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ABSTRACT
We explore the cosmological implications of anisotropic clustering measurements in config-
uration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky
Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling
of the effects of non-linearities, bias and redshift-space distortions that can be used to extract
unbiased cosmological information from our measurements for scales s � 20 h−1 Mpc. We
combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the
latest cosmic microwave background (CMB) observations and Type Ia supernovae samples
and found no significant evidence for a deviation from the � cold dark matter (�CDM)
cosmological model. In particular, these data sets can constrain the dark energy equation-
of-state parameter to wDE = −0.996 ± 0.042 when to be assumed time independent, the
curvature of the Universe to �k = −0.0007 ± 0.0030 and the sum of the neutrino masses to∑

mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate
of cosmic structures assuming f(z) = �m(z)γ and obtain γ = 0.609 ± 0.079, in good agreement
with the predictions of general relativity of γ = 0.55. We compress the information of our
clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and
fσ 8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good
agreement with the predictions for these parameters obtained from the best-fitting �CDM
model to the CMB data from the Planck satellite. This paper is part of a set that analyses the
final galaxy clustering data set from BOSS. The measurements and likelihoods presented here
are combined with others by Alam et al. to produce the final cosmological constraints from
BOSS.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measurements of the large-scale clustering of galaxies offer a pow-
erful route to obtain accurate cosmological information (Davis &

� E-mail: arielsan@mpe.mpg.de

Peebles 1983; Maddox et al. 1990; Tegmark et al. 2004; Cole et al.
2005; Eisenstein et al. 2005; Anderson et al. 2012, 2014a,b). Two-
point statistics such as the power spectrum, P(k), and its Fourier
transform, the two-point correlation function ξ (s), have been the
preferred tools for analyses of the large-scale structure (LSS) of
the Universe. The shape of these measurements can be used to
constrain the values of several cosmological parameters, providing

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

mailto:arielsan@mpe.mpg.de


Anisotropic clustering in the completed BOSS 1641

clues about the nature of dark energy, potential deviations from the
predictions of general relativity (GR), the physics of inflation, neu-
trino masses, etc. (Percival et al. 2002, 2010; Tegmark et al. 2004;
Sánchez et al. 2006, 2009, 2012; Blake et al. 2011; Parkinson et al.
2012).

A particularly important source of cosmological information con-
tained in the large-scale galaxy clustering pattern is the signature
of the baryon acoustic oscillations (BAO), which are the vestige
of acoustic waves that propagated through the photon–baryon fluid
prior to recombination. The BAO signature was first detected by
Eisenstein et al. (2005) in the correlation function of the luminous
red galaxy sample of the Sloan Digital Sky Survey (SDSS; York
et al. 2000), where it can be seen as a broad peak on large scales
(Matsubara 2004), and by Cole et al. (2005) in the power spectrum
of the

Two-degree Field Galaxy Redshift survey (Colless et al. 2001,
2003), where it appears as a series of wiggles (Eisenstein & Hu
1998; Meiksin, White & Peacock 1999). The position of the peak
in the correlation function and the wavelength of the oscillations
in the power spectrum closely match the sound horizon scale
at the drag redshift, rd � 150 Mpc. This means that the BAO
scale inferred from the clustering of galaxies in the directions
parallel and perpendicular to the line of sight can be used as a
standard ruler to measure the Hubble parameter, H(z), and the
angular diameter distance, DM(z), through the Alcock–Paczynski
(AP) test (Alcock & Paczynski 1979; Blake & Glazebrook 2003;
Linder 2003).

As the AP test cannot be applied to angle-averaged cluster-
ing measurements, the full power of the BAO signal can only
be exploited by means of anisotropic clustering measurements.
That means measurements of the full two-dimensional correlation
function or power spectrum (Wagner, Müller & Steinmetz 2008;
Shoji, Jeong & Komatsu 2009), their Legendre multipole moments
(Padmanabhan & White 2008) or the clustering wedges statistic
(Kazin, Sánchez & Blanton 2012). These measurements are affected
by redshift-space distortions (RSD) due to the peculiar velocities of
the galaxies along the line of sight, which are significantly larger
than the geometric distortions due to the AP effect and must be
accurately modelled to avoid introducing systematic errors in the
obtained constraints. However, more than a complication for the
application of the AP test, RSD provide additional cosmological
information, as they can be used to constrain the growth rate of
cosmic structures (Guzzo et al. 2008). In this way, thanks to the
joint information from BAO and RSD, anisotropic clustering mea-
surements can provide information on the expansion history of the
Universe and the growth rate of density fluctuations, which is es-
sential to distinguish between dark energy and modified gravity as
the driver of cosmic acceleration.

Previous analyses of anisotropic clustering measurements based
on data from the SDSS-III (Eisenstein et al. 2011) Baryon Oscil-
lation Spectroscopic Survey (BOSS; Dawson et al. 2013), clearly
illustrated their constraining power (Anderson et al. 2014a,b; Reid
et al. 2012; Chuang et al. 2013; Samushia et al. 2013, 2014; Beutler
et al. 2014). In particular, Sánchez et al. (2013, 2014) explored the
cosmological implications of the full shape of measurements of two
clustering wedges based on the galaxy samples of BOSS Data Re-
lease 11 (DR11). In this paper, we extend these analyses to the final
galaxy samples from BOSS, corresponding to SDSS DR12 (Alam
et al. 2015). The volume probed by DR12 is only ∼10 per cent
larger than that of DR11. For this reason, we focus on improving
our analysis methodology in order to maximize the cosmological
information extracted from the sample. We make use of the joint

information of the LOWZ and CMASS galaxy samples into the
combined BOSS sample described in Reid et al. (2016), increasing
the effective volume of the survey with respect to the separate anal-
ysis of these samples (Alam et al. 2016). We also use state-of-the-art
models of the effect of non-linearities, bias and RSDs that allow us
to extend our analysis of the full shape of the clustering wedges to
smaller scales. We perform extensive tests of the performance of
our methodology on N-body simulations and mock catalogues and
find precise and accurate constraints.

Our analysis is part of a series of papers examining the informa-
tion in the anisotropic clustering pattern of the combined sample of
BOSS DR12. Salazar-Albornoz et al. (2016) perform a tomographic
analysis of the clustering properties of this sample by means of angu-
lar correlation functions in thin redshift shells. Grieb et al. (2016b)
use the same description of non-linearities, bias and RSD used in
our analysis to extract cosmological information from the full shape
of three clustering wedges measured in Fourier space. Satpathy et al.
(2016) use a model based on convolution Lagrangian perturbation
theory (Carlson, Reid & White 2013; Wang, Reid & White 2014)
and the Gaussian streaming model (Scoccimarro 2004; Reid &
White 2011) to fit the full shape of the monopole and quadrupole
of the two-point correlation function, ξ 0, 2(s). Beutler et al. (2016a)
apply a model based on Taruya, Nishimichi & Saito (2010) to the
power spectrum multipoles P	(k) for 	 = 0, 2, 4. Tinker et al. (in
preparation) present a comparison of the results of different RSD
analysis techniques. Ross et al. (2016) and Beutler et al. (2016b) per-
form BAO-only fits to the Legengre multipoles of order 	 = 0, 2 of
the two-point functions in configuration and Fourier space obtained
after the application of the reconstruction technique (Eisenstein
et al. 2007; Padmanabhan et al. 2012) as described in Cuesta et al.
(2016). The potential systematics of these BAO-only measurements
are discussed in Vargas-Magaña et al. (2016). Alam et al. (2016)
use the methodology described in Sánchez et al. (2016) to combine
the results presented here with those of the other full-shape and
BAO-only analyses into a final set of BOSS consensus constraints
and explore their cosmological implications.

The outline of this paper is as follows. In Section 2, we describe
our galaxy sample, the procedure we follow to measure the cluster-
ing wedges and the mock catalogues used to compute our estimate
of their covariance matrices. Our model of the full shape of the clus-
tering wedges is described in Section 3.1, together with the tests
we have performed by applying it to N-body simulations and mock
catalogues. In Section 4, we study the cosmological implications
of our clustering measurements. After describing our methodology
to obtain cosmological constraints in Section 4.1, Sections 4.2–4.6
describe the results we obtained from different combinations of data
sets and parameter spaces. In Section 5, we compress the informa-
tion of the BOSS clustering wedges into geometric constraints and
measurements of the growth of structure. Finally, we present our
main conclusions in Section 6.

2 T H E BA RYO N O S C I L L AT I O N
SPECTROSCOPI C SURVEY

2.1 Galaxy clustering measurements from BOSS

We use the final galaxy samples of BOSS, corresponding to SDSS
DR12 (Alam et al. 2015). The catalogue is divided into two sam-
ples, called LOWZ and CMASS, which were selected on the basis of
the SDSS multicolour photometric observations (Gunn et al. 1998,
2006) to cover the redshift range 0.15 < z < 0.7 with a roughly uni-
form comoving number density n � 3 × 10−4 h3 Mpc−3 (Eisenstein
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et al. 2011; Dawson et al. 2013). After identifying the galaxies with
previous spectroscopic observations from the SDSS I/II surveys
(York et al. 2000), the remaining redshifts were measured from the
spectra obtained with the BOSS spectrographs (Smee et al. 2013)
as described in Aihara et al. (2011) and Bolton et al. (2012).

The CMASS sample is approximately complete down to a lim-
iting stellar mass of M � 1011.3 M� for z > 0.45 (Maraston et al.
2013), with an ∼10 per cent satellite fraction (White et al. 2011;
Nuza et al. 2013). Although it is dominated by early-type galax-
ies, ∼26 per cent of this sample consist of massive spirals showing
star formation activity in their spectra (Masters et al. 2011; Thomas
et al. 2013). The LOWZ sample consists primarily of red galaxies
located in massive haloes, and has ∼12 per cent satellite fraction
(Parejko et al. 2013). As described in Reid et al. (2016), a few re-
gions of the LOWZ sample in the Northern Galactic Cap (NGC)
were targeted using different photometric cuts, leading to a reduc-
tion of the galaxy number density. The obtained galaxy samples,
which cover approximately 1000 deg2, are labelled LOWZE2 and
LOWZE3.

Previous clustering analyses of BOSS data have made use of the
LOWZ and CMASS samples separately, excluding the LOWZE2
and LOWZE3 regions. Here, we use the full BOSS data set by
combining all these samples as described in Reid et al. (2016).
We follow Alam et al. (2016) and split this combined sample into
three overlapping redshift bins of roughly equal volume defined by
0.2 < z < 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75.

We study the clustering properties of the combined BOSS galaxy
sample by means of the clustering wedges statistic (Kazin et al.
2012), ξμ2

μ1
(s), which corresponds to the average of the full two-

dimensional correlation function ξ (μ, s), where μ is the cosine
of the angle between the separation vector s and the line-of-sight
direction, over the interval 
μ = μ2 − μ1, that is,

ξμ2
μ1

(s) ≡ 1


μ

∫ μ2

μ1

ξ (μ, s) dμ. (1)

Sánchez et al. (2013, 2014) used two wide clustering wedges, divid-
ing the μ range from 0 to 1 into two equal-width intervals. Here, we
measure three wedges, which we denote by ξ 3w(s) and refer to each
individual wedge as ξ 3w, i(s) for the intervals (i − 1)/3 < μ < i/3.
In practice, the value of μ of a given galaxy pair is estimated as
the cosine of the angle between the separation vector, s, and the
line-of-sight direction at the mid-point of s.

The observed galaxy redshifts are converted into distances using
the same fiducial cosmology as in our companion papers, a flat �

cold dark matter (�CDM) model with a matter density parameter
�m = 0.31. This choice is taken into account in our modelling
as described in Section 3.2. We compute the full two-dimensional
correlation function ξ (μ, s) of the combined sample in each redshift
bin using the estimator of Landy & Szalay (1993). We employ a
random catalogue following the same angular and radial selection
function as the combined sample but containing 50 times more
objects. We compute the clustering wedges by averaging the full
ξ (μ, s) over the corresponding μ intervals. As in our companion
papers, we use a bin size of ds = 5 h−1 Mpc.

We assign a series of weights to each object in our galaxy and
random catalogues. First, we apply a weight designed to minimize
the variance of our measurements (Feldman, Kaiser & Peacock
1994) given by

wr(x) = 1

1 + Pwn̄(x)
, (2)

where n̄(x) is the expected number density of the catalogue at a
given position x and Pw is a scale-independent parameter, which
we set to Pw = 104 h−3 Mpc3. This choice is motivated by the
fact that this value is close to the amplitude of the BOSS power
spectrum at k = 0.14 h Mpc−1, which is the effective scale suggested
by Font-Ribera et al. (2014) to use for BOSS BAO measurements.
The galaxy catalogue also includes weights to account for redshift
failures and fibre collisions. The LOWZE2, LOWZE3 and CMASS
samples require additional weights to correct for the systematic
effect introduced by the local stellar density and the seeing of the
observations, as described in detail in Ross et al. (2016). Fig. 1 shows
the resulting wedges ξ 3w(s) of the DR12 combined sample in our
three redshift bins as a function of the pair separation expressed
in Mpc and Mpc h−1 in the lower and upper axes, respectively.
These measurements and their corresponding covariance matrices
(see Section 2.2) are publicly available.1 The signature of the BAO
is clearly visible in all wedges at s � 150 Mpc. The anisotropic
clustering pattern generated by RSDs leads to significant differences
in the amplitude and shape of the three wedges. The solid lines in
the same figure correspond to the best-fitting models obtained as
described in Section 5.

2.2 Covariance matrix estimation

We assume a Gaussian likelihood function for our BOSS clustering
measurements given by

−2 lnL(ξ |θ ) = (
ξ − ξ theo(θ)

)t
�

(
ξ − ξ theo(θ )

)
, (3)

where ξ is an array containing the measured clustering wedges and
ξ theo(θ ) corresponds to our theoretical modelling of these data for
the cosmological parameters θ . The evaluation of the likelihood
function requires the knowledge of the inverse of the covariance
matrix, � = C−1, also known as the precision matrix, which we es-
timate using the MULTIDARK-PATCHY(MD-PATCHY) BOSS mock galaxy
catalogues described in Kitaura et al. (2016a). These mocks consist
of a set of Nm = 2045 independent realizations of the final BOSS
combined sample, corresponding to the best-fitting �CDM cos-
mology to the Planck 2013 cosmic microwave background (CMB)
measurements (Planck Collaboration XVI 2014). We computed the
wedges ξ 3w(s) of each mock catalogue in the same way as for
the real BOSS data, and used these measurements to obtain an
estimate of the full covariance matrix Ĉ of our clustering measure-
ments. The error bars in Fig. 1 correspond to the square root of the
diagonal entries of Ĉ.

As a test of the robustness of our results with respect to the de-
tails in the estimation of the covariance matrix, we also used an
independent set of 1000 Quick Particle Mesh (QPM; White, Tinker
& McBride 2014) mock realizations of the BOSS combined sam-
ple. The covariance matrices inferred from the QPM and MD-PATCHY

mocks are consistent and lead to similar results. However, as the
MD-PATCHY mock samples give a somewhat better match to the clus-
tering properties of the BOSS combined sample than QPM (Kitaura
et al. 2016a) and have a significantly larger number of realizations,
we based our final constraints on the covariance matrices inferred
from these mock catalogues.

Our estimates of the covariance matrix are affected by sampling
noise due to the finite number of mock catalogues. Recent studies
have provided a clear description of the dependence of the noise in
the estimated covariance matrix on the number of mock catalogues

1 https://www.sdss3.org/science/boss_publications.php
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Figure 1. Clustering wedges in the directions parallel (blue) intermediate (green) and transverse (red) to the line of sight measured from the combined galaxy
sample of BOSS DR12 in our three redshift bins, as a function of the pair separation expressed in Mpc and h−1 Mpc in the lower and upper axes, respectively.
The error bars correspond to the dispersion of the results inferred from a set of Nm = 2045 mock catalogues of the full BOSS survey. The solid lines correspond
to the best-fitting model to these measurements obtained as described in Section 5.

used (Taylor, Joachimi & Kitching 2013), its propagation to the de-
rived parameter uncertainties (Dodelson & Schneider 2013; Taylor
& Joachimi 2014) and the correct way to include this additional
uncertainty in the obtained constraints (Percival et al. 2014).

The first effect that must be taken into account is that when the
covariance matrix is estimated from a set of independent realiza-
tions, the uncertainties in Ĉ and its inverse follow the Wishart and
inverse-Whishart distributions (Wishart 1928), respectively. As the
inverse-Whishart distribution is asymmetric, the inverse of Ĉ pro-
vides a biased estimate of �. This can be corrected for by including
a prefactor in the estimate of the precision matrix as (Kaufman
1967; Hartlap, Simon & Schneider 2007)

�̂ =
(

1 − Nb + 1

Nm − 1

)
Ĉ

−1
, (4)

where Nb corresponds to the total number of bins in our measure-
ments. We restrict our analysis to 20 h−1 Mpc < s < 160 h−1 Mpc
with a bin-width of ds = 5 h−1 Mpc, leading to Nb = 84 for our
three clustering wedges. As our estimates of the covariance matrix
are based on the Nm = 2045 MD-PATCHY mock catalogues, the factor
of equation (4) is equal to 0.96.

Although the estimate of the precision matrix �̂ of equation (4)
is unbiased, it is still affected by noise, which should be propagated
into the obtained cosmological constraints. Percival et al. (2014)
derived formulae for their impact on the errors of the cosmological
constraints measured by integrating over the likelihood function.
They demonstrated that, to account for this extra uncertainty, the
recovered parameter constraints must be rescaled by a factor that
depends on Nb, Nm and the number of parameters included in the
analysis, Np (see equation 18 in Percival et al. 2014). Depending on
the parameter space, our choice of range of scales and binning leads
to a modest correction factor of at most 1.6 per cent for the results
inferred from the clustering wedges. The additional uncertainty
due to the finite number of mock catalogues could be reduced
by implementing techniques such as covariance tapering (Paz &
Sánchez 2015) but, as the impact on our constraints is small, we
simply include the correction factor of Percival et al. (2014) in our
results.

3 TH E MO D EL

3.1 Modelling non-linear gravitational evolution, bias
and RSD

The prediction of the clustering wedges for a given cosmology
requires a model of the full two-dimensional correlation function
ξ (μ, s). It is convenient to express ξ (μ, s) as a linear combination
of Legendre polynomials, L	(μ), as

ξ (μ, s) =
∑

even 	

L	(μ)ξ	(s), (5)

where the multipoles ξ	(s) are given by

ξ	(s) ≡ 2	 + 1

2

∫ 1

−1
L	(μ)ξ (μ, s) dμ. (6)

In order to obtain a description of the multipoles ξ	(s), it is useful
to work with the two-dimensional power spectrum, P(μ, k). This
quantity can also be decomposed in terms of Legendre polynomials,
with multipoles given by

P	(k) ≡ 2	 + 1

2

∫ 1

−1
L	(μ)P (μ, k) dμ, (7)

from which the multipoles ξ	(s) can be obtained as

ξ	(s) ≡ i	

2π2

∫ ∞

0
P	(k)j	(ks) k2dk, (8)

where j	(x) is the spherical Bessel function of order 	.
An accurate model of the full shape of P(μ, k) must take into

account the effects of the non-linear evolution of density fluctua-
tions, galaxy bias and RSD. We now describe how each of these
distortions is taken into account in our model.

3.1.1 Non-linear dynamics

The accurate modelling of the effects of the non-linear evolution
of density fluctuations has been the focus of significant work over
the last decade or so. In renormalized perturbation theory (RPT;
Crocce & Scoccimarro 2006) and subsequent developments in
terms of the multipoint propagator expansion (Bernardeau, Crocce
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& Scoccimarro 2008, 2012; Crocce, Scoccimarro & Bernardeau
2012; Taruya et al. 2012; Taruya, Nishimichi & Bernardeau 2013;
Bernardeau, Taruya & Nishimichi 2014), the matter power spectrum
is written as

PNL(k) = PL(k) G(k)2 + PMC(k), (9)

where the propagator G(k) corresponds to a resummation of all the
terms in the perturbation expansion that are proportional to the linear
spectrum PL(k), and PMC(k) contains mode-coupling contributions
(which at N loops involve convolutions over N linear spectra). To an
excellent approximation for CDM spectra, the propagator describes
the damping of the BAO, while the mode-coupling power describes
the shift of the BAO scale (Crocce & Scoccimarro 2008; Seo et al.
2010). Using e.g. the one-loop approximation to the mode-coupling
power in this approach has a limited reach in k (see e.g. Crocce et al.
2012), which is mainly set by the breaking of Galilean invariance
(Scoccimarro & Frieman 1996) due to the fact that the propagator
is resummed while the mode-coupling power is not. Here, we fol-
low the approach of Crocce, Blas & Scoccimarro (in preparation),
who uses Galilean invariance to find a resummation of the mode-
coupling power consistent with the resummation of the propagator.
With this approach, dubbed gRPT, it is possible to obtain an
improved description down to smaller scales, k � 0.25 h Mpc−1

for the uncertainties involved in our measurements, see Section 3.3.

3.1.2 Galaxy bias

To describe the clustering of galaxies, we write the bias relation
between the matter density fluctuations δ and the galaxy density
fluctuations, δg, as in Chan, Scoccimarro & Sheth (2012)

δg = b1δ + b2

2
δ2 + γ2 G2 + γ −

3 
3G + · · · , (10)

where at cubic order the only term that contributes to the one-loop
galaxy power spectrum through the first two multipoint propagators
has been written down. The operators G2 and 
3G are defined as

G2(v) = (∇ijv)2 − (∇2v)2, (11)

and


3G = G2() − G2(v), (12)

where  and v are the normalized density and velocity potentials
∇2 = δ and ∇2v = θ .

A few points about the bias relation in equation (10) are worth
making here. First, under local Lagrangian bias, the non-local bias
parameters are related to the linear bias b1 as (Fry 1996; Catelan
et al. 1998; Catelan, Porciani & Kamionkowski 2000; Chan et al.
2012)

γ2 = −2

7
(b1 − 1), (13)

γ −
3 = 11

42
(b1 − 1). (14)

Secondly, while there is no compelling argument for the validity
of local Lagrangian bias (Sheth, Chan & Scoccimarro 2013), a
bispectrum analysis of dark matter haloes shows that the γ 2(b1)
relation in equation (13) is at least a reasonable first approximation
(Baldauf et al. 2012; Chan et al. 2012; Sheth et al. 2013; Saito et al.
2014; Bel, Hoffmann & Gaztañaga 2015). In our context here this
is particularly relevant given that in this work we use two-point
statistics alone, which do not constrain γ 2 that well. Therefore,
we assume the γ 2(b1) relation in equation (13). We have in fact

checked relaxing this assumption, using CMASS-type galaxies in
the MINERVA simulations (discussed below), and it does not bias our
results.

Finally, the situation is somewhat different for the γ −
3 parameter,

and we do not assume the γ −
3 (b1) relation in equation (14) for a

number of reasons. First, the linear bias b1 is the only bias param-
eter that receives significant signal to noise over a broad range of
scales, as opposed to the rest of the terms in equation (10) that
only enter through loop corrections for our two-point function only
analysis. Therefore, one should in principle include the running of
b1 with scale, which corresponds to adding a ∇2δ term in equation
(10). However, such term is fairly degenerated with the contribution
coming from γ −

3 (McDonald & Roy 2009; Biagetti et al. 2014; Saito
et al. 2014), and thus provided we let γ −

3 (and b2 as well) be free
one can absorb such contributions given the range of scales consid-
ered in our analysis. The same holds for stress tensor contributions
to dark matter clustering (Pueblas & Scoccimarro 2009; Baumann
et al. 2012; Carrasco, Hertzberg & Senatore 2012; Pietroni et al.
2012) that are fully degenerated with the running of the linear bias.

Summarizing, our bias model has three free parameters corre-
sponding to b1, b2, γ

−
3 , with γ 2 given in terms of b1 by the local

Lagrangian bias relation in equation (13). For detailed expressions
of the galaxy power spectrum that follows from the equations men-
tioned above, see Appendix A.

3.1.3 Redshift-space distortions

We base our description of the redshift-space power spectrum on
(Scoccimarro, Couchman & Frieman 1999)

P (k, μ) =
∫

d3r

(2π)3
e−ik·r W (λ, r)

[
〈eλ
uzDsD

′
s〉c

+ 〈eλ
uzDs〉c + 〈eλ
uzD′
s〉c

]
, (15)

where λ = ifkμ, W (λ, r) = 〈eλ
uz 〉c is the generating function of
velocity differences, and Ds ≡ δg + f∇zuz, with a prime denoting
a quantity at x′ instead of x, and r = x − x′. In the Gaussian
approximation, the generating function can be written as

WG(λ, r) = eλ2(σ 2
v −ψ⊥+ν2
ψ), (16)

where ψ⊥ = (I0 + I2)/3, 
ψ = I2, σ 2
v = ψ⊥(0) and

I	(r) ≡
∫

d3k j	(kr)
P (k)

k2
. (17)

In the large-scale limit WG(λ, r → ∞) = eλ2σ 2
v becomes scale in-

dependent. However, as pointed out in Scoccimarro (2004), it is
necessary to include non-linear corrections to this factor, which
correspond mostly to fingers-of-God (FOG) or virial motions, since
the large-scale limit of the velocity distribution function is not Gaus-
sian. Therefore, instead of WG(λ, r → ∞) we use,

W∞(λ) = 1√
1 − λ2a2

vir

exp

(
λ2σ 2

v

1 − λ2a2
vir

)
, (18)

where avir is a free parameter that describes the contribution of
small-scale velocities and characterizes the kurtosis of the velocity
distribution, while σ v is predicted as above. This is thus the form
of our FOG factor, which can be obtained by resumming quadratic
non-linearities as advocated in Scoccimarro (2004). To calculate the
expression in square brackets (whose Fourier transform corresponds
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roughly to a ‘no-virial’ power spectrum), we use the one-loop ap-
proximation:

Pnovir(k, μ) =
∫

d3r

(2π)3
e−ik·r

[
〈DsD

′
s〉c + λ〈
uzDsD

′
s〉c

+ λ2〈
uzDs〉c〈
uzD
′
s〉c

]
. (19)

Therefore, the result for the redshift-space power spectrum is given
by

P (k, μ) = W∞(if kμ) Pnovir(k, μ), (20)

and multipoles can be obtained directly by integrating this equation
against Legendre polynomials L	(μ) as in equation (7). We now
briefly describe how we calculate each of the terms in equation
(19). A more detailed description of the involved terms can be
found in Appendix A.

The first term involving 〈DsD
′
s〉c is simply the non-linear version

of the well-known Kaiser formula (Kaiser 1987),

P (1)
novir(k, μ) = Pgg(k) + 2f μ2Pgθ (k) + f 2μ4Pθθ (k). (21)

Assuming that there is no velocity bias, Pθθ (k) can be obtained
directly from the predictions of gRPT. Appendix A contains explicit
formulae for Pgg(k) and Pgθ (k).

The term involving 〈
uzDsD
′
s〉c in equation (19) is to leading

order given by the tree-level bispectrum between densities and ve-
locities as

P (2)
novir(k, μ) =

∫
qz

q2

[
BθDsDs (q, k − q, −k)

+ BθDsDs (q, −k, k − q)

]
, (22)

with the bispectra given by standard tree-level PT for densities and
velocities in terms of the F2 and G2 kernels and bias parameters b1,
b2, γ 2.

The term 〈
uzDs〉c〈
uzD
′
s〉c in equation (19) is already

quadratic in the power spectrum, so this can be evaluated using
linear perturbation theory. We then have

P (3)
novir(k, μ) =

∫
qz

q2

(kz − qz)

(k − q)2

(
b1 + f μ2

q

) (
b1 + f μ2

k−q

)
×Pδθ (k − q)Pδθ (q)d3q. (23)

The closest redshift-space model in the literature to ours (Taruya
et al. 2010; Beutler et al. 2014) also starts from equation (15).
Our approach has three main differences, namely, we include non-
linear bias contributions coming from b2 and γ 2 to the bispectra
in equation (22), our FOG factor equation (18) is non-Gaussian,
we let γ −

3 be a free parameter (instead of being fixed to its local
Lagrangian bias value), and we use gRPT to calculate matter loops
instead of RegPT (which is not Galilean invariant). In summary, note
that our redshift-space model has a single free parameter, avir. It can
be considered as the large-scale limit to a more complete model in
which the velocity dispersion is considered to be scale dependent
and other small-scale effects are taken into account (Scoccimarro,
in preparation). The main reason for these simplifications is that
the model as presented here can be numerically evaluated very
efficiently for cosmological parameter estimation.

3.2 The Alcock–Paczynski effect

As described in Section 2, clustering measurements from real galaxy
catalogues depend on the assumption of a fiducial cosmology used

to transform the observed redshifts into comoving distances. As-
suming a fiducial cosmology that deviates from the true underlying
one leads to a rescaling of the components parallel and perpendic-
ular to the line of sight, s‖ and s⊥, of the total separation vector s
between two galaxies as (Padmanabhan & White 2008; Kazin et al.
2012)

s⊥ = q⊥s ′
⊥, (24)

s‖ = q‖s ′
‖, (25)

where the primes denote the quantities in the fiducial cosmology
and the scaling factors are given by the ratios of the angular di-
ameter distance and the Hubble parameter in the true and fiducial
cosmologies at the mean redshift of the sample, zm, as

q⊥ = DM(zm)

D′
M(zm)

, (26)

q‖ = H ′(zm)

H (zm)
. (27)

Equations (24) and (25) are the basis of the AP test (Alcock &
Paczynski 1979), which allows for anisotropic BAO measurements
(Blake & Glazebrook 2003; Hu & Haiman 2003; Linder 2003).
In terms of s and μ, these equations can be written as (Ballinger,
Peacock & Heavens 1996)

s = s ′q(μ′), (28)

μ = μ′ q‖
q(μ′)

, (29)

where

q(μ) = [
q2

‖ (μ′)2 + q2
⊥(1 − (μ′)2)

]1/2
. (30)

The scaling factors of equations (26) and (27) are often denoted
α⊥, ‖. However, we will reserve that notation for the combination of
these purely geometric quantities with the sound horizon ratios in
the fiducial and true cosmology, as described in Alam et al. (2016).
For historical reasons, most clustering measurements are expressed
in units of h−1 Mpc. As the value of h of a given cosmological model
will in general be different from that of the fiducial cosmology, the
ratios of equations (26) and (27) must also be computed in these
units.

Before comparing the predictions of a given cosmological model
with our BOSS clustering measurements, we use equations (28) and
(29) to transform our model of ξ (μ, s) to the fiducial cosmology
assumed in their estimation by expressing the integral in equation
(1) as

ξ ′μ2
μ1

(s ′) ≡ 1

μ′
2 − μ′

1

∫ μ′
2

μ′
1

ξ (μ(μ′, s ′), s(μ′, s ′)) dμ′. (31)

3.3 Performance of the model

3.3.1 Minerva simulations

To evaluate the performance of the model described in Section 3.1,
we used a set of 100 N-body simulations called MINERVA, which are
described in more detail in Grieb et al. (2016a). These simulations
represent different realizations of the same cosmology, correspond-
ing to the best-fitting flat �CDM model to the combination of CMB
data and the wedges of the CMASS sample from SDSS DR9 from
Sánchez et al. (2013). This model is characterized by a matter den-
sity of �m = 0.285, a baryon physical density of ωb = 0.022 24,

MNRAS 464, 1640–1658 (2017)



1646 A. G. Sánchez et al.

Figure 2. Mean dark matter real-space power spectrum of the MINERVA simu-
lations at z = 0.57 (blue long-dashed lines) compared against the predictions
of linear theory (black short-dashed lines), two-loop RPT as implemented in
MPTBREEZE (orange dot–dashed lines) and one-loop gRPT (red solid lines).
The shaded region corresponds to a 2 per cent uncertainty in the value of
P(k).

a Hubble constant of H0 = 69.5 km s−1 Mpc−1, a scalar spectral
index of ns = 0.968 and an amplitude of density fluctuations of
σ 8 = 0.828. Each simulation traces the evolution of the dark mat-
ter density field with Npart = 10003 over a box of side length
Lbox = 1.5 Gpc h−1. The initial conditions were generated with the
second-order Lagrangian perturbation theory (2LPT) at a starting
redshift of zini = 63.

Fig. 2 shows a comparison of the mean dark matter real-space
power spectrum of the MINERVA simulations at z = 0.57 with the pre-
dictions of RPT (dashed lines) computed using MPTBREEZE (Crocce,
Scoccimarro & Bernardeau 2012), and one-loop gRPT (solid lines).
The shaded regions correspond to a 2 per cent uncertainty in the
value of P(k). The prediction from RPT is in good agreement with
the simulation results up to k � 0.15 h Mpc−1 and describes ac-
curately the damping of the first BAO peaks. Using gRPT, the
description of the simulation results can be extended up to modes
as high as k � 0.25 h Mpc−1. As our model of the full shape of the
clustering wedges is based on gRPT, we can expect to be able to
extend the range of scales included in our analysis with respect to
the analyses of Sánchez et al. (2013, 2014).

In order to extend these models to real galaxy clustering mea-
surements, it is necessary to include the effects of bias and RSD.
We model galaxy and halo bias including both local and non-local
contributions given by the parameters b1, b2, γ 2 and γ −

3 defined
in Section 3.1.2. As our two-point clustering measurements are not
significantly sensitive to γ 2, we use the local Lagrangian relation of
equation (13) to set its value in terms of b1 and treat the remaining
quantities as free parameters.

We used the snapshots at z = 0.57 of the MINERVA simulations, cor-
responding to the mean redshift of the CMASS sample, in which we
identified bound haloes using a friends-of-friends algorithm. The re-
sulting sample was later post-processed with SUBFIND (Springel et al.
2001) to eliminate spurious unbound objects, leading to a final halo
catalogue with a minimum mass of Mmin = 2.67 × 1012 h−1 M�.
Grieb et al. (2016a) populated the Minerva halo catalogues at
z = 0.57 with galaxies following a halo occupation distribution

Figure 3. Mean clustering wedges of the MINERVA HOD samples for the
two (upper panel) and three (lower panel) μ-bins configurations. The error
bars correspond to the square root of the diagonal entries of the covariance
matrices computed using the Gaussian recipes of Grieb et al. (2016a). The
solid lines correspond to the model described in Section 3.1, which gives an
excellent description of the simulation results.

(HOD) model parametrized as in Zheng, Coil & Zehavi (2007), in
order to match the monopole correlation function of the CMASS
sample. The values of the parameters characterizing this HOD are
similar to those used by Manera et al. (2013), but the mass resolu-
tion of the MINERVA simulations allows us to resolve the haloes of the
low-mass tail of the distribution. The clustering properties of the
resulting HOD galaxy samples closely match those of the CMASS
sample of BOSS. We use these HOD catalogues to test if our full
model of equation (20) correctly describes the effect of non-linear
evolution, bias and RSD, including the impact of the FOG effect,
on a sample that contains both central and satellite galaxies.

The points in Fig. 3 correspond to the mean wedges from the
HOD galaxies of all MINERVA realizations for two (upper panel)
and three μ-bins (lower panel) configurations. As the 100 MINERVA

realizations are not enough to obtain a robust estimate of the covari-
ance matrix of these measurements, we use the Gaussian recipes
of Grieb et al. (2016a), computed using the multipoles of the non-
linear power spectrum model of Section 3.1 as input. The error bars
in Fig. 3 correspond to the square root of the diagonal entries of the
resulting covariance matrices. As shown by Grieb et al. (2016a),
these Gaussian formulae give an excellent description of the
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Figure 4. Mean values (points) and 68 per cent CL on q⊥, q‖ and fσ 8

derived from the measurements of two (squares) and three (circles) clus-
tering wedges from the MINERVA HOD galaxy samples as a function of the
minimum scale included in the fits. The dashed lines correspond to the true
values of these parameters. Based on this test we set a minimum scale of
smin = 20 h−1 Mpc for our fits to the BOSS combined sample clustering
wedges.

results inferred from the MINERVA simulations. Using these covari-
ance matrices, we fitted for the nuisance parameters of the model
using the measurements of two clustering wedges, while fixing all
cosmological parameters to their true values. The solid lines in Fig. 3
correspond to the model described in Section 3.1, computed using
the resulting values for the nuisance parameters, which show an
excellent agreement with the results from the MINERVA simulations
up to small scales.

In order to test the ability of our model to provide unbiased
cosmological constraints, we treated the quantities q⊥, q‖ and fσ 8

as free parameters and fit for them using the mean clustering wedges
from the MINERVA simulations, varying simultaneously the nuisance
parameters of the model while fixing all cosmological parameters
to their correct values (i.e. fixing the shape of the linear-theory
power spectrum). Fig. 4 shows the obtained constraints for the
cases of two (squares) and three (circles) wedges as a function of
the minimum scale included in the fits, smin. The points indicate the
mean values of these parameters derived from our Markov chain
Monte Carlo (MCMC), while the error bars correspond to their
respective 68 per cent confidence levels (CL). In all cases, the
maximum scale was set to smax = 160 h−1 Mpc. The dashed lines in
the same figure correspond to the true values of these parameters.

The constraints obtained using both configurations are in perfect
agreement with the true underlying values of these parameters, but
the 68 per cent CL obtained with three clustering wedges are sig-
nificantly smaller than those recovered from the analysis of two
μ-bins. This clearly illustrates the power of the additional informa-
tion recovered from three clustering wedges, with respect to that
of using only two. These results are consistent with those of the
Fourier-space analysis of Grieb et al. (2016b), which is based on
the same underlying model of non-linearities, bias and RSD. As
smin is reduced, the allowed ranges for all parameters decrease. The
results from this test indicate that the application of the model de-
scribed in Section 3.1 to a measurement of three clustering wedges
can give unbiased cosmological constraints even when including

Figure 5. Difference between the values of α⊥, α‖ and fσ 8 obtained from
the measurements of two (squares) and three (circles) wedges from each
of the HOD boxes (labelled A–G) of the RSD challenge of Tinker et al.
(in preparation). The dashed lines correspond to the mean differences over
all boxes. The shaded regions indicate the uncertainties associated with the
constraints on these parameters inferred from the real BOSS sample (see
Section 5).

scales as small as smin � 15 h−1 Mpc. As this limit might depend
on the details of the cosmological model, we fixed the value of
smin = 20 h−1 Mpc for our analysis of the clustering wedges from
the BOSS combined galaxy sample.

3.3.2 The BOSS RSD challenge

Our companion paper Tinker et al. (in preparation) presents the
results of a comparison or ‘challenge’ of various RSD models and
methodologies to extract cosmological information from the full
shape of anisotropic clustering measurements. This challenge con-
sisted of two different tests: an ensemble of 83 mock catalogues of
the NGC CMASS subsample, and a series of seven simulation boxes
corresponding to different cosmologies and HOD parametrizations.
A more detailed description of these data sets and the results ob-
tained by the different methods can be found in Tinker et al. (in
preparation). Here, we summarize the results obtained by applying
the model described in Section 3.1 to the measurements of three
clustering wedges in configuration space obtained from these data
sets.

Fig. 5 shows the difference between the values of α⊥, α‖ and fσ 8

recovered from the measurements of ξ 3w(s) from each of the seven
HOD boxes, labelled A–G [see Tinker et al. (in preparation) for
details on the HOD applied in each case]. The dashed lines corre-
spond to the mean differences over all boxes. A covariance matrix
derived from a set of 1000 QPMs (White et al. 2014) simulations
with a box size of 2.5 h−1 Gpc and an HOD matching the clustering
of the CMASS sample was used for all the fits. As these results
correspond to different cosmologies and HODs, it is not possible to
derive a general conclusion about the expected deviation between
the true and obtained results. However, with the exception of the
value of fσ 8 recovered from box F, the obtained deviations are al-
ways smaller than the uncertainties with which these parameters
can be recovered from the BOSS sample (see Section 5), which are
indicated by the grey shaded regions. More details can be found
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Figure 6. Constraints on q⊥, q‖ and fσ 8 obtained from the 83 CMASS
mock catalogues of the RSD challenge of Tinker et al. (in preparation.). The
points in the off-diagonal panels correspond to the values recovered from
the individual mocks, while the histograms in the diagonal panels show the
distribution of the obtained results from the full set of mocks. The red solid
lines correspond to a Gaussian fit to the obtained distribution.

in Tinker et al. (in preparation), but the HOD of box F includes
the effect of assembly bias weighted to high densities. Other meth-
ods based on configuration-space measurements give similar results
when applied to box F. At least part of the observed deviations could
be due to cosmic variance, but this result could signal the limitations
of these methods to deal with assembly bias (which is not explicitly
taken into account in our model). However, as this result is based on
a single box, we leave a more detailed study of the possible impact
of assembly bias on the obtained constraints for a future analysis.

Fig. 6 summarizes the constraints on q⊥, q‖ and fσ 8 obtained
from the set of 83 CMASS mock catalogues. The points in the
off-diagonal panels correspond to the recovered values of these
parameters from each individual realizations, while the histograms
in the diagonal panels show the distribution of the obtained results
from the full set of mocks. The red solid lines correspond to the
Gaussian fit to the obtained distribution. The constraints obtained
using our methodology are in excellent agreement with the true
underlying values of these parameters indicated by the dotted lines.

3.3.3 The MD-PATCHY mock catalogues

As a final test of our model, we applied to the measurements of
ξ 3w(s) from each of the 2045 MD-PATCHY mocks of the BOSS DR12
combined sample described in Section 2.2. Besides providing an-
other test for possible systematic errors in our constraints, the ob-
tained values can give us an idea of the uncertainties we can expect to
obtain from the analysis of the real BOSS data. These constraints are
also used in Sánchez et al. (2016) to compute the cross-correlation
coefficients between the results inferred from ξ 3w(s) and those of
our companion papers.

Table 1 lists the mean and dispersion of the difference between
values of α⊥, α‖ and fσ 8 obtained from the MD-PATCHY mocks and

Table 1. Mean and dispersion of the deviations between the parameter
constraints obtained from the individual MD-PATCHY mock catalogues and
their true underlying values for our three redshift bins.

Parameter 0.2 < z < 0.5 0.4 < z < 0.6 0.5 < z < 0.75

δα⊥ 0.003 ± 0.022 0.001 ± 0.018 0.001 ± 0.018
δα‖ 0.006 ± 0.032 0.005 ± 0.027 0.005 ± 0.028
δfσ 8 −0.018 ± 0.052 0.009 ± 0.044 0.004 ± 0.044

Figure 7. Distributions of the marginalized 68 per cent CL on the values
of the parameters α⊥, α‖ and fσ 8 obtained from the individual MD-PATCHY

mocks in each of our three redshift bins. The vertical dashed lines indicate
uncertainties on these parameters obtained from the real BOSS clustering
wedges (see Section 5).

their correct values in each of our three redshift bins. Deviations
of the order of 0.3σ and 0.2σ can be seen in the value of fσ 8

obtained using data from the low- and intermediate-redshift bins,
respectively. Although this might indicate the presence of a small
systematic error in these measurements, as these differences are
much smaller than their associated statistical errors we do not in-
clude a systematic uncertainty in our results.

Fig. 7 shows the distributions of the marginalized 68 per cent
CL on the values of α⊥, α‖ and fσ 8 obtained from the PATCHY

mocks in the low- (upper panels), intermediate- (middle panels)
and high-redshift (lower panels) bins. The vertical dashed lines
indicate the uncertainties on these parameters obtained from the
real BOSS clustering wedges as described in Section 5, which
are in good agreement with the distributions obtained from the
MD-PATCHY mocks.

4 C O S M O L O G I C A L I M P L I C AT I O N S

4.1 Methodology for parameter constraints

We derive cosmological constraints from our BOSS clustering mea-
surements following the same methodology as in Sánchez et al.
(2014), with small modifications. The clustering wedges of the
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Table 2. Cosmological parameters constrained in our analysis. The upper
part lists the parameters of the standard �CDM model while the middle
section lists a number of its possible extensions. The lower part lists a
number of additional quantities whose values can be derived from the first
two sets.

Parameter Description

Parameters of the standard �CDM model
θMC Approximate angular size of the sound

horizon at recombinationa

ωb Physical baryon density
ωc Physical cold dark matter density
τ Optical depth to reionization
ns Scalar spectral indexb

As Amplitude of the scalar perturbationsb

Extensions to the standard model
w0 Present-day dark energy equation of state, wDE

wa Time-dependence of wDE (assuming
wDE(a) = w0 + wa(1 − a))

�k Curvature contribution to energy density∑
mν Total sum of the neutrino masses

γ Power-law index of the structure growth rate
parameter, assuming f (z) = �

γ
m

Derived parameters
�m Total matter density
�DE Dark energy density
h Dimensionless Hubble parameter
σ 8 Linear-theory rms mass fluctuations in spheres

of radius 8 h−1 Mpc
S8 σ8

√
�m/0.3

Notes. aDefined as in the 2015 July version of COSMOMC.
bQuoted at the pivot wavenumber of k0 = 0.05 h Mpc−1.

overlapping redshift bin are strongly covariant with those obtained
in the two independent bins and do not lead to a significant im-
provement in the total constraining power of our measurements.
Therefore, to avoid the complication of including the covariance
between our clustering measurements in this section, we use only
the information from the wedges measured in our low- and high-
redshift bins, and refer to these data sets as ‘BOSS ξ 3w’. We use
our BOSS ξ 3w data set in combination with the latest CMB tem-
perature and polarization power spectra from the Planck satellite
(Planck Collaboration XIII 2016), to which we refer simply as
‘Planck’. We do not include CMB lensing information. We also
use the information from the joint SDSS-II and Supernova Legacy
Survey Light-Curve Analysis Type Ia supernovae (SN) sample
(JLA; Betoule et al. 2014).

We use the 2015 July version of COSMOMC (Lewis & Bridle 2002),
which in turn uses CAMB to compute the linear-theory CMB and mat-
ter power spectra (Lewis, Challinor & Lasenby 2000), modified to
compute the model of non-linearities, bias and RSD described in
Section 3.1. We constrain the cosmological parameters listed in
Table 2 by directly comparing the theoretical predictions obtained
for a given model with the galaxy clustering measurements them-
selves. Note that this approach is different from the one followed in
Alam et al. (2016), where the combined growth and geometric con-
straints of the various BOSS clustering analyses (including those
derived in Section 5) are used as a proxy for these measurements and
compared with the predictions from different cosmological models.
In Section 4.2, we explore the parameter space of the standard flat
�CDM model, where the dark energy component is characterized

Table 3. The marginalized 68 per cent constraints on the most relevant
cosmological parameters of the extensions of the �CDM model analysed in
Sections 4.3–4.6, obtained using different combinations of the data sets de-
scribed in Section 4.1. Appendix B contains a complete list of the constraints
obtained in each case.

Planck+BOSS Planck+BOSS
+SN

Constant dark energy equation of state
wDE −0.991+0.062

−0.047 −0.996 ± 0.042

�m 0.308+0.014
−0.012 0.306 ± 0.011

Time-dependent dark energy equation of state
w0 −0.73+0.27

−0.18 −0.92 ± 0.10

wa −0.83+0.58
−0.80 −0.32+0.45

−0.36

�m 0.325 ± 0.020 0.308 ± 0.010

Non-flat models
100�k −0.01+0.34

−0.31 −0.07 ± 0.30

�DE 0.715 ± 0.0145 0.6941 ± 0.0079

�m 0.288 ± 0.016 0.3052+0.0079
−0.0095

Dark energy and curvature
wDE −0.977+0.076

−0.070 −0.985+0.053
−0.049

100�k 0.16+0.38
−0.43 0.10+0.36

−0.39

�m 0.308 ± 0.13 0.306 ± 0.010

Massive neutrinos∑
mν /(eV) <0.26 (95 per cent CL) <0.25 (95 per cent CL)

�m 0.310+0.009
−0.013 0.308+0.009

−0.011

Deviations from GR
γ 0.609 ± 0.079 <0.610 ± 0.079 (95 per cent CL)

�m 0.3049+0.0078
−0.0092 0.3042+0.0074

−0.0087

Dark energy and modified gravity
γ 0.65+0.10

−0.13 0.627+0.086
−0.099

wDE −1.05+0.10
−0.08 −1.016+0.053

−0.046

by an equation-of-state parameter wDE = pDE/ρDE = −1, by varying
the six parameters of the upper section of Table 2. In Sections 4.3–
4.6, we constrain a number of possible extensions of the �CDM
model by allowing for variations on the parameters presented in the
middle section of Table 2. We consider more general dark energy
models, non-zero curvature, varying contributions from massive
neutrinos, and possible deviations from GR. Table 3 summarizes
the constraints on these cosmological parameters obtained from the
combination of the Planck CMB measurements with the full shape
of the clustering wedges from BOSS, and when this information is
combined with the JLA SN data. When it is not treated as a free
parameter, we assume a non-zero massive neutrino component with
a total mass

∑
mν = 0.06 eV. For all parameter spaces, we also fol-

low the constraints on the derived quantities listed on the final part
of Table 2. In all cases, the nuisance parameters of the model, b1,
b2, γ −

3 and avir, are also included in our MCMC and marginalized
over.

Grieb et al. (2016b) perform an analysis of the cosmological im-
plications of the BOSS DR12 combined sample similar to the one
presented here but based on Fourier-space clustering measurements,
which are combined with the same CMB and SN data sets used here
(see their section 5). They use the full shape of the Fourier-space
wedges obtained by filtering out the information of Legendre mul-
tipoles 	 > 4, which are fitted with theoretical predictions based on
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Figure 8. The marginalized posterior distribution in the �m–h plane for
the �CDM parameter set. The dashed lines show the 68 and 95 per cent
contours obtained using the CMB measurements from Planck alone. The
solid contours correspond to the results obtained from the combination of
the Planck data plus the full shape of the BOSS DR12 combined sample
clustering wedges ξ3w(s).

the model of non-linearities, bias and RSD described in Section 3.
Thus, our analyses represent the first time that the same model is
applied in configuration and Fourier-space fits. A comparison of the
results of Grieb et al. (2016b) with those presented here shows ex-
cellent agreement, with both sets of measurements providing similar
constraining power.

4.2 The �CDM parameter space

In this section, we focus on the constraints on the parameters of the
standard �CDM model. The dashed lines in Fig. 8 show the two-
dimensional marginalized constraints in the �m–h plane obtained
using Planck data alone. As described in (Percival et al. 2002),
CMB-only results follow a narrow degeneracy that can be well de-
scribed by a constant value of �mh3. The solid lines in Fig. 8 show
the result of combining the Planck data set with the configuration-
space clustering wedges of BOSS. The information provided by
our measurements of ξ 3w(s) at low redshift leads to a significant im-
provement of the obtained constraints, with �m = 0.3054 ± 0.0087
and h = 0.6798 ± 0.0065. These results represent constraints at the
2.8 and 1 per cent level and are essentially unchanged by the inclu-
sion of the information from SN measurements. The fact that these
data sets can constrain the basic parameters of the �CDM model
to this precision is a clear illustration of the constraining power
achieved by current CMB and LSS measurements. Appendix B
gives a summary of the constraints on the full set of cosmological
parameters of the �CDM model.

The best-fitting �CDM model gives a good description of our
measurements of the clustering wedges, with χ2 values of 90 and
82 for the low- and high-redshift bins, respectively, for 84 bins. This
model is also very close to the parameters values that best describe
the Planck CMB data alone, showing the consistency between these
data sets.

Figure 9. The marginalized posterior distribution in the �m–wDE plane for
the �CDM parameter set extended by treating the redshift-independent
value of wDE as a free parameter. The dashed lines show the 68 and
95 per cent contours obtained using Planck CMB data alone. The solid
contours correspond to the results inferred from the combination of Planck
and our BOSS ξ3w(s) measurements. The dot–dashed lines indicate the re-
sults obtained when the JLA SN sample is also included in the analysis. The
dotted line indicates the standard �CDM value of wDE = −1.

4.3 The dark energy equation of state

In the �CDM model, the dark energy component can be described
as vacuum energy, which behaves analogously to a cosmological
constant. In this section, we explore the constraints on more general
dark energy models. We start by treating the redshift-independent
value of wDE as an additional parameter. The dashed lines in Fig. 9
correspond to the two-dimensional marginalized constraints in the
�m–wDE plane obtained from the Planck CMB measurements,
which follow a degeneracy that spans a wide range of values of
these parameters. The solid lines in the same figure correspond to
the constraints obtained when the Planck data are combined with our
BOSS ξ 3w(s) data set. The information encoded in these measure-
ments provides much tighter constraints than in the previous case,
leading to �m = 0.308+0.014

−0.012 and wDE = −0.991+0.062
−0.047. This result

is in excellent agreement with the standard �CDM model value of
wDE = −1, indicated by a dotted line in Fig. 9. The dot–dashed
contours correspond to the results obtained by including also the
information from the JLA SN data, leading to our final constraints
of �m = 0.306 ± 0.011 and wDE = −0.996 ± 0.042.

In more general dark energy models, the equation-of-state pa-
rameter might be a function of time. To explore this possibility, we
use the linear parametrization of Chevallier & Polarski (2001) and
Linder (2003) given by

wDE(a) = w0 + wa(1 − a), (32)

where a is the scalefactor and w0 and wa are free parameters. The
dashed lines in Fig. 10 show the marginalized constraints in the
w0–wa plane obtained using Planck data alone, which cover a large
fraction of the parameter space. The solid lines show the effect of
including the information from the BOSS ξ 3w(s) measurements in
the analysis. Although the LSS information leads to a significant
reduction of the allowed region for these parameters, the result-
ing constraints on w0 and wa exhibit a strong degeneracy that al-
lows for models whose behaviour can be significantly different to
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Figure 10. Marginalized 68 and 95 per cent CL in the w0–wa plane, the
parameters controlling the redshift evolution of the dark energy equation
of state, parametrized as in equation (32). The contours show the results
obtained using the Planck CMB data alone (dashed lines), the combination
of Planck and the BOSS ξ3w(s) (solid lines), and when this information is
combined with the JLA SN data set (dot–dashed lines). The fiducial values
of these parameters in the �CDM model are indicated by the dotted lines.

a cosmological constant. Additionally, including information from
the JLA SN sample helps us to reduce the allowed region of the
parameter space even further, leading to our final constraints of
w0 = −0.92 ± 0.10 and wa = −0.32+0.45

−0.36, in good agreement with
the �CDM values indicated by the dotted lines in Fig. 10.

4.4 The curvature of the universe

In this section, we focus on non-flat models and extend the �CDM
parameter space to models with �k �= 0. The dashed lines in Fig. 11
show the constraints in the �m–�k plane obtained by the Planck
CMB measurements alone, which allow for significant deviations
from a flat universe due to the well-known geometric degeneracy
(Efstathiou & Bond 1999). The information from the clustering
wedges from BOSS efficiently breaks this degeneracy, reducing the
allowed region of the parameter space to a small area centred on the
flat Universe value �k = 0, which is shown by the dotted line. As
indicated in Table 3, these data sets can constrain the curvature of the
Universe to �k = −0.0001+0.0034

−0.0030. Additionally, including the JLA
SN does not significantly improve the results over those obtained
using the Planck+BOSS ξ 3w combination, with a final constraint
of �k = −0.0007 ± 0.0030 obtained from the combination of all
data sets.

When �k and wDE are varied simultaneously, the geometric de-
generacy extends to a two-dimensional sheet in the parameter space,
degrading even more the constraints obtained from CMB informa-
tion alone. This is shown by in the dashed contours in Fig. 12, which
correspond to the 68 and 95 per cent CL in the wDE–�k plane de-
rived from the Planck CMB measurements. The information in the
full shape of the wedges ξ 3w(s) is still very effective at reducing the
allowed region for these parameters, which shrinks to a small area
around the standard �CDM values indicated by the dotted lines.
In this case, we find �k = 0.0016+0.0038

−0.0043 and wDE = −0.977+0.076
−0.070.

As shown by the dot–dashed lines in Fig. 12, these constraints

Figure 11. The marginalized posterior distribution in the �m–�k plane
for the �CDM parameter set extended to allow for non-flat models. The
contours show the 68 and 95 per cent contours obtained using Planck infor-
mation alone (dashed lines) and the combination of these CMB data plus
the clustering wedges of the final BOSS. The dotted line corresponds to the
�CDM model, where �k = 0.

Figure 12. The marginalized constraints in the wDE–�k plane for the
�CDM parameter set extended by allowing for simultaneous variations on
both of these parameters. The contours correspond to the 68 and 95 per cent
CL derived from the Planck CMB data alone (dashed lines), the combination
of Planck plus the clustering wedges (solid lines), and when the JLA SN
data sets are added to the later combination (dot–dashed lines). The dotted
lines correspond to the values of these parameters in the �CDM model.

are slightly improved when the JLA SN information is also in-
cluded in the analysis. In this case, we find �k = 0.0010+0.0036

−0.0039

and wDE = −0.985+0.053
−0.048. These constraints are similar to the ones

we find when only one of these parameters is allowed to deviate
from their standard values. This indicates that current constraints
on the dark energy equation of state do not depend strongly on the
assumption of a flat Universe.
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Figure 13. The marginalized posterior distribution in the �m–�mν plane
for the �CDM parameter set extended by allowing for massive neutrinos.
The dashed and solid lines correspond to the 68 and 95 per cent CL derived
from the Planck CMB measurements alone (dashed lines) and by combining
them with the BOSS ξ3w(s) measurements (solid lines).

4.5 Massive neutrinos

The combination of CMB and galaxy clustering measurements of-
fers one of the best observational windows into neutrino masses.
In the previous sections, we assumed a total neutrino mass of∑

mν = 0.06 eV, the minimum value allowed by neutrino oscillation
experiments under the assumption of a normal hierarchy (Otten &
Weinheimer 2008). We now explore the constraints obtained when
the total neutrino mass is allowed to vary freely. Fig. 13 shows the
68 and 95 per cent constraints in the �m–

∑
mν plane obtained when

the �CDM parameter space is extended by treating
∑

mν as a free
parameter. The dashed lines correspond to the results obtained using
the Planck CMB data alone. A higher total neutrino mass leads to
an increase in the redshift of matter-radiation equality, which can
be compensated by an increase in �m in order to leave the CMB
power spectrum unaffected. This is the origin of the degeneracy
followed by the CMB-only constraints. Including the low-redshift
information from the BOSS clustering wedges helps us to break this
degeneracy, significantly improving the constraints. In this case, we
find a limit of

∑
mν < 0.25 eV at the 95 per cent CL, which is

almost unchanged by additionally including the JLA SN data.

4.6 Consistency with GR

In the context of GR, the redshift evolution of the structure growth-
rate parameter can be accurately computed as

f (z) = �m(z)γ , (33)

with γ = 0.55 with a small correction depending on the value of
wDE (Linder & Cahn 2007). This means that measurements of f(z)
as those obtained from anisotropic clustering measurements can be
used as a test of the predictions of GR. This information is essential
to distinguish between the dark energy and modified gravity scenar-
ios for the origin of the current phase of accelerated expansion of the
Universe (Zhang et al. 2007; Guzzo et al. 2008). The measurements
of f(z) obtained from anisotropic clustering measurements could be
directly compared with the predictions of specific modified gravity

Figure 14. The one-dimensional marginalized posterior distribution of the
power-law index of the structure growth-rate parameter γ derived from the
combination of the CMB measurements from Planck and the BOSS ξ3w(s)
(solid lines). These results are consistent with the value of γ = 0.55 predicted
by GR, which is indicated by the dotted line. The dashed and dot–dashed
lines correspond to the results obtained when the CMB data are separately
combined with the clustering wedges of our low- and high-redshift bins,
respectively.

models (e.g. Raccanelli et al. 2013; Wyman, Jennings & Lima 2013;
Taruya et al. 2014; Song et al. 2015; Barreira, Sánchez & Schmidt
2016). Here, we follow a simpler approach and treat γ in equation
(33) as a free parameter. In this way, the information on the growth
of the structure contained in our galaxy clustering measurements
can be used as a consistency test of GR. Assuming wDE = −1, a
detection of a deviation from γ = 0.55 can be interpreted as an
indication that the growth of density fluctuations is not consistent
with the predictions of GR.

We tested the consistency of our clustering measurements with
GR by extending the �CDM parameter space using equation (33)
to compute f(z) and treating γ as a free parameter. The solid line
in Fig. 14 corresponds to the one-dimensional marginalized con-
straints on γ obtained from the combination of the Planck CMB
measurements with the full shape of the BOSS ξ 3w(s) clustering
wedges. In this case, we find γ = 0.609 ± 0.079, in good agree-
ment with the GR prediction of γ = 0.55 indicated by the verti-
cal dotted line. Additionally, including the JLA SN data does not
improve this result. The dashed and dot–dashed lines correspond
to the results obtained when the Planck CMB data are separately
combined with the information from the wedges measured in our
low- and high-redshift bins, respectively. While the constraint of
γ = 0.543 ± 0.096 obtained in the former case is in excellent
agreement with GR, the latter case prefers a higher value, with
γ = 0.74 ± 0.13.

If the growth of structure is assumed to follow the predictions
of GR of equation (33) with γ = 0.55, the measurements of the
redshift evolution of f(z) obtained from RSD can be translated into
constraints on the matter density parameter. When this assumption
is relaxed by allowing γ to vary freely this information is lost,
leading to weaker constraints on wDE (Amendola, Quercellini &
Giallongo 2005). To test this, we extended the �CDM parameter
space by allowing for simultaneous variations of wDE (assumed
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Figure 15. The marginalized posterior distribution in the wDE–γ plane for
the �CDM parameter set extended by allowing for simultaneous varia-
tions on both of these parameters. The contours correspond to the 68 and
95 per cent CL derived from the combination of the Planck CMB measure-
ments plus the clustering wedges (solid lines), and when the JLA SN data set
is also added to the analysis (dot–dashed lines). The dotted lines correspond
to the values of these parameters in the standard �CDM + GR model.

time independent) and γ . Fig. 15 presents the two-dimensional
marginalized constraints in the γ –wDE plane obtained by means
of the Planck+BOSS ξ 3w combination (dashed lines), and when
these data are combined with the JLA SN sample (solid lines).
Including γ as a free parameter degrades the constraints on the dark
energy equation of state with respect to the results of Section 4.3. In
this case, we find wDE = −1.05+0.10

−0.08 and γ = 0.65+0.10
−0.13. Including

the JLA SN data reduces the allowed region for these parameters,
leading to wDE = −1.016+0.053

−0.046 and γ = 0.627+0.086
−0.099, similar to the

ones derived when these parameters are varied separately and are
in agreement with the standard �CDM+GR cosmological model.

5 BAO A N D R S D C O N S T R A I N T S

In most anisotropic clustering analyses, the cosmological infor-
mation contained in the full shape of the clustering measure-
ments is compressed into constraints on the parameter combinations
DM(z)/rd, H(z)rd and fσ 8(z) and their respective covariance matrix.
Alternatively, these constraints are often expressed in terms of the
analogous combinations DV(z)/rd, where

DV(z) =
(

DM(z)2 cz

H (z)

)1/3

, (34)

and the AP parameter

FAP(z) = DM(z)H (z)/c. (35)

This information is then used as a proxy for the LSS measurements
when deriving constraints on cosmological parameters. Here, we
use the model described in Section 3.1 to derive constraints on
these parameters from the clustering wedges ξ 3w of the final BOSS
combined galaxy sample in each of our three redshift bins. To this
end, we fixed the values of ωb, ωc and ns to match the best-fitting
�CDM model to the CMB measurements from Planck (fixing in
this way the shape of the linear-theory power spectrum) and treated
the values of α⊥, α‖ and fσ 8 as free parameters using separately

the clustering wedges of each redshift bin. The nuisance parameters
of the model, b1, b2, γ −

3 and avir, are also included in our MCMC
and marginalized over. This reproduces the analysis of the PATCHY

mock catalogues described in Section 3.3.3 on the real clustering
measurements from BOSS. The lines in Fig. 1 correspond to the
best-fitting models obtained in this way for each of our redshift bins,
which are characterized by reduced χ2 values of 1.15, 1.07 and 1.03
for our low-, intermediate- and high-redshift bins, respectively.

The solid lines in Fig. 16 show the two-dimensional marginalized
posterior distributions of DV(z)/rd, FAP(z) and fσ 8(z) for each of our
three redshift bins. The dotted lines in the same figure correspond
to the Gaussian approximation of these constraints, which give a
good description of the full distributions. The corresponding mean
values and their covariance matrices are listed in Tables 4 and 5, re-
spectively. The dashed lines in Fig. 16 correspond to the constraints
inferred from the Planck CMB measurements under the assump-
tion of a �CDM model. The agreement between these results and
the ones obtained from the BOSS clustering wedges indicates the
consistency between these data sets and their agreement with the
�CDM model.

As shown in Alam et al. (2016), a comparison of our results with
those of our companion papers shows good agreement. At all red-
shifts, the constraints derived from the wedges analyses presented
here and in Grieb et al. (2016b) are tighter than the ones of the mul-
tipole analyses. Rather than the statistics used in the analysis, this
is due to the fact that the model described in Section 3 makes it pos-
sible to use the information from smaller scales, where the effects
of non-linearities and RSD are stronger. Alam et al. (2016) com-
bine the results from the different BOSS analyses into a final set of
consensus constraints using the methodology described in Sánchez
et al. (2016). These consensus results are slightly tighter than those
of the individual analyses showing that additional information is
gained from the combination.

6 C O N C L U S I O N S

We have analysed the cosmological implications of the measure-
ments of three clustering wedges ξ 3w(s) of the final galaxy samples
from BOSS corresponding to SDSS-DR12. We make use of the
BOSS combined sample described in Reid et al. (2016), contain-
ing the joint information of the LOWZ and CMASS samples that
were analysed separately in former studies, including also the early
regions that were previously excluded.

We have focused on adjusting our analysis methodology to max-
imize the information extracted from the BOSS data. We imple-
mented a state-of-the-art description of the effects of the non-linear
evolution of density fluctuations, bias and RSD that allowed us
to extract information from the full shape of our clustering mea-
surements including smaller scales than in previous analyses. We
performed extensive tests of this model using various N-body sim-
ulations and BOSS mock catalogues, showing that it can be used to
extract cosmological information from our measurements of three
clustering wedges for scales s � 20 h−1 Mpc without introducing
any significant systematic errors.

We used the information from our clustering measurements in
combination with the latest CMB measurements from Planck and
the JLA SN sample to constrain the parameters of the �CDM
model and a number of its potential extensions, including more
general dark energy models, non-flat universes, neutrino masses
and possible deviations from the predictions of GR. Our results are
completely consistent with the standard �CDM plus GR cosmo-
logical paradigm. When this model is extended by allowing one
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Figure 16. Two-dimensional 68 and 95 per cent marginalized constraints on DV(z)/rd, FAP(z) and fσ 8(z). The solid lines show the results obtained from the
measurements of the clustering wedges ξ3w(s) of the final BOSS combined sample in each of our three redshift bins. The dotted lines show the Gaussian
approximation of these results using the mean values and covariance matrices of Tables 4 and 5. The dashed lines correspond to the constraints inferred from
the Planck CMB measurements under the assumption of a �CDM model.

Table 4. Mean values and 68 per cent CL on DV(z)/rd, FAP(z) and fσ 8(z)
obtained from the clustering wedges ξ3w(s) of the final BOSS combined
sample in each of our three redshift bins.

Parameter zeff = 0.38 zeff = 0.51 zeff = 0.61

DV(z)/rd 9.89 ± 0.15 12.86 ± 0.18 14.51 ± 0.21
FAP(z) 0.413 ± 0.014 0.605 ± 0.018 0.742 ± 0.024
fσ 8(z) 0.468 ± 0.052 0.470 ± 0.041 0.439 ± 0.039

additional parameter to vary freely, the combination of the CMB
data from Planck and our BOSS LSS measurements is enough to put
tight constraints on the additional variable, with the SN data leading
only to marginal improvements. The SN information is most useful
when more than one additional parameter is included in the anal-
ysis, leading to final constraints in agreement with the canonical
�CDM values. The full data set combination can constrain the dark

energy equation-of-state parameter to wDE = −0.996 ± 0.042 when
assumed time independent, with no indication of a departure from
this value when it is allowed to evolve with redshift according to
equation (32). The simultaneous variation of additional cosmologi-
cal parameters does not affect this limit significantly. Our results are
also completely consistent with the flat-Universe prediction from
the most simple inflationary models, with �k = −0.0007 ± 0.0030.
We derive tight constraints on the total sum of neutrino masses to∑

mν < 0.25 eV at 95 per cent CL. We also test the agreement of our
clustering measurements with the predictions of GR by assuming
the parametrization of equation (33) for the growth rate of cosmic
structure and find γ = 0.609 ± 0.079, in agreement with the GR
value of γ = 0.55.

Of our companion papers based on the BOSS DR12 combined
sample, the analysis of Grieb et al. (2016b) is the one more similar
to ours. They use Fourier-space wedges measured by filtering out
the information of Legendre multipoles 	 > 4 in the same redshift
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Table 5. Covariance matrices associated with the constraints on DV(z)/rd,
FAP(z) and fσ 8(z) inferred from our MCMC fits to the clustering wedges
of the final BOSS combined sample in each of our three redshift bins. The
online files have the full numerical precision, which we recommend for
parameter fits.

Parameter DV(z)/rd FAP(z) fσ 8(z)
0.2 < z < 0.5, zeff = 0.38

DV(z)/rd 2.309 28 × 10−2 −2.201 48 × 10−4 8.840 51 × 10−4

FAP(z) −2.201 48 × 10−4 2.005 47 × 10−4 4.826 76 × 10−4

fσ 8(z) 8.840 51 × 10−4 4.826 76 × 10−4 2.762 87 × 10−3

0.4 < z < 0.6, zeff = 0.51

DV(z)/rd 3.244 93 × 10−2 −8.316 65 × 10−4 7.009 01 × 10−4

FAP(z) −8.316 65 × 10−4 3.307 09 × 10−4 4.028 45 × 10−4

fσ 8(z) 7.009 01 × 10−4 4.028 45 × 10−4 1.689 99 × 10−3

0.5 < z < 0.75, zeff = 0.61

DV(z)/rd 4.253 31 × 10−2 −9.324 43 × 10−4 1.312 94 × 10−3

FAP(z) −9.324 43 × 10−4 5.626 34 × 10−4 4.608 68 × 10−4

fσ 8(z) 1.312 94 × 10−3 4.608 68 × 10−4 1.515 96 × 10−3

bins as in our analysis, which are also fitted using the model of non-
linearities, bias and RSD described in Section 3. This is then the first
time that the same model is applied in configuration and Fourier-
space fits. A comparison of our results with those of Grieb et al.
(2016b) shows excellent agreement, with both sets of measurements
providing similar constraining power.

The information of our clustering measurements can be com-
pressed into constraints on the parameter combinations DV(z)/rd,
FAP(z) and fσ 8(z) at the mean redshifts of each of our three redshift
bins with their respective covariance matrices. These results are in
excellent agreement with the predictions of the best-fitting �CDM
model to the CMB measurements from Planck, highlighting the
consistency between these data sets. Our results are combined with
those of our companion papers into a final set of consensus con-
straints in Alam et al. (2016) using the methodology described in
Sánchez et al. (2016).

Our results show that anisotropic clustering measurements have
become one of the most powerful available cosmological probes. By
exploiting the BAO and RSD signals imprinted in these measure-
ments, the BOSS galaxy samples have significantly improved our
knowledge of the basic cosmological parameters. The application
of the methodology presented here to galaxy samples from future
surveys such as the Dark Energy Spectroscopic Instrument (Levi
et al. 2013) and the ESA space mission Euclid (Laureijs et al. 2011)
will help to push our tests of the �CDM paradigm to even higher
accuracies. A joint analysis of two-point statistics with higher or-
der measurements such as the three-point correlation function or
the bispectrum (Gil-Marı́n et al. 2015), a detailed study of RSDs
on small scales including the impact of effects such as velocity or
assembly bias (Reid et al. 2014), or the advancement of methods
to reconstruct the underlying density field (Kitaura et al. 2016b)
are strategies that could help us to further increase the informa-
tion extracted from LSS data sets, which will continue shaping our
understanding of cosmic history.
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A P P E N D I X A : D E TA I L S O F T H E MO D E L L I N G
O F T H E T WO - D I M E N S I O NA L P OW E R
SPECTRUM

In this appendix, we present a more detailed description of our
model of non-linear evolution, bias and RSDs. The operators defined
in Section 3.1.2 can be expressed in Fourier space as

G2(k) = [δD]k
12 [(k̂1 · k̂2)2 − 1] θ (k1)θ (k2) (A1)

≡ [δD]k
12 K(k1, k2) θ (k1)θ (k2), (A2)
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with [δD]k
n ≡ δD(k − kn), k1...n ≡ k1 + · · · + kn and repeated

Fourier arguments are understood to be integrated over. Using this
equation, the cubic operator can be written as


3G(k) = [δD]k
12 [(k̂1 · k̂2)2 − 1] (δ(k1)δ(k2) (A3)

− θ (k1)θ (k2)). (A4)

Now, since in second-order perturbation theory

δ(2)(k) − θ (2)(k) = −2

7
G2(k), (A5)

we have to leading order (and fully symmetrizing)


3G(k) = − 4

21
[δD]k

123 [K(k12, k3)K(k1, k2)

+ K(k23, k1)K(k2, k3) + K(k31, k2)K(k3, k1)]

× δ(1)(k1)δ(1)(k2)δ(1)(k3), (A6)

in terms of the linear density fluctuations.
The galaxy auto power spectrum can be written as usual, to one-

loop

Pgg(k) = b2
1P (k) + b1b2Pb1b2 (k) + b1γ2Pb1γ2 (k)

+ b2
2 Pb2b2 (k) + b2γ2Pb2γ2 (k) + γ 2

2 Pγ2γ2 (k)

+ b1γ
−
3 Pb1γ −

3
(k) + Pnoise(k). (A7)

Each of these contributions is given by (in the following all powers
inside integrands are linear)

Pb1b2 (k) =
∫

2F2(k − q, q)P (k − q)P (q)d3q, (A8)

Pb1γ2 (k) = P mc
b1γ2

(k) + P
prop
b1γ2

(k)

=
∫

4F2(k − q, q)K(k − q, q)P (k − q)P (q)d3q

+ 8P (k)
∫

G2(k, q)K(k − q, q)P (q)d3q, (A9)

Pb2b2 (k) = 1

2

∫
P (k − q)P (q)d3q, (A10)

Pb2γ2 (k) =
∫

2K(k − q, q)P (k − q)P (q)d3q, (A11)

Pγ2γ2 (k) =
∫

2K(k − q, q)2P (k − q)P (q)d3q, (A12)

Pb1γ −
3

(k) = −2
8

21
P (k)

∫
6K(k − q, q)K(k, q)P (q)d3q. (A13)

Out of these, there are two terms that can be reduced to 1D integrals,
they are the propagator-type integrals,

P
prop
b1γ2

(k) = −P (k)
∫ ⎡

⎣ (k2 + q2)(33k4 + 14k2q2 + 33q4)

42 k2 q4

+ (k2 − q2)2(11k4 + 34k2q2 + 11q4)

56 k3 q5
ln

(k − q)2

(k + q)2

⎤
⎦P (q)d3q,

(A14)

and

Pb1γ −
3

(k) = 2 P (k)
∫ ⎡

⎣ (k2 + q2)(3k4 − 14k2q2 + 3q4)

21 k2 q4

+ (k2 − q2)4

28 k3 q5
ln

(k − q)2

(k + q)2

⎤
⎦P (q)d3q. (A15)

The term Pb2b2 does not reduce to zero at low-k; therefore, we
renormalize that limit as (McDonald 2006)

Pb2b2 (k) = 1

2

∫ (
1 − P (q)

P (k − q)

)
P (k − q)P (q)d3q, (A16)

which now reduces to zero as k2. This constant low-k limit enters
as an additional shot noise

Pnoise(k) = b2
2

2

∫
P (q)2d3q; (A17)

in practice, we marginalize over shot noise for power spectrum
analysis (Grieb et al. 2016a), and we can ignore shot noise renor-
malization for the two-point function analysis.

Similarly, we have to one-loop for the cross spectrum between
galaxy fluctuations and velocity divergence that

Pgθ (k) = b1Pδθ (k) + b2Pb2 (k) + γ2Pγ2 (k)

+ γ −
3 Pγ −

3
(k), (A18)

where

Pb2 (k) =
∫

G2(k − q, q)P (k − q)P (q)d3q, (A19)

Pγ2 (k) = P mc
γ2

(k) + P prop
γ2

(k),

=
∫

2 G2(k − q, q)K(k − q, q)P (k − q)P (q)d3q

+ 4 P (k)
∫

G2(k, q)K(k − q, q)P (q)d3q, (A20)

and note that P prop
γ2

= P
prop
b1γ2

/2 and Pγ −
3

= Pb1γ −
3
/2.

A P P E N D I X B : C O N S T R A I N T S O N T H E �C D M
PARAMETER SPAC E

In this appendix, we summarize the constraints on the cosmological
parameters of the �CDM model analysed in Section 4.2. Table B1

Table B1. Marginalized 68 per cent constraints on the cosmological param-
eters of the standard �CDM model, obtained using different combinations
of the data sets described in Section 4.1.

Planck + BOSS ξ3w Planck + BOSS ξ3w

+ SN

Main parameters
100 ωb 2.228 ± 0.020 2.229 ± 0.020
100 ωc 11.81+0.13

−0.16 11.80+0.13
−0.15

104 × θMC 104.104 ± 0.042 104.107 ± 0.042
ns 0.9680 ± 0.0048 0.9682 ± 0.0048
ln (1010As) 3.078 ± 0.033 3.078 ± 0.033
Derived parameters
100�DE 69.46+0.95

−0.79 69.52+0.91
−0.76

100�m 30.54+0.79
−0.95 30.48+0.76

−0.91
h 0.6798+0.0070

−0.0062 0.6803+0.0067
−0.0059

σ 8 0.820 ± 0.014 0.820 ± 0.014
S8 0.827+0.018

−0.020 0.826 ± 0.018

MNRAS 464, 1640–1658 (2017)



1658 A. G. Sánchez et al.

list the 68 per cent confidence limits obtained in this parameter
space. The upper section of the table lists the constraints on the main
parameters included in the fits, while the lower section contains the
results on the parameters derived from the first set.
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