Evaluation of force distribution within a dual special moment-resisting and special concentricbrace frame system

by

Christopher Wearing

B.S., Kansas State University, 2017

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Architectural Engineering and Construction Science and Management College of Engineering

> KANSAS STATE UNIVERSITY Manhattan, Kansas

> > 2017

Approved by:

Major Professor Kimberly Waggle Kramer, P.E., S.E.

Copyright

© Christopher Wearing 2017

Abstract

Dual Lateral Force Resisting Systems are currently required by code to include a Moment Resisting Frame capable of resisting at least 25% of the lateral loads. This thesis evaluates the seismic performance of a specific type of dual system: a Special Moment Resisting Frame-Special Concentric Brace Frame System (SMRF-SCBF) under three different force distributions. The three distributions were 80% - 20%, 75% - 25%, and 70% - 30% with the lesser force being allotted to the Special Moment Resisting Frame (SMRF) portion of the system.

In order to evaluate the system, a parametric study was performed. The parametric study consisted of three SMRF-SCBF systems designed with different seismic force distributions. The aim of this study was to determine accuracy of the three different seismic force distributions. The accuracy was measured by comparing individual system models' data and combined system models' data. The data used for comparison included joint deflections (both horizontal and vertical), induced moments at moment connections, brace axial loads, column shears, and column base reactions.

Two-dimensional models using the structural software RISA 3D were used to assist in designing the independent Seismic Force Resisting Systems. The designs of the frames were not finely tuned (smallest member size for strength), but were designed for drift (horizontal deflection) requirements and constructability issues. Connection designs were outside the scope of the study, except for constructability considerations – the SMRF and the SCBF did not have a common column; the frames were a bay apart connected with a link beam.

The results indicated that a seismic force distribution of 75% to the SCBF and 25% to the SMRF most accurately predicts that frame's behavior. A force distribution of 80% to the SCBF and 20% to the SMRF resulted in moderately accurate results as well.

A vast opportunity for further research into this area of study exists. Alterations to the design process, consideration of wind loads, or additional force distributions are all recommended changes for further research into this topic.

Table of Contents

List of Figures
List of Tables
Acknowledgements ix
Dedicationx
Chapter 1 - Introduction
Chapter 2 - Literature Review
Structural Robustness and Failure Mechanisms
Collapse Mechanisms under Seismic Excitation
Design Methods Applied to a Dual Moment-Resisting – Concentrically Braced Frame Seismic
Force Resisting System
Chapter 3 - Parametric Study
Design
Analysis17
Additional Design Notes17
Member Sizes
Results
Deflections
Load Combination 5
Load Combination 7
Column Base Reactions
Brace Axial Loads
Joint Moments
Internal Story Shears
Chapter 4 - Conclusion
Recommendations
References
References Not Cited
Appendix A - Load Calculations
Appendix B - Special Concentric-Brace Frame Design

Appendix C - Special Moment-Resisting Frame Design	
--	--

List of Figures

Figure 1: Resulting Deformed Shape, Adapted from Krishnan (Krishnan S., 2012) with	
permission from ASCE	5
Figure 2: Theory of Plastic Mechanism Control Design Procedure Flowchart, Adapted from	
Longo (Longo A., 2012)	8
Figure 3: Developed Pattern of Yielding, Adapted from Longo, (Longo A., 2012)	10
Figure 4: Building Framing Plan	12
Figure 5: Brace Frame Elevation	13
Figure 6: Frame Elevations with Member Labels	21
Figure 7: Frame Elevations with Joint and Column Labels (Dual System Frame)	23
Figure 8: Frame Elevations with Joint and Column Labels (Individual System Frames)	24
Figure 9: SCBF & SMRF Lateral Drifts (LC5)	26
Figure 10: SCBF & DUAL Lateral Drifts (LC5)	27
Figure 11: SMRF & DUAL Lateral Drifts (LC5)	29
Figure 12: SCBF & SMRF Lateral Drifts (LC7)	34
Figure 13: SCBF & DUAL Lateral Drifts (LC7)	35
Figure 14: SMRF & DUAL Lateral Drifts (LC7)	37

List of Tables

Table 1: Case I Member Sizes	. 19
Table 2: Case II Member Sizes	. 19
Table 3: Case III Member Sizes	. 20
Table 4: Summary of Elastic Drift Results (LC5)	. 31
Table 5: Summary of Elastic Drift Results (LC7)	. 39
Table 6: Column Base Reactions (Seismic Loads Only)	. 42
Table 7: Brace Axial Loads (Seismic Loads Only)	. 46
Table 8: Joint Moments (Seismic Loads Only)	. 48
Table 9: Internal Story Shears Deviations	. 51
Table 10: Internal Story Shears	. 52

Acknowledgements

I would like to acknowledge my graduate committee members for providing technical assistance and advice throughout the process of completing this Thesis. My committee members are Kimberly Kramer, P.E., S.E., F.ACI, Professor; Hayder Rasheed, Ph.D., P.E., F.ASCE, Professor; and Fred Hasler P.E., Associate Professor.

Dedication

I would like to dedicate this Thesis to my family, friends, and academic faculty who have supported me throughout my academic career. My parents, Ben and Betsy Wearing, have been particularly supportive and helpful during my time at Kansas State University.

Chapter 1 - Introduction

This thesis evaluates the seismic force distribution within a Special Moment-Resisting Frame – Special Concentric-Brace Frame dual system (SMRF-SCBF) designed using three different design seismic force distributions. Specifically, the accuracy of the three different seismic force distributions are presented. For this thesis, accuracy is defined as how closely the individual Seismic Force Resisting System (SFRS) results match the dual SFRS results. The range of force distributions analyzed is based around the American Society of Civil Engineers Structural Engineering Institute (ASCE/SEI) 7-10 Minimum Design Loads for Buildings and Other Structures mandated force distribution between the two individual systems of the dual Lateral Force Resisting Systems (LFRS) as it relates to the design of the dual system. An SMRF-SCBF is a dual LFRS that consists of a Special Moment Resisting Frame (SMRF) and a Special Concentric Brace Frame (SCBF). The most recent International Building Code (IBC), released in 2015, adopted the ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures, making this document code. In the ASCE/SEI 7-10, a dual LFRS is any system that combines two LFRSs together with the stipulation that one of these systems is a special or intermediate Moment Resisting Frame (MRF) capable of resisting no less than 25% of the lateral forces (Engineers, A. S., 2013).

A parametric study of a five-story building's SFRS was conducted using three load distributions. The five-story building is 150ft by 75ft in plan (five 30ft bays in the east/west direction and three 25ft bays in the north/south direction) with floor-to-floor heights of fourteen (14) feet for the first story and twelve (12) feet for the second, third, fourth, and fifth stories. Two-dimensional models using the structural software RISA 3D were used to assist in designing the independent SFRSs. The total seismic load for the building was divided between the two

independent SFRSs during the design. Following completion of the individual designs, combined analyses of the dual systems for the three load distributions were conducted. The three seismic-load distributions studied are:

- Case I with SCBF 80% of seismic loads and SMRF 20% of seismic loads
- Case II with SCBF -75% of seismic loads and SMRF -25% of seismic loads
- Case III with SCBF 70% of seismic loads and SMRF 30% of seismic loads.

These distributions were chosen around the ASCE/SEI 7-10 minimum for a dual system to have the SMRF capable of resisting a minimum of 25% or the lateral forces.

Chapter 2 - Literature Review

Research over SFRSs and their collapse mechanisms is presented in this chapter. It is crucial that design (idealized) models accurately predict the likely response of an SFRS during the Maximum Considered Earthquake (MCE). When the design of the structure does not accurately reflect the true behavior of that structure, it can lead to detrimental results.

Structural Robustness and Failure Mechanisms

In 2009, Ye Lieping authored *Failure Mechanism and its Control of Building Structures under Earthquakes Based on Structural System Concept.* This work focuses on failure mechanisms formed by tall steel moment-resisting frame buildings under seismic excitation (Ye L. P., 2008). Lieping's research has a strong emphasis on the structural robustness of a structural system. Within Lieping's work, structural robustness is defined as a structure's ability to, "...resist unexpected overloads induced by disasters, such as severe earthquakes and explosions," (Ye L. P., 2008). Hierarchies within the structural systems are a large component of discussion. Lieping defines a SFRS hierarchy of elements as (Ye L. P., 2008): vertical loadbearing; lateral load-bearing; potential plastic energy-dissipating; and special energy-dissipating elements. Design of SFRSs reflects this hierarchy via the overstrength factor, Ω_0 . Only certain elements within a SFRS are designed to experience inelastic deformations. In order to keep other elements of the SFRS elastic, the overstrength factor amplifies the seismic loads applied to the elements which are intended to remain elastic.

Structural robustness is considered the, or one of the, top benefits to utilizing a dual LFRS in lieu of a singular LFRS. However, the robustness and integrity of any structural system can be compromised if it is not correctly designed and analyzed. "In order to achieve higher robustness, a structural system should be designed to experience the desirable failure procedure

under the external actions" (Ye L. P., 2008). This excerpt from Lieping's work explains the direct link to a system's structural robustness and its failure mechanisms. It also explains that if the design of a structural system does not experience the desired yielding and/or failure mechanisms, the structural integrity of the system is compromised.

Undesirable failure mechanisms that structures experience are local failures. For example, when a soft story develops within an SMRF, it can prevent desired plastic hinging from occurring in the beams of the stories above or below it. This leads to exceptionally large localized stresses and inelastic deformations. These local failures can lead to the collapse of even the most ductile of systems.

Collapse Mechanisms under Seismic Excitation

Krishnan Swaminathan authored *Mechanism of Collapse of Tall Steel Moment-Frame Buildings under Earthquake Excitation*; this article was then published in 2012. The research presented in the article is over the collapse of two different tall, steel buildings from the 1985 Mexico City earthquake. Swaminathan conducted three-dimensional, non-linear analyses of the buildings with the aim of observing how these structures might have responded during the earthquake. From field observations after the earthquake, the collapse of these buildings was deemed to have been local failures, including column flange buckling and weld failure (Krishnan S., 2012).

One of the buildings Swaminathan analyzed was an 18-story building with an MRF. The building was subjected to the seismic motion from an earthquake that occurred in Northridge, CA in 1994. Plastic hinging occurred in the columns in the fourth and eighth stories leading to what Krishnan referred to as a quasi-shear band (QSB) mechanism forming (Krishnan S., 2012). This term is derived from the shear-like deformations which resemble, "plastic shear bands in

ductile solids that are severely (shear) strained," (Krishnan S., 2012). This implies that the damages have been disproportionately distributed within the structure. The localization of the building's inelastic deformations prevents plastic hinges that were intended to develop in additional elements both above and below the fourth and eighth stories from developing to the desired extent. Seismic excitation of the building lead to an undesired mechanism forming. In this particular case, the overall building failure mechanism was a QSB. Figure 1 shows the building's deformed shape.

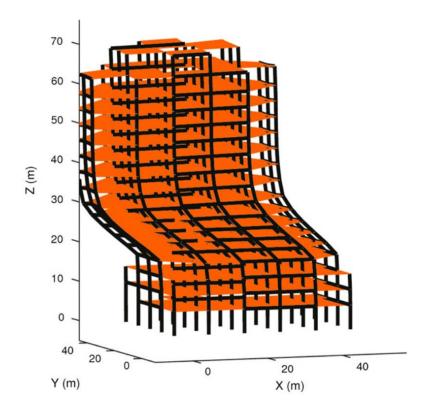
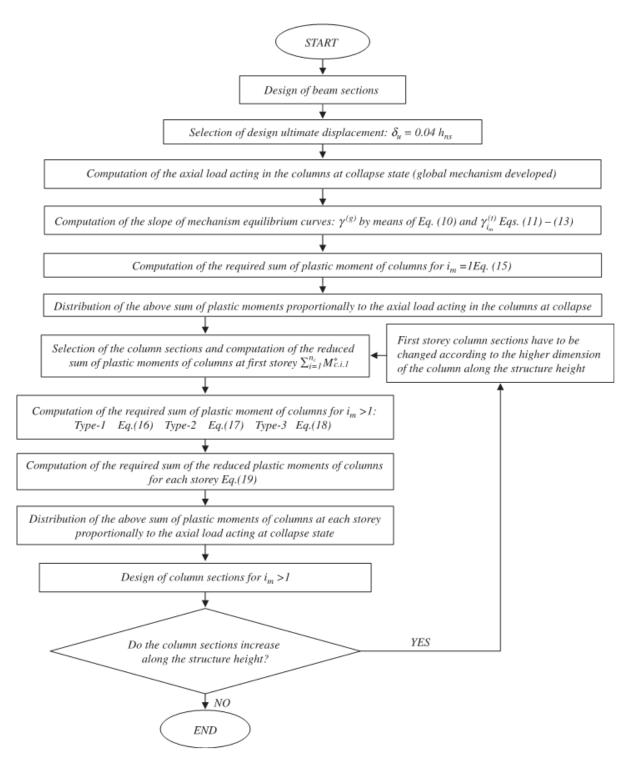


Figure 1: Resulting Deformed Shape, Adapted from Krishnan (Krishnan S., 2012) with permission from ASCE

The deformations in Figure 1 are amplified by a magnitude of five to clearly depict the building's response. The QSB resulted in a sidesway mechanism and ultimately failure due to the destabilization that occurred in the sidesway stories (Krishnan S., 2012). This reiterates the

point that if a structure's design does not accurately reflect the true response of the structure, the consequences can be catastrophic. Thus, the interest in determining if the force distribution mandate for dual LFRSs that is in place accurately reflects the true force distribution within that structural system.

Design Methods Applied to a Dual Moment-Resisting – Concentrically Braced Frame Seismic Force Resisting System


Alessandra Longo authored articles over dual SMRF-CBF systems including Moment frames – concentrically braced frames dual systems: Analysis of different design criteria and Failure Mode and Drift Control of MRF-CBF Dual Systems. These articles were published from approximately 2010 to 2015. A large portion of Longo's work is aimed at design methods currently used for dual LFRSs, and specifically SMRF-SCBF systems subjected to seismic loads. This research focuses on the collapse mechanism a building is likely to form during an extreme seismic event. A collapse mechanism can be defined as the mechanism formed by a structural system as it initially experiences structural failure. Structural engineers accept that global failure is the desired collapse mechanism of a structure. This should not be confused with progressive collapse. A global failure implies that the structure is stable under dead loads and minimal live loads after the maximum considered earthquake has occurred. Failure in this context is not necessarily an unwanted result since certain elements within SFRSs are designed such that they will experience inelastic deformations (failure) when a large seismic event takes place. Rather the aim of a global failure type response is that these inelastic responses throughout the structural system occur simultaneously and to the desired extent. If inelastic deformations within the structural system either do not develop simultaneously or reach unaccounted for magnitudes, the structural system's integrity can be compromised. "The collapse mechanism typology strongly

affects the energy dissipation capacity of structures subjected to destructive seismic events" (Longo A., 2012). This excerpt reiterates that the capacity and performance of a structure is heavily dependent on the collapse mechanism it forms.

The analyses methods used in Longo's studies included both push-over analyses and incremental dynamic analyses. These are common analysis methods used for design in areas of high seismicity or for Performance Based Design (PBD) projects. The modeling conducted for the parametric study presented in this thesis was a two-dimensional and linear-elastic analysis. This is a drastically different and less encompassing analysis method compared to Longo's work. However, for the aim of the study presented in this thesis, a two-dimensional and linear-elastic analysis is sufficient.

Longo's work focused on the Theory of Plastic Mechanism Control (TPMC) and presented significant data suggesting that TPMC is a superior design method than what is currently mandated in the European building codes. The European building codes mandates on dual systems is similar to American building codes in that there are not specific design rules pertaining to dual LFRSs. For this reason, dual LFRSs are typically designed independently with the requirements for the individual systems comprising the dual system being applied to the relevant individual LFRS. SMRF-SCBF systems were the SFRS of interest for Longo's work due to the appeal of exploiting the benefits of the two very common SFRSs. TPMC focuses on the energy induced into the SFRS during an earthquake. It requires rigorous energy balance calculations that account for post-buckling behavior and axial shortening/elongation of braces, the order in which plastic hinges will form within the MRF, distribution of column plastic moments, etc. (Longo A., 2012). In "Moment Frames – Concentrically Braced Frames Dual Systems: Analysis of Different Design Criteria," Longo provides the following design flowchart

for SMRF-SCBF using TPMC as the design method:

from Longo (Longo A., 2012)

It is evident in Figure 2 that TPMC design is a detailed and tasking design process. It requires the development of curves/graphs, exceptionally complex equations, moment distribution within the LFRS, etc. By comparison, the Equivalent Lateral Force Procedure (ELFP) per the ASCE/SEI 7-10 requires simple algebraic calculations along with table and figure look-ups. The simplicity of the ELFP should not be seen as an invalidation of itself; rather it is an efficient and effective method for analyzing seismic forces on low and mid-rise structures.

Longo's research indicates that the TPMC design process for the eight-story case study building was more successful in achieving a global failure mechanism than the current European building codes' design procedures. A similar result could be expected if TPMC and ELFP designs were carried out on an identical eight-story structure.

The framing used in Longo's study consisted of two bays of MRF and one bay of Concentric Brace Frame (CBF). The difference between the mechanisms formed by the two designs when subjected to seismic forces is reflected in Figure 3.

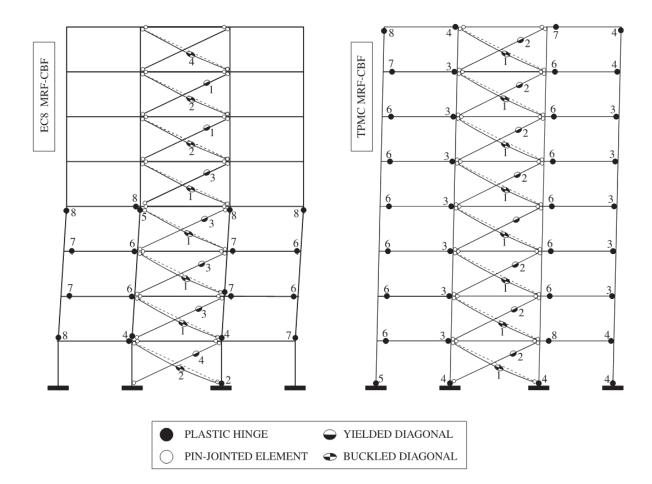
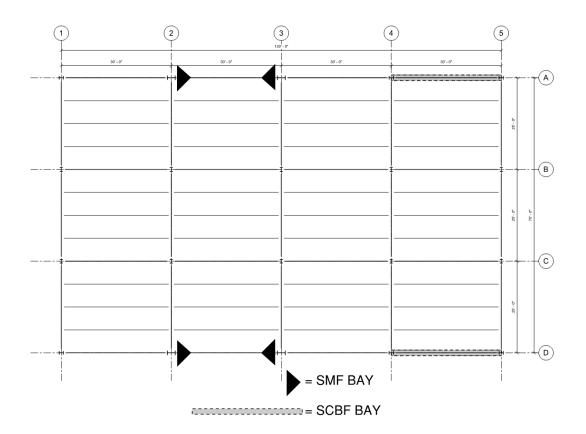
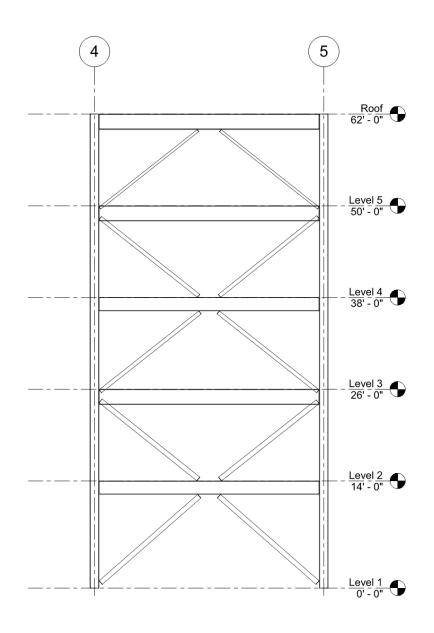


Figure 3: Developed Pattern of Yielding, Adapted from Longo, (Longo A., 2012)

When subjected to seismic forces, the TPMC design for the eight-story structure resulted in a perfectly global response. This is indicated on the right in Figure 3 where every desired plastic hinge within the frame has developed and every brace within the frame has experienced either tensile yielding or compression induced buckling. In contrast, the European Building Codes design shown on the left in Figure 3 resulted in a partially global response. This is primarily evident by the lack of plastic hinge development within the frame.


Longo found that the braced frame accounted for approximately 50% of the combined system's lateral stiffness for the TPMC design (Longo A., 2012). This makes sense given the

virtually perfect global failure mechanism formed by the system when subjected to seismic loads.


Longo's work indicates that TPMC is a valid design alternative to the current European codes' standards and practices. Although, the volume of computations and analyses required for TPMC design are notably more tasking than currently accepted design processes. For this reason, the application of TPMC design seems most relevant and applicable for PBD projects. However, for the greater majority of structures being designed and built, a less tasking design procedure is desirable.

Chapter 3 - Parametric Study

The parametric study was conducted on a five-story building located in Reno, NV. The building floor plan and location are identical to the floor plan and location used by Kansas State University Master of Science graduates, Eric Grusenmeyer in 2012 and Samuel Hague in 2013, for their research. The building floor plan consisted of five 30 foot bays in the east-west direction and three 25 foot bays in the north-south direction $(150^{\circ} - 0^{\circ})$ by 75' – 0" overall). The building's elevation is nearly identical to the elevation of the building Samuel Hague performed his study on totally approximately 60 feet in height (one 14' – 0" story and four 12' – 0" stories). The building floor plan and an example frame elevation are shown in Figure 4 and Figure 5.

Figure 4: Building Framing Plan

Figure 5: Brace Frame Elevation

Design

The design process for the parametric study was:

- 1. Determination of seismic loads
- 2. Allocation of seismic loads to SCBF and SMRF portions of the SFRS for each

Case

- 3. Design of the SCBF individually for each case
- 4. Design of the SMRF individually for each case

Determining the loads a system and its individual elements must withstand is a crucial step in any structural engineering design. There are several accepted methods used to determine the seismic loads. The method most commonly used in practice for low and mid-rise structures is the ELFP; this is the method used for this parametric study. The ELFP idealizes seismic energies induced into a building as static loads applied externally. This idealization greatly simplifies the determination of the seismic loads caused by the building seismic inertia.

The ELFP accounts for damping equal to 5% of the critical damping for the mapped values of ground motions corresponding to the maximum considered earthquake (Engineers, A. S., 2013). This is done because all structures have inherent damping within the structural system.

The ASCE/SEI 7-10 lists load combinations that structures must be designed to withstand. These load combinations aim to account for the likelihood that different types of loads will occur at the same time over the life of the structure. The two load combinations of interest for this study are load combinations 5 and 7, these load combinations account for seismic loads. The largest discrepancy between these two load combinations is the magnitude of gravity loads that is accounted. The two load combinations aim to emulate the worst case conditions for seismic system failures such as sliding or overturning.

The allocation of the seismic loads between the two systems was of special interest for the parametric study. The three different load distributions utilized for the study are:

Case I – SCBF = 80% of seismic loads (258.3 kips), SMRF = 20% of seismic loads (64.6 kips)

- Case II SCBF = 75% of seismic loads (242.2 kips) and SMRF = 25% of seismic loads (80.7 kips)
- Case III SCBF = 70% of seismic loads (226.0 kips) and SMRF = 30% of seismic loads (96.9 kips).

For each Case, the two SFRSs, SMRF and SCBF, were designed independent of one another before being analyzed together in the same two-dimensional model in RISA 3D. This permitted the SMRF to be designed to a quantifiable portion of the seismic loads. It is important that the SMRF's capacity has a quantified value because of the ASCE/SEI 7-10's requirement that the MRF portion of any dual LFRS has the capacity to withstand at least 25% of the lateral load.

Because these two systems were designed independently of each other, the drifts of the two systems were added together in order to check drift and stability limitations set by the ASCE/SEI 7-10 (i.e., the amplified drifts from the SCBF design and the SMRF design were added together and then compared to the serviceability limits set by the ASCE/SEI 7-10). The SCBF was designed first because the SMRF's design was likely to be governed by drift rather than capacity. After the SCBF was designed, the remaining allowable drift was used as the allowable drift limit for the SMRF design. Had the SMRF been designed first, it is likely that the remaining allowable deflection would have forced the SCBF's design to be governed by drift instead of strength. This would have resulted in a less economical design for the SFRS.

Two-dimensional models from RISA 3D were used to establish preliminary member sizes when designing both the SCBF and the SMRF. This next step in design was analysis of members and the frames as a whole. The analysis and design processes are inherently intertwined due to iterations or alterations to the design as design progresses. RISA 3D was used throughout the design process to calculate internal member forces as well as structural displacements of the frames.

Once a preliminary section was selected for the beams, columns, and braces, the design of these members began with hand calculations. Hand calculations were used to verify a section's capacity and ductility. Hand calculations are a great method for checking design since the opportunity for error is reduced relative to software calculations. In spreadsheets or analysis software, it is very easy to miss or incorrectly input data and/or improperly model a structure. These errors can be difficult to catch without an in-depth review of the software.

Hand calculations were performed for all members in the Case I load distribution. Microsoft Excel was then used to perform these same calculations. The hand calculations followed the example procedures laid out for SCBF and SMRF design per the AISC Seismic Design Manual. The hand calculations provided a convenient means of checking the spreadsheet calculations as the spreadsheet was developed. Once the spreadsheet was complete and verified, it was used to design the members for the other load Cases.

Seismic design is an inherently iterative process where a designer can spend virtually endless time trying to develop the absolute most economical design solution. For the parametric study conducted for this thesis, the design of both the SCBF and SMRF aimed toward a practical design in lieu of a more refined design. The results of the study could be less applicable towards industry practice if the designs were further honed. For this reason, maintaining a practical design was important to the study. Two key design decisions were made based off this criterion. Bracing sizes were changed every two stories instead of every story, totaling three different brace sizes per load Case (2nd & 3rd, 4th & 5th, roof). This method of design is common practice for a five-story structure such as the one used in this study. Similarly, the SMRF beams were

varied in this same pattern; every two stories the beam size changed, totaling three different beam sizes per load Case (2nd & 3rd, 4th & 5th, roof).

Analysis

Seismic loads were modeled as static point loads pushing against the frame during design. Modeling the seismic loads as point loads should result in a conservative design since the loads are not as evenly distributed as they will actually be. Upon the completion of the frame designs, the seismic loads were modeled as distributed lateral loads along the beams of the frame. This more accurately represents the transfer of the lateral loads from the diaphragms to the beams. The results used for comparisons and conclusions were outputs from the final RISA 3D models with the seismic loads modeled as distributed loads.

Additional Design Notes

The serviceability limits for the structure were a typical interstory drift limit slightly less than three inches (2.88") for all stories except for the second story (first elevated level) where the interstory drift limit was slightly more than three inches (3.36"). This discrepancy is due to a difference in story heights; the second story is elevated fourteen (14) feet above the first story while the rest of the story heights are all twelve (12) feet (see Figure 5). In order to meet these serviceability limits set by the ASCE/SEI 7-10, the bases for the SMRF columns were fixed instead of pinned. This design decision was deemed necessary after preliminary design showed that member sizes would have to be significantly larger sections (75% to 200% increases in structural weight) if the bases were pinned. Again, this was a product of satisfying serviceability limits. Fixing the bases of a MRF introduces additional complexities and steps to the design process of the foundation system and the column to foundation connection. These additional design requirements are outside the scope of this study.

The SFRS was designed, analyzed, and evaluated in one of the building's orthogonal directions. In practice, this process must be performed for both orthogonal directions of the building. It was deemed unnecessary to carry out design in both orthogonal directions for the scope of this study.

During the design of the individual SFRSs, both the SMRFs and SCBFs were analyzed assuming they were located between gridlines 2 and 3 along gridline A or D. When the frames were analyzed together, the SCBF was relocated so it was between gridlines 4 and 5 along gridline A or D (see Figure 4). This relocation led to a change in the gravity loads that column CL2 was subjected to (see Figure 6). The SCBF was relocated in lieu of the SMRF because the axial load of the SMRF columns is likely to have more of an effect on the SFRS design relative to the axial load of the SCBF columns. Thus, it is more reasonable to allow a variation in the SCBF column axial loads opposed to the SMRF column axial loads. The small variation of gravity loads on the SCBF columns should have a negligible effect on the frames' displacements.

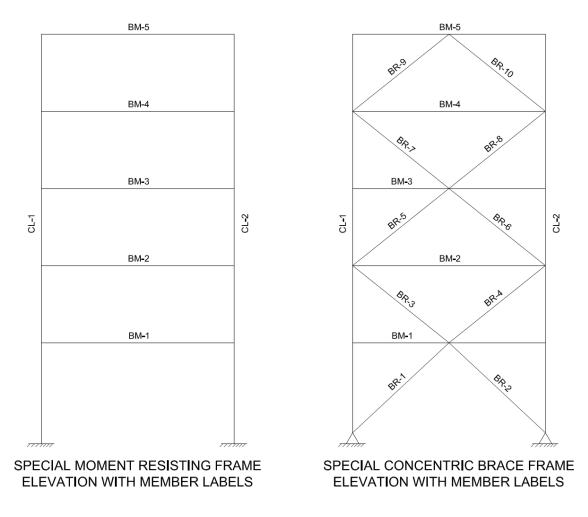
The SCBF could have been relocated between gridlines 3 and 4 along gridline A or D (see Figure 4). This placement would have negated the issue of the variable gravity loads on column CL2 (see Figure 6). However, as already stated, maintaining an applicable design was important to the study. Placing the SCBF and SMRF directly next to one another introduces numerous conflicts. Some of these conflicts are column size, connection design and constructability, column base connection design, etc. For these reasons, a so-called linking bay was maintained in order to separate the two frames and prevent these design conflicts from occurring.

Member Sizes

The Table 1, Table 2, and Table 3 present the member sizes for the various SFRSs designed for this study. The member labels in these tables correlate with the elevations shown in Figure 6.

Case	System	Member	Section
Case I	SCBF	CL-1 & 2	W14x68
		BM-1	W21x44
		BM-2	W24x68
		BM-3	W21x44
		BM-4	W24x68
		BM-5	W24x84
		BR-1, 2, 3, & 4	HSS7.50 x 0.312
		BR-5, 6, 7, & 8	HSS6.00 x 0.312
		BR-9 & 10	HSS4.00 x 0.226
	SMRF	CL-1 & 2	W24x207
		BM-1 & 2	W24x84
		BM-3 & 4	W24x76
		BM-5	W24x62

Table 1: Case I Member Sizes


Table 2: Case II Member Sizes

Case	System	Member	Section
Case II	SCBF	CL-1 & 2	W14x68
		BM-1	W21x44
		BM-2	W24x55
		BM-3	W21x44
		BM-4	W24x55
		BM-5	W24x68
		BR-1, 2, 3, & 4	HSS7.50 x 0.312
		BR-5, 6, 7, & 8	HSS6.00 x 0.280
		BR-9 & 10	HSS4.00 x 0.220
	SMRF -	CL-1 & 2	W27x258
		BM-1 & 2	W24x103
		BM-3 & 4	W24x84
		BM-5	W24x76

Case	System	Member	Section
Case III	SCBF	CL-1 & 2	W14x68
		BM-1	W21x44
		BM-2	W21x44
		BM-3	W21x44
		BM-4	W21x44
		BM-5	W24x68
		BR-1, 2, 3, & 4	HSS7.00 x 0.312
		BR-5, 6, 7, & 8	HSS6.00 x 0.250
		BR-9 & 10	HSS4.00 x 0.220
	SMRF -	CL-1 & 2	W27x258
		BM-1 & 2	W24x131
		BM-3 & 4	W24x103
		BM-5	W24x84

Table 3: Case III Member Sizes

The member sizes presented in Table 1,Table 2,Table 3 reflect the different force distributions used for design. Case I's design resulted in the largest member sizes for the SCBF members and the smallest member sizes for the SMRF. Case III's design resulted in the smallest member sizes for the SCBF members and the largest member sizes for the SMRF.

Figure 6: Frame Elevations with Member Labels

Results

The results of the parametric study are presented in this section. The results of interest for this study include joint deflections, column-base reactions, moments at the joints, braces' axial forces, and story shears in the SMRF columns.

Throughout this section, the term accuracy often is used. In the context of this study, accuracy is referring to how closely the individual SFRS values match the dual SFRS values. A high accuracy would imply that an individual SFRS (SCBF or SMRF) value is close to the SMRF-SCBF value. A low accuracy would imply that an individual SFRS (SCBF or SMRF)

value is not close to the SMRF-SCBF value. The meaning of accuracy within this study does not depend on the parameter or metric being discussed.

Deflections

The deflections presented are taken at each story along the columns. The deflections of each column are then graphed as a single data set input (i.e. the deflections of column CL-1 of the SCBF under Case I loading is one data set input). For reference of the location of joints and columns as they pertain to the data presented in this section, see Figure 7 below.

The drifts presented are the elastic drifts calculated from the computer models in RISA 3D. In order to account for the inelastic deformations of the SFRS and the additional drift that the inelastic deformations cause, the elastic drift must be multiplied by a drift amplification factor (C_d) given in the ASCE/SEI 7. Additionally, if reduced beam sections are used in the SMRF, an additional amplification of the elastic drift must be accounted for unless this reduced stiffness was accounted for in the computer model. The drifts were amplified as required for the design of the SFRSs. However, for comparing the deflections of the different SFRSs with each other, the drift amplification factor will do nothing but exaggerate any disparities that exist within the deflections. For that reason, the deflections presented in this section have not been amplified.

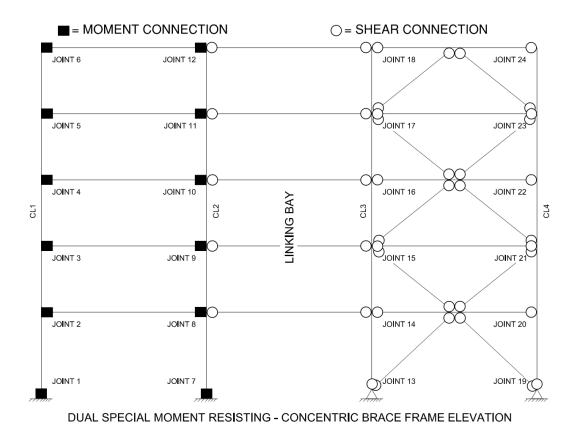
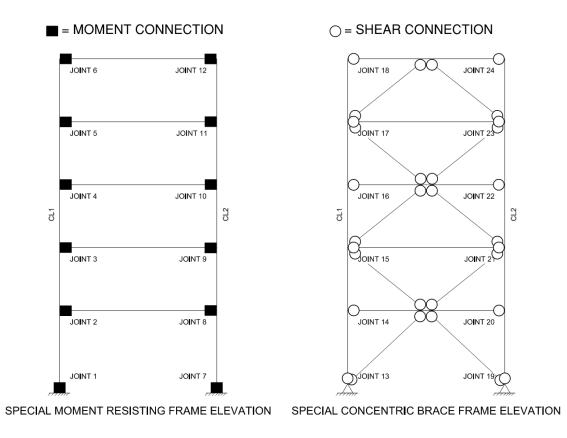



Figure 7: Frame Elevations with Joint and Column Labels (Dual System Frame)

Figure 8: Frame Elevations with Joint and Column Labels (Individual System Frames)

It is important to note that columns CL-1 and CL-2 in the SCBF elevation correlate with columns CL-3 and CL-4 in the dual frame system.

In the discussion pertaining to Design, it was noted that the drifts of the two systems were added together and that this sum was used to check serviceability limitations. This was done because the designs of the two individual SFRSs were carried out independently of one another before being analyzed together. The results presented in this section indicate that this summation and check method was a valid and accurate means of determining the global drift of the system subjected to the full magnitude of the expected seismic loads.

Only the deflections along column line CL1 are presented in the graphs for this section. When both the column line deflections are presented, the graphs quickly become cluttered making it difficult to interpret the results. When the results are presented in a numerical table format, results for both column lines is presented.

Load Combination 5

The following data was tabulated using Load Combination 5 ($(1.2 + .2S_{DS})D + \rho E + 0.5L + 0.2S$) from the ASCE/SEI 7-10 where (1):

- S_{DS} = design, 5% damped, spectral response acceleration parameter at short periods
- D = dead load
- ρ = redundancy factor based on the extent of structural redundancy present in a building
- E = earthquake load
- L = live load
- S = snow load

The snow load did not govern for the building used in the parametric study, and thus snow load was not applied in the load combination.

In Figure 9, Figure 10, and Figure 11 lateral drifts of the independent systems and the dual system are presented. These three graphs provide a comparison of the different drifts along the column lines for the SFRSs studied.

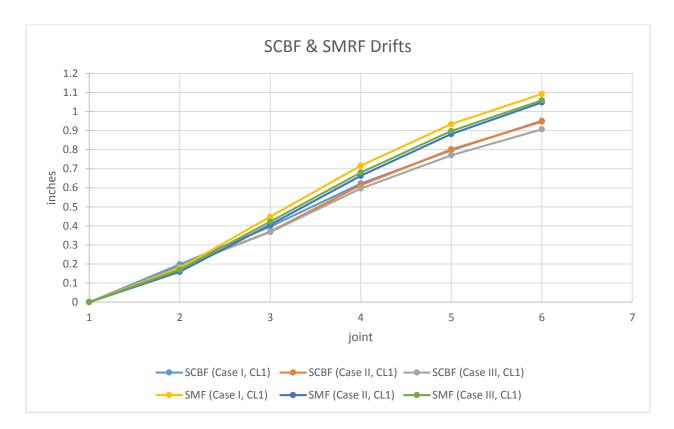


Figure 9: SCBF & SMRF Lateral Drifts (LC5)

The drifts pertaining to the designed SCBF and SMRF systems when subjected to load combination 5 are depicted in Figure 9. Joint 1 is located at the base of the column, joint 2 is located on the first elevated level (second floor), joint 3 is located on the second elevated level (third floor), joint 4 – fourth floor, joint five – fifth level, joint 6 is located at the roof level. The base of the columns for the SCBF are pinned and the base of the columns for the SMRF are fixed.

For the Case I designs, Figure 9 shows approximate deviations of: one fiftieth of an inch (0.02") at the second story – one twentieth of an inch (0.05") at the third story – one tenth of an inch (0.1") at the fourth story – three twenty-fifths of an inch (0.12") at the fifth story – seven fiftieths of an inch (0.14") at the roof story.

For Case II designs, Figure 9 shows approximate deviations of: one fiftieth of an inch (0.02") at the second story – three one-hundredths of an inch (0.03") at the third story – one twentieth of an inch (0.05") at the fourth story – two twenty-fifths of an inch (0.08") at the fifth story – one tenth of an inch (0.1") at the roof story.

For Case III designs, Figure 9 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one twentieth of an inch (0.05") at the third story – two twenty-fifths of an inch (0.08") at the fourth story – thirteen one-hundredths of an inch (0.13") at the fifth story – three twentieths of an inch (0.15") at the roof story.

This data suggests that the designs pertaining to Case II behaved most similarly to one another. The designs pertaining to Case III behaved least similarly to one another here.

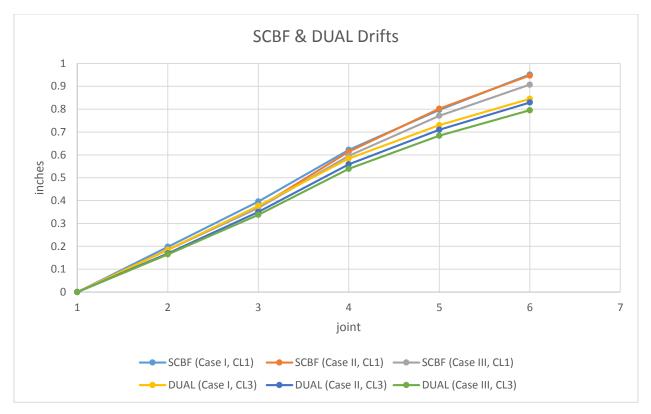


Figure 10: SCBF & DUAL Lateral Drifts (LC5)

Figure 10 displays the SCBF column line drifts with the SMRF-SCBF column line drifts. The closeness of these drifts is a sign that the designs of the SCBF systems accurately predicted the SCBF behavior within the SMRF-SCBF systems. The SMRF-SCBF system drifts trend to a lower maximum drift value than the SCBF systems. This indicates that there is additional stiffness in the SMRF-SCBF systems relative to the individual SCBF systems.

For the Case I designs, Figure 10 shows approximate deviations of: three two-hundredths of an inch (0.015") at the second story – one fiftieth of an inch (0.02") at the third story – one twenty-fifth of an inch (0.4") at the fourth story – three fiftieths of an inch (0.06") at the fifth story – one tenth of an inch (0.1") at the roof story.

For Case II designs, Figure 10 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one fiftieth of an inch (0.02") at the third story – one twentieth of an inch (0.05") at the fourth story – two twenty-fifths of an inch (0.08") at the fifth story – one tenth of an inch (0.1") at the roof story.

For Case III designs, Figure 10 shows approximate deviations of: three two-hundredths of an inch (0.015") at the second story – one fiftieth of an inch (0.02") at the third story – three fiftieths of an inch (0.06") at the fourth story – nine one-hundredths of an inch (0.09") at the fifth story – three twenty-fifths of an inch (0.12") at the roof story.

This data suggests that the designs pertaining to Case II behaved most similarly to one another. The designs pertaining to Case III behaved least similarly to one another here.

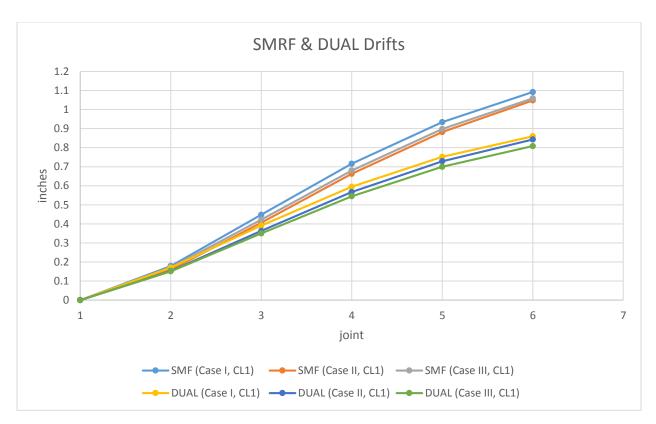


Figure 11: SMRF & DUAL Lateral Drifts (LC5)

Figure 11 shows SMRF-SCBF drifts with SMRF lateral drifts. Near the fourth story, some separation between the SMRF and SMRF-SCBF deflections begins to develop. The difference is largest at the sixth story where the magnitude of the difference is approximately a quarter of an inch (0.25"). This is a marginal difference for a five-story building subjected to high seismic forces.

For the Case I designs, Figure 11 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one twenty-fifth of an inch (0.04") at the third story – three twenty-fifths of an inch (0.12") at the fourth story – nine fiftieths of an inch (0.18") at the fifth story – one fourth of an inch (.25") at the roof story.

For Case II designs, Figure 11 shows approximate deviations of: less than one onehundredth of an inch (0.01") at the second story – one twentieth of an inch (0.04") at the third story – nine hundredths of an inch (0.09") at the fourth story – three twentieths of an inch (0.15") at the fifth story – one fifth of an inch (0.2") at the roof story.

For Case III designs, Figure 11 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one twentieth of an inch (0.05") at the third story – three twenty-fifths of an inch (0.12") at the fourth story – one fifth of an inch (0.2") at the fifth story – one quarter of an inch (0.25") at the roof story.

This data suggests that the designs pertaining to Case II behaved most similarly to one another. The designs pertaining to Case III behaved least similarly to one another here.

Figure 9, Figure 10, Figure 11 are useful in evaluating the performance and behavior of the frames. However, these figures only address the lateral drifts of the SFRSs. Drifts are a primary indicator used in this study to evaluate the three designs' accuracies; additional parameters can be of use. The overlapping that occurs within many of the figures can make it difficult to read and interpret many of the results from the study. For these reasons, the results of this portion of the study have been summarized in Table 4. In Table 4, horizontal drift is represented as the "X" direction and vertical deflection is represented as the "Y" direction.

Table 4: Summary of Elastic Drift Results (LC5)

	I							(COLUMN (LI									
System	Parameter		Case I	(80% - SC	BF, 20% -	SMRF)			Case II	(75% - SC	BF, 25% -	SMRF)			Case I	II (70% - S	CBF, 30%	- SMRF)	
		Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof
	δ Lateral (in)	0	0.198	0.396	0.622	0.797	0.951	0	0.185	0.37	0.614	0.802	0.947	0	0.185	0.368	0.596	0.771	0.907
SCBF	δ Vertical (in)	0	-0.043	-0.064	-0.094	-0.107	-0.112	0	-0.046	-0.069	-0.1	-0.114	-0.119	0	-0.049	-0.075	-0.106	-0.121	-0.126
	% Deviation (X)	0.0%	7.0%	5.0%	6.5%	9.2%	12.5%	0.00%	9.47%	5.71%	9.84%	12.96%	14.23%	0.00%	12.12%	8.88%	10.58%	12.72%	14.09%
	% Deviation (Y)	0.0%	2.4%	4.9%	4.4%	4.9%	48.3%	0.00%	4.55%	4.55%	5.26%	5.56%	49.02%	0.00%	6.52%	8.70%	8.16%	8.04%	48.76%
DUAL	δ Lateral (in)	0	0.185	0.377	0.584	0.73	0.845	0	0.169	0.35	0.559	0.71	0.829	0	0.165	0.338	0.539	0.684	0.795
(CL3)	δ Vertical (in)	0	-0.042	-0.061	-0.09	-0.102	-0.107	0	-0.044	-0.066	-0.095	-0.108	-0.112	0	-0.046	-0.069	-0.098	-0.112	-0.116
	δ Lateral (in)	0	0.179	0.448	0.716	0.934	1.092	0	0.159	0.406	0.663	0.882	1.048	0	0.17	0.422	0.68	0.898	1.059
SMRF	δ Vertical (in)	0	-0.028	-0.046	-0.059	-0.066	-0.067	0	-0.022	-0.036	-0.046	-0.051	-0.052	0	-0.021	-0.034	-0.044	-0.049	-0.05
	% Deviation (X)	0.0%	4.7%	14.6%	20.3%	24.2%	27.0%	0.00%	3.92%	11.85%	16.93%	20.99%	24.32%	0.00%	12.58%	20.57%	24.77%	28.29%	31.06%
	% Deviation (Y)	0.0%	0.0%	-2.1%	-1.7%	-2.9%	-2.9%	0.00%	0.00%	-2.70%	-2.13%	-3.77%	-3.70%	0.00%	-4.55%	-5.56%	-4.35%	-5.77%	-5.66%
DUAL	δ Lateral (in)	0	0.171	0.391	0.595	0.752	0.86	0	0.153	0.363	0.567	0.729	0.843	0	0.151	0.35	0.545	0.7	0.808
(CL1)	δ Vertical (in)	0	-0.028	-0.047	-0.06	-0.068	-0.069	0	-0.022	-0.037	-0.047	-0.053	-0.054	0	-0.022	-0.036	-0.046	-0.052	-0.053
								(COLUMN (CL2									
System	Parameter		Case I	(80% - SC	BF, 20% -	SMRF)			Case II	(75% - SC	BF, 25% -	SMRF)			Case I	II (70% - S	CBF, 30%	- SMRF)	
		Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof
	δ Lateral (in)	0	0.198	0.414	0.622	0.700													
SCBF		1	0.198	0.414	0.022	0.799	0.951	0	0.185	0.391	0.615	0.804	0.947	0	0.186	0.388	0.596	0.773	0.907
	δ Vertical (in)	0	-0.13	-0.224	-0.275	-0.107	0.951 -0.314	0	0.185 -0.127	0.391 -0.22	0.615 -0.27	0.804 -0.114	0.947 -0.309	0	0.186 -0.125	0.388 -0.215	0.596 -0.265	0.773	0.907 -0.303
	δ Vertical (in) % Deviation (X)	0 0.00%						, , , , , , , , , , , , , , , , , , ,											
			-0.13	-0.224	-0.275	-0.107	-0.314	0	-0.127	-0.22	-0.27	-0.114	-0.309	0	-0.125	-0.215	-0.265	-0.121	-0.303
DUAL	% Deviation (X)	0.00%	-0.13 4.76%	-0.224 7.25%	-0.275 8.17%	-0.107 9.18%	-0.314 13.21%	0	-0.127 6.32%	-0.22 8.31%	-0.27 11.21%	-0.114 12.96%	-0.309 14.93%	0	-0.125 9.41%	-0.215 10.54%	-0.265 11.82%	-0.121 12.72%	-0.303 14.66%
	% Deviation (X) % Deviation (Y)	0.00%	-0.13 4.76% 49.43%	-0.224 7.25% 44.52%	-0.275 8.17% 48.65%	-0.107 9.18% 4.90%	-0.314 13.21% 48.82%	0 0.00% 0.00%	-0.127 6.32% 49.41%	-0.22 8.31% 45.70%	-0.27 11.21% 49.17%	-0.114 12.96% 5.56%	-0.309 14.93% 50.00%	0 0.00% 0.00%	-0.125 9.41% 50.60%	-0.215 10.54% 45.27%	-0.265 11.82% 48.88%	-0.121 12.72% 8.04%	-0.303 14.66% 50.00%
DUAL	% Deviation (X) % Deviation (Y) δ Lateral (in)	0.00%	-0.13 4.76% 49.43% 0.189	-0.224 7.25% 44.52% 0.386	-0.275 8.17% 48.65% 0.575	-0.107 9.18% 4.90% 0.723	-0.314 13.21% 48.82% 0.84	0 0.00% 0.00% 0	-0.127 6.32% 49.41% 0.174	-0.22 8.31% 45.70% 0.361	-0.27 11.21% 49.17% 0.553	-0.114 12.96% 5.56% 0.703	-0.309 14.93% 50.00% 0.824	0 0.00% 0.00% 0	-0.125 9.41% 50.60% 0.17	-0.215 10.54% 45.27% 0.351	-0.265 11.82% 48.88% 0.533	-0.121 12.72% 8.04% 0.675	-0.303 14.66% 50.00% 0.791
DUAL (CL4)	% Deviation (X) % Deviation (Y) δ Lateral (in) δ Vertical (in)	0.00% 0.00% 0 0	-0.13 4.76% 49.43% 0.189 -0.087	-0.224 7.25% 44.52% 0.386 -0.155	-0.275 8.17% 48.65% 0.575 -0.185	-0.107 9.18% 4.90% 0.723 -0.209	-0.314 13.21% 48.82% 0.84 -0.211	0 0.00% 0.00% 0 0	-0.127 6.32% 49.41% 0.174 -0.085	-0.22 8.31% 45.70% 0.361 -0.151	-0.27 11.21% 49.17% 0.553 -0.181	-0.114 12.96% 5.56% 0.703 -0.204	-0.309 14.93% 50.00% 0.824 -0.206	0 0.00% 0.00% 0 0	-0.125 9.41% 50.60% 0.17 -0.083	-0.215 10.54% 45.27% 0.351 -0.148	-0.265 11.82% 48.88% 0.533 -0.178	-0.121 12.72% 8.04% 0.675 -0.201	-0.303 14.66% 50.00% 0.791 -0.202
DUAL	% Deviation (X) % Deviation (Y) δ Lateral (in) δ Vertical (in) δ Lateral (in)	0.00% 0.00% 0 0 0	-0.13 4.76% 49.43% 0.189 -0.087 0.181	-0.224 7.25% 44.52% 0.386 -0.155 0.448	-0.275 8.17% 48.65% 0.575 -0.185 0.716	-0.107 9.18% 4.90% 0.723 -0.209 0.933	-0.314 13.21% 48.82% 0.84 -0.211 1.089	0 0.00% 0.00% 0 0 0	-0.127 6.32% 49.41% 0.174 -0.085 0.16	-0.22 8.31% 45.70% 0.361 -0.151 0.406	-0.27 11.21% 49.17% 0.553 -0.181 0.663	-0.114 12.96% 5.56% 0.703 -0.204 0.882	-0.309 14.93% 50.00% 0.824 -0.206 1.046	0 0.00% 0.00% 0 0 0	-0.125 9.41% 50.60% 0.17 -0.083 0.171	-0.215 10.54% 45.27% 0.351 -0.148 0.422	-0.265 11.82% 48.88% 0.533 -0.178 0.68	-0.121 12.72% 8.04% 0.675 -0.201 0.898	-0.303 14.66% 50.00% 0.791 -0.202 1.057
DUAL (CL4)	% Deviation (X) % Deviation (Y) δ Lateral (in) δ Vertical (in) δ Lateral (in) δ Vertical (in)	0.00% 0.00% 0 0 0 0	-0.13 4.76% 49.43% 0.189 -0.087 0.181 -0.035	-0.224 7.25% 44.52% 0.386 -0.155 0.448 -0.058	-0.275 8.17% 48.65% 0.575 -0.185 0.716 -0.073	-0.107 9.18% 4.90% 0.723 -0.209 0.933 -0.082	-0.314 13.21% 48.82% 0.84 -0.211 1.089 -0.084	0 0.00% 0.00% 0 0 0 0	-0.127 6.32% 49.41% 0.174 -0.085 0.16 -0.028	-0.22 8.31% 45.70% 0.361 -0.151 0.406 -0.047	-0.27 11.21% 49.17% 0.553 -0.181 0.663 -0.06	-0.114 12.96% 5.56% 0.703 -0.204 0.882 -0.067	-0.309 14.93% 50.00% 0.824 -0.206 1.046 -0.069	0 0.00% 0.00% 0 0 0 0	-0.125 9.41% 50.60% 0.17 -0.083 0.171 -0.029	-0.215 10.54% 45.27% 0.351 -0.148 0.422 -0.048	-0.265 11.82% 48.88% 0.533 -0.178 0.68 -0.061	-0.121 12.72% 8.04% 0.675 -0.201 0.898 -0.069	-0.303 14.66% 50.00% 0.791 -0.202 1.057 -0.07
DUAL (CL4)	 % Deviation (X) % Deviation (Y) δ Lateral (in) δ Vertical (in) δ Lateral (in) δ Vertical (in) % Deviation (X) 	0.00% 0.00% 0 0 0 0 0 0 0 0.0%	-0.13 4.76% 49.43% 0.189 -0.087 0.181 -0.035 3.4%	-0.224 7.25% 44.52% 0.386 -0.155 0.448 -0.058 15.2%	-0.275 8.17% 48.65% 0.575 -0.185 0.716 -0.073 20.5%	-0.107 9.18% 4.90% 0.723 -0.209 0.933 -0.082 24.7%	-0.314 13.21% 48.82% 0.84 -0.211 1.089 -0.084 27.4%	0 0.00% 0.00% 0 0 0 0 0 0 0 0.00%	-0.127 6.32% 49.41% 0.174 -0.085 0.16 -0.028 1.91%	-0.22 8.31% 45.70% 0.361 -0.151 0.406 -0.047 12.15%	-0.27 11.21% 49.17% 0.553 -0.181 0.663 -0.06 17.14%	-0.114 12.96% 5.56% 0.703 -0.204 0.882 -0.067 21.49%	-0.309 14.93% 50.00% 0.824 -0.206 1.046 -0.069 24.67%	0 0.00% 0.00% 0 0 0 0 0 0.00%	-0.125 9.41% 50.60% 0.17 -0.083 0.171 -0.029 11.04%	-0.215 10.54% 45.27% 0.351 -0.148 0.422 -0.048 20.92%	-0.265 11.82% 48.88% 0.533 -0.178 0.68 -0.061 24.77%	-0.121 12.72% 8.04% 0.675 -0.201 0.898 -0.069 28.65%	-0.303 14.66% 50.00% 0.791 -0.202 1.057 -0.07 31.47%

When calculating the percent deviations, the SMRF-SCBF systems are used as the base value; the equation used to calculate the percent deviations is shown below. A positive percentage indicates that the SCBF or SMRF had a greater deflection than the SMRF-SCBF at that same joint. Likewise, a negative percentage indicates that the SCBF or SMRF had a smaller deflection than the SMRF-SCBF at that same joint. This means that a positive percent deviation indicates conservative design. Conservative results suggest that the dual SFRS showed more stiffness than the design accounted for. While this is still an inaccuracy, conservative results, especially where the deviation is small, are not as concerning as non-conservative results are. Low percentages are an indication that the design accurately predicted the behavior of the relevant frame.

% Deviation (X or Y) =
$$\frac{\delta_{(SCBF \text{ or } SMF)} - \delta_{SMR-CBF}}{\delta_{SMR-CBF}}$$

When examining the percent deviations, the magnitudes of the deflections should be considered. This is crucial when evaluating the results since some of the deflections are less than one tenth of an inch (0.1"). For example, the vertical percent deviation at the second story (Lvl. 2) of the SCBF under load Case I is close to fifty percent (50%). Alone, this percent deviation would indicate a large inaccuracy between the SCBF and SMRF-SCBF. However, considering the magnitudes show an approximate difference of only one twentieth of an inch (0.05"). This indicates that despite the relatively high percent deviation, the frames' responses are nearly identical.

The vertical percent deviations for column CL-2 of the SCBFs are generally much greater in value compared to the vertical percent deviations for column CL-1. This trend is attributed to the difference in the vertical loads column CL-2 is subjected to between the SCBF RISA 3D models and the SMRF-SCBF RISA 3D models. For this reason, the vertical deflections and

percent deviations pertaining to column CL-1 in the SCBFs are more valid compared to these same data pertaining to column CL-2.

Load Combination 7

The following data was tabulated using Load Combination 7 ((.9 - .2S_{DS})DL + ρ E) from the ASCE/SEI 7-10 where (1):

- S_{DS} = design, 5% damped, spectral response acceleration parameter at short periods
- D = dead load
- ρ = redundancy factor based on the extent of structural redundancy present in a building
- E = earthquake load

In the figures below (Figure 12, Figure 13, and Figure 14), lateral deflections of the independent systems and the dual system are presented. These three graphs provide a side-by-side comparison of the different deflections along the column lines for the SFRSs analyzed.

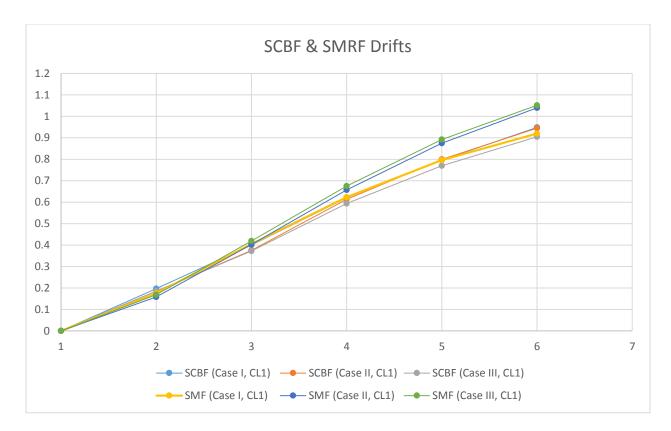


Figure 12: SCBF & SMRF Lateral Drifts (LC7)

Figure 12 displays the lateral deflections for the SCBFs and the SMRFs. As expected, the SCBFs consistently deflect less than the SMRFs. The difference between the SMRFs' and the SCBFs' collective deflections at any given story is not of significant magnitude.

For the Case I designs, Figure 12 shows approximate deviations of: one fiftieth of an inch (0.02") at the second story – one twenty-fifth of an inch (0.04") at the third story – nine one-hundredths of an inch (0.09") at the fourth story – thirteen one-hundredths of an inch (0.13") at the fifth story – seven fiftieths of an inch (0.14") at the roof story.

For Case II designs, Figure 12 shows approximate deviations of: one fiftieth of an inch (0.02") at the second story – three one-hundredths of an inch (0.03") at the third story – one twenty-fifth of an inch (0.04") at the fourth story – seven one-hundredths of an inch (0.07") at the fifth story – nine one-hundredths of an inch (0.09") at the roof story.

For Case III designs, Figure 12 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one twenty-fifth of an inch (0.04") at the third story – seven one-hundredths of an inch (0.07") at the fourth story – three twenty-fifths of an inch (0.12") at the fifth story – three twentieths of an inch (0.15") at the roof story.

This data suggests that the designs pertaining to Case II behaved most similarly to one another. The designs pertaining to Case I behaved least similarly to one another here.



Figure 13: SCBF & DUAL Lateral Drifts (LC7)

Figure 13 shows the SCBF deflections and the SMRF-SCBF deflections alongside one another. Similar to Figure 10, the SCBFs consistently deflect a slightly greater amount than the SMRF-SCBFs. This small disparity indicates that the SCBFs that are integrated in the SMRF-SCBFs are behaving slightly stiffer than they were assumed to during design. For the Case I designs, Figure 13 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – less than one one-hundredth of an inch (0.01") at the third story – one one-hundredth of an inch (0.01") at the fourth story – one fiftieth of an inch (0.02") at the fifth story – one twenty-fifth of an inch (.04") at the roof story.

For Case II designs, Figure 13 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – less than one one-hundredth of an inch (0.01") at the third story – one fiftieth of an inch (0.02") at the fourth story – one twenty-fifth of an inch (0.04") at the fifth story – one twentieth of an inch (0.05") at the roof story.

For Case III designs, Figure 13 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one one-hundredth of an inch (0.01") at the third story – one fiftieth of an inch (0.02") at the fourth story – one twenty-fifth of an inch (0.04") at the fifth story – one twentieth of an inch (0.05") at the roof story.

This data suggests that the designs pertaining to Case I behaved most similarly to one another. The designs pertaining to Case III behaved least similarly to one another here.

Figure 14: SMRF & DUAL Lateral Drifts (LC7)

The lateral deflections for the SMRFs and the SMRF-SCBFs are graphed in Figure 14. As was the case for Load Combination 5's results, the deflections of the independent SMRFs are greater than the SMRF-SCBFs' deflections. While the differences in deflections are small, Figure 14 shows the largest disparities between any individual SFRSs and the correlating SMRF-SCBF systems.

For the Case I designs, Figure 14 shows approximate deviations of: less than one onehundredth of an inch (0.01") at the second story – three one-hundredths of an inch (0.03") at the third story – two twenty-fifths of an inch (0.08") at the fourth story – thirteen one-hundredths of an inch (0.13") at the fifth story – three twentieths of an inch (0.15") at the roof story.

For Case II designs, Figure 14 shows approximate deviations of: less than one onehundredth of an inch (0.01") at the second story – one fiftieth of an inch (0.02") at the third story - one twentieth of an inch (0.05") at the fourth story – one one-hundredth of an inch (0.01") at the fifth story – three twenty-fifths of an inch (0.15") at the roof story.

For Case III designs, Figure 14 shows approximate deviations of: one one-hundredth of an inch (0.01") at the second story – one twenty-fifth of an inch (0.04") at the third story – one tenth of an inch (0.1") at the fourth story – three twenty-fifths of an inch (0.15") at the fifth story – nine fiftieths of an inch (0.18") at the roof story.

This data suggests that the designs pertaining to Case II behaved most similarly to one another. The designs pertaining to Case III behaved least similarly to one another here.

As discussed in Load Combination 5, the preceding figures (Figure 12, Figure 13, and Figure 14) are useful, but an alternative presentation of this data is desirable. Furthermore, additional parameters can be useful in evaluating the accuracy and performance of the SFRSs. Both of these demands are satisfied in Table 5 below.

Table 5: Summary of Elastic Drift Results (LC7)

	1						1	COLU	MN CL1				-					
Parameter		Case I	(80% - SC	CBF, 20% -	SMRF)			Case	II (75% - SC	CBF, 25% -	SMRF)			Case	III (70% - S	CBF, 30%	- SMRF)	
Taraneter	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof
δ Lateral (in)	0	0.197	0.4	0.621	0.796	0.949	0	0.185	0.375	0.613	0.8	0.945	0	0.185	0.372	0.594	0.77	0.905
δ Vertical (in)	0	0.003	0.012	0.004	0.003	0	0	0	0.007	-0.002	-0.004	-0.006	0	-0.003	0.002	-0.008	-0.01	-0.013
% Deviation (X)	0.0%	5.9%	1.8%	1.8%	2.7%	4.5%	0.00%	8.82%	2.46%	4.79%	6.24%	6.42%	0.00%	11.45%	5.38%	5.32%	6.21%	6.22%
% Deviation (Y)	0.0%	-25.0%	-25.0%	-50.0%	-57.1%	NA	0.00%	NA	-36.36%	-166.7%	-300.0%	NA	0.00%	NA	-75.00%	NA	400.00%	160.00%
δ Lateral (in)	0	0.186	0.393	0.61	0.775	0.908	0	0.17	0.366	0.585	0.753	0.888	0	0.166	0.353	0.564	0.725	0.852
δ Vertical (in)	0	0.004	0.016	0.008	0.007	0.005	0	0.002	0.011	0.003	0.002	0	0	0	0.008	0	-0.002	-0.005
δ Lateral (in)	0	0.178	0.443	0.708	0.924	1.08	0	0.158	0.403	0.657	0.875	1.04	0	0.169	0.419	0.675	0.892	1.052
δ Vertical (in)	0	-0.011	-0.018	-0.024	-0.027	-0.027	0	-0.008	-0.014	-0.018	-0.02	-0.02	0	-0.007	-0.012	-0.016	-0.018	-0.019
% Deviation (X)	0.0%	1.7%	9.4%	13.6%	16.1%	17.4%	0.00%	0.00%	6.90%	10.79%	13.49%	15.68%	0.00%	9.03%	15.11%	18.21%	20.54%	22.04%
% Deviation (Y)	0.0%	-8.3%	-5.3%	-4.0%	-3.6%	-6.9%	0.00%	-11.11%	-6.67%	-5.26%	-4.76%	-9.09%	0.00%	-12.50%	-14.29%	-11.11%	-10.00%	-9.52%
δ Lateral	0	0.175	0.405	0.623	0.796	0.92	0	0.158	0.377	0.593	0.771	0.899	0	0.155	0.364	0.571	0.74	0.862
δ Vertical (in)	0	-0.012	-0.019	-0.025	-0.028	-0.029	0	-0.009	-0.015	-0.019	-0.021	-0.022	0	-0.008	-0.014	-0.018	-0.02	-0.021
								COLU	MN CL2									
Paramotor		Case I	(80% - SC	CBF, 20% -	SMRF)		Case II (75% - SCBF, 25% - SMRF)							Case	III (70% - S	SCBF, 30% -	- SMRF)	
1 ai ailetei	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Roof
δ Lateral (in)	0	0.197	0.409	0.621	0.797	0.949	0	0.185	0.385	0.613	0.802	0.945	0	0.185	0.381	0.594	0.771	0.905
δ Vertical (in)	0	-0.083	-0.147	-0.177	-0.199	-0.202	0	-0.081	-0.143	-0.172	-0.193	-0.196	0	-0.078	-0.138	-0.166	-0.187	-0.19
% Deviation (X)	0.00%	4.23%	3.54%	3.16%	2.71%	4.98%	0.00%	6.32%	4.34%	6.06%	6.24%	6.90%	0.00%	9.47%	6.72%	6.64%	6.21%	6.72%
% Deviation (Y)	0.00%	29.69%	26.72%	30.15%	30.07%	30.32%	0.00%	30.65%	27.68%	30.30%	30.41%	31.54%	0.00%	30.00%	26.61%	29.69%	29.86%	31.03%
δ Lateral (in)	0	0.189	0.395	0.602	0.768	0.904	0	0.174	0.369	0.578	0.745	0.884	0	0.169	0.357	0.557	0.716	0.848
δ Vertical (in)	0	-0.064	-0.116	-0.136	-0.153	-0.155	0	-0.062	-0.112	-0.132	-0.148	-0.149	0	-0.06	-0.109	-0.128	-0.144	-0.145
δ Lateral (in)	0	0.179	0.443	0.708	0.924	1.079	0	0.159	0.403	0.658	0.875	1.038	0	0.169	0.419	0.675	0.892	1.051
δ Vertical (in)	0	-0.018	-0.03	-0.038	-0.043	-0.044	0	-0.015	-0.025	-0.032	-0.036	-0.037	0	-0.016	-0.026	-0.033	-0.037	-0.039
% Deviation (X)	0.0%	0.6%	9.7%	13.8%	16.5%	17.7%	0.00%	-0.63%	7.18%	10.96%	13.78%	15.72%	0.00%	7.64%	15.43%	18.21%	20.70%	22.21%
				0.5%	4.00/	2.20/	0.000/	0.00%	4.17%	3.23%	5.88%	5.71%	0.00%	6.67%	4.00%	3.13%	5 710/	8.33%
% Deviation (Y)	0.0%	0.0%	3.4%	2.7%	4.9%	2.3%	0.00%	0.0070	4.1770	3.2370	5.8870	5.7170	0.0070	0.0770	4.0070	3.1370	5.71%	8.3370
% Deviation (Y) δ Lateral (in)	0.0%	0.0%	3.4% 0.404	0.622	4.9% 0.793	0.917	0.00%	0.16	0.376	0.593	0.769	0.897	0.0070	0.157	0.363	0.571	0.739	0.86
	δ Vertical (in) $% Deviation (X)$ % Deviation (Y) $\delta Lateral (in)$ $\delta Vertical (in)$ $\delta Vertical (in)$ $\delta Vertical (in)$ % Deviation (X) % Deviation (Y) $\delta Lateral$ $\delta Vertical (in)$ $Parameter$ $\delta Lateral (in)$ $\delta Vertical (in)$ % Deviation (X) % Deviation (X) % Deviation (Y) $\delta Vertical (in)$ $\delta Vertical (in)$	Lvl. 1 δ Lateral (in) 0 δ Vertical (in) 0 % Deviation (X) 0.0% % Deviation (Y) 0.0% % Deviation (Y) 0.0% δ Lateral (in) 0 δ Vertical (in) 0 δ Vertical (in) 0 δ Vertical (in) 0 % Deviation (X) 0.0% % Deviation (X) 0.0% % Deviation (X) 0.0% % Deviation (X) 0.0% % Deviation (X) 0 δ Lateral (in) 0 δ Lateral (in) 0 δ Vertical (in) 0 % Deviation (X) 0.00% % Lateral (in) 0 δ Lateral (in) 0 δ Lateral (in) 0 δ Lateral (in) 0 δ Vertical (in)	Parameter Lvl. 1 Lvl. 2 δ Lateral (in) 0 0.197 δ Vertical (in) 0 0.003 % Deviation (X) 0.0% 5.9% % Deviation (Y) 0.0% -25.0% δ Lateral (in) 0 0.186 δ Vertical (in) 0 0.004 δ Lateral (in) 0 0.004 δ Lateral (in) 0 0.0178 δ Vertical (in) 0 -0.011 % Deviation (X) 0.0% -8.3% δ Lateral (in) 0 -0.012 % Deviation (Y) 0.0% -8.3% δ Lateral (in) 0 -0.012 % Deviation (Y) 0.0% -8.3% δ Lateral (in) 0 -0.012 % Deviation (Y) 0.0% -0.012 δ Lateral (in) 0 0.197 δ Vertical (in) 0 -0.083 % Deviation (X) 0.00% 4.23% % Deviation (Y) 0.00% 29.69% δ Lateral (in)	Parameter Lvl. 1 Lvl. 2 Lvl. 3 δ Lateral (in) 0 0.197 0.4 δ Vertical (in) 0 0.003 0.012 % Deviation (X) 0.0% 5.9% 1.8% % Deviation (Y) 0.0% -25.0% -25.0% δ Lateral (in) 0 0.186 0.393 δ Vertical (in) 0 0.004 0.016 δ Lateral (in) 0 0.004 0.016 δ Lateral (in) 0 0.178 0.443 δ Vertical (in) 0 -0.011 -0.018 % Deviation (X) 0.0% 1.7% 9.4% % Deviation (Y) 0.0% -8.3% -5.3% δ Lateral 0 0.175 0.405 δ Vertical (in) 0 -0.012 -0.019 δ Vertical (in) 0 -0.012 -0.019 δ Lateral (in) 0 0.197 0.405 δ Vertical (in) 0 -0.083 -0.147 % Deviation (X)	Parameter Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 δ Lateral (in) 0 0.197 0.4 0.621 δ Vertical (in) 0 0.003 0.012 0.004 δ Vertical (in) 0 0.003 0.012 0.004 δ Deviation (X) 0.0% 5.9% 1.8% 1.8% δ Deviation (X) 0.0% -25.0% -25.0% -50.0% δ Lateral (in) 0 0.186 0.393 0.61 δ Vertical (in) 0 0.004 0.016 0.008 δ Lateral (in) 0 0.178 0.443 0.708 δ Vertical (in) 0 -0.011 -0.018 -0.024 δ Deviation (X) 0.0% 1.7% 9.4% 13.6% δ Lateral (in) 0 -0.012 -0.019 -0.025 δ Vertical (in) 0 -0.012 -0.019 -0.025 δ Lateral (in) 0 0.197 0.409 0.621 δ Vertical (in)	Lvl. 1Lvl. 2Lvl. 3Lvl. 4Lvl. 5 δ Lateral (in)00.1970.40.6210.796 δ Vertical (in)00.0030.0120.0040.003% Deviation (X)0.0%5.9%1.8%1.8%2.7% δ Deviation (Y)0.0%-25.0%-25.0%-50.0%-57.1% δ Lateral (in)00.1860.3930.610.775 δ Vertical (in)00.0040.0160.0080.007 δ Lateral (in)00.1780.4430.7080.924 δ Vertical (in)0-0.011-0.018-0.024-0.027% Deviation (X)0.0%1.7%9.4%13.6%16.1% ϕ Deviation (X)0.0%-8.3%-5.3%-4.0%-3.6% δ Lateral00.1750.4050.6230.796 δ Vertical (in)0-0.012-0.019-0.025-0.028 δ Vertical (in)0-0.012-0.019-0.025-0.028 δ Vertical (in)00.1970.4090.6210.797 δ Vertical (in)0-0.083-0.147-0.177-0.199 ϕ Deviation (X)0.00%4.23%3.54%3.16%2.71% ϕ Deviation (X)0.00%29.69%26.72%30.15%30.07% δ Lateral (in)00.1890.3950.6020.768 δ Vertical (in)0-0.064-0.116-0.136-0.153	Parameter Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 δ Vertical (in) 0 0.006 5.9% 1.8% 1.8% 2.7% 4.5% δ Deviation (X) 0.0% -25.0% -50.0% -57.1% NA δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 δ Vertical (in) 0 0.014 0.016 0.008 0.007 0.005 δ Lateral (in) 0 0.178 0.443 0.708 0.924 1.08 δ Vertical (in) 0 -0.011 -0.018 -0.024 -0.027 -0.027 ϕ Deviation (X) 0.0% 1.7% 9.4% 13.6% 16.1% 17.4% ϕ Deviation (X) 0.0% -5.3% -4.0% -3.6% -6.9%	Parameter Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 δ Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% δ Deviation (Y) 0.0% -25.0% -25.0% -50.0% -57.1% NA 0.00% δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 δ Vertical (in) 0 0.178 0.443 0.708 0.924 1.08 0 δ Vertical (in) 0 -0.011 -0.018 -0.027 -0.027 0 δ Vertical (in) 0 0.175 0.405 0.623 0.796 0.92 0	Case I (80% - SCBF, 20% - SMRF) Case Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 2 δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% 8.82% % Deviation (Y) 0.0% -25.0% -25.0% -50.0% -57.1% NA 0.00% NA δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.17 δ Vertical (in) 0 0.014 0.016 0.008 0.007 0.005 0 0.002 δ Lateral 0 0.178 0.443 0.708 0.924 1.08 0 0.158 δ Vertical (in) 0 -0.012 -0.019 -0.0	Parameter Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 2 Lvl. 3 δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% 8.82% 2.46% % Deviation (Y) 0.0% -25.0% -25.0% -50.0% -57.1% NA 0.00% NA -36.36% δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.178 0.403 δ Vertical (in) 0 0.178 0.443 0.708 0.924 1.08 0 0.158 0.403 δ Vertical (in) 0 0.175 0.405 0.623 0.796 0.92 0 0.158 0.377	Case I (80% - SCBF, 20% - SMRF) Case II (75% - SCBF, 25% - Case II (75% - SCBF, 25% - Lvl. 1 Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 2 Lvl. 4 δ Lateral (in) 0 0.0197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 -0.002 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% 8.82% 2.46% 4.79% % Deviation (Y) 0.0% -25.0% -50.0% -57.1% NA 0.00% NA -36.36% -166.7% δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.17 0.366 0.585 δ Vertical (in) 0 0.017 0.403 0.024 -0.027 -0.027 0 -0.008 +0.014 -0.018 <tr< td=""><td>Case I (89% - SCBF, 20% - SMRF) Case II (75% - SCF, 25% - SMRF) Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 δ Lateral (in) 0 0.0197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 -0.002 -0.004 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% NA -36.36% -166.7% -300.0% δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.17 0.366 0.585 0.753 δ Vertical (in) 0 0.178 0.443 0.708 0.924 1.08 0 0.158 0.403 0.657 0.875 δ Vertical (in)</td><td>Parameter USUBLE CODE USUBLE CODE Case II (75% - SCBF, 25% - SWRF) Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 4 Lvl. 5 Roof δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 0.945 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 -0.002 -0.004 -0.006 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% NA -36.36% -166.7% -300.0% NA δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.11 0.003 0.002 0.01 δ Lateral (in) 0 0.118 0.024 -0.027 0 -0.014 -0.018 -0.02 0.02 0.021<td>Parameter Case I (5% - SUF, 25% - SUF) Case I (75% - SUF, 25% - SUF δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 0.945 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Deviation (Y) 0.0% 5.9% 1.8% 2.7% 4.5% 0.00% 8.82% 2.46% 4.7% 6.24% 6.42% 0.00% δ Lateral (in) 0 0.186 0.393 0.61 0.75 0.908 0 0.17 0.403 0.657 0.309 0.02 0 δ Vertical (in) 0 0.011 0.018 0.027 0.027 0 0.008 0.011 0.018<!--</td--><td>Parameter U Case U set U s</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Parameter Listal <thlistal< th=""> <thlista< th=""> <thlista< <="" td=""><td>Parameter Case II (75% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SC</td></thlista<></thlista<></thlistal<></td></td></td></tr<>	Case I (89% - SCBF, 20% - SMRF) Case II (75% - SCF, 25% - SMRF) Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 δ Lateral (in) 0 0.0197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 -0.002 -0.004 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% NA -36.36% -166.7% -300.0% δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.17 0.366 0.585 0.753 δ Vertical (in) 0 0.178 0.443 0.708 0.924 1.08 0 0.158 0.403 0.657 0.875 δ Vertical (in)	Parameter USUBLE CODE USUBLE CODE Case II (75% - SCBF, 25% - SWRF) Lvl. 1 Lvl. 2 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 3 Lvl. 4 Lvl. 5 Roof Lvl. 1 Lvl. 4 Lvl. 5 Roof δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 0.945 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0 0.007 -0.002 -0.004 -0.006 % Deviation (X) 0.0% 5.9% 1.8% 1.8% 2.7% 4.5% 0.00% NA -36.36% -166.7% -300.0% NA δ Lateral (in) 0 0.186 0.393 0.61 0.775 0.908 0 0.11 0.003 0.002 0.01 δ Lateral (in) 0 0.118 0.024 -0.027 0 -0.014 -0.018 -0.02 0.02 0.021 <td>Parameter Case I (5% - SUF, 25% - SUF) Case I (75% - SUF, 25% - SUF δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 0.945 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Deviation (Y) 0.0% 5.9% 1.8% 2.7% 4.5% 0.00% 8.82% 2.46% 4.7% 6.24% 6.42% 0.00% δ Lateral (in) 0 0.186 0.393 0.61 0.75 0.908 0 0.17 0.403 0.657 0.309 0.02 0 δ Vertical (in) 0 0.011 0.018 0.027 0.027 0 0.008 0.011 0.018<!--</td--><td>Parameter U Case U set U s</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Parameter Listal <thlistal< th=""> <thlista< th=""> <thlista< <="" td=""><td>Parameter Case II (75% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SC</td></thlista<></thlista<></thlistal<></td></td>	Parameter Case I (5% - SUF, 25% - SUF) Case I (75% - SUF, 25% - SUF δ Lateral (in) 0 0.197 0.4 0.621 0.796 0.949 0 0.185 0.375 0.613 0.8 0.945 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Vertical (in) 0 0.003 0.012 0.004 0.003 0 0 0.007 -0.002 -0.004 -0.006 0 δ Deviation (Y) 0.0% 5.9% 1.8% 2.7% 4.5% 0.00% 8.82% 2.46% 4.7% 6.24% 6.42% 0.00% δ Lateral (in) 0 0.186 0.393 0.61 0.75 0.908 0 0.17 0.403 0.657 0.309 0.02 0 δ Vertical (in) 0 0.011 0.018 0.027 0.027 0 0.008 0.011 0.018 </td <td>Parameter U Case U set U s</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Parameter Listal <thlistal< th=""> <thlista< th=""> <thlista< <="" td=""><td>Parameter Case II (75% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SC</td></thlista<></thlista<></thlistal<></td>	Parameter U Case U set U s	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter Listal Listal <thlistal< th=""> <thlista< th=""> <thlista< <="" td=""><td>Parameter Case II (75% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SC</td></thlista<></thlista<></thlistal<>	Parameter Case II (75% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (70% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SCBF, 25% - SCBF) Case II (75% - SCBF, 25% - SC

Generalities such as the significance of the numbers, how the deviation percentages were calculated, and keys to reading Table 5 are the same as they were for Table 4. For this information, please refer to the discussion directly under Table 4.

There are joints within the frames (that are not the column bases) which RISA 3D calculated no vertical deflection. RISA 3D calculates deflection values to the nearest one one-thousandth of an inch (.001"). This means that where RISA displays zero for the deflection, the calculated deflection is less than one two-thousandth of an inch (.0005"). The margin for error this rounding leaves is insignificant to the results of this study. Where the deflection was calculated to be zero, the percent deviation calculation cannot be used to draw any conclusions from the results. Instead, one must consider only the magnitudes of the deflections and the difference between them.

For a majority of the results, there is a greater variance in the performances and behaviors between the individual systems' (SCBF or SMRF) and the SMRF-SCBF system's in the results for load combination 7 compared to load combination 5. This trend is attributed to the reduction in gravity loads in load combination 7 relative to load combination 5. The additional gravity loads from load combination 5 dampen the frame, diminishing disparities between the SFRSs.

Column Base Reactions

This section analyzes results of the column base reactions of the various SFRSs from the study. The column base reactions of interest for this study are the shear, axial, and moment reactions.

It has been proven that when a structure is subjected to loading of any type, the forces will distribute themselves within that structure according to the stiffness' of the elements that make up the structure - the stiffest elements in a structure will take the majority of the load, and

the least stiff elements will take much less of the load. Forces will distribute within a structure directly proportional to the stiffness' of the structure's elements.

The SMRF and SCBF for each Case have been designed to take a quantified percentage of the lateral loads. When the systems are analyzed together in the same model, the forces should distribute proportional to the stiffness of the structural elements. The column base reactions of the models used for design and the reactions of the combined models can be compared to check the accuracy of the design's intended force distribution.

For Deflections, the relevant load combinations from the ASCE/SEI 7-10 were used. This was done to attain practical results that would be applicable for design purposes. For this section, no gravity loads will be considered, and only the seismic loads are applied. Gravity loads would introduce additional forces and because the parameters being discussed in this section are forces and not deflections, gravity forces would make interpreting the seismic force distribution within the frames more challenging than necessary.

Table 6 provides a summary of column base reactions for the study.

							COLUI	MN BASE	REACTIO	NS		_			
Case	Joint			S	Shear (k)				A	xial (k)	Moment (k-ft)				
Case	Label	DUAL	SCBF	SMRF	Deviation (k)	Deviation (%)	DUAL	SCBF	SMRF	Deviation (k)	Deviation (%)	DUAL	SMRF	Deviation (k-ft)	Deviation (%)
	J1	-18.5		-16.2	2.3	-12.5%	-26.6		-29.5	-3.0	11.2%	240.3	229.1	11.2	-4.6%
Case I	J7	-19.1		-16.1	3.0	-15.7%	26.6		29.5	-3.0	11.1%	244.7	229.1	15.7	-6.4%
Case I	J13	-61.7	-64.7		-3.0	4.9%	-181.2	-179.1		2.1	-1.1%				
_	J19	-62.1	-64.4		-2.3	3.7%	181.2	179.1		2.1	-1.1%				
	J1	-23.2		-20.2	3.0	-12.8%	-32.2		-35.3	-3.1	9.7%	326.5	309.6	16.9	-5.2%
Case II	J7	-24.1		-20.1	3.9	-16.3%	32.2		35.3	-3.1	9.7%	332.8	309.6	23.2	-7.0%
Case II	J13	-56.8	-60.7		-3.8	6.8%	-169.7	-167.9		1.8	-1.1%				
_	J19	-57.3	-60.4		-3.1	5.3%	169.7	167.9		1.8	-1.1%				
	J1	-24.9		-24.3	0.6	-2.5%	-38.4		-44.5	-6.0	15.7%	328.8	340.4	-11.7	3.5%
Casa III	J7	-25.5		-24.2	1.3	-5.3%	38.4		44.5	-6.0	15.7%	333.4	340.4	-7.0	2.1%
Case III	J13	-55.2	-56.6		-1.4	2.6%	-163.4	-156.7		6.7	-4.1%				
	J19	-55.8	-56.4		-0.5	1.0%	163.4	156.7		6.7	-4.1%				

Table 6: Column Base Reactions (Seismic Loads Only)

The grayed cells in Table 6 represent non-applicable data points.

The deviations for Table 6 were calculated using absolute values. Because of this, the sign of the percent deviations has the same implications as the tables with the deflection results; a positive percent deviation represents a conservative design, and a visa versa for a negative percent deviation. The percent deviations were calculated using the same equation presented in the discussion under Table 4.

The same rules concerning conservative or non-conservative design do not apply for the magnitude-based deviations in Table 6. Instead, when evaluating these deviations, a positive value represents a non-conservative design, and a negative value represents a conservative design.

In the context of evaluating the results presented in Table 6 and future tables in thesis, a conservative design indicates that the reaction observed through the model used for design was of a greater magnitude than the reaction observed through the combined dual frame model. A non-conservative design indicates that the reaction observed through the design model was of a lesser magnitude than the reaction observed through the combined dual frame model.

In an effort to assist in reading Table 6, Case I, joint seven's (7) row (second row down from the column headings) will be broken down column by column. Starting from the left, the first column shows a value of -19.1. This is the shear value at joint seven (7) that was measured in the combined model. The next column is a greyed out cell which is insignificant and can be skipped over. The next column to the right shows a value of -16.1. This is the shear value at joint seven (7) that was measured in the individual model for the SMRF. The next column to the right shows a value of 3.0. This is the absolute difference between the two shear values that were presented in the columns to the left of this one (19.1 - 16.1 = 3.0). The next column to the right displays -15.7%. This is the percentage of deviation between the two shear values of the

combined model and the individual model at joint seven (7). The next column over shows a value of 26.6. This is the axial load value at joint seven (7) that was measured in the combined model. The next column is a greyed out cell which is insignificant and can be skipped over. The next column to the right shows a value of 29.5. This is the axial load value at joint seven (7) that was measured in the individual model for the SMRF. The next column to the right shows a value of -3.0. This is the absolute difference between the two axial load values that were presented in the column to the left of this one (26.6 - 29.5 = -3.0), note that there is rounding occurring here). The next column displays 11.1%. This is the percentage of deviation between the two axial load values from the combined model and the individual model at joint seven (7). The next column over shows a value of 244.7. This is the moment value at joint seven (7) that was measured in the combined model. The next column is a greyed out cell which is insignificant and can be skipped over. The next column to the right shows a value of 229.1. This is the moment value at joint seven (7) that was measured in the individual model for the SMRF. The column next over shows a value of 15.7. This is the absolute difference between the two moment values that were presented in the column to the left of this one (244.7 - 229.1 =15.7, note that there is rounding occurring here). The last column displays -6.4%. This is the percentage of deviation between the two moment values from the combined model and the individual model at joint seven (7).

These results suggest that the designs for Case III are the most accurate, and the designs for Case II are the least accurate. All of the Cases' designs produced satisfactory results, with the greatest percent deviations being around 10% or less.

Much of these results present non-conservative deviations for the SMRF designs with the largest percent deviation from Table 6 being 16.3% for the shear at joint seven (J7). This is of

little concern, since the SMRF designs were all governed by drift and not capacity. The columns of the SFMs for every Case (joints J1 and J7) have approximately 80% - 85% spare capacity after checking combined loading, and even more spare capacity concerning shear.

The minor inaccuracies presented here should not impact the design of the SFRS members. The connection designs are more susceptible to being affected by the inaccuracies shown in Table 6. Failures such as flange or web local buckling, shear yielding, connecting element strength limitations, etc. could all occur where the results reflect a largely nonconservative design. This is far more likely to be an issue with the SCBF column design than the SMRF column design. This is because the SMRF columns are particularly robust due to the serviceability limitations for the design. The SCBF columns and connections should be designed for the maximum deliverable force from the braces and/or beams. If the member designs of the braces and/or beams remains unchanged and the SCBF columns have been properly designed, the likely hood that the column or connection will experience any type of failure should remain unaffected.

Brace Axial Loads

This section analyzes the axial loads carried by the bracing within the SCBF and the SMRF-SCBF systems.

For the same reasons discussed in Column Base Reactions, only the seismic loads were applied to attain the results for this section. The axial loads shown are the loads induced into the frames by the seismic design force without the overstrength factor applied. The reasons that brace axial loads are of interest relate back to the stiffness and force distribution discussion located toward the beginning of Column Base Reactions. Please see Table 7 below for the brace axial load data.

						BRACE A	XIAL LOADS (k)						
Member			Case I			-	Case II		Case III				
Label	DUAL	SCBF	Deviation (k)	Deviation (%)	DUAL	SCBF	Deviation (k)	Deviation (%)	DUAL	SCBF	Deviation (k)	Deviation (%)	
BR1	-84.7	-88.6	-3.9	4.6%	-78.1	-83.0	-5.0	6.4%	-75.8	-77.5	-1.7	2.3%	
BR2	85.6	88.6	-3.0	3.6%	79.0	83.1	-4.0	5.1%	76.9	77.5	-0.6	0.8%	
BR3	78.6	74.8	3.8	-4.8%	73.9	70.5	3.4	-4.6%	71.3	65.7	5.6	-7.9%	
BR4	-77.6	-74.9	2.8	-3.6%	-72.9	-70.6	2.3	-3.2%	-70.1	-65.8	4.4	-6.2%	
BR5	-61.5	-60.5	1.0	-1.6%	-57.3	-56.3	1.0	-1.7%	-54.8	-52.7	2.1	-3.8%	
BR6	63.7	60.5	3.2	-5.0%	59.5	56.3	3.2	-5.4%	57.2	52.7	4.6	-8.0%	
BR7	43.8	40.8	3.0	-6.8%	41.5	38.2	3.3	-8.0%	39.8	35.6	4.2	-10.5%	
BR8	-41.5	-40.8	0.7	-1.7%	-39.2	-38.1	1.1	-2.8%	-37.2	-35.6	1.6	-4.4%	
BR9	-12.5	-13.7	-1.2	9.8%	-13.5	-13.1	0.5	-3.6%	-12.7	-12.2	0.5	-4.1%	
BR10	12.8	13.7	-0.9	6.8%	13.8	13.1	0.8	-5.6%	13.0	12.2	0.9	-6.5%	

 Table 7: Brace Axial Loads (Seismic Loads Only)

Refer to discussion under Table 6 to appropriately interpret the deviations.

In an effort to assist in reading Table 7, brace BR3's row (third row down from the column headings) will be broken down column by column. Starting on the left, the first column shows a value of 78.6. This is the axial load that brace BR3 in Case I's design developed in the combined model. The next column over shows a value of 74.8. This is the axial load that brace BR3 in Case I's design developed in the individual model. The next column to the right shows a value of 3.8. This is the absolute difference between the two values in the columns to the left (78.6 - 74.8 = 3.8). The next column over displays -4.8%. This is the percentage of deviation between the two axial load values from the combined model and the individual model for brace BR3 for Case I's design. The next column to the right shows a value of 73.9. This is the axial load that brace BR3 in Case II's design developed in the combined model. The next column to the right shows a value of 70.5. This is the axial load that brace BR3 in Case II's design developed in the individual model. The next column to the right shows a value of 3.4. This is the absolute difference between the two values in the columns to the left of the right shows a value of 3.4. This is the absolute difference between the two values in the column shows a value of 3.4. This is the absolute difference between the two values in the column shows a value of 3.4. This is the absolute difference between the two values in the columns to the left (71.3 – 65.7 = 3.4). The next

column displays -4.6%. This is the percentage of deviation between the two axial load values from the combined model and the individual model for brace BR3 for Case II's design. The next column to the right shows a value of 71.3. This is the axial load that brace BR3 in Case III's design developed in the combined model. The next column to the right shows a value of 65.7. This is the axial load that brace BR3 in Case III's design developed in the individual model. The next column over shows a value of 5.6. This is the absolute difference between the two values in the columns to the left (71.3 – 65.7 = 5.6). The next column displays -7.9%. This is the percentage of deviation between the two axial load values from the combined model and the individual model for brace BR3 for Case III's design.

The deviations pertaining to Case II designs are the most consistent, while the deviations pertaining to Case I seem to be the most overall accurate. All three Cases' designs produced good accuracy, with the largest percent deviation being -10.5% for BR7 for the Case III design. Remember that for this thesis, accuracy is defined as how closely the individual SFRS results match the dual SFRS results.

The negative deviations in Table 7 are slightly concerning since the sizes of the braces for all three designs were based off the member capacities. It is not a surprise that the deviations tend to reflect a non-conservative design since SCBFs are inherently much stiffer than SMRFs. Because the SCBF is stiffer, the bracing will take most all of the loading until either it loses stiffness via inelastic deformations or the drift becomes large enough that the SMRF engages. The largest magnitude of deviation is only 5.6 kips correlating to a percent deviation of -7.9%. This value is not concerning when the magnitude of the axial load is considered. The dual frame model showed an axial load magnitude of 71.3 kips compared to 65.7 kips from the individual

model. The magnitudes of deviations in Table 7 are never of a great enough magnitude to be concerning, and are unlikely to influence the braces' designs.

Joint Moments

This section analyzes the internal moments at the joints within the SMRF and the SMRF-SCBF systems. The only joints within the SMRF-SCBF systems that have a non-zero moment are the joints associated with the SMRF portion of the system.

For the same reasons discussed in Column Base Reactions, only the seismic loads were applied to attain the results for this section. The reasons that joint moments are of interest relate back to the stiffness and force distribution discussion located towards the beginning of Column Base Reactions. See Table 8 below for the data concerning the joint moments data.

						JOINT M	IOMENTS (k-ft)						
Joint			Case I				Case II		Case III				
Label	DUAL	SMRF	Deviation (k-ft)	Deviation (%)	DUAL	SMRF	Deviation (k-ft)	Deviation (%)	DUAL	SMRF	Deviation (k-ft)	Deviation (%)	
J2	-102.2	-106.8	-4.6	4.5%	-120.6	-123.5	-2.9	2.4%	-150.1	-165.7	-15.6	10.4%	
J3	-109.9	-123.2	-13.3	12.1%	-135.7	-148.2	-12.5	9.2%	-166.6	-193.5	-26.9	16.1%	
J 4	-86.1	-98.5	-12.5	14.5%	-99.4	-111.6	-12.2	12.3%	-117.5	-138.4	-20.9	17.8%	
J5	-64.5	-73.3	-8.8	13.7%	-76.0	-87.2	-11.2	14.7%	-89.0	-105.8	-16.8	18.9%	
J6	-36.7	-41.2	-4.4	12.1%	-51.5	-59.5	-8.0	15.5%	-53.5	-63.6	-10.1	18.9%	
J8	102.0	106.8	-4.8	4.7%	120.5	123.5	-2.9	2.4%	150.0	165.7	-15.7	10.4%	
J9	108.8	123.2	-14.4	13.3%	135.3	148.2	-12.9	9.5%	166.3	193.5	-27.2	16.4%	
J10	86.0	98.5	-12.6	14.6%	99.3	111.6	-12.2	12.3%	117.5	138.4	-20.9	17.8%	
J11	64.5	73.3	-8.8	13.6%	76.0	87.2	-11.2	14.7%	88.9	105.8	-16.8	18.9%	
J12	37.0	41.2	-4.2	11.4%	51.7	59.5	-7.9	15.2%	53.6	63.6	-10.0	18.7%	

ONT MOMENTS (1. C)

 Table 8: Joint Moments (Seismic Loads Only)

Refer to discussion under Table 6 to appropriately interpret the deviations.

Every single deviation in Table 8 reflects conservative design. The predominantly conservative results from Table 8 are a product of the predominantly non-conservative results from Table 7. This again relates back to SCBFs being much stiffer systems than SMRFs.

In an effort to assist in reading Table 8, joint three's (3) row (second row down from the column headings) will be broken down column by column. Starting on the left, the first column shows a value of -109.9. This is the moment that developed at joint three (3) for Case I's design in the combined model. The next column to the right shows a value of -123.2. This is the moment that developed at joint three (3) for Case I's design in the individual SMRF model. The next column shows a value of -13.3. This is the absolute difference between the two values shown in the column to the left (109.9 - 123.2 = -13.3). The next column displays 12.1%. This is the percentage of deviation between the two moment values from the combined model and the individual model for joint three (3) for Case I's design. The next column to the right shows a value of -135.7. This is the moment that developed at joint three (3) for Case II's design in the combined model. The next column over shows a value of -148.2. This is the moment that developed at joint three (3) for Case II's design in the individual SMRF model. The next column shows a value of -12.5. This is the absolute difference between the two values shown in the column to the left (135.7 - 148.2 = -12.5). The next column to the right displays 9.2%. This is the percentage of deviation between the two moment values from the combined model and the individual model for joint three (3) for Case II's design. The next column shows a value of -166.6. This is the moment that developed at joint three (3) for Case III's design in the combined model. The next column to the right shows a value of -193.5. This is the moment that developed at joint three (3) for Case III's design in the individual SMRF model. The next column shows a value of -26.9. This is the absolute difference between the two values shown in the column to the left (166.6 - 193.5 = -26.9). The last column displays 16.1%. This is the percentage of deviation between the two moment values from the combined model and the individual model for joint three (3) for Case III's design.

The results presented in Table 8 suggest that the SMRF designed for Case II is the most accurate of the three designs. The SMRF pertaining to Case I also shows very accurate results with just slightly greater deviations than the SMRF designed for Case II. The Case III designs had the greatest differences regardless of the joint, with a maximum deviation of approximately 27 kip-ft. By comparison, the largest deviation for Cases I and II were approximately 14 kip-ft and 12 k-ft, respectively. Even if the deviations for the SMRFs reflect conservative design, large deviations still represent an inaccuracy, which should be slightly concerning.

Internal Story Shears

This section analyzes the internal story shears in the columns within the SMRF and the SMRF-SCBF systems. Internal story shears of only the SMRF columns within the SMRF-SCBF systems were analyzed.

The internal story shears shown are the induced column forces from application of the seismic design force without the overstrength factor applied. Internal story shears should show a story-by-story breakdown of the force distribution within the SMRF-SCBF. These values are then compared against the predicted internal story shears from the design models. The reason this comparison is of interest relates back to the stiffness and force distribution discussion located toward the beginning of Column Base Reactions.

Table 9: Internal Story Shears Deviations

							S	STORY SHE	EARS DEV	IATIONS									
	Case I							Case II						Case III					
Level	С	L-1	С	L-2	Т	otal	С	L-1	С	L-2	Т	otal	CI	L-1	CI	L-2	То	otal	
	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	V (k)	V (%)	
2	-2.3	-12.5%	-3.0	-15.7%	-5.3	-14.1%	-3.0	-12.9%	-3.9	-16.3%	-6.9	-14.6%	-0.6	-2.6%	-1.3	-5.2%	-2.0	-3.9%	
3	2.4	19.4%	-3.4	-18.9%	-1.0	-3.4%	2.1	13.0%	3.1	20.3%	5.2	16.5%	3.8	20.8%	4.5	25.9%	8.3	23.3%	
4	1.8	17.9%	1.5	14.2%	3.3	16.0%	1.6	12.4%	1.2	8.4%	2.8	10.3%	2.7	17.7%	2.3	14.8%	5.0	16.2%	
5	1.2	17.5%	1.4	21.9%	2.6	19.6%	1.5	18.5%	1.8	22.9%	3.4	20.6%	2.1	21.5%	2.3	24.3%	4.4	22.9%	
Roof	0.1	3.8%	-0.1	-3.0%	0.0	0.3%	0.6	24.2%	0.5	17.6%	1.1	20.8%	0.7	20.3%	0.6	16.1%	1.2	18.2%	

The deviations presented in Table 9 show an interesting trend at and below the second story. A

strong majority of the deviations reflect a non-conservative result. This is an expected result because of the stiffness differences between the SMRF and SCBF systems. This trend does not continue at the second story and below though. A potential cause for this phenomena is the fixed bases of the SMRF columns. As the column is subjected to lateral loads, it deflects accordingly. This deflection leads to column rotation and a change in slope of the column line. This rotation is not allowed at the base of the column though due to the fixed base. This effectively increases the stiffness of the column near its base. Thus, an increase in the columns' stiffnessess towards their bases results in an increase in the magnitude of forces the columns attract. The reasoning behind this argument relates back to the stiffness and force distribution discussion located toward the beginning of Column Base Reactions.

The data presented in Table 9 suggests that Case I's design produced the most accurate results. Case II's design resulted in more consistent results while Case III's design's accuracy varied widely.

The magnitudes of the story shears are presented in Table 10 below.

				STOR	Y SHEARS							
C	т 1		DU	JAL		SMRF						
Case	Level	V (k), CL1	V (k), CL2	V (k), Total	V _{base} (%)	V (k), CL1	V (k), CL2	V (k), Total	V _{base} (%)			
	2	18.5	19.2	37.6	11.7%	16.2	16.2	32.3	10.0%			
	3	12.3	18.1	30.4	9.4%	14.7	14.7	29.3	9.1%			
Case I	4	10.1	10.4	20.6	6.4%	11.9	11.9	23.9	7.4%			
	5	6.7	6.5	13.2	4.1%	7.9	7.9	15.8	4.9%			
	R	2.6	2.7	5.3	1.6%	2.7	2.7	5.3	1.6%			
	2	23.2	24.1	47.3	14.6%	20.2	20.2	40.4	12.5%			
	3	16.2	15.2	31.4	9.7%	18.3	18.3	36.6	11.3%			
Case II	4	13.3	13.7	27.0	8.4%	14.9	14.9	29.8	9.2%			
	5	8.4	8.1	16.4	5.1%	9.9	9.9	19.8	6.1%			
	R	2.7	2.8	5.5	1.7%	3.3	3.3	6.6	2.0%			
	2	24.9	25.6	50.4	15.6%	24.2	24.2	48.4	15.0%			
~	3	18.2	17.5	35.7	11.0%	22.0	22.0	44.0	13.6%			
Case III	4	15.2	15.6	30.8	9.5%	17.9	17.9	35.8	11.1%			
	5	9.8	9.5	19.3	6.0%	11.9	11.9	23.7	7.4%			
	R	3.3	3.4	6.7	2.1%	4.0	4.0	7.9	2.5%			

The percent of the total base shear (V_{base} (%)) is the primary parameter of interest in Table 10. The SMRF total base shear percentages are the percentage of the base shear that the SMRF frame was designed to resist at each level. The DUAL total base shear percentages are the percentage of the base shear that the SMRF columns actually experienced when analyzed in the combined SMRF-SCBF model. Table 10 serves as an alternative presentation of the data presented in Table 9. Because of this, the results presented in Table 10 suggest the same accuracies as Table 9: Case I's design was the most accurate, Case III's design was the least accurate, and Case II's design produced the most consistent results.

Chapter 4 - Conclusion

This chapter highlights the main points of this research before further discussing the results of the parametric study and drawing conclusions pertaining to the results.

The aim of this research was to investigate the behavior and load distribution of a dual SMRF-SCBF SFRS. The ASCE/SEI 7-10 mandates that all dual LFRSs must include an MRF capable of resisting at least 25% of the lateral loads. The study performed for this thesis aimed to determine if the independent SFRSs which make up the dual SFRS behave as they are designed to.

If how a structure is idealized to behave and how it actually behaves are different, the structural integrity of the building is jeopardized. For this reason, it is crucial to any SFRS design that the structure is accurately designed and analyzed. In the case of the SMRF-SCBF system investigated in this thesis, deflections, column base reactions, brace axial loads, the moments occurring at joints, and the story shears within the SMRF columns of the designed SFRSs were compared to measure the design process's accuracy.

Of the SMRFs, the results for the SMRF designed for the Case II load distribution most closely aligns with the results from the relevant SMRF-SCBF. There are instances in which the SMRFs for Case I or III are more accurate. In most instances, the SMRF designed for Case III was the least accurate of the SMRFs.

The SCBFs' accuracies were generally more closely grouped than the SMRFs'. The SCBF designed for Case I appears to be the most accurate of the three SCBFs, while the SCBF pertaining to Case II appears to still be an accurate design and analysis. The SCBF designed for load distribution Case III seemed to be the least accurate of the three designs. The presented results indicate that the Case II load distribution (SCBF – 75%, SMRF – 25%) most accurately predicts the structure's global response. The frames designed for the Case II load distribution produced the most consistent and accurate results.

Recommendations

The findings of this study show that the most accurate force distribution used for designing the SFRS coincides with the current code-mandated force distribution of 75%-25%. For this reason, it is recommended that designers use a 75%-25% force distribution when designing a dual LFRS. Furthermore, keeping at least one bay of separation between the SCBF and the SMRF is recommended. Providing at least one bay of separation between the two frames prevents additional design conflicts concerning column size, connection design and constructability, column base connection design, etc. from coming to fruition.

A large number of variables and directions within this research could influence the results and conclusions of the study. In light of this, there are many recommendations for future research in this area.

Studying more finely tuned designs could be an area of interest. This would mean varying the sizes of the braces of the SCBF and the beams of the SMRF at every level instead of grouping the 2nd and 3rd stories together and the 4th and 5th stories together. If column splices were considered, this would present an opportunity to possibly reduce the column size. These design steps could drive the design to be more economical. Additionally, the more economical design could result in smoother results whereas the results from this study, at times, show minor jumps in deflections between the 3rd and 4th stories.

Experimenting with additional load distributions for design could help industry have a better understanding of how the two frames are interacting with one another. The load

distributions for this study were selected around the minimum capacity for the MRF within a dual LFRS. There is no reason this same system could not be designed with an even 50% distribution of the lateral forces to each frame. Furthermore, the load distribution could be flipped such that the MRF is designed to take a majority of the lateral load. This type of load distribution would be likely to result in a less economical design solution since MRF design is virtually always governed by serviceability and not capacity. For that reason, distributions between the 80% - 20% distribution and a 50% - 50% distribution are more highly recommended for future research.

Studying force distributions and design accuracy in a dual LFRS that does not include a SCBF is a recommended area of further research in this area. Different LFRS have different inherent stiffnesses due to their means of energy dissipation and/or configuration. There are many types of shear wall systems that are permitted to be included in a dual LFRS along with several brace frame types. Some examples of these systems include steel eccentric brace frames, special reinforced concrete shear walls, steel and concrete composite special concentric brace frames, etc. (1). In addition to researching an entirely different dual LFRS, different brace configurations could impact the results of this study. The two-story X brace pattern is inherently the stiffest SCBF configuration allowed by building code. Other configurations such as a zipper, chevron, or V configuration would alter the inherent stiffness of the SCBF potentially influencing the findings of this study.

Designing the MRF portion of the dual LFRS before designing the accompanying LFRS could result in different findings. The design presented in this thesis focused on balancing applicability and economics of the system. This led to the SCBF being designed prior to the

SMRF. Designing the MRF first could produce useful results purely intended to analyze the force distribution within a dual LFRS if applicability of the design is not of interest.

An applicable area of additional research is the connection design and what impact it may have on the rest of the system. For this particular study, the SMRF columns were large enough that additional reinforcement (continuity plates, etc.) was unnecessary for the limited instances that were checked. The only design that connections were at all checked for was Case I. However, the connections for the SCBF were not checked at all and these connections are more likely to impact the design. Connection design of the SCBF could result in different beam and column sizes. Even if member sizes remain constant, additional reinforcement (web stiffeners, etc.) will likely be necessary. This could have a considerable impact on the economics of the design.

Lastly, scaled testing of the designed frames is recommended for further research in this field. Computer models are fantastic for analyzing a frame or structure and trying to understand how it will behave. However, without scaled testing, the results and findings of the study are still theoretical in nature. It is for this reason that scaled testing of fully designed dual LFRSs is highly recommended.

References

- 1) Engineers, A. S. (2013). *Minimum design loads for buildings and other structures, standard asce/sei* 7-10. Reston, VA: Published by American Society of Civil Engineers.
- Krishnan, S., & Muto, M. (2012). Mechanism of Collapse of Tall Steel Moment-Frame Buildings under Earthquake Excitation. *Journal of Structural Engineering J. Struct. Eng.*, 138(11), 1361-1387. Retrieved February 5, 2016.
- Longo, A., Montuori, R., & Piluso, V. (2015). Moment frames concentrically braced frames dual systems: Analysis of different design criteria. *Structure and Infrastructure Engineering*, 12(1), 122-141. Retrieved February 5, 2016.
- Ye, L. P., & Qu, Z. (2008). Failure Mechanism and its Control of Building Structures Under Earthquakes Based on Structural System Concept. *World Scientific*, *3*(4), 249-259. Retrieved April 13, 2016.

References Not Cited

- Giugliano, M. T., Longo, A., Montuori, R., & Piluso, V. (2010). Failure Mode and Drift Control of MRF-CBF Dual Systems. *The Open Construction and Building Technology Journal TOBCTJ*, 4(1), 121-133. Retrieved February 5, 2016.
- Hsiao, P., Lehman, D. E., & Roeder, C. W. (2013). Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames. *Earthquake Engng Struct. Dyn. Earthquake Engineering & Structural Dynamics*, 42(10), 1547-1564. Retrieved February 5, 2016.
- Martinelli, L., Mulas, M. G., & Perotti, F. (1996). The Seismic Response Of Concentrically Braced Moment-Resisting Steel Frames. *Earthquake Engng. Struct. Dyn. Earthquake Engineering & Structural Dynamics*, 25(11), 1275-1299. Retrieved February 5, 2016.
- SEAOC Seismology Committee. (2008, September). A Brief Guide to Seismic Design Factors. *Structures Magazine*. Retrieved April 19, 2016.
- Seismic design manual (Second ed.). (2012). Chicago: American Institute of Steel Construction.
- Steel Construction Manual (Fourteenth ed.). (2013). Chicago, IL: American Institute of Steel Construction.
- Wen, Y. K., & Song, S. (2003). Structural Reliability/Redundancy under Earthquakes. *Journal of Structural Engineering J. Struct. Eng.*, *129*(1), 56-67. doi:10.1061/(asce)0733-9445(2003)129:1(56)

Appendix A - Load Calculations

GRAVITY LOADS

3/27/2017	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 1	ALL REFERENCES PULLED FROM ASCE 7-10
Step	Computations	Reference
	Roof	
ind DL for Roofs	Materials Weights	
	five-ply felt and gravel 6 psf	Tbl. C3-1
	2" fiberboard insulation 3 psf	Tbl. C3-1
	1.5 B20 type deck 2.5 psf	Vulcraft Manual
	Framing [beams(30'), girders(25')] 6 psf	Assumed
	Acoustic Ceiling 3 psf	Tbl. C3-1
	MEP <mark>5 psf</mark>	Tbl. C3-1
	Miscellaneous 2 psf	Assumed
	DL = <mark>30</mark> psf	
ind DL for Floors	Floors	
	Materials Weights	
	Floor finish 1 psf	Tbl. C3-1
	Steel deck and fill [5"(1.5VL20), NWC] 56 psf	Vulcraft Manual
	Framing [beams(30'), girders(25')] 6 psf	Assumed
	Acoustic Ceiling 3 psf MEP 5 psf	Tbl. C3-1
	MEP 5 psf Partition walls 10 psf	Tbl. C3-1 Tbl. C3-1
	Miscellaneous 2 psf	Assumed
	DL = 85 psf	
Find DL for Walls	Walls	
	Materials Weights	
	Curtain wall system 20 psf	Tbl. C3-1
	DL = 20 psf	
Find Live Loads	Live Loads	
	LL _{ROOF} = 20 psf	Tbl. 4.1
	$LL_{FLOOR} = 80$ psf	Tbl. 4.1

SEISMIC LOADS

4/21/2017	ARE 899 - Master's Thesis	
	PAGE 1	ALL REFERENCES PULLED FROM ASCE 7-10
Step	Computations	Reference
	Site Class: D	Assumed/given
Site information pretaining to seismic	$S_{s} = 0.626$ g	
	$S_1 = 0.184$ g	USGS Design Maps
	$I_e = 1$	Tbl. 1.5-2
	h = 62 ft Select System: All other systems	
	$T_{L} = \frac{6}{5}$	Fig. 22-(12-16)
	R = 7	Tbl. 12.2-1
	$\Omega = 2.5$	
	$C_d = 5.5$	
	$L_{NS} = 75$ ft	
	$L_{EW} = 120 ft$	
Site coefficients	F _a = 1.299	Tbl. 11.4-1
	$F_{v} = 2.066$	Tbl. 11.4-2
Spectral response	S _{MS} = 0.813 g	Eq. 11.4-1
acceleration paramerters	$S_{M1} = \frac{0.313}{0.380}$ g	Eq. 11.4-2
p		
Design spectral	$S_{DS} = \frac{0.542}{0.253}$ g $S_{D1} = \frac{0.253}{0}$ g	Eq. 11.4-3 Eq. 11.4-4
response acc. para.	5 _{D1} - 0.235 g	Ly. 11.4-4
Seismic design	SDC = D	Tbl. 11.6-1
category		Tbl. 11.6-2
Approximate	C _t = 0.02	Tbl. 12.8-2
fundamental period	x = 0.75	101. 12.0-2
	T _a = 0.442 s	Eq. 12.8-7
		Ly. 12.0-7
Seismic Response	(EQUATION) $C_s = 0.077$ USE THIS VALUE	Eq. 12.8-2
Coeefficient	(CHECK) $C_s = 0.082$ DO NOT USE THIS VALU	
	(CHECK) $C_s = 0.024$ DO NOT USE THIS VALU(CHECK) $C_s = 0.013$ DO NOT USE THIS VALU	
		Ly. 12.0-0
	C _s = 0.0774	

PAGE 2 AMERGESQUE Step Computations Reference Effective Seismic Weight Level DL(psf) W1(k) h1(ft) Ww (k) W2 (k) 30 270 10 78 348 51ft floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 2nd floor 85 765 12 93.6 858.6 2nd floor 85 765 12 93.6 858.6 2nd floor 85 765 13 101.4 866.4 Eq. (2.8-1) Base shear V= 293.5 kips 234.8261 Eq. (2.8-1) Vertical Distribution Level W, (k) h, (ft) h ¹ , W, (k-ft) C, 1, w = 390 ft F, (k) V, (k) Base shear V= 293.5 kips 234.8261 Eq. (2.8-12 6, 12.8-13 2nd floor 858.6 0 4939 0.326 95.8 143.9 4th floor 858.6 0 4939 0.326 95.8 143.9 4th floor 858.6 138 32627 0.248 72.8 216.7 3rd floor 858.6 134 12130 0.092 2.7.1 2.93.5 Level Direction M (k-ft) V, (k) K = 1 Sect. 12.8.12 Torsional Shear Level Direction M (k-ft) V, (k) Level Direction M (k-ft) V, (k) Eq. (12.8-13 Sect. 12.8.4.2 Direction M (k-ft) V, (k) Roof $\frac{N/S}{E/W}$ 238.8 2.41 5th floor $\frac{N/S}{E/W}$ 238.8 2.41 5th floor $\frac{N/S}{E/W}$ 238.8 2.43 5th floor $\frac{N/S}{E/W}$ 238.8 2.43 5th floor $\frac{N/S}{E/W}$ 238.8 2.43 3rd floor $\frac{N/S}{E/W}$ 239.3 1.33 5th floor $\frac{E/W}{E/W}$ 239.3 1.335 7total 23.35 <th>4/21/2017</th> <th></th> <th>AF</th> <th>RE 899</th> <th>- Maste</th> <th>r's The</th> <th>sis</th> <th></th> <th colspan="2">Christopher Wearin</th>	4/21/2017		AF	RE 899	- Maste	r's The	sis		Christopher Wearin	
Effective Seismic Weight Level DL _i (psf) W _i (k) h _i (ft) W _w (k) W _y (k) Roof 30 270 10 78 348 Sth floor 85 765 12 93.6 858.6 4th floor 85 765 12 93.6 858.6 20 91.6 858.6 93.6 858.6 20 95 13 101.4 866.4 $A_{\mu} = \frac{9000}{20}$ ft² 93.6 858.6 Base shear $V = \frac{293.5}{390}$ kips 234.8261 Eq. 12.8-1 Vertical Distribution Level W, (k) h, (ft) h', W, (k-ft) C _w F, (k) V, (k) 93.6 858.6 50 42930 0.326 93.8 143.9 4th floor 858.6 50 42930 0.326 92.8 143.9 4th floor 858.6 26 223.24 0.170 49.8 266.5 2nd floor 86.4 14<					PAGE 2				ALL REFERENCES PULLED FROM ASCE 7-10	
Weight Roof 30 270 10 78 348 5th floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 2nd floor 85 765 13 101.4 866.4 Ar, = 9000 ft ² 9.5 13 101.4 866.4 DL, = 20 psf Base shear V= 293.5 kips 234.8261 Eq. 12.8-1 Eq. 12.8-12 Vertical Distribution Level W, (k) h, (ft) h ^k , W_k(k-ft) C.x. F., (k) V, (k) 4th floor 858.6 20 22324 0.164 48.1 48.1 5th floor 858.6 26 22324 0.170 49.8 266.5 264 14 12130 0.092 27.1 293.5 Eq. 12.8-13 Sect. 12.8.3 Sect. 12.8.4.2	Step			(Computation	S			Reference	
Weight Roof 30 270 10 78 348 5th floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 2nd floor 85 765 13 101.4 866.4 Ar, = 9000 ft ² 9.5 13 101.4 866.4 DL, = 20 psf Base shear V= 293.5 kips 234.8261 Eq. 12.8-1 Eq. 12.8-12 Vertical Distribution Level W, (k) h, (ft) h ^k , W_k(k-ft) C.x. F., (k) V, (k) 4th floor 858.6 20 22324 0.164 48.1 48.1 5th floor 858.6 26 22324 0.170 49.8 266.5 264 14 12130 0.092 27.1 293.5 Eq. 12.8-13 Sect. 12.8.3 Sect. 12.8.4.2										
Sth floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 3rd floor 85 765 12 93.6 858.6 2nd floor 85 765 13 101.4 866.4 Ar 9000 ft² 0 psf 1 101.4 866.4 Base shear V= 293.5 kips 234.8261 Eq. 12.8-1 Eq. 12.8-1 Vertical Distribution Level W, (k) h, (ft) h ^k , W, (k-ft) C _w F _x (k) V _x (k) Ath floor 858.6 50 42930 0.326 95.8 143.3 Eq. 12.8-12 Sth floor 858.6 262 22324 0.170 49.8 266.5 2nd floor 858.6 262 2232.4 0.170 49.8 266.5 2nd floor 866.4 14 12130 0.092 27.1 293.5 k = 1 Image: State of themage in themage in the	Effective Seismic		Level	DL _f (psf)	W _f (k)	h _f (ft)	W _w (k)	W _x (k)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weight	-	Roof	30	270	10	78	348	1	
$\frac{3 \text{ rd floor}}{2 \text{ rd floor}} = \frac{85}{765} = \frac{765}{13} = \frac{12}{93.6} = \frac{93.6}{858.6} = \frac{858.6}{2 \text{ rd floor}} = \frac{85}{765} = \frac{765}{13} = \frac{101.4}{101.4} = \frac{866.4}{866.4} = \frac{4}{9000} = \frac{11}{101.4} = \frac{101.4}{866.4} = \frac{101.4}{9000} = \frac{101.4}{90000} = \frac{101.4}{9000} = \frac{101.4}{90000} = \frac{101.4}{900000} = \frac{101.4}{9000000} = \frac{101.4}{90000000000} = \frac{101.4}{9000000000000000000000000000000000000$		-	5th floor	85	765	12	93.6	858.6		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	4th floor	85	765	12	93.6	858.6		
$Base shear = \frac{V = 293.5}{390} tt^{2}$ $Base shear = V = 293.5 kips 234.8261 = Eq. 12.8-1$ $Vertical Distribution = \frac{Level}{5th floor} \frac{V_{x} (k)}{88.6} \frac{h_{x} (ft)}{12} \frac{h_{x}^{t} W_{x} (k-ft)}{20} \frac{C_{xx}}{21576} \frac{F_{x} (k)}{0.164} \frac{V_{x} (k)}{48.1} \frac{48.1}{48.1} = Eq. 12.8-12$ $Vertical Distribution = \frac{Level}{5th floor} \frac{858.6}{858.6} \frac{50}{22324} \frac{21576}{0.164} \frac{0.164}{48.1} \frac{48.1}{48.1} = Eq. 12.8-12$ $Fq. 12.8-13 = 3267 \frac{0.248}{72.8} \frac{72.8}{216.7} = Eq. 12.8-13$ $Torsional Shear = \frac{1}{2} \frac{Evel}{6} \frac{Direction}{K} \frac{M (k-ft)}{K} \frac{V_{y} (k)}{\frac{Roof}{E/W}} \frac{180.5}{224.1} \frac{2.41}{E}$ $\frac{Level}{M} \frac{Direction}{K} \frac{M (k-ft)}{K} \frac{V_{y} (k)}{\frac{Roof}{E/W}} \frac{130.5}{2.41} \frac{2.49}{31d floor} \frac{13.75}{E/W} \frac{162.3}{3.64} \frac{1.49}{1.35}$		-				12	93.6	858.6		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2nd floor	85	765	13	101.4	866.4	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Α ₆ =	9000	ft ²					
$L_{w} = \frac{390}{990} ft$ Base shear $V = \frac{293.5}{100} kips$ 234.8261 Eq. 12.8-1 Eq.					psf					
Base shear $V = 293.5$ kips 234.8261 Eq. 12.8-1 Vertical Distribution Level W_x (k) h_x (ft) h^x_y (k), (k) C_{xx} F_x (k) V_x (k) Ath floor 858.6 50 42930 0.326 95.8 143.9 Eq. 12.8-12 3rd floor 858.6 26 22324 0.170 49.8 266.5 2nd floor 866.4 14 12130 0.092 27.1 293.5 Formula floor Sect. 12.8.3 Torsional Shear $e_{ns} = \frac{3.75}{6}$ ft Eq. 12.8-10 Level Direction M (k-ft) Vr (k) Ec. 12.8.4.2 Level Direction M (k-ft) Vr (k) Ec. 12.8.4.2 Level Direction M (k-ft) Vr (k) F/W 288.8 2.41 Sth floor N/S 180.5 2.41 Sth floor N/S 293.5 4th floor 4th floor 4th floor 4th floor 4th floor 206 14 121.81 <										
Vertical Distribution $\frac{\text{Level}}{\text{Roof}}$ $\frac{\text{W}_x(k)}{348}$ $\frac{h_x(ft)}{62}$ $\frac{h_x^k}{21576}$ $\frac{h_x^k}{0.164}$ $\frac{48.1}{48.1}$ $\frac{48.1}{2130}$ $\frac{48.1}{0.092}$ $\frac{27.1}{2.8}$ $\frac{236.5}{216.7}$ $\frac{216.7}{21.8}$ $\frac{12.8-13}{210}$ $\frac{12.8-13}{1.28-13}$ $\frac{12.8-13}{1.28-13}$ $\frac{12.8-13}{1.28-13}$ $\frac{12.8-13}{1.28-13}$ $\frac{12.8-13}{1.28-13}$ $\frac{12.8-12}{1.28-13}$ $\frac{12.8-12}{1.28-1$										
Vertical Distribution $\frac{\text{Level}}{\text{Roof}}$ $\frac{\text{W}_x(k)}{348}$ $\frac{h_x(\text{ft})}{62}$ $\frac{h_x^8}{W_x(k-\text{ft})}$ $\frac{C_{vx}}{C_{vx}}$ $\frac{F_x(k)}{F_x(k)}$ $\frac{V_x(k)}{48.1}$ $\frac{F_y(k)}{48.1}$ $\frac{V_x(k)}{48.1}$ $\frac{F_y(k)}{48.1}$ $F_$										
Roof34862215760.16448.148.15th floor858.650429300.32695.8143.94th floor858.638326270.24872.8216.73rd floor858.626223240.17049.8266.52nd floor866.414121300.09227.1293.5k = 1Level DirectionM (k-ft)V _T (k) $e_{NS} = \frac{3.75}{6}$ ftftEq. 12.8-12Exercise of M (k-ft)V _T (k)Roof N/S 180.52.41 $Roof$ E/W288.82.41 $5th$ floorE/W574.64.79 $4th$ floorE/W286.73.64 $4th$ floorE/W298.82.49 $3rd$ floorE/W298.82.49 $2nd$ floorN/S101.51.35 E/W 162.31.35	Base shear			V=	293.5	kips	234.8261		Eq. 12.8-1	
Roof34862215760.16448.148.15th floor858.650429300.32695.8143.94th floor858.638326270.24872.8216.73rd floor858.626223240.17049.8266.52nd floor866.414121300.09227.1293.5k = 1Level Direction M (k-ft)Vr (k)RoofE/w288.82.415th floorE/w288.82.415th floorE/w574.64.794th floorE/w366.73.644th floorE/w288.82.493rd floorE/w298.82.492nd floorN/S101.51.352nd floorK/S101.51.352nd floorE/w298.82.492nd floorN/S101.51.35E/w162.31.35										
Roof34862215760.16448.148.15th floor858.650429300.32695.8143.94th floor858.638326270.24872.8216.73rd floor858.626223240.17049.8266.52nd floor866.414121300.09227.1293.5k = 1Level Direction M (k-ft)Vr (k)RoofE/w288.82.415th floorE/w288.82.415th floorE/w574.64.794th floorE/w366.73.644th floorE/w288.82.493rd floorE/w298.82.492nd floorN/S101.51.352nd floorK/S101.51.352nd floorE/w298.82.492nd floorN/S101.51.35E/w162.31.35	Vertical Distribution	Level	W. (k)	h, (ft)	h ^k W.(k-ft)	C.w	F ₂ (k)	V. (k)		
Sth floor 858.6 50 42930 0.326 95.8 143.9 4th floor 858.6 38 32627 0.248 72.8 216.7 3rd floor 858.6 26 22324 0.170 49.8 266.5 2nd floor 866.4 14 12130 0.092 27.1 293.5 K = 1 Torsional Shear k = 1 Sect. 12.8.3 Level Direction M (k-ft) V _T (k) Roof N/S 180.5 2.41 F/W 288.8 2.41 Sect. 12.8.4.2 E/W 526.7 4th floor N/S 359.1 4.79 5th floor E/W 288.8 2.41 M/S 186.7 2.49 3.64 4th floor E/W 298.8 2.49 3rd floor N/S 101.5 1.35 2nd floor N/S 101.5 1.35									Eq. 12.8-12	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5th floor	858.6	50						
Znd floor866.414121300.09227.1293.5k = 1Sect. 12.8.3Torsional Shear $e_{NS} = \frac{3.75}{6}$ ftftSect. 12.8.4.2 $\frac{Level Direction M (k-ft) V_T (k)$ Roof $\frac{N/S}{E/W}$ 288.82.41Sth floorE/W 288.82.41Sth floorE/W 574.64.79Gloor N/S 27.1293.5Sect. 12.8.4.2				38	32627	0.248	72.8		Eq. 12.8-13	
k = 1 Sect. 12.8.3 Torsional Shear $e_{NS} = \frac{3.75}{6}$ ft ft $e_{EW} = \frac{1}{6}$ ft Sect. 12.8.4.2 Level Direction M (k-ft) V _T (k) Roof N/S 180.5 2.41 Ft E/W 288.8 2.41 Sth floor N/S 359.1 4.79 E/W 574.6 4.79 4th floor N/S 272.9 3.64 3rd floor E/W 298.8 2.49 2nd floor N/S 101.5 1.35 E/W 162.3 1.35									_	
Torsional Shear $e_{NS} = \frac{3.75}{6}$ ft ft Sect. 12.8.4.2		2nd floor	866.4	14	12130	0.092	27.1	293.5	_	
Torsional Shear $e_{NS} = \begin{cases} 3.75 \\ e_{EW} = \end{cases} ft$ ft ft Sect. 12.8.4.2			k =	1	1				Sect. 12.8.3	
$e_{EW} = \frac{6}{6} ft$ Sect. 12.8.4.2 $\frac{Level}{Roof} \frac{Direction}{E/W} \frac{M (k-ft)}{288.8} V_{T} (k)$ $\frac{N/S}{E/W} \frac{180.5}{2.41} \frac{2.41}{2.41}$ $\frac{5th floor}{E/W} \frac{N/S}{359.1} \frac{4.79}{4.79}$ $\frac{4th floor}{E/W} \frac{N/S}{272.9} \frac{3.64}{3.64}$ $\frac{3rd floor}{E/W} \frac{N/S}{186.7} \frac{2.49}{2.49}$ $\frac{2nd floor}{E/W} \frac{N/S}{101.5} \frac{1.35}{1.35}$					1					
$e_{EW} = \frac{6}{6} \qquad \text{ft}$ $\frac{\text{Level}}{\text{Roof}} \frac{\text{Direction}}{\text{N/S}} \frac{\text{M} (\text{k-ft})}{180.5} \frac{\text{V}_{\text{T}} (\text{k})}{2.41}$ $\frac{\text{Roof}}{\text{E/W}} \frac{\text{Roof}}{288.8} \frac{2.41}{2.41}$ $\frac{\text{Th}}{3 \text{Th}} \frac{\text{N/S}}{1007} \frac{359.1}{\text{E/W}} \frac{4.79}{3.64}$ $\frac{4 \text{th}}{1007} \frac{\text{N/S}}{\text{E/W}} \frac{272.9}{3.64}$ $\frac{3 \text{rd}}{3 \text{rd}} \frac{\text{N/S}}{1007} \frac{186.7}{2.49}$ $\frac{2 \text{rd}}{16007} \frac{\text{N/S}}{\text{E/W}} \frac{101.5}{1.35}$	Torsional Shear		e _{NS} =	3.75	ft				Cast 12.0.4.2	
$ \begin{array}{c c c c c c c c c } \hline N/S & 180.5 & 2.41 \\ \hline Roof & E/W & 288.8 & 2.41 \\ \hline & E/W & 359.1 & 4.79 \\ \hline & E/W & 574.6 & 4.79 \\ \hline & E/W & 574.6 & 4.79 \\ \hline & & 1000 & 1000 \\ \hline & & 10000 & 1000 \\ \hline & & 10000 & 1000 \\ \hline & & & 10000 & 1000 \\ \hline & & & & 10000 \\ \hline & & & & & 10000 \\ \hline & & & & & & 10000 \\ \hline & & & & & & & 10000 \\ \hline & & & & & & & & 10000 \\ \hline & & & & & & & & & 10000 \\ \hline & & & & & & & & & & 10000 \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & &$			e _{EW} =	6	ft				Sect. 12.8.4.2	
$ \begin{array}{c c c c c c c c c c } \hline N/S & 180.5 & 2.41 \\ \hline Roof & E/W & 288.8 & 2.41 \\ \hline Sth floor & N/S & 359.1 & 4.79 \\ \hline E/W & 574.6 & 4.79 \\ \hline H h floor & E/W & 574.6 & 4.79 \\ \hline Ath floor & E/W & 436.7 & 3.64 \\ \hline E/W & 436.7 & 3.64 \\ \hline B/W & 298.8 & 2.49 \\ \hline Ath floor & E/W & 298.8 & 2.49 \\ \hline Ath floor & N/S & 101.5 & 1.35 \\ \hline E/W & 162.3 & 1.35 \\ \hline \end{array} $					-					
$ \begin{array}{c c c c c c c c c } \hline N/S & 180.5 & 2.41 \\ \hline Roof & E/W & 288.8 & 2.41 \\ \hline & E/W & 359.1 & 4.79 \\ \hline & E/W & 574.6 & 4.79 \\ \hline & E/W & 574.6 & 4.79 \\ \hline & & 1000 & 1000 \\ \hline & & 10000 & 1000 \\ \hline & & 10000 & 1000 \\ \hline & & & 10000 & 1000 \\ \hline & & & & 10000 \\ \hline & & & & & 10000 \\ \hline & & & & & & 10000 \\ \hline & & & & & & & 10000 \\ \hline & & & & & & & & 10000 \\ \hline & & & & & & & & & 10000 \\ \hline & & & & & & & & & & 10000 \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & &$				Direction	$M(k_{-}ft)$	V (k)				
$\frac{\text{Roof}}{\text{E/W}} = \frac{\text{E/W}}{288.8} = \frac{2.41}{4.79}$ $\frac{\text{Sth floor}}{\text{E/W}} = \frac{\text{ST4.6}}{574.6} = \frac{4.79}{4.79}$ $\frac{\text{4th floor}}{4\text{th floor}} = \frac{\text{N/S}}{272.9} = \frac{3.64}{3.64}$ $\frac{\text{3rd floor}}{1007} = \frac{\text{N/S}}{186.7} = \frac{2.49}{2.49}$ $\frac{\text{2nd floor}}{1007} = \frac{\text{N/S}}{101.5} = \frac{1.35}{1.35}$		-	Level				1			
$ \begin{array}{c cccc} N/S & 359.1 & 4.79 \\ \hline E/W & 574.6 & 4.79 \\ \hline E/W & 574.6 & 4.79 \\ \hline 4th floor & N/S & 272.9 & 3.64 \\ \hline E/W & 436.7 & 3.64 \\ \hline 3rd floor & E/W & 186.7 & 2.49 \\ \hline E/W & 298.8 & 2.49 \\ \hline 2nd floor & E/W & 101.5 & 1.35 \\ \hline E/W & 162.3 & 1.35 \\ \hline \end{array} $			Roof				-			
$\frac{5 \text{th floor}}{4 \text{th floor}} \frac{\text{E/W}}{\text{N/S}} \frac{574.6}{272.9} \frac{4.79}{3.64}$ $\frac{4 \text{th floor}}{\text{E/W}} \frac{436.7}{436.7} \frac{3.64}{3.64}$ $\frac{3 \text{rd floor}}{16 \text{V/S}} \frac{186.7}{2.49} \frac{298.8}{2.49}$ $\frac{2 \text{rd floor}}{2 \text{rd floor}} \frac{\text{N/S}}{\text{E/W}} \frac{101.5}{1.35} \frac{1.35}{1.35}$		-					-			
$\frac{4\text{th floor}}{4\text{th floor}} \frac{N/S}{E/W} = \frac{272.9}{3.64}$ $\frac{3\text{rd floor}}{3\text{rd floor}} \frac{N/S}{E/W} = \frac{186.7}{2.49}$ $\frac{298.8}{2.49}$ $\frac{298.8}{2.49}$ $\frac{291.5}{1.35} = \frac{1.35}{1.35}$			5th floor				-			
$\frac{E/W}{3rd floor} = \frac{436.7}{2.49}$ $\frac{N/S}{E/W} = \frac{298.8}{2.49}$ $\frac{298.8}{2.49}$ $\frac{291}{2rd floor} = \frac{N/S}{E/W} = \frac{1.35}{1.35}$		-	4+1- 41				-			
3rd floor E/W 298.8 2.49 2nd floor N/S 101.5 1.35 E/W 162.3 1.35		-	4th floor	E/W	436.7	3.64	1			
E/W 298.8 2.49 2nd floor N/S 101.5 1.35 E/W 162.3 1.35			3rd floor	N/S	186.7	2.49	-			
2nd floor E/W 162.3 1.35		-	514 11001		298.8	2.49	_			
E/W 162.3 1.35			2nd floor			1.35	_			
Total: 29.35		-		E/W						
					Total:	29.35				

4/21/2017 ARE 899 - Master's Thesis

			PAGE 3			ALL REFERENCES PUL FROM ASCE 7-10
Step		C	omputatior	15		Reference
	Level.		Discotion		N (L)	
Combined System Shear Distributions	Level	V _D (k)	Direction	V _T (k)	V _{comb.} (k)	
	Roof	24.1	N/S	2.41	26.5	
			E/W	2.41	26.5	
	5th floor	47.9	N/S E/W	4.79 4.79	52.7 52.7	
			N/S	3.64	40.0	
	4th floor	36.4	E/W	3.64	40.0	
			N/S	2.49	27.4	
	3rd floor	24.9	E/W	2.49	27.4	
			N/S	1.35	14.9	
	2nd floor	13.5	E/W	1.35	14.9	
	Checks:	293.5	-, ••	29.4	322.9	
	Checks.	233.3		23.1	322.13	
Frame Forces	Са	se I - SCBF 8	0% - MRF 2	0%		
	Level	Direction	V _{SCBF} (k)	V _{MRF} (k)		
	Roof	N/S	21.2	5.3		
		E/W	21.2	5.3		
	5th floor	N/S	42.1	10.5		
		E/W	42.1	10.5		
	4th floor	N/S	32.0 32.0	8.0		
		E/W N/S	21.9	8.0 5.5		
	3rd floor	E/W	21.9	5.5		
		N/S	11.9	3.0		
	2nd floor	E/W	11.9	3.0		
	Checks:		258.3	64.6		
	Checks.	1	230.3	01.0	1	
	Cas	se II - SCBF 7			1	
	Level	Direction	V _{SCBF} (k)	V _{MRF} (k)		
	Roof	N/S	19.9	6.6		
		E/W	19.9	6.6		
	5th floor	N/S	39.5	13.2		
		E/W	39.5	13.2		
	4th floor	N/S	30.0	10.0		
		E/W	30.0	10.0		
	3rd floor	N/S	20.5	6.8		
		E/W	20.5	6.8		
	2nd floor	N/S	11.2	3.7		
		E/W	11.2	3.7		
	Checks:	1	242.2	80.7		

4/21/2017 ARE 899 - Master's Thesis

			PAGE 4		ALL REFERENCES PULLED FROM ASCE 7-10
Step		C	omputation	IS	 Reference
Frame Forces cont.	Cas	e III - SCBF 7	70% - MRF 3	30%	
	Level	Direction	V _{SCBF} (k)	V _{MRF} (k)	
		N/S	18.5	7.9	
	Roof	E/W	18.5	7.9	
	5th floor	N/S	36.9	15.8	
		E/W	36.9	15.8	
	4th floor	N/S	28.0	12.0	
		E/W	28.0	12.0	
	3rd floor	N/S	19.2	<mark>8.2</mark>	
	510 11001	E/W	19.2	<mark>8.2</mark>	
	2nd floor	N/S	10.4	4.5	
	2110 11001	E/W	10.4	4.5	
	Checks:		226.0	96.9	
Additional Loads	Roof	P _{DL} = P _{LL} =		k	
	Floor	P _{DL} = P _{LL} =	39.1	k k k	See Gravity Sheets
Redundancy Factor	Floor	$P_{DL} = P_{LL} = P_{LL} = \rho = 0$	39.1 30.0	k	See Gravity Sheets Sect. 12.3.4.2

4/21/2017 ARE 899 - Master's Thesis

				PAGE 5				ALL REFERENCES PULL FROM ASCE 7-10
Step			C	computation	าร			Reference
Story Drifts				Case I				
	GOOD				Model			1
		Level	h _x (ft)	δ _x (in)	Δ _x (in)	Δ_{design} (in)	Δ _{all} (in)	
		Roof	10	0.96	0.15	0.83	2.40	
		5th floor	12	0.80	0.17	0.92	2.88	_
		4th floor	12	0.64	0.22	1.23	2.88	
		3rd floor	12	0.41	0.21	1.16	2.88	
		2nd floor	14	0.20	0.20	1.11	3.36	
				Case II				
	GOOD	Level	h _x (ft)	From	Model	Δ _{design} (in)	Δ _{all} (in)	
		LEVEI	יי _x (יני)	δ _x (in)	Δ _x (in)	design ("")		
		Roof	10	0.97	0.15	0.84	2.40	
		5th floor	12	0.82	0.19	1.05	2.88	
		4th floor	12	0.63	0.24	1.34	2.88	
		3rd floor	12	0.38	0.20	1.08	2.88	-
		2nd floor	14	0.19	0.19	1.03	3.36	-
	C00D			Case III	Madal	г г		
	GOOD	Level	h _x (ft)	δ_x (in)	Model Δ _x (in)	Δ_{design} (in)	Δ _{all} (in)	
		Roof	10	0.93	0.14	0.79	2.40	
		5th floor	12	0.79	0.18	0.97	2.88	-
		4th floor	12	0.61	0.22	1.22	2.88	
		3rd floor	12	0.39	0.20	1.09	2.88	_
		2nd floor	14	0.19	0.19	1.03	3.36	

Appendix B - Special Concentric-Brace Frame Design

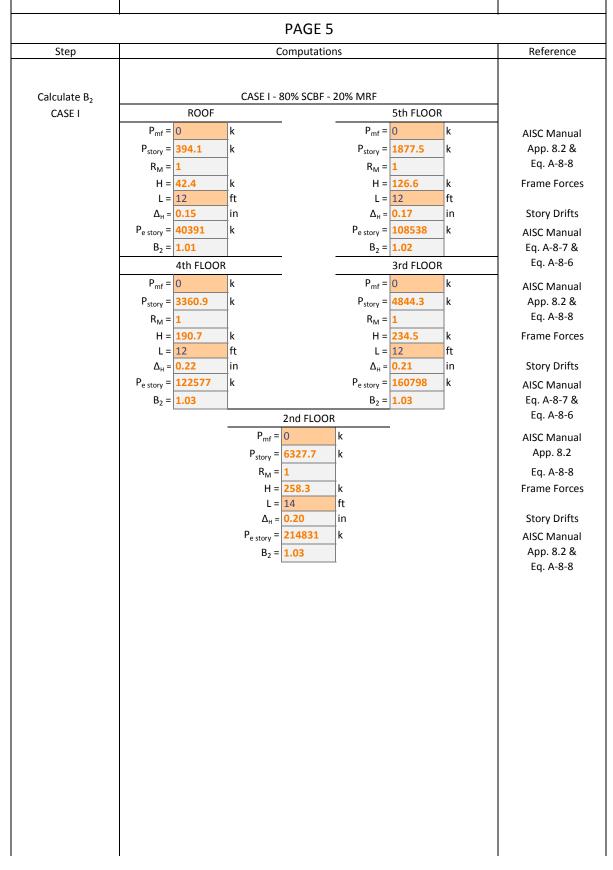
BRACES

3/27/2017ARE 899 - Master's Thesis

5/2//2017		_ 0 9 9 -	iviaste		515	
			PAGE 1			
Step		С	omputatior	ıs		Reference
Loads	CASE	I - 80% S	CBF - 20% N	/RF		
Louis	Level	P _t (k)	P _c (k)	P _{E,T} (k)		
	Roof	11.3	17.6	13.7		
	5th floor	42.3	44.4	42.8		
	4th floor	55.2	78.3	62.6		RISA Model CASE I
	3rd floor	65.2	99.3	75.7		CASET
	2nd floor	73.2	124.1	89.3		
	CASE	II - 75% S	CBF - 25% N	/IRF		
	Level	P _t (k)	P _c (k)	P _{E,T} (k)		
	Roof	10.5	16.9	12.9		
	5th floor	36.8	40.0	36.7		RISA Model
	4th floor	48.2	72.3	54.9		CASE II
	3rd floor	59.2	95.0	69.8		
	2nd floor	66.1	118.5	82.3		
			CBF - 30% N			
	Level	$P_t(k)$	$P_{c}(k)$	P _{E,T} (k)		
	Roof	9.6	16.1	11.9		
	5th floor	36.9	37.4	37.2		RISA Model
	4th floor 3rd floor	47.3 55.7	68.6 88.3	54.8 66.3		CASE III
	2nd floor	62.0	111.2	78.1		
		01.0		7012		
Uniform Member Properties		F _y = L _{BAY} = h _{BR,3-R} = h _{BR,2} = L _{BR,3-R} =	30 12 14	ksi ft ft ft		AISC Manual Tbl. 2-4
		$L_{BR,2} =$ $R_y =$ $n_{stories} =$	1.4	ft		AISC Sesmic Prov. Tbl. A3.1
		α =		İ		AISC Manual App. 8.2

ARE 899 - Master's Thesis

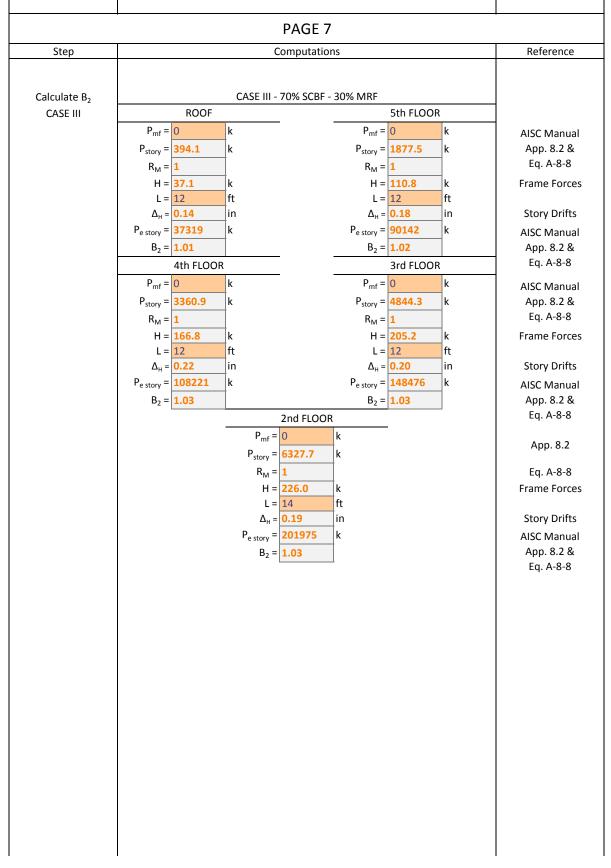
Step Members and their			~	Computation	c .			Reference
Aembers and their			Ľ	omputation	3			Referice
Aembers and their								
			CASE I - 8	80% SCBF - 2	0% MRF			
Properties	Level	Section (round HSS)	t _{des} (in)	A_g (in ²)	D/t	l (in⁴)	r (in)	
	Roof	4.00x.226	0.21	2.50	19.0	4.5	1.34	
	5th floor	6.00x.312	0.291	5.22	20.6	21.3	2.02	AISC Manual
	4th floor	6.00x.312	0.291	5.22	20.6	21.3	2.02	Tbl. 1-13
		7.50x.312	0.291	6.59	25.8	42.9	2.55	
	2nd floor	7.50x.312	0.291	6.59	25.8	42.9	2.55	
			CASE II -	75% SCBF - 2	25% MRF			
	Level	Section (round HSS)	t _{des} (in)	A _g (in ²)	D/t	l (in ⁴)	r (in)	
F	Roof	4.00x.220	0.205	2.44	19.5	4.41	1.34	
		6.00x.280	0.26	4.69	23.1	19.3	2.03	AISC Manua
		6.00x.280	0.26	4.69	23.1	19.3	2.03	Tbl. 1-13
		7.50x.312	0.291	6.59	25.8	42.9	2.55	101.115
	2nd floor	7.50x.312	0.291	6.59	25.8	42.9	2.55	
	Level	Section	t _{des} (in)	A _g (in ²)	D/t	I (in ⁴)	r (in)	
		(round HSS)						
_	Roof	4.00x.220	0.205	2.44	19.5	4.41	1.34	
	Roof 5th floor	4.00x.220 6.00x.250	0.233	4.22	25.8	17.6	2.04	AISC Manua
	Roof 5th floor 4th floor	4.00x.220 6.00x.250 6.00x.250	0.233 0.233	4.22 4.22	25.8 25.8	17.6 17.6	2.04 2.04	AISC Manua Tbl. 1-13
	Roof 5th floor 4th floor	4.00x.220 6.00x.250 6.00x.250 7.00x.312	0.233	4.22	25.8	17.6	2.04	AISC Manual Tbl. 1-13


ARE 899 - Master's Thesis

								<u> </u>
				PAGE 3				
Step			C	Computation	15			Reference
Check width-to- thickness ratio & .3V _{story} > P _{H-E,T} >.7V _{story}	Level Roof 5th floor 4th floor 3rd floor 2nd floor	D/t 19 20.6 20.6 25.8 25.8	CASE I - 3 λ _{hd} 26.2 26.2 26.2 26.2 26.2 26.2	80% SCBF - 2 Check GOOD GOOD GOOD GOOD GOOD	20% MRF P _{E,T} (k) 13.7 42.8 62.6 75.7 89.3	V _{story} (k) 21.2 63.3 95.3 117.2 129.2	Check GOOD GOOD GOOD GOOD	AISC Seismic Prov. Sect. F2.5a & Sect. F2.4a
	Level Roof 5th floor 4th floor 3rd floor 2nd floor	D/t 19.5 23.1 23.1 25.8 25.8	CASE II - λ _{hd} 26.2 26.2 26.2 26.2 26.2 26.2	75% SCBF - Check GOOD GOOD GOOD GOOD GOOD	25% MRF P _{E,T} (k) 12.9 36.7 54.9 69.8 82.3	V _{story} (k) 19.9 59.4 89.4 109.9 121.1	Check GOOD GOOD GOOD GOOD	AISC Seismic Prov. Sect. F2.5a & Sect. F2.4a
			-	70% SCBF -		1		
	Level	D/t	λ_{hd}	Check	P _{E,T} (k)	V _{story} (k)	Check	
	Roof	19.5	26.2	GOOD	11.9	18.5	GOOD	AISC Seismic Prov.
	5th floor	25.8	26.2	GOOD	37.2	55.4	GOOD	Sect. F2.5a &
	4th floor 3rd floor	25.8 24.1	26.2 26.2	GOOD GOOD	54.8 66.3	83.4 102.6	GOOD GOOD	Sect. F2.4a
	2nd floor	24.1	26.2	GOOD	78.1	113.0	GOOD	

3/27/2017ARE 899 - Master's Thesis

PAGE 4 Step Computations Reference Check Slenderness CASE I - 80% SCBF - 20% MRF Level KL/r Limit Check Roof 172.0 200 GOOD 5th floor 114.1 200 GOOD 4th floor 114.1 200 GOOD 3rd floor 90.4 200 GOOD 2nd floor 96.6 200 GOOD Sth floor 113.6 200 GOOD Sth floor 113.6 200 GOOD 2nd floor 90.4 200 GOOD Sth floor 113.6 200 GOOD Sth floor 113.6 200 GOOD Sth floor 90.4 200 GOOD Sth floor 113.6 200 GOOD 3rd floor 90.4 200 GOOD 2nd floor 90.4 200 GOOD 3rd floor 90.4 200 <t< th=""></t<>
Check Slenderness CASE I - 80% SCBF - 20% MRF Level KL/r Limit Check Roof 172.0 200 GOOD 5th floor 114.1 200 GOOD 4th floor 114.1 200 GOOD 3rd floor 90.4 200 GOOD 2nd floor 96.6 200 GOOD CASE II - 75% SCBF - 25% MRF Level KL/r Limit Check Roof 172.0 200 GOOD AISC Seismic P 5th floor 96.6 200 GOOD AISC Seismic P Level KL/r Limit Check Roof 172.0 200 GOOD 5th floor 113.6 200 GOOD Sth floor 113.6 200 GOOD Sect. F2.5b(3rd floor 90.4 200 GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor114.1200GOOD4th floor114.1200GOOD3rd floor90.4200GOOD2nd floor96.6200GOODCASE II - 75% SCBF - 25% MRFLevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOODAISC Seismic P4th floor113.6200GOOD3rd floor90.4200GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor114.1200GOOD4th floor114.1200GOOD3rd floor90.4200GOOD2nd floor96.6200GOODCASE II - 75% SCBF - 25% MRFLevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOODAISC Seismic P4th floor113.6200GOOD3rd floor90.4200GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor114.1200GOOD4th floor114.1200GOOD3rd floor90.4200GOOD2nd floor96.6200GOODCASE II - 75% SCBF - 25% MRFLevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOODAISC Seismic P4th floor113.6200GOOD3rd floor90.4200GOOD
Roof 172.0 200 GOOD 5th floor 114.1 200 GOOD AISC Seismic P 4th floor 114.1 200 GOOD Sect. F2.5b(1) 3rd floor 90.4 200 GOOD Sect. F2.5b(1) 2nd floor 96.6 200 GOOD Sect. F2.5b(1) CASE II - 75% SCBF - 25% MRF Level KL/r Limit Check Roof 172.0 200 GOOD AISC Seismic P 5th floor 113.6 200 GOOD AISC Seismic P 4th floor 113.6 200 GOOD AISC Seismic P 3rd floor 90.4 200 GOOD AISC Seismic P
CAN Noti Line Coord Sect. F2.5b(s) 4th floor 114.1 200 GOOD Sect. F2.5b(s) 3rd floor 90.4 200 GOOD Sect. F2.5b(s) 2nd floor 96.6 200 GOOD Sect. F2.5b(s) CASE II - 75% SCBF - 25% MRF Level KL/r Limit Check Roof 172.0 200 GOOD AISC Seismic P 5th floor 113.6 200 GOOD Sect. F2.5b(s) 3rd floor 90.4 200 GOOD AISC Seismic P
Internation Internation
2nd floor 96.6 200 GOOD CASE II - 75% SCBF - 25% MRF Level KL/r Limit Check Roof 172.0 200 GOOD 5th floor 113.6 200 GOOD 4th floor 113.6 200 GOOD 3rd floor 90.4 200 GOOD
CASE II - 75% SCBF - 25% MRF Level KL/r Limit Check Roof 172.0 200 GOOD 5th floor 113.6 200 GOOD 4th floor 113.6 200 GOOD 3rd floor 90.4 200 GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOOD4th floor113.6200GOOD3rd floor90.4200GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOOD4th floor113.6200GOOD3rd floor90.4200GOOD
LevelKL/rLimitCheckRoof172.0200GOOD5th floor113.6200GOOD4th floor113.6200GOOD3rd floor90.4200GOOD
Roof 172.0 200 GOOD 5th floor 113.6 200 GOOD AISC Seismic P 4th floor 113.6 200 GOOD Sect. F2.5b(1) 3rd floor 90.4 200 GOOD Sect. F2.5b(1)
5th floor 113.6 200 GOOD AISC Seismic P 4th floor 113.6 200 GOOD Sect. F2.5b() 3rd floor 90.4 200 GOOD Sect. F2.5b()
4th floor 113.6 200 GOOD Sect. F2.5b(r) 3rd floor 90.4 200 GOOD Sect. F2.5b(r)
3rd floor 90.4 200 GOOD
2nd floor 96.6 200 GOOD
Level KL/r Limit Check
CASE III - 70% SCBF - 30% MRF
Roof 172.0 200 GOOD 5th floor 113.0 200 GOOD AISC Seismic P
4th floor 113.0 200 GOOD Sect. F2.50(1) 3rd floor 97.3 200 GOOD Sect. F2.50(1)
2nd floor 103.9 200 GOOD


ARE 899 - Master's Thesis

ARE 899 - Master's Thesis

ARE 899 - Master's Thesis

ARE 899 - Master's Thesis

				PAGE 8				
Step			С	Computatior	15			Reference
Available			CASE I - 8	30% SCBF - 2	20% MRF			
ompressive & Tensil	Member	Section	$\phi_{c}P_{n}$ (k)	P _c (k)	φ _t P _n (k)	P _t (k)	Check	
Strengths		4.00x.226	18.0	17.8	94.5	11.3	GOOD	
		6.00x.312	84.4	45.2	197.0	42.3	GOOD	AISC Manual
		6.00x.312	84.4	80.5	197.0	55.2	GOOD	Tbl. 4-5 & Tbl. 5-6
	BR-3,4	7.50x.312	146.5	102.4	249.0	65.2	GOOD	101.90
	BR-1,2	7.50x.312	141.1	127.8	249.0	73.2	GOOD	
			0 • • • • •					
		A 11		75% SCBF -		D (I)		
	Member	Section	$\phi_c P_n(k)$	$P_{c}(k)$	$\phi_t P_n(k)$	P _t (k)	Check	
		4.00x.220	17.6	17.1	92.2	10.5	GOOD	AISC Manual
ŀ		6.00x.280	76.5	40.8	177.0	36.8	GOOD	Tbl. 4-5 &
ŀ		6.00x.280 7.50x.312	76.5 146.5	74.7 98.0	177.0	48.2 59.2	GOOD GOOD	Tbl. 5-6
ŀ		7.50x.312 7.50x.312	146.5	98.0	249.0 249.0	<u> </u>	GOOD	
	Member	Section	$\phi_c P_n$ (k)	70% SCBF - P _c (k)	30% MRF φ _t P _n (k)	P _t (k)	Check	
·	BR-9,10	4.00x.220	17.6	16.2	92.2	9.6	GOOD	
	BR-7,8	6.00x.250	76.5	38.2	177.0	36.9	GOOD	AISC Manual Tbl. 4-5 &
	BR-5,6	6.00x.250	76.5	70.8	177.0	47.3	GOOD	Tbl. 5-6
		7.00x.312	124.7	91.3	232.0	55.7	GOOD	
	BR-1,2	7.00x.312	119.6	114.8	232.0	62.0	GOOD	

3/27/2017ARE 899 - Master's Thesis

Expected Brace Strengths in Tension BR-9,1 BR-7, BR-5, BR-3, BR-1,	ASE I $P_T(k)$ 147.0 306.9 306.9 3306.9 337.5 2387.5 SE III $P_T(k)$ 143.5 248.1 360.4 2360.4 CASE I -	Computatic	CAS Member BR-9,10 BR-7,8 BR-5,6 BR-3,4 BR-1,2	E II P _T (k) 143.5 275.8 275.8 387.5 387.5		AISC Seismic Pro Sect. F2.3 AISC Seismic Pro Sect. F2.3
Expected Brace Member Strengths in Tension BR-9,1 BR-7, BR-5, BR-3, BR-1, BR-7, BR-3, BR-9,1 BR-1, BR-7, BR-9,1 BR-7, BR-9,1 BR-7, BR-9,1 BR-7, BR-7, BR-7,8 14 BR	 P_T (k) 147.0 306.9 306.9 387.5 387.5 387.5 2387.5 248.1 248.1 248.1 360.4 2360.4 CASE I - KL/r 	F _e (ksi)	Member BR-9,10 BR-7,8 BR-5,6 BR-3,4 BR-1,2	P _T (k) 143.5 275.8 275.8 387.5		Sect. F2.3 AISC Seismic Pro
Expected Brace Strengths in Compression BR-9,10 BR-3, BR-3, BR-1, BR-1, BR-1,0 BR-9,10 BR-9,10 BR-9,10 BR-3,4 BR-3,4 BR-3,4 BR-3,4 BR-3,4 BR-1,2 Member L _{actual} (ft) BR-9,10 4 BR-3,4 BR-3,4 BR-3,4 14 BR-3,4 14 BR-3,4 BR-3,4 14 BR-3,4 14 BR-1,2 14 BR-1,2 14 BR-1,2 14 BR-1,2 14 BR-1,2 14 BR-3,4 14 BR-1,2 1	P _T (k) 143.5 248.1 248.1 360.4 2360.4 CASE I - KL/r	F _e (ksi)	1			
Strengths in Compression Member L _{actual} (ft) BR-9,10 14 BR-7,8 14 BR-7,8 14 BR-3,4 14 BR-3,4 14 BR-1,2 14 BR-9,10 14 BR-9,10 14 BR-7,8 14 BR-9,10 14 BR-7,8 14 BR-7,8 14 BR-3,4 14 BR-1,2 14 BR-9,10 14 BR-9,10 14 BR-7,8 14	KL/r	F _e (ksi)	1			
BR-5,6 14 BR-3,4 14 BR-1,2 14 Member Lactual (ft) BR-9,10 14 BR-3,4 14 BR-3,4 14 BR-3,4 14 BR-1,2 14 BR-1,2 14 BR-1,2 14 BR-1,2 14 BR-9,10 14 BR-9,10 14 BR-7,8 14	83.2	41.4	F _{cre} (ksi) 16.0 32.4	P _c (k) 45.5 193.0	.3P _c (k) 13.7 57.9	AISC Seismic Pro Sect. F2.3 AISC Manual
BR-9,10 14 BR-7,8 14 BR-5,6 14 BR-3,4 14 BR-1,2 14 Member Lactual (ft) BR-9,10 14 BR-7,8 14	83.2 65.9 65.9	41.4 65.9 65.9 75% SCBF	32.4 40.5 40.5	193.0 304.1 304.1	57.9 91.2 91.2	Eq. E3-2, Eq. E3-3, & Eq. E3-4
BR-9,10 14 BR-7,8 14 BR-5,6 14 BR-3,4 14 BR-1,2 14 Member Lactual (ft) BR-9,10 14 BR-7,8 14	1	F _e (ksi)	F _{cre} (ksi)	P _c (k)	.3P _c (k)	AISC Seismic Pro Sect. F2.3
Member L _{actual} (ft) BR-9,10 14 BR-7,8 14	125.4 82.8 82.8 65.9 65.9	18.2 41.8 41.8 65.9 65.9	16.0 32.6 32.6 40.5 40.5	44.4 174.5 174.5 304.1 304.1	13.3 52.3 52.3 91.2 91.2	AISC Manual Eq. E3-2, Eq. E3-3, & Eq. E3-4
BR-9,10 14 BR-7,8 14	CASE III -	- 70% SCBF				AISC Seismic Pro
	125.4	F _e (ksi) 18.2	F _{cre} (ksi) 16.0	P _c (k) 44.4	.3P _c (k) 13.3	Sect. F2.3 AISC Manual
BR-3,4 14	82.4 82.4 70.9	42.2 42.2 57.0	32.8 32.8 38.2	157.9 157.9 266.7	47.4 47.4 80.0	Eq. E3-2, Eq. E3-3, &
BR-1,2 14	70.9	57.0	38.2	266.7	80.0	Eq. E3-4

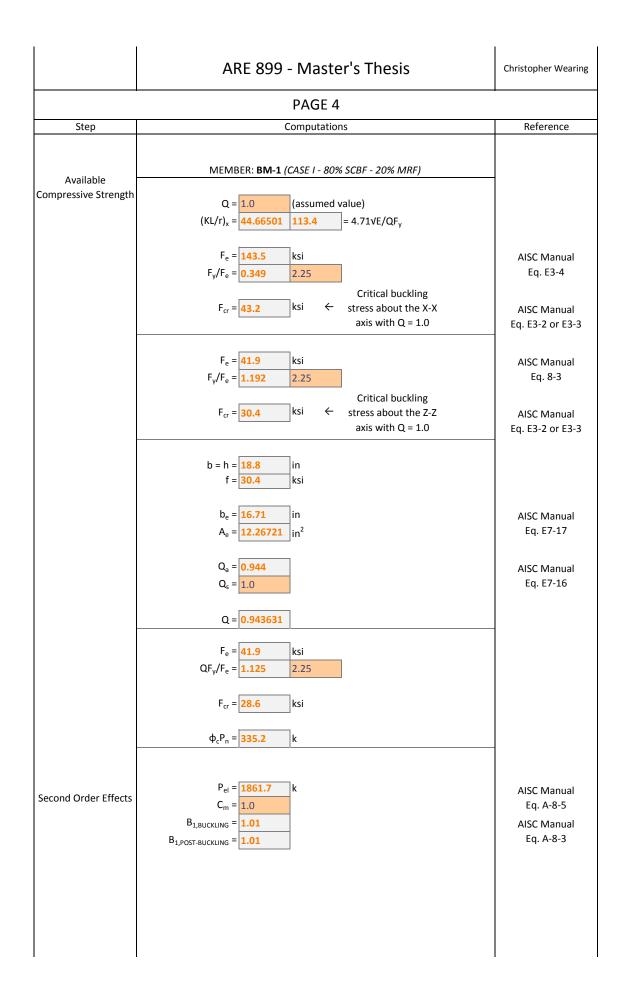
COLUMNS

ARE 899 - Master's Thesis

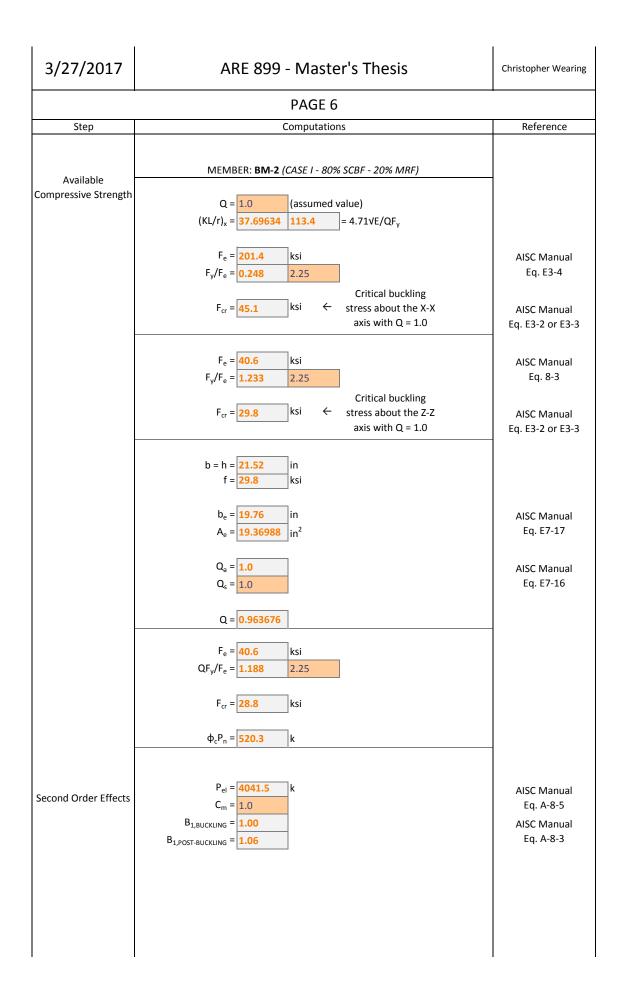
				PAGE 1				
Step			C	Computations				Reference
Expected Forces from Braces Buckling/Yielding	CASE I - 80 Member BR-9,10 BR-7,8 BR-7,8 BR-3,4 BR-1,2 CASE III - 7 Member BR-9,10 BR-7,8 BR-7,8 BR-5,6 BR-3,4 BR-3,4 BR-1,2	0% SCBF - P _T (k) 147.0 306.9 387.5 387.5 0% SCBF - P _T (k) 143.5 248.1 248.1 360.4 360.4	P _c (k) 45.5 193.0 193.0 304.1 304.1		ASE II - 7 ember 3R-9,10 BR-7,8 BR-5,6 BR-3,4 BR-1,2	5% SCBF - P _T (k) 143.5 275.8 275.8 387.5 387.5	25% MRF P _c (k) 44.4 174.5 304.1 304.1	See Bracing Design
Loads from RISA using Overstrength Factor	CASE I - 8 Member BR-9,10 BR-7,8 BR-5,6 BR-3,4 BR-1,2	0% SCBF - 2 P _T (k) 34.0 97.0 146.7 185.4 219.6	20% MRF P _c (k) 34.1 107.0 156.4 189.2 223.3		ASE II - 7 ember 2 3R-9,10 2 BR-7,8 2 BR-5,6 2 BR-3,4 2 BR-1,2 2	5% SCBF - P _T (k) 32.2 91.6 137.3 174.5 205.7	25% MRF P _c (k) 32.3 99.5 144.9 178.2 209.3	See Applicable RISA Models, Both P _c & P _T value from EL ONLY WITH Load Combo
Inputs	CASE III - 7 Member BR-9,10 BR-7,8 BR-5,6 BR-3,4 BR-1,2	0% SCBF - P _T (k) 30.1 85.5 128.4 162.8 192.1	P _c (k) 30.2 92.8 135.5 166.0 195.2	38.7 °				See Applicable RISA Models, Both P _c & P _T value from EL ONLY WITH Load Combo

ARE 899 - Master's Thesis

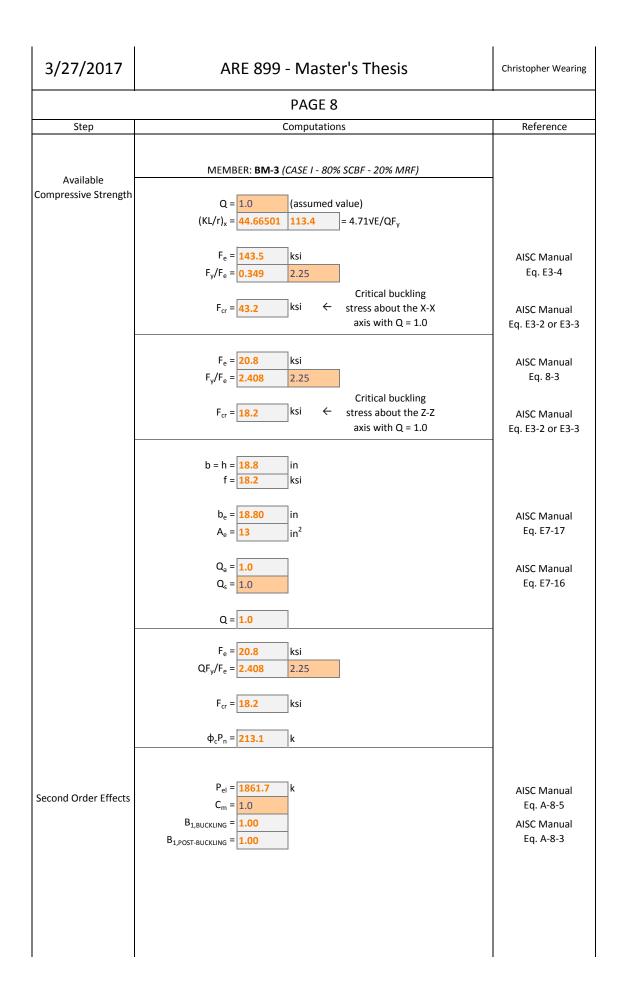
	PAC	GE 2	
Step	Compu	tations	Reference
Max Compression Loading from Buckling/Yielding	$\begin{array}{c c} CASE \ I - 80\% \ SCBF - 20\% \ MRF \\ \hline V_{B,ROOF} = & -31.7 & k \\ V_{B,Sth \ FL} = & -3.9 & k \\ \hline V_{B,4th \ FL} = & 0.0 & k \\ \hline V_{B,3rd \ FL} = & 9.5 & k \\ \hline V_{B,2nd \ FL} = & 0.0 & k \\ \hline P_{E,C} = & 608.9 & k \\ \hline \end{array}$	$\begin{array}{c c} CASE II - 75\% \ SCBF - 25\% \ MRF \\ \hline V_{B,ROOF} = & -30.9 & k \\ V_{B,Sth \ FL} = & -0.7 & k \\ V_{B,4th \ FL} = & 0.0 & k \\ V_{B,3rd \ FL} = & 5.6 & k \\ V_{B,2nd \ FL} = & 0.0 & k \\ \hline P_{E,C} = & 577.1 & k \\ \end{array}$	
Max Compression Loading from LC's using Ω	$V_{B,3rd \ FL} = \frac{-1.1}{0.0} k$ $P_{E,C} = \frac{-1.1}{535.8} k$ $CASE \ I - 80\% \ SCBF - 20\% \ MRF$ $V_{B,ROOF} = \frac{0.0}{0.0} k$ $V_{B,SOF} = \frac{0.0}{0.1} k$ $V_{B,5th \ FL} = \frac{3.1}{0.1} k$ $V_{B,3rd \ FL} = \frac{-0.1}{0.1} k$ $V_{B,3rd \ FL} = \frac{-1.9}{0.0} k$ $P_{E,C} = \frac{294.3}{0.0} k$	$\begin{array}{c} \mbox{CASE II - 75\% SCBF - 25\% MRF} \\ \hline V_{B,ROOF} = & 0.0 & k \\ V_{B,Sth FL} = & 2.4 & k \\ V_{B,4th FL} = & -0.1 & k \\ V_{B,3rd FL} = & -1.2 & k \\ V_{B,2nd FL} = & 0.0 & k \\ \hline P_{E,C} = & 275.9 & k \\ \end{array}$	
pplicable B2 Factors	$\begin{array}{c c} CASE \mbox{ III - 70\% SCBF - 30\% MRF} \\ \hline V_{B,ROOF} = & 0.0 & k \\ \hline V_{B,Sth FL} = & 2.3 & k \\ \hline V_{B,4th FL} = & -0.1 & k \\ \hline V_{B,3rd FL} = & -0.1 & k \\ \hline V_{B,3rd FL} = & -1.2 & k \\ \hline V_{B,2nd FL} = & 0.0 & k \\ \hline P_{E,C} = & 257.6 & k \\ \hline \hline \\ \hline$	$\frac{\text{CASE II}}{\text{B}_2 = 1.03}$	See Bracing Calculations

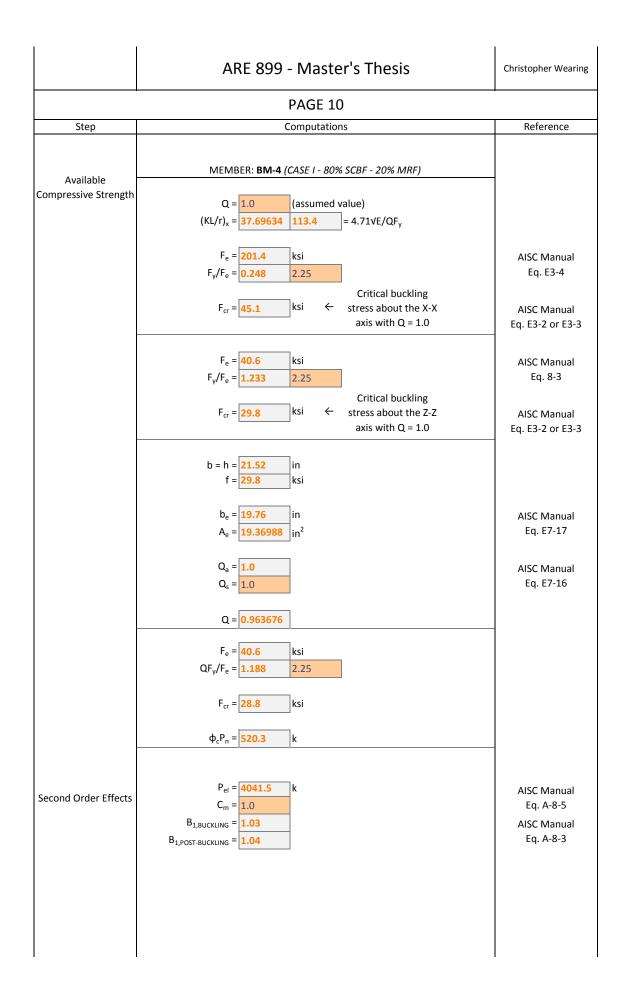

3/27/2017	ARE 899 - I	Master's Thesis	Christopher Wearing
	Р	PAGE 3	
Step	Cor	nputations	Reference
Design Compression Loads	CASE I - 80% SCBF - 20% MRF PDL+LL = 238.4 k PE,C = 303.2 k PU = 541.7 k	CASE II - 75% SCBF - 25% MRF $P_{DL+LL} =$ 238.4 k $P_{E,C} =$ 284.1 k $P_{U} =$ 522.6 k	
	CASE III - 70% SCBF - 30% MRF $P_{DL+LL} = 238.4$ k $P_{E,C} = 266.0$ k $P_{U} = 504.4$ k		
Select Section	CASE I - 80% SCBF - 20% MRFSelect:W14x68 $\phi_c P_n = 640$ kCheck:GOOD	CASE II - 75% SCBF - 25% MRF Select: W14x68 $\phi_c P_n = 640$ k Check: GOOD	AISC Manual Tbl. 1-1 & Tbl. 4-1
	$\begin{array}{c} \text{CASE III - 70\% SCBF - 30\% MRF} \\ \text{Select: } & \text{W14x68} & - \\ \phi_c P_n = & 640 & \text{k} \\ \text{Check: } & \text{GOOD} \end{array}$		AISC Manual Tbl. 1-1 & Tbl. 4-1

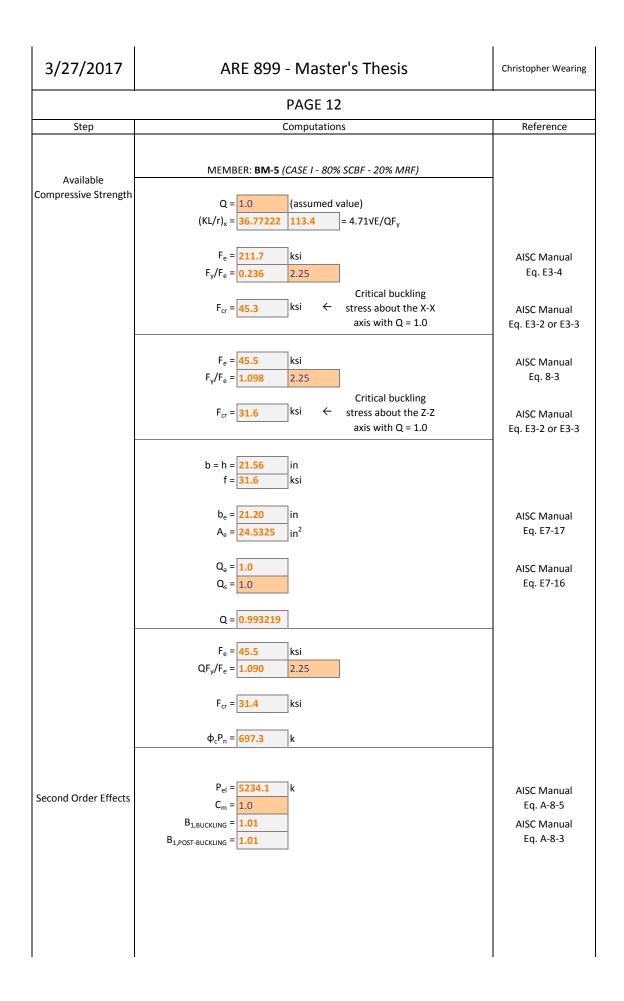
BEAMS (CASE I)


	F	ARE 899 - Master's Thes	Christopher Wearing
		PAGE 1	
Step		Computations	Reference
Expected Forces from Braces Buckling/Yielding	CASE I - 80% SCBF Member PT (k) BR-9,10 147.0 BR-7,8 306.9 BR-5,6 306.9 BR-3,4 387.5 BR-1,2 387.5	P _c (k) 45.5 193.0 193.0 304.1	See Bracing Design
Expected Forces from Braces Post- Buckling/Yielding	CASE I - 80% SCBF Member PT (k) BR-9,10 147.00 BR-7,8 306.90 BR-5,6 306.90 BR-3,4 387.50 BR-1,2 387.50	P _c (k) 13.7 57.9 57.9 91.2	See Bracing Design
Inputs		$Y = \frac{38.7}{0} \circ \frac{43.0}{0} r + \frac{10.0}{0} r + $	

			RE 899 -					Christopher Wearing	
				PAGE 2					
Step			C	omputation	าร			Reference	
Deed Leeder Live		LOAD	COMBINAT	TION 5 [(1.2	+ .2S _{DS})DL +	+ .5LL]			
Dead Loads + Live Loads Only			CASE I - 8	30% SCBF - 2					
			Member		M _{D+L} (k-ft)	1			
			BM-5	4.0	30.2			Applicable RISA	
			BM-4	14.2	106.1			Model	
			BM-3 BM-2	14.2 14.2	106.1 106.1				
			BIVI-2 BM-1	14.2	106.1				
			5111 1	1.1.2	100.1				
		L	OAD COMBI	NATION 7 [(.92S _{DS})D	L]			
	CASE I - 8	0% SCBF -	20% MRF						
	Member	V _{D+L} (k)	M _{D+L} (k-ft)						
	BM-5	2.4	18.3					Applicable RISA	
	BM-4	7.1	52.9					Model	
	BM-3	7.1	52.9						
	BM-2	7.1	52.9 52.9						
	BM-1	7.1	52.9						
Required Strengths			CASE I - 8	30% SCBF - 3	20% MRF				
due to Seismic	Member	Bu	ickling/Yield	ing	Post-	Buckling/Yi			
Loading (Buckling,		P _E (k)	V _E (k)	M _E (k-ft)	P _E (k)	V _E (k)	M _E (k-ft)		
Post- Buckling)/Yielding	BM-5	75.2	31.7	475.5	62.7	41.6	624.5		
2000000000	BM-4	120.0	0.0	0.0	149.3	0.0	0.0		
	BM-3 BM-2	0.0	0.0	0.0 0.0	0.0 212.9	0.0	0.0		
	BIVI-2 BM-1	17.2	2.4	36.0	11.9	8.5	128.1		
					_				


			PAGE	3		
Step			Computati	ions		Reference
Member Selections				- 20% MRF	2	
and Properties		A _g = 24.7 d = 24.1	in ²	S _x =	196 in ³ 9.8 in	
		u = 24.1 $t_w = 0.470$	in	r _x = Z _x =	224 in ³	
	BM-5	$b_{f} = 9.02$	in	$I_y =$	94.4 in ⁴	AISC Manual
	W24x84	t _f = 0.770	in	r _y =	1.95 in	Tbl. 1-1
	WZ4X04	k _{des} = 1.27	in	h _o =	23.3 in	
		h/t _w = <mark>45.9</mark>		J =	3.7 in ⁴	
		l _x = 2370	in ⁴	C _w =	12800 in ⁶	
		$A_g = 20.1$	in ²	S _x =	154 in ³	
		d = 23.7 t _w = 0.415	in in	r _x = Z _x =	9.55 in 177 in ³	
	BM-4	$b_f = 8.97$	in	$I_{y} =$	70.4 in ⁴	AISC Manual
	W24x68	$t_{f} = 0.589$	in	r _y =	1.87 in	Tbl. 1-1
	VV24X08	k _{des} = 1.09	in	h _o =	23.1 in	
		$h/t_w = 52$		J =	1.87 in ⁴	
		I _x = 1830	in ⁴	C _w =	9430 in ⁶	
		A _g = 13 d = 20.7	in ² in	S _x = r _x =	81.6 in ³ 8.1 in	
		$t_w = 0.350$	in	$Z_x = $	95.4 in ³	
	BM-3	$b_{f} = 6.50$	in	Î _y =	20.7 in ⁴	AISC Manual
	W21x44	t _f = 0.450	in	r _y =	1.26 in	Tbl. 1-1
	VV21X44	k _{des} = 0.95	in	h _o =	20.3 in	
		h/t _w = <mark>53.6</mark>		J =	0.77 in ⁴	
		l _x = 843	in ⁴	C _w =	2110 in ⁶	
		A _g = 20.1 d = 23.7	in ² in	S _x =	154 in ³ 9.55 in	
		$t_w = 0.415$	in	r _x = Z _x =	177 in ³	
	BM-2	b _f = 8.97	in	I _y =	70.4 in ⁴	AISC Manual
	W24x68	t _f = 0.589	in	r _y =	1.87 in	Tbl. 1-1
		k _{des} = 1.09	in	h _o =	23.1 in	
		$h/t_w = 52$		J =	1.87 in ⁴	
		$I_x = 1830$	in ⁴	C _w =	9430 in ⁶	
		A _g = 13 d = 20.7	in ²	S _x = r _x =	81.6 in ³ 8.1 in	
		$t_w = 0.350$	in	$Z_x = $	95.4 in ³	
	BM-1	$b_{f} = 6.50$	in	I _y =	20.7 in ⁴	AISC Manual
	W21x44	t _f = 0.450	in	r _y =	1.26 in	Tbl. 1-1
		k _{des} = 0.95	in	h _o =	20.3 in	
		$h/t_{w} = 53.6$. 4	J =	0.77 in ⁴	
		I _x = 843	in ⁴	C _w =	2110 in ⁶	


	E 899 - Master's Thesis Christopher Wea	ARE 899 - Mas		
PAGE 5	PAGE 5	PAGE		
Step Computations Reference	Computations Reference	Computat		Step
	PAGE 5 Computations Reference ER: BM-1 (CASE I - 80% SCBF - 20% MRF) Combination 5 Load Combination 7 17.4 k $P_u = 17.4$ k 16.6 k $V_u = 9.5$ k 142.5179 k-ft (+) $M_u = 16.54509$ k-ft 12.0 k $P_u = 12.0$ k 22.7 k $V_u = 15.6$ k 235.0165 k-ft (+) $M_u = 181.8035$ k-ft	PAGE Computat MEMBER: BM-1 (CASE I - 8 Load Combination 5 P _u = 17.4 k Vue 16.6 k-ft Vue 16.6 k-ft (-) M _u = 142.5179 k-ft (-) M _u = 69.75809 k-ft Vue 22.7 k Vue 22.7 k (+) M _u = 235.0165 k-ft	Yielding Post- Buckling /	

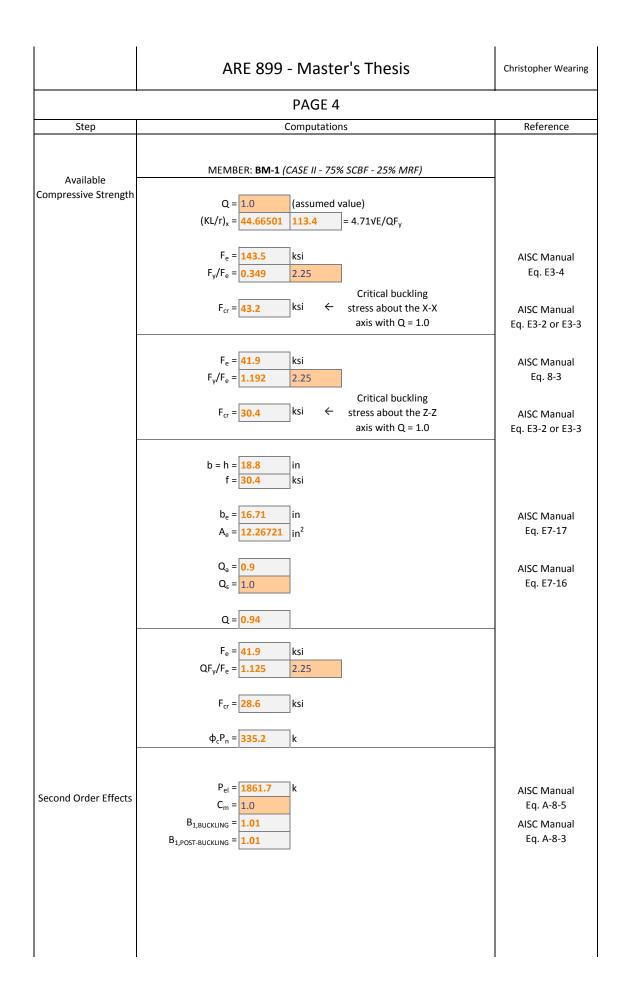

		ARE 899 - Mas	ter s mesis	Christopher Wearing
		PAGE	7	
Step		Computat	tions	Reference
Member Forces		MEMBER: BM-2 (CASE I - 8	DOW SCRE 200/ MARE)	
Weinber Forces		Load Combination 5	Load Combination 7	-
	l [P _u = 77.4 k	P _u = 77.4 k	
	Buckling /	V _u = 14.2 k	V _u = 7.1 k	
	Yielding	(+) M _u = 106.138 k-ft	(+) M _u = <mark>52.925</mark> k-ft	
		(-) M _u = 106.138 k-ft P _u = 224.7 k	(-) $M_u = \frac{52.925}{P_u} k-ft$ $P_u = \frac{224.7}{k}$	
	Post-	$V_u = \frac{224.7}{14.2}$ k	$V_u = \frac{7.1}{1}$ k	
	Buckling /	$(+) M_u = \frac{106.138}{106.138}$ k-ft	$(+) M_u = 52.925$ k-ft	
	Yielding	(-) M _u = 106.138 k-ft	(-) M _u = <mark>52.925</mark> k-ft	

		ARE 899 - Mas	ter s mesis	Christopher Wearing
		PAGE	9	
Step		Computat	lions	Reference
Member Forces		MEMBER: BM-3 (CASE I - 8		
	Г	Load Combination 5 $P_u = 0.0 \qquad k$	$P_{u} = 0.0 k$	
	Buckling /	$V_u = 14.2$ k	$V_{u} = \frac{0.0}{7.1}$ k	
	Yielding	(+) M _u = 106.138 k-ft	(+) M _u = <mark>52.925</mark> k-ft	
		(-) M _u = 106.138 k-ft	(-) M _u = <mark>52.925</mark> k-ft	
	Post-	$P_u = 0.0$ k	$P_u = 0.0$ k	
	Buckling /	$V_{u} = 14.2$ k	$V_{u} = 7.1 $ k	
	Yielding	(+) M _u = <mark>106.138</mark> k-ft (-) M _u = <mark>106.138</mark> k-ft	(+) $M_u = \frac{52.925}{52.925}$ k-ft (-) $M_u = \frac{52.925}{52.925}$ k-ft	

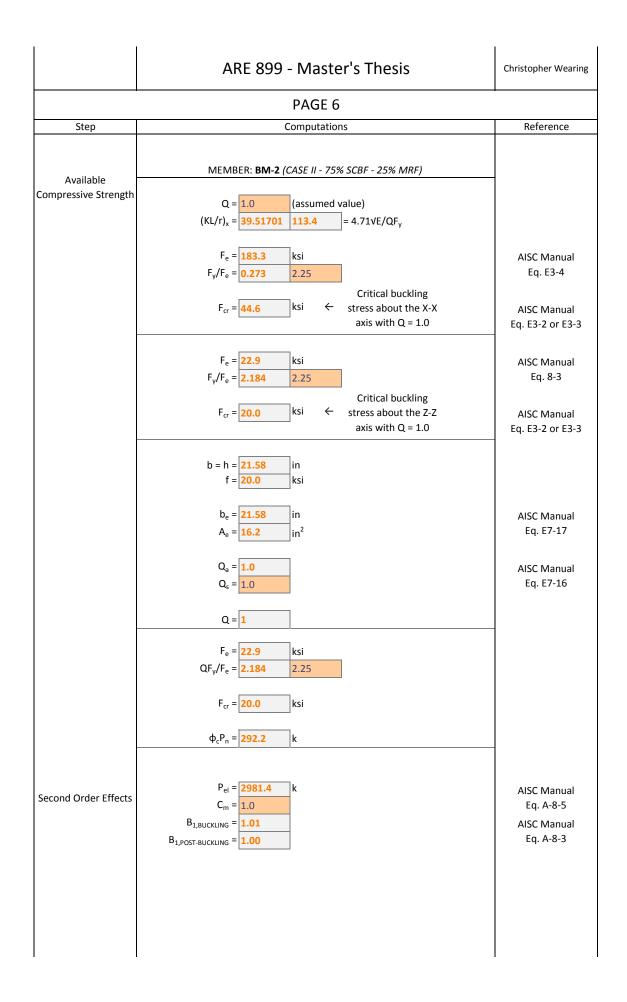
		ARE 899 - Mas	ter's Thesis	Christopher Wearing
		PAGE	11	
Step		Computat	ions	Reference
Member Forces		MEMBER: BM-4 (CASE I - 8		
	Г	Load Combination 5 $P_u = 123.7$ k	Load Combination 7 $P_u = 123.7$ k	
	Buckling /	$V_u = \frac{123.7}{14.2}$ k	$V_u = \frac{123.7}{7.1}$ k	
	Yielding	(+) M _u = 106.138 k-ft	(+) M _u = <mark>52.925</mark> k-ft	
		(-) M _u = 106.138 k-ft	(-) M _u = <mark>52.925</mark> k-ft	
	Post-	$P_u = \frac{155.0}{k}$	$P_u = \frac{155.0}{k}$	
	Buckling /	$V_u = $ 14.2 k (+) $M_u = $ 106.138 k-ft	$V_u = 7.1$ k (+) $M_u = 52.925$ k-ft	
	Yielding	(+) $M_u = 106.138$ k-ft k-ft	(+) $M_u = \frac{52.925}{52.925}$ k-ft	
		() u <u></u>		

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 13	
Step	Computations	Reference
Step Member Forces	PAGE 13	T Reference

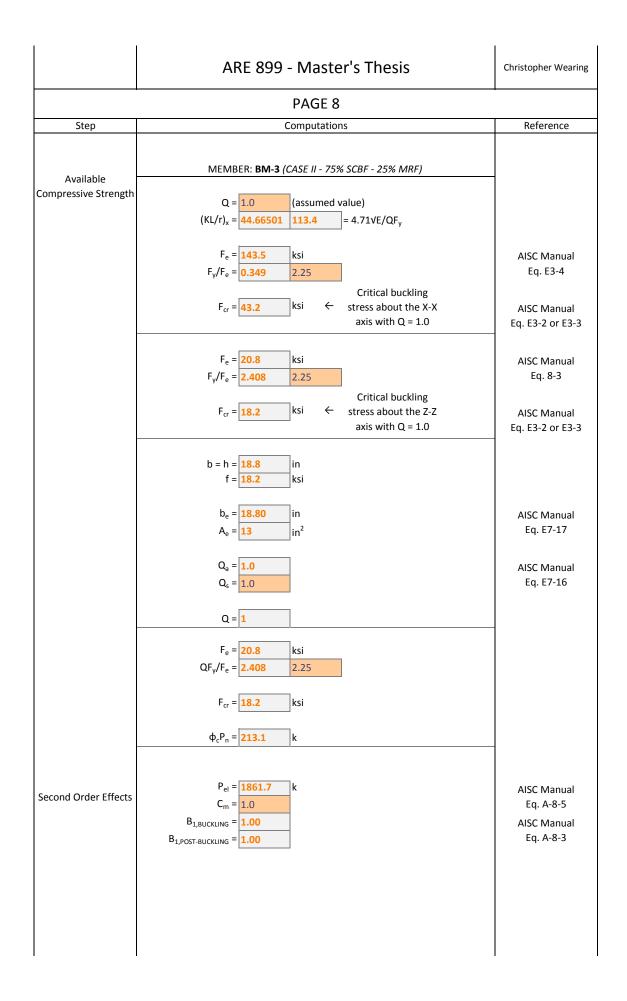
		AF	RE 899	- Maste	er's The	sis		Christopher Wearing
	<u>.</u>			PAGE 14	ŀ			
Step			(Computation	IS			Reference
Available Strengths								
			CASE I -	80% SCBF - 2	20% MRF		_	
		Member	(+) φ _b M _n (k-ft)	(-) φ _b M _n (k-ft)	φ _c P _n (k)	$\phi_v V_n$ (k)		
		BM-5	840	765	697.3	340		
		BM-4	574	NA	520.3	306		
		BM-3	1050	900	213.1	404		
		BM-2	574	NA	520.3	306		
		BM-1	358	264	335.2	217		
		Load	d Combinat	1	Load	d Combinat	1	
			0.051873	Eq. H1-1b		0.051873	Eq. H1-1b	
	Buckling /			GOOD		0.043697	GOOD	
	Yielding	(+) M:		GOOD	(+) M:		GOOD	
		(-) M: P./P. =	NA 0.035801	NA Eq. H1-1b	(-) M: P./P. =	NA 0.035801	NA Eq. H1-1b	
	Post-		0.104811	GOOD		0.072115	GOOD	
	Buckling /	(+) M:		GOOD		0.526	GOOD	
	Yielding		0.104	GOOD		0.306	GOOD	
			ER: BM-2 (d Combinat	<i>CASE I - 80%</i> ion 5		<i>6 MRF)</i> d Combinat	ion 7	
			0.14868	Eq. H1-1b		0.14868	Eq. H1-1b	
	Buckling /		0.046248	GOOD	V:	0.023062	GOOD	
	Yielding	(+) M:		GOOD		0.167	GOOD	
		(-) M:		NA	(-) M:		NA	
	Post-		0.431924	Eq. H1-1a		0.431924	Eq. H1-1a	
	Buckling /		0.046248	GOOD		0.023062	GOOD	
	Yielding	(+) M: (-) M:		GOOD NA	(+) M: (-) M:	0.514	GOOD NA	
							1	

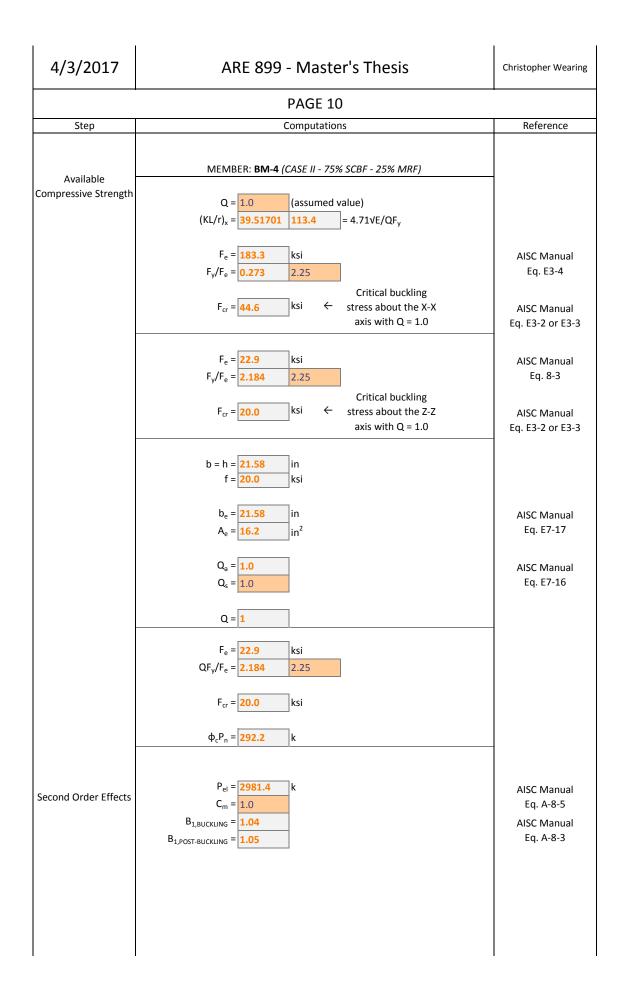

		AR	E 899	- Maste	r's The	SIS		Christopher Wearing
				PAGE 15				
Step			(Computation	IS			Reference
			D· BM_2 /	CASE I - 80%	SCRE _ 20%			
Combined Loading &			Combinat			l Combinat	ion 7	
Shear Checks		$P_r/P_c = 0$		Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Buckling /	-	- 0.03503	GOOD		- 0.017468	GOOD	
	Yielding	(+) M:		GOOD	(+) M:		GOOD	
		(-) M: I		NA	(-) M:		NA	
		$P_r/P_c = 0$		Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Post-		0.03503	GOOD		0.017468	GOOD	
	Buckling /	(+) M:		GOOD	v. (+) M:		GOOD	
	Yielding	(+) M: I		NA	(+) M: (-) M:		NA	
		(-) 101.	INA		(-) 101.	NA		
			D. D.A.A./		CCDE 200			
				CASE I - 80%		,	7	
			Combinat			l Combinat	-	
	/	$P_r/P_c = 0$		Eq. H1-1a		0.23772	Eq. H1-1a	
	Buckling / Yielding	-	0.046248	GOOD		0.023062	GOOD	
		(+) M:		GOOD	(+) M:		GOOD	
		(-) M:	NA 0.297863	NA	(-) M:	NA 0.297863	NA	
	Post-	-	0.297863	Eq. H1-1a GOOD		0.297863	Eq. H1-1a GOOD	
	Buckling / Yielding	(+) M:					-	
		-		GOOD	(+) M:		GOOD	
		(-) M: I	NA	NA	(-) M:	NA	NA	
					CCDE 200			
		MEMBER: BM-5 (CASE I - 80% SCBF - 20% MRF) Load Combination 5 Load Combination 7						
			0.174632	Eq. H1-1b GOOD		0.109358 0.115359	Eq. H1-1b GOOD	
	Buckling / Yielding	(+) M:		GOOD	v. (+) M:		GOOD	
	Tieluling	-		GOOD			+	
	<u> </u>	(-) M:	0.091074	Eq. H1-1b	(-) M:	0.091074	GOOD	
			0.0310/4	1 CY. HI-10	$r_r/r_c =$		Eq. H1-1b	
	Post-	-		-	ν.	0 1447	COOD	
	Post- Buckling /	V: (0.165568	GOOD		0.1447	GOOD	
		-	0.165568 0.924	-	V: (+) M: (-) M:	0.861	GOOD GOOD GOOD	

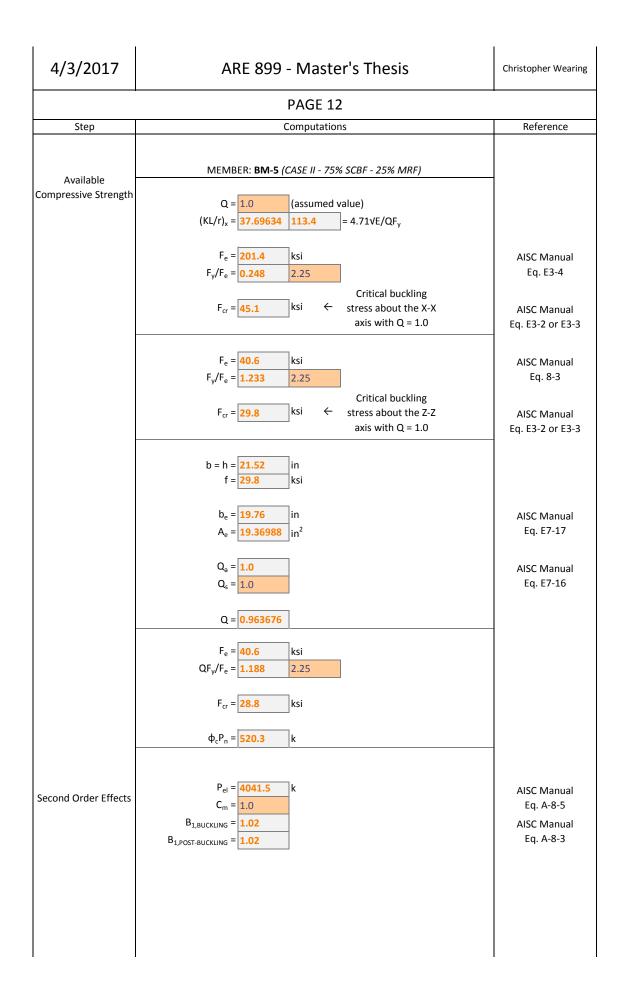
BEAMS (CASE I)


	ARE 899 -	iviaste	er's Thes	515	Christopher Wearing	
		PAGE 1			-	
Step	Co	omputation	ns		Reference	
Expected Forces from	CASE II - 7					
Braces Buckling/Yielding	Member	P _T (k)	P _c (k)			
Bucking/ Helding	BR-9,10 BR-7,8	143.5 275.8	44.4 174.5			
	BR-5,6	275.8	174.5			
	BR-3,4	387.5	304.1			
	BR-1,2	387.5	304.1			
					See Bracing Design	
Expected Forces from	CASE II - 7	5% SCBF -	25% MRF			
Braces Post-	Member	P _T (k)	P _c (k)			
Buckling/Yielding	BR-9,10	143.5	13.3			
	BR-7,8	275.8	52.3			
	BR-5,6	275.8	52.3			
	BR-3,4 BR-1,2	387.5 387.5	91.2 91.2			
Inputs	$Y = z$ $\alpha = z$ $L_x = z$ $L_z = z$ $K = z$ $F_y = z$	43.0 30 10 15 1	° ft ft ft ksi			

		OCOMBINA	PAGE 2 Computation	ns + .2S _{DS})DL +	5LL] 75% SCBF - V _{D+L} (k) 4.0 14.2 14.2 14.2 14.2	25% MRF M _{D+L} (k-ft) 30.2 106.1 106.1 106.1 106.1	Reference Applicable RISA Model
		OCOMBINA	TION 5 [(1.2	+ .2S _{DS})DL + CASE II - 7 Member BM-5 BM-4 BM-3 BM-2	75% SCBF - V _{D+L} (k) 4.0 14.2 14.2 14.2	M _{D+L} (k-ft) 30.2 106.1 106.1 106.1	Applicable RISA
				CASE II - 7 Member BM-5 BM-4 BM-3 BM-2	75% SCBF - V _{D+L} (k) 4.0 14.2 14.2 14.2	M _{D+L} (k-ft) 30.2 106.1 106.1 106.1	
	Lt	OAD COMB	υνατιών 7 [Member BM-5 BM-4 BM-3 BM-2	V _{D+L} (k) 4.0 14.2 14.2 14.2	M _{D+L} (k-ft) 30.2 106.1 106.1 106.1	
	Lt	OAD COMB	υνατιον 7 [BM-5 BM-4 BM-3 BM-2	4.0 14.2 14.2 14.2	30.2 106.1 106.1 106.1	
	L	OAD COMB	υνατιον 7 [BM-4 BM-3 BM-2	14.2 14.2 14.2	106.1 106.1 106.1	
	Lt	OAD COMB	ανατιών 7 Γ	BM-3 BM-2	14.2 14.2	106.1 106.1	Model
	L(OAD COMB	ανατιών 7 [BM-2	14.2	106.1	
	L	OAD COMB	αινατίον 7 [
	L(OAD COMB	αινατίον 7 [I			
	L	OAD COMB	ανατιώνι 7 [
				(.92S _{DS})D		250(MD5	
					75% SCBF -		
				Member BM-5	V _{D+L} (k)	M _{D+L} (k-ft) 18.3	
				BIVI-5 BM-4	7.1	52.9	Applicable RISA
				BM-3	7.1	52.9	Model
				BM-2	7.1	52.9	
				BM-1	7.1	52.9	
				·			
		CASE II -	75% SCBF -	25% MRF			
Member Buckling/Yielding Post-Buckling/Yielding							
Weinber	P _E (k)	V _E (k)	M _E (k-ft)	P _E (k)	V _E (k)	M _E (k-ft)	
BM-5	73.4	31.0	464.3	61.2	40.7	610.0	
	Member BM-5 BM-4 BM-3 BM-2 BM-1	Member P _E (k) BM-5 73.4 BM-4 102.4 BM-3 0.0 BM-2 94.2	BM-beta BW-state BW-state	Burkling/Yieldis Pe (k) Ve (k) Me (k-ft) BM-5 73.4 31.0 464.3 BM-4 102.4 0.0 0.0 BM-3 0.0 0.0 0.0 BM-2 94.2 0.0 0.0	Member P _E (k) V _E (k) M _E (k-ft) P _E (k) BM-5 73.4 31.0 464.3 61.2 BM-4 102.4 0.0 0.0 138.1 BM-3 0.0 0.0 0.0 0.0 BM-2 94.2 0.0 0.0 202.9	BMember $B_{E}(k)$ $V_{E}(k)$ $M_{E}(k-ft)$ $P_{E}(k)$ $V_{E}(k)$ BM-5 73.4 31.0 464.3 61.2 40.7 BM-4 102.4 0.0 0.0 138.1 0.0 BM-3 0.0 0.0 0.0 202.9 0.0	$\begin{tabular}{ c c c c c c c } \hline Post-Uncline & Post-Uncline & Post-Uncline & Pechanic & Pechan$


			PAGE 3	}	
Step			Computatio	ns	Reference
		CASE II	- 75% SCBF ·	- 25% MRF	
Member Selections and Properties		A _g = 20.1	in ²	$S_x = \frac{154}{\text{in}^3}$	
		d = 23.7	in	r _x = 9.55 in	
	BM-5	$t_{w} = 0.415$	in	$Z_x = 177.000$ in ³	
		$b_f = 8.97$ $t_f = 0.585$	in	$I_y = 70.40$ in ⁴	Tbl. 1-1
	W24x68	$k_{des} = 1.09$	in in	r _y = 1.870 in h _o = 23.1 in	
		$h/t_w = 52$		J = 1.87 in ⁴	
		$I_x = 1830$	in⁴	$C_{\rm w} = 9430$ in ⁶	
		A _g = 16.2	in ²	$S_x = 114 \text{ in}^3$	
		d = 23.6	in	r _x = 9.11 in	
		t _w = 0.395	in	$Z_x = 134 \text{ in}^3$	
	BM-4	b _f = 7.01	in	$I_{y} = \frac{29.1}{1000} in^{4}$	Tbl. 1-1
	W24x55	t _f = 0.505	in	r _y = <u>1.34</u> in	
		k _{des} = 1.01	in	$h_0 = 23.1$ in	
		$h/t_{w} = 54.6$		$J = \frac{1.18}{1.18} in^4$	
		$I_x = \frac{1350}{13}$ $A_g = \frac{13}{13}$	in ⁴ in ²	$C_w = \frac{3870}{5x} in^6$	
		$A_{g} = 13$ d = 20.7	in	$r_x = \frac{81.0}{10}$ in	
		t _w = 0.350	in	$Z_x = \frac{95.4}{1000}$ in ³	
	BM-3	b _f = 6.50	in	$I_y = \frac{20.7}{1000} in^4$	
	W21x44	t _f = 0.450	in	r _y = <u>1.26</u> in	Tbl. 1-1
	***	k _{des} = 0.95	in	h _o = 20.3 in	
		h/t _w = <mark>53.6</mark>		$J = 0.77 in^4$	
		I _x = 843	in ⁴	$C_{w} = 2110 \text{ in}^{6}$	
		A _g = 16.2	in ²	$S_x = 114 \text{ in}^3$	
		d = 23.6 t _w = 0.395	in in	$r_x = \frac{9.11}{Z_x} in^3$	
	BM-2	$b_f = 7.01$	in	$I_y = 29.1 \text{ in}^4$	
		$t_f = 0.505$	in	r _y = 1.34 in	Tbl. 1-1
	W24x55	k _{des} = 1.01	in	h _o = 23.1 in	
		h/t _w = <mark>54.6</mark>		$J = \frac{1.18}{1000} in^4$	
		I _x = 1350	in ⁴	$C_{w} = \frac{3870}{1000} in^{6}$	
		A _g = 13	in ²	$S_x = \frac{81.6}{1000} in^3$	
		d = 20.7	in	r _x = 8.1 in	
	BM-1	t _w = <mark>0.350</mark> b _f = 6.50	in	$Z_x = 95.4 \text{ in}^3$	
		$t_f = 0.450$	in in	$I_y = \frac{20.7}{1.26} in^4$ $r_y = \frac{1.26}{1.26} in$	Tbl. 1-1
	W21x44	$k_{des} = 0.450$	in	$h_0 = 20.3$ in	
		$h/t_{w} = 53.6$		$J = 0.77 \text{ in}^4$	
		I _x = 843	in⁴	$C_{w} = \frac{2110}{10} in^{6}$	


	ARE 899 - Master's Thesi	S Christopher Wearing
	PAGE 5	
Step	Computations	Reference
Member Forces		
	MEMBER: BM-1 (CASE II - 75% SCBF - 25% I	MRF)
		Combination 7
	$P_u =$ 17.4k $P_u =$ 1Buckling / $V_u =$ 16.6k $V_u =$ 9Yielding(+) $M_u =$ 142.5179k-ft(+) $M_u =$ 8	
	(-) M _u = 69.75809 k-ft (-) M _u = 1	6.54509 k-ft
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.6 k 81.8035 k-ft

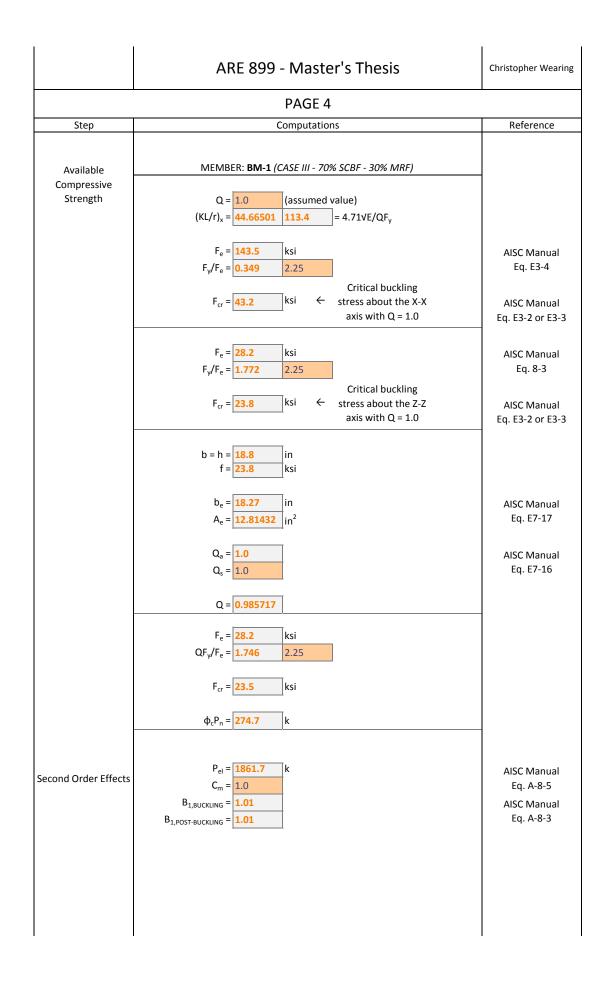

		ARE 899 - Maste	Christopher Wearing					
		PAGE 7						
Step		Computatio	ns	Reference				
Member Forces								
		MEMBER: BM-2 (CASE II - 75)						
	Г	Load Combination 5 P _u = 94.8 k	Load Combination 7 P _u = 94.8 k					
	Buckling /	$V_u = \frac{14.2}{k}$	$V_u = 7.1$ k					
	Yielding	(+) M _u = <mark>106.138</mark> k-ft	(+) M _u = <mark>52.925</mark> k-ft					
		(-) M _u = 106.138 k-ft P _u = 203.8 k	(-) M _u = <mark>52.925</mark> k-ft P _u = <mark>203.8</mark> k					
	Post-	$V_{u} = 14.2$ k	$V_{u} = 7.1$ k					
	Buckling / Yielding	(+) M _u = 106.138 k-ft (-) M _u = 106.138 k-ft	(+) $M_u = \frac{52.925}{52.925}$ k-ft (-) $M_u = \frac{52.925}{52.925}$ k-ft					

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 9	
Step	Computations	Reference
Member Forces		
	MEMBER: BM-3 (<i>CASE II - 75% SCBF - 25% MRF</i>)	
	Load Combination 5 Load Combination 7	
	$P_{u} = 0.0 k P_{u} = 0.0 k$	
	Buckling / $V_u = 14.2$ k $V_u = 7.1$ k	
	Yielding (+) M_u = 106.138 k-ft (+) M_u = 52.925 k-ft (-) M_u = 106.138 k-ft (-) M_u = 52.925 k-ft	
	$P_{u} = \frac{100.138}{0.0} k \qquad P_{u} = \frac{0.0}{0.0} k$	
	Post- Buckling / (1) M = 14.2 k $V_u = 7.1$ k	
	Buckling / Yielding(+) $M_u = 106.138$ k-ft(+) $M_u = 52.925$ k-ft(-) $M_u = 106.138$ k-ft(-) $M_u = 52.925$ k-ft	

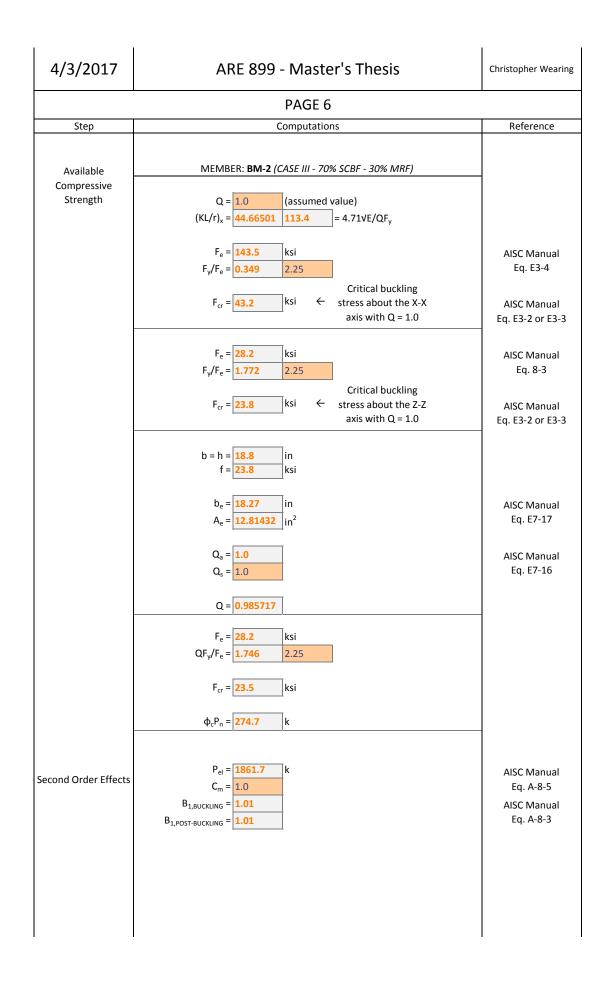
		ARE 899 - Maste	er's Thesis	Christopher Wearing
		PAGE 1	1	
Step		Reference		
Member Forces				
		MEMBER: BM-4 (CASE II - 75;		
	г	Load Combination 5 P _u = 106.1 k	Load Combination 7 P _u = 106.1 k	
	Buckling /	$V_u = 14.2$ k	$V_u = 7.1$ k	
	Yielding	(+) M _u = <mark>106.138</mark> k-ft	(+) M _u = <mark>52.925</mark> k-ft	
		(-) M _u = 106.138 k-ft P _u = 144.8 k	(-) M _u = <mark>52.925</mark> k-ft P _u = 144.8 k	
	Post-	$V_u = 144.8$ k	$V_{u} = 7.1$ k	
	Buckling / Yielding	(+) M _u = 106.138 k-ft (-) M _u = 106.138 k-ft	(+) $M_u = \frac{52.925}{52.925}$ k-ft (-) $M_u = \frac{52.925}{52.925}$ k-ft	

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 13	
Step	Computations	Reference
Member Forces		
	MEMBER: BM-5 (CASE II - 75% SCBF - 25% MRF) Load Combination 5 Load Combin	action 7
	Load combination 3Load combination 3Buckling / $P_u = 74.7$ k $P_u = 74.7$ Yielding $V_u = 45.7$ k $V_u = 38.6$ (+) $M_u = 579.0266$ k-ft(+) $M_u = 525.813$ (-) $M_u = -366.751$ k-ft(-) $M_u = -419.966$	k k k6 k-ft
	Post- Buckling / Yielding $P_u = 62.2$ (+) $M_u = 725.5352$ k-rt(-) $M_u = 62.2$ (+) $M_u = 725.5352$ (-) $M_u = -513.259$ k-rt(-) $M_u = 672.322$ (-) $M_u = -566.472$	k k k k k-ft

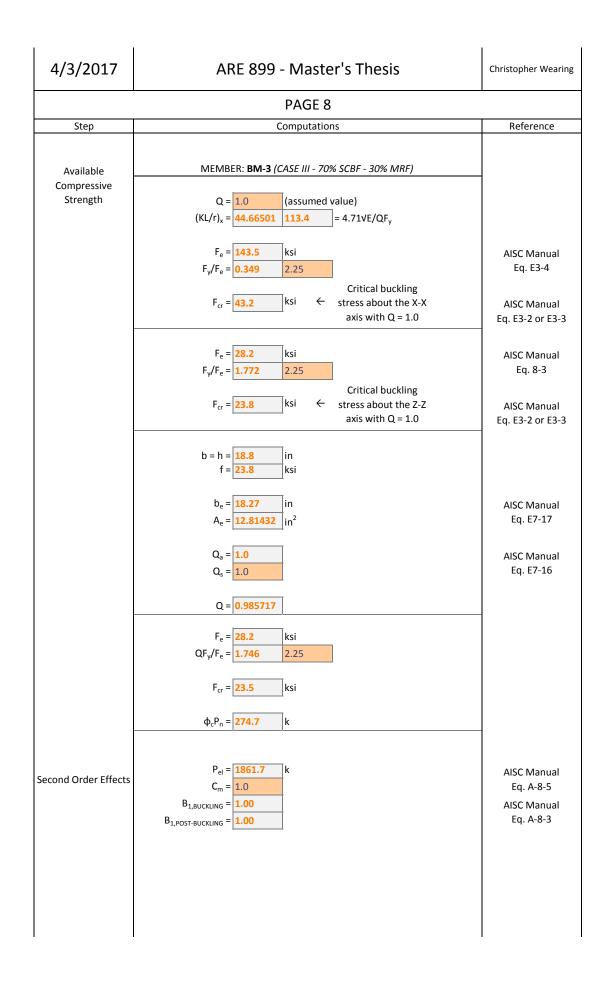
		Ar	KE 899	- Maste	ers me	SIS		Christopher Wearing
	ł			PAGE 14	1			
Step				Computation				Reference
Step				computation	15			hererenee
				754/ 6605	250/ 1405			
Available Strengths			(+) φ _b M _n	75% SCBF -	25% IVIRF		-	
		Member	(+) φ _b ivi _n (k-ft)	(-) φ _b M _n (k-ft)	$\phi_c P_n$ (k)	$\phi_v V_n$ (k)		
		BM-5		765	520.3	340	I	
		BM-4	574	NA	292.2	306	-	
		BM-3	358	264	213.1	217		
		BM-2	574	NA	292.2	306		
		BM-1	358	264	335.2	217		
			,					
Combined Loading &				CASE II - 75%			ion 7	
Shear Checks			d Combinat			l Combinat	1	
	Buckling /			Eq. H1-1b GOOD			Eq. H1-1b GOOD	
	Yielding		0.424	GOOD	(+) M:		GOOD	
		(-) M:		NA	(-) M:		NA	
			0.035801	Eq. H1-1b		0.035801	Eq. H1-1b	
	Post-			GOOD			GOOD	
	Buckling / Yielding	(+) M:	0.674	GOOD	(+) M:	0.526	GOOD	
	Ticlonig	(-) M:	0.104	GOOD	(-) M:	0.306	GOOD	
			d Combinati			l Combinat		
				Eq. H1-1a		0.324317		
	Buckling / Yielding		0.046248	-		0.023062	+	
	Ticloing	(+) M: (-) M:		GOOD NA	(+) ⋈: (-) M:		GOOD NA	
			0.324317	Eq. H1-1a		0.697384	Eq. H1-1a	
	Post-			GOOD			GOOD	
	Buckling / Yielding	(+) M:	0.862	GOOD	(+) M:		GOOD	
		(-) M:	NA	NA	(-) M:	NA	NA	

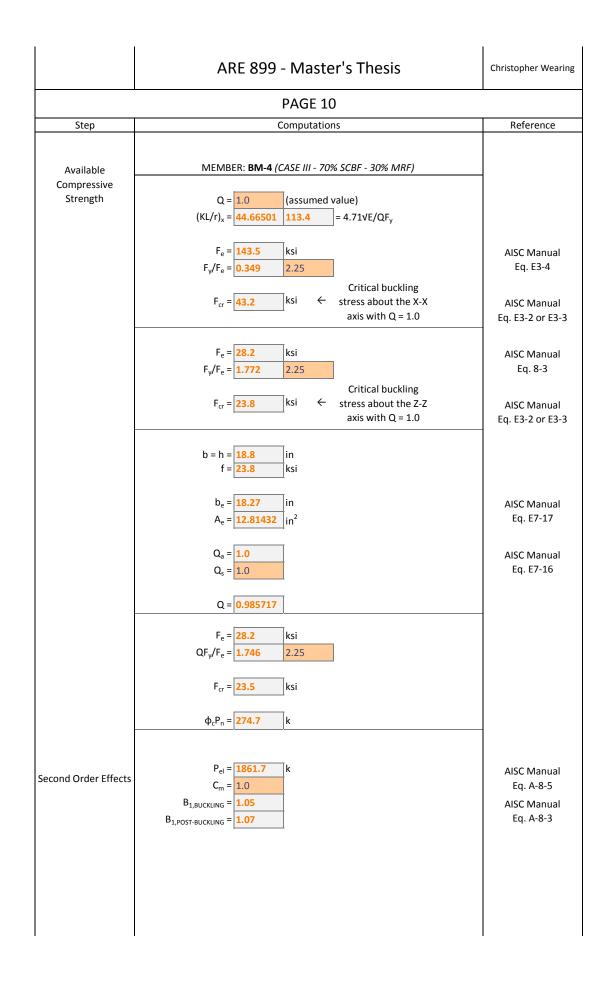

		AF	10 099		r's Thesis			Christopher Wearing
				PAGE 15				
Step			(Computatior	S			Reference
		MFMB	FR: BM-3 (CASE II - 75%	5 SCBF - 25% MR	RF)		
Combined Loading &								
Shear Checks		$P_r/P_c =$	0	Eq. H1-1b	$P_r/P_c = 0$		Eq. H1-1b	
	Buckling /		0.065217	GOOD	V: 0.03	32521	GOOD	
	Yielding	(+) M:	0.296	GOOD	(+) M: 0.14	18	GOOD	
		(-) M:	NA	NA	(-) M: NA		NA	
		$P_r/P_c =$	0	Eq. H1-1b	$P_r/P_c = 0$		Eq. H1-1b	
	Post-	V:	0.065217	GOOD	V: 0.03	32521	GOOD	
	Buckling / Yielding	(+) M:	0.296	GOOD	(+) M: 0.14	18	GOOD	
	Tierung	(-) M:	NA	NA	(-) M: NA		NA	
			d Combinat		SCBF - 25% MR	-	an 7	
			0.363116		$P_r/P_c = 0.36$		on 7 Eq. H1-1a	
	Buckling /				V: 0.02		GOOD	
	Buckling / Yielding		0.527	GOOD	(+) M: 0.44		GOOD	
		(-) M:		NA	(-) M: NA		NA	
			0.363116	Eq. H1-1a	$P_r/P_c = 0.49$	95596	Eq. H1-1a	
	Post-	V:	0.046248	GOOD	V: 0.02	23062	GOOD	
	Buckling / Yielding	(+) M:	0.660	GOOD	(+) M: 0.57	78	GOOD	
	neiung	(-) M:	NA	NA	(-) M: NA		NA	
	MEMBER: BM-5 (CASE II - 75% SCBF - 25% MRF)							
	Г		d Combinat		Load Cor			
			0.143599 0.134347	Eq. H1-1b GOOD	$P_r/P_c = 0.14$ V: 0.11		Eq. H1-1b GOOD	
	Buckling / Yielding		0.761	GOOD	(+) M: 0.69		GOOD	
	riciung		0.551	GOOD	(-) M: 0.62		GOOD	
			0.143599	Eq. H1-1b	$P_r/P_c = 0.14$		Eq. H1-1b	
	Post-		0.163074	GOOD	V: 0.14		GOOD	
	Buckling / Yielding		0.923	GOOD	(+) M: 0.86		GOOD	
			0.731	_				

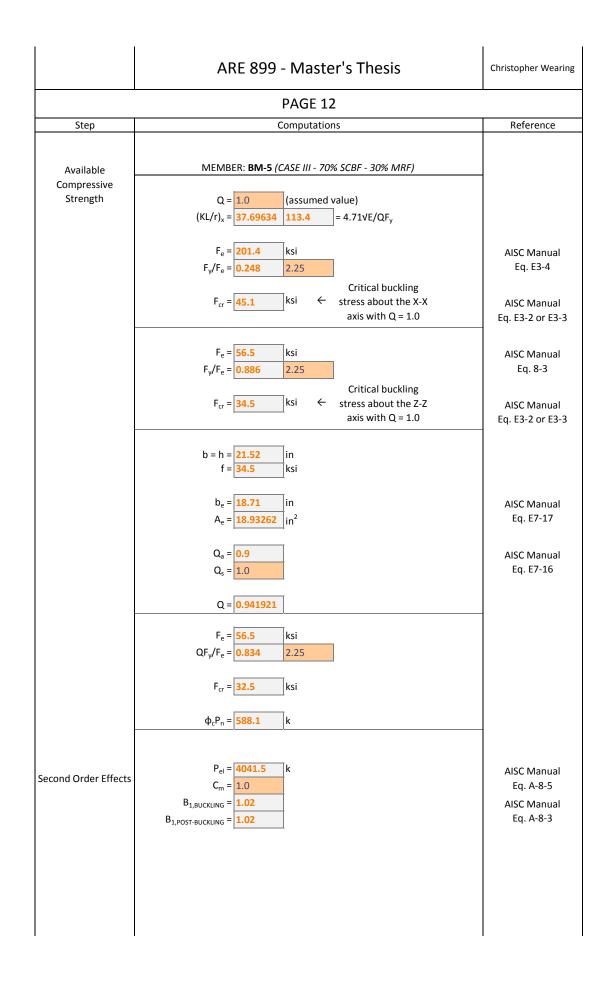
BEAMS (CASE III)


	ARE 899 - Master's Thesis	Christopher Wearing			
	PAGE 1				
Step	Computations	Reference			
Expected Forces					
from Braces Buckling/Yielding	CASE III - 70% SCBF - 30% MRF Member P _T (k) P _C (k)				
	BR-9,10 143.5 44.4				
	BR-7,8 248.1 157.9				
	BR-5,6 248.1 157.9				
	BR-3,4 360.4 266.7				
	BR-1,2 360.4 266.7				
		See Bracing Design			
Expected Forces	CASE III - 70% SCBF - 30% MRF				
from Braces Post-	Member $P_{T}(k)$ $P_{C}(k)$				
Buckling/Yielding	BR-9,10 143.5 13.3 BR-7,8 248.1 47.4				
	BR-5,6 248.1 47.4 BR-5,6 248.1 47.4				
	BR-3,4 360.4 80.0				
	BR-1,2 360.4 80.0				
Inputs	$Y = \frac{38.7}{\alpha} \circ$ $\alpha = \frac{43.0}{\alpha}$ $L_x = \frac{30}{ft}$ $L_z = \frac{12.5}{ft}$ $K = \frac{1}{ft}$ $F_y = \frac{50}{ft}$ ksi				

		AF	RE 899 -	- Maste	er's The	sis		Christopher Wearing
	I			PAGE 2				I
Step			C	omputatio	ns			Reference
		LOAD	COMBINAT	TION 5 [(1.2	+ .2S _{DS})DL +	+ .5LL]		
Dead Loads + Live				70% SCBF -		-		
Loads Only			Member	V _{D+L} (k)	M_{D+L} (k-ft)			
			BM-5	4.0	30.2			Applicable RISA
			BM-4	14.2	106.1			Model
			BM-3 BM-2	14.2	106.1 106.1			
			BIVI-2 BM-1	14.2 14.2	106.1			
			Divi 1	1.112	100.1			
		L	OAD COMBI	NATION 7	(.92S _{DS})D	L]		
				70% SCBF -				
			Member	V _{D+L} (k)	M _{D+L} (k-ft)	r		
			BM-5	2.4	18.3			Applicable RISA
			BM-4 BM-3	7.1	52.9 52.9			Model
			BM-3	7.1	52.9			
			BM-1	7.1	52.9			
			ļ			L		
Required Strengths	CASE III - 70% SCBF - 30% MRF Buckling/Yielding Post-Buckling/Yielding							
<u>due to Seismic</u> <u>Loadinq</u> (Buckling,	Member	P _E (k)	V _E (k)	M _E (k-ft)	Post-r	V _E (k)	M _E (k-ft)	
Post-	BM-5	73.4	30.9	464.1	61.2	40.7	609.8	
Buckling)/Yielding	BM-4	85.2	0.0	0.0	129.2	0.0	0.0	
	BM-3	0.0	0.0	0.0	0.0	0.0	0.0	
	BM-2	86.4	0.0	0.0	187.9	0.0	0.0	
	BM-1	15.6	2.7	40.5	11.0	8.1	121.2	


PAGE 3 Reference Step Computations Reference Are the Selections and Properties Are to 23.7 in the set of 15.5 in the set of 15					IVIUS	ter's The	515		Christopher Wearing
Aember Selections and Properties CASE III - 70% SCBF - 30% MRF Ae 20.1 in^2 S. = 154 in^3 BM-5 d 23.7 in d 95.5 in r_2 177.000 in^3 BM-5 b_7 8.97 in t_2 177.000 in^4 in^4 b_1t_{a} 52 j 1870 in^4 in^4 in^4 h/t_{a} 130 in^6 23.1 in^3 in^4 H_{a} 130 in^6 C_{a} 930 in^6 H_{a} 130 in^2 S_2 in^3 in^3 H_{a} 150 150 150 150 1					PAGE	3			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Step				Computat	ions			Reference
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c c c c c c c } \math math math math math math math math $	Mombor Soloctions					F - 30% MRF			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BM-5			-				
$ \begin{array}{ c c c c c c c } W24x05 & k_{ge} = 1.09 & in & h_{0} = 23.1 & in \\ h/k_{w} = 52 & J = 1.87 & in^{4} \\ k_{e} = 1830 & in^{4} & C_{w} = 940 & in^{5} \\ k_{e} = 187 & in^{4} & C_{w} = 940 & in^{5} \\ k_{e} = 10 & in & r_{e} = 1.87 & in^{4} & in^{5} \\ k_{e} = 10 & in & r_{e} = 1.87 & in^{4} & in^{5} \\ k_{e} = 10 & in & r_{e} = 1.87 & in^{4} & in^{5} \\ k_{e} = 10 & in & r_{e} = 1.26 & in \\ k_{e} = 10 & in & h_{0} = 120.7 & in^{4} & in^{5} \\ k_{e} = 10 & in & h_{0} = 120.7 & in^{4} & in^{5} \\ k_{e} = 10 & in & h_{0} = 120.7 & in^{4} & in^{5} \\ k_{e} = 10 & in & h_{0} = 120.7 & in^{4} & in^{5} \\ k_{e} = 10 & in & h_{0} = 120.7 & in^{4} & in^{5} \\ k_{e} = 10 & in & r_{e} = 10 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 10 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} & in^{5} \\ k_{e} = 10 & in & r_{e} = 120 & in^{5} \\ k_{e} = 10 & in & r_{e$					-				Tbl. 1-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W24x68			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								in ⁴	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$I_x =$	1830	in⁴	C _w =	9430		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		in ²	S _x =		in³	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BM-4			-				
$ \begin{split} W21X44 & k_{det} & 0.95 & in & h_0 & 20.3 \\ h/t_w & 3.6 & J & 0.77 \\ in^4 & in^6 & 20.1 \\ in^6 & 14 & 20.7 & in & r_x & 20.3 \\ in & 1_x & 20.7 & in & r_x & 20.3 \\ in & 1_x & 0.350 & in & 2_x & 20.7 \\ W21x44 & t_r & 0.350 & in & 1_y & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ in & 1_y & 20.7 & in^4 & 10 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ in & 1_y & 20.7 & in^4 & 10 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ in & 1_y & 20.7 & in^4 & 10 \\ k_{det} & 0.95 & in & 1_y & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.95 & in & k_2 & 20.7 \\ k_{det} & 0.95 & in & k_2 & 20.7 \\ k_{det} & 0.350 & in & 2_x & 20.7 \\ k_{det} & 0.350 & in & 2_x & 20.7 \\ k_{det} & 0.350 & in & 2_x & 20.7 \\ k_{det} & 0.350 & in & 2_x & 20.7 \\ k_{det} & 0.350 & in & 2_x & 20.7 \\ k_{det} & 0.350 & in & 1_y & 20.7 \\ k_{det} & 0.350 & in & 1_y & 20.7 \\ k_{det} & 0.350 & in & 1_y & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.95 & in & h_0 & 20.3 \\ k_{det} & 0.350 & in & r_y & 1.26 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.350 & in & r_y & 10.6 \\ k_{det} & 0.95 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & r_y & 20.7 \\ k_{det} & 0.350 & in & r_y & 20.7 \\ k_{det} & 0.350 & in & r_y & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.350 & in & k_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0.95 & in & h_0 & 20.7 \\ k_{det} & 0$					-				Tbl. 1-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W21x44			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					in⁴				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					in				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BM-3			-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DIVI-5			-				Tbl. 1-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W21x44			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					in ⁴				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					in				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BM-2			in				
W21x44 $t_f = 0.450$ in $t_y = 1.26$ in $k_{des} = 0.95$ in $h_0 = 20.3$ in $h/t_w = 53.6$ $J = 0.77$ in ⁴ $l_x = 843$ in^4 $C_w = 2110$ in ⁶ $R_g = 13$ in^2 $S_x = 1$ in ³ $d = 20.7$ in $r_x = 8.1$ in $M_g = 6.50$ in $L_y = 20.7$ in ³ $M_{ef} = 6.50$ in $L_y = 20.7$ in ⁴ $W_{ef} = 0.450$ in $r_y = 1.26$ in $W_{ef} = 0.450$ in $r_y = 1.66$ in ³ $h_{ef} = 0.450$ in $r_y = 1.26$ in $W_{ef} = 0.95$ in $h_0 = 20.3$ in $h/t_w = 53.6$ $J = 0.77$ in ⁴ Tbl. 1-1		DIVI-2			-				Tbl. 1-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		W21x44			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					in ⁴				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				
W21x44 $d_f = 0.30$ in $r_y = 20.7$ m ² Tbl. 1-1 $k_{des} = 0.95$ in $h_o = 20.3$ in Tbl. 1-1 $h/t_w = 53.6$ $J = 0.77$ in ⁴ Tbl. 1-1			t _w =	0.350					
W21x44 $k_{des} = 0.95$ in $h_0 = 20.3$ in $h/t_w = 53.6$ J = 0.77 in ⁴		DIVI-1			-				Tbl. 1-1
$h/t_w = 53.6$ J = 0.77 in ⁴		W21x44			-				
					in ⁴				
			·x			ω	2110	l	


	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 5	
Step	Computations	Reference
Member Forces		
	MEMBER: BM-1 (<i>CASE III - 70% SCBF - 30% MRF</i>)	
	Load Combination 5 Load Combination	7
	Buckling / Yielding $P_u = 15.8$ $V_u = 16.9$ k $P_u = 15.8$ $V_u = 9.8$ kYielding(+) $M_u = 146.9741$ (-) $M_u = 65.30195$ k-ft(+) $M_u = 93.76105$ k-ftk-ft	
	Post- Buckling / $P_u =$ 11.0 22.3 k $P_u =$ 11.0 k $V_u =$ 22.3 k $V_u =$ 15.2 k	
	Buckling / Yielding (+) $M_u = \frac{228.0466}{1.5.7706}$ k-ft (+) $M_u = \frac{174.8336}{1.6.8836}$ k-ft (-) $M_u = \frac{-15.7706}{1.6.8836}$ k-ft (-) $M_u = \frac{-68.9836}{1.6.8836}$ k-ft	


	ARE 899 - Master's Thesis	Christopher Wearing					
	PAGE 7						
Step	Computations	Reference					
Member Forces							
	MEMBER: BM-2 (CASE III - 70% SCBF - 30% MRF)						
	Load Combination 5 Load Combinat	ion 7					
	Yielding (+) $M_u = 106.138$ k-ft (+) $M_u = 52.925$	k k k-ft					
	Post- Buckling / $V_u = \frac{189.0}{14.2}$ k $P_u = \frac{189.0}{7.1}$	k-ft k k k-ft					
	Yielding $(+) M_u = \frac{106.138}{106.138}$ k-ft $(+) M_u = \frac{52.925}{52.925}$ (-) $M_u = \frac{106.138}{106.138}$ k-ft (-) $M_u = \frac{52.925}{52.925}$	k-ft					

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 9	I
Step	Computations	Reference
Member Forces		
	MEMBER: BM-3 (CASE III - 70% SCBF - 30% MRF) Load Combination 5 Load Combination	7
	Pu = 0.0 k Pu = 0.0 k Buckling / Vu = 14.2 k Vu = 7.1 k Yielding (+) Mu = 106.138 k-ft (+) Mu = 52.925 k-ft (-) Mu = 106.138 k-ft (-) Mu = 52.925 k-ft	t
	Post-Buckling $V_u =$ 14.2 k $P_u =$ 0.0 k Yielding (+) $M_u =$ 106.138 k-ft (+) $M_u =$ 52.925 k-ft	t
	(-) $M_u = 106.138$ k-ft (-) $M_u = 52.925$ k-f	t

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 11	I
Step	Computations	Reference
Member Forces		
	MEMBER: BM-4 (CASE III - 70% SCBF - 30% MRF)	
	Load Combination 5Load Combination 5Buckling / $P_u = $ 89.2k $P_u = $ 89.2Vu = 14.2kVu = 7.1Yielding (+) Mu = 106.138k-ft(+) Mu = 52.925(-) Mu = 106.138k-ft(-) Mu = 52.925	ion 7 k k k-ft k-ft
	Post- Buckling / Yielding $P_u =$ 14.2138.8 k $P_u =$ k138.8 $V_u =$ 14.2Post- Uu = (+) Mu =14.2 106.138k $V_u =$ k-ft7.1Standard (+) Mu =106.138k-ft(+) Mu =	k k k-ft
	(-) $M_u = 106.138$ k-ft (-) $M_u = 52.925$	k-ft

	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 13	I
Step	Computations	Reference
Member Forces		
	MEMBER: BM-5 (CASE III - 70% SCBF - 30% MRF)	
	Load Combination 5 Load Combination	7
	Buckling / $P_u = \frac{74.7}{45.7}$ k $P_u = \frac{74.7}{38.6}$ k Yielding (+) $M_u = \frac{578.7972}{.66.521}$ k-ft (+) $M_u = \frac{525.5842}{.419.734}$ k-ft (-) $M_u = \frac{-419.734}{.419.734}$ k-ft	
	Post- Buckling / Yielding P _u = 62.2 (+) M _u = 55.4 (+) M _u = 725.2782 k P _u = 62.2 (+) M _u = 62.2 k.ft k V _u = 62.2 (+) M _u = 672.0652 k	
	(-) $M_u = \frac{-513.002}{k-ft}$ k-ft (-) $M_u = \frac{-566.215}{k-ft}$ k-ft	

				PAGE 14	Ļ			
Step	I			Computation				Reference
				<u>ionipatation</u>				lieference
	CASE III - 70% SCBF - 30% MRF							
Available Strengths		Member	(+) φ _b M _n	(-) φ _b M _n		φ _v V _n (k)	-	
		wember	(k-ft)	(k-ft)	φ _c P _n (k)			
		BM-5	840	765	588.1	340	-	
		BM-4 BM-3	574 358	NA 264	274.7 274.7	306 217	-	
		BM-2	574	NA	274.7	306		
		BM-1	358	264	274.7	217		
		MEMB	ER: BM-1 /(CASE III - 709	% SCBF - 309	% MRF)		
			l Combinat			d Combinat	ion 7	
		$P_r/P_c =$		Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Buckling / Yielding		0.078	GOOD		0.045	GOOD	
	Teluing	(+) M: (-) M:		GOOD NA	(+) M: (-) M:		GOOD NA	
		$P_r/P_c =$		Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Post- Buckling /	V:	0.103	GOOD	V:	0.070	GOOD	
	Yielding	(+) M: (-) M:		GOOD GOOD	(+) M: (-) M:		GOOD GOOD	
		(-) 101.	0.080	0000	(-) IVI.	0.201	0000	
				CASE III - 709				
		Loac P _r /P _c =	Combinat	Eq. H1-1a	Load P _r /P _c =	Combinat	Eq. H1-1a	
	Buckling /		0.065	GOOD		0.023	GOOD	
	Yielding	(+) M:		GOOD	(+) M:		GOOD	
		(-) M: P _r /P _c =		NA Eq. H1-1a	(-) M: P _r /P _c =		NA Eq. H1-1a	
	Post-		0.088	GOOD		0.023	GOOD	
	Buckling / Yielding	(+) M:		GOOD	(+) M:		GOOD	
	Trefuing	(-) M:	NA	NA	(-) M:	NA	NA	

		ARE 899 -	- Maste	r's The	sis		Christopher Wearing
	<u>.1</u>		PAGE 15				
Step		C	omputation	IS			Reference
		MEMBER: BM-3 (C	ASF III - 70%	6 SCBF - 30	% MRF)		
Combined Loading &		Load Combinati			d Combina	ation 7	
Shear Checks		$P_r/P_c = 0.000$	Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Buckling /	V: 0.065	GOOD	V:	0.033	GOOD	
	Yielding	(+) M: 0.296	GOOD	(+) M:	0.148	GOOD	
		(-) M: NA	NA	(-) M:		NA	
	Deet	$P_r/P_c = 0.000$	Eq. H1-1b	$P_r/P_c =$	0.000	Eq. H1-1b	
	Post- Buckling /	V: 0.065	GOOD		0.033	GOOD	
	Yielding		GOOD	(+) M:		GOOD	
		(-) M: <mark>NA</mark>	NA	(-) M:	NA	NA	
				(CODE - 20)			
		MEMBER: BM-4 (C			d Combina	tion 7	
	г	Load Combinati $P_r/P_c = 0.325$	Eq. H1-1a	$P_r/P_c =$		Eq. H1-1a	
	Buckling /		GOOD		0.023	GOOD	
	Buckling / Yielding		GOOD	(+) M:		GOOD	
			NA	(-) M:		NA	
		$P_r/P_c = 0.505$	Eq. H1-1a	$P_r/P_c =$		Eq. H1-1a	
	Post-	V: 0.046	GOOD	V:	0.023	GOOD	
	Buckling / Yielding	(+) M: 0.670	GOOD	(+) M:	0.587	GOOD	
		(-) M: NA	NA	(-) M:	NA	NA	
		MEMBER: BM-5 (C Load Combinati			d Combina	ation 7	
	Г	$P_r/P_c = 0.127$	Eq. H1-1b	$P_r/P_c =$		Eq. H1-1b	
	Buckling /	V: 0.134	GOOD		0.113	GOOD	
	Yielding	(+) M: 0.753	GOOD	(+) M:	0.689	GOOD	
		(-) M: 0.543	GOOD	(-) M:	0.612	GOOD	
		$P_r/P_c = 0.106$	Eq. H1-1b	$P_r/P_c =$	0.106	Eq. H1-1b	
	Post-	V: 0.163	GOOD	V:	0.142	GOOD	
	Buckling /						
	Buckling / Yielding	(+) M: <mark>0.916</mark> (-) M: <mark>0.723</mark>	GOOD	(+) M:	0.853 0.793	GOOD	

Appendix C - Special Moment-Resisting Frame Design

MEMBER PROPERTIES

3/27/2017

ARE 899 - Master's Thesis

Christopher Wearing

		PAGE 1	•
Step		Computations	Reference
	CASE I -	80% SCBF - 20% MRF	
Members and	2nd Fl		
Member Properties	Try: W24x84	$F_y = 50$	ksi
	$A_g = 24.7$ in ²	$h/t_{w} = \frac{45.9}{100}$	
	d = 24.1 in	I _x = 2370	in ⁴
	t _w = 0.47 in	$S_x = 196$	in ³
	b _f = 9.02 in	r _x = 9.79	in 3
	$t_{f} = 0.77$ in	$Z_x = 224$	in ³
	k _{des} = 1.27 in	l _y = 94.4	in ⁴
	$k_{det} = 1.6875$ in	$r_y = 1.95$	in
	$k_1 = 1.0625$ in	$h_0 = 23.3$	in . 4
	$T = 20.75$ in $b_f/2t_f = 5.86$	J = 3.7 $C_w = 12800$	in ⁴ in ⁶
	$D_{\rm f}/2t_{\rm f} = 3.80$	C _w - 12800	In
	3rd Fl	oor Member - BM-2	
	Try: W24x84	$F_y = 50$	ksi
	$A_g = \frac{24.7}{\text{in}^2}$	h/t _w = <mark>45.9</mark>	
	d = <mark>24.1</mark> in	I _x = 2370	in⁴
	t _w = 0.47 in	S _x = 196	in ³
	b _f = <mark>9.02</mark> in	r _x = 9.79	in
	t _f = 0.77 in	Z _x = 224	in ³
	k _{des} = 1.27 in	I _y = 94.4	in ⁴
	k _{det} = 1.6875 in	r _y = <mark>1.95</mark>	in
	k ₁ = 1.0625 in	$h_0 = \frac{23.3}{2}$	in
	T = 20.75 in	J = 3.7	in ⁴
	$b_{f}/2t_{f} = 5.86$	$C_{w} = \frac{12800}{12800}$	in ⁶
	4th Fl	oor Member - BM-3	
	Try: W24x76	$F_y = 50$	ksi
	$A_{g} = 22.4$ in ²	$h/t_w = 49$	
	d = 23.9 in	I _x = 2100	in ⁴
	t _w = 0.44 in	S _x = 176	in ³
	b _f = <mark>8.99</mark> in	r _x = 9.69	in
	t _f = 0.68 in	$Z_x = 200$	in ³
	k _{des} = <mark>1.18</mark> in	l _y = 82.5	in ⁴
	k _{det} = <mark>1.5625</mark> in	r _y = <u>1.92</u>	in
	k ₁ = 1.0625 in	$h_0 = \frac{23.2}{2}$	in
	T = 20.75 in	J = 2.68	in⁴
	$b_{\rm f}/2t_{\rm f} = 6.61$	C _w = 11100	in ⁶

3/27/2017

ARE 899 - Master's Thesis

Christopher Wearing

		PAGE 2								
Step		Computations		Reference						
Members and	(CASE I - 80% SCBF - 20% MRF (cont.) 5th Floor Member - BM-4								
Member Properties										
(cont.)	Try: W24x76	F _y =		ksi						
	A _g = 22.4	$h/t_w =$								
	d = 23.9	in I _x =	2100	in ⁴						
	t _w = 0.44			in ³						
	b _f = 8.99			in						
	t _f = 0.68	in Z _x =		in ³						
	k _{des} = 1.18			in ⁴						
	k _{det} = 1.5625			in						
	k ₁ = 1.0625	in h ₀ =		in						
	T = 20.75			in ⁴						
	$b_{f}/2t_{f} = 6.61$	CC	11100	in ⁶						
		Roof Member - BM-5								
-	Try: W24x62	F _v =	50	ksi						
	$A_{g} = 18.2$	$h/t_w =$								
	d = 23.7			in ⁴						
	t _w = 0.43			in ³						
	b _f = 7.04			in						
	t _f = 0.59			in ³						
	k _{des} = 1.09			in ⁴						
	k _{det} = 1.5	in r _y =	1.38	in						
	k ₁ = 1.0625	in h ₀ =	23.1	in						
	T = 20.75	in J=	1.71	in ⁴						
	$b_{f}/2t_{f} = 5.97$	C _w =	4620	in ⁶						
		ă.								
		Columns								
- F	Try: W24x207	F _v =	50	ksi						
	$A_{g} = 60.7$	h/t_w =								
	d = 25.7			in ⁴						
	t _w = 8.7			in ³						
	b _f = 13			in						
	t _f = 1.57			in ³						
	k _{des} = 2.07			in ⁴						
	k _{det} = 2.5	in r _y =		in						
	k ₁ = 1.25	in h ₀ =	24.1	in						
	T = 20.75	in J =	38.3	in ⁴						
	$b_{f}/2t_{f} = 4.14$	C _w =	84100	in ⁶						

ARE 899 - Master's Thesis

		PAGE 3	
Step	Сог	Reference	
_		% SCBF - 25% MRF	
Members and	2nd Floor Try: W24x103	r Member - BM-1 F _v = <mark>50</mark> ksi	
Member Properties		$F_y = 50$ ksi h/t _w = 39.2	
	$A_g = \frac{30.3}{1000}$ in ² d = 24.5 in	$I_{x} = 3000$ in ⁴	
	$t_w = 0.55$ in	$S_x = 245$ in ³	
	$b_f = 9$ in	$r_x = 10$ in	
	$t_f = 0.98$ in	$Z_x = 280$ in ³	
	k _{des} = 1.48 in	$l_{y} = \frac{100}{119}$ in ⁴	
	k _{det} = 1.785 in	r _y = 1.99 in	
	k ₁ = 1.125 in	$h_0 = 23.5$ in	
	T = 20.75 in	J = 7.07 in ⁴	
	$b_f/2t_f = 4.59$	$C_{w} = 16600$ in ⁶	
	• · -·		
-	3rd Floor Try: W24x103	• Member - BM-2 $F_v = 50$ ksi	
	$A_g = 30.3$ in ²	$h/t_w = 39.2$	
	d = 24.5 in	$I_x = 3000$ in ⁴	
	$t_w = 0.55$ in	$S_x = 245$ in ³	
	$b_f = 9$ in	$r_x = 10$ in	
	$t_{f} = 0.98$ in	$Z_{x} = \frac{10}{280}$ in ³	
	k _{des} = 1.48 in	$l_{y} = 119$ in ⁴	
	k _{det} = 1.785 in	r _y = 1.99 in	
	k ₁ = 1.125 in	$h_0 = 23.5$ in	
	T = 20.75 in	J = 7.07 in ⁴	
	$b_{f}/2t_{f} = 4.59$	$C_{w} = \frac{16600}{1000} in^{6}$	
	4th Floor	Member - BM-3	
-	Try: W24x84	$F_y = 50$ ksi	
	$A_{g} = 24.7$ in ²	$h/t_{w} = 45.9$	
	d = 24.1 in	l _x = 2370 in ⁴	
	t _w = 0.47 in	$S_x = 196$ in ³	
	b _f = <mark>9.02</mark> in	r _x = 9.79 in	
	t _f = <mark>0.77</mark> in	$Z_x = 224$ in ³	
	k _{des} = 1.27 in	$I_{y} = 94.4$ in ⁴	
	k _{det} = 1.6875 in	r _y = <u>1.95</u> in	
	k ₁ = 1.0625 in	$h_0 = 23.3$ in	
	T = 20.75 in	$J = \frac{3.7}{10000}$ in ⁴	
	$b_{\rm f}/2t_{\rm f} = 5.86$	$C_{w} = 12800$ in ⁶	

ARE 899 - Master's Thesis

		F	GE 4			
Step		Computations				
Members and		CASE II - 75%	SCBF - 25% MRF			
Member Properties		5th Floor N	1ember - BM-4			
(cont.)	Try: W24x84		F _y =		ksi	
	$A_{g} = 24.7$	in ²	h/t _w =			
	d = 24.1	in			in ⁴	
	$t_w = 0.47$	in			in ³ in	
	$b_f = 9.02$ $t_f = 0.77$	in			in ³	
	$k_{des} = 1.27$	in			in in ⁴	
	$k_{des} = 1.27$ $k_{det} = 1.6875$	in			in	
	$k_{det} = 1.0875$ $k_1 = 1.0625$	in			in	
	T = 20.75	in			in ⁴	
	$b_f/2t_f = 5.86$				in ⁶	
	- 10 - 11 		- w			
		Roof Me	mber - BM-5			
	Try: W24x76		F _y =		ksi	
	$A_{g} = 22.4$	in ²	h/t _w =			
	d = 23.9	in			in ⁴	
	t _w = 0.44	in			in ³	
	b _f = 8.99	in			in 3	
	$t_{f} = 0.68$	in			in ³	
	$k_{des} = 1.18$	in			in ⁴	
	$k_{det} = 1.5625$	in			in	
	$k_1 = \frac{1.0625}{20.75}$	in			in in ⁴	
	T = 20.75 $b_f/2t_f = 6.61$	in			in in ⁶	
	$D_{f}/2t_{f} = 0.01$		C _w –	11100	IN	
			lumns			
	Try: W27x258		F _y =		ksi	
	A _g = 76.1	in ²	h/t _w =			
	d = 29	in			in ⁴	
	t _w = 0.98	in			in ³	
	b _f = 14.3	in			in	
	$t_f = 1.77$	in			in ³	
	$k_{des} = 2.56$	in			in ⁴	
	$k_{det} = 2.6875$	in			in	
	$k_1 = 1.3125$	in			in in ⁴	
	T = 23.625 $b_f/2t_f = 4.03$	in			in in ⁶	
	5t/ 2 tf = 14.05		C _w –	133000		

ARE 899 - Master's Thesis

		PAGE 5	
Step	Co	omputations	Reference
		70% SCBF - 30% MRF	
Members and		or Member - BM-1	
Member Properties	Try: W24x131	$F_y = \frac{50}{100}$ ksi	
	$A_{g} = \frac{38.6}{1000}$ in ²	$h/t_{w} = \frac{35.6}{4}$	
	d = 24.5 in	$I_x = \frac{4020}{1000}$ in ⁴	
	$t_w = 0.605$ in $b_f = 13.9$ in	$S_x = \frac{329}{r_x} in^3$ $r_x = \frac{10.2}{in}$	
	b _f = 13.9 in t _f = 0.96 in	$r_x = \frac{10.2}{370}$ in $Z_x = \frac{370}{100}$ in r_x^3	
	$k_{des} = 1.46$ in	$I_{y} = 340$ in ⁴	
	$k_{det} = 1.785$ in	$r_y = 2.97$ in	
	$k_{1} = 1.125$ in	$h_0 = 23.5$ in	
	T = 20.75 in	J = 9.5 in ⁴	
	$b_f/2t_f = 6.7$	$C_{\rm w} = \frac{47100}{100}$ in ⁶	
Ļ		or Member - BM-2	
	Try: W24x131	$F_y = \frac{50}{100}$ ksi	
	$A_{g} = \frac{38.6}{1000}$ in ²	$h/t_{w} = \frac{35.6}{4}$	
	d = 24.5 in	$I_x = \frac{4020}{1000}$ in ⁴	
	t _w = 0.605 in	$S_x = \frac{329}{1000}$ in ³	
	$b_f = 13.9$ in	$r_x = 10.2$ in	
	$t_f = 0.96$ in	$Z_x = \frac{370}{100}$ in ³	
	$k_{des} = 1.46$ in	$I_y = 340$ in ⁴	
	$k_{det} = 1.785$ in $k_1 = 1.125$ in	$r_y = 2.97$ in $h_0 = 23.5$ in	
		$h_0 = 23.5$ in J = 9.5 in ⁴	
	$T = 20.75$ in $b_f/2t_f = 6.7$	$C_{\rm w} = \frac{47100}{in^6}$ in ⁶	
	0 _f /2tf = 0.7		
		or Member - BM-3	
	Try: W24x103	F _y = <mark>50</mark> ksi	
	$A_{g} = \frac{30.3}{1000}$ in ²	$h/t_{w} = 39.2$	
	d = 24.5 in	$I_x = \frac{3000}{1000}$ in ⁴	
	t _w = 0.55 in	$S_x = \frac{245}{100}$ in ³	
	b _f = 9 in	$r_x = \frac{10}{10}$ in	
	$t_{f} = 0.98$ in $k_{des} = 1.48$ in	$Z_{x} = \frac{280}{119} \text{ in}^{3}$	
	$k_{det} = 1.785$ in $k_1 = 1.125$ in	$r_y = 1.99$ in $h_0 = 23.5$ in	
	T = 20.75 in	J = 7.07 in ⁴	
	$b_f/2t_f = 4.59$	$C_{\rm w} = \frac{16600}{1600}$ in ⁶	

ARE 899 - Master's Thesis

		PAGE 6	ľ	
Step		Computations	Refe	erence
Members and	CASE III -			
1ember Properties		oor Member - BM-4		
(cont.)	Try: W24x103	$F_y = 50$	ksi	
	$A_g = \frac{30.3}{1000}$ in ²	$h/t_{w} = \frac{39.2}{100}$		
	d = 24.5 in	I _x = 3000		
	t _w = 0.55 in	S _x = 245	in ³	
	b _f = 9 in	r _x = 10	in	
	t _f = 0.98 in	$Z_x = 280$	in ³	
	k _{des} = 1.48 in	I _y = 119	in ⁴	
	k _{det} = 1.785 in	r _y = 1.99	in	
	$k_1 = 1.125$ in	$h_0 = 23.5$	in	
	T = 20.75 in	J = 7.07	in ⁴	
	$b_{f}/2t_{f} = 4.59$	C _w = 1660	0 in ⁶	
	Roo	f Member - BM-5		
	Try: W24x84	$F_y = 50$	ksi	
	$A_{g} = 24.7$ in ²	h/t _w = 45.9		
	d = 24.1 in	I _x = 2370	in ⁴	
	t _w = 0.47 in	S _x = 196	in ³	
	$b_{f} = 9.02$ in	r _x = 9.79	in	
	$t_{f} = 0.77$ in	$Z_{x} = 224$	in ³	
	k _{des} = 1.27 in	Î _y = 94.4	in ⁴	
	$k_{det} = 1.6875$ in	r _y = 1.95	in	
	$k_1 = 1.0625$ in	$h_0 = 23.3$	in	
	T = 20.75 in	J = 3.7	in ⁴	
	$b_f/2t_f = 5.86$	$C_{\rm w} = 1280$		
		vv		
ŀ	_	Columns		
	Try: W27x258	$F_y = 50$	ksi	
	$A_g = \frac{76.1}{100}$ in ²	h/t _w = 24.4		
	d = 29 in	$I_{x} = 1080$		
	t _w = 0.98 in	S _x = 745	in ³	
	b _f = 14.3 in	r _x = <u>11.9</u>	in	
	$t_f = \frac{1.77}{100000000000000000000000000000000000$	$Z_x = \frac{852}{1}$	in ³	
	$k_{des} = 2.56$ in	l _y = 859	in ⁴	
	$k_{det} = 2.6875$ in	$r_{y} = 3.36$	in	
	$k_1 = 1.3125$ in	$h_0 = 27.2$	in :_4	
	$T = 23.625$ in $b_f/2t_f = 4.03$	J = 61.6	in ⁴	
	$u_{\rm f}/2l_{\rm f} = 4.03$	$C_w = 1590$	00 in ⁶	
			1	

STABILITY CHECK

3/27/2017	ARE 899 - Master's Thesis	Christopher Wearing			
PAGE 1					
Step	Computations	Reference			
Inputs	$C_{d} = 5.5$ $I_{e} = 1.0$ $\theta_{max} = 0.0909$ rad	ASCE/SEI 7-10 Tbl. 12.2-1 ASCE/SEI 7-10 Tbl. 1.5-2			

3/27/2017 ARE 899 - Master's Thesis

Step		Computations		Reference
Check Frame Stability –	CA			
& Story Drifts		inits for immediately		
,		b = 18 .65d = 15.67 .85d = 20.49 	c = 2 .1b _f = 0.90 .25b _f = 2.26 GOOD	AISC 358 Eq. 5.8-(1 <i>, 2,</i> & 3)
		A _Δ = 1.089		AISC 358 Sect. 5.8
	$\delta_{MRF,2} = \begin{array}{c} 0.181 & \text{in} \\ h_{52} = & 168 & \text{in} \\ \delta_2 = & 0.40 & \text{in} \\ \Delta_2 = & 2.19 & \text{in} \\ \Delta_{all} = & 3.36 & \text{in} \\ \hline & & GOOD \end{array}$		$ \begin{split} \delta_{\text{MRF,3}} &= \begin{matrix} 0.449 & \text{in} \\ h_{\text{s3}} &= \begin{matrix} 144 & \text{in} \\ 0.90 & \text{in} \\ \Delta_3 &= \begin{matrix} 2.76 & \text{in} \\ 2.88 & \text{in} \\ \hline & & \text{GOOD} \end{matrix} \end{split} $	RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1
	$P_{2} = \frac{215}{323} k$ $V_{2} = \frac{323}{0.0016} rad$ $\theta_{2,ADJ} = \frac{0.0016}{GOOD} rad$		$P_{3} = \frac{164}{293.2} k$ $\theta_{3} = \frac{0.0019}{0.0019} rad$ $\theta_{3,ADJ} = \frac{0.0019}{GOOD} rad$	RISA Models & Load Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17
	a = <mark>5.5</mark> .5b _f = <mark>4.50</mark>	4 (all units for below b = 18 .65d = 15.54 .85d = 20.32 	c = 2 .1b _f = 0.90 .25b _f = 2.25 GOOD	AISC 358 Eq. 5.8-(1, 2, & 3)
		A _Δ = 1.089		AISC 358 Sect. 5.8
	$\begin{split} \delta_{\text{MRF,4}} &= \begin{array}{c} 0.717 & \text{in} \\ h_{s4} &= \begin{array}{c} 144 & \text{in} \\ \delta_4 &= \begin{array}{c} 1.42 & \text{in} \\ \Delta_4 &= \begin{array}{c} 2.84 & \text{in} \\ \Delta_{\text{all}} &= \begin{array}{c} 2.88 & \text{in} \\ \hline & & & \end{array} \end{split}$		$ \begin{split} \delta_{MRF,5} &= \begin{matrix} 0.935 & \text{in} \\ h_{s5} &= \begin{matrix} 144 & \text{in} \\ \delta_5 &= \begin{matrix} 1.82 & \text{in} \\ \Delta_5 &= \begin{matrix} 2.23 & \text{in} \\ \Delta_{all} &= \begin{matrix} 2.88 & \text{in} \\ \hline & & GOOD \end{matrix} $	RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1
	$P_{4} = \frac{114}{238.4} k$ $Q_{4} = \frac{0.0017}{0.0017} rad$ $\theta_{4,ADJ} = \frac{0.0017}{GOOD} rad$		$P_{5} = \begin{array}{c} 63 \\ k \\ V_{5} = \\ 158.3 \\ \theta_{5} = \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ rad \\ \hline \\ GOOD \end{array}$	RISA Models & Load Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17

3/27	/2017
5/2/	/201/

ARE 899 - Master's Thesis

	PAGE 3	
Step	Computations	Reference
Step Check Frame Stability & Story Drifts (cont.) -	PAGE SComputationsCASE 1- 20% MRFBM-5 (all units for below are inches) $a = 4.25$ $b = 18$ $c = 1.5$ $.5b_{f} = 3.52$ $b = 5.65$ 1.541 $1.b_{f} = 0.70$ $.75b_{f} = 5.28$ $a = 2.15$ $2.25b_{f} = 1.76$ $GOOD$ $A_{\Delta} = 1.085$ $A_{\Delta} = 0.005$ <th>Reference AISC 358 Eq. 5.8-(1, 2, & 3) AISC 358 Sect. 5. RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1 RISA Models & Los Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17</th>	Reference AISC 358 Eq. 5.8-(1, 2, & 3) AISC 358 Sect. 5. RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1 RISA Models & Los Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17

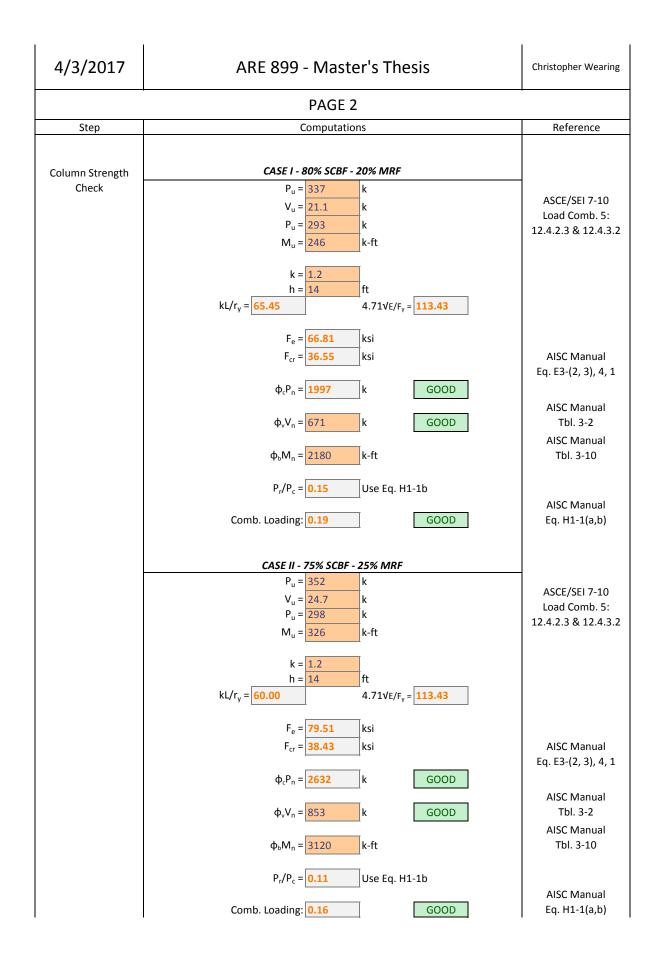
ARE 899 - Master's Thesis

Step		Computations		Reference
Step		Computations		Reference
	C	ASE II - 75% SCBF - 2	5% MRF	
Check Frame Stability & Story Drifts	BM-1 & 2 (all	units for immediate	ly below are inches)	
	a = <mark>5.5</mark>	b = 18	c = 2	4166.350
	.5b _f = <mark>4.50</mark>	.65d = 15.93	.1b _f = 0.90	AISC 358 Eq. 5.8-(1, 2, & 3
	.75b _f = <mark>6.75</mark>	.85d = <mark>20.83</mark>	.25b _f = 2.25	Lq. 5.0 (1, 2, & 5
	GOOD	GOOD	GOOD	
		A _Δ = 1.089		AISC 358 Sect. 5.
	$\delta_{MRF,2} = 0.16$ in		δ _{MRF,3} = 0.407 in	RISA Models
	$h_{s2} = 168$ in		$h_{s3} = 144$ in	ASCE/SEI 7-10
	$\delta_2 = 0.36$ in		$\delta_3 = 0.83$ in	Eq. 12.8-15 &
	$\Delta_2 = 1.99$ in		$\Delta_3 = 2.56$ in	Tbl. 12.12-1
	$\Delta_{all} = 3.36$ in		$\Delta_{all} = 2.88$ in	
	GOOD		GOOD	
	$P_2 = 215$ k		$P_3 = 164$ k	RISA Models & Lo
	$V_2 = 323$ k		$V_3 = 293.2$ k	Calculations
	$\theta_2 = 0.0014$ rad		$\theta_3 = 0.0018$ rad	ASCE/SEI 7-10
	$\theta_{2,ADJ} = 0.0014$ rad		$\theta_{3,ADJ} = 0.0018$ rad	Eq. 12.8-16 &
	GOOD		GOOD	Eq. 12.8-17
	BM-3	& 4 (all units for belo	w are inches)	
	a = 5.5	b = 18	c = 1.5	
	.5b _f = <mark>4.51</mark>	.65d = 15.67	.1b _f = 0.90	AISC 358 Eq. 5.8-(1, 2, & 3
	.75b _f = <mark>6.77</mark>	.85d = <mark>20.49</mark>	.25b _f = <mark>2.26</mark>	Eq. 5.6-(1, 2, & 5
	GOOD	GOOD	GOOD	
		A ₀ = 1.067		AISC 358 Sect. 5.
		A _∆ = 1.067		AISC 338 Sect. 3.
	δ _{MRF,4} = 0.664 in		δ _{MRF,5} = <mark>0.88</mark> in	RISA Models
	h _{s4} = <mark>144</mark> in		h _{s5} = 144 in	ASCE/SEI 7-10
	δ ₄ = <mark>1.34</mark> in		δ ₅ = 1.76 in	Eq. 12.8-15 &
	$\Delta_4 = \frac{2.79}{1000000000000000000000000000000000000$		$\Delta_5 = 2.31$ in	Tbl. 12.12-1
	Δ _{all} = <mark>2.88</mark> in GOOD		$\Delta_{all} = \frac{2.88}{\text{GOOD}}$ in	
	0000		0000	
	P ₄ = 114 k		$P_5 = 63$ k	RISA Models & Lo
	V ₄ = 238.4 k		V ₅ = 158.3 k	Calculations
	$\theta_4 = 0.0017$ rad		$\theta_{5} = 0.0012$ rad	ASCE/SEI 7-10
	$\theta_{4,ADJ} = 0.0017$ rad		$\theta_{5,ADJ} = 0.0012$ rad	Eq. 12.8-16 &
	GOOD		GOOD	Eq. 12.8-17
				1

3/27	/2017
5/2//	2017

Char	Commentations	D - f
Step	Computations	Reference
	CASE II - 75% SCBF - 25% MRF	
Check Frame Stability & Story Drifts (cont.)	BM-5 (all units for below are inches)	
	a = 5.5 b = 18 c = 1.5	AISC 358
	.5b _f = <mark>4.50</mark> .65d = <mark>15.54</mark> .1b _f = <mark>0.90</mark>	Eq. 5.8-(1, 2, & 3
	.75b _f = 6.74 .85d = 20.32 .25b _f = 2.25	
	GOOD GOOD GOOD	
	1.067	ALCC 2ER Cost E
	$A_{\Delta} = 1.067$	AISC 358 Sect. 5.
	$\delta_{\text{MRF,R}} = 1.049$ in	RISA Models
	$h_{sR} = 144$ in	ASCE/SEI 7-10
	$\delta_{R} = 2.09$ in	Eq. 12.8-15 &
	$\Delta_{\rm R} = $ 1.83 in	Tbl. 12.12-1
	$\Delta_{all} = 2.88$ in	
	GOOD	
	$P_{R} = 13$ k	RISA Models & Loa
	$V_{R} = 53$ k	Calculations
	$\theta_{R} = 0.0006$ rad	ASCE/SEI 7-10
	$\theta_{R,ADJ} = 0.0006$ rad	Eq. 12.8-16 &
	GOOD	Eq. 12.8-17

3/27/2017 ARE 899 - Master's Thesis

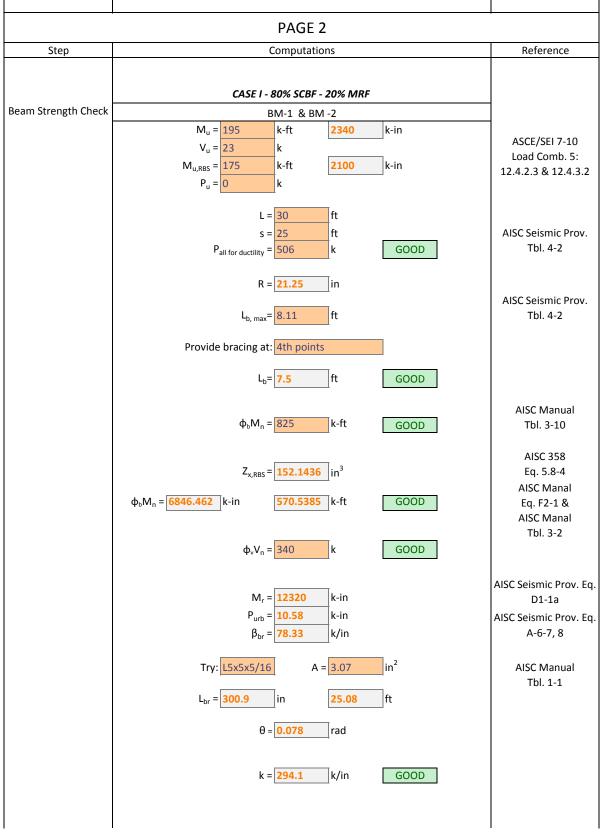

Step	Computations			Reference
Check Frame Stability	CA			
& Story Drifts		units for immediatel		
	-	b = 18 .65d = 15.93 .85d = 20.83 GOOD	c = 2 .1 $b_f = 1.39$.25 $b_f = 3.48$ GOOD	AISC 358 Eq. 5.8-(1, 2, & 3)
		A _Δ = 1.058		AISC 358 Sect. 5.8
	$\begin{split} \delta_{\text{MRF,2}} &= \begin{matrix} 0.17 & \text{in} \\ h_{\text{s2}} &= \begin{matrix} 168 & \text{in} \\ \delta_2 &= \begin{matrix} 0.37 & \text{in} \\ \Delta_2 &= \begin{matrix} 2.02 & \text{in} \\ \Delta_{\text{all}} &= \begin{matrix} 3.36 & \text{in} \\ \hline & & \hline \\ \hline & & \hline \\ \hline & & & \hline \\ \hline & & & \hline \\ \hline \end{bmatrix} \end{split}$		$ \begin{split} \delta_{\text{MRF,3}} &= \begin{matrix} 0.423 & \text{in} \\ h_{\text{s3}} &= \begin{matrix} 144 & \text{in} \\ 0.83 & \text{in} \\ \Delta_{3} &= \begin{matrix} 0.83 & \text{in} \\ 2.57 & \text{in} \\ \Delta_{\text{all}} &= \begin{matrix} 2.88 & \text{in} \\ \hline \text{GOOD} \end{matrix} $	RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1
	$P_{2} = 215 k \\ V_{2} = 323 k \\ \theta_{2} = 0.0015 rad \\ \theta_{2,ADJ} = 0.0015 rad \\ GOOD rad $		$P_{3} = \frac{164}{293.2} k$ $P_{3} = \frac{293.2}{0.0018} rad$ $P_{3,ADJ} = \frac{0.0018}{0.0018} rad$	RISA Models & Load Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17
	a = <mark>7.5</mark> .5b _f = <mark>4.50</mark>	4 (all units for below b = 18 .65d = 15.93 .85d = 20.83 GOOD	$c = \frac{1.75}{0.90}$ $.1b_{f} = \frac{0.90}{2.25}$ $GOOD$	AISC 358 Eq. 5.8-(1, 2, & 3)
		A _Δ = 1.078		AISC 358 Sect. 5.8
	$\begin{split} \delta_{\text{MRF,4}} &= \begin{matrix} 0.681 & \text{in} \\ h_{\text{S4}} &= \begin{matrix} 144 & \text{in} \\ \lambda_4 &= \begin{matrix} 1.34 & \text{in} \\ \lambda_4 &= \begin{matrix} 2.80 & \text{in} \\ \lambda_{\text{all}} &= \begin{matrix} 2.88 & \text{in} \\ \hline & \text{GOOD} \end{matrix} \end{split}$		$\begin{split} \delta_{\text{MRF,S}} &= \begin{matrix} 0.9 & \text{in} \\ h_{\text{SS}} &= \begin{matrix} 144 & \text{in} \\ 1.76 & \text{in} \\ \Delta_{\text{S}} &= \begin{matrix} 2.27 & \text{in} \\ \Delta_{\text{all}} &= \begin{matrix} 2.88 & \text{in} \\ \hline & & & \hline \\ & & & & \hline \\ & & & & \hline \\ & & & &$	RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1
	$P_{4} = 114 k \\ V_{4} = 238.4 k \\ \theta_{4} = 0.0017 rad \\ \theta_{4,ADJ} = 0.0017 rad \\ GOOD rad $		$P_{5} = \begin{array}{c} 63 \\ k \\ V_{5} = \\ \theta_{5} = \\ \theta_{5,ADJ} = \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0000 \\ 0.0000 \\$	RISA Models & Load Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17

3/27	/2017
5/2/	/201/

	PAGE 7	
Step	Computations	Reference
Step Check Frame Stability & Story Drifts (cont.)	ComputationsCASE III - 70% SCBF - 30% MRFBM-5 (all units for below are inches) $a = 5.5$ $b = 18$ $c = 1.5$ $.5b_{t} = 4.51$ $.65d = 15.67$ $.1b_{t} = 0.90$ $.75b_{t} = 6.77$ $.85d = 20.49$ $.25b_{t} = 2.26$ $GOOD$ $A_{a} = 1.067$ $A_{a} = 1.067$ $A_{a} = 1.067$ $A_{a} = 1.200$ $A_{a} = 1.067$ $A_{a} = 1.677$ $B_{R,RD} = 0.0005$ $COOD$ $A_{a} = 1.677$ $A_{a} = 1.677$ $A_{a} = 0.0005$ $a_{a} = 60005$ $A_{a} = 0.0005$ $a_{a} = 60005$ $A_{a} = 0.0005$ $a_{a} = 60005$	Reference AISC 358 Eq. 5.8-(1, 2, & 3) AISC 358 Sect. 5.3 AISC 358 Sect. 5.3 RISA Models ASCE/SEI 7-10 Eq. 12.8-15 & Tbl. 12.12-1 RISA Models & Loa Calculations ASCE/SEI 7-10 Eq. 12.8-16 & Eq. 12.8-17

COLUMNS

4/3/2017	ARE 899 - Master's Thesis	Christopher Wearing
ł	PAGE 1	
Step	Computations	Reference
Inputs	$F_{y} = \frac{50}{0.9}$ ksi $\Phi_{c} = \frac{0.9}{0.9}$	AISC Manual Tbl. 2-4 AISC Manual Sect. G1



4/3/2017	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 3	
Step	Computations	Reference
Column Strength Check (cont.)	CASE III - 70% SCBF - 30% MRF $P_u = 337$ k $V_u = 21.1$ k $P_u = 293$ k $M_u = 246$ k-ft k = 1.2	ASCE/SEI 7-10 Load Comb. 5: 12.4.2.3 & 12.4.3.2
	$\frac{h}{h} = \frac{14}{14}$ ft $kL/r_v = \frac{60.00}{4.71 VE/F_v} = \frac{113.43}{4.71 VE/F_v} = \frac{113.43}{4.71 VE/F_v} = \frac{113.43}{4.71 VE/F_v} = \frac{113.43}{6.000}$ $f_v C_r = \frac{2632}{8}$ k $GOOD$ $f_v C_r = \frac{2632}{8}$ k $GOOD$ $f_v C_r = \frac{853}{8}$ k $GOOD$ $f_v C_r = \frac{853}{8}$ k $GOOD$ $f_v C_r = \frac{120}{8-ft}$ $F_r / P_c = 0.11$ $Use Eq. H1-1b$ $Comb. Loading: 0.13$ $GOOD$	AISC Manual Eq. E3-(2, 3), 4, 1 AISC Manual Tbl. 3-2 AISC Manual Tbl. 3-10 AISC Manual Eq. H1-1(a,b)

BEAMS

3/27/2017	ARE 899 - Master's Thesis	Christopher Wearing	
I	PAGE 1		
Step	Computations	Reference	
Inputs	$F_{y} = \frac{50}{0.9}$ $R_{y} = \frac{1.1}{0.75}$ $F_{z} = \frac{1.1}{0.75}$	AISC Manual Sect. F1(1) & Tbl. 2-4 AISC Seismic Prov. Tbl. A3.1 AISC Manual App. 6.3.1a	

С	/27	/2017
5,	121	/2017

3/27/2017	ARE 899 - Master's Thesis
	PAGE 3
Step	Computations
Beam Strength Check	CASE I - 80% SCBF - 20% MRF
(cont.)	BM-3 & BM -4
	M _u = 170 k-ft 2040 k-in
	$V_u = 21$ k
	$M_{u,RBS} = \frac{160}{k-ft} k-in$
	$P_u = 0$ k
	L = 30 ft
	s = 25 ft
	P _{all for ductility} = 290 k GOOD
	R = 21.25 in
	L _{b, max} = 7.98 ft
	Provide bracing at: 4th points
	L _b = 7.5 ft GOOD
	$ \Phi_b M_n = 735 $ k-ft GOOD
	$Z_{x,RBS} = 136.8416$ in ³
	$\phi_{\rm b}M_{\rm n} = 6157.872$ k-in 513.156 k-ft GOOD
	$ \varphi_v V_n = \frac{315}{k} $ GOOD
	M _r = 11000 k-in
	P _{urb} = 9.48 k-in
	$\beta_{br} = 70.24$ k/in
	Try: $15x5x5/16$ A = 3.07 in ²

L_{br} = 300.9

in

θ = 0.077

k = 294.1

25.07

rad

k/in

ft

GOOD

AISC Manual

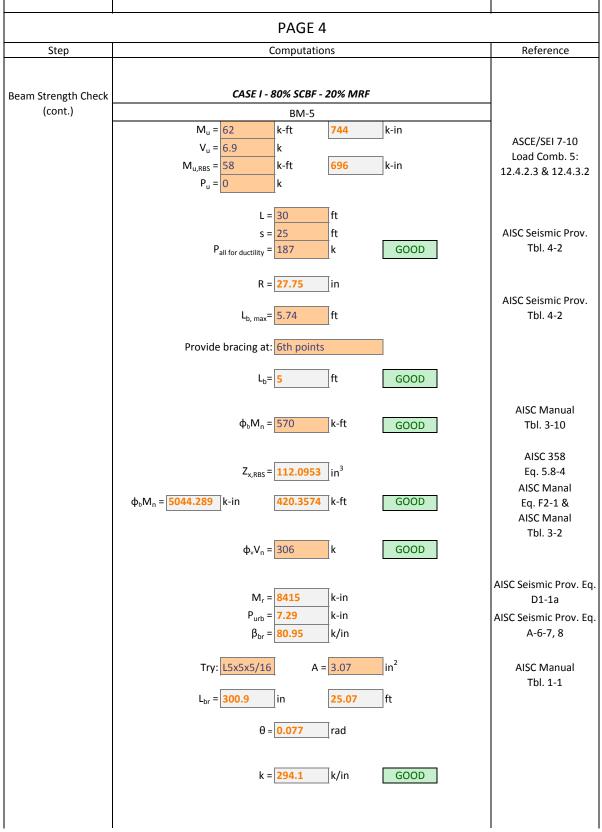
AISC Seismic Prov. Eq. D1-1a AISC Seismic Prov. Eq. A-6-7, 8

Christopher Wearing

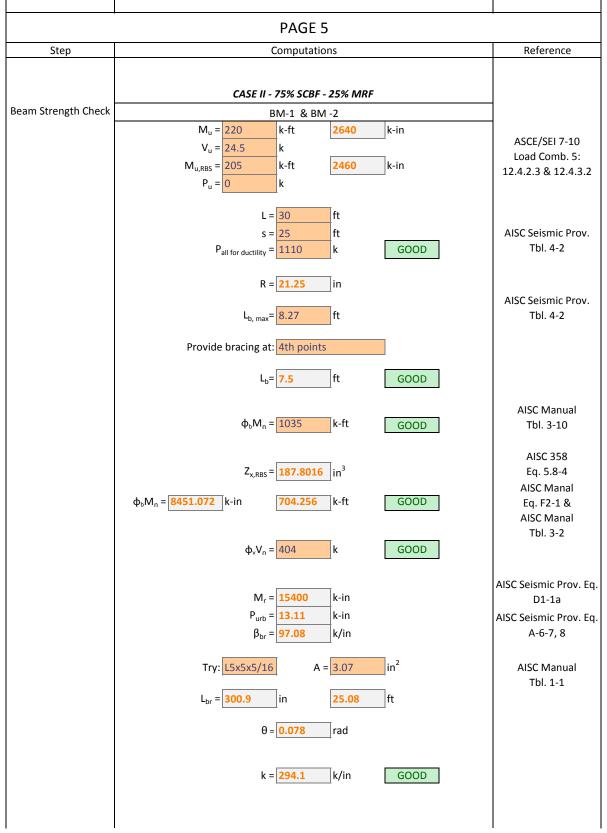
Reference

ASCE/SEI 7-10 Load Comb. 5: 12.4.2.3 & 12.4.3.2

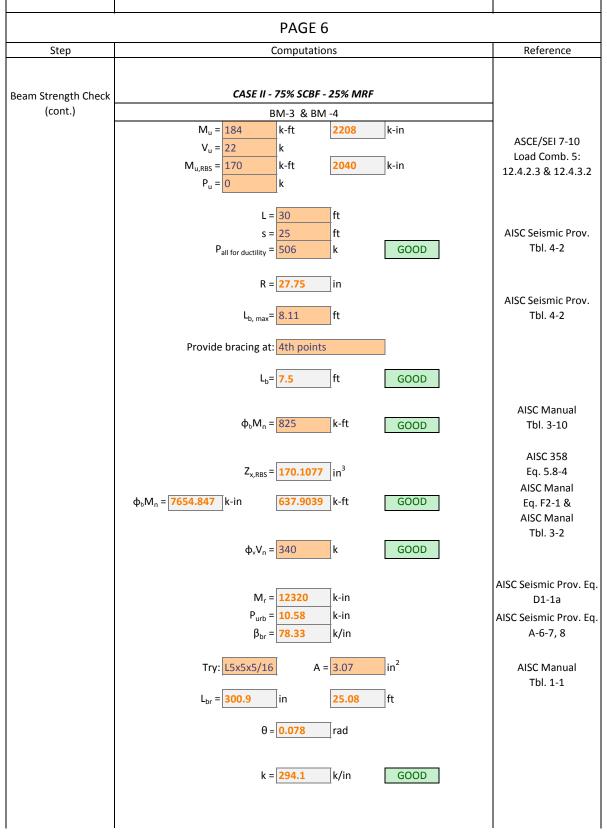
AISC Seismic Prov. Tbl. 4-2


AISC Seismic Prov. Tbl. 4-2

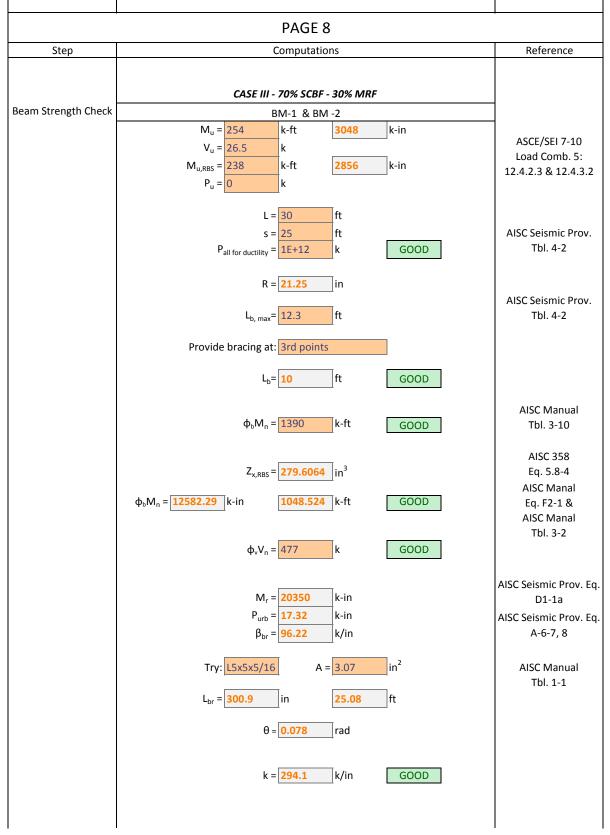
> AISC Manual Tbl. 3-10


AISC 358 Eq. 5.8-4 AISC Manal Eq. F2-1 & AISC Manal Tbl. 3-2

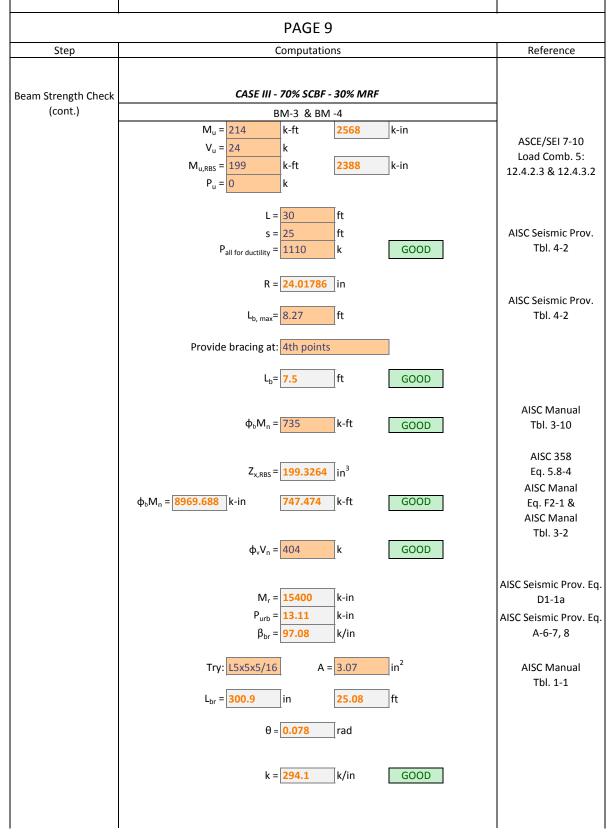
Tbl. 1-1


a /a -	1
3/27	/2017

2/27	12017
3/2/	/2017



С	/27	/2017
ک	121	/201/



3/27/2017	ARE 899 - Master's Thesis	Christopher Wearing
	PAGE 7	
Step	Computations	Reference
Beam Strength Check (cont.)	$CASE II - 75\% SCBF - 25\% MRF$ $BM-5$ $M_{u} = 160 k-ft 1920 k-in$ $V_{u} = 20.5 k$ $M_{u,RBS} = 141 k-ft 1692 k-in$	ASCE/SEI 7-10 Load Comb. 5: 12.4.2.3 & 12.4.3.2
	$P_{u} = 0 k$ $L = 30 ft$ $s = 25 ft$ $P_{all for ductility} = 290 k$ GOOD	AISC Seismic Prov. Tbl. 4-2
	$R = \frac{27.75}{\text{ in}}$ $L_{b, \text{ max}} = \frac{7.89}{\text{ ft}}$ Provide bracing at: 6th points	AISC Seismic Prov. Tbl. 4-2
	$L_b = 5$ ft GOOD $\phi_b M_n = 750$ k-ft GOOD	AISC Manual Tbl. 3-10
	$Z_{x,RBS} = 152.6312$ in ³ $\phi_b M_n = 6868.404$ k-in 572.367 k-ft GOOD	AISC 358 Eq. 5.8-4 AISC Manal Eq. F2-1 & AISC Manal Tbl. 3-2
		AISC Seismic Prov. Eq. D1-1a AISC Seismic Prov. Eq. A-6-7, 8
	Try: L5x5x5/16 A = 3.07 in ² $L_{br} = 300.9$ in 25.07 ft $\theta = 0.077$ rad	AISC Manual Tbl. 1-1
	k = <mark>294.1</mark> k/in GOOD	

С	/27	/2017
5	121	/2017

	I
3/27/2017	

PAGE 10			
Step	Computations	Reference	
Beam Strength Check (cont.)	CASE III - 70% SCBF - 30% MRF BM-5 Mu = 85 k-ft 1020 k-in Vu = 8.5 k Mu,RBS 79 k-ft 948 k-in Pu = 0 k K	ASCE/SEI 7-10 Load Comb. 5: 12.4.2.3 & 12.4.3.2	
	$L = \frac{30}{\text{ft}}$ $S = \frac{25}{\text{ft}}$ $P_{\text{all for ductility}} = \frac{506}{\text{k}}$ $GOOD$	AISC Seismic Prov. Tbl. 4-2	
	R = 27.75 in $L_{b, max} = 8.11$ ft Provide bracing at: 4th points	AISC Seismic Prov. Tbl. 4-2	
	$L_{b} = 7.5 ft GOOD$	AISC Manual	
	$\phi_{b}M_{n} = \underbrace{825}_{k-ft} \\ GOOD$ $Z_{x,RBS} = \underbrace{170.1077}_{in}in^{3}$ $\phi_{b}M_{n} = \underbrace{7654.847}_{k-in} \\ k-in \\ \underbrace{637.9039}_{k-ft} \\ GOOD$ $\phi_{v}V_{n} = \underbrace{340}_{k} \\ GOOD$	Tbl. 3-10 AISC 358 Eq. 5.8-4 AISC Manal Eq. F2-1 & AISC Manal Tbl. 3-2	
	$M_r = 12320$ k-in $P_{urb} = 10.58$ k-in $\beta_{br} = 78.33$ k/in	AISC Seismic Prov. Eq. D1-1a AISC Seismic Prov. Eq. A-6-7, 8	
	Try: L5x5x5/16 A = 3.07 in ² L _{br} = 300.8 in 25.07 ft $\theta = 0.078$ rad	AISC Manual Tbl. 1-1	
	k = <mark>294.2</mark> k/in GOOD		