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CHAPTER I
INTRODUCTION

The problem of reconstructing 3-dimensional objects from a set of
2-dimensional projebted images is of great importance in fields ranging from
medicine to iadio astronomy. In all these cases one takes a series of
2-dimensional sections of the 3-dimensional object, and for each 2-dimen-
sional section collects the ray-sum or projection for a series of non-
overlapping rays. These rays are chosen such that they cover the elements
or lattice points of the 2-dimensional cross-section. Then each plane is
reconstructed independently of the other planes and the reconstructions for
different planes are stacked to reconstruct the 3-dimensional object.

Many different reconstruction methods are available, It is possible
to divide such methods into thirteen categories [2], However, there are
basically two major categories [3,4] one in which reconstruction is performed
in normal signal space, and the other in which it is performed in the Fourier
space, First we briefly discuss a few of the methods which perform the
desired reconstruction in signal space. This is followed by a discussion

pertaining to the Fourier methods.

1.1, Reconstruction in the Signal Space

(a). Direct-matrix and Linear Equation Method, Projection data at different

angles is obtained, and a linear equation corresponding to each projection
is written, Thus in general, this method requires one solve a set of

simultaneous equations which could involve the inversion of large matrices.



For example, in the case of a 64 x 64 array, 4096 simultaneous equations must
be solved, which implies that a very large matrix inversion is necessary. In
addition the corresponding system of equations is invariably undetermined and
inconsistent. Again, a generalized inverse formulation is sometimes used,

In any case this approach is quite limited in its scope‘and hence not

considered for implementation purposes,

(b). Linear Superposition or Back Projection., The simplest and most rapid

method of reconstructing a 2-dimensional aistribution from multiple l-dimen-
sional projections is to merely project the views back to a common object
region. This technique is basically that of conventional tomography or
laminography, implemented by analog methods of moving fhe iﬁaging system
relative to the object. The strings of data for the multiple views are
superposed on film by changing the angle of display relative to the film
corresponding to the change in angle of view from one scan to the next. The
result is the superposition of the projéétions. Though this technique is
very simple, the resulting reconstruction will not equal the true image
because each point is formed by the superposition of a set of straight lines

corresponding to each projected ray from the true object.

(c). Algebraic Reconstruction Technique (ART). Gordon [6] applied this

method to the reconstruction of a 50 x 50 digitized image from computed
projections. The simple algorithm consists of guessing a value for all the
picture elements and then modifying each element along each ray by a factor
that compensates for the discrepancy between the measured ray sum and the
calculated ray sum. If the calculated ray sum is the same as the measured

value, it implies that the guess values are correct for a particular



projection; however, for another projectionrthere might be a large discre-
pancy. Hence the picture elements of the last view are modified according
to the discrepancy between the new ray sum and the measured value, Thus
each ray belonging to a given projection is examined and values of the
picture elements falling within that ray are changed iteratively over five
to ten iterations. This process is repeated, one projection at a time, and

is called multiplicative ART. Another method of correcting the discrepancy

between the measured projections consists of adding the difference between
the measured ray sum and the estimated ray sum, This is called the additive

form of ART.

(d) Simultaneous Iterative Reconstruction Technique (SIRT); This method

was developed by Gilbert (1972a.) [7]. The SIRT method differs from ART in
that in each iteration the densities of picture elements are altered by using

the data from all of the projections simultaneously. The SIRT method gives

‘results which are in close agreement with those produced by the Fourier
method.

There are several other techniques which belong to the category where
reconstruction is carried out in the original data space. The interested
reader may refer to the pertinent references, some of which are cited at the

end [8,9,10,11].

1.2. Reconstruction in the Fourier Space.
The problem of reconstructing an image in the Fourier space was
introduced in 1956 by Bracewell [12]. In this approach, a theorem which is

referred to as the projection slice theorem [3] plays an important role.

In essence it states that the Fourier transform of a projection yields a



slice of the Fourier transform of the projeéted image., There are several
algorithms.available, such as those by DeRosier and Klug [13], Crowther,
DeRosier, and Klug [14], Budinger [15], Lake [16], and Peters et al, [17]..
This research effort is motivated by some of the relatively recent
work of Mersereau [ 3, 4]. It is shown that an (N x N) noiseless, bandlimited
image cén be reconstructed from either a set of 3N/2 projections, or a single
projection, without resorting to any tedious-computational techniques, This
result is in agreement with the conjecture by Mersereau which states that
exact reconstruction should be possible with the number of prbjections is of
the order of N/2 [3]. Again, the second result which is attributed to this

work is also consistent with Mersereau's one projection theorem, which states

that exact reconstruction is possible via only one projection. However, in
this thesis it is shown that a particular projection yields projection data
which corresponds to the rows of a given digital image arranged in lexico-
graphical order [5]. As a consequence, the resulting reconstruction process
requires no tedious calculations, and is equivalent to the conventional
procedure for computing the 2-dimensional DFT using a 1-dimensional FFT of
size N2, where the corresponding algorithm is derived via a matrix Kronecker
product formulation.

Chapter II is concerned with the developments of the above results.
A computer program which enables one to generate projection data is presented
in Chapter III, along with a software implementation for an algorithm called
the 3N/2-reconstruction algorithm. This algorithm enables one to reconstruct
a noiseless, bandlimited digital image from the projection data obtained via
N/2 projections; The programming language used for the implementation is
FORTRAN. Finally, some conclusions and suggestions for future work are

presented in Chapter 1V,



CHAPTER II
EXACT RECONSTRUCTION USING A FOURIER APPROACH

2.1. Introduction

A 3-dimensional object can be regarded as a stack of 2-dimensional
planes. Hence the reconstruction of a 3-dimensional object can be achieved
by reconstructing each of the 2-dimensional planes separately and restacking
them together. Here we restrict our attention to the problem of recon-
structing a 2-dimensional signals from their i-dimensional projections.
However, the corresponding formulation can be extended to the N-dimensional
case,

In this chapter we show that an (NxN) noiseless bandlimited digital
image can be recontructed exactly from either a set of 3N/2 projections, or
a single projection, without resorting to any tedious computational tech-
niques, In connection with the single projection case, we further show
that the reconstruction process is equivalent to the conventional algorithm
for computing the 2-dimensioﬁal DFT using a l-dimensional FFT of size N ,
where the corresponding algorithm is derived via a matrix Kronocker product

formulation.

2.2, Some Definitions

Total Mass., We assume that the cross-section of a given object can be
considered as a bandlimited (NxN) digital image which can be represented by
the set of discrete densities X(ml,mz); my, m, = 0,1,2....,N-1, The
coordinate system associated with it is shown in Fig. 2-1 (a). Without

loss of generality, we assume that N is of the form N=2", n=1,2,3.....0m
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Fig.2-1. Image and Fourier coordinate systems.



Then, the total mass associated with the density is defined as

N-1 N-1
M=y ¥ X(mg,m) (2.2-1)
—0 m =0

Bandwidth. If the distance between successive density points in Fig. 2-1(a)
is denoted by At, then the bandwidth B of the image is given by
= 1/2 At ‘ (2.2-2)
Without loss of generality, it is assumed that the distance between

successive density points At in Fig. 2-1(a) is unity.

2-Dimensional Discrete Fourier Transform. The 2-dimensional discrete Fourier

transform (DFT) of the image is defined as [1]

N-1 N-1

Clkoky) = 5 T L xm (kimyrkoma)
N -0 m =0
kl,k2 =0,1,2...,(N-1). (2.2-3)
; o -i2mw /N .
where C(kl’kz) is a DFT coefficient, and W=e . The coordinate system

associated with the C(kl’kz) is to be as shown in Fig, 2-1(b). In Eq.(3)
we note that the DFT coefficients C(k kz) k k =0,1,2,,.,.,(N-1) are N-
periodic in both directions; i.e. with respect to the variables k1 and kz.
This periodic property can be expressed as

C(N+£1,22} = C(Ql,N+z2) = C(N+£1, N+22) = c(zl,zz);

I’ 2-0 1 2 ) .,(N"l) . (2 02-4)
2.3, Projection Considerations

A projection is defined as a mapping of a 2-dimensional function to '

a l-dimensional function, where this mapping is realized by summing all the



densities along lines in a particular direction.
For example

N-1
Pm)) = ),

m2=0

X(ml,mz); m1=0,1,...,(N-1) (2.3-1)

denotes the projection of a 2-dimensional function X(ml,mz) on to a line

m, and is obtained by summing all the densities along lines in the mz-direc-

1
tion, as illustrated in Fig., 2-2,

To define a projection in general, let us define a new coordinate
system (ul,uz) which is displaced by an angle 6 with respect to (xl,xz) as
shown in Fig, 2.3(a). It follows the reiation between (xl,le and (ul,uzj

is given by

Fx ] (cos e -sin 91 | u ]
1 1
X sin 8 cos 0 u (2.3-2)
2 2
[ “) | 11
where |x.[<e® , |u.|<® , and i = 1,2.
i i

Hence the relation between (ml,mz) and (ul,uz) is also given by

cos @
where
sin @

"]

[cos @ -sin 8
sin 8 cos BJ
-sin @

cos B

~ 1

UZJ

» my,m

] is an orthonormal matrix.

2

=0,1,2, e

(2.3-3)

An impoftant property of the above transformation is that a rotation

of the coordinates (xl,xz) in the signal space by an angle © results in the
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c(0,0) C(0,N-1)

(b)

Fig. 2-3. (Qriginal and Rotated axis in signal space and Fourier space.
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same rotation of the coordinates (wl,wz] in the Fourier space as illustrated

in Fig. 2.3.

Thus in general, the projection associated with an angle © is defined

Poluy) =§; X(m,,m,) (2.3-4)
1

where pe(ul) is the projection of the 2-dimensional function x(ml,mz) on to
the line U it is obtained by summing all the densities along lines in the
uz-direction. We shall refer to u, as the projection axis and 0 as the pro-
jection angle.

For the purposes of illustration, the projection data values Pe(s),
s=0,1,...,9 which result from a (4x4) image for a projection angle
e = tan'l(l/Z), and a particular ray width Wg = lﬂqg are shown in Fig. 2-4.

From Fig. 2-4 it is apparent that the corresponding projection data is as

follows:
P(0) = x(0,0)
P(1) = x(1,0)
P(2) = x(0,1) + x(2,0)
P(3) = x(1,1) + x(3,0)
P(4) = x(0,2) + x(2,1)
P(5) = x(1,2) + x(3,1)
P(6) = x(0,3) + x(2,2)
P(7) = x(1,3) + x(3,2)
P(8) = x(2,3)

and

P(9) = x(3,3) (2.3-5)



Fig- 2-40

L ]

® .

® ®
Pg(6)

Projection data for N = 4 and 0

tan-l(l/z)

12
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We recall that the summation along the Uy direction gives the total
mass M, since the projection on the ul-axis is the summation of all the

densities in uz—direction. Hence Eqs. (4) and (2.2-1) yield

M = 2; pglu) = 5: }: X(my, (2.3-6)
1

2.4, A Specific Class of Projections
We now consider the specific projections, when the projection angle 6

is chosen such that
o = tan'lckl/kz) (2.4-1)

where k; and k, correspond to the frequency numbers associated with the
DFT coefficient C(kl,kz) in Eq.(2.2-3). In what follows, we obtain the set
of projections associated with these projection angles.

From Eq.(2.3-6) we have
u
2
where [see Eq.(2.3-3)]

u, =m, sin 8 + m, cos ©

1 1 2
= - i A-3
u, = m cos O m, sin @ (2.4-3)
or
ml = u1 sin @ + u2 cos O
m, = u, cos © - u, sin o (2.4-4)

Substitution of Eq.(4) in Eq.(2) leads to

pa(ul) =§; X(ulsin9+u2c059, ulcosa-uzsine) (2.4-5)
2



14

It is important to note that Eq.(5) is valid for any 8. Now, if 8 is
specifically chosen as in Eq.(1l), the projection angle 6 satisfies the

following relations:

oo iz 2
sin 8 = k1/ kl + k2
' 2 2
cos @ = k2/ kl + k2 (2.4-6)

From Eqs.(3) and (6) we obtain

S22

g = (ngkpmpko)/Nky + &y = sTg

= (mk,-mk )Nkz + k2 = 1T (2.4-7)
RS UA ST 8 ~ L

[}

=4
1

U2 = =
where
$ = ey ¥l
r = mk, -mk, ‘ (2.4-8)
and
'I‘a =1 ki + kg is the sampling interval for the continuous projec-

tion data obtained at an angle 8,
Substituting the value of u; sy, cos @ and sin 8 from Eq.(7) and (6) in

Eq.(5), we obtain
P.(s) = po(sTy) =¥ X([sk,+k,)T,%, [sk,-rk,IT 2y (2.4-9)
8>’ T Potle’ T L 17781 g ¢ 13%77R 117 y

Next, we determine the limits of s and r. From Fig, 2-5 it follows
that ul(or s, see Eq.(7)) attains its minimum and maximum values when

m, =m, = 0
and

=
u
=
n

(N-1)
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maximumwalue
of r

10{2

——K&n-1,0) * * £ §XN-1,8-1)

1

maximum

value of s

X(0,N-1)
i — =l
/
minimum
value of s e T

minimum
value of T

Fig. 2-5. Related to maximum and minimum values of s and r.
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respectively. Again, u, (or r, see Eq.(7)) attains its minimum and maximum

when
m =0, m, = (N-1)
and

m = (N-1), m, = 0

respectivgly, Thus from the values of my and m, and Eq.(8), it follows that

2.5, Fourier Transform Reconstruction

and
-(N-1)k; < T < (N-1)k, (2,4-10)
Using Eq.(10) we rewrite the Eq.(9) as
(N-1)k,
2 2
Po(s) = ¥ X([sk *+7k, 1Ty, [sk,-rk;1Tg%), 5=0,1,2, ..., (Ng-1) .
r=-(N-1)k1
(2.4-11)
where
Ng = (N-1) (k *+k,)+1 (2.4-12)
Also using the Eq.(7), we express the Eq.(2.3-6) as
’ N-1 N-1
M=) Pg(sTy) = L ¥ X(mpm) (2.4-13)
s m,=0 m. =0
2 1
From Eqs.(10), (12) and (13) we obtain
(Ng-1) N-1 N-1
M=Y  P(s) = Y 2_ X(my,m,) (2.4-14)
= m2=0 ml..

Taking the Fourier transform Fe of Pe(s) in Eq.(2.4-11) we obtain

Ne-l
Fg( Q) = Ted,  Po(s)

s=0

e—l(llsTB

(2.5-1)
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W,
e now compute Fy at the frequency (0 4ore

L TN _ (2.5-2)

Then Eq.(1) yields
9—1
) _ -i2wLs/N
Fa( ) = Ty S);g Py(s) e (2.5-3)

From the relation of Fourier transform and DFT it follows that [1]
1 . :
CB(L) = (ﬁgﬁfga Fe[()L), L=0,2,...,(N-1). (2.5-4)

where CB(L) is the L-th DFT coefficient. Combining Eqs.(3) and (4), we

obtain

9 .
1 : Ls, ,_
Co(L) = Ff;s);o Py(s) W75 1=0,1,2,...,(N-1). (2.5-5)

where W=e_127r/N.

In Eq.(5), it is observed that the CB(L) can be computed
using the fast Fourier transform (FFT). Using the value of s from Eq.(2.4-8)
we rewrite the Eq.(5) as

-1
Ng
Cg(L) = I}T— ); pe(s)wl‘fk Mo 120,1,2,..., (N-1)  (2.5-6)

Combining Eqs.(2.4-14) and (6) we obtain

ACRS » ): '): x(m m )W 1" 10, 1,2, .0, (N-D)
m,=0 m,
(2.5-7)

A comparison of Eqs.(7) and (2.2-3) leads to the following important result:

C(Lk,,Lk,) = (Ng/NICy(L), L=0,1,2, ..., (N-1) (2.5-8)
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If the scale factor (Ne/Nz) in Eq.(8) is ignored, then it can be written as
C(Lkl,Lkz) = CB(L)’ L=0, 1, 25 vn0s (N=1} (2.5-9)

From Eq.(9) it can be seen that the projection data associated with (kl’kz)
yields N 2-dimensional DFT coefficients, This is because of its doubly
periodic property with respect to k1 and kz, i.e. for a given (kl’kz) we

obtain the set of indices (11,22) which satisfies the congruence

{(2,2)} = {Lk (mod N), Lk, (mod N}, 1=0,1,2,...,(N-1)

0<2 <(N-1). (2.5-10)

17t 2
We remark that Eqs.(10) and (2.2-4) represent the same property. For example

with N=4, k.=1, and k. =2, Eq.(9) yields _ ¥

1 2
Cc(L,2L) = CG(L)’ 1=0,1,2,3. (2.5-11)

Again, from Eqs.(1l1l) and (10) we obtain

Ca(O) = C(0,0)

Ca(lj = C(1,2)

Ca(2) = C(2,4) = C(2,0)

CB(S) = C(3,6) = C(3,2) (2.5-12)

Hence we conclude that if the proper set of grid points {(kl’kz)} are
chosen, then all the desired 2-dimensional DFT coefficients can be computed

via Eqs. (8) and (10).

2.6. Critical Grid Points
Consider the set of all possible grid point. It is given by
s= {00,0), (0,1), (1,00, (1,10, 0euueeree, (N-1,N-1)
We seek a subset of S which is denoted By S*, This subset is such that its

elements satisfy two properties which are as follows:
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(i) If (kl,kzj* € S*, then k1 and kz are such that they are
relatively prime to one another.

(ii) If (k 1, kzl)* and (KIJ,kgj)* are two elements of S*, then
they satisfy the condition

CRRIITICTI:

i
1 °%2 "'I'ZN): I'l‘—'2,3,...,(N-1) (2-6‘1)

N, nk

1 2

for all integer values of ry and e
To illustrate, we consider the case when (kl,kzj* = (1,3), n=3,

r1=0 and r2=-2,'then we have

(nk1+r1N, nk2+r2N) = (3x;+4x0, 3x3-4x2) = (3,1) (2.6-2)

Hence from Eq.(2) it is clear that if (1,3) € S¥, than (3,1) can not belong
to S*, It is important to note that the overall effect of £he property in
Eq.(1) is that it eliminates grid points whose related projection data yield
jdentical set of 2-dimensional DFT coefficients. To illustrate, we consider
N=4 and (kl’kz) = (1,3). Then, from Eq.(2.5-10) it follows that the set of
indices (£l’£2) associated with the 2-dimensional coefficients

C( '1'2'2) are as follows:

OISR N {0, 0,9, @, 6] (2.6-3)

Again, with (kl’kz) = (3,1), Eq.(2.5-10) yields

- -
{(21,12)}3’1 (0,00, 3,1, 2.2, 1,9} (2.6-4)
Inspection of Eqs.(3) and (4) leads to the conclusion that {(21,12) } =
1,3

{(11,12) | . In other words, the projection data associated with the
3,1

3

projection angles 0, = tan-1(1/3) and 8, = tan'l(S/l) yield the same set
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of 2-dimensional DFT coefficients. Hence it suffices to include only one
of these grid points in the set S*. In what follows, we refer to S* as the

- critical set, Again, each grid point (kl,kzj* belonging to S* will be

referred to as a critical grid point.

We remark that there exist a more than one critical set, It is
straightforward to verify that the following set of grid points satisfy the
requirements'of critical grid points, and hence constitute a critical set.

kl = 1, k2 =m, m=0,1,2,...,(N-1)

and

k 1, k

n
]

L = 2, n=0,1,2,...,(1-;- ) (2.6-5)

2
The critical grid points obtained via Eq.(5) for the case N=8 are shown in
Fig. 2-6, and denoted by '"*", Equation (5) implies that there are IN/2 cri-
tical grid points in the critical set. This is true in general, since any
other critical set can be obtained merely by replacing one or more elements

of the above critical set via the congruence relation [see Eq.(2}]

(a, B) =r(nk1+r1N,nk2+r2N), n=2,3,4,....,(N-1), (2.6-6)
for all integer values of rl'and T,.

For example, consider N=4, Then the critical set obtained using

Eq.(5) is as follows:

S

I = % (1;0): (1:1): (1:2): gllle (O:l): (2:135 (2.6-7)

Now, if we consider the critical grid point (1,3), then with n = 3, r, = 0

and r., = -2, Eq.(6) yields (3,1). Hence an alternate critical set can be

2
obtained by replacing the element (1,3) by the element (3,1); i.e.

S; = (1:0): (111), (132)1 (3:1);‘(0»1)s (zsl)i (2-6'8)




0,00 Kk .o

Fig. 2-6. Critical Grid points for N = 8,

* (7,7)
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For the purposes of illustration we consider N = 8, Then, the angles

-1 . . §i.gd : g g
@ = tan (kl/kz) associated with the critical grid points given by Eq.(5)
and the corresponding C(kl,kzj given by Eqs.(2.5-9) and (2.5-10) using the
pertinent projection data are as shown in Table 2,1, We remark that the
2-dimensional DFT coefficients so obtained yield the desired image points

X(ml,mz), my,m, = 0,1,...,(N-1) by means of the 2-dimensional inverse DFT,

2.7. The 3N/2-Reconstruction Algorithm

We are now in a position to describe an exact reconstruction
algorithm. The various steps involved in this algorithm are best summarized
by considering the case N = 8. In this case the desired (8x8) image can be

reconstructed as follows, j

Step 1: Obtain projection data corresponding to thé set of critical grid
points [see Fig. 2-6]

(1,0, (1,1, (1,2), (1,3, (1,4, (1,5
1,6), (1,7), (o,1), (2,1), (4,1), (6,1) (2.7-1)

Step 2: For the set of 3N/2 sequences obtained in step 1, compute
1-dimensional DFT using the FFT for each sequence.

Step 3: Obtain the N 2-dimensional DFT coefficients from step 2
(see Table 2-1) using Eqs.(2.5-8) and (2.5-10).

Step 4: Compute the 2-dimensional inverse DFT of the Nz 2-DFT coefficients
obtained in step 3. This results in to the exact image
represented by X[ml,mz), ml,m2=0,1,2,...,(N-1).

In what follows, we refer to this algorithm as the 3N/2-Reconstruction

Algorithm.

From the above discussion it follows that the 3N/2-Reconstruction

2

Algorithm conveniently yields all the N° 2-dimensional DFT coefficients



Coefficients obtained using projection data

TABLE 2.1

associated with critical angles for N=8

= C(kls ky)
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c(0,0)

c(0,1)

£(0,2)

c(0,3)

c(0,4)

£(0,5)

€(0,6)

c(0,7)

.13

C(0,0)

c(1,7)

c(2,6)

C{3.5)

c(4,4)

G{5.8)

c(6,2)

C(7,1)

.46

c(o,0)

c(1,6)

c(2,4)

c(3,2)

c(4,0)

c(5,6)

C(6,4)

C{7:2)

11

31

c(0,0)

C(1,5)

c(2,2)

C{3:7)

C(4,4)

C{5,1)

€(6,6)

c(7,3)

14,

04

c(0,0)

c(1,4)

c(2,0)

€(3,4)

c(4,0)

C(5,4)

c(6,0)

c(7,4)

18.

43

c(0,0)

c(1,3)

c(2,6)

C{3,1)

c(4,4)

c(5,7)

C{642)

c(7,5)

26

57|

c(0,0)

c(1,2)

c(2,4)

C(3,6)

c(4,0)

c(5,2)

C(6.,4)

C(7,6)

45

c(0,0)

c(1,1)

c(2,2)

c(3,3)

c(4,4)

£{5+5)

c(6,6)

c(7,7)

63.

43

c(0,0)

c(2,1)

c(4,2)

c(6,3)

c(0,4)

c(2,5)

C(4,6)

c(6,7)

75

.96

c(0.,0)

c(4,1)

c(0,2)

c(4,3)

c(0,4)

c(4,5)

c{0,6)

c(4,7)

80

.54

c(0,0)

c(6,1)

c(4,2)

El2,3)

c(0,4)

c(6,5)

c(4,6)

€(2:7)

90

c(0,0)

¢(1,0)

c{2,0)

c(3,0)

c(4,0)

c(5,0)

c(6,0)

CL70)
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C{kl,kz), kl,k2 = 0,1,...,(N-1), and a subsequent 2-dimensional inverse FFT

yields the desired digital image,

2.8. Exact Reconstruction Using Only One Projection
The projection PB obtained at an angle @ = tan"l(N) is merely the
sequence obtained by concatenating the rows of the array [X(ml,mz)] [5]1.

The projection vector P, for this angle can also be expressed by a mapping,

]

which is given by [3,5]
PG(S) = Pa(Nm1+m2) = X(ml,mz),'ml,m2=0,1,...,(N—1).

$20,1,2,....,(N2-1),  (2.8-1)

At this point we remark that this sequence is equivalent to a vector obtained

by arranging the elements of the array Xle,mz), ml,m2¥0,1;:..,(N-1) in a

lexicographical order [18]; For example, when N = 4, the projection data

corresponding to 8 = tan'1(4) is as shown in Fig. 2-7, and the corresponding

projection vector P9 is as follows:

~ X(0,0)]

:' Tow #1

X(0,3)
X(1,0)

i row #2

Po= | X(1,3) (2.8-2)
X(2,0)

i row #3

X(2,3)
X(3,0)

. Tow #4

X(3,3)
16x1
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X(3,3)
X(3,0) ® ® ° ™
Pa(ls)

° ° ® °

o . ° ™

® ° ° °
X(0,0) x(o,

Py (0)
e

’ -1
Fig. 2-7. Projection data for N = 4 and 8 = tan (4)
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Now, the 2-dimensional DFT of an ar;ay.k(ﬁl,mzj, ml,m2=0,1,...,(N—1) is
defined in general as [1].

Y=AXA 1 (2.8-3)
where X is the array X(ml,mz), ml,mzzo,l,...,[N-l), A is the (NxN) DFT matrix,
and Y is the corresponding (NxN) transform matrix. Since the projection
vector Pe corresponding to 6 = tan'l(N) is the vector obtained by arranging
the elements of the array X(ml,mz), ml,m2=0,1,...,(N-1) in a lexicographical

order, the 2-dimensional DFT of an array X defined in Eq.(3) is given by [18]

F=(AQN Py (2.8-4)

where PG is the Nz-projection vector at an angle 6 = tanul(N), F is the
Nz—transform vector whose elements correspond to those of Y arranged in
lexicographical order, and the symbol (® denotes Kronecker product.

It can be shown that F in Eq.(4) can be computed using 2N applications
of a l-dimensional FFT of size N..

The above discussion implies that exact reconstruction is possible
via projection data obtained from a single projection. This result is

consistent with Mersereau's one projection theorem [3]. However, for the

particular projection considered here (i.e. 8 = tan"1(N)), no tedious

computations involving equations in polynomial form are necessary.
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CHAPTER III
PROJECTION DATA SIMULATION' AND ALGORITHM IMPLEMENTATION

3.1. Introduction

"This chapter is concerned with details pertaining to the implemen-
tation of the 3N/2-reconstruction algorithm., The projection data at an angle
@ is obtained by passing a beam of parallel rays thfough the cross-section of
the object. An important point to observe here is that the beam of rays is
not perpendicular to the cross-section as it is in the case of conventional
X-ray procedures, but it is parallel to the cross-section Q§ the object. The
ray of a projection at angle & is defined as a band of width W@ across the
plane at that angle, as shown in Fig, 3.1. The intensity of each ray is
attenuated by a factor dependent upon the total densities along the ray.
In practice, the intensity of the transmitted radiation is recorded by some
device, typically a photographic plate. The difference in intensity,
measured before and after passing through the object, gives the attenuation
of the ray. The measured value of this attenuation gives the projection.
The attenuation of the k-th ray depends upon the total densities X(ml, mz)
contained within the k-th ray of the projection at an angle @ as illustrated
in Fig. 3.1. The total densities contained within the ray depends upon the
width of the ray. Also the number of rays R9 in a projection at angle @
depends on the width of the ray and the size of the cross-section which is

to be reconstructed.

3.2, Algorithm Parameters

Ray Width. The width of the ray WB is not constant, but it is a function of



Fig. 3-1.

°
X(0,0)

line k

line (k-1)

k-th ray

Ak-th ray having a width WB'

28

o X(N-1,N-1)
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angle 6 and frequency. Hence He is different for each 8., Now, the ray width
WB is merely a sampling interval T9 which was defined in Eq. ( 2.4-7). Thus

the ray width Wg is given by

2 .2 ' ,
W, =1 ..’k K
g = Majk; # %5 (3.2-1)

where 6'is the projection angle and (kl,kz) is the critical grid point

associated with projection angle 8.

* Number of Rays, It is obvious that the number of rays for the projection
at angle 6 is merely equal to the number of elements Ne contained in the
projection vector Pe(s) which is defined in Eq. (2.4-12). As a consequence,
the number of rays Re at an angle 6 is given by

Re = (kl + kz)(N-1]+1 ' (3.2-2)

Line Equations. We remark that each ray is considered to be the spacing

between two lines of radiation as illustrated in Fig, 3-2. From Fig. 3-2,

it follows that for a specified 0, the equations to the line are as ‘follows:
L
X, = (% -0.5); for 8=0

and

x> = -x"l cot8 + ((£-0.5)/k)); for 0<0<90 (3.2-3)

[3
2
wheret =0, 1,2,. . .,(Rg+1), X and X, are variables which denote the image
coordinéte system and ¢ denotes the g-th line. In Fig. 3-2 we observe that
the center of the ray #0 is always considered to pass through the point (0,0).

For the purposes of illustration, the projection data for the case N=4 and

projection angle B=tan'1(1/2), i,e. k1=1 and k2=2 is shown in Fig. 2-4,
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Pertaining to line equations.
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3.3. Simulation of Projection Data

The simulation of the projection data for a discrete NxN image at
different projection angles can be performed by using the line equations in
Eq. (3.2-3). Since the projection is the summation of densities contained
within the ray, it is straightforward to compute the densities which are
contained within a particular ray by computing the densities contained
within two adjacent lines. The basic idea used for computing the desired
densities is best explained by means of the following steps.
Step 1l: Consider the initial density value X(ml,mzj to be X(0,0)
Step 2: Consider the initial value of % to be equal to -1.
Step 3: Increment the value of £

Step 4: Compute the value of x% using Eq. (3.4-1) and xizml

Step 5: Compare the value of xz and m,

Step 6: If the value of m, is more than xé then Go to step 3 otherwise go

1
to step 7.

Step 7: As the value of my is less than or equal to xg, assign the density
value x(ml,mzj to the (2 -1)-th ray.

Step 8: Consider the density value of X(ml,mzj in the same row and the next
column.

Step 9: Consider the initial value of ¢ to be (g -1) which had satisfied
the condition in step 7.

Step 10:Go to step 3 until all the columns are computed for that row.

Step 1l:Consider the density value of x(ml,mz) from the next row and
column #0.

Step 12:Increment the initial value of % in step 2 and consider that as a

new initial value in step 2; then repeat this process until all the

rows of the image have been considered.
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The above steps are conveniently summarized in Fig, 3-3, For example,

let us consider the particular case N=4, k1=1, k.=2 and X(1,1). By using

2
the line equations in Eq.(3.2-3) we obtain

0
> = 0,8, %5 = 0.5, xg

2
= -1-5, X 2

1
= -2.5, x 2

3 2

= 1,5 (3.5-1)

As we compare the value of my = 1 with different values of x%, which are

2!
given in Eq.(1), then it is observed that the value of my is larger than x;

i

up to 2£=3, However, for & =4, the value of my =.1 is smaller than x
X(1,1) kelongs to the 3-rd ray which is apparent from Fig. 2-4.

The above steps are implemented using Fortran as the programming
language. The corresponding computer program subroutine PROJ is given in
Appendix 3-1. The above technique is more general and can be used to
implement the continuous case. However, there is another technique which
is much faster in computation than the above technique, but it is restricted
only for the discrete case. fhis technique uses an important property of
the projection, which follows from section 2-4. It implies that the
projection Pg(s) at a particular angle & is merely a summation of densities
X(ml,mzj for the values of my and my which satisfy the relation klm1+k2m2=s,
s=0,1,...,(N9-1J, where (kl,kz) is the critical grid point associated with
projection angle 8. Hence the projection data is computed by using simple
DO LOOPS. The corresponding computer program subroutine, PROJI1, implemented
using Fortran as the programming language, is given in Appendix 3-2. Also,
the Fortran program which implements the entire 3N/2-reconstruction algorithm
is given in Appendix 3-3, This corresponding algorithm logic is summarized
in Fig. 3-4. |

For the purposes of illustration, we consider as the input data to

the program in Appendix 3.3, for the 8x8 image given in Table 3-1. Then
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the required angles, critical grid points, éorresponding projections, and
related 1-dimensional DFT coefficients are as summarized in Table 3.2.
Again, the 2-dimensional coefficients which are obtained from the
above l-dimensional projection are given in Table 3.3. Also, the inverse
2-dimensional DFT of this 2-dimensional coefficients are given in Table 3.4,
from which it is apparent that reconstructed image is exactly the same as

the original image given in Table 3.1,



TABLE 3.1

INPUT DENSITIES OF AN 8%8 IMACE:

5.00
15.00
16.00
15.00
14.00

6.00
16.00

5.00

5.00
16.00
16.00
15.00
15.00
14.C0
14.00

5.0C

5.00
15.00
15.00
16.C0
16.00
15.C0

15.00

4. 00
16.€C0
7.00
15.C0Q

15.00

36

6.00
5. 00
4.05‘
4.00
5.00
5.00
6. 00

6.00
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TABLE 3.2

1. PROJECTICN ANGLE:SC.00
CRITICAL GRID POINT (K1,K2):
PROJECTICM:

40. 83. 73. 79. 8C. 61.
1-DFT OF FRCJECTION:

8.56+JC. 0 -C.67-J0.44

~0.C6+J0.0 ~Ce58+JC. 62

2-DFT GRID PINTS:

(1, 0)
19. b53.
-0.50-J0.19 -0.58-J0.62
'0.50"'\’0. 19 —0-67"‘\’0-44

{ Gy 0)sl 1y O)s( 24 C)ol 3y O)gl 44 O}yl S5y O)s( 64 0)s( 74 O),

2. PRCJECTICN ANGLE:45.00
CRITICAL CRID POINT (Kl,K2):
PROJECTICN:

Se¢ 20. 37. 50. €5« 55

15. 21. be
1-DFT CF PRCJECTICN:

8.56+J0.0 -C.€2+J0.51

-0.C6+J0.0 -0.31+J0.11

2-DFT GRID PINTS:

( 1, 1).

75« T1l. 45. 40. 24. 19.

-0.15+J0.06 -0.31-J0.11

-0.19-J0.06 -0.62-J0.51

( 0, 0,1( 1, 1).:(0 2 2,'( 3y 3)y( 4, 4),( 5, 5):( &, 6)4( Ty 1)y



TABLE 3.2 (CCNT.}

3. PROJECTION ANGLE:2€.57

CRITICAL GRID PCINT (Kl,K2)}: (1, 2)

PROJECTICN:
5. 15. 2l. 31. 35. 36.
30, 21. 21. 19. 13. 1l4.
1-OFT OF PROJECTION:
8.56+J0.0 -0.13-J0.09
~0.C6+J0.0 ~C.224J0.13
2-DFT GRID PINTS:

50a

10.

51l 42. 4l.

20. 6e 6.

-0.16+J0.16

.=0.16-J0.16

38

39. 22.

—0.22—J0.13

-0.13+40.09

{ Cy 0)9( 1g 2)9l 29 4)g( 35, 6)s{ 45 0)ol 54 2140 65 4)9{ 74y 6},

4., FRCJECTICN ANCLE:z18.43
CRITICAL GRID PCINT (K1.K2}3
PROJECTION:

5 15. 16. 20. 30. 22.

35. 28. 9. 24. 15. 12.

9. 20. 5. 6. 6.
1-DFY OF PROJECTION:
8.56+J0.0 -0.12-J0.34

-0.06+J0.0 -Ce60-J40.07

2-DFT GRIC PINTS:

0.09—J0.22
0.09+J0.22

37. 22.

15. Se

-0.60+J0007

-0.124J0.34%4

( Oy 0)sC 1y 3290 25 6150 35 1130 49 4Dl 59 Thel 65 2)9( Ty 51,
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TABLE 3.2 (CCNT.)

5. FRCJECTICN ANGLE:14.04
CRITICAL GRID PCINT (K1,K2): (. 1, 4)
"PRCJECT ION:
S. 15. 16. 15. 19. 22. 32. 20. 20. 29. 29. 21.
20. 21. 22. 22. 2C. 1]1. 18. 1C6. 10. 1ll. 1ll1l. 10.
10 10. Se 9. 11. 10. 9. 19. 5. Ee 6o €.
1-DFT OF PRCJECTICN:
8.56+J0.0 0.C7+J0.CS -C.5C-JC.15 -0s C7T+J0.22
-0.C6+J0.0 -0.07-J0.22 -0.50+J0.19 0.C7-J0.09
2-DFT GRID PINTS:

( Oy O)s( 1y 4)90 24 0)a( 39 4)s0 4y 0)y{ Sy 4)s( €4 Q)sl Ty 4)y

6. PRCJECTICN ANGLE:11.31
CRITICAL CRID PCINT (K1,K2): ( 1, 5)
PROJECTICN: |

5. 15. 16. 15. 14, 11. 322. 21. 15. 15. 19. 29.

20. 16. 16. 19. 31. 1l4. 15. 15. 1:0. 20. 9e 5.

5 1l. 10. 11l. . 5. 10. S. 10. 4. 5 1l.

10. 19. 4e Se Se 6. 6.
1-DF T OF PROJECTICN:

8.56+JC.0 © =0.12-J0.18 -C.19+J0.C¢ 0.50-J0.18
-0.06+J0.0 0.50+J0.18 ‘ -0.19-J0.06 -0.12+4J0.18
2-0DFT GRID PINTS:

{ O O)sgl 1y 5150 25 2)40 3, T)s( 4y 4)sl Sy 1140 &9 6190 Ty 3),
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TABLE 3.2 (CCNT.)

7. PROJECTION ANGLE: S.46

CRITICAL GRID PCINT (K1,K2):

PROJECTICN:

5. 15. 1l6. 15. 1l4. 6.
19. 20. 15. 16. 16. 15.
19. 11. 4. 5. Se 6,
9. 1¢C. 5. e 5. 56
6. 6.

1-DFT CF PROJECTICN:
8.56+40.0 0.12-J0.34
~0.C6+40.0 Ge34+J0.37
2-CFT GRID PINTS:
{ 09 O)gl 1s 615 25 4)4( 3,

8. FRCJECTICN ANGLE: E£.13

1, 6}
21,
19.
10.

11.

2) 40 4

CRITICAL GRID PCINT (Kl,K2): ( 14 7}

PROJECTION:
5. 15« 16« 15. l4. 6.
l4. 14. 10. 15. 15. 16.
15 15. S. 1l4. 10. 6.
5 €« Se 5¢ 5. 4o
5. 2l. S. 4o 4. 5.

l-DfT OF PRCJECTICN:

8.56+J0.0 0.25-J0.90
-0,06+J0.0 —C.1C+J0.56
2-DFT GRID PINTS:

( 0y 0)s( Ly TloC 24 6}y 3¢

16.
16.

4a
10.

5.

S5kel 4

21, 1l6. 15. 1E. 14.
23 Te 15. 15. 5
1C. 6o S5e Se 5.
20. 4. 4o Se 5.
0.16+J0.16 0.34-J0.37
Cel6—-J0e16 0.12+J0.34%

1 0o 54 6)4( 64 4}y Ty 2),

10. 16. 16. 15. 15.
15. 15. 1l. 16. 7.

€& 5. 6. 5. 1C.

S« 5. 4o Se. Se

6. 6. |
0.09-J0.22 -0.10-J0.56
0.09+40.22 0 25+J04 90

v 4)el 59 31 el 69 2)20 T4 1),
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TABLE 3.2 (CONT.)

S. PROJECTICN ANCLE: C.O
CRITICAL CRID POINT (K1,K2):
FROJECTICA:

S2. 1CC. 104. 8l. 4l. 4C.
1-DFT OF FRCJECTICN:

8.56+J0.0 1.02-J1.96

0.38+J0.0 C.58+JC. 25

2-DFT GRID PINTS:

( Cy

49,

1)

41.
- =0431-J0.28 «£8-J0.25
-0.31+JC.28 1.02+J1.96

{ 0y 0)s( Gy 1)3( Qg 2)4( Oy 3)e( Cy 4]_!( Oy 51 4( 0y 619 04 T),

10 PRCJECTICN ANCLE:€3.43
CRITICAL GRID POINT (K1l,K2):
PROJECTICNS
S5e 5 20. 20. 36. 37.
40. 28. 31l. 29« 1l7. 1l4.
1-DFT CF PROJECTICN:
8.56+J40.0 -C.67+J0.20
0.38+J0.0 -0.27+J0.11

2-DFT GRID PINTS:

( 2,

41.

10.

1)

33. 39. 4l. 32. 38.

11. 15. Ce

0.28+J0.0 ~0.27-J0.11
0-28+J0 .0 ""0.67"‘-’0.20

{ Op 0Yg( 24 1)9( 4y 2340 64 31y Oy 4Dy 25 5}l 4y 6)4l 64 Ty
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TABLE 3.2 (CCAT.)

11. PROJECTION ANGLE:7E.S6
CRITICAL GRID PGINT (Kl,K2): ( 4, 1)
PROJECTICN:

S5e S5e 5e 4, 2C. 21. 20. 22. 22. 21. 20. 12.
19, 21 21. 19. 19. 20. 20. 19. 1l. 19. 20. 10.

22. 19. 20. 19. 1C. 9. 12. 1l. Se 5. 15. 6.
1-DFT CF PRCJECTICA:

8.56+J0.0 0.23-J0.09 -0.31-J0.28 0.18+J0.13

0.38+J0.0 0.18-J0.13 -0.31+J0.28 0. 23+J0.09
2-DFT GRID PINTS:

( Oy O)s( 4y 1)el Oy 2)9( 44 3)e( C, 4) 40 449 S) sl Og 6)4( 44 T},

12+ PROJECTICN ANGLE:8C.5%
CRITICAL GRID POINY (Kl,K2): ( 64 1)
PROJECTICN=
Se Se S5e 4e 5. 5. 20. 22. 15« 16. 6e 5.
21. 21. 15. T. 4. 6. 20. 19. 1l6. 15. 5. Se
18 1S. 16. 15. 5. 5. 11. 19« 15. S5e 6. S5e
21. 1S, 15. 1l4. Se 4;' lﬁ. 11. 1. S5e S5« S5e
15. 6.
1-DFT OF PRCJECTICN:
8.56+J0.0 0.C8+J0.37 0.28+J0.C -0.01+J0.12
0.38+J0.0 . =0.01-J0.12 0.28+J0.0 0.C8-J0.37
2-DFT GRID PINTS:
{ 0y O)sl 645 1)yl 4y 2)4( 24 3)e0 Oy 4)el €3 5)ol 4y 6)9( 24 T,



TABLE 3.3

L3

2-DFT CCEFFICIENTS CBTAINED VIA 1-OFTCF PROJECTICNS:

8.56+J0.0
-0.06+JC.0

1.02'J1.96
0.23-J0.C9

~0.31-J0.28
0.28+J0.0

0.58-JC.25
0.18+J0.13

0.28+J0.0C
=0.06+J0.0

0.58+J0.25
0-18’J0-13

-0.31+JC.28
0.28+J0.0

1.02+J1.96
0.23+J0.CS

“0.67~J0.44%
~0.58+JC.62

-0.62+J0.51
C.50+JC.18

“0-13'J0-09
‘0022+J0013

~0.12~J0.34%
-0.10+J0.56

0.C7+J0.09
-0.07~J0.22

-0.12*J0-18
-0.21+J0.11

0.12~J0.34%4
0.34+J0.37

0.25-J0.90
-Ce6C~J0.07

.‘0.50‘J0¢19
.-0050+JG.19

-0.67+J0.20
0.C8+J0.37

-0019+J0¢06
0.09+40.22

“0.01+J0.12
-0.27-J0.11

.‘0.16+J0¢16

”0016_J0-16

._0027+J0¢11

-0.01-J0.12

1 0.09-J0.22

- ~0e16-J0.C6

0.08-J0037

.=0.67-J0.20

-0.58-J0.62
=0.67T+J0.44

-0.60+J0.07
0.25+J0.90

0.34-J0.37
0.12+J0 .34

-0.31-J0.11
-0.12+J0.18

-0.07+J0.22
OQOT-JUOOQ

-0.10-J0.56
‘0-12+J0-34

-0.22~-40.13
~0.13+J0.09

0.50-J0.18
-0.62-J0.51



- TABLE 3.4

RECONSTRECTED DENSITIES FOR AN 8*8 IIMAGL:

5.C0 5.00 5.C0 4,00 5.00 5.00 5.00 6.00
16.00 16.00 15.00 7.00 4,00 6.00 5.00 4,00

15.0G0 15.00 16.C0 15.00 5. CC 5.CC 4. 00 4.00

14.00 15.00 16 .00 15.00 5.C0 5.00 500 5.00
6.00 14.00 15.C0 5.00 €.C0O %.00 5.00 5.00
16.00 14.00 15.CC 14.0C 5.C0 4.00 S5« 00 6. 00

5.00 5.C0 7.00 5.00 5.00 5.00 15.00 6.00
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CHAPTER IV
CONCLUSIONS AND RECOMMENDATIONS

4,1, Conclusions

lThe main results presented in this research study pertain to the
reconstruction of noiseless, bandlimited digital images from their projec-
tions, using a Fourier approach. It has been shown that an (NxN) image can
be reconstructed from either a set of 3N/2 projections, or a gingle projec-
tion, without resorting to any tedious computational techniques. The result
pertaining to the 3N/2 projections is in agreement with a conjecture by
Mersereau which states that exact reconstruction should be possible when the
number of projections is in the order of N/2 [3]. Again, the single projec-
tion result is consistent with the one projection theorem developed by
Mersereau [3]. However, in this case it is shown that a particular projection
yields projection data which corresponds to the rows of the given image
arranged in lexicographical order., As a consequencé, the resulting recon-
struction algorithm requires no tedious calculations, as is the case with
the one projection theorem approach [3]. It is equivalent to the conven-
tional algorithm for computing the 2-dimensional DFT using 2N applications
of a 1-dimensional FFT of size N, where the corresponding algorithm is
derived via a matrix Kronecker product formulation.

It is important to note that the 3N/2 projection reconstruction
formulation presented in this study differs from previous formulations in
two respects:

(i) The projection angle 9=tan'1(k1/k2) is a function of frequency

numbers k, and k,. In previous attempts 6 was independent of
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k1 and kz.

(ii) The ray width is also the function of frequency numbers kl and
k2 [see Eq.(3.2-1)]; again, in previous studies ray width was
independent of kg and Koy though it was dependent on € in some
cases.

Examination of Eq.(2.5-4) reveals that the subset of projection

angles given by
8 = tan™'(k,/k,) (4.1-1)

wherek1 = 1 and k2 =m, m=0,1,...,(N-1) becomes smaller with increasing N.
Clearly, this could lead to the situation where the difference between
successive projection angles is too small and unrealizable in practice,
In such cases a search for a more suitable critical set is suggested, as
illustrated for the (8x8) case in Fig. 4-1. Figure 4-1(a) shows the critical
set which is obtained directly from Eq.(2.5-4), along with the corresponding
differences between successive 8. However, if we consider the alternate
critical set

(0,1), (1,1), (1,2), (1,3, (3,4), (1,5),

(3,2), (1,7, (1,0}, (1,2), (4,1), (6,1) (4.1-2)
we observe that the corresponding differences between successive @ are some-
what higher, as sﬁmmarized in Fig. 4-1(b). We remark that the above
alternate critical set is obtained by replacing the critical grid points
(1,4) and (1,6) in Fig. 4-1(a) by congruence

(3,4)

and (3,2)

(3x1(mod 8), 3x4(mod 8))

(3x1(mod 8), 3x6(mod 8)) respectively.
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Critical gridpoints

(k)

4-1.

(0,1)
(1,7)
(1,6)
(1,5)
(1,4)
(1,3)
(1,2)
(1,1)
(2,1)
(4,1)
(6,1)
(1,0)

(0,1)
(1,7)
(1,5)
(1,3)
(1,2)
(3,4)
(1,1)
(3,2)
(2,1)
(4,1)
(6,1)
(1,0)

Projection angles

0 = fan'l(kllk

(a)

(b)

0.0

8,13

9.46
11:81
14,04
18.43
26.56
45,00
63.43
75.96
80.53
80.00

0.0

8.13
11,31
18.43
26.56
36.87
45,00
56.31
63.43
25,96
80.53
90.00

2)
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Differences

8.13
1.33
1,85
2,73
4,39
8.13
18.44
18,43
12,53
4,57
9.47

8.13
3.18
7.12
8.13
10,31
8.13
11.31
7.12
12.53
4.57
9.47

Critical grid points, associated projection angles, and
differences between two successive projection angles for

N

= 8.
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4.2, Recommendations for Further Investigation

There are at least three problems that deserve to be investigated in
~ connection with the 3N/2-Reconstruction Algorithm., These problems can be
summarized as follows:
(i) The present analysis has been restricted to noiseless digital images.
An attempt to extend the analysis to the noisy case would be beneficial. A
basic problem one encounters in such an extension is that related to the
estimation of certain 2-dimensional DFT coefficients which result from more

than one projection. In the noiseless case, such coefficients pose no

problem since their values are the same regardless of the projection angle,
However, when noise is present, their values will depend on ‘6, and will hence
have to be evaluated via an appropriate estimation technique.

(ii) In the above formulation, éarallelirays are assumed, However, in cases
where the distance between the radiation source and the object is not suffi-
ciently large, a fan beam is obtained rather than a parallel beam, In such
cases it would be necessary to suitably modify the 3N/2-Reconstruction
Algorithm so as to be able to handle the fan beam situation,

(1ii) In the area of transform coding of images, the 2-dimensional DFT of
an (NxN) image block is typically computed via 2N successive applications of
a 1-dimensional FFT. This results in a set of N2 transform components of
which a function is selected for coding purposes, and the remaining are
discarded. It is plausible that a small set of projections can be used to
directly compute the desired subset of N? transform components, as opposed

to first computing the entire set of N? transform components and then

selecting the desired subset,
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APPENDIX 3.1

SUBROUTINE PRCJ(XyPRyNLyN)

THIS SURROUTINE CALCULATES THE PROJECTICN FCR YHE GIVEN
CRITICAL GRID POINT (Kl,K2)

DIMENSICN X(64464),PR(1)
COMMGN K1,K2

CALCULATE # CF RADIATICN LINES

KL=(K1+K2}*(N-1)+2

DO 11 I=1,NL

PR(I)=0.

NCO=0

IF(K1.EQ.0) GC TO 100

CALCULATES THE PRCJECTICN FOR OKTHETA=<9C.

DO 12 M1l=1,N
NS=NC+1
X2=FLCAT(M1-1)
DO 13 M2=1,N

© X1=FLCAT(M2-1)

14
113
13

12

100

19
118
18

17

DO 14 L=NS,sNL
X2C=(FLOAT(L-1)-.5-(FLOAT(K2)*X1))/FLOAT(K1)

IF(X2C.LT.X2) GO 7O 14

PR(L=1}=FR{L-1)+X(ML,M2)
G0 TC 113

CONTINUE

NS=L

CONTINUE

NO=NO+1

CCATINUE

RETURN

CALCULATES THE PROJECTICN FOR THETA=0

DO 17 M2=1,N

NS=NC+1
X1=FLCAT{M2-1)

DO 18 M1=1,N

DO 19 L=NSyNL
X1C=FLOAT(L-1)-.5
IF(X1CeLT.X1L)CC TO 19
PR{L~-1)=PRIL-1)+X(N1,M2)
GO TO 118

CONTINUE

NS=L

CONTINUE

NO=NC+1

CONTINUE

RETURN

TIRT ™
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APPENDIX 3.2

SUBRCUTINE PRCJ1 {XyPRyN,yNL)

THIS SUBROUTINE CCMPUTES THE PROJECTION DATA OF AN (NXN)
DIGITAL IMAGE FOR A GIVEN VALUE CF CRITICAL GRID POINT (K1,K2)

DIMENSION X(&44€4)4PR(1)
COMMCN K1l,K2
NL=(K1+K2)*(N-1}+1

0O 10 I=1,NL
PR{I)=C.0

DO 11 M1=1,.N

DG 12 M2=1,N :
KK=K1*(M1-1)}+K2¥(VMZ2-1)
KK=KK+1
PRIKK)=PR(KK)+X (N1 M2)
CONTINUE

RETURN

END



GO0

AAG OO0 OO0 OO0 ¥ e Xq

11
|
2

12
14
15
16

54
APPENDIX 2.3

THIS PROGRAM INPLEMENTS THE 3N/2 - RECCNSTRUCTION ALGORITHM

DINMENSION D(64+64) AINM(64)

DIMENSION RE(&4),PR(4096)

INTEGER*2 IND1(64),IND2{€4)

COMPLEX X(40S6)+Y(4096) yCX(64964)sCMPLX
EQUIVALENCE (Y(1),CX{1,41))

CGFMCN K1,K2

INTEGER*2 JPS/'+Jv/,INS/'=JV/

INTEGER®2 JS(&4)

READ 114Ny ((C{14J)9J=14N)sI=1,4N)
FORMAT(IZ/(16F2.0))

PRINT 1

FORMAT(Y1Y 3/ //4(" V,36X,*TABLE 3.1'))

PRINT 25((D(I5d)3J=1,N}yI=1,N)
FORMAT(®0',13X,* INPUT DENSITIES OF AN 8%8 IMAGE:',//,
X{10%,10%,8F842)) ' ’
NN=N*N

NP=3%N/2

MCON=C

CO 100 IF=1,NP

CALCULATE THE PRCJECTICN ANGLE AND CRITICAL GRID PCINT
CALL CRGRIC(IP,ANG,N)

-CALCULATE THE PFGJECTIGN

CALL PROJ(DyPRyNL4NI

CALCULATE THE SMALLEST INTEGER # OF THE CRDER OF 2%xK ,
EQUAL TO CR GREATER THAN NL

CALL POWERZ2(N NL4PRyNT,X)

CALCULATE THE 1-DFT OF PRUQECTICN VECTCR USING FFT ALGORITHM
CALL FFT(XeNT40+NN)

CALCULATE THE N 2-DFT COEFFICIENT

CALL THOOFT(N,ANT¢XsCXsINC1,IND2)

MCCh=1-MCON

IF{MCCN.EQ.1) PRINT 13

FORMATIT1"y//4(" '436X,'TABLE 3.2 (CCNT.)'}}

PRINT 14,1FsANG

FORMAT (*'-'413X,124'. '4y'PRCJECTICN ANGLE:',F5.2)

PRINT 154K1,K2

FORMAT('0"' 413X, 'CRITICAL GRIC POINT (K14K2): (V4124%9%912,%1")
PRINT 164(PR{I)sI=14KL)

FORMAT('0'y 13X, *"PRCJECTION:=*/('C",12Xs12F5.())
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NJ=NT/N
00 31 I=1,N 55
31 JS(I)=JNS
KK=0C
DO 33 I=1sNT,NJ
KK=KK+1
RE(KK)=REAL(X(I))
ATM(KK)=ATMAG(X{ 1))
IF{AIM{KK) «GE o0« )JS (KK)}=JPS
33 ATM(KK)=ABS(AIN(KK))
PRINT 35, (RECI)yJSII)AIM{I) 9I=1,N)
35 FORMAT('0' 313X,"'1-DFT CF PROJECTICNz '/
X(101, 14Xy 4(F5azsA2sFba2€X)))
PRINT 23, (INDL(I),IND2(I},I=14N)

23 FORMAT(90Y 413X ,'2-DFT GRID PINTS "4/ (0% 414X, 8(*(¥412,4%,%,12

X9') ' % ')}
100 CCATINUE
PRINT 18
18 FORMAT('1'4///+(" '$36%,'TABLE 3.37))
PRINT 41
41 FORMAT('-',13X,'2-DFT COEFFICIENTS GBTAINED VIA 1-DFT*,
X'0F PRCJECTIONS:')
J2=C
D0 43 I=1,N
J1=J2+1
J2=J2+N
CO 44 J=1,N
44 JS(J)=JNS
KK=0
DO 45 J=J1,J2
KK=KK+1
RE(KK)=REAL(Y(J))
AIM(KK)=AIMAG(Y(J))
IF(ATM(KK) .GE.Q4)JS(KK)=JPS
45 AIN(KK)=ABS(AIM{KK]])
PRINT 464 (RE{J)sJS(J),AIM(IY 4J=1,N)
46 FORMAT('=" 414X 14 (F5.2,A2,F4.295X)9/,
X15X;4(F5.24A29F4.2+5X))
43 CCNTINUE

CALCULATE THE 2-DIMENSIONAL INVERS DFT USING IFFT

CALL I2DFT(Y,N)
PRINT 40

40 FORMAT(VLY o/ //+(" Y436Xs'TABLE 3.4'))
PRINT 19

19 FORMAT('—*,13X,*RECONSTRECTEC DENSITIES FOR AN 8x*8 IMAGE:")

DO 20 I=1,4N

Ji1=({I-1)3N+1

J2=1*%N

KK=(C

DO 24 J=J1l,J42

KK=KK+1
24 RE(KK)=REAL(Y(J})

PRINT 21+(RE(J)yd=1,4N)
21 FORMAT ('0',10X,8F8.2)
20 CONTINUE

STCP

END
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SUBRCUTINE CRCRIC(IP,ANG,4N]} o8

COFMON K1lsK2

THIS SUBROUTINE CALCULATES THE CRITICAL GRID POINT AND
RELATED ANGLE THETA

IF(IP.GT«N) GC TG 1
Kl=1

K2=1P-1"
IF(K2.EQ.0} GC TC 3
GC TC 2

K2=1

Ki=(IP-N-1}%*2
ANG=ATAN(FLOAT(K1)/FLOAT(K2))
ANG=ANG*180./P1
RETURN

ANG=90.

RETURN

ENC

SUBROUTINE FFT({XsN,INVyM1} .
THIS PROGRAM INPLEMENTS THE FFT ALGORITHM TQ COMPUTE THE
DISCRETE FCURIER COEFFICIENTS CF DATA SEQUENCE CGF N POINTS

COMPLEX X(1)4WsT CMPLX
CALCULATE THE # OF ITERATIONS (LGG. K TO THE BASE 2e)

ITER=C

IREN=N

IREM=IREM/2

IF (IREM.EQ.0) GG TO 20
ITER=ITER+1

GO TC 10

20

CONT INUE

SIGh=-1.

IF (INV.EQ.1) SIGN=1l.
NXF2=N

DO 50 IT=1,ITER

COMPUTATICN FOR EACH ITERATICN
NXP: NUMBER CF POINTS IN A PARTITION
NXP2: NXP/2

NXP=NXP2

NXP2=NXP/2 .
WPWR=3.141592/FLOAT{NXP2])
DO 40 M=1,NXP2

CALCULATE THE MULTIPLIER
ARC=FLOAT(M-1)*WPWR

wW=CMFLX(COS(ARG) ySIGN®SIN(ARC))
DO 40 MXP=NKXP4NshXP
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40
50

55
60

65

70
4D
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COMPUTATION  FGR EACH PARTITICN

JL=VXF=NXP+M
J2=J1+NXP2
T=X(J1)-XtJ2)
X{JLI=X(J1)+X(J2}
X(J2)=T*h

CCNT INUE

UNSCRAMBLE THE BIT-REVERSED CFT COEFFS.

N2=N/2

N1=N-1

J=1

DO €5 I=1,4N1
IF(1.CE.J) GO TO 55
T=X(J)

X(J)=X(1)

X(1=1

K=NK2 ,
IF(K.GE«J} GC 10 ¢5
J=J-K

K=Kk/2

GO T0 60

J=J+K

IF (INV.EQ.l) CO TC 75
DO 70 1=1,4N
X(I1)=X(1}/FLOAT(M1)
CCNTINUE

RETURN

END

SUBROUTINE POWER2(N,NLsPRyNT4X)

THIS SUBROUTINE CALCULATES THE SMALLEST INTECER
OF POWER 2,WHICH IS GREATER THAN OR EQUAL TC # CF

ELENEMNTS IN PRCJECTICN VECTOFR

DIMENSICN PR(1)
CCNMPLEX X(1),CNMPLX
NL=NL-1

DO 12 I=1,NL
X(1)=CMPLX(PR(I)C.0)
NT=N

IF(NL.LE.NT) CO TO 3
NT=NT*2

GO TO 2

IF(NL.EQ.NT) GC TC 5
NN=NL+1

DO 13 I=NNy¢NT
X(1)=0.

RETURN

END

SUBROUTINE TWODFT{N,NT,X,CX,IND1,IND2)

57
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50

THIS SUBROUTINE CALCULATES THE N 2-DINMENSICNAL GRIO POJNTS

ASSOCIATED WITH CRITICAL GRIC PGINT (K1,Kk2)

INTEGER*2 IND1(1),IND2(1)
CCHPLEX CX(NyN)yX(1l},CMPLX
CCMFON Kl,K2

DO 14 I=14N

INDXLl=K1*(I-1)
INDX2=K2%(I-1]}
IF(INDX1.LT.N) GO TO 1
INDX1=INDX1-N

GO TC 2

IF(INCX2.LT.N)GO TO 3
INDX2=INDX2-N

GO TO 1

CX(INDXL+1, INOX2+41)=X(((I-1)3NT/N}+1)
INC1(I)=INDX1
INC2(I}=1INDX2

CCNTINUE

RETURN

END

SURROUTINE I2DFT(X.N}

THIS SUBROUTINE COMPUTES THE INVERS 2-CFT OF THE
2- DIMENSIONAL DISCRETE FCURIER COEFFICIENTS
OF AN (NXN) ARRAY

COMPLEX X(1),MLLT(32)
NH=N/2

CALL WPOWER(MULT 4NH,1)
LOG2N=L0G2(N)

DO 100 ID=1,2

CALL CNEDT({X4NyLCG2N4MULT)
CALL SHFLNN(XsN)

CCANTINUE

RETURN

END

SUBROUTINE ONEDT(XsNyLCG2N,MULT)
COMPLEX X{1),MLLT(1)

IND==h+1

DO 5C Ih=1,4N

INC=IND+N

CALL IFFTCX(INC) 4NysLCG2N,MLLT)
CONTINUE

RETURN

END

SUBRCUT INE SHFLNN(X,N)
CCMPLEX X(1) .7

Nl=NK-1

DO 50 IN=1,N1

INI=IN+1



20
50

10

15

30
25

40
50

55
60

65

I12=Th*N
I1=]12-N+IN1
J=11+N1

DO 20 I=I1,12
T=X(1)

X(I)=X(J)

X(J)=T1

J=J+N

CCATINUE

RETURN

END

FUNCTICN LCG2(N)
L0G2=0

N2=N

N2=N2/2
IF(N2.EQ.0) GC TC 15
LCE2=L0G2+1

GO TC€ 10

RETURN

ENC

SUBROUTINE IFFT(XyNyNITER,NULT]
COMPLEX X{L)sMULT(L1),W,T
NXP2=N

INC=1

DC 50 1T=1,NITER
NXP=NXP2
NXF2=NXP2/2

1P=1

DO 40 M=1,NXP2
IF{M.NE.1) GG TO 30
W=(1l.y0.)

GO TO 35

IP=1F+4INC
W=MULT(IP)

CONT INUE

DO 40 MXP=NXPsNsNXP
J1=MXP=-NXP+M
J2=J1+RXP2
T=X(J1)-X(J2)
X(J1li=X{J1l}+XEJd2)
X(J2)=W*T

INC =IND+IND
CONTINUE

hN2=N/2

N1l=N~1

J=1

DO 65 I=1,N1
IF(I.GE.J)} GC TC 55
T=X(J)

X{J)=x(I}

X(1)}=T

K=N2

IF(K.GE.J} GC TO &5

S J=J-K

K=K/2
GO TC 60
J=J+K

59
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RETURN
END

SUBRCUTINE WPCWER{W4¢Ny INV)
COMPLEX W(1),CMPLX
“(1,=(l¢,0-,
PI=4.%ATAN(1l.)
ARGLl=PI/FLOAT(N)

SICh=-1.

IF(INV.EQs 1) SIGh=1l.

DO 10 I=24N
ARG2=ARG1*(I-1)
W({I)=CMPLX(COS(ARG2) ySIGN*SIN{ARG2))
RETURN

END
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The problem of reconstructing 3-dimensional objects from a set of

- 2-dimensional projected images is of great iﬁportance in fields ranging from
medicine to radio astronomy. There has been a long-standing interest in
this problem and a number of different techniques have been proposed. In
this thesis, a 3N/2-Reconstruction Algorithm has been presented. The
algorithm uses 3N/2 projection angles for an exact reconstruction of an
(NxN) noiseless bandlimited digital image. Again, it is also shown that

the exact reconstruction of an (NxN) digital image can be carried out using
a single projection without resorting to any tedious computational techniques.
Corresponding computer programs which enable one to generate projection data
and reconstruct images via the 3N/2-Reconstruction Algorithm are also

included.



