

CONTENTS

INTRODUCTION 1
1997 CROP CONDITIONS
Weather Conditions1Crop Development2Diseases3Insects3Harvest Statistics3
WHEAT VARIETIES GROWN IN KANSAS
Acreage Distribution
1997 PERFORMANCE TESTS
Objectives 7 Varieties Included in Tests 7 Environmental Factors Affecting Individual Tests 7 Parentage and Origin of Public Varieties, Table 2 8 Private Entrants and Their Entries, Table 3 9 Site Descriptions and Management in 1997, Table 4 10 Test Results and Variety Characterization 12 Protein Content 12 Yield (bushels per acre), East, Table 5a 13 Central, Table 5b 14 West, Table 5c 15 Irrigated, Table 5d 16 Yield (% of test average), East, Table 6a 17 Central, Table 6b 18 West, Table 6c 19 Irrigated, Table 6d 20 Multi-year yield averages, East, Table 7a 21 Central, Table 7b 22 West, Table 7c 23 Irrigated, Table 7d 24 Test weight (lbs per bushel), East, Table 8a 25 Central, Table 8b 26 West, Table 9c 30 Irrigated, Table 9b 30 West, Table
Lodging and disease notes, Table 11
Protein values from 1996 Tests, Table 13
APPENDIX
Electronic access, university research policy, and duplication policy inside back cover Contributors back cover

1997 KANSAS PERFORMANCE TESTS WITH WINTER WHEAT VARIETIES

INTRODUCTION

This publication presents results from the 1996-97 Kansas Winter Wheat Performance Tests and other information related to winter wheat variety performance. The information included in the report is intended to assist wheat producers in the variety selection process. The first section includes a summary of statewide growing conditions and harvest information for the entire 1997 Kansas wheat crop. The second section includes the statewide acreage distribution of leading Kansas varieties and a summary of important agronomic and quality traits for The third section presents these varieties. procedures and results for the 1997 Kansas Winter Wheat Performance Tests.

1997 CROP CONDITIONS

Weather Condition

The critical weather factors for wheat are precipi tation and temperature. The precipitation for the 1996-97 wheat season was much more favorable than last season. However, during the critical October to April period, all divisions reported

below-normal precipitation

(Figure 1).

Temperatures also were favorable for the most part. The major exception mid-April. was during Most of the state experienced low temperatures below 20° F. The most severely affected area of the state was in the extreme southwest, where temperatures remained below 18° F for extended periods (Figure 2).

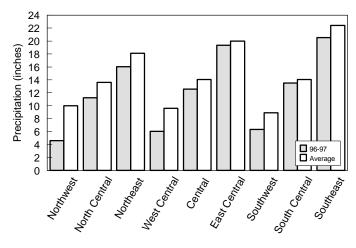


Figure 1. Critical precipitation (OctoberMay) by crop reporting district.

Cool temperatures persisted through mid-June. June also brought more rain, particularly to the southwest and south central portions of the state. Preliminary rainfall totals show Cowley county with 7.97 inches, Reno county with 6.17 inches, Kingman County with 5.31 inches, and Ellis county with 4.35 inches. This contributed to harvest delays in some locations.

(From Mary Knapp, KSU State Climatologist).

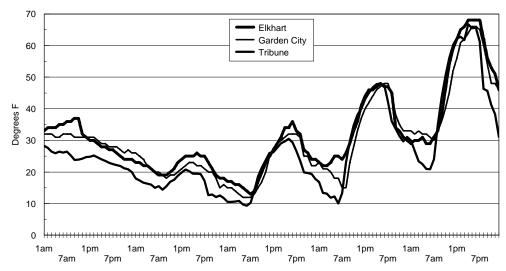


Figure 2. Hourly temperatures, April 10-14, 1997.

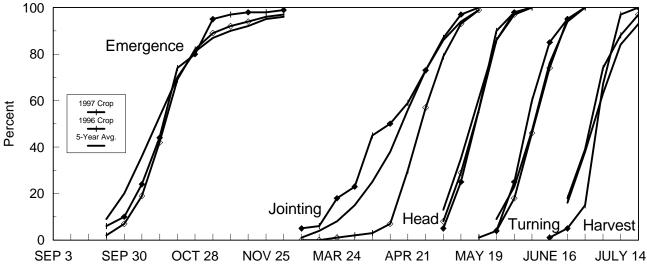


Figure 3. Statewide development of winter wheat crop.

Crop Development

Adequate soil moisture and warm temperatures enabled most of the wheat to emerge by early November even though much of it was planted later than normal (Figure 3). Continued rains slowed planting for a time over much of the state and prevented planting entirely on some acres in southeast and east central Kansas. The wheat started jointing slightly ahead of normal and several days ahead of last year. Cool temperatures in April slowed progress to the point where heading was behind normal. Harvest started out slowly but made rapid progress in late June and finished slightly ahead of normal.

A large portion of the wheat acreage was in good-excellent condition for most of the season (Figure 4). Nearly 80%-90% was rated as good

or excellent from emergence until the mid-April freeze. Some drying during the winter in western Kansas raised concerns about potential wind damage, but later snows and other precipitation enabled most of the acreage to escape severe wind damage. The April 13 freeze initially appeared to severely damage much of the wheat in southern Kansas. As the season progressed, the crop condition continued to rebound until over 60% was rated good-excellent at harvest.

Soil moisture was generally adequate for most of the season (Figure 5). Some fields, primarily in western Kansas, dried out somewhat over the winter, in late March, and again in May, but timely rains replenished surface moisture and prevented serious drought stress during grain filling. (From *Crop-Weather* reports, Kansas Agricultural Statistics, Topeka).

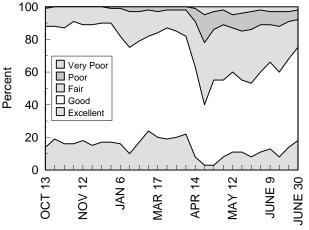


Figure 4. Condition of Kansas winter wheat crop 1996-1997.

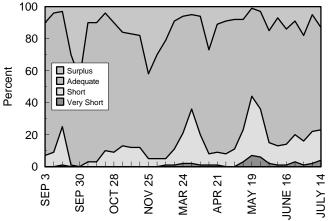


Figure 5. Statewide status of topsoil moisture, 1996-1997.

Diseases

Abundant summer rainfall promoted development of volunteer wheat following wheat harvest in 1996. By early fall, the volunteer wheat was heavily infected with leaf rust. Wheat streak mosaic also was present on some of the volunteer wheat. Leaf rust moved from the volunteer onto early planted wheat causing significant yellowing on susceptible varieties in the fall.

In early March, numerous reports of soilborne mosaic and spindle streak mosaic were received. Southwest Kansas reported some soilborne mosaic in fields that had never shown symptoms before. Cool weather caused symptoms of these cold-loving viruses to last longer than usual.

By late March, it was clear that leaf rust had overwintered well in Texas, Oklahoma, and the southern tier of counties in Kansas. Reports of varietal resistance breakdowns in Texas and Oklahoma were attributed to the appearance of several new leaf rust races. Expectations of a major leaf rust epidemic in Kansas prompted interest in foliar fungicide treatments. However, the late spring freeze on April 12-13 caused great concern about the yield potential of the crop. Therefore, very little wheat was subsequently treated with fungicides.

Cool, dry weather in late April and May resulted in slow foliar disease progress over most of the state. Major transport of rust from southern states did not occur until very late in the season. Except for the southern tier, most wheat made it to the soft dough stage before significant leaf rust was noted.

Wheat streak mosaic caused serious damage in isolated fields in the southwestern and north-western districts. The variety lke was particularly hard hit. Patches of stunted plants with barley yellow dwarf were noted in some fields, but losses were low. Isolated reports of moderate speckled leaf blotch and tan spot were received. Traces of powdery mildew, loose smut, and scab were noted in a few fields. Take-all root rot was a serious problem in a few continuous wheat fields in south central and northeastern Kansas.

(From Robert Bowden, State Extension Plant Pathologist).

Insects

Russian wheat aphids showed renewed activity during May in western Kansas. They were in all fields surveyed in Kearny, Stanton, Hamilton, Wallace, and Sherman counties. Infestations in some fields in Kearny, Hamilton, and Greeley counties ranged as high as 28% to 30% of the tillers. Where wheat was approaching heading stage, 30% to 40% of the primary tillers exhibited symptoms. At that time, yield prospects in many of those fields appeared questionable.

Greenbug establishment was poor throughout the season compared to heavy infestations last year in central and north central Oklahoma and southern Kansas. Similarly, oat-bird cherry aphids, while present, were relatively scarce. Isolated growers in the southern half of the state reported some concerns in April and early May.

Fewer mite problems were reported in 1997. Brown wheat mite, favored by dry fall weather, was much less of a concern in the western areas than it had been last year. The winter grain mite, occasionally a concern in central areas of Kansas, also was less noticeable this year. Some grasshopper activity was noticed in 1997, but it was not especially high. However, grasshopper populations appear to be on the increase in Kansas, signaling potential problems ahead.

Historically, Hessian fly is one of the worst insects that wheat growers face because of its potential to cause destruction and because of the lack of rescue treatments. For the past two years, Hessian fly has been less of a problem in Kansas than in the past. We think this is due to progress in wheat breeding and to good production practices.

(From Leroy Brooks, State Extension Entomologist).

Harvest Statistics

The Kansas Agricultural Statistics' July 11 estimate of the 1997 crop was 449.4 million bushels harvested from 10.7 million acres (Figure 6). This estimate was up 76% from the 1996 harvest and up 24% from the June 1 forecast. The statewide yield average of 42 bushels per acre was up 13 bushels from last year and set a new record. Estimates of total production were higher than last year in all but

the East Central district, which had several thousand acres that couldn't get planted last fall because of weather conditions. (From July 11, 1997 *CROPS* report, Kansas Agricultural Statistics, Topeka).

WHEAT VARIETIES GROWN IN KANSAS

Acreage Distribution

The leading wheat varieties planted in Kansas are reported in Figures 7 and 8 and in Table 1. The top 10 varieties occupied 85% of the state's seeded acreage in 1997.

The top 10 varieties for each crop reporting district are presented in Figure 7. In the western districts, TAM 107 acreage held its own, Ike acreage increased from last year, and Larned acreage dropped slightly. Vista doubled its share of the acreage from 5% to 10% in the Northwest district. Half or more of the central Kansas acreage was dedicated to Karl/Karl 92 and 2163. Karl/Karl 92 acreage increased slightly in the Central and North Central districts but dropped slightly in the South Central district

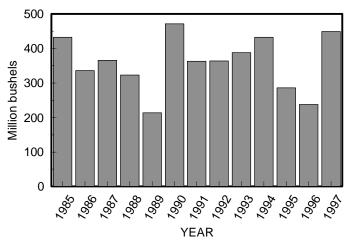


Figure 6. Historical Kansas winter wheat productic

compared to 1996. The acreage of 2163 dropped in all 3 central districts. Ike and Jagger occupied 15% of the central Kansas acreage, up from 6% in 1996. Tomahawk and 7853 were planted on 10% of the central-Kansas acreage, down from 15% in 1996. Karl/Karl 92 was the most prevalent variety by far in eastern Kansas, with 63% of the acreage. 2163 and Jagger were the only other varieties planted on more than 5% of the wheat acres in eastern Kansas.

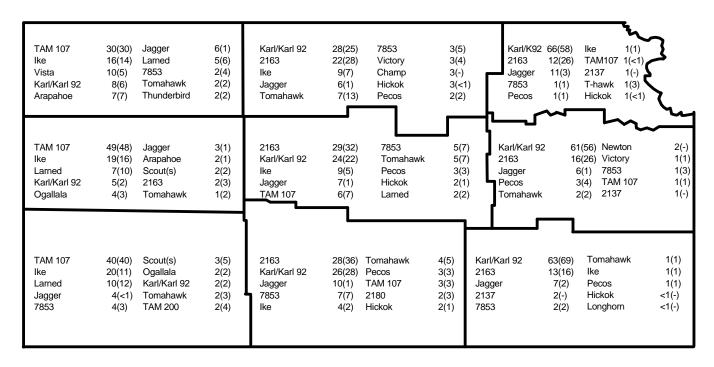


Figure 7. Leading wheat varieties in Kansas in 1997, presented as percent of seeded acreage by crop reporting districts for 1997 and 189(1996 in parentheses). From Wheat Variety report, Kansas Agricultural Statistics, February 8, 1997.

Figure 8 illustrates the statewide distribution of several leading varieties from 1977 through 1997. These varieties occupied 86.1% of the planted wheat acres in 1997. Scout/Scout 66, Eagle, and Sage combined for nearly 60% of the statewide acreage in the late 1970s. In the early 1980s, Newton Larned and dominated, with over 50% of the acreage devoted to these two varieties. Larned consistently maintained nearly 10% of the planted acreage during the 1980s but has begun to drop off in recent years. Newton acreage has dropped from a high of over 40% in 1982 to

0.6% in 1997. TAM 107 predominated in the early 1990s. In 1993, Karl/Karl 92 displaced TAM 107 as the leading variety. Four varieties, Karl/Karl 92, TAM 107, 2163, and Ike, made up 65% of the total wheat acreage in 1997.

From February 7, 1997, *Wheat Variety* report, Kansas Agricultural Statistics, Topeka).

Agronomic Characteristics

Comparative ratings for important agronomic traits, pest resistance, and milling and baking quality are listed in Table 1. Varieties are included in this table if they appear in the annual Wheat Variety survey report from Kansas Agricultural Statistics. Ratings for a given trait in this table are experts' best estimates of the relative performance of the varieties based on information and observations over several seasons and from numerous sources. The ratings are updated annually to account for changes in performance that occur over time and to adjust for the changes in ranking that arise with the continued additions of new varieties.

New Variety Descriptions

General descriptions of new public entries in the Kansas Wheat Performance Tests are included below. These descriptions are abstracted from

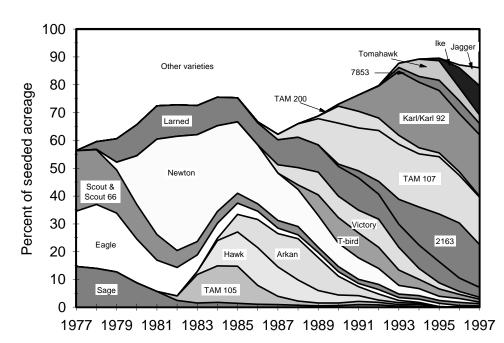


Figure 8. Historical distribution of leading varieties, percent of statewid acreage. From Kansas Agricultural Statistics, Topeka.

release notices or other material provided by the releasing agencies.

2174 hard red winter wheat was released by the Oklahoma Agricultural Experiment Station in 1997. 2174 flowers about the same time as 2163 but yielded an average of 1.6 bu/a more than 2163 in 15 Oklahoma tests. 2174 is resistant to soilborne mosaic virus, leaf rust, powdery mildew, and tan spot. It has some tolerance to low pH soils but not as much as 2163 or 2137. This variety appears to be best adapted to central and north central Oklahoma and possibly south central Kansas. Foundation seed should be available for fall planting. Registered seed should be available in 1998 and certified seed in 1999. (From Gene Krenzer, Oklahoma State University Extension Small Grains Specialist).

Windstar hard red winter wheat was developed cooperatively by the Nebraska Experiment Station; the South Dakota Experiment Station; and the Northern Plains Area, Agricultural Research Service, U.S. Department of Agriculture. Windstar is similar in appearance to Rawhide and Siouxland. It is a taller semidwarf of medium to late maturity. Windstar has shown moderate resistance to stem rust and moderate susceptibility to leaf rust and wheat streak mosaic virus. It is susceptible to Russian wheat aphid, Hessian fly, and soilborne mosaic virus.

Table 1. Comparisons of leading winter wheat varieties grownKamsas.1

		Percent			2									Relative
		Kansas		Rela	tive ³	10000			stance	or to			0.1	milling
		seeded acreage	Matur.	- Test	Straw	Winter	Tan	Speck. leaf	Leaf	Stem	Hes- sian	Wheat streak		and baking
Brand	Variety	1997 ²	ity	Weight		ness	spot		rust	rust	fly		mosaic	quality ⁵
	Karl/Karl 92	22.1	1	3	4	3	3	5	9	7	9	9	1	EX*
	TAM 107	17.0	1	4	2	2	7	6	9	4	9	6	8	LD
	2163	15.4	3	6	1	4	5	4	7	4	1	5	1	LD
	lke	10.5	4	3	4	3	7	8	8	2	1	9	1	AC
	Jagger	6.4	1	4	3	6	3	3	5	3	9	4	1	EX
AGSECO	7853	4.0	3	4	4	5	6	9	8	4	9	5	1	EX
	Larned	3.6	4	4	5	3	9	7	8	3	3	7	8	AC
AgriPro	Tomahawk	3.1	3	4	3	2	4	8	3	3	9	8	1	AC
AgriPro	Pecos	1.6	1	4	1	5	6	5	7	4	1	7	1	AC
AgriPro	Ogallala	1.3	3	2	2	4	6	5	4	3	9	6	9	EX
	Vista	1.2	5	4	6	2	8	5	5	5	1	8	8	AC*
	Arapahoe	1.1	6	4	6	3	8	4	5	2	3	7	8	AC
	2137	1.0	3	4	1	3	4	3	6	6	2	5	1	AC
AgriPro	Thunderbird	1.0	2	3	3	2	9	6	7	3	9	5	1	AC
AgriPro	Hickok	1.0	2	2	3	6	7	8	3	3	9	5	1	AC
	Scout(s)	0.8	4	4	6	3	9	7	8	3	9	7	9	AC
AgriPro	Victory	0.7	3	4	4	3	5	9	5	6	9	8	1	AC
	Newton	0.6	3	4	4	5	9	9	9	3	9	6	1	AC
AgriPro	Laredo	0.6	4	4	3	3	6	8	6	4	9	7	7	LD
	2180	0.5	1	4	1	7	7	5	6	5	2	9	1	LD
	Eagle	0.5	4	4	6	3	9	7	8	4	7	8	9	EX*
	TAM 200	0.4	4	2	4	6	6	3	7	4	9	7	9	LD
AgriPro	Abilene	0.4	4	3	2	2	6	7	8	2	9	5	1	AC
Star	Champ	0.4	4	5	5	3	6	6	6	6	9	5	1	
AgriPro	Longhorn	0.3	5	3	2	3	6	7	6	1	8	5	8	LD
AgriPro	Ponderosa	0.3	3	3	3	3	5	8	3	3	9	8	1	EX*
	Triumph(s)	0.2	1	3	7	6	5	9	9	8	9	4	8	LD
AgriPro	Sierra	0.2	5	4	1	5	4	2	4	3	9	8	1	LD
AGSECO	7805	0.2	4	4	4	5	7	8	8	1	8	8	9	
Other Hard	I Varieties	3.3												
Other Soft	Varieties	0.3												

¹ Varieties listed in the Feb. 7, 1997, Wheat Variety survey, KSAg. Statistics. Ratings are expert's best estimates, based on information and observations from several sources. Rated on a scale of 1 to 9; except for maturity (where 1 is earliest), 1 best and 9 presst, -- = not tested.

EX = Exceptional Quality; usually large kernels; high protein content; very good milling, mixing, and commercial bread baking performances.

AC = Acceptable Quality; milling and baking attributes acceptable, but not outstanding for all properties, may have minor detect LD = Less Desirable Quality; one or more serious quality defects.

² From February 7, 1997 Wheat Variety survey, KansasAg. Statistics Office, Topeka, KS.

³ Agronomic information and some disease ratings provided bRollin Sears, Dept. of Agron., K.S.U. and some by JohnMoffatt, AgriPro Seeds.

⁴ Disease ratings provided byR.L. Bowden and W.W. Bockus, Dept. of Plant Path.; Hessian fly ratings by J.H. Hatchett, Dept. of Entomology.

⁵ Ratings compiled byP.J. McCluskey are based on data from theK.S.U. Department of Grain Science and Industry, theU.S. Grain Marketing and Production Research Center, and inputs from the milling and baking industries.

^{-- =} Inadequate information or conflicting data.

^{*}Strong blending wheat. Needed for blending with weakewheats. May not be suitable alone for bread flour.

Windstar is best adapted to dryland production in the Nebraska Panhandle and western South Dakota. It has demonstrated consistent dryland yields in those areas. (From March 11, 1997, release notice, University of Nebraska Department of Agronomy).

TAM 110 hard red winter wheat was released by the Texas Agricultural Experiment Station in 1996. This variety is similar to TAM 107 in type and area of adaptation but possesses resistance to greenbug biotypes C, E, I, and K. TAM 110 likely is best adapted to dryland or limitedirrigation systems on the High Plains where leaf rust is typically not a major problem. TAM 110 has shown improvement over TAM 107 in some quality factors (water absorption, mixing tolerance, and loaf grain characteristics) but is similar to TAM 107 for others. (From TAM 110 Hard Red Winter Wheat pamphlet published by the Texas Agricultural Experiment Station, Texas A&M University, 1997).

TAM 301 hard red winter wheat was released by the Texas Agricultural Experiment Station in 1995. TAM 301 carries several leaf rust resistance genes and demonstrates field resistance to Septoria tritici (speckled leaf blotch), stem rust, and powdery mildew. It is susceptible to Septoria nodorum (glume blotch), barley yellow dwarf virus, soilborne mosaic virus, and common root rot. Head emergence of TAM 301 is about 3 days later than TAM 107. (From PVP application submitted by Texas Agricultural Experiment Station).

1997 PERFORMANCE TESTS

Objectives

To help Kansas growers select wheat cultivars suited for their area and conditions, the Kansas Agricultural Experiment Station annually compares both new and currently grown varieties and hybrids in the state's major crop-producing areas. The objective is to provide Kansas growers with unbiased performance information on all varieties and hybrids likely to become available in the state.

Varieties Included in Tests

Parentage and origin of public varieties included in the 1997 Kansas Agricultural Experiment Station tests are given in Table 2. Public varieties are selected for inclusion in the tests based on several criteria. Most represent new or established varieties with potential for successful utilization by Kansas wheat producers. Some are included as long-term checks for use in environment or maturity comparisons. Others are entered at the request of the originating institution.

Privately developed varieties are entered into the Kansas Wheat Performance Tests by their originators or marketers. Entry is voluntary. Entrants choose both the entries and test sites and pay a fee for each entry-location to help defray test expenses. The program is similar to those for corn, sorghum, soybeans, and alfalfa.

The 1997 private entrants and entries are listed in Table 3. Eleven entrants provided a total of 43 varieties and hybrids for testing at locations of their choice. Public and private entries were grown together at random in the same tests. Growers interested in more detailed descriptions of private entries should contact the entrants directly (see addresses and telephone numbers in Table 3 or consult the Kansas Crop Improvement Certified Seed Directory).

Seed quality, including such factors as size, purity, and germination, can be important in determining the performance of a variety. Wheat seed used for public and private entries in the Kansas Crop Performance Tests is prepared professionally and usually meets or exceeds Kansas Crop Improvement Certification standards (see Table 12). Relative performance of a given variety or hybrid comparable to that obtained in these tests is best assured under similar environmental conditions and cultural practices and with the use of certified or profes sionally prepared seed.

Environmental Factors Affecting Individual Tests

Locations of test sites are shown on the map on the front cover. Only 1 of the 17 tests had to be discarded in 1997. Descriptions of environmental conditions are included below. Environmental factors should be considered when examining the results for a particular location. Site descriptions and management practices for each site are summarized in Arapa

Performance test summary:

The performance tests were subjected to much the same regimen as described under the statewide growing conditions. A number of the tests yielded much better than expected after the dry winter and late freezes. Either the freezes didn't cause as much damage as thought or the wheat was able to overcome the damage better than anticipated. Diseases and insects caused noticeable vield decreases in only a few tests. The location codes listed in parentheses after each location name are used as column headers in the data tables.

EAST

Brown County (BR): This test was planted into good

moisture last fall resulting in good stands. Little winter injury occurred, and damage from the late spring freezes appeared to be minimal. Spring and summer growing conditions were favorable, with adequate moisture for good growth and high-yield potential. Leaf rust appeared early enough and became severe enough to reduce yields of susceptible varieties.

Riley County (RL): The trial was planted October 3; good stands were obtained, and no winterkilling occurred. A severe freeze on April 11-12 caused ice formation below the growing points in approximately 15% of the primary stems of the earliest varieties; however, no visible damage or lodging resulted. Timely rains and cool temperatures during the growing season allowed for excellent crop development and yield potential. Leaf rust reduced yields of

Table 2. Parentage of public wheat varieties in 1997 tests.

State and vear

	ı ype		State and ye	Jai
r	and variety	/ Parentage	of release	}
,	HARD REI	WINTER		
	Akron	TAM 107/Hail	Colorado	1994
	Alliance	Arkan/Colt//Chisholm	Nebraska	1994
	Arapahoe	Brule/3/Pkr*4/Agent/Beloterkovskaia 198/Lancer	Nebraska	1988
	Custer	F29-76/TAM 105// Chisholm	Oklahoma	1994
	Halt	Sumner/CO820026,F ₁ //PI372129,F ₁ /3/TAM 107	Colorado	1994
	lke	Dular/Eagle//2*Larned/Cheney/3/Colt	Kansas	1993
	Jagger	KS82W418/Stephans	Kansas	1994
	Karl 92	F ₁₁ head row selection from 'Karl' seed increase	Kansas	1992
	Karl 92-G	Same as Karl 92, but treated with Gaucho seed t	reatment	
	Larned	Scout*5/Ottawa	Kansas	1976
	Nekota	Bennett/TAM 107	Nebraska	1994
	Newton	Pitic62/Chris sib//2*Sonora64/Klein Rendidor/4/S	cout, Kansas	1977
	Niobrara	TAM 105*4/Amigo//Brule	Nebraska	1994
	Scout 66	A composite of 85 selections from Scout	Nebraska	1967
	TAM 107	TAM 105*4/Amigo	Texas	1984
	TAM 110	TAM 105*4/Amigo*5//Largo	Texas	1996
	TAM 200	TX71A1039-V1*3/Amigo	Texas	1987
	TAM 301	Mit/Kavkaz	Texas	1995
	Tonkawa	F29-76/TAM 105//Chisholm	Oklahoma	1994
•	Vista	NE68513/NE68457//Centurk/3/Brule	Nebraska	1992
	Windstar	TX79A2729//Caldwell/Brule field sel #6/3/Siouxla	nd, Nebraska	1997
	Yuma	NS14/NS25//2*Vona	Colorado	1991
	2137	W2440/W9488//2163	Kansas	1995
	2163	Pioneer line W558/5/Etoile de Choisy//Thorne/Cla	arkan/3/CI15342/4	/
		Purdue 4946A4-18-2	Kansas (Pioneer)	1989 (
	2174	IL 71-5662/PL 145//2165	Oklahoma	1997
	2180	TAM W-101/5/Etoile de Choisy//Thorne/Clarkan/3	3/	
		Cl15342/4/Purdue 4946A4-18-2/6/W558	Kansas (Pioneer)	1988
	SOFT RED	WINTER		
	SSI I KLD	7 TT		

Caldwell	Benhur sib *2/Siette Cerros	Indiana	1981
Cardinal	Logan 2*/3/Va63-52-12/Logan/Blueboy	Ohio	1986
Ernie	Pike/3/(MO9965,Stoddard/Blueboy//Stoddard/	D1707), Missouri	1994
Jackson	Saluda/Coker 762	Virginia	1993

susceptible varieties but arrived late enough to minimize the damage. The leaf spotting complex (*Septoria(s)* and tan spot), which are normally severe at this location, remained on the lower leaves and didn't cause yield reductions. A rain after the wheat was ripe and before harvest reduced test weights slightly.

Franklin County (FR): Cool, wet conditions following planting limited fall growth and tillering. Some varieties appear to have suffered more than others from the poor fall growing conditions. The winter was relatively cold, and snowfall was above average. Diseases and insects appeared to cause little damage to varieties in this test.

Labette County (LB): Excellent fall weather favored stand establishment and early growth. Minimal damage resulted from the hard freezes in March and April. Later spring and summer

Table 3. Private entrants and entries in 1997 Kansas Wheat Performance Tests.

Entrant	Brand	Variety/Hybrid	Entrant	Brand	Variety/Hybrid
AgriPro Seeds, Inc. 806 N. Second St., PO Bo Berthoud, CO 80513 (970) 532-3721	AgriPro ox 30	Big Dawg Coronado Hickok Laredo Ogallala Pecos Rowdy Tomahawk Elkhart (S)	HybriTech Seed Intl., Inc. 5912 N. Meridian Wichita, KS 67204 (800) 346-2256	Quantum	566 579 7406 7504 AP 7501 AP 7510 AP 7601 H1870 Exp
AGSECO, Inc. AGSEC P.O. Box 7 Girard, KS 66743 (316) 724-6223	<i>co</i>	7853 7853-D* 7853-VRTU** 9001	Novartis 1060 Wheatland Dr. Buhler, KS 67522 (316) 543-2707	NK	Coker 9474 (S) Coker 9543 (S) Coker 9663 (S)
*Seed treated w *Seed treated w		Colby 94 Mankato 12019 Exp	Pioneer Hi-Bred Intl., Inc. 1616 S Kentucky St. Suite C-150 Amarillo, TX 79102 (806) 356-0160	Pioneer	2548 (S)
American White Wheat Pr P.O. Box 326 Atchinson, KS 66002 (785) 367-4422	roducers Asso Public, KS AgriPro		Polansky Seed P.O. Box 306 2729 M St. Belleville, KS 66935 (785) 527-2271	Polansky	Dominator
Drussel Seed and Supply 2197 W. Parallel Road Garden City, KS 67846 (316) 275-2359	Drussel	DSS-285	Star Seed, Inc. Box 504 Beloit, KS 67420 (800) 782-7611	Star	505 560 Champ
Goertzen Seed Research 14604 S. Haven Rd. Haven, KS 67543 (316) 465-2675		G12017 Exp G1594 Exp G1720 Exp G1878	Terra International, Inc. Terra Centre, 600 Fourth Sioux City, IA 51102 (712) 233-3609	Terra St.	HR 153 SR 204 (S) SR 205 (S) Exp 211 (S)

conditions were perfect for wheat development and high yield potential. Leaf rust appeared too late to cause significant yield reductions.

CENTRAL

Republic County (RP): Favorable moisture conditions resulted in good stands for most varieties. November rains helped the plants to establish well going into the winter. Cold, dry winter conditions and several spring freezes did not seem to significantly harm the plants. A heavy infestation of leaf rust developed too late to cause much yield reduction.

Harvey County (HV): Excellent stands, minimal winter and freeze injury, and favorable spring and summer growing conditions set the stage for

very good yields at this location. Temperatures in the low 20s on April 11-13 raised concerns of possible freeze damage that did not materialize. Soilborne mosaic virus was evident in some small areas in early spring but didn't appear to have a large affect on yields. Leaf rust arrived too late to impact yields.

Reno County (RN): The test established and overwintered well. The late freezes in March and April caused less damage than initially thought. Leaf diseases were present but appeared too late to cause significant yield reductions.

Stafford County, dryland (SD): Blowing sand destroyed one replication and caused enough variation in the remaining replications to make

Table 4. Wheat Performance Test site descriptions and management in 1997.

Part	County	Site,	Dates of	Soil type	unc		izers	00	
BROWN Brian Marsh Combelt Expt Field Powhattan (BR) 7/10 pH 5.8, Oats, 1996 S 8" row spacing FRANKLIN EC KS Expt Field 10/14 Moodson silt loam F 75									• -
BROWN Cornbelt Expt Field 10/14 Grundy sitly clay loam F 75 35 90 lb/a Prowhattan (BR) 7/10 PH 5.8, Oats, 1996 S 8" row spacing RILEY Ashland Agron Farm 10/3 Reading sitl loam F 75 25 75 lb/a Oats, 1996 S 50 9" orw spacing PRANKLIN EC KS Expt Field 10/14 Woodson sit loam F 6 26 13 1,200,000 seeds/a Keith Janssen Ottawa (FR) 7/3 Soybeans, 1996 S 80 7" row spacing LABETTE SE Agric Res Ctr 10/10 Parsons silt loam F 41 46 120 75 lb/a Octava 1996 S 80 7" row spacing CENTAL REPUBLIC Barney Gordon Belleville (RP) 7/2 PH 6.4, Wheat, 1996 S 80 7" row spacing CENTAL Harvey Co Expt Field 10/16 Ladysmith silty clay F 90 35 60 lb/a Mark Claassen Hesston (HV) 7/4 Ioam, Oats, 1996 S 8 8" row spacing RENO SC KS Expt Field 10/11 Ost silt loam F 75 40 60 lb/a SIH Herrichinson (RN) 7/3 Oats, 1996 S 50 8" row spacing STAFFORD Iny Standyland Expt Field 10/11 Sandy loam F 18 48 60 lb/a SIH Herrichins (RN) 7/11 Sandyland Expt Field 10/14 Sandyloam F 18 48 60 lb/a SIH Hays (EL) 6/28 Wheat, 1996 S 8 12" row spacing Prat Loam F 8 80 80 8" row spacing Prat Loam F 8 80 80 8" row spacing Prat Loam F 8 80 80 8" row spacing Prat Loam F 8 80 80 8" row spacing Prat Loam F 8 80 80 80 8" row spacing Prat Loam F 8 80 80 80 8" row spacing Prat Loam F 8 80 80 80 80 80 80 80 80 80 80 80 80 8	Cooperator	and location code	harvest	previous crop	<u>1</u> /	N	Р	K	and row spacing
Renorman	BROWN								
LABETTE SE Agric Res Ctr 10/10 Parsons silt loam F 41 46 120 75 10/a				O .					
Dim Long									
REPUBLIC Barney Gordon Belleville (RP) 9/25 Crete sit loam F 80 30 60 lb/a Belleville (RP) 7/2 pH 6.4, Wheat, 1996 S 7.5" row spacing PH 6.4, Wheat, 1996 S 7.5" row spacing PH 6.4, Wheat, 1996 S 7.5" row spacing PH 6.4, Wheat, 1996 S 8" row spacing PH 6.4, Wheat, 1996 S 8" row spacing PH 6.4, Wheat, 1996 S 8" row spacing PH 6.4, Wheat, 1996 S							_		
Mark Claassen Hesstón (HV) 7/4 loam, Oats, 1996 S 8" row spacing RENO Bill Heer SC KS Expt Field Hutchinson (RN) 10/11 7/3 Oats, 1996 S 50 8" row spacing STAFFORD Dry Victor Martin Sandyland Expt Field St. John (SD) 10/11 7/7 Pratt loamy fine sand Grain sorghum, 1995 Abandoned - Wind damage and other variability made results suspect SUMNER Rollin Sears Max Kolarik Farm Caldwell (SU) 10/14 7/1 Sandy loam Wheat, 1996 F 18 48 60 lb/a WEST ELLIS Agric Res Ctr - Hays T. Joe Martin 10/5 Hays (EL) Harney clay loam Wheat, 1995 F 50 60 lb/a THOMAS Dry Pat Evans NW Res-Ext Ctr Colby (TD) 9/24 Yill Wheat, 1995 Keith silt loam, ph 7.7 F 48 50 lb/a GREELEY Dry Alan Schlegel SW Res-Ext Ctr Garden City (FD) 9/28 Yill Wheat, 1995 Richfield silt loam Wheat, 1995 F 10 in F 50 in F 45 lb/a IRRIGATED3/ STAFFORD Irr Victor Martin Sandyland Expt Field St. John (SI) 10/4 Yill Wheat, 1995 <td>REPUBLIC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	REPUBLIC								
Sill Heer									
Victor Martin St. John (SD) 7/7 Grain sorghum, 1995 variability made results suspect SUMNER Rollin Sears Max Kolarik Farm Caldwell (SU) 10/14 Sandy loam F 18 48 60 lb/a WEST ELLIS Agric Res Ctr - Hays 10/5 Harney clay loam F 50 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 12" row spacing THOMAS Dry Pat Evans NW Res-Ext Ctr 9/24 Keith silt loam, ph 7.7 F 48 50 lb/a GREELEY Dry Alan Schlegel Tribune (GD) 7/4 Wheat, 1995 S 60 10" row spacing FINNEY Dry Merle Witt SW Res-Ext Ctr 9/30 Keith silt loam F<							_		
WEST Caldwell (SU) 7/1 Wheat, 1996 S 50 9" row spacing WEST ELLIS Agric Res Ctr - Hays 10/5 Harney clay loam F 50 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 50 lb/a T. Joe Martin Hays (EL) 9/24 Keith silt loam, ph 7.7 F 48 50 lb/a T. Joe Martin NW Res-Ext Ctr 9/28 Richfield silt loam F 11 52 45 lb/a GREELEY Dry Alan Schlegel SW Res-Ext Ctr 9/30 Keith silt loam F 60 42 lb/a Merle Witt Garden City (FD) 7/2 Wheat, 1995 S 10" row spacing <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
ELLIS Agric Res Ctr - Hays 10/5 Harney clay loam F 50 60 lb/a T. Joe Martin Hays (EL) 6/28 Wheat, 1995 S 60 lb/a THOMAS Dry Pat Evans NW Res-Ext Ctr Colby (TD) 9/24 Keith silt loam, ph 7.7 F 48 50 lb/a GREELEY Dry Alan Schlegel SW Res-Ext Ctr Sylvan Wheat, 1995 S 12" row spacing FINNEY Dry Alan Schlegel SW Res-Ext Ctr Sylvan Wheat, 1995 S 60 45 lb/a FINNEY Dry Merle Witt Garden City (FD) 7/2 Wheat, 1995 S 60 42 lb/a STAFFORD Irr Victor Martin Sandyland Expt Field St. John (SI) 10/4 Pratt loamy fine sand Corn, 1995 F 53 46 90 lb/a THOMAS Irr Pat Evans NW Res-Ext Ctr Colby (TI) 9/27 Keith silt loam, pH 7.6 F 93 7" row spacing GREELEY Irr Alan Schlegel									
Pat Evans Colby (TD) 7/2 Wheat, 1995 S 12" row spacing GREELEY Dry Alan Schlegel SW Res-Ext Ctr Tribune (GD) 9/28 Richfield silt loam F 11 52 45 lb/a Wheat, 1995 S 60 10" row spacing FINNEY Dry Merle Witt SW Res-Ext Ctr Garden City (FD) 9/30 Figure Wheat, 1995 F 60 42 lb/a Figure Wheat, 1995 S 10" row spacing IRRIGATED3/STAFFORD Irr Victor Martin Sandyland Expt Field Victor Martin 10/4 Fratt loamy fine sand F 53 46 90 lb/a S 7" row spacing THOMAS Irr Pat Evans NW Res-Ext Ctr Py/27 Keith silt loam, pH 7.6 F 93 7" row spacing GREELEY Irr Alan Schlegel SW Res-Ext Ctr Py/4 Wheat, 1996 S 12" row spacing STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a	ELLIS								
Alan Schlegel Tribune (GD) 7/4 Wheat, 1995 S 60 10" row spacing FINNEY Dry Merle Witt SW Res-Ext Ctr Garden City (FD) 9/30 Keith silt loam F 60 42 lb/a Wheat, 1995 S 10" row spacing IRRIGATED3/STAFFORD Irr Victor Martin Sandyland Expt Field St. John (SI) 10/4 Pratt loamy fine sand Corn, 1995 F 53 46 90 lb/a THOMAS Irr Pat Evans NW Res-Ext Ctr Colby (TI) 9/27 Keith silt loam, pH 7.6 F 93 90 lb/a GREELEY Irr Alan Schlegel SW Res-Ext Ctr Tibune (GI) 10/4 Ulysses silt loam PH 7.4, Corn 1995 F 90 lb/a STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a									
Merle Witt Garden City (FD) 7/2 Wheat, 1995 S 10" row spacing IRRIGATED3/ STAFFORD Irr Victor Martin Sandyland Expt Field St. John (SI) 10/4 7/3 Pratt loamy fine sand Corn, 1995 F 53 46 90 lb/a 7" row spacing THOMAS Irr Pat Evans NW Res-Ext Ctr Colby (TI) 9/27 7/4 Keith silt loam, pH 7.6 Wheat, 1996 F 93 90 lb/a 90 lb/a GREELEY Irr Alan Schlegel SW Res-Ext Ctr Tribune (GI) 10/4 7/10 Ulysses silt loam pH 7.4, Corn 1995 F 90 lb/a 10" row spacing STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a							-		
STAFFORD Irr Sandyland Expt Field 10/4 Pratt loamy fine sand F 53 46 90 lb/a Victor Martin St. John (SI) 7/3 Corn, 1995 S 7" row spacing THOMAS Irr NW Res-Ext Ctr 9/27 Keith silt loam, pH 7.6 F 93 90 lb/a Pat Evans Colby (TI) 7/4 Wheat, 1996 S 12" row spacing GREELEY Irr SW Res-Ext Ctr 10/4 Ulysses silt loam F 90 lb/a Alan Schlegel Tribune (GI) 7/10 pH 7.4, Corn 1995 S 105 10" row spacing STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a						60 			
Pat Evans Colby (TI) 7/4 Wheat, 1996 S 12" row spacing GREELEY Irr Alan Schlegel SW Res-Ext Ctr Tribune (GI) 10/4 7/10 Ulysses silt loam pH 7.4, Corn 1995 F 90 lb/a STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a	STAFFORD Irr								
Alan Schlegel Tribune (GI) 7/10 pH 7.4, Corn 1995 S 105 10" row spacing STEVENS Irr Jim Kramer Farm 10/9 Richfield sandy loam F 130 30 90 lb/a				· •					
<u></u>							30 		

^{1/} F = fall application; S = spring
2/ Seed weight of 1997 entries varied from 24.0 to 43.8 grams/1000 kernels, averaging 30.6 grams/1000 kernels (see Table 12).
3/ Irrigated tests receivedirrigations necessary to maintain vigorous plant growth.

the variety yield averages suspect. The test was abandoned and no results are reported.

Sumner County (SU): This trial was planted under good conditions on October 14, and uniform stands were obtained. A mild winter enabled leaf rust to overwinter on most varieties.

A severe freeze on April 11-12 resulted in death of approximately 20%-30% of the primary tillers in early varieties. More significant, however, was the ice formation below the growing point in 50%-60% of the stems of early varieties and 20%-30% of the later varieties. Almost ideal weather conditions following the freeze allowed the crop to develop and fill grain almost normally. Lack of moisture stress and high-temperature stress allowed the tillers to fill grain despite 2"-4" of freeze damaged stem tissue at the soil level.

Leaf rust developed late for this location but was still severe on Karl by the soft dough stage. Yields could have been reduced by as much as 10%-15% on susceptible varieties.

A severe storm lodged virtually the entire test at the hard-dough stage. The lodging was caused by the weakened stems from the early freeze and does not indicate genetic differences in straw strength. The lodging note reported (Table 11) was recorded before the storm. Lodging at this stage reduced yield potential slightly and is the primary cause of the high CV for this trial.

WEST

Ellis County (EL): Favorable soil moisture led to excellent stands. The winter months were mild, but had very little precipitation. The spring freezes caused very little damage because of the ice and snow cover present at the time. Leaf rust appeared late in the growing season but appeared to have little affect on performance. Rains just before harvest appeared to decrease the test weights of the early-maturing varieties. Another result of the rain was that kernels began to shatter as the grain dried.

Thomas County, dryland (TD): Above-average precipitation in 1996 provided excellent planting conditions. The favorable conditions continued into the fall, resulting in good stands with adequate growth going into the winter. The winter months were very dry but no colder than normal and very little stand was lost. Timely

showers and cool temperatures from mid-May through June provided favorable grain-filling conditions. Leaf rust developed too late in the season to have a significant affect on yields. Wheat streak mosaic was not serious.

Greeley County, dryland (GD): Most of the growing season was dry, but favorable grain filling conditions resulted in yields that were better than expected. Russian wheat aphids decreased yields of susceptible varieties and increased yield variability somewhat.

Finney County, dryland (FD): This test developed well in the fall and winter months, entering spring in an advanced stage of maturity with high-yield potential. A freeze on April 12 (9 °F) killed many early tillers and caused nearly a week's delay in maturity. Cool and nearly ideal grain-filling conditions allowed better-than-expected yields. Small areas of the test were infested with Russian wheat aphids. Leaf rust appeared late in the season but decreased yields very little.

IRRIGATED

Stafford County, irrigated (SI): The test was in good condition coming out of the winter, but soilborne mosaic virus and the late freezes caused concern about its yielding ability. Fortunately, the freeze didn't appear to cause as much damage as originally thought and favorable conditions the rest of the season enabled the wheat to overcome earlier setbacks.

Thomas County, irrigated (TI): See description for dryland test.

Greeley County, irrigated (GI): Similar to dryland test, but Russian wheat aphids were not present in this test. A July 5 hail storm caused some shattering, decreasing yields of susceptible varieties.

Stevens County, irrigated (ST): This test was planted October 9, and good stands were obtained. Winter conditions were not severe and no winter damage was observed. Two extremely cold freezes on April 8 and April 12-13 caused considerable damage. Temperatures on the evening of April 12 were as low as 12 °F for over 12 hours. Primary tiller death ranged from 40%-60% on early varieties and 10%-30% for

later varieties. Ideal conditions following the freeze allowed secondary tillers to replace dead primary tillers, resulting in surprisingly good yields. These results are more a reflection of recovery from severe freeze rather than a good indication of genetic potential under irrigated conditions.

Little disease pressure was observed, and virtually no lodging occurred. The wheat was significantly shorter than normal because of the loss of many of the primary tillers and replacement by secondary or tertiary tillers. High temperatures at the end of grain filling hastened maturity and probably contributed to lighter test weights. Two rains after maturity and before harvesting also contributed to light test weights.

Test Results and Variety Characterization

Results from Kansas tests are presented in Tables 5 through 13. The information in these tables is derived from replicated varietal comparisons at several sites representing various wheat-producing areas of the state.

Characteristics of specific 1997 entries can best be determined by examining Table 1 and data in Tables 5 through 12 for the relative performance of new varieties or hybrids of interest compared to those the grower is currently planting. Yields are reported in Table 5 as bushels per acre (60 pounds per bushel) adjusted to a moisture content of 12.5%, where moistures were reported at harvest. In Table 6, bushel yields are converted to yields as percentages of the test averages to speed recognition of highest yielding entries (more than 100%, the test average). The excellent performances of several of the entries are highlighted in these tables.

Growers should examine Table 7 to check the performance of entries over several years at locations closest to their farms. These tables present yields averaged over 2, 3, and 4 years. One-year or one-location results can be misleading because of the possibility of unusual weather conditions.

Measurements of characteristics often contributing to yield performance are shown in Table 8 (test weights); Table 9 (relative heading dates); Table 10 (heights); Tables 11 (lodging and disease ratings); and Table 12 (planted seed

characteristics, coleoptile lengths, and Hessian fly ratings).

At the bottom of each table is the LSD (least significant difference) for each column of replicated data. The use of the LSD is intended to reduce the chance of overemphasizing small differences in yield or other characteristics. Small variations in soil structure, fertility, waterholding characteristics, and other test-site characteristics can cause considerable yield variation among plots of the same variety grown only a short distance apart.

Another statistical parameter is the coefficient of variation (CV) shown at the bottom of most columns. This figure, if properly interpreted, can be used to estimate the degree of confidence one may have in the data presented. In this testing program, CV's below 10% generally indicate reliable, uniform data, whereas CV's from 11% to 15% usually indicate less desirable but generally useful data for the rough performance comparisons desired from these tests.

Protein Content

Samples of grain from each variety harvested from Kansas Wheat Performance Tests are submitted annually for protein content, kernel hardness, kernel weight analysis, and other tests. Screening for protein and other analyses are conducted by the staff at the U.S. Grain Marketing and Production Research Center in Manhattan, Kansas. Because of the time requirement for obtaining analyses, protein results included in this report are for the previous year's tests. Results for the 1996 harvest are presented in Table 13.

Table 5a. Yield (bushels per acre)
1997 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB	Avg.
AgriPro						Public					
Big Dawg	56	67	66	83	68	2137	61	77	83	75	74
Coronado	57	68	71	81	69	2163	53	76	76	85	73
Pecos			71	77		Arapahoe	66	59			
Tomahawk	62	64	69	74	67	Custer	62	68	55	74	65
(S) Elkhart			70	83		Jagger	67	77	42	85	68
						Karl 92	46	66	68	75	64
AGSECO						Karl 92-G	50	66	67	77	65
12019 EXP	59		62			KS84063-HW Exp	60	63	80	73	69
7853	59	69	73	64	66	KS940935 Exp	63	68	74	67	68
7853-D				73		KS941064 Exp	68	83	69	79	75
7853-VRTU				65		KS94H147Exp	62	76	66	80	71
Mankato	58	68				Niobrara .	59	60			
						Scout 66	56	51	44	58	52
Northrup King						TAM 107	49	57	51	67	56
(S) Coker 9474			64	71		TAM 301	46		49	66	
(S) Coker 9543				91		Tonkawa	55	53	69	69	61
(S) Coker 9663				76		Vista	58	63			
						(S) Caldwell	58	79	61	77	69
Pioneer						(S) Cardinal	58	70	48	81	64
(S) 2548				65		(S) Ernie	46	78	52	80	64
Polansky						(S) Jackson	47	86	70	79	71
Dominator	F7	70									
Dominator	57	73				Test Average	57	68	65	76	
Quantum						CV (%)	4	8	11	9	
AP 7510		72				LSD (0.05)**	3	6	8	8	
7504		82									
Star											
505		54									
560		62									
Champ	60	67	67								
Terra											
(S) SR 204	58		63	78							
(S) SR 205	60		71	90							
(S) SR 211	62		77	93							
HR 153	57		62	70							

¹BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

²RL = Riley County test at Ashland Experiment Farm, Manhattan, KS.

³FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center, Parsons, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5b. Yield (bushels per acre)
1997 CENTRAL Kansas Winter Wheat Performance Tests.

Brand / Name	RP ¹	HV	RN ³	์ รบ⁴	Avg.	Brand / Name	RP	1 HV	² RN	³ su	⁴ Avg.
AgriPro						Public					
Big Dawg	55	72	45	38	52	2137	87	71	52	47	64
Coronado	73	65	52	35	56	2163	78	66	49	37	58
Hickok		55	47	33		Alliance	90				
Pecos	61	54	46	31	48	Arapahoe	76				
Tomahawk	72	65	47	42	57	Custer	73	73	53	62	65
						2174		65	48	47	
AGSECO						lke	72	61		38	
7853	62	66	53	38	55	Jagger	57	77	59	45	59
7853-D	66	65	52	41	56	Karl 92	66	67	47	36	54
7853-VRTU	60	67	56	42	56	Karl 92-G	68	66	53	37	56
Colby 94	69					KS84063-HW Exp	63	77	55	39	59
Mankato	70	76	53			KS940935 Exp	71	69	50	57	62
						KS941064 Exp	74	74	51	53	63
AWWPA						KS94H147Exp	72	62	49	38	55
(W) Oro Blanco	63	59	51	35	52	Larned	69	57	36	30	48
						Nekota	79				
Goertzen						Niobrara	79				
G12017 Exp		71	54			Scout 66	66	52	37	28	46
G1594 Exp		66	57			TAM 107	67	53	48	30	49
G1878		67	44			TAM 110	67	56	44	31	50
						TAM 301	66	55	49	36	51
Polansky						Tonkawa	60	68	48	61	59
Dominator	80	68	53	36	59	Vista	77				
						Windstar	82				
Quantum						Yuma	64				
AP 7510	83		54								
7504		78	59								
Star						Test Average	70	64	50	40	
	74					CV (%)	5	5	7	12	
505	71 C4					LSD (0.05)**	4	4	4	6	
560	64	 74	 E0								
Champ ————————————————————————————————————	74	71	50								
Terra											
HR 153		63	52								

¹RP = Republic County test at North Central Experiment Field near Belleville, KS.

²HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3}$ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁴SU = Sumner County test at Max Kolarik farm, Caldwell, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5c. Yield (bushels per acre)
1997 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD	GD ³	FD	⁴ Avg.
AgriPro						Public					
Big Dawg	67	53	37			2137	69	65	53	57	61
Coronado	66	59				2163	67	64	50	56	59
Hickok	67					Akron	74	65	55	56	62
Laredo	72	58	49			Alliance	68	60	45	53	57
Ogallala	66	59	55	48	57	Arapahoe	70	58	49	50	57
Pecos	61					Custer	65	56	47	43	53
Rowdy	69	59				Halt	63	63	60	44	57
Tomahawk	67					2174	63				
————						lke	66	56	46	51	54
AGSECO						Jagger	74	70	56	53	63
7853	62	57	48	48	54	Karl 92	59	53	42	43	49
7853-D	63	60	50	48	55	Karl 92-G	64	54	51	44	53
7853-VRTU	64	57	50	46	54	KS84063-HW Exp	64	56	41	48	52
9001		56	54	43		KS940935 Exp	57	56	44	50	52
Colby 94	72	65	55			KS941064 Exp	53	56	44	47	50
Mankato	67	64	51	45	57	KS94H147Exp	68	63	51	53	59
						Larned	68	57	48	51	56
AWWPA						Nekota	60	56	47	52	54
(W) Arlin				46		Niobrara	66	61	49	52	57
						Scout 66	64	57	49	44	53
Goertzen						TAM 107	65	60	53	48	56
G12017 Exp			52	51		TAM 110	73	62	55	55	62
G1594 Exp			44	55		Tonkawa	55	49	41	43	47
G1720 Exp			43	45		Vista	70	58	48	57	58
G1878			43	43		Windstar	72	64	47	53	59
Deleneky						Yuma	75	66	52	51	61
Polansky	00	04									
Dominator	69	61				-			4.0	40	
Quantum						Test Average CV (%)	66 7	60 4	49 7	49 8	
566		67				LSD (0.05)**	6	3	4	5	
AP 7501		63							•		
AP 7510		64									
7406		73									
Star											
560	67										
Champ	61	60		47							

¹EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

²TD = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴FD = Finney County test at KSU Southwest Research Extension Center near Garden City, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5d. Yield (bushels per acre)
1997 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	GI ³	ST	Avg.	Brand / Name	SI ¹	TI ²	GI ³	ST	⁴ Avg.
AgriPro						Star					
Big Dawg		71				Champ	78				
Coronado		80	62	65		Dublia					
Hickok		78	70	67		Public	07	00	07	70	70
Laredo		83	63			2137	87	86	67	76	79 70
Ogallala		80	63	65		2163	71	85	53	72	70
Rowdy		81	56	74		Akron	23	86	74	74	64
Tomahawk	79					Alliance	42	86	69	72	67
AGSECO						Custer	43	74	78	79	69
	70	0.4		07	74	2174	77				 74
7853	79	81	56	67	71	lke	82	82	65	68	74
7853-D	68	80	58	67	68	Jagger	59	92	68	70	72
7853-VRTU	68	79	55	73	69	Karl 92	60	74	58	67	65
9001		78	65	69		Karl 92-G	70	78	69	70	72
Mankato			74	69		KS84063-HW Exp	77	72	76	73	75
A 14/14/D A						KS940935 Exp	55	66	56	66	61
AWWPA						KS941064 Exp	79	80	48	62	67
(W) Arlin	58			71		KS94H147Exp	85	84	70	68	77
(W) Oro Blanco				68		Newton					
Drussel						TAM 110	28 31	88 87	69 72	67 71	63
DSS-285	69	74	58	70	68	TAM 110 TAM 200	31 47	87 82	72 81	70	65 70
	09	74	56	70		TAM 200 TAM 301	47 72	82	81 	70	70
Goertzen						Tonkawa	66	63	66	72	67
G12017 Exp	78		83			Yuma	41	90	71	71	68
G1594 Exp	84		56								
G1720 Exp			67								
G1878	74		67			Test Average	65	80	66	70	
						CV (%)	9	3	9	4	
Polansky						LSD (0.05)**	7	3	7	4	
Dominator	77	81									
Quantum											
579				71							
AP 7501		81	75								
AP 7510		84	71	79							
AP 7601		82	71	76							
H1870 Exp			72								
7406		94	87								

¹SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

³GI = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6a. Yield (% of test average) 1997 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.	Brand / Name	BR	RL	FR ³	LB	Avg.
AgriPro						Public					
Big Dawg	99	99	102	110	102	2137	108	113	128	99	112
Coronado	100	100		107	104	2163	94		117	112	109
Pecos			110	102		Arapahoe	116				
Tomahawk	109	94	106	97	102	Custer	109		85	98	98
(S) Elkhart			108	110		Jagger		113	65	113	102
AGSECO						Karl 92	81	97	104	99	95
	400		00			Karl 92-G	87	97	103	102	97
12019 EXP	103		96	 0 <i>E</i>	404	KS84063-HW Exp	105	93	123	97	104
7853 7853-D	104	102	113	85	101	KS940935 Exp	111		114	89	103
7853-VRTU				96 86		KS941064 Exp KS94H147Exp		112	107 102	105	113 107
Mankato	103	99				Niobrara	103	88	102		
	103	99				Scout 66	98	75	67	 77	 79
Northrup King						TAM 107	86	83	79	89	84
(S) Coker 9474			99	93		TAM 301	81		76	88	
(S) Coker 9543				121		Tonkawa	96	77	106	92	93
(S) Coker 9663				100		Vista	102				
						(S) Caldwell		116	93	102	103
Pioneer						(S) Cardinal	101	103	74	107	97
(S) 2548				87		(S) Ernie	81	114	80	106	95
Polansky						(S) Jackson	83	127	108	104	106
Dominator	100	107									
Quantum						Test Average, bu/a CV (%)	57 4	68 8	65 11	76 9	
AP 7510		106				LSD (0.05)**	5	9	13	11	
7504		120									
Star											
505		79									
560		92									
Champ	105	99	103								
Terra											
(S) SR 204	103		98	103							
(S) SR 205	106		110	119							
(S) SR 211	109		118	123							
HR 153	100		95	93							

¹BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

²RL = Riley County test at Ashland Experiment Farm, Manhattan, KS.

 $^{^3}$ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center, Parsons, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6b. Yield (% of test average)
1997 CENTRAL Kansas Winter Wheat Performance Tests.

Brand / Name	RP ¹	HV	RN ³	์ รบ์	Avg.	Brand / Name	RP	1 HV	² RN	ı³ su	⁴ Avg.
AgriPro						Public					
Big Dawg	78	111	90	96	94	2137	124	110	105	119	114
Coronado	104	101	105	87	99	2163	112	103	98	94	101
Hickok		86	95	82		Alliance	129				
Pecos	87	84	93	77	85	Arapahoe	109				
Tomahawk	103	101	95	105	101	Custer	105	113	107	156	120
						2174		101	97	119	
AGSECO						lke	103	95		94	
7853	88	103	106	97	98	Jagger	81	119	119	113	108
7853-D	94	102	104	103	101	Karl 92	94	103	94	91	96
7853-VRTU	85	104	113	106	102	Karl 92-G	97	102	106	94	100
Colby 94	98					KS84063-HW Exp	91	120	110	99	105
Mankato	99	118	106			KS940935 Exp	101	107	101	142	113
						KS941064 Exp	106	115	102	133	114
AWWPA						KS94H147Exp	102	96	97	96	98
(W) Oro Blanco	90	92	103	89	93	Larned	98	89	73	75	84
_						Nekota	112				
Goertzen						Niobrara	113				
G12017 Exp			109			Scout 66	94	81	75	71	80
G1594 Exp		103	115			TAM 107	96	82	97	75	87
G1878		104	88			TAM 110	96	87	88	78	87
						TAM 301	94	85	99	90	92
Polansky						Tonkawa	85	106	96	153	110
Dominator	114	105	106	91	104	Vista	110				
						Windstar	118				
Quantum						Yuma	91				
AP 7510	119		109			-					 -
7504		121	118								
Star						Test Average, bu/a	70	64	50	40	
505	101					CV (%)	5	5	7	12	
560	91					LSD (0.05)**	6	6	8	14	
Champ	_	111	100								
	103	111	100								
Terra											
HR 153		98	105								

¹RP = Republic County test at North Central Experiment Field near Belleville, KS.

²HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3}$ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁴SU = Sumner County test at Max Kolarik farm, Caldwell, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6c. Yield (% of test average) 1997 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ²	Avg.
AgriPro						Public					
Big Dawg	103	89	77			2137	105	109	110	116	110
Coronado	101	99				2163					
Hickok	103					Akron		109		113	
Laredo	109	97	101			Alliance		101	94	109	102
Ogallala	101	99	112	97	102	Arapahoe	107	97	101	101	102
Pecos	94					Custer	100	94	96	88	94
Rowdy	106	99				Halt	96	105	123	89	103
Tomahawk	102					2174	96				
						lke	100	94	94	103	98
AGSECO						Jagger	113	117	115		113
7853	94	95	99	98	97	Karl 92	89	89	86	88	88
7853-D	95	100	103	97	99	Karl 92-G	98	91	104	89	95
7853-VRTU	98	95	103	93	97	KS84063-HW Exp	98	94	84	97	93
9001		94	112	87		KS940935 Exp	87	93	91	102	
Colby 94	110	108	113			KS941064 Exp	81	94	91	95	90
Mankato	102	107	105	92	101	KS94H147Exp	104	106	106	107	106
						Larned	104	96	99	104	101
AWWPA						Nekota	92	94	97	105	97
(W) Arlin				93		Niobrara	101	103	102	106	103
						Scout 66	97	96	100	88	95
Goertzen						TAM 107	99	100	110	98	101
G12017 Exp			106	104		TAM 110	111	105	114	112	111
G1594 Exp			90	111		Tonkawa	84	81	84	87	84
G1720 Exp			88	91		Vista	106	97	98	116	104
G1878			88	88		Windstar	109	107	96	107	105
Polansky						Yuma	114	110	107	104	109
Dominator	105	101									
Quantum						Test Average, bu/a	66 7	60	49 7	49	
566		113				CV (%) LSD (0.05)**	7 9	4 5	7 9	8 9	
AP 7501		106				LSD (0.03)	9	<u> </u>	9	9	
AP 7510		106									
7406		123									
Star											
560	102										
Champ	93	100		96							

¹EL = Ellis County test at KSU Agricultural Research Center near Hays, KS. ²TD = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴FD = Finney County test at KSU Southwest Research Extension Center near Garden City, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6d. Yield (% of test average) 1997 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	GI ³	ST ⁴	Avg.	Brand / Name	SI ¹	TI ²	GI ³	ST ⁴	Avg.
AgriPro						Star	40.				
Big Dawg		88 100	 94	 92		<u>Champ</u>	121				
Coronado Hickok		97	106	92 96		Public					
Laredo		103	95			2137	-	107	_		113
Ogallala		100	95	93		2163	109	106	80		100
Rowdy		100	85	106		Akron	35	107	111	106	90
Tomahawk	122					Alliance	64	107		102	94
100500						Custer	66	92		113	97
AGSECO						2174	119				
7853	122		84	96	101	lke	127	102	98	97	106
7853-D	106	99	88	96	97	Jagger	92	114	102	100	102
7853-VRTU	105	98	82	104	97	Karl 92	94	92	88	96	92
9001		97	98	99		Karl 92-G	108	97	104	100	
Mankato			112	99		KS84063-HW Exp	120	90	115	105	107
A 14/14/D A						KS940935 Exp	86	82	84	94	87
AWWPA						KS941064 Exp	122		72	89	96
(W) Arlin	90			102		KS94H147Exp	132	104	105	97	110
(W) Oro Blanco				98		Newton					
						TAM 107	43	109	104	95	88
Drussel						TAM 110	48	109	109	101	92
DSS-285	107	92	87	100	97	TAM 200	73		122	100	99
Goertzen						TAM 301 Tonkawa	111 103	 79	 99	 103	 96
G12017 Exp	120		125			Yuma	64		107		
G1594 Exp	131		84								
G1720 Exp			100								
G1878	114		101			Test Average, bu/a	65	80	66	70	
						CV (%)	9	3	9	4	
Polansky						LSD (0.05)**	11	3	10	6	
Dominator	120	101					•••				
Quantum											
579				101							
AP 7501		101	113								
AP 7510		105	108	114							
AP 7601			106	108							
H1870 Exp			109								
7406		116	132								

 $^{^1\,\}mathrm{SI} = \mathrm{Stafford}$ County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

³GI = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 7a. Multi-year yield averages (bu./acre) Kansas Wheat Performance Tests - EAST.

	BROWN			RILE			ANK			BET	
Brand / Name	2YR 3YR 4	YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR
AgriPro											
Big Dawg			72			50			66		
Coronado	43		69	51		56	51		63	54	
Pecos						55	51	51	61	51	46
Tomahawk			73			58					
(S) Elkhart						58					
` ,						00					
AGSECO	E4 E4 .	- 4	00	- 4	-4		40	-4			47
7853		51	68	51	51	53	49	51	56	50	47
Mankato	52 53										
Northrup King											
(S) Coker 9474						54			59	53	52
(S) Coker 9543									71	60	
Pioneer											
(S) 2548									64		
` ,									01		
Polansky											
Dominator			72								
Quantum											
AP 7510			77	59							
7504			84								
Star											
Champ	50 52		74	54	51	59					
Terra	~			٠.	•						
	FC								7.4	00	50
(S) SR 204	56					53	50		71	60	56
(S) SR 205						52	55		69	59	55
(S) SR 211						58			72		
HR 153	48					52	48		61	53	
Public											
2137	46 51		84	64	60	65	56		70	59	57
2163		46	79	59	55	60	54	51	66	58	52
Arapahoe	56 49 5	51	64	46	43						
Custer	=		73	55		44	46		59	48	
Jagger	58 53		77	60	57	34	37		68	61	57
Karl 92	44 46		72	54	50	58	50	51	60	52	48
Newton		37	56	40	38	40	36	37	60	47	45
Niobrara	48		71	51							
Scout 66	41 40 4	41	53	37	32	38	30	32	55	42	41
TAM 107		37	64	46	45	46	42	41	56	46	44
Tonkawa			61	44		55	51		52	45	
Vista			65	46	45						
(S) Caldwell		46	84	64	59	54	53	44	65	56	50
(S) Cardinal		43	74	59	55	37	42	43	69	61	56
(S) Ernie			77	60		40	41		61	52	53
(S) Jackson	-		71	55		37	41		55	50	
Averages	49 47 4	14	71	53	49	51	46	44	63	53	51

Table 7b. Multi-year yield averages (bu./acre) Kansas Wheat Performance Tests - CENTRAL.

	RE	PUB	LIC	HA	ARVE	ΞY	F	RENC)	SI	JMN	ER
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR
AgriPro												
Big Dawg	48			38			46					
Coronado	57	54		40	38		53	43		21	18	
Hickok				31	30	36	51	43	45			
Pecos				35	32	36	48	41	45	22	20	23
Tomahawk	66	59	65	54	41	44	54	41	45	29		
AGSECO												
7853	54	54	63	47	40	44	58	46	48	26	24	27
Colby 94	62	61										
Mankato	65	63	68	69			59	46	49			
AWWPA												
(W) Oro Blanco	49	51		48	40		53	41		27	22	
Polansky		•		.0	. •							
Dominator	70			52			57					
	70			32			37					
Quantum	70	70										
AP 7510	73	72					57					
7504				46			57					
Star												
Champ	67	66	69	66			57					
Terra												
HR 153				46	40	44	57	45	48			
Public												
2137	72	66	68	69	56	54	60	51	54	36	28	30
2163	70	70	70	51	45	45	52	42	45	26	26	27
Alliance	78	70										
Arapahoe	69	66	69									
Custer	66	62		45	41		54	46		37	31	
lke	66	64	69	55	44	48				25	19	21
Jagger	51	59	63	41	43	46	57	51	53	31	30	32
Karl 92	61	60	67	62	53	52	55	44	48	30	24	25
Larned	59	54	60	44	33	36	50	36	39	19	15	16
Nekota	69											
Newton	48	45	51	24	20	28	45	32	38	18	13	16
Niobrara	70	64										
Scout 66	58	51	54	39	30	33	47	33	38	19	15	17
TAM 107	57	54	61	42	34	40	57	45	48	21	16	16
TAM 110	56			38			54			24		
Tonkawa	51	48		49	40		52	43		35	30	
Vista	70	64	66									
Yuma	53	55	60									
Averages	62	60	64	47	39	42	54	43	46	26	22	23

Table 7c. Multi-year yield averages (bu./acre) Kansas Wheat Performance Tests - WEST.

	ELLIS		TH	OMA	AS	GR	EEL	EY	F	INNE	ΞY
Brand / Name	2YR 3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR
AgriPro											
Big Dawg			48								
Coronado	52										
Hickok	56 51										
Laredo	56 52	56	51	46	47	44	42				
Ogallala	57 51	51	50	52	51	53	48	50	39	43	46
Rowdy	58		46								
Tomahawk	54 51	53									
AGSECO											
7853	51 46	49	49	43	44	42	40	43	37	42	44
9001			52	54	53	55			36		
Colby 94	59		60	58		50					
Mankato	56 51		58	57		49					
AWWPA	•			٠.		.0					
(W) Arlin									31	38	41
Quantum											
566			62								
AP 7501			55	57							
AP 7510			56	60							
7406			62	59							
Star											
Champ	53 49										
Public											
2137	56 50		59	58	58	52	49		44	48	
2163	57 50	51	56	56	54	51	48	50	42	44	45
Akron	59		57	54		54			40		
Alliance	55		59	59							
Arapahoe	59 52	56	55	56	55	50	45	49	40	45	45
Custer	57		46	48		50			31		
Halt	49		55	50		50			32		
Ike	55 50	54	50	50	51	43	41	46	41	46	47
Jagger	63 54		57	57	56	50	45		38	45	
Karl 92	51 46	50	49	49	50	43	41	46	32	38	41
Larned	49 46	49	51	49	49	40	39	42	33	40	40
Nekota			53								
Newton	40 40	43	42	43	45	39	39	43	33	40	41
Niobrara	56		58	57		49			42		
Scout 66	45 44	46	52	48	47	41	39	41	30	36	38
TAM 107	50 46	51	55	51	52	46	43	47	34	40	42
TAM 110			55								
Tonkawa	48		43	45		43			33		
Vista	60 54	57	57	60	59	51	47	51	45	48	49
Yuma	60		57	54		50	47	49	39	44	45
Averages	54 49	51	54	53	51	48	44	46	37	43	43

Table 7d. Multi-year yield averages (bu./acre) Kansas Wheat Performance Tests - IRRIGATED.

	STA	AFFC	RD	TH	OM/	AS	GR	EEL	ΕY	sou	JTHV	VEST
NAME	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YF	R3YR	4YR
AgriPro												
Coronado										40		
Hickok				73	65	60	61	50	55	44	52	
Laredo				80	67	63	60	46	51			
Ogallala				77	71	65	64	51	57	44	52	56
Rowdy				78	70		63	52		49		
Tomahawk	48	54	52									
AGSECO												
7853	48	48	49	73	59					44	56	59
9001				78	71	64	65	57		44	52	
AWWPA												
(W) Arlin	34	36	37							42	52	55
(W) Oro Blanco										43		
Polansky												
Dominator				83								
Quantum												
AP 7501				79	73		67	57				
AP 7510				83	77		69	60		56		
AP 7601				81	73		67	56		49		
7406				90			72					
Public												
2137	56	54		84	78	71	70	59	66	51	61	
2163	44	45	49	85	79	72	60	50	55	48	55	58
Custer	23			71	63		63	53		48		
lke	53	52	50	79	68	64	58	49	55	42	54	59
Jagger	38	45		85	74	68	64	53	58	46	57	
Karl 92	39	43	45	73	65	60	59	48	55	43	53	58
Newton	43	46	45	74	64	60	48	38	44	34	44	47
TAM 107	18	21	23	87	71	65	65	51	57	41	49	51
TAM 110				84			65					
TAM 200	28	36	36	80	72	66	72	57	62	44	50	52
Tonkawa	38			61	55		60	52		43		
Yuma	22			87	75		65	52	57	42	52	54
Averages	38	44	43	79	69	65	64	52	56	45	53	55

Table 8a. Test weight (pounds per bushel) 1997 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB	Avg.
AgriPro						Public					
Big Dawg	60	61	62	60	61	2137	61	61	63	59	61
Coronado	59	61	63	58	60	2163	57	60	62	57	59
Pecos			64	60		Arapahoe	60	60			
Tomahawk	60	60	63	59	60	Custer	62	61	62	58	61
(S) Elkhart			63	59		Jagger	61	62	61	59	60
						Karl 92	58	61	64	59	60
AGSECO						Karl 92-G	60	61	64	59	61
12019 EXP	61		65			KS84063-HW Exp	60	61	64	60	61
7853	61	63	65	60	62	KS940935 Exp	62	62	64	60	62
7853-D				62		KS941064 Exp	60	59	61	58	59
7853-VRTU				61		KS94H147Exp	60	63	63	59	61
Mankato	59	60				Niobrara	58	60			
						Scout 66	60	61	60	60	60
Northrup King						TAM 107	59	61	59	59	59
(S) Coker 9474			65	59		TAM 301	60		60	59	
(S) Coker 9543				57		Tonkawa	60	62	64	60	61
(S) Coker 9663				57		Vista	59	61			
						(S) Caldwell	59	60	62	56	59
Pioneer						(S) Cardinal	57	59	58	56	57
(S) 2548				57		(S) Ernie	56	59	60	56	58
Polansky						(S) Jackson	57	59	63	56	59
Dominator	60	63									
Quantum						Test Average	59	61	62	59	
AP 7510		61				CV (%)	2	1	1	2	
7504		62				LSD (0.05)**	2	0	1	1	
7504		62									
Star											
505		61									
560		62									
Champ	58	60	62								
Terra											
(S) SR 204	61		63	57							
(S) SR 205	59		61	58							
(S) SR 203 (S) SR 211	58		63	58							
HR 153	60		64	59							
			U -1	<u> </u>							

¹BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

²RL = Riley County test at Ashland Experiment Farm, Manhattan, KS.

³FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center, Parsons, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8b. Test weight (pounds per bushel) 1997 CENTRAL Kansas Winter Wheat Performance Tests.

Brand / Name	RP ¹	HV ²	RN ³	์ รบ์	Avg.	Brand / Name	RP	¹ HV	² RN	³ SU	⁴ Avg
AgriPro						Public					
Big Dawg	60	58	58	57	58	2137	62	58	57	54	58
Coronado	61	58	59	55	58	2163	61	56	54	51	55
Hickok		60	59	57		Alliance	60				
Pecos	62	59	59	54	59	Arapahoe	61				
Tomahawk	61	58	57	55	58	Custer	62	60	60	58	60
						2174		59	59	58	
AGSECO						lke	61	60		57	
7853	62	59	59	56	59	Jagger	62	59	60	53	58
7853-D	62	59	58	55	59	Karl 92	62	59	60	56	59
7853-VRTU	63	60	59	57	60	Karl 92-G	62	58	60	56	59
Colby 94	62					KS84063-HW Exp	61	59	58	54	58
Mankato	61	58	56			KS940935 Exp	62	59	59	58	59
						KS941064 Exp	62	57	56	53	57
AWWPA						KS94H147Exp	63	59	59	54	59
(W) Oro Blanco	62	59	59	53	58	Larned	62	59	59	58	59
						Nekota	62				
Goertzen						Niobrara	60				
G12017 Exp		58	57			Scout 66	62	59	59	59	60
G1594 Exp		58	59			TAM 107	61	56	58	54	57
G1878		60	60			TAM 110	61	57	59	53	57
						TAM 301	61	58	58	55	58
Polansky						Tonkawa	62	60	60	59	60
Dominator	63	60	60	56	60	Vista	61				
						Windstar	61				
Quantum						Yuma	61				
AP 7510	62		58			-					
7504		59	59								
Star						Test Average	62 1	59 1	58 1	55 2	
505	61					CV (%) LSD (0.05)**	1	1	1 1	2	
560	62						ı	ı	ı		
Champ	62	58	56								
Terra											
HR 153		60	59								

¹RP = Republic County test at North Central Experiment Field near Belleville, KS.

²HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3}$ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁴SU = Sumner County test at Max Kolarik farm, Caldwell, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8c. Test weight (pounds per bushel)
1997 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD	Avg.
AgriPro						Public					
Big Dawg	61	60	57			2137	61	61	60	60	61
Coronado	61	61				2163	59	59	58	58	58
Hickok	63					Akron	60	61	60	60	60
Laredo	61	61	60			Alliance	59	60	59	60	60
Ogallala	62	63	61	61	62	Arapahoe	60	60	60	59	60
Pecos	62					Custer	61	60	59	61	60
Rowdy	62	62				Halt	61	61	61	59	60
Tomahawk	61					2174	62				
						lke	61	61	60	60	60
AGSECO						Jagger	61	62	60	60	61
7853	62	62	62	61	62	Karl 92	60	60	60	59	60
7853-D	62	63	62	60	62	Karl 92-G	60	60	61	59	60
7853-VRTU	62	62	62	61	62	KS84063-HW Exp	61	60	59	60	60
9001		60	59	58		KS940935 Exp	61	61	60	61	61
Colby 94	62	63	61			KS941064 Exp	60	59	58	58	59
Mankato	61	61	60	60	61	KS94H147Exp	62	62	61	61	62
						Larned	62	62	61	61	61
AWWPA						Nekota	61	61	60	60	61
(W) Arlin				61		Niobrara	60	60	59	59	59
						Scout 66	61	62	60	60	61
Goertzen						TAM 107	61	61	59	59	60
G12017 Exp			58	59		TAM 110	61	61	60	60	60
G1594 Exp			60	60		Tonkawa	61	59	60	60	60
G1720 Exp			59	59		Vista	60	61	60	60	60
G1878			61	61		Windstar	60	61	59	59	60
						Yuma	61	61	59	60	60
Polansky						-					
Dominator	62	62				Took Assessed	04	04	00	00	
Quantum						Test Average CV (%)	61 1	61 1	60 1	60 1	
566		60				LSD (0.05)**	0	1	1	1	
AP 7501		62					U	ı	ı	ı	
AP 7510		62									
7406		62									
Star											
560	61										
Champ	61	61		60							
		<u> </u>									

¹EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

²TD = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴FD = Finney County test at KSU Southwest Research Extension Center near Garden City, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8d. Test weight (pounds per bushel) 1997 IRRIGATED Kansas Winter Wheat Performance Tests.

SI ¹	TI ²	Gi	31	Avg.	Brand / Name	SI ¹	TI ²	GI	ST	Avg.
					Star					
	61				Champ	57				
	_									
										58
										57
			55							57
58										57
										58
										58
										57
59	63			59			62	58		58
	61						62	57	-	58
		59	54		KS84063-HW Exp			60		58
					KS940935 Exp			60		59
					KS941064 Exp	57	60	57	52	56
57			55		KS94H147Exp	60	63	61	56	60
			55		Newton					
					TAM 107	56	61	58	53	57
					TAM 110	55	61	58	52	57
59	63	61	56	60	TAM 200	59	64	57	54	58
								 E0	 EG	 59
50		57								59 57
					ruma 	ວວ	62	57	55	57
					Took Assessed		00		- 4	
00		00								
						-				
60	62				LSD (0.05)**	1	1	2	2	
	03									
			53							
	62	59								
	63	60	56							
	62	60	56							
		55								
	62	57								
	 58 60 59 59 57 59 60 60	62 63 63 63 63 63 63 61	62 58 64 59 62 59 63 61 63 60 58 60 63 60 59 63 61 59 63 60 61 58 59 57 59 63 61 60 63 61 60 63 61 57 60 60 60 63 60 63 60 62 59 63 60 62 60 55	62 58 53 64 59 56 62 59 63 61 55 63 60 55 58 60 63 60 55 59 63 61 55 59 63 60 55 61 58 53 59 54 57 59 54 57 55 57 55 61 55 60 60 60 63 57 60 57 59 61 57 60 60 60 63 57 59 61 57 59 61 57 60 55 60 63 60 56 62 60 56 62 60 56 55	62 58 53 64 59 56 62 59 63 61 55 63 60 55 58 61 58 53 59 54 57 55 55 59 63 61 56 60 58 57 59 61 57 57 57 57 57 57 57 57 60 60 60 62 59 63 60 56 62 60 56 55 55 55 55 55 55 55 55 55 55 55 62 60 56 55	Champ Ch	Champ 57	Champ 57 62 58 53 64 59 56 62 59 63 60 55 63 60 55 63 60 55 59 60 63 60 55 59 60 63 61 55 60 61 58 53 61 58 53 61 58 53 61 58 53 61 58 53 57 55 5 57 60 63 61 55 60 50 55 59 61 55 62 52 62 53 64 55 60 54 62 55 63 55 62 55 63 55 62 55 63 55 62 55 63 55 64 55 65	Champ 57	Champ 57

¹SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

³GI = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9a. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 1997 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹ RL ² FR ³ LB ⁴ Avg.	Brand / Name	BR ¹ RL ² FR ³ LB ⁴ Avg.
AgriPro		Public	
Big Dawg	-0.3 2.0 -3.8 -2.0 -1.0	2137	-7.7 -4.5 -6.8 -2.3 -5.3
Coronado	-3.3 -4.5 -9.0 -8.8 -6.4	2163	-4.3 -4.0 -6.5 -4.0 -4.7
Pecos	9.8 -9.8	Arapahoe	-3.7 -0.5
Tomahawk	-0.3 -4.0 -5.0 -1.8 -2.8	Custer	-2.7 -4.5 -3.8 -7.3 -4.5
(S) Elkhart	4.0 -4.0	Jagger	-8.0 -6.0 -7.5 -9.3 -7.7
		Karl 92	-8.3 -4.5 -108.5 -7.8
AGSECO		Karl 92-G	-7.7 -5.5 -9.3 -8.0 -7.6
12019 EXP	-7.07.8	KS84063-HW Exp	-5.0 -0.5 -4.3 -1.8 -2.9
7853	-5.0 -4.0 -7.5 -3.0 -4.9	KS940935 Exp	-5.3 -2.0 -6.3 -2.8 -4.1
7853-D	2.5	KS941064 Exp	-4.3 -4.0 -6.0 -4.3 -4.6
7853-VRTU	3.8	KS94H147Exp	1.0 -0.5 -1.8 -0.3 -0.4
Mankato	-7.3 -3.5	Niobrara	-3.0 -1.5
Northrup King		Scout 66	30.7 18.0 22.0 7.3 19.5
Northrup King	70.40	TAM 107	-8.3 -6.0 -5.8 -9.0 -7.3
(S) Coker 9474	7.8 -4.8	TAM 301	-1.02.3 -3.0
(S) Coker 9543	7.0	Tonkawa	0.0 -4.0 -6.5 -5.8 -4.1
(S) Coker 9663	3.8	Vista	0.3 0.0
Pioneer		(S) Caldwell (S) Cardinal	-4.7 -5.5 -6.0 -3.3 -4.9
(S) 2548	2.8	(S) Cardinal (S) Ernie	-1.7 -1.5 -1.3 -1.0 -1.4 -2.3 -4.0 -3.3 -7.3 -4.2
(0) 2040		(S) Jackson	1.3 -3.5 -4.3 -4.0 -2.6
Polansky		(6) 00000011	1.0 0.0 4.0 4.0 2.0
Dominator	-3.7 -3.5		
0	-	Test Average	-3.5 -3.3 -5.7 -4.4
Quantum	0.0	CV (%)	1.5 0.7 0.6 0.7
AP 7510	3.0	LSD (0.05)**	3.0 1.6 1.0 1.0
7504 	5.5		_
Star			
505	2.0		
560	4.5		
Champ	-4.0 -3.5 -7.5		
Terra			
(S) SR 204	-1.34.0 -1.8		
(S) SR 205	-4.74.5 -2.3		
(S) SR 211	-2.36.3 -4.8		
HR 153	-2.76.8 -3.3		

¹BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

²RL = Riley County test at Ashland Experiment Farm, Manhattan, KS.

³FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center, Parsons, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9b. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 1997 CENTRAL Kansas Winter Wheat Performance Tests.

Coronado -3.5 -4.5 -5.5 -8.0 -5.4	-4.3 -2.3 -4.3 -5.0 -3.9 -3.3 -2.8 -4.0 -7.0 -4.3 -2.3
Coronado -3.5 -4.5 -5.5 -8.0 -5.4 Hickok4.0 -6.3 -8.0 Pecos -5.0 -4.5 -7.3 -106.7 Tomahawk -3.0 -1.0 -4.0 -3.0 -2.8 Custer -2174 RGSECO Ike 2174 Respective	-3.3 -2.8 -4.0 -7.0 -4.3 -2.3
Hickok	-2.3
Pecos -5.0 -4.5 -7.3 -10. -6.7 Arapahoe Custer Tomahawk -3.0 -1.0 -4.0 -3.0 -2.8 Custer 2174 AGSECO Ike 2174 Ike	-1.0
Tomahawk -3.0 -1.0 -4.0 -3.0 -2.8 Custer 2174 AGSECO Ike	-3.0 -3.7 -5.3 -105.5 3.8 -5.0 -7.0 -2.8 -0.52.0 -3.8 -6.0 -7.0 -9.0 -6.4 -4.8 -4.8 -7.3 -106.7 -5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
AGSECO 7853	3.8 -5.0 -7.02.8 -0.52.03.8 -6.0 -7.0 -9.0 -6.4 -4.8 -4.8 -7.3 -106.7 -5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
AGSECO 7853 -4.0 -3.5 -5.5 -3.0 -4.0 Jagger -7853-D -4.0 -3.8 -5.0 -4.0 -4.2 Karl 92 -7853-VRTU -4.0 -3.8 -5.8 -4.0 -4.4 Karl 92-G -884063-HW Exp	-2.8 -0.52.03.8 -6.0 -7.0 -9.0 -6.4 -4.8 -4.8 -7.3 -106.7 -5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
7853	-3.8 -6.0 -7.0 -9.0 -6.4 -4.8 -4.8 -7.3 -106.7 -5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
7853-D -4.0 -3.8 -5.0 -4.0 -4.2 Karl 92 -7853-VRTU -4.0 -3.8 -5.8 -4.0 -4.4 Karl 92-G -884063-HW Exp -884063-H	-4.8 -4.8 -7.3 -106.7 -5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
7853-VRTU -4.0 -3.8 -5.8 -4.0 -4.4 Karl 92-G - Colby 94 -3.5 KS84063-HW Exp - Mankato -3.3 -2.5 -4.3 KS940935 Exp - KS941064 Exp KS94H147Exp KS94H147Exp Nekota Goertzen Niobrara Scout 66 2 2 G12017 Exp -4.0 -2.3 Scout 66 2 G1594 Exp -0.3 -2.0 TAM 107 G1878 -2.0 -4.0 TAM 301 Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-5.3 -5.0 -7.3 -117.1 -3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
Colby 94	-3.5 -0.3 -2.0 -3.0 -2.2 -4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
Mankato -3.3 -2.5 -4.3 KS940935 Exp AWWPA KS941064 Exp KS94H147Exp KS94H147Exp Goertzen Niobrara Niobrara Scout 66 2 G12017 Exp TAM 107 G1878 -2.0 -4.0 TAM 110 Polansky Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-4.5 -2.0 -3.0 -6.0 -3.9 -3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
AWWPA KS941064 Exp (W) Oro Blanco -2.5 -2.0 -4.0 -5.0 -3.4 Larned Goertzen Niobrara G12017 Exp 4.0 -2.3 Scout 66 2 G1594 Exp 0.3 -2.0 TAM 107 TAM 110 G1878 2.0 -4.0 TAM 301 TAM 301 Polansky Tonkawa Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-3.0 -2.8 -4.0 -5.0 -3.7 -3.3 1.0 -2.0 1.0 -0.8
AWWPA KS94H147Exp (W) Oro Blanco -2.5 -2.0 -4.0 -5.0 -3.4 Larned Goertzen Niobrara G12017 Exp 4.0 -2.3 Scout 66 2 G1594 Exp 0.3 -2.0 TAM 107 TAM 110 G1878 2.0 -4.0 TAM 301 TAM 301 Polansky Tonkawa Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-3.3 1.0 -2.0 1.0 -0.8
(W) Oro Blanco	
Nekota Niobrara Scout 66 2 Scout 66 2 Scout 66 Sco	
Goertzen Niobrara G12017 Exp 4.0 -2.3 Scout 66 2 G1594 Exp 0.3 -2.0 TAM 107 TAM 107 G1878 2.0 -4.0 TAM 301 TAM 301 Folansky Tonkawa Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-2.3 0.0 -2.0 1.0 -0.8
G12017 Exp4.0 -2.3 Scout 66 2 G1594 Exp0.3 -2.0 TAM 107 G18782.0 -4.0 TAM 301 Polansky Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-2.0
G1594 Exp0.3 -2.0 TAM 107 G18782.0 -4.0 TAM 110 TAM 301 TAM 301 Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	-1.8
G18782.0 -4.0 TAM 110 TAM 301 TAM 301 Tonkawa Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista	22.0 17.0 18.0 15.0 18.0
Polansky Dominator -3.8 -2.0 -4.3 -6.0 -4.0 TAM 301 Tonkawa Vista	-5.5 -5.0 -9.0 -117.6
PolanskyTonkawaDominator-3.8 -2.0 -4.3 -6.0 -4.0Vista	-4.8 -5.3 -9.0 -117.5
Dominator -3.8 -2.0 -4.3 -6.0 -4.0 Vista -	-4.8 -2.0 -3.0 -5.0 -3.7
	-4.3 -3.5 -4.8 -7.0 -4.9
	-1.8
	-2.0
	-4.8
AP 7510 -4.34.3	
75046.0 -6.5	
0	-3.4 -2.8 -4.8 -5.6
	0.4 2.7 0.7
	0.6 0.5 1.1
560 -4.3	
Champ -3.0 -2.0 -5.0	
Terra	
HR 1533.6 -6.0	

¹RP = Republic County test at North Central Experiment Field near Belleville, KS.

 $^{^{2}}$ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3}$ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁴SU = Sumner County test at Max Kolarik farm, Caldwell, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9c. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 1997 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹ TD ² GD ³ FD ⁴ Avg.	Brand / Name	EL ¹ TD ² GD ³ FD ⁴ Avg.
AuriPus		D. L.P.	
AgriPro		Public	
Big Dawg	1.8 2.8 3.0	2137	-1.5 -0.8 -0.5 -1.3 -1.0
Coronado	-3.3 -1.8	2163	-3.3 -2.0 -0.8 -1.3 -1.8
Hickok	-4.8	Akron	-1.3 -1.0 -0.5 -0.5 -0.8
Laredo	-2.3 -4.0 -2.0	Alliance	-0.5 -0.5 -0.3 -0.5 -0.4
Ogallala	-1.5 -1.8 -1.8 0.0 -1.3	Arapahoe	1.0 1.0 1.8 0.5 1.1
Pecos	-3.8	Custer	-3.0 -2.5 -1.3 -1.8 -2.1
Rowdy	-3.8 -3.3	Halt	-4.8 -3.8 -1.8 -3.8 -3.5
Tomahawk	-2.5	2174	-2.3
		lke	-2.3 -2.3 -2.0 -2.8 -2.3
AGSECO		Jagger	-5.0 -4.3 -2.3 -5.3 -4.2
7853	-3.8 -3.8 -1.8 -1.8 -2.8	Karl 92	-4.8 -3.0 -1.8 -5.0 -3.6
7853-D	-4.0 -4.3 -2.0 -1.5 -2.9	Karl 92-G	-5.0 -3.5 -1.8 -4.5 -3.7
7853-VRTU	-4.0 -4.3 -2.0 -1.8 -3.0	KS84063-HW Exp	0.8 1.5 2.5 1.8 1.6
9001	2.0 -0.8 -0.5	KS940935 Exp	-2.3 -0.3 -0.3 -0.8 -0.9
Colby 94	-0.3 1.3 2.0	KS941064 Exp	-0.8 0.3 2.8 0.0 0.6
Mankato	-3.5 -3.3 -2.0 -2.5 -2.8	KS94H147Exp	-0.3 1.0 1.5 2.0 1.1
		Larned	-1.8 -1.8 -1.5 -0.3 -1.3
AWWPA		Nekota	-0.5 -0.5 0.0 -0.5 -0.4
(W) Arlin	3.5	Niobrara	-1.0 -0.5 0.0 0.0 -0.4
		Scout 66	19.0 21.3 20.3 19.8 20.1
Goertzen		TAM 107	-5.8 -4.0 -2.3 -4.8 -4.2
G12017 Exp	1.0 -2.0	TAM 110	-5.5 -3.8 -2.0 -4.0 -3.8
G1594 Exp	1.3 1.0	Tonkawa	-1.3 -1.8 -1.0 -1.3 -1.3
G1720 Exp	2.3 0.8	Vista	0.3 -0.3 0.5 0.5 0.3
G1878	0.3 -0.8	Windstar	0.3 0.0 1.8 0.3 0.6
		Yuma	-2.8 -1.8 -0.5 -1.5 -1.6
Polansky		-	
Dominator	-0.8 -1.0		
Quantum		Test Average	-2.3 -1.6 -0.5 -1.4
	4.0	CV (%)	0.5 0.4 0.6 0.5
566	1.8	LSD (0.05)**	0.8 0.7 1.0 0.8
AP 7501	0.5		
AP 7510	1.5		
7406	3.3		
Star			
560	-1.8		
Champ	-2.8 -3.03.0		

 $^{^{1}}$ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS. 2 TD = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴FD = Finney County test at KSU Southwest Research Extension Center near Garden City, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9d. Heading (days +/- Newton, Newton heading listed as date in May) 1997 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹ TI ² GI ³ ST ⁴ Avg.	Brand / Name	SI ¹ TI ² GI ³ ST ⁴ Avg.
AgriPro		Star	
Big Dawg	2.3	Champ	-2.5
Coronado	1.0 -0.8 -3.0	Public	
Hickok	2.5 -2.3 -2.0 2.5 -1.8	2137	0.0 0.0 0.3 -2.0 -0.4
Laredo Ogallala	2.5 -1.8 2.0 -2.0 -2.0	2137	-3.3 -1.3 -1.5 -2.0 -2.0
Rowdy	2.0 -2.0 -2.0 2.3 -1.8 0.0	Akron	3.0 0.5 -1.0 1.0 0.9
Tomahawk	0.3	Alliance	-1.5 -0.3 -0.5 0.0 -0.6
	U.S	Custer	0.5 -2.0 -1.3 -2.0 -1.2
AGSECO		2174	-0.8
7853	-3.3 -3.0 -3.5 -1.0 -2.7	lke	0.3 -2.3 -2.3 0.0 -1.1
7853-D	-3.3 -3.3 -3.0 -1.0 -2.6	Jagger	-4.5 -3.3 -2.0 -4.0 -3.4
7853-VRTU	-3.5 -2.3 -3.3 -1.0 -2.5	Karl 92	-5.0 -2.0 -2.8 -4.0 -3.4
9001	1.5 -0.8 0.0	Karl 92-G	-4.0 -3.0 -2.5 -4.0 -3.4
Mankato	1.8 0.0	KS84063-HW Exp	0.5 2.3 0.8 0.0 0.9
		KS940935 Exp	0.3 0.0 0.0 -2.0 -0.4
AWWPA		KS941064 Exp	-1.3 0.0 -0.3 0.0 -0.4
(W) Arlin	-4.85.0	KS94H147Exp	0.8 1.5 0.5 0.0 0.7
(W) Oro Blanco	1.0	Newton	11.0 21.5 23.8 19.0 18.8
		TAM 107	-0.8 -3.5 -2.5 -4.0 -2.7
Drussel		TAM 110	-1.0 -3.0 -3.3 -4.0 -2.8
DSS-285	-0.3 -0.8 0.3 -3.0 -0.9	TAM 200	0.8 -0.5 -0.5 -1.0 -0.3
		TAM 301	-2.0
Goertzen		Tonkawa	-1.8 -1.3 -0.8 -2.0 -1.4
G12017 Exp	-2.01.3	Yuma	0.8 0.0 -1.0 1.0 0.2
G1594 Exp	1.0 1.0		
G1720 Exp	1.3		
G1878	-0.3 0.3	Test Average	-1.4 -1.2 -1.2 -1.6
		CV (%)	1.2 0.5 0.6
Polansky		LSD (0.05)**	1.8 0.9 1.0
Dominator	-2.0 0.0		
Quantum			
579	4.0		
AP 7501	0.3 -0.8		
AP 7510	1.8 -1.3 -1.0		
AP 7601	1.3 -0.8 0.0		
H1870 Exp	2.8		
7406	1.3 -1.5		

¹SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

³GI = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10a. Plant height (inches) 1997 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB	Avg.	Brand / Name	BR ¹	RL^2	FR ³	B LB Avg		
AgriPro						Public						
Big Dawg	34	38	32	37	35	2137	35	37	34	37	36	
Coronado	30	34	32	33	32	2163	32	35	31	36	33	
Pecos			31	31		Arapahoe	41	39				
Tomahawk	32	35	32	36	34	Custer	31	35	32	34	33	
(S) Elkhart			33	39		Jagger	34	35	29	36	34	
						Karl 92	31	36	34	35	34	
AGSECO						Karl 92-G	32	35	35	36	34	
12019 EXP	31		31			KS84063-HW Exp	34	39	36	39	37	
7853	34	37	35	36	35	KS940935 Exp	32	35	32	38	34	
7853-D				37		KS941064 Exp	31	34	31	34	32	
7853-VRTU				37		KS94H147Exp	34	37	34	35	35	
Mankato	33	39				Niobrara	38	41				
						Scout 66	45	48	40	46	45	
Northrup King						TAM 107	31	36	30	35	33	
(S) Coker 9474			30	34		TAM 301	29		27	33		
(S) Coker 9543				33		Tonkawa	33	36	32	35	34	
(S) Coker 9663				37		Vista	35	36				
Pioneer						(S) Caldwell	33 37	38 39	33 33	37 39	35 37	
(S) 2548				30		(S) Cardinal	37 29	39 36	33 26	34	31	
(3) 2340				30		(S) Ernie (S) Jackson	30	38	32	34	34	
Polansky						(<i>3)</i> Jackson			JZ			
Dominator	30	34										
						Test Average	33	37	32	36		
Quantum						CV (%)	5	4	5	4		
AP 7510		34				LSD (0.05)**	2	2	2	2		
7504		36										
Star												
505		33										
505 560		35										
Champ	 35	35 40	33									
		40	<u> </u>									
Terra												
(S) SR 204	33		32	37								
(S) SR 205	34		32	37								
(S) SR 211	31		32	35								
HR 153	33		34	35								
-												

 $^{^{1}}$ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS. 2 RL = Riley County test at Ashland Experiment Farm, Manhattan, KS.

 $^{^3}$ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center, Parsons, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10b. Plant height (inches) 1997 CENTRAL Kansas Winter Wheat Performance Tests.

Brand / Name	RP ¹ HV ² RN ³ SU ⁴ Avg.				Avg.	Brand / Name	RP ¹	ΗV	² RN ³ SU ⁴ Av		
AgriPro						Public					
Big Dawg	33	34	29	41	34	2137	34	33	29	39	34
Coronado	31	30	27	35	31	2163	30	31	27	37	31
Hickok		29	27	33		Alliance	34				
Pecos	28	28	27	34	29	Arapahoe	38				
Tomahawk	33	32	28	37	33	Custer	33	31	29	37	32
						2174		31	30	37	
AGSECO						lke	34	37		39	
7853	31	33	30	40	33	Jagger	31	34	30	38	33
7853-D	31	32	28	39	33	Karl 92	31	32	28	34	31
7853-VRTU	32	32	29	40	33	Karl 92-G	32	32	27	35	31
Colby 94	38					KS84063-HW Exp	35	36	31	41	36
Mankato	33	35	30			KS940935 Exp	33	32	28	37	32
						KS941064 Exp	31	30	27	36	31
AWWPA						KS94H147Exp	34	34	28	36	33
(W) Oro Blanco	29	29	28	35	30	Larned	40	41	33	42	39
						Nekota	32				
Goertzen						Niobrara	37				
G12017 Exp		33	29			Scout 66	41	44	33	46	41
G1594 Exp		35	31			TAM 107	31	31	28	34	31
G1878		34	29			TAM 110	32	30	28	36	32
						TAM 301	32	29	26	35	31
Polansky						Tonkawa	30	31	29	38	32
Dominator	29	30	26	35	30	Vista	31				
						Windstar	38				
Quantum						Yuma	31				
AP 7510	31		27								
7504		33	30								
Stor						Test Average	33	32	29	38	
Star	00					CV (%)	5	2	7	3	
505	32					LSD (0.05)**	2	1	2	2	
560	31					-					
Champ ————————————————————————————————————	35	35	31								
Terra											
HR 153		32	29								

¹RP = Republic County test at North Central Experiment Field near Belleville, KS.

²HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3}$ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^4}$ SU = Sumner County test at Max Kolarik farm, Caldwell, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10c. Plant height (inches)
1997 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD^2	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹ TD ² GD ³ FD ⁴ Avg					
AgriPro						Public						
Big Dawg	30	30	30			2137	31	30	30	30	30	
Coronado	29	27				2163	29	28	27	28	28	
Hickok	29					Akron	33	31	31	32	32	
Laredo	30	28	28			Alliance	30	30	30	31	30	
Ogallala	29	27	27	28	27	Arapahoe	33	34	32	34	33	
Pecos	29					Custer	30	29	27	27	28	
Rowdy	28	25				Halt	28	27	27	26	27	
Tomahawk	31					2174	31					
						lke	32	30	29	32	31	
AGSECO						Jagger	31	30	28	29	30	
7853	30	28	27	28	28	Karl 92	31	27	27	29	28	
7853-D	30	27	27	29	28	Karl 92-G	31	29	27	29	29	
7853-VRTU	30	28	27	28	28	KS84063-HW Exp	32	33	33	31	32	
9001		30	29	28		KS940935 Exp	29	28	27	28	28	
Colby 94	34	33	34			KS941064 Exp	29	27	26	27	27	
Mankato	34	32	31	31	32	KS94H147Exp	30	31	30	31	30	
						Larned	35	35	34	35	35	
AWWPA						Nekota	30	31	30	30	30	
(W) Arlin				30		Niobrara	34	34	32	33	33	
						Scout 66	37	37	36	36	36	
Goertzen						TAM 107	30	29	29	29	29	
G12017 Exp			31	31		TAM 110	32	28	30	29	29	
G1594 Exp			30	30		Tonkawa	30	29	29	29	29	
G1720 Exp			29	31		Vista	30	28	26	29	28	
G1878			30	28		Windstar	34	34	33	35	34	
						Yuma	31	29	28	28	29	
Polansky	00	00										
Dominator	29	28				Test Average	31	30	29	30		
Quantum						CV (%)	4	4	5	4		
566		35				LSD (0.05)**	2	1	2	1		
AP 7501		27										
AP 7510		28										
7406		31										
Star												
560	29											
Champ	32	32		32								

¹EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

²TD = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴FD = Finney County test at KSU Southwest Research Extension Center near Garden City, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10d. Plant height (inches) 1997 IRRIGATED Kansas Winter Wheat Performance Tests.

nd / Name SI ¹ TI ² GI ³ ST ⁴ Avg.						<u> </u>		GI	31	Avg
					Star					
					Champ	30				
					Dublis					
						00	00	00	0.5	0.4
										34
										31
										32
30										33
							_		_	30
	_									35
										33
28				32						30
	32									31
		40	34		•					36
						31	30			33
					•	28	29			31
29			32		KS94H147Exp	30	32	38	34	34
			30		Newton					
					TAM 107	24		38	32	31
					TAM 110					31
27	31	38	32	32			28	34	31	29
						_	 31		 32	 33
30		38								32
							J1	+0	- 55	
					Test Average	28	30	37	33	
28	29									
			32							
	 30 29 29 28 27 27 30 32 30	29 30 28 29 27 30 29 29 29 30 28 29 32 27 31 30 32 27 31 30 32 30 28 29 30 28 30 28 30	29 35 30 34 28 35 29 35 27 33 30 29 29 38 29 30 37 28 29 37 32 39 40 29 27 31 38 30 38 32 45 39 30 39 28 29 30 35 28 36 30 38 36	29 35 31 30 34 31 28 35 29 35 32 27 33 28 30 29 29 38 33 29 30 37 33 28 29 37 34 32 39 32 40 34 29 30 27 31 38 32 30 38 32 45 30 35 30 35 28 36 31 30 38 32 36	29 35 31 30 34 31 28 35 29 35 32 27 33 28 30 29 29 38 33 32 29 30 37 33 32 28 29 37 34 32 32 39 32 40 34 29 32 30 27 31 38 32 32 30 38 30 35 39 28 29 32 39 28 29 32 30 35 30 35 28 36 31 30 38 32 30 38	Champ 29 35 31 28 35 31 29 35 32 2163 27 33 28 Alliance 29 35 32 Alliance 27 33 32 32 Alliance 27 31 38 32 32 Karl 92-G 40 34 KS940935 Exp 32 39 32 KS940935 Exp 30 35 Newton 39 TAM 100 39 TAM 200 39 Test Average 30 35 28 36 31 28 36 31 30 38 32 30 36 30 36 30 30 38 32 30 30 38 32 30 36 30 36 30 30 38 32 30 30 38 32 30 30 38 32	29	Champ 30	Champ 30	Champ 30

¹SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research Extension Center near Colby, KS.

³GI = Greeley County test at KSU Southwest Research Extension Center near Tribune, KS.

⁴ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽S) = Soft red winter wheat.

⁽W) = Hard white winter wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 11. Lodging and disease ratings from 1997 Kansas wheat Performance Tests.

	FD Freeze	SU Lodge		f rust rat est, 9 = v		HV Soil-		FD Freeze	SU Lodge _		f rust rat est, 9 = v		HV Soil-
Brand/Name	Damage 4/30/97	%	RL	RN	SU	borne mosaic		Damage 4/30/97	%	RL	RN	SU	borne mosai
AgriPro							Star						
Big Dawg		25.0	2.0	3.5	2.3	1.0	505			8.3			
Coronado		10.0	6.0	6.5	7.7	1.0	560			4.0			
Hickok		47.5		4.5	8.0	1.0	Champ	1.5		6.0	6.5		1.0
Laredo							-						
Ogallala	2.0						Terra						
Pecos		40.0		7.0	9.0	1.0	(S) SR 204						
Rowdy							(S) SR 205						
Tomahawk		5.0	3.3	5.5	6.7	1.0	(S) SR 211						
(S) Elkhart							HR 153				8.0		1.0
AGSECO							Public						
12019 EXP							2137	2.0	2.5	3.3	7.0	8.0	
7853	3.0	52.5	7.0	8.0	8.0	1.0	2163	2.5		5.0	7.0	8.3	
7853-D	3.5	25.0		8.5	8.0	1.0	2180		0.0		5.0	8.0	1.0
7853-VRTU	3.0			8.0	8.6	1.0	Akron	2.0					
9001	2.5						Alliance	2.0					
Colby 94							Arapahoe	2.0		5.3			
Mankato	1.5		6.0	6.5		1.0	Custer	3.5	0.0	3.7	4.0	8.0	9.0
							Halt	3.0					
AWWPA							2174		5.0		7.0	7.7	1.0
(W) Arlin	4.0						Ike	1.5	0.0			9.0	1.0
(W) Oro Blanco		17.5		6.5	9.0	3.3	Jagger	1.5	50.0	3.0	5.0	7.0	1.0
Davisonal							Karl 92	2.0	0.0	9.0	8.5	9.0	1.0
Drussel							Karl 92-G	2.0	0.0	9.0	8.0	9.0	1.0
DSS-285							KS84063-HW Ex	2.5	52.5	3.0	3.0	6.3	1.0
Goertzen							KS940935 Exp	2.5	10.0	2.0	3.0	4.3	1.0
G12017 Exp	2.0			7.5		1.0	KS941064 Exp	3.5	17.5	2.3	6.0	7.3	1.0
G1594 Exp	2.0			8.0		1.0	KS94H147Exp	3.0	20.0	6.3	9.0	8.0	1.0
G1720 Exp	3.0						Larned	2.5	12.5		8.5	9.0	9.0
G1878	3.0			7.5			Nekota	2.0					
							Newton	4.0	0.0	9.0	9.0	8.3	1.0
Northrup King							Niobrara	2.0		8.3			
(S) Coker 9474							Scout 66	3.0	32.5	8.0	8.0	9.0	8.5
(S) Coker 9543							TAM 107	2.0	0.0	9.0	9.0	9.0	6.0
(S) Coker 9663							TAM 110	2.0	0.0		9.0	9.0	8.0
Diamage							TAM 200						
Pioneer							TAM 301		0.0		3.0	7.0	9.0
(S) 2548							Tonkawa	3.0	0.0	3.3	3.5	5.7	1.5
Polansky							Vista	1.5		6.0			
Dominator		35.0	4.7	6.5	8 N	1.0	Windstar	2.0					
		55.0	•••		5.0		Yuma	3.5					
Quantum							(S) Caldwell			6.7			
566							(S) Cardinal			4.7			
579							(S) Ernie			7.7			
AP 7501							(S) Jackson			4.7			
AP 7510			3.0	3.0			(5) 500110011						
AP 7601													
H1870 Exp							Test Average	2.5	16.1	5.4	6.5	7.8	2.2
			3.0	6.0		2.0	CV (%)		121.3	9.2	10.3	5.7	24.9
7504							LSD (0.05)**		22.9	8.0	1.4		0.8

¹ Freeze Damage rating taken 4/30/97 after 4/12/97 freeze. 1 = least damage, 10 = most damage. FD = Finney Dryland test, Garden City. SU = Sumner test, Caldwell; RL = Riley test, Manhattan; RN = Reno test, Hutchinson; HV = Harvey test, Hesston.

⁻⁻ indicates that variety was not entered at that location.

Table 12. Planted seed characteristics, coleoptile lengths, and Hessian fly ratings.

	1000	Tool	Caada	Cal			1000	Tank	Caada	0-1
Brand/Name	Seed weight (grams)	Test wt. (lb/bu)	Seeds per lb. (1000)	Col. length (in.)	Hess. fly*	Brand/Name	Seed weight (grams)	Test wt. (lb/bu)	Seeds per lb. (1000)	Col leng (in.
A avi Dva	(37					Ctor	(3 7			
AgriPro Big Dawg	35.8	56.9	12.7	4.3	9	Star 505	41.0	56.0	11.1	3.
Coronado	41.3	58.9	11.0	2.9	9 7	560	33.5	54.9	13.5	3.
								58.3		
Hickok	29.8	61.9	15.2	3.3	9	Champ	37.0	56.5	12.3	3.
Laredo	29.0	53.9	15.6	3.3	9	Terra				
Ogallala	27.8	55.5	16.3	3.5	9	(S) SR 204	32.0	59.0	14.2	3.
Pecos	33.5	57.8	13.5	3.0	2	(S) SR 205	25.8	53.2	17.6	3.
Rowdy	29.0	58.5	15.6	3.1	9	(S) SR 211	25.5	54.0	17.8	3.
Tomahawk	37.0	56.0	12.3	3.5	7	HR 153	32.0	57.8	14.2	2.
(S) Elkhart	37.0	55.8	12.3	3.7	6	-	02.0	01.0		
AGSECO						Public 2137	36.3	58.1	12.5	3.:
12019 EXP	27.5	58.2	16.5	3.3	2	2163	34.8	59.4	13.1	3.
7853	42.8	58.4	10.6	3.0	9					
7853-D	40.8	58.7	11.1		9	2180 Akron	32.0	55.3	14.2	3.
7853-VRTU	41.8	56.2	10.9		9	Akron	37.8	60.8	12.0	3.
9001	37.5	55.7	12.1	3.0	9	Alliance	30.3	53.7	15.0	2.
Colby 94	26.3	56.9	17.3	2.9	8	Arapahoe	31.8	56.0	14.3	3.
Mankato	35.8	57.6	12.7	2.8	4	Custer	27.5	55.9	16.5	3.
Λ \Λ (\Λ (\D Λ						Halt	34.3	59.2	13.2	3.2
AWWPA	00.0	50. 7	40.7	0.0	•	2174	24.0	54.7	18.9	3.
(W) Arlin	33.0	59.7	13.7	3.2	9	lke	29.5	58.3	15.4	3.2
(W) Oro Blanco	32.8	59.9	13.9	2.9	6	Jagger	37.5	61.0	12.1	3.7
Drussel						Karl 92	29.8	54.0	15.2	3.
DSS-285	38.8	61.7	11.7	3.2	8	Karl 92-G	29.5	54.3	15.4	
200 200	00.0	01		0.2		KS84063-HW Ex	33.0	58.0	13.7	3.
Goertzen						KS940935 Exp	35.5	59.5	12.8	3.2
G12017 Exp	35.3	56.6	12.9	3.9	9	KS941064 Exp	29.8	59.4	15.2	3.
G1594 Exp	34.0	59.9	13.3	4.6	2	KS94H147Exp	35.5	59.4	12.8	3.4
G1720 Exp	29.0	58.5	15.6	3.2	5	Larned	36.8	59.7	12.3	4.
G1878	38.0	61.2	11.9	3.6	9	Nekota	31.0	57.1	14.6	3.9
Jorthrup King						Newton	32.5	56.3	14.0	3.
Northrup King	22.2	E7.0	10.0	11	A	Niobrara	30.8	54.5	14.8	3.3
(S) Coker 9474	33.3	57.0	13.6	4.1	4	Scout 66	32.0	58.1	14.2	4.3
(S) Coker 9543	26.5	56.4	17.1	3.3	4	TAM 107	39.5	56.5	11.5	3.9
(S) Coker 9663	34.3	53.9	13.2	4.6	7	TAM 110	34.8	56.9	13.1	4.2
Pioneer						TAM 200	30.8	60.8	14.8	3.
(S) 2548	31.0	57.9	14.6	3.5	8	TAM 301	29.0	57.6	15.6	3.2
. ,					<u> </u>	Tonkawa	26.3	59.0	17.3	3.
Polansky						Vista	33.5	56.4	13.5	2.9
Dominator	29.8	60.6	15.2	3.2	3	Windstar	27.8	53.1	16.3	3.2
Quantum						Yuma	43.8	61.1	10.4	2.8
	20.0	E 1 7	1 <i>E C</i>	2.6	O	(S) Caldwell	27.0	51.9	16.8	3.
566	29.0	54.7	15.6	3.6	8	(S) Cardinal	30.8	55.2	14.8	3.
579	31.5	56.3	14.4	3.2	2	(S) Ernie	40.0	55.0	11.3	3.
AP 7501	29.8	58.2	15.2	3.1	1	(S) Jackson	36.5	54.0	12.4	3.0
AP 7510	30.0	57.1	15.1	3.3	4	Maximum	43.8	61.9	18.9	4.0
AP 7601	30.8	53.5	14.8	3.1	3					
H1870 Exp	35.8	56.3	12.7	3.2	9	Minimum	24.0	51.9	10.4	2.8
7504	27.3	53.3	16.6	3.7	9	Average	30.6	53.0	13.0	3.
7406	37.8	56.3	12.0	2.8	9					

Coleoptile lengths provided by T. Joe Martin, Kansas State University Agricultural Research Center - Hays. Tested at 65 degrees F. Semi-dwarf wheat coleoptile lengths will be longer if germinated under cooler temperatures.

Hessian fly ratings by J. Hatchett, USDA; 1 = highly resistant, 9 = highly susceptile. Tested with the Great Plains Hessian fly.

Table 13. Protein (% at 14% moisture) 1996 Kansas Winter Wheat Performance Tests.

			East					entra			West		Irrigated		
Brand / Name	BR	RL	FR	LB	Avg.	RP	ΗV	RN	SU	Avg.	TD	TI	GI	Avg	
AgriPro															
Coronado	14 8	12.8	14.5	16.1	14.6	12.8	16.2	14.9	16.5	15.1					
Hickok		12.8					15.9					13 6	13.7	13 7	
Laredo											13.7	13.9			
Longhorn											13.5				
Ogallala											14.7		14.5	14 7	
Pecos			13.4	15.2			15 3	14.2	15 2				13.3		
Rowdy				10.2							13.5	14.2			
Tomahawk	1/1 8	12.0	12 0			12.1	1/16	14.2	15.3						
Victory	14.0	12.0	12.5			11.9									
Big Dawg	1/1 Q	12.5	14.3	14.1			16.0				14.4				
(S) Elkhart	15.5		14.6		14.2	12.3	10.0	13.4			14.4				
` '	15.5		14.0												
(W) Platte															
(W) Solomon															
AGSECO	450	40.0	440	40.7	440	40.0	400	4	40.0	45.0	447	45.0			
7853	15.3	13.0	14.0	16.7	14.8	12.9	16.0	15.5	16.6	15.3	14.7	15.9			
9001											14.8	14.6	14.2	14.4	
Colby 94						11.3					13.4				
Mankato	13.6					11.4	13.2	14.5			14.1				
AWWPA															
(W) Arlin						13.0		16.8	15.9		14.4	15.4	14.3	14.9	
(W)KS84HW196Exp											13.7				
(W) Oro Blanco	14.4	12.3		14.6		11.4	14.6	14.6	16.1	14.2	13.5	13.3	13.5	13.4	
(W) Rio Blanco											14.0	14.4			
Century II															
(S) G2500	15.5	13 4	13.8	15 4	14.5	12 7	14 2	15.0							
Discovery					15.7				17 1	15.7					
Drussel	1 1.0		10.0	10.0	10.7	10.0	10.0		.,,,	10.7					
T81											13.1	12.8	12.8	12.8	
											10.1	12.0	12.0	12.0	
Northrup Kin			44.0	45.4											
(S) Coker 9474			11.6												
(S) Coker 9543				14.0											
(S) Coker 9803			12.7	14.6											
Ohlde															
(S) T441			11.8	13.7											
Pioneer															
(S) 2548				13.0											
(S) 2552				13.6											
Polansky															
Dominator	14.3	12.9	13.4			12.1	14.5	14.4				13.6	13.4	13.5	
Quantum															
AP 7501											14.0	14.2	13.8	14 (
AP 7510		13.2				12.0		14.9			14.0	13.7			
AP 7601		10.2				12.0							13.3		
													13.8		
WX92-3210 Exp		10.4					 17.0	 1 <i>E E</i>					13.0		
7504 500		12.4					17.0	15.5			 40.0				
566							 4		45.0		13.6				
579							15.7	14.6	15.8				14.0		
7406											12.8	12.4	12.6	12.5	

Table 13. Protein (% at 14% moisture) 1996 Kansas Winter Wheat Performance Tests.

			East				(entra	al		West Irrigated				
Brand / Name	BR	RL		LB	Avg.	RP				Avg.	TD	TI		Avg	
Star															
Champ	14.2	12.3	13.1			11.5	13.3	14.4							
Champ Extra			12.0				13.1								
Terra															
(S) SR 211	12.7		12.1	13.6											
(S) SR 204	12.6			14.0											
(S) SR 205	12.6			13.0											
HR 153	15.8			16.2			16.2	15.8							
Public															
2137	12.4	11.5	12.9	14.0	12.7	11.6	12.3	13.8	14.7	13.1	13.8	14.0	12.8	13.4	
2163								14.0			13.7			13.1	
2180								14.8							
Akron											13.3				
Alliance						10.9					12.7				
Arapahoe	13.8	13.0				11.8					14.3				
Arkan			16.1	15.3	15.1			15.0	16.2	15.3					
Custer								14.1			13.4	13.4	13.2	13.3	
Halt											14.4				
lke						12.4	15.0	15.5	16.5	14.9	15.2	14.4	14.4	14.4	
Jagger	15.7	12.5	15.2	16.1	14.9			15.8			15.2			14.9	
Jules											12.0				
Karl 92	13.5	12 3	13 2	17 0	14 0	12 1	14 0	15.8	16 1	14 5	15.4	15 1	14 7	14.9	
Larned								14.3			13.0				
Nekota						12.0					13.4				
Newton	15 4	12 0	14 1	13 9	13 9			14.0	15 2		13.4	13 0	13 1	13.1	
Niobrara		12.0				11.6					13.1				
Scout 66				14.7	13.7			14.5	14.9	14.1	14.0				
TAM 107								13.4			13.3	13 6	13 2	13.4	
TAM 200								13.6			13.4			13.2	
TAM 110								13.0			12.9			13.4	
Tonkawa	15.5	13.3	14 3	16.2	14 8			14.4			14.2			14.2	
Vista		11.8				11.5					14.1				
Yuma						11.4					12.3		11 8	11.9	
(S) Caldwell	13.5	10.3	11.9	12 9											
(S) Cardinal			12.4												
(S) Clark			14.1												
(S) Ernie			13.2												
(S) Excel			12.8												
(S) Freedom			15.0												
(S) Jackson			14.0												
(S) MO12258 Exp			14.3												
(3) 1113 12230 EAP	10.0	101		. 1.0	10.0										
Test Average	14.3	12.1	13.5	14.6		12.1	15.0	14.7	15.8		13.8	13.9	13.5		

ELECTRONIC ACCESS

For those interested in accessing crop performance testing information electronically, try visiting our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading. For now, the URL is http://www.ksu.edu/kscpt. It may change in the future, but if it does, you still should be able to find it from the main KSU page.

Excerpts from the

UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES*

Permission is hereby given to Kansas State University to test our varieties and/or hybrids designated on the attached entry forms in the manner indicated on the test announcement. I understand that all results from Kansas crop performance tests belong to the University and to the public and shall be controlled by the University so as to produce the greatest benefit to the public. It is further agreed that the name of the University shall not be used by the company in any commercial advertising either in regard to this agreement or any other related matter.

* This agreement must be signed by an authorized individual before results involving the company's entries can be published by the Experiment Station. Except for the limitation that the name "KANSAS STATE UNIVERSITY" cannot be used in advertising (you may use something like "official state tests" or "state yield trials"), this does not preclude the use of data for advertising, if done in a fair manner.

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, credit (author, name of work, name of university, date).

CONTRIBUTORS

MAIN STATION, MANHATTAN

Kraig Roozeboom, Associate Agronomist (Senior Author)
Rollin Sears, Wheat Breeder
Robert Bowden, State Extension Plant Pathologist
Leroy Brooks, State Extension Entomologist
Mary Knapp, KSU State Climatologist

RESEARCH CENTERS

Patrick Evans, Colby James Long, Parsons T.Joe Martin, Hays Alan Schlegel, Tribune Merle Witt, Garden City

EXPERIMENT FIELDS

Mark Claassen, Hesston W. Barney Gordon, Scandia William Heer, Hutchinson Keith Janssen, Ottawa Brian Marsh, Powhattan Victor Martin, St. John

Others providing information for this report:

P.J. McCluskey, Grain Science & Industry W.W. Bockus, Plant Pathology J.H. Hatchett, USDA Entomology

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 SRP 790 July 1997