ-10 θ-1500 PAWC ∆PAWC 

 cm    —— cm3 cm-3 ——  — cm3 cm-3 —  

01W 3 – 8 C L 0.42 0.23 0.19  0.38 0.22 0.16  0.03 

02W 2 – 7 C L 0.42 0.22 0.20  0.36 0.21 0.15  0.05 

03W 3 – 8 C L 0.40 0.20 0.20  0.35 0.19 0.16  0.04 

04W 2 – 7 C L 0.40 0.21 0.19  0.37 0.19 0.18  0.01 

05W 2 – 7 C L 0.41 0.22 0.19  0.38 0.21 0.17  0.02 

06W 63 – 68 Si C L 0.57 0.26 0.31  0.55 0.20 0.35 -0.04 

07W 54 – 59 Si C 0.40 0.30  0.10  0.37 0.26 0.11 -0.01 

08W 69 – 74 Si C 0.38 0.29  0.09  0.39 0.22 0.17 -0.08 

09W 77 – 82 C 0.41 0.30  0.11  0.41 0.24 0.17 -0.06 

10AB 3 – 8 Si C L 0.38 0.22 0.16  0.38 0.21 0.17 -0.01 

11AB 3 – 8 Si C L 0.38 0.23  0.15  0.38 0.19 0.19 -0.04 

12AB 3 – 8 Si C L 0.35 0.22 0.13  0.35 0.19 0.16 -0.03 

13AB 2 – 7 Si C L 0.37 0.22 0.15  0.37 0.20 0.17 -0.02 

14AB 2 – 7 Si C L 0.42 0.22 0.20  0.43 0.19 0.24 -0.04 

15R 3 – 8 S L 0.29 0.06 0.23  0.30 0.06 0.24 -0.01 

16R 4 – 9 S L 0.30 0.06 0.24  0.30 0.05 0.25 -0.01 

17R 3 – 8 S L 0.33 0.06 0.27  0.33 0.06 0.27  0.00 

18R 3 – 8 S L 0.30 0.06 0.24  0.30 0.05 0.25 -0.01 

19R 3 – 8 S L 0.31 0.06 0.25  0.33 0.06 0.27 -0.02 

20ABR 3 – 8 S L 0.25 0.05 0.20  0.26 0.06 0.20 0.00 

21ABR 4 – 9 S L 0.14 0.05 0.09  0.16 0.04 0.12 -0.03 

22ABR 5 – 10 S L 0.24 0.05 0.19  0.24 0.05 0.19  0.00 

23ABR 4 – 9 S L 0.27 0.04 0.23  0.26 0.05 0.21  0.02 

24ABR 4 – 9 S L 0.16 0.04 0.12  0.16 0.03 0.13 -0.01 

Numbers in the sample code represent the ring number and letters in the sample code represent the name 

of the sampling location. W is Washington, AB is Ashland Bottoms, and ABR is Ashland Bottoms River.  
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 Conclusions 

In this study, we investigated the discrepancies between soil water retention 

measurements in laboratory conditions using traditional and modern methods. The traditional 

method consisted of a combination of suction table, pressure cells, and pressure plate, while the 

modern methods consisted of the combination of mini-tensiometers and a water potential meter. 

Overall, traditional and modern methods performed similarly at the wet end of the soil water 

retention curve (mean difference = 0.004 cm3 cm-3) and at the dry end in sandy loam soils (mean 

difference = 0.021 cm3 cm-3). However, the traditional pressure plate extractor overestimated the 

soil water content of the fine-textured soils, except in clay loam soil, at the dry-end of the 

retention curve compared to the modern water potential meter. This discrepancy in fine-textured 

soils, translated in up to 120% higher residual water content and 25% higher water content at 

permanent wilting point than the modern method. In turn, the traditional method could result in 

up to 47% lower plant available capacity estimates than the modern method in fine soils. In 

agreement with prior studies, our findings suggest that the choice of a laboratory water retention 

measurement technique has important effects on the dry-end of the retention curve in fine-

textured soils, whereas coarse-textured soils seem to be unaffected by the choice of water 

retention measurement method. Future studies should investigate the concomitant effects of the 

fitted soil hydraulic parameters derived from the water retention curve using different methods 

on the water flow simulations in hydrological models. 
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Chapter 5 - General Conclusions 

The Kansas Mesonet is an automated network of about 62 environmental monitoring 

stations spread across the State of Kansas to monitor real-time essential weather and soil 

variables in the region. While the weather data are often used for agricultural outreach programs 

and research activities, lack of information on the physical properties of the soils at each mesonet 

station has limited the usefulness of the soil moisture and soil temperature data in advancing the 

understanding of soil water and soil thermal processes at the mesoscale level. Thus, developing a 

soil physical property database for the Kansas Mesonet is of great importance in promoting the 

usefulness of the soil moisture and soil temperature observations. In this dissertation, we tackled 

three central challenges to improve mesoscale soil moisture monitoring using the Kansas 

Mesonet: i) we developed a new database of soil physical property for each station of the Kansas 

Mesonet that monitors soil moisture, ii) reconstructed precipitation events using changes in 

rootzone soil water storage for precipitation quality control and quality assurance in mesoscale 

networks, and ii) investigated the compatibility between soil water retention curves measured 

using old laboratory methods based on suction table, pressure cells, and pressure plate and water 

retention curves measured using newer methods based on mini-tensiometers and dewpoint water 

potential meter. 

In the first study, we developed a site and sensor depth-specific soil physical property 

database for 40 out of the 62 stations monitoring root-zone soil moisture in the Kansas Mesonet. 

The resulting database comprises 14 depth-specific soil hydraulic properties and three soil 

thermal properties for all the 40 stations studied. Our soil database captured eight out of the 12 

soil textural classes, which were mainly fine soils that occupied 93% of the 320 samples 

analyzed. Silty clay loam, silt loam, and silty clay soils were the most represented fine soils in 
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our database. Sandy loam and sandy clay loam were the least represented soils and also the only 

coarse-textured soils in our database. The average range of soil bulk density of our database was 

from 1.33 g cm-3 to 1.67 1.33 g cm-3. The median saturated hydraulic conductivity for our soil 

textural classes varied from 0.52 to 47.1 cm d-1, while the average range of plant available water 

capacity was from 0.13 cm3 cm-3 in clay to 0.25 cm3 cm-3 in silt loam. Our soil physical property 

database enabled us to discover improved calibration models for the Kansas Mesonet soil 

moisture sensors, which reduced the uncertainty in the soil moisture observations by 29% after 

using calibration models that incorporate both electrical conductivity and dielectric permittivity. 

These new models will improve estimates of root zone soil water storage that can be used to 

better assess the inventory of soil water across the state of Kansas. This database has great 

potential to expand the usage of the Kansas Mesonet soil moisture and temperature observations 

for diverse applications at the mesoscale level, including drought monitoring, groundwater 

recharge estimations, and urban planning. 

The second study proposed a new approach for reconstructing hourly precipitation events 

in mesoscale stations using co-located changes in rootzone soil water storage. Precipitation was 

calculated as the sum of the hourly change in soil water storage and the approach was validated 

using 2497 precipitation events across 30 stations of the Kansas Mesonet equipped with co-

located rain gauges and soil moisture sensors. The use of changes in soil water storage proved 

effective as a qualitative method for flagging precipitation events with an accuracy of 82% and 

as a quantitative method with an MAE of 8.0 mm for reconstructing precipitation events >7.6 

mm. On a station-by-station basis, the soil moisture approach resulted more accurate than the 

nearest neighbor interpolation method at stations with >10 km distance from their closest 

surrounding station. Our results offer a great opportunity to use the concurrent changes in soil 
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moisture during precipitation events as an alternative approach for operational quality control 

and quality assurance of precipitation events in mesoscale networks. 

The third study investigated whether traditional and modern methods are interchangeable 

for measuring soil water retention curves in laboratory conditions. The traditional method 

consists of a suction table, pressure cells, and pressure plate, whereas the modern method 

consists of mini-tensiometers and water potential meter. The study revealed that overall, the 

traditional suction table and pressure cells, and the modern mini-tensiometer produce similar 

results at the wet end of the retention curve. The traditional pressure plate and modern water 

potential meter method also produce similar results at the dry-end of the water retention curve in 

sandy loam soils. In fine-textured soils, however, the traditional pressure place could result in up 

to 120% higher residual water content and 25% higher water content at permanent wilting point 

than the modern method, which in effect could result in up to 47% less plant available water 

capacity using the traditional method. Overall, the findings from our study indicate that the 

choice of water retention measurement technique, regardless of whether it is a modern or 

traditional method, could have pronounced impacts at the dry-end of the retention curve in 

clayey soils, but does not affect sandy soils.  
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Appendix A - Supplemental Materials for Chapter 2 

 

 

Figure A1. Example of soil samples with high saturated hydraulic conductivity (KS) resulting 

from A) cracks, root channels, and gaps between soil and walls of the sample ring in silty clay 

soil at 5 cm depth in Overbrook station and B) macropores left by the activity of worms and root 

channels in a silty clay loam at 5 cm depth in Miami station. Measured KS is 43098 cm d-1 for the 

soil in Overbrook station, and 9500 cm d-1 for the soil in Miami station. 
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Figure A2. The pattern of soil blackness (L*wet) at the top 5 cm depth across the state of Kansas. 

The figure shows increasing soil blackness across the state of Kansas from west to east, 

following the organic matter gradient shown in Figure 2.7 in the text. 
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Appendix B - Supplemental Materials for Chapter 3 

 

Figure B1. Map of precipitation daily totals from the US National Weather Service multi-sensor 

gridded precipitation product at 4-km spatial resolution and measured precipitation amounts at 

stations of the Kansas Mesonet on 12 October 2021. This figure provides supporting evidence 

that rain gauges and gridded precipitation products do not always agree at the point level.  In this 

case, a total of nine rain gauges recorded no measurable precipitation in areas where the gridded 

precipitation product indicated precipitation.  Source: Kansas Mesonet: https://mesonet.k-

state.edu 

  

https://mesonet.k-state.edu/
https://mesonet.k-state.edu/
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Figure B2. Changes in soil temperature (blue solid line) and the corresponding changes in 

apparent bulk dielectric permittivity (orange dashed line) at the A) 5 cm and the B) 10 cm soil 

moisture sensor at the Jewell station of the Kansas Mesonet from 15 December 2018 to 15 

February 2019. This example illustrates that soil dielectric permittivity drops sharply as soil 

temperature approaches freezing conditions, and thus, soil moisture sensors that use dielectric 

permittivity as a proxy for volumetric water content are sensitive to near-freezing and freezing 

conditions. To be conservative, in our study we did not consider precipitation events and soil 

moisture observations that occurred with soil temperatures <1 Celsius. 
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Figure B3. Station visit sheet showing technician notes about the clogged pluviometer at the 

Gypsum station on 22 April 2019. Private information about the landowner was removed for 

privacy. 
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Figure B4. Station visit sheet showing technician notes about the clogged pluviometer at the 

Lake City station in July 2017.  
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Figure B5. Comparison of observed and predicted precipitation amount using A) only the sum 

of hourly differences in soil water storage (∆S), and B) sum of hourly differences in soil water 

storage + drainage (∆S+D) for precipitation events exceeding 7.6 mm (N = 2497 events) across 

28 stations of the Kansas Mesonet monitoring soil moisture from 15 May 2017 to 31 December 

2020. For using only ∆S, RMSE =14.1 mm, MAE = 8.0 mm, and MBE = -3.0 mm and for using 

∆S+D, RMSE = 13.0 mm, MAE = 7.7 mm, and MBE = -1.3 mm. The dash lines represent the 

1:1 line and the solid lines represent fitted linear models (in both cases the linear model had 

p<0.001). 

  



120 

 

Figure B6. Alternative representation of MAE in Table 2. The black marker is the average of the 

soil moisture-based approach and the dashed lines represent the 2±SE of the mean. The 

intersection of the dashed lines and the red line is at 10 and 14 km. We force the interest to 0,0 

since at the same point the error is just that of the instrument (negligible for this study). The 

black marker is at a distance of 10 meters from the station, which is similar to the layout of the 

stations, although hard to see in the figure due to the scale of the x-axis.
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Supplemental code. An example code in CRBasic for implementing the proposed soil moisture 

approach onboard data loggers for quality controlling precipitation events in in situ networks. 

Example Code 

'CR1000 

'Declare Variables  

Public BattV 

Public PTemp_C 

Public VWC_5 

Public VWC_10 

Public VWC_20 

Public VWC_50 

Public Rain_obs 

Public Rain_pred 

Public Rain_flag As Boolean 

Public SWS_previous 

Public SWS_mm 

Public SWS_change_mm 

Const Interception = 7.6 

 

'Declare Units 

Units BattV = Volts 

Units PTemp_C = Deg C 

Units VWC_5 = m^3/m^3 

Units VWC_10 = m^3/m^3 

Units VWC_20 = m^3/m^3 

Units VWC_50 = m^3/m^3 

Units Rain_obs = mm 

Units Rain_pred = mm 

Units SWS_previous = mm 

Units SWS_mm = mm 

Units SWS_change_mm = mm 

 

'Define Data Tables 

DataTable(Table1,True,-1) 

 DataInterval(0,1,Hr,10) 

 Average(1,VWC_5,FP2,False) 

 Average(1,VWC_10,FP2,False) 

 Average(1,VWC_20,FP2,False) 

 Average(1,VWC_50,FP2,False) 

 Totalize(1,Rain_obs,FP2,False) 

 Totalize(1,Rain_pred,FP2,False) 

 Sample(1,Rain_flag,Boolean) 

 Average(1,SWS_previous,FP2,False) 

 Average(1,SWS_mm,FP2,False) 

 Totalize(1,SWS_change_mm,FP2,False)    

EndTable 

 

'Define data tables 

DataTable(Table2,True,-1) 

 DataInterval(0,1,Min,10) 

 Minimum(1,BattV,FP2,False,False) 

EndTable 

 

'Main Program 

BeginProg 

'Main Scan 

 Scan(1,Hr,1,0) 

    

 'Default CR1000 Datalogger Battery Voltage measurement 

 Battery(BattV) 
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 'Default CR1000 Datalogger Wiring Panel Temperature measurement 

 PanelTemp(PTemp_C,_60Hz) 

   

 'CS650/655 Water Content Reflectometer measurements 'VWC' 

 SDI12Recorder(VWC_5,1,"0","M4!",1,0,-1) 

 SDI12Recorder(VWC_10,1,"1","M4!",1,0,-1) 

 SDI12Recorder(VWC_20(),1,"2","M4!",1,0,-1) 

 SDI12Recorder(VWC_50(),1,"3","M4!",1,0,-1) 

   

'TE525MM/TE525M Rain Gauge measurement 

     PulseCount(Rain_obs,1,1,2,0,0.1,0) 

   

    'Use equation 2 to compute current total soil water storage 

    SWS_mm = VWC_5*50+(VWC_5+VWC_10)/2*50+(VWC_10+VWC_20)/2*100+(VWC_20+VWC_50)/2*300 

     

    'Compute the change in soil profile water storage 

    SWS_previous = Table1.SWS_mm_Avg(1,1) 

    SWS_change_mm=SWS_mm -  SWS_previous 

     

    'Set change in storage < 1 mm to 0   

    If SWS_change_mm <1 and Rain_obs = 0 Then 

       SWS_change_mm = 0 

       Rain_flag = False 

       Rain_pred = 0  

        

    ElseIf SWS_change_mm >=1 AND Rain_obs = 0 Then 

      Rain_flag = True 

      Rain_pred = SWS_change_mm + Interception 

          

    ElseIf Rain_obs >0 and Rain_obs <7.6 Then 

      Rain_flag = False 

      Rain_pred = 0 

    

    Else 

      Rain_flag = False 

      Rain_pred = SWS_change_mm + Interception 

      

    EndIf  

   

    'Call Data Tables and Store Data 

    CallTable Table1 

    CallTable Table2 

  

  NextScan 

EndProg 

 

 

 


