oy
"A VDI INTERFACE FOR A MICROPROCESSOR GRAPHICS SYSTEM;
by
PAUL L. STEVENS

B. S., V. P. I. & S. U., 1978

A MASTER'S REPORT

submitted in parital fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

Approved by:

Major Proféssor ri:f"—

L b
2z 668

R¥ TABLE

(95¥
T
c. 2

LIST OF FIGURES . . .
Chapter

1. INTRODUCTION .

Background .

Scope of Work

2. DEVICE INDEPENDENT COMPUTER GRAPHICS

All202 LLL722

OF CONTENTS

Device Independence and Portability

The Graphical Kernel System .

The Virtual Device Interface

Another Graphics Standard . .

The Graphics System Extension .

3. DEVICE DRIVER DESIGN AND IMPLEMENTATION

VDI Device Driver Design . .

MPC Interface and Software .

Testing . . .

3. RECOMENDATIONS .

REFERENCES -«
APPENDICES

A, Source Listing

B. Source Listing

C. Source Listing

D. Sample Listing

- * -

of MPC
of VDI
cf VDI

of MPC

id

Driver Program

Driver Routine

Driver Subroutines

Interface Commands

Page

iid

14
16
24
26
29
29

31

51

57

60
66
75

87

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

LIST OF FIGURES

System Structure of Project
Isolation of Device Functions
Device Independent Coordinates« .
VDI Device Driver Design . . « o« o o « » &
Virtual Device Interface Model
VDI Commands .+ + « o o o o o o » s o = o &«
VDI Driver Input Parameters . . . « « « « &
VDI Driver Qutput Parameters = .+ .
MPC Medium Resolution Screen Format
Display Screen Characteristics &«
MPC Interface Command Language Definition .

MPC Interface Command Language Field
Definitions . « « o« ¢ ¢« o o o o o « « o =

Sample Prism 80 Graphics Hardcopy
Illustration of Character Up Vector Concept
Illustration of Text Path Vector Concept .

Angle Definition for Drawing Arcs

iii

Page

10
11
17
19
21
22
23
32
33

35

37
41

43
44

47

Page 1

Chapter 1

INTRODUCTION

BACKGROUND

The Computer Graphics Virtual Device Interface (VDI)
is a computer graphics standard proposal under development
by the American National Standards Institute (ANSI) Virtual
Device Interface Task Group (X3H33) for adoption as an
American National Standard. The task group [19] defines the
VDI as:

"A standard functional and syntactical specification of
the control and data exchange between device-
independent graphics software and one or more device-
dependent graphics device drivers."
The goal of the task group is to develop a standard
interface between device-independent software packages and
device driver routines. This allows the software package to
interface with each device driver without regard to details
of the physical characteristics of the device or the
particular graphics primitive operations implemented on each
device. Calls to a particular device driver contain the

same parameters, 1in the same format, as every other device

Page 2

driver. Each device driver implements a standard set of
primitive operations for wuse in generating and inputing

graphical information from the device.

Use of a Virtual Device Interface is advantageous to
both computer graphics systems' implementors and
applications programmers. Both «classes of users will
generate less code to implement a computer graphics program
and will spend less time maintaining the code if VDI is used
to interface to graphics devices. Computer graphics
hardware vendors will also benefit if the VDI standard is
accepted and becomes widespread. Given a VDI hardware
interface standard, vendors will be able to produce graphics
devices that are interchangeable - a plotter could be
replaced with a graphics terminal with little or no

modification required to the graphics software.

The VDI task group works closely with and under
ANSI's task group (X3H3) that is developing the standard for
the Graphical Kernel System (GKS). First proposed by the
German Institute of Standardization (DIN), the GKS standard
[4) provides a functional specification of a set of
functions or subroutines which implement "a basic graphics
system that can be used by the majority of applications that
produce computer generated pictures." The VDI concept is

integral to the design of the GKS, providing a standard,

Page 3

device-independent interface to each device accessed by the
system. Figure 1.1 contains a diagram which illustrates the

relationship between GKS and the VDI.

Page 4

Figure 1.1 System Structure of Project

User
Program [< = GKS
VDI Intertaze
VDI
Driver
Program
Hardware Interface
MPC
Yideo
Printer e Driver
Screen
Program

Keyboard

Page 5

SCOPE OF WORK

Implementation of a version of the Graphical Kernel

System is in progress at Kansas State University. During the

spring semester of 1983, the initial design and
implementation work was begun. The development and
refinement of the GKS is a continuing effort. Recently,

additions and enhancements to the system have been the
subject of numerous master's projects. This report

documents the effort of one of such master's projects.

The scope of this particular master's project is
limited to the development of a VDI interface for the
Columbia Data Products Multi-Personal Computer (MPC). This
interface 1is designed to link the GKS system, running on a
Perkin-Elmer 32/20 computer, to the MPC. Since the MPC is
not a terminal, but a personal computer with computer
graphics capabilities, implementing this interface requires
that software be written for both machines. This software
must not only execute the required graphics functions, but
also the data communications between the two machines. The
VDI and MPC Driver Programs of Figure 1.1 were designed to

implement this VDI interface.

During the development phase of of the project, all

Page 6

efforts failed to establish a data communications link
between the 32/20 and the MPC running a BASIC program.
Rather than suspend development until the interface was
working, it was deemed necessary to continue development and
testing of the software in order to complete as much of the
project as possible before leaving the campus. The problem
is discussed further in the Testing Section of Chapter 3.
Chapter 2 of this report presents information introducing
the Graphical Kernal System and the Virtual Device Interface
and their relevance to the project. Also discussed in
Chapter 2 is the Association for Computing Machinery's Core
System - a related computer graphics standard proposal. The
first implementation of GKS and VDI, called the Graphics

System Extension, is also presented.

Chapter 3 presents a detailed discussion of the
software design and implementation of the VDI and MPC Driver
Programs. The final section of Chapter 3 discusses the
details of software testing and the final project status.
Chapter 4 provides recommendations for further work
concerning this project, and discusses deficiencies in the

GKS and VDI standards' proposals.

Page 7

Chapter 2

DEVICE INDEPENDENT COMPUTER GRAPHICS

DEVICE INDEPENDENCE AND PORTABILITY

Device-independence in computer graphics systems has
been a popular topic 1in recent years. Much of the
literature talks about device-independence as a means of
achieving portability [7,10,14,17,21,22]. The concept of
portability implies that something can be carried from one
place to another while maintaining its functionality. In
computer graphics, two types of portability are desired:
Application Program Portability and Application Programmer

Portability [14,17].

In order to achieve portability of application
programs, the graphics software packages which are used by
the program must present a wuniform interface to the
applications programmer regardless of the graphics hardware
that is used. The package must provide a common set of
graphics primitives which can be used for interaction with
all graphics devices. 1In this way, each device can then be

viewed by the programmer as having the same capabilities as

Page 8

every other device - the graphics package must be device-
independent. As defined in [10], a graphic software system
can be called device-independent "if it can be wused in
conjunction with two or more different graphics terminals
... wWwithout the need to modify the application programs
which use the system." Thus a graphics software system which
provides device-independence also provides Application
Program Portability within the system. If the same graphics
software system also exists in another installation,
Application Program Portability is achieved between
installations also. This is where the use of common graphics
standards such as the Graphical Kernel System [4] become

important.

Use of graphics software systems which result in
portable and device-independent pPrograms has many
advantages. Duplication of effort is eliminated because
programmers need not write similar programs for each device
in order to implement the same graphics application, the
same c¢ode can be used for each device. The program is also
insulated from changes in hardware. If a display is updated
with a newer model, the program is insulated from any

differences between the two hardware devices.

Page 9

The programmer then, only has to worry about the
interface into the graphics software system aad not
individual graphics devices. Figure 2.1 contains a diagram
which 1illustrates this point using the GKS system as an
example. The software modules at each level of the diagram
can only access the functions provided to it by the level
immediately below it. In this system, the User Program can
only access the functions provided by GKS and the Operating
System, it has no way to access the functions of a
particular device or even knowing what hardware func:tions

are available on the device.

Portability of graphics application programmers is
also possible. By utilizing a device-independent software
system, the programmer no longer has to become intimately
familiar with the functions and properties of each device
used by his software. This improves the programmer's
productivity since he will not have to experience a learning
period each time use of a new device 1is required. In
addition, if the applications are written using a standard
graphics software system, such as GKS, the programmer may
then write software for other installations which use the
system without having to learn the details of a new software

system or the devices supported by the installation.

Figure 2.1

Isolation of Device Functions

User Program

GKS Functions

VDI Functions

Device Functions

Operating System

Page 10

Page 11

Figure 2.2 Device Independent Coordinates

World
Coord

User Model

Normalized
Device Device—Independent Model

Coord

Device

Coord Physical Model

Page 12

One of the properties of a device-independent
graphics system is that it uses a Device-Independent
Coordinate System for specifying graphical information. Use
of a device-independent Coordinate System frees the user
from being concerned with the physical viewsurface
characteristics of each device. Typically, modern graphics
systems allow the user himself to define the units of the
coordinate system [4]. This is made possible by using an
intermediate coordinate system internally in the graphics
software system. Figure 2.2 is a diagram illustrating this
technique. The user provides the graphics system with a
definition of the coordinate system that he wants to use to
specify graphical information, this user's view of the data
is called the World Coordinate System. The graphics system
uses a different coordinate system internally, called
Normalized Device Coordinates. The graphics system must be
able to apply the appropriate transformations to convert
data back and forth between the two coordinate systems. The
graphics system must also be able to apply transformations
to convert back and forth from Normalized Device Coordinates
(NDC) tc the physical coordinates of the device, called

Device Coordinates (DC).

Page 13

Use of NDC coordinates allows the graphics system to
maintain data that is both device-independent and
independent of the World Coordinate model specified by the

user.

Page 14

THE GRAPHICAL KERNEL SYSTEM

The Graphical Kernel System (GKS) is a device-
independent computer graphics software system defired by a
draft standard proposed by the International Standards
Organization (ISO). GKS is also being considered for
adoption by the American National Standards Institute (ANSI)
as an American National Standard. The GKS provides a
common, device-independent interface to graphics devices
which insulate the user from Device-Dependent features of
graphics devices. Figure 1.1 is a diagram of the 1logical
design of GKS. The figure shows the hierarchical layering
of the software used to insulate the user from the physical
device characteristics (shown in another form in Figure

2+1}) .

There are two major software layers in GKS, the
Device-Independent Layer and the Device-Dependent Layer. The
Device-Dependent Layer is comprised of the software drivers
for each of the graphics workstations and the Device
Supervisor. The Device Supervisor is responsible for
providing the mapping between logical devices in the
Device~-Independent Layer and physical devices in the
Device-Dependent Layer, The Device-Independent Layer is

comprised of the rest of the GKS and the User Program. The

Page 15

Device-Independent Layer, as the name suggests, operates on
device-independent data and data structures. This layer
handles the mapping between the wuser-defined World
Coordinate system and NDC coordinates while the Device-

Dependent Layer maps between NDC and Device Coordinates.

While GKS provides a set of common graphics
primitives for manipulating graphical information (Polyline,
Polymarker, Text etc.), it also provides two mechanisms
which allow the wuser to access non-standard graphics
functions. The first mechanism is actually a GKS graphics
primitive that is designed to provide optional extensions tc
the basic functions of GKS. Called the Generalized Drawing
Primitive (GDP) , this primitive 1is wused to execute
additional common primitives such as circle and rectangle
drawing functions which may or may not exist in hardware
devices. The second mechanism is called the Escape Function
and was defined to allow the applications programmer to use
features supported by a device but not by GKS or the GDP.
The Escape Function allows the user to circumvent normal
graphics processing and pass a text string directly to the
device to invoke a desired hardware function. Use of the
Escape Function, however, makes the application program
device-dependent and may hinder the porting of the program

to another device or installation.

Page 16

THE VIRTUAL DEVICE INTERFACE

As described in Chapter 1, the Virtual Device
Interface (VDI) is a specification of the software interface
between a device-independent graphics software system and
device-dependent graphics device drivers. The term "Device
Driver" is used to mean that portion of the graphics
software which translates VDI commands into the form
required by the device(s) supported by the driver. In the
VDI, as with GKS, each device driver handles the 1/0 for one
workstation. A workstation is a logical grouping of devices
comprised of a device containing some type of viewsurface,
coupled with zZero or more associated graphical input
devices. Figure 2.3 is a block diagram of the VDI Device
Driver implemented in this master's project. This diagram
shows that the driver (comprised of the VDI Driver Program
and the MPC Driver Program) actually controls three devices:
the Video Screen; the Keyboard and a Graphics Printer used

for making hardcopies of the screen.

Page 17

Figure 2.3 VDI Device Driver Design

User
Progrom I< = GKS
VDI Interfaoce

VDI

Driver
Progrom

Hordware Interface

MPC

Printer Driver
Progrom

Keyboard

Page 18

The VDI provides a common interface to each device
driver used by a graphics system or application prugrem.
Figure 2.4 contains a diagram of a model of the ¥Virtaal
Device 1Interface [20]. The X3H33 Task Group spec:Fies taex
each VDI workstation (driver) must support a minim:si .&! of
graphics functions that it calls Required Functione. Thess
functions may be supported by the graphics hardyars: or
emulated by the device driver. Functions availekiz on the
device(s) are called Supported Functions while tho=ze which

must be emulated by the driver are called Uassgiorted

Functions.

The Task Group [20] also identifies a s=2: of

Iy

graphics functions, called Nonrequired Functions, ihich
represent a standard set of extensions to the VDI and which
corresponds to the functions available under the GKS
Generalized Drawing Primitive. The Nonrequired Functions
are defined by the VDI specification (for example, CIRCLE)
but the device driver is not required to implement them.
Before using a Nonrequired Function, a program must query

the driver to determine if the function is available.

Page 19

Figure 2.4 Virtual Device Interface Model

Above VDI Physical

indmy S —>r€ Device Driver %i< Device
| |
: '
i 1
: '
:l Emulation of i
* [|Nonrequired [, —> Unsupported | |
. .
° Functions : Ngnrequiras E
: Funciions '
g . J, ’
:]
Emulation ' :
: i l '
of : '
Nonrequired | ! SuppEriEG |
Functions ' Nonrequired | |
']
E Functions |,
]
L . Device
s Supported [
|
| Required | |
']
V M Funcnons E
[]
— s L
I
; t |
: Required | Emulation of -
¢ Functions | | Unsupported ;
¢ : Required |
'44 Inquiry Functions | !
1
Inquire k‘(:
, e |
Escape
Escope = 1 Functions I
i :
' .
l .
I '
vDI Physical

Interface Interfoce

Page 20

Nonrequired Functions may be "Supported"” by the graphics
device(s) or they may be emulated in the driver or the
program which invokes the driver if they are "Unsupported.”
The VDI also includes an Escape Function which is a lower
level implementation of the GKS Escape Function described in

the previous section.

In [20] the VDI Task Group defines the graphics
functions which it proposes for the VDI Standard. Graphics
Software Systems Inc. has developed a VDI for the CP/M
operating system, called the Graphics System Extension
(GSX), which is marketed by Digital Research. The GSX
system defines a somewhat different set of graphics
functions for the VDI [13]. This is to be expected however,
since the VDI Standard is still under development. Thus it
was necessary to define, for the purposes of this project, a
set of VDI commands which might be implemented by the device
driver. Figure 2.5 is a PASCAL type definition which
specifies the VDI commands which were chosen as a reasonable
command set for implementation. Figures 2.6 and 2.7 are
type definitions which define the input and output

parameters for the various VDI commands.

Page 21

Figure 2.5 - VDI Commands

type vdicmdtype =

{ vdiopen, (* Open Workstation *)
vdiclose, (* Close Workstation ¥*)
vdiclear, (* Clear Workstation ¥*)
vdiupdate, (* Update Workstation *)
vdiescape, (* Escape Function *)
vdiline, (* Draw Polyline *)
vdimark, (* Draw Polymarker *)
vditext, (* Draw Text ¥*)
vdiarea, {* Draw Filled Area *)
vdigdp, (* Generalized Drawing Primitive *)
vdicharh, (* Set Character Height *)
vdicharupv, (* Set Character Up Vector *)

vdilinetype, (* Set Line Type *)
vdilinewidth, (* Set Line Width *)
vdilinecolor, (* Set Line Color *)
vdimarktype, (* Set Marker Type *)
vdimarksize, (* Set Marker Size *)
vdimarkcolor, (* Set Marker Color *)
vditextfont, (* Set Text Font %)
vditextcolor, (* Set Text Color *)
vdifillcolor, (* Set Fill Color *)
vditextpath, (* Set Text Path *)
vdiinlocator, (* Input Locator *)
vdiinvaluator, (* Input Valuator *)
vdiinchoice, (* Input Choice *)
vdiinstring, (* Input String ¥*)
vdiinmode) (* Set Input Mode *)

Page 22

Figure 2.6 VDI Driver Input Parameters

type vdiparm = record
case cmdcode: vdicmdtype of

vdiopen,

vdiclose,

vdiupdate,

vdiclear t();

vdiescape :(msg:tstring);

vdiline,

vdimark,

vdiarea :({numpts:pointsrange;
pts:upoints);

vditext :(textpos:ipoint;

numchar: textcharrange;
string:tstring);
vdigdp : {gdpcmd : index;
numgdppts:pointsrange;
gdppts:upoints) ;
vdicharh ¢t (height:integer);
vdicharupv :(upvec:ipoint);
vdilinetype,
vdimarktype,
vditextfont :(kind:index);
vdilinecolor,
vdimarkcolor,
vditextcolor,
vdifillcolor: (color:unit);
vdilinewidth,
vdimarksize :(size:integer);
vditextpath :(path:ipoint);
vdiinlocator: (locdev :index;
locpos:ipoint); (* initial pos*)
vdiinvaluator: (valdev:index);
vdiinchoice :(chdev:index);
vdiinstring :(strdev:index;
strlen:textcharrange);
vdiinmode : (indev:index;
mode: index)
end (* wvdiparm *)

Page 23

Figure 2.7 VDI Driver Output Parameters

;type vdioutparm = record
status:unit; (*¥ O=no l=o0k *)
case cmdcode: vdicmdtype of
vdiinlocator :(locpos:ipoint);
vdiinchoice :(choice:integer);
vdiinstring :(len:textcharrange;
strng:tstring);
vdiinvaluator: (value:real)
end (* vdioutparm *)

Page 24

ANOTHER GRAPHICS STANDARD

The proposed GKS and VDI Standards are by no means
alone in the world of computer graphics standards, several
other related standards have been developed and proposed for
adoption by ANSI or the 1SO. Probably the most widely known
is the Core System developed under the auspices of the
Association for Computing Machinery (ACM) Special Interest
Computer Group on Graphics (SIGGRAPH) [9]. The Core System,
like GKS, 1is a standard proposed for providing a device-
independent interface to graphics devices via use of a suite

of special graphics subroutines.

The proposed Core System standard, developed by the
ACM/SIGGRAPH Graphic Standards Planning Committee (GSPC),
defines a general-purpose, three-dimensional graphics system
designed to facilitate program portability. Probably due to
its early beginnings in the development of graphics
standards, the Core System is a Pen-Oriented system which
makes use of the Current Drawing (Pen) Position concept
widely used in software developed for plotters. The GKS and
VDI, which are oriented more toward raster devices, do not
use the Current Drawing Point technique for specifying

coordinate information.

Page 25

While the software organization of the Core system
is similar to that of GKS (see Figure 1l.l1l), one important
difference exists in the Device Dependent Layer of the
system. The Core System does not support the Workstation
Concept as does GKS. Instead, each physical device is
treated as a separate entity with its own device driver.
While the Core system does support logical input device
types such as Pick and Valuator Devices, it 1is the
applications programmer who determines which physical
devices are available to the program, not the graphics
system. Since all device types are not required to be
available in a {(programmer-defined) workstation, as is the
case with GKS, portability problems can arise due to the
unavailability of a particular input device in a new
installation. Also, since there is not a standard for the
interface between the Core System and its device drivers,
such as the VDI standard, porting an implementation c¢f the
Core System would probably be much more difficult than

porting GKS.

THE GRAPHICS SYSTEM EXTENSION

The Graphics System Extension (GSX) is a software
upgrade package for the CP/M and CP/M-86 operating systems
[13]. Developed by Graphics Software Systems Inc. and
marketed by Digital Research, GSX 1is one of the first
attempts to implement the VDI standard. GSX provides =z
device-independent graphics interface for a user or graphics
software package running under CP/M. Calls to GSX routines
are made through the standard CP/M function-call mechanism -
branching to a location in the base-page jump table. GSX is
comprised of three software components: the Graphics Device
Operating System (GDOS), the Graphics I/0 System (GIOS), and

the Gengraf utility routine.

The Graphics Device Operating System compenent of
GSX 1is analogous to the Basic Disk Operating System (BDOS)
in CP/M and provides the device-independent graphics
interface for'the user, When the GSX system is set up, the
normal BDOS entry in the base-page jump table is replaced by
the entry-point address of GDOS. The user is then able to
transfer to either the GDOS or the BDOS (via GDOS) through
the same Jjump-table entry. All function «c¢alls to GDOS
specify a parameter list which includes an Operation Code, a

Control Array, a Parameter Array, and a Point Array with

Page 27

coordinates specified in the range -32767 to 32767 (Integer
NDC) . The function of the GDOS actually corresponds to the
Device Supervisor in GKS (See Figure 1.1), providing:
coordinate scaling for the device drivers; control over
which device driver is resident in memory; and interfacing
with the workstation device driver (in the GIOS) via
subroutine calls. Thus, the user interface with GSX is
actually on a higher level than that defined for the VDI,

the GDOS-GIOS interface is the actual VDI-level interface.

The Graphics I/0 System (GIOS) is made up of the
device-dependent device drivers which actually interface
with the physical graphics devices. Each GDOS call to the
GIOS specifies the following parameters: an Operation Code;
an Input Control Parameter Array; an Input Parameter Array;
an Input Point Coordinate Array; an Output Control Array; an
Output Parameter Array; and an Output Point Coordinate
Array. This uniform parameter passing approach differs from
that defined in the proposed VDI standard, the standard
defines a command-specific set of parameters for each VDI

command.

The GSX Gengraf program is used by the application
programmer to configure his program for use with GSX.
Gengraf appends a special loader routine to the user program

which sets up the GDOS and GIOS at run time.

Page 28

Several incompatibilities exist between the GSX and
the current VDI standard proposal. Since GSX was developed
concurrently with the development of the standard, some
incompatibilities were virtually assured. Examples are the
different parameter passing strategy and the assignment of
different VDI operation code numbers. Another difference
results from the fact that GSX is designed to be compatible
with any CP/M program. In effect, this binds the GSX
implementation to the operating system and its conventions.
The VDI and GKS standard proposals, on the other haand, are
designed to be bound to high-level computer languages. User
calls to GDOS must be accomplished via assembly or machine
language which puts a burden on many applications
pProgrammers. This difference 1in binding explains many of

the incompatibilities between GSX and the VDI standard.

Page 29

Chapter 3

DEVICE DRIVER DESIGN AND IMPLEMENTATION

VDI DEVICE DRIVER DESIGN

The original software design developed for this
project provides a VDI-level interface between GKS software
and the MPC computer. As shown in Figure 2.3, the driver is
designed as two software modules. The first, called the VDI
Driver Routine, is a PASCAL subroutine which is callable by
the GKS system. This routine provides the VDI interface to
the GKS system. The VDI Driver Routine supports the VDI
commands specified in Figure 2.5. The input and output
parameters for the routine are shown in Figures 2.6 and 2.7.
The second software module, called the MPC Driver Program,
is a BASIC program which runs on the MPC computer itself.
Appendix A contains a source listing of the MPC Driver
Program. The MPC Driver Program executes the actual
graphics functions in the MPC based on directives from the
VDI Driver Routine. The VDI Driver Routine and the MPC
Driver Program are designed to communicate via a serial

communications link between the 32/20 and the MPC. The two

Page 30

routines communicate via the MPC Interface Command Language

described in the next section.

As shown in the source listing contained in Appendix
B, the VDI Driver Routine is modular in design, the
subroutine is made up of a single PASCAL Case statement.
The routine has a case entry for each of the possible VDI
commands. This modularity makes the routine design simple
and the code easy to modify and maintain. The VDI Driver
Routine contains calls to a suite of support routines which
execute lower-level functions. Source 1listings of these

subroutines is contained in Appendix C.

Page 31

MPC INTERFACE AND SOFTWARE

The Columbia Data Products MPC is capable of
displaying 16 different colors when equipped with the color
adapter card and a color monitor. The MPC can display color
graphics when the screen is in Medium Resclution Graphics
Mode. This mode provides 320 by 200 pixel screen resolution
as shown in Figure 3.1. The MPC has an additional graphics
mode called High Resolution Mode which has twice the
resolution, but this mode is monochrome only. The Medium
Resolution Mode was chosen for use in the project due to the
ability to display color. Unfortunately the MPC uses only
two bits per pixel in this mode, this means that though
there are 16 possible colors, only four may be displayed on
the screen at one time. Figure 3.2 contains a 1list of

pertinent characteristics of the MPC video display.

Page 32

Figure 3.1 MPC Medium Resolution Screen Format

X —>
0,0 319, 0

<

s
l
I
I

Screen Coordinates

l
I
|

0,199 219 319,199

Page 33

Figure 3.2 - Display Screen Characteristics

Screen Size = 320 Pixels {X) x 200 Pixels (Y)
= 22 cm Wide (X) x 15.1 cm High (Y)
= 40 Characters (X) x 25 Characters (Y)
200/15.1
Aspect Ratio = ~ecececcaao = 0.910596 Height/width
320/22

B Pixels (X) x 8 Pixels (¥)
0.55 cm (X) x 0.604 cm (Y)

Character Size

220 Pixels (X) x 200 Pixels (YY)
15.1 com {X) x 15.1 cm (Y)
27.5 Char. (X) x 25 Char. (Y)

Largest Square

Page 34

The MPC Driver Program handles the communications
interface between it and the VDI Driver Routine and executes
commands sent over-the interface by the VDI Driver. The MPC
Driver Program is written in the BASIC programming language.
While BASIC was not the first choice for this application,
it was chosen because it was the only language available on
the MPC which incorporates extensions for graphics. This
was especially important since the only graphics primitives
supported by the MPC hardware are reading and writing

pixels.

A well-defined command language was developed for
use between the VDI Driver and the MPC Driver. The command
set is similar to that specified for the VDI but on a lower,
less sophisticated level. The command formats were designed
to be consistent and easily parsed in BASIC. Figures 3.3 and
3.4 contain the c¢ommand language specification in Backus-
Naur Form. Figure 3.3 contains a specification of the
grammar of the commands which may be issued by the VDI
Driver and the responses (if any) returned by the MPC
Driver. Figure 3.4 contains the specifications for the
various command and response fields identified in Figure

3.3.

Page 35

Figure 3.3 MPC Interface Command Language Definition

[«e.] (n) Specifies that n Repetitions of the
String in Brackets are required.

Command

Set Color
Erase Screen
Print Screen

Display Text

Draw Lines

Draw Markers

Fill Area

Draw Arc (or Circle)

Draw Rectangle

Input String

D e T S S ——

C <color> <ret>
E <ret>
P <ret>

T <up_vec> <path_vec> <text> <ret>
<x_coord> , <y coord> <ret>

L <ret>

<no_coords> <ret>

[<x coord> , <y coord> <ret)>]
(<no_coords>)

M <mark_type> <ret>

<mark size> <ret>

<no_coords> <ret>

[<x_coord> , <y _coord> <rat>]
(<no_coords>)

F <bound_color> <ret>
<x_coord> , <y coord> <ret>

A <connect_flag> <ret>
<x_coord> , <y coord> , <radius> ,
{start_deg> , <end_deg> <ret>

R <fill flag> <ret>
<11_x_coord> , <1ll_y_coord> ,
<ur_x_coord> , <ur_y coord> <ret>

Command: IS <ret>
Response: <text> <ret>

Paga 36

Figure 3.3 MPC Interface Command Language Definition

o ———

Input Cursor

Sample Cursor

Sample Enable

Sample Disable

Sample Keys

{Continued)

e ettt R S SR —

Command: IC <ret>

Response: <x_coord> , <y coord>
{ret>

Command: SC <ret>

Response: <x coord>» , <y coord>
<ret> .

SE <ret>

SD <ret>

Command: SK <ret>
Response: <key> <ret>

Page 37

Figure 3.4 MPC Interface Command Language Field Definitions

{n..m} specifies the Range of Legal Values

<color> ::= <digit> {0 .. 71}
<ret> ::= ASCII Carriage Return Character (Decimal 13)

<coord> ::= <digit> | <digit> <digit>
<digit> <digit> <digit>

<x_coord> ::= <coord> {0 .. 319 }

<y_coord> ::= <coord> {0 .. 199 }

<11 x coord> ::= <x_coord>

<11 y coord> ::= <y_coord>

{ur_x_coord> ::= <x_coord>

<ur_y coord> ::= <y_coord>

<{vector> ::=U | R | D | L

<up_vec> ::= <(vector>

{path_vec> ::= <vector>

{text> ::= A String of ASCII Characters (40 Max.)

<no_coords> ::= <coord> { 1 .. 999}

<mark_type> ::= <digit> { 1L .. 41}

<mark_size> ::= <coord> {1 .. 199 }

Page 38

Figure 3.4 MPC Interface Command Language Field Definition
{Continued)

<fill_flag> ::=0 | 1

<connect_flag> ::=0 | 1

<radius> ::= <coord>

<start_deg> ::= <coord> { 0 .. 360 }

<end_deg> ::= <coord> { 0 .. 360 }

<key> ::= <digit> | <digit> <digit>

Page 39

These commands are issued by the VDI Driver in the
32/20 as requests to the MPC Driver running in the MPC. The
VDI Driver is responsible for interpreting the VDI commands
it inputs from the Device Supervisor and issuing the
appropriate command(s) to the MPC Driver to execute the
primitive(s). A diagram illustrating the relationship

between these thresz (3) programs is contained in Figure 2.3.

Since the MPC Interface is shielded from the VDI
Interface, where access by applications programs is
possible, certain assumptions can be made about the
correctness of the data passing over the interface. For
example, the coordinates contained in the various commands
are specified in Screen Coordinate Units since the VDI
Driver has already done the appropriate clipping and scaling
that 1is required before the data is passed over the
interface. This means that the interface is device dependent

as opposed to the VDI interface which is device independent.

The MPC Driver retains only three (3) status
variables, these are the Current Drawing Color, Current Key
and the Cursor Position. The Current Drawing Color is set by
the Set Color command and remains in effect until explicitly
modified by another invocation of the Set Cclor command.

The Current Key is the number of the last function key hit

Page 40

on the keyboard. 1If no valid key has been hit since the
last Sample Key Command was executed, the Current Key will
have the value of the ASCII Bell Character (Decimal 7). The
Cursor Position is affected by each command which specifies
an X, Y coordinate pair. The position of the cursor is
maintained at the most recently specified coordinate except

after execution of cursor control commands.

The Set Color Command sets the Current Drawing Color
to the value specified by the <color> field in the command.
The Current Drawing Color is set to white as the default
during initialization. The color numbers and their

associated colors are shown in the table below.

Magenta
Yellow
White

N W O
el
®
(o}

The Print Screen Command causes a copy of the video
screen to be produced on the Prism 80 printer connected to
the MPC computer. Figure 3.5 is a sample of the hardcopy of

the MPC screen generated on the Prism 80 printer.

Page 41

Figure 3.5 Sample Prism 80 Graphics Hardcopy

dl TXETEXT
E

Page 42

A listing of the MPC Interface Commands used to generate
this figure 1is contained in Appendix D. The MPC Driver
Program uses a subroutine called "Color-It", obtained from
an outside vendor, to copy the graphics screen to the
printer. This machine language subroutine must be 1loaded
into the memory of the MPC prior to loading the MPC Driver

Program.

The Display Text Command is used to generate text on
the video screen. The <text> command parameter specifies a
string of up to forty (40) ASCII characters to be displayed.
The command contains four (4) parameters besides the text
string which are used to control the generation of the text.
qu of the command parameters represent vectors which
specify the orientation of individual characters and the
text string itself. The Character Up Vector, <up_vec>,
specifies the orientation of individual characters. This
vector specifies the direction in which the top of the
character will point. The vector may specify Up (0,1), Right
(1,0), Down (0,-1) or Left (-1,0) as the Character Up
Vector. The vector is specified by using the letters U, R, D
or L for Up, Right, Down or Left in the command string. The
default Character Up Vector value 1is Up. Figure 3.6

illustrates the use of the Character Up Vector.

Page 43

Figure 3.6 1Illustration of Character Up Vector Concept

Up

é—l | ’Leh Righ!' | l—>

Down

Page 44

Figure 3.7 1Illustration of Text Path Vector Concept

C|O|R|N
© =
N{R|O|C
- =
N C
&
R)
o R
C N
&

Page 45

The second vector specified in a Display Text
Command is the Text Path Vector, <path_vec>, which specifies
the direction to propagate the text string on the video
screen. As with the Character Up Vector, the Text Path
Vector may take the wvalues U, R, D or L. Figure 3.7
illustrates the use of the Text Path Vector. The default

value of the Text Path Vector is Right.

The third and fourth command parameters, <x_coord>
and <y_coord>, specify the starting screen coordinate for
displaying the text string. The coordinate specifies the
location of the lower-left hand corner of the first
character position on the screen as shown by the circles in

Figure 3.7.

The Draw Line command is used to draw lines on the
video screen in much the same way as the Polyline command in
GKS. Since this command draws solid lines only, all other

line styles must be simulated by the VDI Driver.

The Draw Markers Command is used to draw markers on
the video screen in much the same way as the Polymarker
command in GKS. The <mark_type> parameter specifies the type
of marker to be displayed - either Dot, Plus, Star or

Circle.

Page 46

The actual value of <mark_type> is a marker number 1 - 4 as

shown in the table below.

1 Dot {.)
2 Plus (+)
3 Star {(*)
4 Circle (o)

The <mark_size> parameter specifies the size of the marker
in Y screen units. A marker is drawn, centered around the
X, Y coordinate, for each coordinate pair in the parameter

list.

The Fill Area Command is wused to fill a bounded
polygon already displayed on the video screen with the
Current Drawing Color. The color of the polygon boundary
must be specified in the <bound _color> parameter. The
<{x_coord>, <y _coord> pair specifies an X, Y coordinate of a
point in the interior region of the polygon to be used as a

seed point for the fill algorithm.

The Draw Arc Command is used for drawing arcs or
circles on the video screen. The arc is centered at the
screen coordinates specified by the <x coord>, <y coord>
parameters and has a radius determined by the <radius>
parameter. The length of the arc is defined by the Start and

End Angles in the <start_deg> and <end_deg> parameters.

Page 47

Figure 3.8 Angle Definition for Drawing Arcs

180 //////”*13
\C |

270

Page 48

The angles are measured such that zero degrees is right of
the arc center and the angle increases counter-clockwise
about the center. Figure 3.8 illustrates how the angles are
determined for drawing arcs and circles. If the
<connect_flag> parameter is set to one (1), the arc is

connected to its center.

The Draw Rectangle Command is used to draw filled or
unfilled rectangles on the video screen. If the <fill_flag>
is set to one (1), the rectangle is filled with the Current
Drawing Color. The four coordinate parameters, <ll_x coord>,
<1l_y coord>, <ur_x_coord> and <ur_y coord>, specify the
lower-left and wupper-right hand screen coordinates which

define the size and location of the rectangle on the screen.

The Input String Command is used to request a string
of text from MPC Driver. When the MPC Driver receives this
command it makes the cursor visible at the bottom of the
video screen, prompting the user to enter a text string at
the keybcard. The MPC Driver then reads in the text string,
makes the cursor invisible and sends the text string to the

Device Driver in the response parameter <text>.

The Input Cursor Command is used to read the cursor
with wait. When this command is received, the MPC Driver

displays the cursor in the center of the screen and allows

Page 4¢

the user to position the cursor using the cursor control
keys. Once any of the Function Keys is hit, the cursor
position is read and sent to the VDI Driver in the <x_coord>
and <y_coord> fields of the response. The MPC Driver then
blanks the cursor and sets the Current Key to the value of
the Function Key pressed, and sets the Current Cursor

Position to the value read when the key was pressed.

The Sample Enable Command is used to direct the MPC
driver to display the cursor and allow the user to move the
cursor about the screen with the cursor control keys. The
cursor is initially placed in the center of the screen. A
Sample Enable Command must be executed before a Samgle
Cursor Command in order to inform the user that he may move
the cursor. The Sample Disable Command directs the MPC
Driver to blank the cursor and terminate movement of the

cursor via the cursor control keys.

The Sample Cursor Command is used to sample or poll
the position of the cursor on the screen. The Cursor
Position is returned to the VDI Driver immediately upon
receipt of the command by the MPC Driver. The Cursor
Position is returned to the Device Driver in the <x_coord>

and <y_coord> fields of the response.

The Sample Keys Command requests the MPC Driver to

Page 50

return the wvalue of the Current Key. The value of the
Current Key is the number of the Function Key last struck.
If a Function Key has not been struck since the last Sample
Keys Command or since the MPC Driver was initialized, the
MPC Driver returns the value of the Bell Character (ASCII

decimal 7 code).

Page 51

TESTING

A particularly annoying problem encountered during
project development was the failure to establish a working
communications interface between the MPC and the 32/20
computer. The project design called for a serial (RS-232-C)
interface between the two computers. While a terminal
emulator program for the MPC communicated properly with the
32/20, the MPC Driver Program could not be made to
communicate using the appropriate BASIC commands.
Assistance was solicited from administrators of the 32/20
system. Still, the interface remained inoperable. Either
the proper combination of interface parameters was not found

or BASIC has bugs in its communications software.

Despite the problems with the serial interface, a
method for testing the MPC Driver Program was devised. The
program was modified to read its input from a disk file.
The disc file contained MPC Interface Commands (See Figure
3.3) which exercised the various graphics command functions.
The MPC Driver Program was tested by comparing the graphics
display generated with results expected from the input file
used, the graphics display shown in Figure 3.5 was generated
in this manner using the MPC Interface Command File 1listed

in Appendix D. Due to time limitations, the following MPC

Page 52

Interface Commands were not implemented in the MPC Driver
Program: Input String; Input Cursor; Sample Enable; Sample

Disable; Sample Cursor; and Sample Keys.

The VDI Driver Routine was tested using a test
program which invoked the driver (via subroutine calls),
passing the appropriate parameters, to exercise each of the
VDI commands. MPC Interface Commands output from the
routine were directed to a text file for verification.
Several functions of the driver were not implemented because
of the limited capabilities of the MPC. Each of the non-
implemented <ommands returns a had status indication when
invoked. The Set Character Height VDI command was not
implemented since the MPC does not support multiple
character sizes and this feature would be difficult to
provide 1in software. The Set Text Font, Input Valuator and
Set Linewidth VDI commands were not implemented for similar
reasons., The Escape and Generalized Drawing Primitive
commands were not implemented due to a lack of time.
However, it would be a simple task to implement the Arc,
Circle and Rectangle drawing primitives as part of the GDP.
The Draw Polyline command supports only solid lines, however

the driver can be modified to emulate other linestyles.

Page 53

Chapter 4

RECOMMENDATIONS

During the development of the VDI driver feor this master's
project, several other students were also working on
projects involving the GKS system. Numerous problems
resulted due to the constant state of change in the system.
Changes that one student would make often affected the work
of others. Especially frustrating were changes made to
global PASCAL type definitions that affected another
student's software. This was particularly aggravating since
all PASCAL software modules had to be compiled at the same
time. Mid-way through the term, a method was devised to
enable separate compilations of subroutines. This helped
improve compilation times but could have resulted in
conflicting type, variable and parameter definitions at run
time. The problems encountered with mﬁltiple users making
changes to the system may have been reduced somewhat if the
GKS system were implemented in a language, other than
PASCAL, which offered separate compilation facilities.
However, use of such a language would negate the advantages
of PASCAL's strong type checking and possibly defer type and

parameter mismatch error detection to run time instead of

Page 54

compilation time.

The GKS system at Kansas State is a single user
system, the GKS routines must be compiled and 1loaded
together with the application program. This implies that
all graphics hardware supported by the GKS system is
dedicated to one user. In a small system this may not pose
a problem, but in a larger installation much would be gained
by making GKS a multi-user GKS system. Concurrent PASCAL
[11] might be wused to implement a multi-user system. In
such a system, devices could be allocated to users
dynamically, at run time, rather than being dedicated to one

user.

The definition of the Virtual Device Interface
[18,19,20] specifies that graphics coordinates are passed to
the device driver in Device Coordinates. This seems to
conflict with the objective of providing device-
independence. It would be more reasonable to allow the
device driver itself to handle the mapping between
Normalized Device Coordinates and Device Coordinates, as has
been done in this project. This approach migrates the
device-dependent code to a lower level of the software
hierarchy. Thus the Device Supervisor need not know about
the physical coordinate system used by any particular

device. This also simplifies the software design of the

Page 55

Device Supervisor.

During the development of this project it became
evident that a deficiency exists in the specification of the
GKS and VDI Fill Area command. The Fill Area command
accepts a coordinate 1list which defines a polygon and the
software is supposed to draw the polygon and fill the
interior region with a color or pattern. However, there is
no specification of how the software is to determine where
the interior region is on the graphics viewsurface. Many
filling algorithms require that an interior point be
specified as a parameter of the fill algorithm. A Parity
Check Algorithm [15] might be used to attempt to determine
the interior region. However, this approach will not always
work if the polygon is irregular or convex. Therefore an
ambiguity exists in the Fill Area command in both the GKS

and the VDI standard proposals.

This master's report has described the
implementation of a Virtual Device Interface device driver
for the Columbia Data Products MPC. The driver will be used
to interface the MPC to the Graphical Kernal System
installation at Kansas State University. Though the
implementation of certain capabilities of the device driver
is incomplete, the author hopes that the work begun under

this project will be continued by other students who work on

Page 56

the GKS project. The completion of the GKS implementation

is certainly a worthy project for future work.

[1]

(2]

(3]

[4]

[5]

(6]

(71

(8]

[9]

[10]

Page 57

REFERENCES

Bono, Peter R., and others, "GKS-The First Graphics
Standard," IEEE Computer Graphics and
APElicationS",Z, NO. 5' Jl.l].y, 1982' 9"'23-

L "The GKS Impact on Graphics Standardization,"
Computer Graphics World, 5, Sept., 1982, 47.

Cahn, Deborah U., and others, "A response to the 1977
GSPC Core Graphics System," Computer Graphics, 13,
NO. 2, Aug-, 1979' 57-62-

Draft International Standard ISQ/DIS 7942 Information
Processing Graphical Kernel System (GKS) Func-
tional Description, International Standards Organ-
ization, ISO Document ISO TC97/SC5/WG2 N163, Nov.
14, 1982,

Encarnacao, J., and others, "The workstation concept of
GKS and the resulting conceptual differences to
the GSPC core system," Computer Graphics, 14,
No. 2, July, 1980, 226-30.

Fleming, Jim, and Frezza, William, "NAPLPS A New
Standard for Text and Graphics," BYTE, 8,
NO.S 2-5' FEb.—Hay; 1983-

Foley, J. D., and Van Dam, A., Fundamentals of Inter-
active Computer Graphics, Reading: Addison-Wesley,
1982,

Giloi, Wolfgang K., Interactive Computer Graphics Data
Structures, Algorithms, Languages, Englewood-
Cliffs: Prentice-Hall, 1978.

"Graphics Standards Planning Committee State of the Art
Subcommittee Graphics System Comparison Document,"
Computer Graphics, 12, No.s 1-2, June, 1978,
129-40.

Guttman, Herbert, and Weiss, Johann, "Device Indepen-
dent and Decentralized Graphic Systems," Computer
GraEhiCS, 13, NO. 4' Feb., 1980, 288"302-

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

Page 58

Hansen, Per Brinch, The Architecture of Concurrent Pro-
grams, Englewood Cliffs: Prentice-Hall, 1977.

Hatfield, Lansing, "GKS and the Alphabet Socup of
Graphics Standards," Computer Graphics, 16, No. 2,
June, 1982, 1l61-2.

Langhorst, Fred E., and Clarkson III, Thomas B.,
"Realizing Graphics Standards for Microcomputers,"”
BYTE' 8' Feb-' 1983' 256-68l

Newman, William M., and Sproull, Robert F., Principles
of Interactive Computer Graphics, 24 ed. New York:
McGraw-Hill, 1979.

Pavlidis, Theo, Algorithms for Graphics and Image
Processing, Rockville: Computer Science Press,
1982.

Prester, F., "The Graphical Kernel System, the Standard
for Computer Graphics Proposed by the German
Institute for Standardization," Computer Graphics,
State of the Art Report, INFOTECH Publ., 1980.

Reed, Jon S., "Computer Graphics,"™ Mini-Micro Systems,
lS; DEC.; 1982' 210"‘21.

Reed, Theodore n., Activities of the ANSI X3H33 Virtual
Device Interface Task Group, American National
Standards Institute, Aug. 27, 1982.

, and others, Proposal for an ANSI X3 Standards
Project for the Computer Graphics Virtual Device
Interface, American National Standards Institute,
Aug. 27, 1982.

r and others, Virtual Device Interface and
Virtual Device Metafile, Position Paper by the
X3H33 Task Group of the American National Stan-
dards Institute, Dec. 28, 1981.

Rosenthal, David S. H., and others, "The Detailed
Semantics of Graphics Input Devices," Computer
Graphics, 16, No. 3, July, 1982, 33-38.

Page 59

[22] Thomas, James J., and others, “Graphical Input Interac-
tion Technique (GIIT) Workshop Summary," Computer
GIaEhiCS; 17' NO. 1' Jan., 1983, 5-30-

[23] Weller, D. L., and others, "Software architecture for
graphical interaction,™ IBM Systems Journal, 19,
No. 3, 1980, 314-30.

10
1%
12
15
20
30
40
50
60
65
70
79
76
80
77
80
90
95
100
110
120
130
135
136
137
138
140
150
160
170
180
190
200
210
220
230
240
250
260

Page 60

APPENDIX A

Source Listing of MPC Driver Program

DIM COLTAB(9)
DIM X(999),Y¥(999)
PI12=2*%3,1415927% : ASPECT = .910596

DATA 0,1,2,3,4,5,14,7,7,7
FOR I = 0 TO 9:READ COLTAB(I):NEXT 'INIT COLOR TABLE
COL=7 'SET CURRENT COLOR DEFAULT=WHITE
K$=CHR$ (7) 'SET CURRENT KEY DEFAULT=BELL CHARACTER
CURX=159:CURY=99 'SET CURSOR DEFAULT=CENTER OF THE SCREEN
SAMPON=0 "CURSOR SAMPLING DEFAULT=OFF
KEY OFF '"TURN OFF DISPLAY OF FUNCTION KEYS
SCREEN 1,1 'SET MED-RESOLUTION COLOR GRAPHICS MODE
DEF SEG = 0 "SET UP SO COLOR-IT ROUTINE MAY BE USED
'TO COPY SCREEN TO PRINTER

POKE &H200,&HCD:POKE &H201,&H5:POKE &H202,&HCD
DEF USR5 = &H200
CLS 'CLEAR SCREEN
OPEN "KYBD:” FOR INPUT AS #2 'OPEN KEYBOARD
OPEN "PCTEST.DAT" FOR INPUT AS #3 'DATA FILE

]

' INPUT COMMAND STRING INTO C$

L

]

IF EOF(3)>=0 THEN 138

CLOSE

STOP

LINE INPUT #3,C$

J

' CHECK COMMAND AND JUMP TO PROPER CODE TO PROCESS IT
A$=LEFT$(C$,1) 'FIRST CHAR OF COMMAND STRING
B$=MIDS(C$,1,2) 'FIRST TWO CHAR OF COMMAND STRING

IF A§="C" THEN 1000 'SET COLOR COMMAND

IF A$="E" THEN 2000 'ERASE SCREEN COMMAND

IF A$="P" THEN 3000 'PRINT SCREEN COMMAND

IF A$="T" THEN 4000 'DISPLAY TEXT COMMAND

IF A$="L" THEN 5000 'DRAW LINES COMMAND

IF A$="M" THEN 6000 'DRAW MARKERS COMMAND

IF A$="F" THEN 7000 "FILL AREA COMMAND

Page 61

270 IF A$="A" THEN 8000 'DRAW ARC COMMAND

280 IF A$="R" THEN 9000 'DRAW RECTANGLE COMMAND
290 IF B$="IS" THEN 10000 'INPUT STRING COMMAND
300 IF B$="IC" THEN 11000 'INPUT CURSOR COMMAND
310 IF B$="SE"™ THEN 12000 'SAMPLE ENABLE COMMAND
320 IF BS$="SD" THEN 13000 'SAMPLE DISABLE COMMAND
330 IF B$="SC" THEN 14000 'SAMPLE CURSOR COMMAND
340 EF B$="SK" THEN 15000 'SAMPLE KEYS COMMAND
350

360 ' IF HERE WE HAVE READ AN INVALID COMMAND, IGNORE IT
370 ' AND GO BACK TO REAAD ANOTHER COMMAND

380 '

390 GOTO 130

400 '

410 ' STATUS VARIABLE DEFINTION
420 °

430 ' CoL = CURRENT DRAWING COLOR
440 ' CURX = CURSOR X

450 ' CURY = CUSROR Y

460 ' K$ = CURRENT KEY

470 !

900 °*

Q10 'hEk Ak kKR AARARRR AR A kA kR

920 ' SET COLOR COMMAND

Q30 'hkkkkkhkkkhhkkhkAAkA Ak

1000 COL=COLTAB(ASC(MIDS$(CS$,2,1))-48) 'SET CURRENT COLOR
1005 COLCR 0,COL

1010 GOTO 130 'READ ANOTHER COMMAND
1300 '

1910 "hkkkhkkhkkkdkdkhkdkhkhkkkkkk

1920 'ERASE SCREEN COMMAND
1930 '"*rkkhkkkhkkAkhkhkhkk AKX
1940 °

2000 CLS

2010 GOTO 130

2300 '

2910 T"4hEkkkkxhhkhhkkhkhkhkkhikk

2920 'PRINT SCREEN COMMAND
20930 'hkkkkhkkkkkkkhkhkhkhkhk

2940 '

3000 DEF SEG = 0:MAP = USR5(0) 'INVOKE COLOR-IT ROUTINE
3001 'TO PRINT SCREEN

3010 GOTO 130

3800 *

3910 '"HhEkkkkxkhkhhkhkAkkdkhkrhAk

3920 'DISPLAY TEXT COMMAND

3930 'AAAkAkRAAR AR A AN KRR A kK

3940 °

4000 U$=MIDS(C$,2,1) 'TEXT UP VECTOR

4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4180
4135
4190
4900
4910
4920
4930
4940
5000
5010
5020
5030
5040
5050
5060
5900
5910
5920
5930
5940
6000
6010
6020
6030
6040
6045
6050
6052
6053
6054
6060
6070
6080

BS=MIDS(CS$,3,1) 'TEXT BASE VECTOR
L=LEN(CS)=-3

T$=MID$ (C$,4,L) 'TEXT STRING

INPUT #3,CURX,CURY 'TEXT X,Y STARTING POINT
CURX=CURXS 'FIX STARTING POINT TO EVEN
CURY=CURYS '"CHARACTER POSITION

LOCATE CURY,CURX,0 'MOVE CURSOR INTO POSITION
C$=MIDS (TS,1,1)

PRINT CS;

FORI =2 TO L

IF B$="U"™ THEN CURY=CURY-1

IF BS="R" THEN CURX=CURX+1l

IF B$="D" THEN CURY=CURY+l

IF BS="L" THEN CURX=CURX-1

LOCATE CURY,CURX

PRINT C$;

NEXT

CURX=CURX*8 :CURY=CURY*8

GOTO 130

[]

Tk hhhkhhkhhhrhkhii

'"DRAW LINES COMMAND
Thkkkhhkhhhhhdhdhhhkdhhk
¥

INPUT #3,NO:J=NO-1

FOR I =0 TO J : INPUT #3,X(I),Y(I):NEXT
FORI =1TO0 J

K=I-1

LINE (X(K),Y(K))=-(X(I),¥(I)),COL

NEXT

GOTO 130

]

VhkkAkhh Rk Ak khkh ARk hhk
'DRAW MARKERS COMMAND
Thkkk kR AR Ak hhhkkhk sk
L]

TYPE=ASC (MIDS(C$,2,1))-48 'MARKER SIZE
INPUT %3,SIZE 'MARKER SIZE
INPUT #3,NO 'NO MARKERS

J=NO-1 : K=SIZE2

FOR = 0 TO J : INPUT #3,X(I),Y¥Y(I) :HNEXT
CURX=X(J) : CURY=Y(J)

IF NOT TYPE=1 THEN 6200

' DRAW DOTS

L]

FOR I = 0 TO J

X1=X(I)-K : X2=X(I)+K : Y1=Y(I)=-K : Y2=Y(I)+K
FOR B = Y1l TO Y2

Page 62

Page 63

6090 FOR A = X1 TO X2
6095 PSET(A,B),COL
6100 NEXT : NEXT : NEXT
6110 GOTO 130

1

6120

6200 IF NOT TYPE=2 THEN 6400
6210 '

6220 'DRAW PLUS SIGNS

6230 °'

6240 FOR I = 0 TO J

6250 X1=X(I)-K : X2=X(I)+K : Y1=Y(I)-K : ¥Y2=Y(I)+K
6260 LINE (X(I),¥1l)-(X(I),¥2),COL

6270 LINE (X1,Y¥(I))-(X2,¥(I)),COL

6280 NEXT

6290 GOTO 130

6300

6400 IF NOT TYPE=3 THEN 6600
6410 '

6420 'DRAW ASTERISKS

6430 °

6440 FOR I = 0 TO J
6450 X1=X(I)-K : X2=X(I)+K : Y1=Y(I)-K : ¥2 =Y(I)+K
6460 LINE (X1,Yl)-(X2,Y2),COL

6470 LINE (X1,Y2)-(X2,Yl),COL

6480 LINE (X1,Y(I))-(X2,Y(I)),COL

6490 LINE (X(I),Y¥Yl)-(X(I),Y2),COL

6500 NEXT

6510 GOTO 130

6520 °

6600 IF NOT TYPE=4 THEN 130

6602 '

6603 'DRAW CIRCLES

6604 '

6610 FOR I = 0 TO J

6620 CIRCLE (X(I),Y(I),K,COL,0,PI2,ASPECT
6630 NEXT

6640 GOTO 130

6900 '

6O10 "Hhkhkkkhkkhhkhkkkhkhkkkhk
6920 'FILL AREA COMMAND

6O4('"khhkhkkhkhkkhkk kAR kAR
6950 '

7000 BCOL=COLTAB (ASC(MID$(C$,2,1))-48) 'BOUNDARY COLOR
7010 INPUT #3,CURX,CURY

7020 PAINT (CURX,CURY),COL,BCOL

7030 GOTO 130

7900 °

7Ol '"*A kA kkkA kA kR AAREAEEA
7920 'DRAW ARC COMMAND

Page 64

7930 IEZ 2222222322 22 2 222 2 2

7940 °*

8000 FFLAG=ASC(MID$(C$,2,1))-48 'CONNECT FLAG

8010 INPUT #3,CURX,CURY,RADIUS,SDEG,EDEG 'X, Y, RADIUS,
8011 ' S DEG, E DEG

8020 IF FFLAG=1 THEN SDEG=-SDEG

8025 IF FFLAG=1 THEN EDEG=-EDEG

8030 SDEG=SDEG*PI2/360! 'CONVERT ANGLES TO RADIANS
8040 EDEG=EDEG*PI2/360!

8070 CIRCLE (CURX,CURY),RADIUS,COL,SDEG,EDEG,ASPECT

8080 GOTO 130

8900 °

B8O]1(Q "krkkdkkkkkkhkkhkkkkkikk

8920 'DRAW RECTANGLE COMMAND

8930 "hAkAkxkwkkkhAk AR AR R A kK

8940 °

9000 FFLAG=ASC'MIDS(CS,2,1))-48 'FILL FLAG

9010 INPUT #3,X1,Yl

9020 INPUT #3,CURX,CURY

9030 IF FFLAG=1 THEN LINE(X1,Yl)-(CURX,CURY),COL,BF
9040 IF FFLAG=0 THEN LINE(X1,Yl)-(CURX,CURY) ,COL,B
9050 GOTO 130

9900 °*

99]1() "*kkhkhkhkkhdkkhkhhhkridkdk

9920 'INPUT STRING COMMAND
9930 'HkkkkRkkA KA R R ARk hk
9940 °*

10000 GOTO 130

10900 °*

10910 '"d*kkkkhkkkkhkbh kR Atk AL

10920 'INPUT CURSOR COMMAND
100930 "hhkkdkddddkrdkdedkdhkhhkk
10940 °

11000 GOTO 130

11900 '

11910 '"hkdhkdkddkkkdhkhkkdkhr

11920 'SAMPLE ENABLE COMMAND
11930 "*EAkxAkk kA kR kA AAERAR
11940 °*

12000 GOTO 130

12910 °*

12920 'H*xrurrkhkkkhkhhkhkkknsk

12930 'SAMPLE DISABLE COMMAND
12940 '*rkmkrkkkkkkkkkkkahhhk
12950 °*

13000 GOTO 130

13910 °*

13920 '"HhkkkkkkhkkkkhARARR AR

13930 ‘'SAMPLE CURSOR COMMAND

13940
13950
14000
14910
14920
14930
14940
14950
15000

IRX S EETEEEE S22 R R 2 2 23
[]

GOTO 130
L}

thhkhkdhkhhhhbkhhhhhdkk

'SAMPLE KEYS COMMAND
Vhkkkkkhhhhkhhhhhhdddd
[}

GOTO 130

Page 65

Page 66

APPENDIX B

Source Listing of VDI Driver Routine

(* 4 july B3 *)

(i..'iiiiﬁ.‘tii.*.*l.IO.."'QQ‘Q"Q."‘*..t.‘lﬁ.ii'ti.ttt'tiitii.tiitii)
(tt...i.ttl!it."."'i'..'.‘Oi'.k.t.i.ﬂt'.!'.!ttli.t'ﬁ.lt'ttlitilttitti)

(*PC DRIVER PROCEDURE

(ﬂ.ti.ttii..ﬁi.i..OQQOQQQ..iﬂ..ﬁt'i..ﬁ.ttﬁ..‘..tﬁ.ti.l'..t'iiitiit‘i!tt)
ti.tt..i.iitiiliit‘i.i....t‘i.i.ti.ii..tt.ii.lii.‘...i.t“lt!t'i"iitt')

(* Function: This procedure is the VDI Driver for the Columbia Data

(* Products MPC. The procedure is executed from the GKS
(* system through the Distributor.

(* Input: cmd = VDI Command

(* parm - Record of Input Parameters associated with the
(* VDI Command

(* Output: oparm - Record of Output Value(s) reguested by the

(e VDI Command. Status is set by each command as Good or Bad
(* History: 18 JUN B3 - Initial Version

(* 28 JUN B3 - Modify to fit new VDI Type Definition

(* 4 JUL 83 - Add Status to Output

(* Add Fill Area

(* Author: Paul L. Stevens
(iititiItiif’.tii-t..i.i'."*i.tt't"iﬁ'.t*'.ﬁi.".ﬁi.ltiititt.itti'ti‘)

procedure pcdevdriver (cmd: vdicmdtype: parm: vdiparm: var oparm: vdiocutparm):

const
good = 1;
bad = O;
request = 1;
sample = 2;
var
i,sumx,sumy:integer:;
ipsipoint;
pc_locator : ipoint: {* Current Cursor Position *)
pc_ “choice : unit: (* Current Choice Index *)
pc_dc s upoints; (* Current Array of DC Coordinate Points *)
pc_| “ndc : upoints: (* Current Array of NDC Coordinate Points ¥)
pc_nolines : pointsrange; (* Number of Lines in pc_dc or pc_ndc *)

pc_nomarks : pointsrange; (* Number of Markers in pc_dc or pc_ndc *)
pc_nochar : textcharrange: (* Number of Characters in String *)

pec_string : tstring;

mark_color : unit:
line_color 3 unit:
£il11 color : unit;
text_color 1 unit;
line_type : index:
mark_type : index:
mark size : integer:

mark_size_dc : integer:;
char upvec : ipoint:
char_updir : textenum;
text_path : ipoint;
text_pathdir: textenum:

Page 67

(* Current Text String *}

(* Current
(* Current
(* Current
(* Current
(* Current
(* Current
(* Current
(* Current
{* Current
(* Current

Marker Color *)

Line Color *)

Fill Area Color *)

Text Color *)

Line Btyle %)

Marker Type *)

Marker Size v}

Marker Size in Screen Y Units ¥)
Character Up Vector *)

Character Up Direction *)

{* Current Text Path *¥)

(* Current

input_mode : array [index] of index:

input dev : index;

no_points : pointsrange:

{®* Current

Text Path Direction *)
{®* Current Input Mocde *)
Input Device *)

(* Temporary Number of Points *)

begin
case cmd of (* Execute the Appropriate VDI Command ¥)
vdiclear: begin {(* VDI Clear Workstation Command *)

(* Erase the Video Screen to Black *)

pcerase; {* Erase Video Screen to Black *)
oparm.status := good

end;

vdiupdate: begin (* VDI Update Workstation Command *)

(* Force Flushing of PC Command QOutput Buffer *)

oparm.status := good;
writechar{ pcldev, em)

end;

vdiline: begin (* VDI Polyline Command ¥)

(* Draw Lines in Current Line Color with Current Line Style *)

(*%#*®* Note: Linestyles other than sclid need to be simulated *)
(* by this routine, thie is not currently done. ®)

pc_nolines := parm.numpts;
for i 1= 1 to pc_nolines do

begin

pc_ndc[i).ix := parm.pts[i].ix;

Page 68

pc ndec[i].iy := parm.pts[il].iy
end;
pendctode{pc_nolines,pc_ndc,pc_dc);: (* NDC to DC Scaling *)
pcsetcolor(line_color):
pcline(pc_nolines,pc_dc):
oparm.status := good
end;

vdimark: begin (* VDI Polymarker Command *)

(* Draw Markers of Current Marker Type with Current Marker Color ¥)
(* and Current Marker Size *)

pc_nomarks := parm.numpts;
for i := 1 to pc_nomarks do
begin
pc_ndclil.ix := parm.pts[il).ix;
pc_ndelil.iy 1= parm.pts[il.iy
end;
pcndctodc(pc_nomarks,pc_ndc.pc_dc): (* NDC to DC Scaling *)
pcsetcolor(mark_color):
pcmark (mark_type,mark_size_dc,pc_nomarks,pc_dc);
oparm.status := good
end:

vditext: begin (* VDI Text Command *)}

(* Draw Text String in Current Text Color with Current Character *)
{« Up Direction and Current Text Path Direction *)

pcsetcolor(text_color);

pc_ndc[l]).ix := parm.textpos.ix:

pc_ndc[1l].iy := parm.textpos.iy;

pendctode(l,pc_nde,pc_dc): (* NDC to DC Scaling *)

pctext (char_updir,text_pathdir,pc_dc[1],parm.numchar,parm.string):
oparm.status := good

end;

vdicharh: begin (* VDI Set Character Height Command *)
(eowr Hot Implemented atew)
oparm.status := bad
end:;

vdicharupv: begin (* VDI Set Character Up Vector Command *)

(* Set Current Character Up Direction to Left, Right, *)
(* Up or Down based on the Character Up Vector Input *)
(* Parameter. Since the MPC can support only these *)
(* four directions, the direction closest to the Up *)

Page

(* Vector is used. *)

char_upvec.ix := parm.upvec.ix:
char_upvec.iy := parm.upvec.iy:
if (char upvec.ix > 0)
then if (char_upvec.iy > 0)
then if (char_upvec.ix > char_upvec.iy)
then char_updir := right
else char_updir := up
else if (char_upvec.ix > -char_upvec.iy)
then char_updir := right
else char_updir := down
else if (char upvec.ix = 0)
then i¥ (char upvec.iy < D)
then char_updir := down
else char_updir 1= up
else if (char_upvec.iy » 0)
then if (-char_upvec.ix > char_upvec.iy)
then char_updir := left
else char_updir := up
else if (-char_upvec.ix *» =-char_upvec.iy)
then char_updir := left
else char_updir := down:
oparm.status := good
end;

vdilinetype: begin (* VDI Set Polyline Type Command *)

(* Set Current Line Type to Input Parameter Value *)

line_type := parm.kind;
oparm.status := good
end:

vdilinewidth: begin (* VDI Set Polyline Width Command *)

(eeee Not Implemented teae)
oparm.status := bad
end;

vdilinecolor: begin (* VDI Set Polyline Color Command *)

(* Set Current Polyline Color to Value of Input Parameter *)

line_color := parm.color;
oparm.status := good
end;

vdimarktype: begin (* VDI Set Polymarker Type Command *)

69

Page 70

{(* Set Current Marker Type to Value of Input Parameter ¥}
mark_type := parm.kind:

oparm.status := good

end;

vdimarksize: begin (* VDI Set Polymarker Size Command ¥*)

{* Set Current Marker Size to Value of Input Parameter *)
(* in NDC. Scale to Y Screen value. *)
{* The Default Marker Size is B Pixels High & Wide. *)

mark_size := parm.size;

mark_size_dc := mark_size * 200 div 32001;
oparm.status := good

end:

vdimarkcolor: begin (* VDI Set Polymarker Color Command *)

(* Set the Current Marker Color to the Value of the *)
(* Input Parameter. *)

mark_color := parm.color:
oparm.status := good
end;

vditextfont: begin (* VDI Set Text Font Command *)
(e*** Not Implemented *vev)
oparm.status := bad
end:
vditextcolor: begin (* VDI Set Text Color Command *)

(* Set the Current Text Color to the Valu. of the *}
(* Input Parameter. *)

text_color := parm.color:
oparm.status := good
end;
vditextpath: begin (* VDI Set Text Path Command *)

(* Set the Current Text Path according to the value *)
(* of the input parameter. *)

text_path.ix = parm.path.ix;
text_path.iy r= parm.path.iy:

if abs{text_path.ix) > abs(text_path.iy)

Page 71

then if text_path.ix > text_path.iy
then text_patindir := right
else text pathdir := left
elge if text_path.ix > text_path.iy
then text_pathdir := down
else text_pathdir := ups
oparm.status 3= goecd
end;

vdigdp: begin {* VDI Generalized Drawing Primitive Command *)

{***e Not Implemented Now, But LA LS

(* Should include: Arc, Circle, Rectangle *})

(* when implemented. *)
oparm.status := bad

end:;
vdiinlocator: begin {* VDI Input Locator Command *)

(* Input the Current Position of the Cursor from the MPC. *)
(¢ If in Request Input Mode, the MPC waits until a Func. *)
{* Key is hit before returning the cursor positicn. If in *}
{* sample Input Mode, the current cursor position is *)
(* strobed and returned immediately. *)

if input_mode[l] = request
then begin
pcinpcursor(oparm.locpos);
oparm.status := good
end
else if input mode[l] = sample
then begin
pcsampcursor (oparm. locpos) ;
cparm.status := good
end
else oparm.status := bad
end;

vdiinchoice: begin {* VDI Input Choice Command *)

(* Input Choice from MPC ®)
(* returns Function Key No. last ¥)
(* Thit on keyboard. *)

pceampkeys (oparm.choice);
cparm.status := good
and;

vdiinstring: begin (* VDI Input String Command *)

{(* Input Text String from MPC

{®* Executed with wait only

*)
*)

peinpstring(oparm.len,oparm.strng);
oparm.status := good

end:

vdiopen: begin {* VDI Open Workstation Command *)

(* Initialize Status Variables & Clear Video Screen *)

pc_locator.ix
pc_locator.iy
pc_choice
pc_dc[1] Wix
pC_dc[ll.iy
pc_ndec[l].ix
pc_nde[l].iy
pc_nolines
pc_nomarks
pc_nochar
mark_color
line_color
£ill_color
text_color
line_type
mark_type
mark_size
mark_size_dc
char_upvec.ix
char_upvec.iy
text_path.ix
text_path.iy
text_pathdir
input_model1])
input_mode[2]
input_mode[3]
input_mode[4]
pcerase;

1=
=
1=
=
1=
1=
1=
1=
1=
1=
1=
=
t=
=
1=
=
sm
=

109;
99;
1l:
109;
99,

16000;
16000;

1:
1:
0:
7:
7:
7:
73
1;:
1:
8;

1= request;
1= request:
:= request:
:= request;
(* Clear Screen to Black *)

oparm.status := good

end;

(* Char. Up Vector (Up) *)

(* Text Path Vector (Right) *)

(* Screen
{* Screen
(* Choice

{* Screen Center X

(* Screen

Center X
Center Y
1*)

Center Y

*)
*)

*)

*)

{* NDC Center X *)
(* NDOC Center Y *)
(* 1 Coordinate *)
(* 1 Marker *)

Min. Text String Length)

White ®)
White *})
White *)
White *)

Solid Line Style *)

Dot *)

Marker Scale *)
mark_size * B;
1= 1;
1= 0;
1= 0O;
1= 1
1= right;

vdiclose: begin (* VDI Close Workstation Command *®)

(* Update the Video Screen *)

writechar{ pcldev, em);
oparm.status := good

Page 72

(* Locator - Reguest Input Mode *)
(* valuator - Request Input Mode *)
(* Choice - Request Input Mode *)
(* String - Request Input Mode *)

(* Force flush of output buffer *)

Page

end:

vdiescape: begin {(* VDI Escape Command *)
{e*** Not Implemented %®ev)
oparm.status := bad
end;

vdiarea: begin (* VDI Fill Area Command *)
pc_nolines := parm.numpts;
for i 3= 1 to pc_nolines do
begin
pc_ndc[il.ix := parm.pts[i).ix:
pC ndc[z] iy := parm.pts[il.iy
en
pcndctadc(pc _nolines,pc_ndc,pc_dc):
pcsetcolor(l:ne color):
pcline(pc_nolines,pc_dc);
pcsetcolor(£ill_coloer):
(* Compute Fill Seed Pixel Point as Average of All Points *)
sumx := 0;
sumy := 0O
for i := 1 to pc_nolines do
begin
sumx := sumx + pc_dc[i].ix:
sumy := sumy + pc_dc[i].iy
end;
ip.ix := sumx div pc_nolines:
ip.iy := sumy div pc_nolines;
pcfill(line_color.ipT:
oparm.status := good
end;

vdiinmode: begin (* VDI Set Input Mode Command *)
(* Set the Current Input Mode for a Logical Input Device *)
input_mode[parm. indev] := parm.mode:
oparm.status := gcod
end;
vdifillcolor: begin (* VDI Set Fill Color Command *)
(* Set the Current Fill Area Color to Input Value *)
£ill _color := parm.coler;
oparm.status := good

end:

vdiinvaluator: begin (* VDI Input Valuator Command *)

(***® Not Implemented

oparm.status := bad
end:

end; (* case of cmd *)

end; (* pcdevdriver *¥)

i...)

Page 74

Page 75

APPENDIX C

Source Listing of VDI Driver Subroutines

(* 4 july 83 *)
('...i.i...III....it'...i.li..i..i..i.-i.tit.-.‘.ii.i.‘.iﬁ.ii*.*tittltt}

g‘c ONVERT STRING COORDINATES TO
&
(*INTEGER FORMAT PROCEDURE

(it.i*....'.i.iﬁiiti!iI....'l“tliltf.ttii.ill.'iﬁ.ltl!tiitiitiiltlitﬁ*)
(* Function: This procedure converts an X, Y coordinate ir in a text
P pa

(= string to an integer coordinate pair.
(* The text string should have the format:
(* <X coord» , <Y coord> <carriage return>
(* Input: text - text string

(« num - number of characters in the string

(* Output: oxy - the integer coordinate pair

(* History: 21 JUN 83 - Initial Version

(* Author: Paul L. Stevens
(it.tttt.tilit..i.tt.ttiif.ﬂiltﬁlti!.tt..iittitti.ti.l‘tti.tti.itiitt!t)
sprocedure peconvcoord{num:pointsrange;text:tstring;var coxy:ipoint);
var i, power : integer:

begin
i = num-1;
power = 1l:

oxy.iy = 0g
while (ord(text[i]) » 47) and (ord(text[i]) < 58) do
begin
oxy.iy:=oxy.iy+{{ord(text[i))-48)*power):;
power := pcwer * 10:
i := pred{i)
end;

power 3= 1:

oxy.ix := O3

i 1= pred(i):

while { i»0) do

begin
oxy.ix:=oxy.ix+({ord(text{i])=-48)¥%power);
power := power * 10;
i := pred(i)

end

end; (* pcconvcoord *)

Page 76

(..Q.tti."i.*C*‘Cl..‘*i.til.t.ili..il.ilI.ttit*!t..t‘.liittit.i}

(*PC WRITE COORDIMNATE ROUTINE *)
('i.'.tﬁ.i.-ii..lii.t‘.'.‘.ttt.‘.tl.i.'it!lt..'i.".....t.it...t)
(' Function: This routine outputs a coordinate value to the

MPC.
(' Input: Coordinate value in range 0-999
{* Output: 3 ASCII characters representing the input value
(* History: 19 JUN 83 - Initial Version

(* Author: Paul L. Stevens
(f.ttiiittitiii...tti...l.ii...iﬁf..t'.ti‘.iI*.'.t‘.'Ctt'tt.tiit)

procedure pcwritecoord (coordinate : integer):
var digit, coord : integer;
begin

coord = coordinate;

digit = 0;

if coord > 99
then begin
digit := coord div 100;
coord := coord - { digit ®* 100 };
writechar (pcldev, chr(digit+48))
end;

if coord » 9
then begin
digit t= coord div 10:
coord := coord - (digit * 10 }:
writechar (pcldev, chr (digit+48))
end
else if digit > O
then writechar{ pcldev, '0' }:

writechar(pecldev, chr(coord+48))
end; (* pcwritecoord *)

{!i‘.'..t'i.i.i..".l.i!i‘.'l.I..il..ii't..i'.".i'..fi!'iO'itltitlittt)

(*PC WRITE COORDINATE & RETURN ROUTINE
(..lli.O..i'.."I.'..ilt.."..i.-!...'.li.l'...i-'...iitti.ltittitt.t.t}
(* Function: This procedure writes an integer no. plus a carriage return
e to the MPC.
(* Input: Integer in range 1-999
(' Output: 1-3 ASCII characters representing the no. plus

a carriage return.
(' History: 19 JUN B3 - Initial Version
(* Author: Paul L. Stevens

Page 77

(..ttiitiiti'ltiii‘t.ﬁ‘...i..ii.'iitti'tt..'iiil‘ti.iiilltttittitttttit)

procedure pcwritecoordret (nopoints : integer };
begin

pcwritecoord (nopoints);

writechar(pcldev, cr)
end: (* pcwritecocordret *)

(Q.i.-...*titfi.*'t*i..i‘.i’!i.iit.iﬁt..."l‘iili.t.i...!tltiitttﬁtt'ti'

(*PC WRITE COORDINATE PAIR ROUTINE
(i.ttlttlti.titii.i.i.ii'.i!iilii!tittttittittittttti!li!tiiiiitlItiitt
(* Punction: This procedure writes a coordinate X, Y pair to the

(* MPC.

(* Input: xcoord, ycoord are X, Y coordinates in range 0-929

(* Output: Two coordinates as l-3 ASCII characters, separated by a

" comma and a2 carraiage return as shown below.

{*

(* <xcoord> , <ycoord » <carriage return>

(* History: 19 JUN 83 - Initial Version

(* Author: Paul L. Stevens
(i‘!i‘..itiit.*t..*.*.!i.titiilti'!titii.t.i*ili*'ii’tl!ttitiii.itiiiii)

procedure pcwritexy { xcoord, ycoord : integer):
begin

pcwritecoord (xcoord):

writechar{ pcldev, ',' }:

pcwritecoordret (ycoord)
end; (* pcwritexy *)

(Ii‘ti..i.tiliit.....ti'ti.l‘..if.iitii..’t*t‘lttitiiiiii.iititi"itti.)

(*oUTPUT PC SET COLOR COMMAND PROC
(itti.ii.ii.tii.-.i.-.i....tt.ii.tiiiii-.‘l.ti!i..tt‘itittiitt.ttti'tt')
(* Function: This procedure outputs a Set Color Command to the MPC.
{(* Input: Integer color number
(* Output: Co MDnd in format: C <colorno» <carriage return>
(* History: 15 JUN B3 - Initial Version
(* Author: Paul L. Stevens
ti-'iitt.ii.lii.i..'.fl.iti*.ii.tii'i.i..‘ii.‘i.."lt.tfi!tiit'ittttiti)
procedure pcsetcolor(colorno : index):
begin

writechar(peldev, ‘'C' }:

writechar(pcldev, chr(colorno+48) }:

writechar(pcldev, cr)
end; (* pcsetcolor *)

tlt..t.i-‘.tl'.ifli‘i‘iﬁ‘iiti*'.‘itt'.ii.liiltitttiitif’tii.iitl'.li'tt)

(*rouTPUT PC ERASE SCREEN COMMAND

Page 78

(i.tt..ti.iI.i.it.ttt.ii.iiif’.tiiiti.i."it'iiii.ilt.I.ti.ititiiti.iii}

(* Function: This procedure outputs the PC Erase Screen Command to the MPC.
(* Input: Nocne
(* Output: Command in format: E <carriage return>
(* History: 19 JUN B3 - Initial Version
{* Author: Paul L. Stevens
(iitti.tt.i'.tittt.tt.Oii'.ttt.it.'Ot.ittii.t.itittttiittﬁ.ttiitttit.il)
procedure pcerase;
begin

writechar(pcldev, ‘E');

writechar{ pcldev, cr }
end; (* pcerase t)

(.tiii!it.'liiiiiitiiitttl.itiﬁ".'ii.iﬁtti.ﬁ’ﬁ*ﬁ**ﬁ'.‘*..t*.tt!liiii*t)

(*roUTPUT PC PRINT SCREEN COMMAND
(t'.t'tl'tt.itt!ititi'ttit.l...tti't*.ii'titti‘t‘tttt..ittttttt'tittitt)
unction: is procedure outputs a Print Screen and to the .

(* Functi Thi 4 t Print S Command he MPC
(* Input: None
(* Output: Command in format: P <carriage return®
(* History: 19 JUN B3 - Initial Version
(* Author: Paul L. Stevens
{t.ti.iitﬁti't*ilttii..iﬂ*.tiii't.titﬁitC.itiii.it.iittittittit*tititti}
procedure pcprintscreen;
begin

writechar(pcldev, 'P' };

writechar(pcldev, cr)
end; (* pcprintscreen *)

{i.il-t‘i*.-.‘*i*..'.*‘..ill‘.ﬁ...iitiil-i.iit.ii.iﬁttitIti-tﬁilt.ttiti}

(*OUTPUT PC SAMPLE ENABLE COMMAND
(..‘-.i!iiiii.iii.i.!-f.iii’i‘ii.Iii!tiiiii.*f'iiiﬁt!i“*fi‘tiit-t'itlf)
(* Function: This procedure ocutputs the Sample Enable Command to the MPC.
{* Input: None
(* Output: Command in format: SE <carriage return>
{(* History: 19 JUN 83 - Initial Version
{* Author: Paul L. Stevens
(.t*'.'ii'.ilt.ilii.ili.it.lil'i‘.iitﬂﬁlititiittiltiiiiitittii!titiilli)
procedure pcsampenabley
begin

writechar(pcldev, ‘'S'):

writechar(pcldev, °E');

writechar(pcldev, cr):

writechar(pcldev, em) (* force output buffer flush ¥)
end: (* pcsampenable *)}

(!.*Iit.ti..tiiiiﬂi.i.Q.ttt‘t.tﬁ‘it.**tt!iiiitiiiii.iiitiiiil!ti'tii*ti}

Page 79

(*OUTPUT PC SAMPLE DISABLE COMMAND
(iii'iti*.!ttitt.tt‘t.t*'*t.tiltt*..!’!lii!t*’..’iiit*i!iittfittiiittfi}
(* Function: This procedure outputs the PC Sample Disable Command to
(* the MPC.
(* Input: HNone
(* Output: Command in format: SD <carriage return>»
(* History: 19 JUN B3 - Initial Version
(* Auvthor: Paul L. Stevens
(.‘.Iti.titiill'.'i*iliit'tl.f-'iﬁ’iiitli.i‘t.iti..tt.tt’tiﬁtl*ti'tttil)
procedure pcsampdisable;
begin

writechar(pcldev, 'S’ }):

writechar(pcldev, °'D’ };

writechar(pcldev, er):

writechar(pcldev, em) (* force ocutput buffer flush *}
end; (* pcsampdisable *)

tt*tt't.tt.itt‘.i.!‘it‘.tiiiitt‘tititit"iitittiQ.il.ititt*iti'iiittitl)

(*OUTPUT PC DRAW LINE COMMAND

‘li”iii.‘iiit..‘..i*‘iltiii.tit'.i‘llt.ti.ttii!i.ii!t.ttittttttilitlti}

(* Function: This routine outputs the PC Draw Line Command to the MPC.
(* Input: nocoord - no. of coordinates in line

(* xycoord - X, Y line coordinates

(* Output: Command in format:

> L <carriage return?

(* <no. coordinates> <carriage return?>

(* <} cooré.> , <Y coord.» <carriage return»
(* «ssses repeated for all coordinates

(* History: 1% JUN 83 - Intial Version
(* Author: Paul L. Stevens
(iiiiiii‘.l.ttl.ii.tl.ii*iiii’*tli“.‘tttlitii.t‘l.tIttfit..ti.tii.'!i*)
procedure pcline(no:pointsrange;xy:upoints):
var i : integer;
begin

writechar{ pcldev, ‘L');:

writechar(pcldev, ecr);:

pcwritecoordret(no);

for i := 1 to no do

pewritexy [xyl[il.ix, xv[il.iy)

end; (* pcline *)

(i.ii‘i"..l.tiiiititlitiiiititi"iiiii‘ii‘iittiii.iitll!iiii‘tttttttﬁ!)

(*oOUTPUT PC DRAW MARKER COMMAND

(i!lii...*.‘.i!’ilIit*fﬁtt.ii!t*.t-.!!ii'tiiitiiiiit.itt'*titiii.ttti'i)

{(* Function: This procedure outputs the PC Draw Markers Command to
(* the MPC.
{* Input: nocoord - No. of Markers

Page 80

(= marktype - type of marker {1-4)

{* marksize - size of marker in Y screen units
(* xy - X, Y Coordinates for Markers

{® Output: Command in format:

(® M <marker type» <carriage return?

(= <marker size> <carriage return>

(= tno. coord.s> <carriage return>

{* <X coor.>» , ¢¥Y coord.> <carriage return>
{* «»s» repeated for all coordinates

(* Bistory: 19 JUN B3 - Inital Version
(* Author: Paul L. Stevens
(!*‘tiititiliii.tiit‘.ii*lttti**i..t&tt.t‘-itt!ti't.'iittittittﬁtitti't)
procedure pcmark(marktype:index:marksize:integer;
nocoord:peintsrange;xy:upoints);

var i : integer:
begin

writechar{ pcldev, °‘M'):

writechar{ pcldev, chr{marktype+4B8)):

writechar(pcldev, cr):

pewritecoordret (marksize):

pcwritecoordret{ nocoord):

for i := 1 to nocoord do

pewritexy(x=ylil.ix, xy[il.iy)}

end; (* pcmark *)

(‘iiiif.i.li’iitiiii‘.‘iﬁiii.tliilliii.ti!i..t“.-I.tiiii.ttfﬁtittitt.t]

(*rouTPUT PC FILL ARERA COMMAND

(i’tt.t'i.t.t‘iit..ii.iiit.iiiiliit!iiiiiili!ii'!iiiitttiiiifii.tiitiit}

(* Function: This procedure ocutputs the PC Fill Area Command to the MPC.
(* Input: boundcolor = boundary color

(* ixy - fill seed point coordinate
{* Cutput: Command in format:

(* F <boundary color>» <carriage return?

(* <X coord.> , <Y coord.>» <carriage return

(* History: 19 JUN B3 - Initial Version
(* Author: Paul L. Stevens
(Qitii'*t*i.kii.i*ttiiiittiii.tii.i'.l‘llﬁittilﬁi.t'*ti’tii.ti.&ttttttt)
procedure pcfill (boundcoloriunit:ixy:ipoint);
begin

writechar(pcldev, 'F'):

writechar{ pcldev, chr(boundceclor+48)):

writechar{ pcldev, cr):

pewritexy(ixy.ix, ixy.iy)
end; (* pecfill *}

{ttt.i..iil...i’..'t-*ﬁ*.’flftl‘i"t“ttiit‘iiiilttitlitliitiittiti’ttt)

(*touTPUT PC PISPLAY TEXT CCMMAND

Page 81

(t'ti.itt.ti't..i"li.'ii.iiltii.!i"i’..i!!i.tti'..iii'tittt..t!itlttt)

(* Function: This procedure outputs the PC Display Text Command to the MPC.
(* Input: upvec - Character Up Vector

(* basevec - Text Base Vector

(* text - Text String to display

(* ixy -~ X, Y Coordinate for first character

(* Output: Command in format:

(¥ T <upvec> <basevec> <textstring> <carriage return>
(= <X coord.> , <Y coord.> <carriage return>

(* History: 19 JUN B3 - Initial Version
(* Author: Paul L. Stevens
(ﬁ.'t.tt..i.t!t.t"tt'.i'tliitiit"i'.ti.*i'.".tt..-t.titt"'t!i'tfﬁli)
procedure pctext(upvec,basevec:textenum;ixy:ipoint;
nochar:stextcharrange;text:tstring):

var i : integer:
begin

writechar(pcldev, 'T'):

if upvec=down then writechar(pcldev, 'D")
else if upvec=left then writechar(pcldev, 'L')
else if upvec=right then writechar(pcldev, 'R')
else writechar(pcldev, 'U');

if basevec=down then writechar(pcldev, 'D' }
else if basevec=left then writechar(pcldev, 'L')
else if basevec=up then writechar(pcldev, 'U')
else writechar(pcldev, 'R’):

for i := 1 to nochar do
writechar(pcldev, text[i]):

writechar(pcldev, cr);
pcwritexy(ixy.ix, ixy.iy)
end: (* pctext *)

('..ﬁ‘....ﬁ‘tti....ﬂ.'f"ﬁt..."‘.i!.i'tt‘....Qiiil.i*iiitfttiitt'ﬁti't}

(rouTPUT PC DRAW ARC COMMAND

{i‘iiit'."ti!....ti.i.il‘iittiii.iiltl.tﬁt.i.itﬁ'ttiiti.ttii.tt.ii.'t.}

(* Function: This routine outputs the PC Draw Arc Command to the MPC.
(* Input: connect - if true, connects arc to center with lines
*

(ixy - X, Y coordinate for center of arc
(* radius - Radius of the arc

(* sdeg - Starting degrees of arc

(* edeg - Ending degrees of arc

(* OQutput: Command in format:

(* A <connect> <carriage return?’

(* <X coord.> , <Y coord.> , <radius> ,

(* <start deg> , <end deg> <carriage return>

(* History: 19 JUN B3 - Initial Version

(* Author: Paul L. Stevens :
("....i.it...’.'.‘.i-.i*."....'-.ﬁ..‘i‘.i.'...'ﬁtt."i.iﬁ'i..ti.'i!*.)

procedure pcarc(connect:boolean;ixy:ipoint;radius,sdeg,edeg:integer};

begin
writechar(pcldev,

lAl]:

if connect then writechar(pcldev, '1l°

else writechar(pcldev,
writechar(pcldev, cr);

pcwritecoord(ixy.ix }:
writechar(pcldev, °','
pcvwritecoord(ixy.iy }:
writechar(pcldev, °,")
pcwritecoord(radius):
writechar(pcldev, *,' }
pcwritecoord(sdeg):
writechar(pcldev, °*,'):
pcwritecoord(edeg }:
writechar({ pcldev, cr)
end: (®* pcarc *)

—
"~ e

lol

)
)i

Page 82

(.*tﬁi.'.ti.ti..i‘!ttiii‘ii!.fi!iii.i!.iii.i’ii‘ii‘!iittlttitttitittitt)

(*ouTPUT PC DRAW RECTAMNGLE

COMMAMND

('.fﬁ"".i*'Q.*..*ii’Q.i‘iﬁﬁ'*..l'.ﬁﬁﬁiititli!ttt!ii'!ii.tittitti*ltti)

(* Function: This procedure outputs the PC Draw Rectangle Command

(* to the MPC.

(* Input: fill - If True, the rectangle will be filled
(* lixy = X, Y coordinate of lower-left corner

(* urxy - X, Y coordinate of upper-right corner
(* Output: Command in format:

(= R <fill> <carriage return»>

(* <11 X coord> , <11 Y coord»> ,

(* <ur X coord> , <ur Y coord* <carriage return>

(* History: 19 JUN B3 - Initial Version

(* Author: Paul L. Stevens
(tit‘tttittlttttttttiiiitttistiti.ittttt.!c*att-tiiittttti-ttttioti-‘tt)

procedure pcrect{fill:boolean;llxy,urxy:ipoint};:

begin
writechar(pcldev,

IRI }:

if fill then writechar(pcldev, 'l' }
else writechar{ pcldev, ‘'0');
writechar(pcldev, cr };

pewritecoord(lixy.ix):

writechar(pcldev,

P §

pewritecoord{ 1llxy.iy):

writechar({ pcldev,

R

Page

pcwritecoord(urxy.ix);:

writechar(pcldev, *,°' }:

pewritecoord(urxy.iy):

writechar(pcldev, cr)
end; (* pcrect *)

(.itttiiit‘.itlti..iﬁi'.liii.‘itit.i!titiit.iii'i**it.ii'iiitii.iititii)

(*pPC NDC~-TO-DC COORDINATE SCALING
(* PROCEDURE ‘

{ti'itlttiitl..ti:‘iiititt'.it’*'t..‘.iiiittiiltt'tt"tﬁti.ttiit.tttttt)
(* Function: This routine converts an array of coorinate points specified

(* in NMormalized Device Coordinates and scales them to be
(e specified in the Device Coordinate System for the MPC.
(* The input coordinate point values are in the range

(¢ of 0-32,000. The DC coordinates are in the range of

(* 0-219 for X and 0-199 for Y. The DC ranges are different
(= due to the aspect ratio of the video screen.

(* Input: noccord - Number of Coordinates to Scale

i* icoord - Array of NDC coordinates

(* Output: ocoord - Array of DC ccordinates.
(* History: 21 JUN 83 - Inital Version
{* Author: Paul L. Stevens
‘t.!ti'..!iltti..t.t".ﬁt'tit.ii'titi’!ti!tiiiii.!i'itt*!t..iitiiittiti)
procedure pcndctodc(nocoord:pointsrange;icoord:upoints; var ocoord:upoints};
var i 1 integer;
begin
for i := 1 to nocoord do
begin
ocoordlil.ix := icoord[i].ix * 220 div 32001;
ccoord[il.iy := icoord[i].iy * 200 div 32001
end
end; {* pcndctodc *)

(*ilt‘.iittt.ititii..l'..t!*tiitit*..i’tiitt...iiilt.illiii’Q*Cii'litit)

(*PC DC-TO~-NDC COORDINATE SCALING
(t
(* PROCEDURE

(.iil‘ttl!tltii.tt.i'i‘.iiliiittttt‘tiiiti..t'*ﬁi!iiltittiiititittt‘t!t)
{* Function: This routine converts an array of coordinate points specified

83

(* in PC Device Coordinates to be in Normalized Device Coordinates.
(r The input coordinate point values are in the range of 0-219

(* for X and 0-199 for Y. The output coordinates are

(= in the range 0-32000.

{* Input: nocoord - the no. of coordinates to convert to NDC

(* icoord =~ the array of Device Coordinates

{* Output: ocoord - the array of Normalized Device Coordinates
(* History: 22 JUN B3 - Inital Version

Page 84

{(* Author: Paul L. Stevens
(i.tti.i.i--ii-tt.liti..ii‘iti.t...ttl‘tﬁ.i’.ii...i.i..t.t.tt.til!ti'.t}
procedure pcdctondc{nocoord:pointsrange;icoord:supoints; var ocoord:upoints);
var i : integer:
begin
for i := 1 to nocoord do
begin
ocoordfil.ix := icoord[i).ix div 220 * 32001:
ocoord[il.iy := icoord[i]J.iy div 200 * 32001
end :
end; {* pcdctondc *)

(Q.tittﬁt't.itIﬂ'titti‘i'l.i‘ﬁ.i..'.tl"it.tlt.ttilliltttitiOQG.itttti')

(*PC INPUT STRING COMMAND PROCEURE
(.-*"il'i.Qﬁ'i*-....ﬂ'*."Q.“..‘.ti-.iiti..“...*!*-.fi..‘iliitiiii..)
(* Function: This procedure outputs the PC Input String Command to the
(* MPC and reads the string from the MPC.
{* Input: Text String from the MPC.
{* Output: Command in the format:
(* IS <carriage return>
(* History: 21 JUN 83 - Initial Version
(* Author: Paul L. Stevens
(*."*...'...i.“*.’.i..'-iti...‘..t‘.‘*‘.‘i.i“'..t.i.f...ii....tittﬂ')
procedure pcinpstring(var nochar:textcharrange; var text:tstring):
begin

writechar(pcldev, °'I'):

writechar(pcldev, 'S'):

writechar(pcldev, cr):

writechar(pcldev, em); {* force output buffer flush *)
nochar := 0;
repeat

begin

nochar := succ(nochar):
readchar(pcldev, text[nochar])
end
until ((text[nochar] = cr) or (nochar = maxstring))
end; (* pcinpstring *)

(-‘i.’iiiiiiiiii.’iii...i‘ti..t.i-..*.*.Iii.I‘itii.iiiiitl...ttt.'iitii}

(*PC INPUT CURSOR COMMAND PROCEDURE
(i.iIt.'i"i.ii.t‘.li!it'.l!iliii..‘...i.it!!itttittl.tt.i.iit*ﬁtiiit‘i)
(* Function: This procedure outputs the Input Cursor Command to the MPC,
(* reads in the response and coverts it to integer X, Y

(* coordinate values.

(* Input: ASCII response from the MPC

(* Output: Input Cursor Command to the MPC in the format:

(* IC <carriage return>

Page BS5

(* ixy - the X, Y coordinates in integer format
(* History: 21 JUN B3 - Initial Version
(* Author: Paul L. Stevens
{il!ti.l.itltilIi.iﬁ.*..‘.t.titiiiit.‘li..lii!i."‘*'ittt*tt't"tlittti)
procedure pcinpcursor(var ixy:ipoint):
var text : tstring; i : integer:
begin
writechar(pcldev, 'I' }
writechar(pcldev, 'C® }
writechar{ pcldev, cr):
writechar(pcldev, em): (¢ force output buffer £lush *)
i = O;
repeat
begin
i := succl(i):
readchar{ pcldev, text[i])
end
until {(text{i) = cr) or (i = maxstring)):

pcconvcooord(i,text,ixy) (*® convert string to integers *}
end; (* pcinpcursor *)

(.iﬁiitli.‘ii.fﬁi..t.ﬁi.t.i.iil."...ﬁ'ii.ltitti.t'.ti'.tiiilttiiitfitt)

(*PC OUTPUT SAMPLE CURSOR COMMAND
(..'.'ﬁ".".'.!.'.li.l.ii..i.i'l".!‘.ii..'."'.tit!‘t!titli'ttttt'itt]
{* Function: This procedure ocutputs the Sample Cursor Command to the
(™ MPC, reads the response string and converts the X, Y
(* coordinates in the string to integers.
{* Input: Character string from MPC
(* Output: Sample Cursor Command in format:
{= SC <carriage return>
(* ixy - integer X, Y coordinate
(* History: 21 JUN 83 - Initial Version
(* Author: Paul L. Stevens
('..‘..."*"...-*..I‘...'C.“"..ii.i‘.t'..ﬂ'..'.t‘.tiiiiiﬁii‘i‘.ifiti’
procedure pcsampcursor (var ixy:ipoint);
var text:tstring:; i:integer;
begin
writechar(pcldev, 'S')
writechar{ pcldev, ‘C')
writechar(pcldev, cr):
writechar(pcldev, em); {* force output buffer flush *)
i := 0
repeat
begin
i := suecc(i);

readchar(pcldev, text[i]):
end

until ({text[i] = cr) or (i = maxstring)}:

pcconveoord({ i, text, ixy)}
end: (* pcsampcursor)

(* convert string to integers *)

Page 86

(Q.l.iii.i.‘ii...t'.'......t..'.I..-.l..‘..i..i..i.tli.tt.ttiiiliti.itt)

(.

PC OUTPUT SAMPLE KEYS COMMAND

tIQ..!.I!‘..Q.'.".....'...‘.Qit'i.lﬁ"l.tt..t...i..t.ti'.liiitititi!ti]

(* Function: This routine outputs a Sample Keys Command to the MPC,

(f
{*
(i
‘.
(.
(.

(.

and reads the response character.
Input: Key character plus carriage return from MPC
Output: Command in format:
SK <carriage return>
Function Key No. last hit in Key parameter
History: 21 JUN 83 - Initial Version
Author: Paul L. Stevens

{.‘.t.i‘...'illit.i‘...'i‘t.ti..iiit‘.li.it.!i..ii..tiititlti.‘iitttiit)

pPr
va
be

ocedure pcsampkeys(var key:integer):

r dummy:char;

gin

writechar{ pcldev, 'S'):

writechar(pcldev, 'K'):

writechar(pcldev, cr):

writechar{ pcldev, em); (* force output buffer flush *)

readchar(pcldev, dummy):

key t= ord(dummy)-48;

if key < O then key := 0;

readchar(pcldev, dummy) (* for return *)

end; (* pcsampkeys *)

APPENDIX D

Sample Listing of MPC Interface Commands

PCGKS TEST INPUT FILE

4 JULY 83 - PAUL L. STEVENS

DRAW 2 BOXES ON THE SCREEN

) me me me me Wp W e we

o

214,194

r

;DRAW CIRCLE AND 2 ARCS
i

A0

50,50,30,0,360

al

50,50,20,1,90

Al
50,50,15,180,270

r

;DRAW MARKERS
¥

;DOTS

H

M1

1

5
20,190
40,190
60,190
80,190
100,190
M1

8
5

Page 87

Page 88

20,170
40,170
60,170
80,170
100,170

r

; PLUSES
:

M2

8

5
20,150
40,150
60,150
80,150
100,150
M2

16

5
20,130
40,130
60,130
80,130
100,130
; ASTERISKS
.

M3

8

5
110,190
130,190
150,190
170,190
190,190
M3

10

5
110,170
130,170
150,170

170,170
190,170

14
;i CIRCLES
4

no -

110,150
130,150
150,150
170,150
190,150
M4

10

5
110,130
130,130
150,130
170,130
190,130

’
¢ TEXT

r
TURTEXT
150,50
TULTEXT
156,50
TUUTEXT
150,50
TUDTEXT
150,50

r
;FILL AREA

W

DRAW LINES

[V we me me D) T =
-
(8]

10
20,100
40,120
60,100
80,120
100,100
120,120
140,100
160,120
180,100
200,120

r
7 PRINT SCREEN

’

4

Page 89

A VDI INTERFACE FOR A MICROPROCESSOR GRAPHICS SYSTEM

by

PAUL L. STEVENS

B. S.' V. P. I. & S. Uﬁ' 1978

AN ABSTRACT OF A MASTER'S REPORT

submitted in parital fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

ABSTRACT

The Virtual Device Interface (VDI) is a computer graphics
interface standard proposal under development by the ANSI
Virtual Device Interface Task Group (X3H33). The task group
defines the Virtual Device Interface as "a standard
functional and syntactical specification of the control and
data exchange between device-independent graphics software
and one or more device-dependent graphics device drivers."
This report documents the design and implementation of a
project whose purpose was to provide a VDI 1level interface
between the Graphical Kernel System (GKS) and a
microprocessor-based color graphics system. As both VDI and
GKS are still evolving standards proposals, various
omissions and inconsistencies exist in the specifications.
This report also investigates issues related to these
proposed standards and documents the design decisions and

assumptions made during the course of the project.

