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ABSTRACT

We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS)
relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the
final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift
of Zjow, = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of
Zemass = 0.57. From the power spectrum monopole and quadrupole moments around the
LOS, we measure the growth of structure parameter f times the amplitude of dark matter
density fluctuations o g by modelling the redshift-space distortion signal. When the geometrical
Alcock—Paczynski effect is also constrained from the same data, we find joint constraints on
fos, the product of the Hubble constant and the comoving sound horizon at the baryon-
drag epoch H(z)rs(zq), and the angular distance parameter divided by the sound horizon
Da(2)/rs(za). We find fiZiowz)08(2iowz) = 0.394 £ 0.062, Da(ziowz)/1s(za) = 6.35 £ 0.19,
H (Ziow,)7s(zq) = (11.41 £ 0.56) 10° km s~' for the LOWZ sample, and f(Zcmass )0 8(Zemass) =
0.444 £ 0.038, DA(Zemass)/7s(za) = 9.42 £ 0.15, H (Zemass)7s(za) = (13.92 4 0.44) 10° km s
for the CMASS sample. We find general agreement with previous BOSS DR11 measurements.
Assuming the Hubble parameter and angular distance parameter are fixed at fiducial Acold
dark matter values, we find f(Ziowz)0 8(Z1owz) = 0.485 £ 0.044 and f(Zcmass )0 8(Zemass) = 0.436
0.022 for the LOWZ and CMASS samples, respectively.

Key words: galaxies: haloes—cosmological parameters—cosmology: theory —large-scale
structure of Universe.

1 INTRODUCTION

The large-scale distribution of matter, as observed through galaxy
clustering, encodes significant cosmological information. Much of
this can be extracted from the shape and amplitude of the galaxy
power spectrum multipole moments. The focus of this paper is the
observed anisotropic redshift-space distortions (RSD; Kaiser 1987)
caused by peculiar velocities, which contain information about how
gravity behaves at large scales and about the total matter content of
the Universe. As these distortions depend on the growth of structure,
they offer an independent and complementary technique to measure
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the matter content and to test gravity, compared to studies of the
cosmic expansion history.

In this paper, we measure the galaxy power spectrum monopole
and quadrupole moments calculated from the galaxy sample of the
Sloan Digital Sky Survey (SDSS) III (Eisenstein et al. 2011) Baryon
Oscillation Spectroscopic Survey (BOSS; Bolton et al. 2012; Daw-
son et al. 2013; Smee et al. 2013) Data Release 12 (DR12; Alam
et al. 2015a). The galaxy catalogues drawn from the final data re-
lease from BOSS, DR12, cover the largest cosmic volume ever
observed, with an effective volume Ve = 7.4 Gpc3 (Reid et al.
2016). The number of independent modes contained allows us to
observe the RSD with the highest ever significance, and use them
to set tight constraints on the growth of structure f times the ampli-
tude of primordial dark matter power spectrum o at the effective
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redshifts of z = 0.32 and 0.57. Additionally, we are able to con-
strain Da(Zesr)/7s(za) and H(Zeg)rs(za) by performing the Alcock—
Paczynski test (AP; Alcock & Paczynski 1979).

This paper forms part of an initial set of DR12 papers produced
by the BOSS galaxy clustering team. In Cuesta et al. (2016, com-
panion paper), we measure Baryon Acoustic Oscillation (BAO)
from the correlation function moments measuring the cosmolog-
ical expansion history. A complimentary approach is provided in
Gil-Marin et al. (2016, companion paper), which looks at the BAO
in power spectrum monopole and quadrupole moments, with both
papers applying an algorithm to reconstruct the primordial density
distribution. The BOSS galaxy targeting and catalogue creation al-
gorithms are presented in Reid et al. (2016), which includes an
extensive analysis of the catalogues themselves, and the methods
employed to correct for observational effects.

RSD measurements have a long history following the seminal
theoretical paper of Kaiser (1987), and the development of large
galaxy surveys. Key milestones include measurements from the
PSCz galaxy survey (Tadros et al. 1999), 2-degree Field Galaxy
Redshift Survey (Peacock et al. 2001; Hawkins et al. 2003; Percival
et al. 2004), WiggleZ (Blake et al. 2012), 6-degree Field Galaxy
Survey (Beutler et al. 2012) and the SDSS-II LRGs (Oka et al.
2014). Previous measurements made from BOSS including DR9Y,
when the survey was approximately one-third complete (Samushia
et al. 2013), and most recently from DR10/11 (Chuang et al. 2013;
Beutler et al. 2014; Reid et al. 2014; Samushia et al. 2014; Sanchez
et al. 2014; Alam et al. 2015b).

The RSD measurements made from the BOSS DR11 sample,
which are discussed further in Section 7, exhibit a scatter that is not
negligible with respect to the statistical errors. This is caused by
adopting different approaches to model quasi-linear and non-linear
behaviour in the measured clustering, beyond the linear RSD signal.
As the signal to noise increases as we move to small scales, RSD
measurements are very sensitive to the behaviour of the model on
the smallest scales fitted. It is therefore important that the model is
general enough to encompass all of the unknown behaviour, whilst
also being able to accurately model the data itself. Consequently,
a large effort on developing a model that is able to account for:
(i) mode-coupling; (ii) galaxy bias; (iii) RSD; up to quasi- and
non-linear scales is required. Some improvements have recently
been achieved on (i) beyond the linear regime for the real space
power spectrum using perturbation theory schemes. There are sev-
eral models that attempt to do this task: cosmological standard per-
turbation theory (see Bernardeau et al. 2002 and references therein),
Lagrangian perturbation theories (Hivon et al. 1995; Matsubara
2008; Carlson, White & Padmanabhan 2009; Okamura, Taruya
& Matsubara 2011; Valageas & Nishimichi 2011), time re-
normalization (Pietroni 2008; Anselmi & Pietroni 2012), Eule-
rian resumed perturbation theories (Crocce & Scoccimarro 2006;
Bernardeau, Crocce & Scoccimarro 2008; Elia et al. 2011;
Bernardeau, Crocce & Scoccimarro 2012; Taruya et al. 2012; Wang
& Szalay 2012) and closure theory (Taruya & Hiramatsu 2008).
Recent improvements in the galaxy bias model describe accurately
how the galaxies trace dark matter, including non-linear and non-
local terms (McDonald & Roy 2009; Nishimichi & Taruya 2011;
Saito et al. 2014) in addition to primordial non-Gaussian terms (Bi-
agetti et al. 2014). The final point (iii) is to accurately model the
mapping from real to redshift space statistics. Different approaches
to this problem includes: the TNS model (Taruya, Nishimichi &
Saito 2010), the Distribution function approach model (Okumura,
Seljak & Desjacques 2012; Vlah et al. 2012) and the Gaussian
streaming model (Reid & White 2011).
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In this paper, we use a resumed perturbation theory approach
(RPT) in order to describe the dark matter non-linear power spectra
components as it is described in Gil-Marin et al. (2012). We combine
this approach with the non-linear and non-local galaxy bias model
of McDonald & Roy (2009), as it was done in previous analyses
(Beutler et al. 2014; Gil-Marin et al. 2015). Finally, we account
for the RSD using the redshift space mapping presented in Taruya
et al. (2010) and Nishimichi & Taruya (2011). This modelling has
demonstrated to describe accurately the RSD for both dark matter
particles and dark matter haloes (Gil-Marin et al. 2012, 2014). Note
that in previous approaches, Beutler et al. (2014) use a different
model of RPT to describe the dark matter components and a different
k-range is considered for obtaining the best-fitting parameters. Also
in this paper, we treat f and og as a free independent parameters
during the fitting process, and is only at the end of the analysis
which we constrain fog. On the other hand, Beutler et al. (2014)
constrain fog fixing the value of o3 on the non-linear components
of the model, which do not depend on the particular combination
fxos.

This paper is organized as follows. In Section 2, we present
the description of the LOWZ and CMASS DR12 data samples
and the resources used for computing the covariance matrices and
for testing the theoretical models. In Section 3, we present the
estimator used for measuring the power spectrum multipoles. In
Section 4, the results including the best-fitting parameters and
their errors are presented. Section 5 contains information about
the theoretical models used to describe the galaxy power spectrum
multipoles in redshift space. In this section, we also include infor-
mation about how to model the AP distortions and the effect of the
survey window in the measurements. In Section 6, we present the
details about the parameter estimation, including how the covari-
ance matrices are extracted and how the best-fitting parameters and
their errors have been computed. In Section 7, we present a final
analysis of the results presented in Section 4 and how their compare
with other galaxy surveys and other BOSS analyses, as well as the
effect that changing the cosmological model has on fog. Finally, in
Section 8, we present the conclusions of this paper.

2 DATA AND MOCKS

2.1 The SDSS III BOSS data

As part of the SDSS III (Eisenstein et al. 2011), the BOSS (Dawson
etal. 2013) measured spectroscopic redshifts for more than 1 million
galaxies and over 200 000 quasars. The galaxies were selected from
multicolour SDSS imaging (Fukugita et al. 1996; Gunn et al. 1998;
Smith et al. 2002; Gunn et al. 2006; Doi et al. 2010) focusing on
the redshift range of 0.15 < z < 0.70. The galaxy survey used
two primary target algorithms, selecting samples called LOWZ,
with 361 762 galaxies in the final data release DR12 (Alam et al.
2015a) within the range 0.15 < z < 0.43 and CMASS, with 777 202
galaxies in DR12 within the range 0.43 < z <0.70. The full targeting
algorithms used and the method for calculating the galaxy and
random catalogues are presented in Reid et al. (2016), which also
shows that the samples jointly cover a large cosmic volume Vi =
7.4 Gpc® with a number density of galaxies as a function of observed
redshift, that ensures that the shot noise does not dominate at BAO
scales. Full details of the catalogues are provided in Reid et al.
(2016), and we do not replicate this here.

In order to correct for several observational artefacts in the cat-
alogues, the CMASS and LOWZ samples incorporate weights: a
redshift failure weight, w, a fibre collision weight, wy., and a
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systematic weight, wy,s (CMASS only), which combines a seeing
condition weight and a stellar weight (Ross et al. 2012; Anderson
et al. 2014; Reid et al. 2016). Hence, each galaxy target contributes
to our estimate of the target galaxy density field by

We = wsys(wrf + wie — D). (1

The redshift failure weights account for galaxies that have been ob-
served, but whose redshifts have not been measured: nearby galax-
ies, which are approximated as being ‘equivalent’ are up-weighted
to remove any bias in the resulting field. The fibre collision weight
similarly corrects for galaxies that could not be observed as there
was another target within 62 arcsec, a physical limitation of the spec-
trograph (see Ross et al. 2012 for details). The systematic weight
accounts for fluctuations in the target density caused by changes
in the observational efficiency. It is only present for the CMASS
sample, which relies on deeper imaging data, and such a weight is
not required for the brighter LOWZ sample.

Additionally, we use the standard weight to balance regions of
high and low density (Feldman, Kaiser & Peacock 1994; Beutler
et al. 2014),

wsys(r)
wsys(r) + wc(r)n(r)Pbao ’

wrgp(r) = 2
where 7 is the mean number density of galaxies and Py, is the am-
plitude of the galaxy power spectrum at the scale where the error is
minimized. We assume Py, = 10000 Mpc*A—3, which corresponds
to the amplitude of the power spectrum at scales k ~ 0.10 A Mpc ™!
(Reid et al. 2016).

2.2 The mock survey catalogues

Galaxy mock catalogues have become an essential tool in the anal-
ysis of precision cosmological data provided by galaxy surveys.
They provide a fundamental test of large-scale structure analyses
and help to determine errors on measurements. As much of the
large-scale physics can be captured using approximate methods,
we do not necessarily need to base mock catalogues on full N-
body cosmological simulations: structure formation models can be
calibrated with a small number of N-body simulations, and the pa-
rameter space studied using a more efficient scheme. In this paper,
we use mocks cerated by two different approaches: MultiDark-
Patchy BOSS DR12 mocks' (hereafter mp-parcry) (Kitaura et al.
2016, companion paper) and quick particle mesh mocks (hereafter
QpM; White, Tinker & McBride 2014). Both schemes incorporate
observational effects including the survey selection window, veto
mask and fibre collisions.

MD-ParcHy mocks rely on Augmented Lagrangian Perturba-
tion Theory formalism (Kitaura & HeB 2013), which is based
on splitting the displacement field into a long- and a short-range
component. The long-range component is computed by second-
order Lagrangian Perturbation Theory (2LPT), whereas the short-
range component is modelled using the spherical collapse ap-
proximation. The MD-ParcHy mocks use 10 combined snap-
shots at z = 0.1885, 0.2702, 0.3153, 0.3581, 0.3922, 0.4656,
0.5053, 0.5328, 0.5763, 0.6383. The underling cosmology for
these mocks has been chosen to be (25, Qn, R, 03, h, ng) =
(0.692 885, 0.307 115, 0.048, 0.8288, 0.6777, 0.96), being very
close to the best-fitting values of the last release of Planckl5 (Planck

!http://data.sdss3.org/datamodel/index-files.html
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Collaboration 2015). For this cosmological model, the sound hori-
zon at the baryon-drag redshift is r,(zq) = 147.66 Mpc.

The gpm mocks are based on low-resolution particle mesh simu-
lations that accurately reproduce the large-scale dark matter density
field, in combination with the halo occupation distribution technique
(HOD) to populate the resolved haloes with galaxies. For the opm
mocks, the snapshots are at the effective redshift of, z.; = 0.55 for
CMASS and z.r = 0.40 for LOWZ. The underling cosmology for
these mocks has been chosen to be (25, Qn, R, 03, h, ng) =
(0.71, 0.29, 0.0458, 0.80, 0.7, 0.97). For this cosmological
model, the sound horizon at the baryon-drag redshift is rs(zq) =
147.10 Mpc.

2.3 Fiducial cosmology

We have opted to analyse both mocks and data using the same cos-
mological model. The fiducial value assumed for this is ¢ = 0.31,
which is in agreement with the last Planckl5 release. As a con-
sequence, we will analyse the mocks using a value of 2, that
is different than their true values. When converting redshift into
comoving distances, this will introduce an extra anisotropy to
the one generated by the peculiar velocities. In our analysis,
this effect will be accounted by the AP scaling relations pre-
sented in Section 5.3. The rest of cosmological parameters in the
fiducial cosmology are @1 = (¢, Qfid, Qfid fid plid  pfidy —
(0.69, 0.31, 0.049, 0.8475, 0.6711, 0.9624). For this cosmology,
the sound horizon at the baryon-drag redshift is ry(zq) =
148.11 Mpc.

3 MEASURING POWER SPECTRUM MOMENTS

In order to compute the galaxy power spectrum, we start by defining
the Feldman—Kaiser—Peacock function (Feldman et al. 1994),
wrgp(r)
F(r) = =5 lwdrn(r) = any(r)l, 3)
2

where n and ng are, respectively, the observed number density of
galaxies and the number density of a synthetic catalogue Poisson
sampled with the same mask and selection function as the survey
with no other cosmological correlations. The functions w. and wgkp
were defined in equations (1) and (2), respectively. The factor « is
the ratio between the weighted number of observed galaxies over the

Ngal

random catalogue, o = Y. w./ N, where N, denotes the number
of objects in the synthetic catalogue and Ny, the number of galaxies
in the real catalogue. The factor /; normalizes the amplitude of the
observed power in accordance with its definition in a universe with

no survey selection,

L= / d&’r wlz«‘KP(nwt:)z(r)' “

Following the Yamamoto estimator (Yamamoto et al. 2006), we
define the multipole power spectrum estimator as

N7 2¢+1) d2 ikr
P\((Qna(k)= A /E {/dr]F(rl)ek !

x / dry F(ro)e 72 Lok - 72) — Phgon@®) |, (5)

where d€2; is the solid angle element, £ is the Legendre polynomial
of order £, P9 s the Poisson shot noise term,

Poisson

PO o) = (1 + ) / dr ArwA Lok - 7). ©)
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where the integral has been performed as a sum over the galaxy
catalogue. For multipoles of order £ > 0, P\ < P®, and con-
sequently, the shot noise correction is negligible. This estimator
keeps the relevant line-of-sight (LOS) information by approximat-
ing the LOS of each pair of galaxies with the LOS of one of the two
galaxies. This is a reliable approximation on the scales of interest,
which clearly improves on assuming a single fixed LOS for the
whole survey for [ > 0, but will eventually break down at very large
scales and high-order multipoles (Samushia, Branchini & Percival
2015; Yoo & Seljak 2015).

The implementation of the Yamamoto estimator is performed
using multiple FFTs (Fast Fourier Transform), each measuring
the LOS-weighted clustering along different axes as presented in
Bianchi et al. (2015). Thus, the computation of the monopole and
quadrupole can be written in terms of Nlog N processes (where N is
the number of grid-cells used to discretize the galaxy field), which
is significantly faster than performing the sum over galaxies used
in previous analyses (Beutler et al. 2014).

We use a random catalogue of number density of iis(r) = o~ '7i(r)
witha~! >~ 50. We place the LOWZ and CMASS galaxy samples on
10243 grids, of box side L, = 2300 /~' Mpc for the LOWZ galax-
ies, and L, = 3500 4! Mpc to fit the CMASS galaxies. This corre-
sponds to a grid-cell resolution of 3.42h~! Mpc for the CMASS
galaxies and 2.25h~! Mpc for the LOWZ galaxies. The funda-
mental wavelengths are therefore k; = 1.795 - 1073 AMpc~! and
2.732 - 107 hMpc~! for the CMASS and LOWZ galaxies, re-
spectively. We have checked that for k < 0.32Mpc~', doubling
the number of grid-cells per side, from 1024 to 2048, produces a
negligible change in the power spectrum, <1 per cent. This result
indicates that using 1024° grid-cells provides sufficient resolution
at the scales of interest. We apply the Cloud-in-Cells scheme to as-
sociate galaxies to grid-cells, and bin the power spectrum k-modes
in 60 bins between the fundamental frequency k¢ and a maximum
frequency of ky = 0.33 A Mpc, with width A logjo k = [logio(km)
— log0(ks)]/60.

We limit the scales fitted as follows: our procedure for deter-
mining the largest scale we use for the fitting process is based on
limiting the impact of the systematic weights, and is presented in
Appendix A. We limit scales to k > 0.02 2 Mpc~' for the monopole
and k > 0.04 A Mpc~! for the quadrupole. The smaller (larger) the
minimum scale (k-value) included, the more k-modes are used and
therefore the smaller the statistical errors of the estimated param-
eters. However, small scales are poorly modelled in comparison
to large scales, such that we expect the systematic errors to grow
as the minimum scale decreases. Therefore, we empirically find
a compromise between these two effects such that the systematic
offset induced by poorly modelled non-linear behaviour is smaller
than the statistical error. To do so, we perform different best-fitting
analysis for different minimum scales and check that the best-fitting
parameters of interest does not change significantly (compared to
the statistical errors) as a function of this minimum scale.

4 THE POWER SPECTRUM MULTIPOLES

The top sub-panel of Fig. 1 presents the power spectrum monopole
(blue squares) and quadrupole (red circles) for LOWZ and CMASS
DR12 data measurements (top and bottom panels as labelled) from
the combination of the NGC and SGC data. This combination has
performed by averaging the NGC and SGC power spectra weighting
by their effective area,

PO = (Plilz(;CANGC + PS(QCASGC)/(ANGC + Asco), @)
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where Ange and Asge are the effective areas of the NGC and
SGC, respectively, whose values are AXYZ = 5836 deg”, ANZ =
2501 deg?, A = 6851 deg” and AZRS® = 2525 deg”.? The best-
fitting model predictions are shown by the solid lines, taking the
average of the models fitted using the covariance extracted from Qpm
and MD-ParcHy mocks with parameters as reported in Table 1 in
Section 7. Details about the models are presented in Section 5, and
covariance matrices in Section 6.1. The blue solid line shows the
model for the monopole and the red solid line for the quadrupole.
Error-bars correspond to the rms of the mocks, averaging between
those calculated using covariance matrices determined with Qpm or
MD-ParcHy mocks. The comparison of the rms of the opm and
MD-ParcHy mocks can be found in Fig. 4 and is discussed in
Section 6.1.

In the lower sub-panels, we present the fractional differences
between the data and the best-fitting model. For both LOWZ and
CMASS samples, the model is able to reproduce the monopole data
points up to k ~ 0.24 hMpc~', within 3 percent accuracy (indi-
cated by the black dotted horizontal lines). The model reproduces
the measured quadrupole with an accuracy of ~10 per cent for the
LOWZ sample and of ~5 per cent for the CMASS sample. How-
ever, the signal-to-noise ratio of the observed quadrupole is not
sufficiently high to determine if the observed fluctuations are statis-
tical or systematics of the model. For LOWZ and CMASS samples,
the fitting process ignores the large scales (k < 0.02 2z Mpc~! for the
monopole and k < 0.04 2 Mpc~! for the quadrupole) because of the
effects of star contamination as it has been discussed in Section 2.1
(see Appendix A for a further discussion on how these limits have
been decided). The effects of the fibre collisions on the best-fitting
parameters of the models are discussed in Appendix B.

5 MODELLING THE POWER SPECTRUM
MULTIPOLES

In this section, we present the model used to analyse the monopole
and quadrupole power spectra in Section 4. The modellization is
done in the following four steps.

(1) In Section 5.1, we present the galaxy bias model that maps
the dark matter theoretical predictions into galaxy statistical observ-
ables.

(i1) In Section 5.2, we present the model that relates the real space
statistical moments with redshift-space ones.

(iii) In Section 5.3, we incorporate AP parameters in order to
allow changes due to inaccuracies when converting redshifts into
distances by assuming a different value of €2,, than the actual one.

(iv) In Section 5.4, we describe how the window survey mask
is applied in order to account for observational effects due to the
geometry of the survey.

5.1 The bias model

We assume an Eulerian non-linear and non-local bias model
proposed by McDonald & Roy (2009) and previously used for
analysing the power spectrum multipoles and bispectrum of DR11
CMASS BOSS galaxies (Beutler et al. 2014; Gil-Marin et al. 2015).

2 The areas for both samples were initially planned to be the equal, as both
samples are coming from the same spectroscopic pointing. However, due to
difficulties during the early phases of the project, the sky area of the LOWZ
sample lags that of the full survey by approximately 1000 deg® (Anderson
et al. 2014).
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Figure 1. The top sub-panels display the measured LOWZ- (top panel) and CMASS-DR12 (bottom panel), monopole (blue squares) and quadrupole (red
circles) power spectra. For both cases, the measurements correspond to a combination of the northern and southern galaxy caps according to their effective
areas as presented in equation (7). The error bars are the average values of the dispersion among realizations of the opM and MD-ParcHy mocks. The red
and blue solid lines correspond to the best-fitting model using the parameters listed in Table 1, for kyax = 0.24 2 Mpc~'. For simplicity, we plot the average
between models corresponding to the parameters obtained using Qpm and MD-ParcHy covariance matrices. The bottom sub-panels show the ratio between the
power spectrum multipoles measurements and the best-fitting model presented in the top sub-panel. The quadrupole symbols have been displaced horizontally

for clarity. The dotted black lines represent a 3 per cent deviation.

A priori, the non-local galaxy bias model depends on four free pa-
rameters: the linear bias b, the non-linear bias b, and non-local
bias parameters b,> and b3y;. In order to reduce the number of free
bias parameters, we assume that the bias is local in Lagrangian

MNRAS 460, 4188-4209 (2016)

space, which sets the values of b and b3, given the linear bias
coefficient, b;. This assumption has been validated using N-body
simulations, and it provides consistent results between the power
spectrum and bispectrum for the CMASS sample (Gil-Marin et al.
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Table 1. Best-fitting parameters obtained from fitting the monopole and quadrupole BOSS DR12 data using the theoretical
approach described in Section 5. The two first columns are the parameters obtained from fitting the LOWZ-DR12 data, whereas
the third and fourth columns are obtained from fitting the CMASS-DR12 data. The first and third columns are the parameters
obtained when the covariance matrix is inferred from QpmM mocks, whereas the second and fourth columns parameters are obtained
when the covariance matrix is inferred from MD-Parcuy mocks. For all cases, the minimum scale used i kyax = O.24hMpc_1
and the largest scales used are kpin = O.OZhMpc’1 for the monopole and kpin, = 0.04 1 Mpc’1 for the quadrupole. The error
bars represent 1o deviations and have been inferred from the analysis of the likelihood function as it is described in Section 6.2.
The cosmological parameters, fog, H(z)rs(zq) and Da(z)/rs(zq) are correlated, so we encourage using the multivariate Gaussian
likelihood presented in Section 7.5.

Sample (Cov.) LOWZ (qpm) LOWZ (MD-Patchy) CMASS (gpm)  CMASS (MD-ParchY)
S(zefr)o 3(Zefr) 0.392 4+ 0.061 0.395 + 0.064 0.445 4+ 0.038 0.442 + 0.037
H (Zeir)rs(za) (103 kms™1) 11.48 4+ 0.55 11.33 £ 0.56 13.99 + 0.44 13.84 + 0.43
Da(2)/rs(zq) 6.38 £ 0.18 6.33 £ 0.19 943 £ 0.15 942 £+ 0.15
o | (Zer) 1.025 + 0.052 1.039 £ 0.054 0.977 £+ 0.030 0.987 + 0.030
a1 (Zeff) 0.945 £+ 0.027 0.938 + 0.028 0.999 + 0.016 0.998 + 0.016
b108(Zefr) 1.283 £+ 0.032 1.279 £+ 0.037 1.218 4+ 0.022 1.225 £+ 0.020
by g(zefr) —0.19 + 0.64 —0.38 £ 0.36 0.67 + 0.74 0.40 £+ 0.66
Anoise —0.30 + 0.22 —043 £ 0.21 —0.041 £+ 0.078 —0.057 £ 0.093
0 FoG(Zefr)(Mpc 1) 3.94 £ 0.56 4.23 + 0.56 3.35 £ 0.32 342 + 0.31

%2 /dof

29.62/(53-8)

31.48/(53-8)

26.168/(48-8)

33.661/(48-8)
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2014, 2015). In case the condition of local Lagrangian bias were
relaxed, the parameters b,> and b3, would be treated as free parame-
ters, increasing, consequently, the number of free parameters of the
bias model. In such case, the model would account for a more gen-
eral galaxy biasing, but the error bars on the parameters of interest
would also increase. Since, the results of the power spectrum and
bispectrum of mocks and N-body simulations suggest that the bias
model of galaxies and haloes is consistent with local Lagrangian,
we also assume it for the data.

5.2 Modelling the RSDs

The mapping from real space to redshift space quantities involves
the power spectrum of the velocity divergence. We assume that
there is no velocity bias between the underling dark matter field
and the galaxy field at least on the relatively large scales of inter-
est. We follow the same redshift space modelling that in previous
analysis (Beutler et al. 2014; Gil-Marin et al. 2015), described in
Taruya et al. (2010) and Nishimichi & Taruya (2011), which pro-
vides a prediction for the redshift space power spectrum in terms of
the matter—matter, velocity—velocity and matter—velocity non-linear
power spectra. Expressions for the non-linear power spectra used
in this paper were presented in Gil-Marin et al. (2015); the model
for the non-linear matter quantities was obtained using resumed
perturbation theory at 2-loop level as described in Gil-Marin et al.
(2012). The necessary linear power spectrum input was computed
using camB (Lewis, Challinor & Lasenby 2000).

We account for the Fingers-of-God (hereafter FoG), through the
Lorentzian damping factor, as described in Gil-Marin et al. (2015).
This factor has one free parameter refered as og,c. With this pa-
rameter, we aim to describe the non-linear damping due to the ve-
locity dispersion of satellite galaxies inside host haloes. However,
we treat this factor as an effective parameter that encode our poor
understanding of the non-linear RSD and we marginalized over.

In this paper, we consider that the shot noise contribution in the
power spectrum monopole may be modified from that of a pure
Poisson sampling. We parametrize this deviation through a free
parameter, Apoie, i-. PO, = (1 — Am,isc)P,ﬁfﬁi)m, where the terms
Pég?wm is the Poisson predictions for the shot noise as is presented
in equation (6). For A,;se = 0, we recover the Poisson prediction,

whereas when A, e > 0, we obtain a sub-Poisson shot noise term
and A,ise < 0 a super-Poisson noise term.

5.3 The AP effect

The AP effect (Alcock & Paczynski 1979) is caused by converting
redshift into distance using a different cosmology from the actual
one, which introduces a spurious anisotropy in the power spectrum
that can be measured. Along the LOS, the observed signal is sensi-
tive to the Hubble parameter through ocH~'(z), when the clustering
is measured on scales that are small compared with cosmological
changes in the distance—redshift relationship. On the other hand, in
the angular direction, the distortions depend on the angular distance
parameter, DA (z). When a fiducial model is assumed to convert red-
shifts into distances, the AP effect can be described by the dilation
scales,

o = A @) @®
"= TH@r ()
Da(z)rfd(zq)

= — s 9

T Dl ®

where o and o are the parallel- and perpendicular-to-the-LOS
dilation scales, respectively. Here, H(z) and D1¢(z) are the fiducial
values (those corresponding to the assumed cosmology to convert
redshifts into distances) of the Hubble constant and the angular
diameter distance at a given redshift z, respectively. On the other
hand, the fiducial sound horizon at the baryon-drag redshift is given
by rfd(zd). The factors o and o describe how the true wavelength
modes, k\/l and k' , have been distorted into the observed ones, k; and
ki:k) = aykj and ki = a k', by the effect of assuming a different
cosmological model.

This component of observed anisotropy is modelled through the
a) and ) parameters (see equation 60 of Beutler et al. 2014). The
geometric AP effect also affects the BAO scale, and the assumed
distance-redshift relation has the potential to shift the BAO peak
position differently in the monopole and quadrupole moments of the
observed comoving clustering signal. Therefore, the AP parameters
are simultaneously measured in our analysis, even though our focus
is on measuring the RSD. Analyses that do not wish to measure the
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RSD signal and focus on the BAO scale can make use of recon-
struction and therefore in general, provide better measurements of
the AP effect (e.g. Cuesta et al. 2016; Gil-Marin et al. 2016). We
will comment on the potential differences further in Section 7.3.

Assuming the fiducial cosmology described in Section 2.3,
the fiducial values for H(z) and Du(z) are, H'(ziow,) =
79.49km s~ Mpc™!, D(z10y,) = 999.23 Mpc for the LOWZ sam-
ple at 7z, = 0.32, and H(zemas) = 92.25kms™' Mpc™!,
ng(zcmass) = 1398.43 Mpc for the CMASS sample at zyass =
0.57. The value for the fiducial sound horizon distance is rf1%(z4) =
148.11 Mpc.

5.4 The survey geometry

The estimator presented in Section 3 only provides an unbiased pre-
diction of the true underlying power spectrum without any survey
geometry effects. Atintermediate and large scales, the measurement
is affected by the shape of the survey, especially for high-order mul-
tipoles. Given a theoretical anisotropic power spectrum P (k"),
the observed power spectrum due to the effects of the survey is
windowed through the following expression,

31/

Pwin. k) = Plheo. KWk — k' 2 10
(k)= [ oo PR UOIW = KT, (10)

where W is defined as

W(k) = %/d»’r A (r)e*T (11)

2

We refer to |W|? as the window function, which satisfy the nor-
malization condition, [ d*k’/(2m)* |[W(k')|> = 1, imposed by the
definition of the factor /; in equation (4). The functional provided
by P*™[P"] in equation (10) is a convolution. Therefore, the
convolution theorem can be apply making use of FFT techniques,
which allows the computation in a minutes-time-scale per model
PtheoA.

We assume that the monopole and quadrupole provide all the
information about the full p-shape of the power spectrum. Thus,
we can write,

P () = PO () + PO (0 Lo(u). (12)
We can define a windowed power spectrum £-multipole as,

win 2¢ 1
POy = 2L

dpi Le(pi) P (k), (13)
where uy =7, - k. From equation (13), it is clear to see that both
POWin- and pPAWin- haye contributions from both POtheo- and ptheo-
equation (13) provides a full description of the effect of the window
in the monopole and quadrupole. However, for practical reasons, is
convenient to use this equation to calibrate a matrix that is able to
relate the POVi™ at a given k-bin from an arbitrary shape of PO,
Using equation (13), we write the matrix elements,

20+ 1
2

Wi = { / dyua Lo (1) / EH Wk — k)P

x PO GO L Ok — K] /PO Ky, (14)

where Oy (k; — k') is a top hat function around the k;-bin: @y (k;
— k') is 1 when k' belongs to k;-bin and O otherwise. In order
to form a window-matrix which is able to mimic the behaviour
described by equation (13), we have used 1000 k-bins between k¢
and k = 0.5 Mpc~! as an input of k; and 60 output k;-bins which
coincides with the k-values where we measure the data set. Using the
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calibrated values of the window matrix described by equation (14),
we write the windowed monopole and quadrupole power spectra
as

win. heo. heo.
PO (k) = 3 WP PO () + D W PO k),

J J

PO () = S WP )+ Y WEPP k. (15)

Note that equations (13) and (15) describe the same survey window
effect, but the latter one is much faster to be applied to minimiza-
tion and mcmc algorithms. In this paper, we always use combined
window that we obtain by weighting the individual windows of
NGC and SCG by their area. Since this is what we do with the
power spectrum measurements, the combined window reproduce
by definition the combined power spectrum.

The matrix terms in equation (14) depend, in principle, on the
choice of theoretical power spectrum, P However, this de-
pendence is expected to be weak, as the term P> appears in
both denominator and numerator, and the part of the signal in Wfl.” /
coming from PO™eo- is cancelled. In order to quantify this, we have
built two window matrices with different power spectra, whose val-
ues are within 20 of the data and no significant differences were
observed.

Fig. 2 shows the effect of the LOWZ (left-hand panel) and
CMASS (right-hand panel) DR12 samples on the power spectrum
monopole and quadrupole. The upper panel shows a toy model input
power spectrum monopole (blue solid lines) and quadrupole (red
solid lines) and its output according to equation (15) (blue and red
dashed lines). The lower panels show the ratio between the input and
the output power spectrum multipole. We see that for CMASS, the
effect, both in the monopole and in the quadrupole, is smaller than
for the LOWZ. This is due to the size of the sample. The larger the
sample is, the smaller is the effect of the mask. Atk >~ 0.2 h Mpc*l s
the effect of the window is near O per cent for the monopole in
CMASS, ~5percent for the quadrupole in CMASS, ~7 per cent
for the monopole in LOWZ and ~10 per cent for the quadrupole in
LOWZ. At large scales, the windowed power spectrum predicted
for the quadrupole has oscillatory behaviour, a consequence of the
lack of p-modes in the k-bins at these scales: since the k-binning
is logarithmic, the number of fundamental k-modes contained at
large scales is much smaller than that at small scales. As a conse-
quence, at these large scales, the constraint j du L)Ly () = 8¢
is not satisfied for £, ¢ > 0 with sufficient precision. The be-
haviour can be corrected by re-normalizing, both data and window
by the sum of squared Legendre polynomials over the p-modes:
p-modes Y7o £2(w). However, since for this paper, we only
use quadrupole data for k > 0.04 #Mpc~', where the u-modes
contained in the k-bins are large enough, the correction is not sig-
nificant enough to be worth including. In any case, since the cor-
rection would have to be applied to both data and window, the
relative ratio between theory and data would be unaffected by this
correction.

In this paper, we do not correct the power spectrum multipoles
for the integral constrain, which only produce a significant effect
at scales comparable to the size of the survey (see e.g. Peacock &
Nicholson 1991), which in our case is kf ~ O.OOZhMpc*I. Since
the largest scales we consider are 10 and 20 times smaller for the
monopole and quadrupole, respectively, in our analysis, the integral
constrain is a sub-dominant component compared to other effects
such as systematic weights.
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Figure 2. Top sub-panels: effect of the window function on the monopole (blue lines) and on the quadrupole (red lines) for the LOWZ-DR12 sample (left-hand
panel) and for the CMASS-DR12 sample (right-hand panel). The solid lines correspond to a toy-model for P1eo- and ptheo-?) in equation (12). The dashed
lines correspond to PO¥in and PAWin- in equation (15). Lower sub-panels: relative deviation between P(Vi™ and its convolution with the window mask.

6 PARAMETER ESTIMATION

In this section, we describe how the parameters of interest and their
errors, including the AP parameters and fo g, are estimated. We also
present a systematic test on the power spectrum model presented in
Section 5 using the galaxy mocks.

6.1 Covariance matrices

The covariance matrix of the monopole and quadrupole is computed
using the different realizations of the two sets of galaxy mocks de-
scribed in Section 2.2. We take into account the covariance of the
monopole and quadrupole k-bins and also the cross-covariance be-
tween these two. Each element of the covariance matrix is calculated
from the mocks,

Nm
> [P — (POK)]

m=1

e
R Al

x [Péf”(kj) - <P“'>(k,-)>] : (16)

where (P (k)) = Zﬁm PO (k)/ Ny, is the mean of the £-multipoles
among realizations, and N,, is the number of independent realiza-
tions. The full covariance matrix for the monopole and quadrupole
can be written in terms of the matrices C “/, for £ = 0,2, as,

00 (02
C= (gzo gzz) a7)
For the opm mocks, the number of independent realization is
N = 1000, whereas for MD-Patchy is N, = 2048. In both cases,
the number of elements is much larger than the total number of bins,
ny,, which for this work is n, = 120.

Since the covariance matrix C is estimated from a set of mocks,
its inverse C~! is biased due to the limited number of realizations.
We account for this effect by applying the correction proposed by
Hartlap, Simon & Schneider (2007). In addition to this scaling, we
have to propagate the error in the covariance matrix to the error
on the estimated parameters. We do this by scaling the variance
for each parameter by the factor of equation 18 of Percival et al.

(2014). However, we observe that the correction due to this effect
is subdominant, namely <2 per cent.

p(K) / 1P 4 (K1 [%]

QPM-CMASS ——
QPM-LOWZ ---------
L Patchy-CMASS ——
Patchy-LOWZ ---------

-

0.01 0.1 0.2
k [hMpc']

Figure 3. Correlation coefficients of the monopole—quadrupole covariance
matrix from LOWZ-DR12 sample (left-hand panels) and from the CMASS-
DR12 sample (right-hand panels), extracted from 1000 realizations of the
QpM mocks and from 2048 realizations of the MD-ParcHy mocks. The top
panels show the results for opm mocks, the middle panels for the MD-ParchHy
mocks, and the bottom panels their ratio.

The middle and top panels of Fig. 3 display the correlation co-
efficient matrices, r; ; = C; ;/[C;,;C; j]'/* for LOWZ and CMASS
samples using the Qpm mocks and the MD-ParcHy mocks as la-
belled. In all cases NGC and SGC have been combined into a single
sample, as described in Section 4. We observe that the off-diagonal
terms of the auto-covariance (the covariance between monopole—
monopole and quadrupole—quadrupole) are significantly correlated
at large scales because of the effect of the survey geometry, for both
monopole and quadrupole. The off-diagonal terms of the cross-
covariance between monopole and quadrupole present significantly
smaller correlation.

As we go to smaller scales, the auto- and cross-covariance off-
diagonal terms are reduced for both LOWZ and CMASS samples
because the effect of the survey window is less important. For
k > 0.2, the auto-covariance off-diagonal elements start growing
again because of the effect of mode coupling, which becomes more
important as we go to smaller scales. At the same scales, the oft-
diagonal terms of cross-covariance stay very close to 0. This sug-
gests that the mode coupling induces a strong correlation between
close k-modes in the monopole and quadrupole, but not a correlation
between these two statistics until k = 0.3z Mpc~'.

MNRAS 460, 4188-4209 (2016)

/T0Z ‘TT Arenuer uo :: e /B10'S [euinolpuoxo'seiuw//:dny woJj papeojumod


http://mnras.oxfordjournals.org/

4196 H. Gil-Marin et al.

0P

0.2
0.1

0.01
0.01 0.1 0.2 0.1
k [hMpc™]
[rij]MD-Patchy
0.2
0.1

‘o
o
= 02
=
x

0.1

0.01 01 02 0.1
k [hMpc™]
PM MD-Patch

[l M [T - 4

Lowz

0.01 0.1 0.2 0.1 0.2
k [hMpc™]

0.1 02 0.1 02

k [hMpc™]
MD-Patch
[rij] atchy

01 02 01 02
k ["Mpc™"]
[rij]QPM / [rij]MD-Patchy _ 1CMASS

4
3
2
1
0
-1
-2
-3
-4
0.01 01 0.2 01 0.2
k ["Mpc']

Figure 4. Percentile diagonal errors corresponding to the k-bins used in Section 4 in which the monopole and quadrupole have been measured for the mocks.
Solid lines display the CMASS-DR12 statistics and dashed lines the LOWZ-DR12 ones. Red lines are the predictions inferred from the MD-PATcHY mocks,

whereas the blue lines are according to Qpm mocks.

The bottom panels of Fig. 3 show the ratio between the Qpm
and MD-Parchy covariances for LOWZ and CMASS samples, as
labelled, in order to stress their differences. We observe that most
of the off-diagonal signal is very noisy, although some differences
can be seen for those off-diagonal terms close to the diagonal.
For both LOWZ and CMASS samples, both opm and MD-Parchy
mocks predict the same degree of correlation on large scales. As
we go to smaller scales, some differences arise. At scales where
k> O.l,hMpc*I, the off-diagonal terms of the monopole auto-
correlation matrix, tend to be more correlated in the pm mocks
than in the MD-Parcuy mocks, while the auto-correlation matrix
estimates for the quadrupole are similar.

In Fig. 4, we show the percentile diagonal error for power spec-
trum multipoles, corresponding to the k-bins used in Section 4,

MNRAS 460, 4188-4209 (2016)

relative the power spectrum multipole amplitude of the data. At large
scales, both opm and MD-Parchy prediction agree well for both the
LOWZ and CMASS samples for both monopole and quadrupole.
At small scales, opm mocks predict higher mode coupling in the
monopole than MD-ParcHy and therefore the errors of the power
spectrum monopole saturate before that of the MD-ParcHy predic-
tions. The precision of the monopole exceeds 1 percent for k <
0.13hMpc~'.

For the quadrupole, the relative error predicted by opm and
MD-ParcHy mocks is very similar in all the range of scales studied.

Overall, the covariances extracted from opm and MD-ParcHy
mocks are similar and the main discrepancies are for the monopole
at small scales. We are not able to discriminate which of these twao
sets of mocks is best.
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Figure 5. Performance of the opm (black dashed lines) and MD-Parcuy (black dotted lines) mocks compared to the data, blue squares for the monopole and
red circles for the quadrupole. The left- and right-hand panels display the results for the LOWZ and CMASS samples, respectively. For clarity, the amplitude
of the power spectrum multipoles have been normalized by a smoothed linear power spectrum, Psmooth-

6.2 Best fit and error estimation

We model the amplitude and the shape of the power spectrum
monopole and quadrupole through a set of eight free parameters
W = {by, b, f, 05, Anoise> OFoG» &> &1 }, which we briefly describe
below.

(i) The galaxy bias is modelled using two bias parameters, b,
and b, as described in Section 5.1. The value for the non-local bias
parameters is set by the value of b; under the assumption of local
Lagrangian bias.

(i1) The logarithmic growth factor f. This parameter can be pre-
dicted for a specific cosmological model (when the 2, value is
known) if we assume a theory of gravity. In this paper, we consider
this as free parameter in order to test potential deviations from Gen-
eral Relativity (GR), or, if assuming GR, for not using a prior on
the Q,, value.

(iii) The AP parameters, o)y and o, . As described in Section 5.3,
through varying | and o | we are able to parametrize the anisotropy
generated in the power spectrum multipoles by assuming an incor-
rect value of Q..

(iv) The amplitude of primordial dark matter power spectrum,
og.

(v) The amplitude of shot noise, A, as described in Section 5.2

(vi) The FoG parameter, oo, introduced in Section 5.2.

Note that although we allow f'and o5 to vary independently, these
two parameters are highly degenerate when constrained only using
the power spectrum multipoles.> We will only quote the measured
combined quantity fog. Similarly, we will only report b,og, and
bgO’ 8-

The other cosmological parameters, such as €2, the spectral
index ng and the Hubble parameter / are fixed at the fiducial values
described in Section 2.3 during the fitting process. In Section 7.1,
we will vary the value of €2, to analyse the effect of such a change
can produce in fog. In this paper, we always perform the parameter
fitting process to the combined NGC+SGC sample, both for the
mocks and for the data.

3 fand oy are fully degenerated only in the large-scale limit, when Kaiser
formula is still valid. At smaller scales, the non-linear corrections break this
degeneration. However, the signal to noise of the power spectrum at these
scales is not sufficiently high to make reasonable constrains on f and oy
alone, since the degeneration is poorly broken. Because of this, we refer to
these two parameters as highly degenerate but not fully degenerate.

In order to perform the parameter estimation, we assume the
monopole and quadrupole are drawn from a multivariate Gaussian
distribution and use,

xX(W) = [AP(W)I[CT[APW)T, (18)

where AP(W) is the vector whose elements contain the difference
between the data and the model for the power spectrum monopole
and quadrupole, and C~! is the inverse covariance matrix. By min-
imizing the x? function respect to ¥, we obtain the best-fitting set
of parameters. The errors associated with each parameter are com-
puted by exploring the likelihood surface when a specific parameter
is fixed and the other parameters can vary freely. The likelihood sur-
face is explored using a SIMPLEX minimization algorithm. In order
to ensure that the minima found are global and not local, we run the
algorithm multiple time with different starting points and different
starting variation ranges, and check for convergence.

6.3 Tests for the galaxy mocks

In this section, we test for potential systematics of the model pre-
sented in Section 5 using the MD-Parcuy galaxy mocks. We start
by comparing the power spectrum multipoles for the mean of the
1000 and 2048 realizations of the opm and MD-Parcuy mocks, re-
spectively, with the measurements of the DR12 data. This is shown
in Fig. 5, where the power spectrum monopole and quadrupole are
divided by a smooth linear power spectrum. The left- and right-
hand panels show the measurements corresponding to LOWZ and
CMASS samples, respectively. Blue symbols represent the mea-
surements for the data corresponding to the monopole, whereas the
red symbols represent the quadrupole. The black dashed and dotted
lines show the mean values of the mocks for gpm and MD-ParchHy,
respectively.

For the LOWZ sample, the MD-ParcHy mocks describe accu-
rately the data measurements for both monopole and quadrupole.
The Qpm mocks show some discrepancies with the data: pm mocks
systematically overestimate the monopole data by ~10 per cent at
k > 0.02, hMpc*l and fail to describe the quadrupole for & >
0.1 AMpc~!. For the CMASS sample, MD-Patchy mocks describe
well the monopole and quadruple data. gpm mocks tend to overesti-
mate both statistics by few per cent. The version of QpM mocks used
in this paper was not designed to describe RSD features with few
per cent accuracy, as this version of the MD-ParcHy mocks was.
Because of this, we will only use the MD-ParcHy mocks multipole
measurement to test the modelling of RSD.
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Figure 6. Best-fitting 1, o and fog parameters as a function of the minimum scale (maximum k) used for describing the LOWZ- (left-hand panels) and
CMASS (right-hand panels) monopole and quadrupole power spectra predicted by the average of 2048 realizations of the MD-ParcHy mocks (blue squares
linked by solid lines). In order to mimic the analysis of the data, the largest scales used for the fit are kmin = O.OZhMpc_I for the monopole and kpyin =
0.04 hMpc~! for the quadrupole. All values normalized by the corresponding true expected value. Horizontal dashed, dot-dashed and dotted lines show the
0 per cent, 1 per cent and 3 per cent deviations, respectively, with respect to the corresponding fiducial value.

‘We combine the model described in Section 5 with the measured
mock power spectrum monopole and quadrupole, averaged over the
2048 realizations of the MD-ParcHy mocks, in order to recover the
fo g parameter. Since we know the input cosmological parameters for
the mock simulations, we can compare the obtained value with the
expected one, and thus test which is the precision of the model when
recovering fos. Note that the measurements of the monopole and
quadrupole of the mocks have been performed using the fiducial
cosmology, which is different to the cosmology of the mocks as
described in Section 2.2.

Fig. 6 displays in blue symbols linked by solid blue lines the
obtained fos, oy and «; parameters as a function of the mini-
mum scaled used to fit the model to the measurements of the MD-
Parcuy mocks. The error bars correspond to the data error bars
scaled by a volume factor of +/2048 in order to account for the
volume difference. In order to mimic the data analysis, the large
scales cuts kyi, = 0.02 and 0.04hMpc" for the monopole and
quadrupole, respectively, have been applied. In addition to o, o,
fand og, we allow by, bs, Apsise and oo to vary, as we do for
the data. The expected values for fog are shown in black dashed
lines. For reference, 1 percent and 3 per cent deviations from the
expected fog are also shown in dot-dashed and dotted black lines,
respectively.

For the LOWZ sample, we see that the recovered value of
fog agrees to <2percent accuracy with the true one for kp,, >
O.l6hMpc_l. We observe that if the truncation scale is kp,, =
0.15hMpc~!, the model produces a systematically low value of
fos. However, this does not occur when the truncation scale is
higher than this value. In particular, if the truncation scale is kyax >
0.20 hMpc !, the accuracy of the obtained fo g is <1 per cent, which
is around 10 times smaller than the expected statistical error for this
sample. We observe that ) is constrained with <1 per cent accu-
racy, at all studied scales. o presents >3 per cent deviation from its
fiducial value at k,,.x = 0.24 1 Mpc‘l, and decreases to <1 per cent
as the scale of truncation is increased.

For the CMASS sample, we see that the recovered value of fog
agree with <1 percent accuracy for truncation scales within the
whole range of scales studied. Given the statistical errors for the
CMASS sample, this systematic error is around eight times smaller.

MNRAS 460, 4188-4209 (2016)

As for the LOWZ case, o is recovered within <1 per cent accuracy
and o within <2 per cent, in all the range of studied scales.

Since the observed systematic errors for both LOWZ and CMASS
samples are much smaller than the statistical errors obtained for the
data, we do not correct fo'g by any systematic shift.

Fig. 7 shows the distribution of parameters f(z)os(z), H(z)rs(za)
and D (z)/rs(zq) for the 2048 realizations of the MD-ParcHy mocks
in the LOWZ and CMASS samples. The blue crosses represent the
best-fitting parameter set for each realization of the mocks, whereas
the red cross is for the data.

The shapes of the clouds formed by the blue crosses provide in-
formation of how these parameters are degenerate. Thus, these plots
show that the measurements of fo g, H(z)rs(zq) and Da(z)/rs(zq) are
strongly correlated. Assuming that the data results can be approx-
imated by a multivariate Gaussian likelihood, in Section 7.5, we
provide the covariance matrix among these three parameters for the
measurements from the data.

Fig. 8 shows the 2D parameter space of b, o3 and fo g for the 2048
realizations of the MD-Parcuy mocks in the LOWZ and CMASS
samples.

We see that when the AP parameters are set to 1, the scatter be-
tween best-fitting values from different mocks reduces significantly
forming a small cloud (green crosses) which is contained by the
blue one. The red crosses represent the actual values for the data
when the MD-PatcHY covariance is used. In both cases, we see that
the data points lies well within the clouds formed by the different
realizations of the MD-ParcHy mocks.

7 BOSS DR12 MEASUREMENTS

The values of the parameters of the model corresponding to the fits to
the data presented in Fig. 1 are listed in Table 1, where the minimum
cut-off scale used for the fit is kyex = 0.24 hMpc~'. We observe
that the difference between parameters (using QpM and MD-Parchy
covariances) and their error bars is not significant. This indicates
that the impact of the different covariance matrices in the parameter
estimation is sub-dominant compared to other effects, such as the
scale where the fitting process is truncated, or systematics of the
model itself.
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Table 2. Best-fitting parameters obtained from fitting the monopole and quadrupole BOSS DR12 data as it has been described
in Table 2, where in this case the AP parameters, Da(z)/rs(zq) and H(z)rs(zq) have been set to their fiducial value, H(zjow,)r(z4)
= 11.773kms™", DA (Zlowz)/rs(2a) = 6.7466, H(zemass)r(za) = 13.663 - 10° kms ™!, Da(z1owz)/7s(za) = 9.4418.

Sample (Cov.) LOWZ (qpm) LOWZ (MD-Parchy) CMASS (qpm) CMASS (MD-Patchy)
S(zefr)o 8 (zefr) 0.476 £ 0.043 0.494 + 0.045 0.434 + 0.023 0.438 + 0.021
b1 8(zefr) 1.290 + 0.016 1.283 + 0.017 1.236 + 0.012 1.236 £ 0.012
b0 8(Zefr) —0.23 £ 095 —0.37 + 0.60 0.38 &+ 0.60 0.25 + 0.56
Aroise —0.32 + 0.22 —041 £ 0.21 —0.044 £ 0.089 —0.064 £ 0.086
oreG(Mpch™1) 4.04 £ 0.61 427 + 0.59 3.41 + 0.31 3.45 £+ 0.30
x2/dof 33.45/(53-6) 36.08/(53-6) 26.96/(48-6) 33.99/(48-6)

Table 2 displays the best-fitting results at k., = 0.24 hMpc™!,
with H(z)rs(zq) and Da(z)/rs(zq) set to the fiducial cosmology pre-
diction. As in Table 1, the differences between the parameters and
their errors obtained using either opm and MD-ParcHy mocks are
not significant.

In Fig. 9, we show how the best-fitting values of fog and the AP
parameters, o and o |, change with the minimum scale considered.

From the left-hand panels of Fig. 9, we observe that when varying
kmax from 0.15 to 0.24h Mpcfl, the best-fitting value of fog is
very stable compared to the size of the error bars. This behaviour
applies when the AP parameters are varied and also when they are

fixed to their fiducial value. When the AP parameters are varied,
the best-fitting value of fog is consistently low by ~1o respect
to Planckl5+GR prediction. We also observe that, whereas o is
consistent with unity for all values of kp,, studied, o, presents a
low value of 2030 respect to the fiducial cosmology prediction.
When the AP parameters, oy and « , are set 1, the LOWZ-sample
fos parameter, is shifted ~1o upwards and is more in accordance
with the Planck15 cosmology prediction. We observe that this effect
is independent of the model truncation scale. In Section 7.1, we will
re-analyse the data assuming different fiducial models for €2, and
we will discuss how this tension changes. So far, we can say that
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Figure 9. Power spectrum monopole and quadrupole best-fitting parameters as a function of the minimum scale considered, kmax. The results for the LOWZ-
(left-hand panels) and CMASS-DR12 (right-hand panel) BOSS data are shown in red solid lines in combination with red filled symbols. In the fog panel, we
also show in dashed blue lines and empty blue symbols the best-fitting values when the AP parameters have been set to their fiducial value. In this case, the
symbols have been displaced horizontally for visualization reasons. For all the cases, the largest scales used for the fitting are ki, = 0.02/2Mpc~! for the
monopole and kpiy = 0.04 2 Mpc~! for the quadrupole. In the fo'g sub-panels, we show as a black solid line the predictions from Planckl5. The cyan and
magenta bands represent the 1o and 20 error bars, respectively, around the Planckl5 best-fitting solution.

Table 3. Combined best-fitting parameters for the LOWZ- and CMASS-DR12 samples. The first column display
the LOWZ results; the second column display the CMASS results; in both cases, the AP test is performed. The
third and fourth column display the results for LOWZ and CMASS, respectively, when no-AP test is performed.
The combination has been performed taking the average of the best-fitting values of parameters obtained when
the covariance matrix is extracted from either gpm and MD-PatcHY mocks, as it has been listed in Tables 1 (when
AP test is performed) and 2 (when no-AP test is performed). The displayed errors are also taken as the average as

the ones listed in Tables 1 and 2. The minimum scale for the fit is kmax = 0.24 A Mpc

—1

are kpin = 0.02h Mpc_1 for the monopole and kpin = 0.04 1 Mpc_l for the quadrupole.

, and the large-scale cuts

LOWZ CMASS LOWZ (no-AP)  CMASS (no-AP)
Fzer)o 8 (Zefr) 0.394 £ 0.062 0.444 + 0.038 0.485 + 0.044 0.436 + 0.022
H (Zei)rs(zq) (10°kms ™) 11.41 + 0.56 13.92 + 0.44 11.773 13.663
Da(z)/rs(zq) 6.35 + 0.19 942 + 0.15 6.7466 9.4418

o (zetr) 1.032 £ 0.053 0.982 + 0.031 1 1

o1 (Zetf) 0.942 4+ 0.027 0.998 + 0.016 1 1
bi0g(zefr) 1.281 =+ 0.035 1.222 + 0.021 1.287 +0.017 1.236 £ 0.012
br08(zeff) —0.29 + 0.50 0.53 + 0.70 —0.30 £ 0.78 0.3240.58
Anoise —0.36 + 0.22 —0.049 + 0.086 —0.36 +0.22 —0.054 £ 0.077
oFeg(Mpch~1) 4.08 + 0.56 3.39 + 0.32 4.16 4 0.60 343 +£0.31

the LOWZ sample data has a preference for low values of fog and
o (which is translated into low values of Da(z)/rs(zq), according
to the definitions in Section 5.3), which is within 1 and 20 of the
fiducial values when GR is assumed. Both parameters are correlated
as we will show in Section 7.5, so when « is fixed to its fiducial
value, fo g is automatically shifted towards a solution which, in this
case, is consistent with Planckl5+GR within 1o

From the right-hand panels of Fig. 9, we see that the values of
AP parameters are both consistent with their fiducial values within
lo for all kn,y, suggesting that there is no strong tension between
the fiducial cosmology and the actual. Also, the inferred fog value
when the full AP test is performed, is consistent with Planckl5+GR
within 1o. By setting the AP parameters to their fiducial values,
we do not observe any significant change on the fog parameter,
besides a reduction of the error bars, which increase the tension
with Planck15+GR by up to 20

In Table 3, we present the final measurements of this paper. They
have been obtained by averaging the results presented in Section
4 (Tables 1 and 2) using the opm and MD-Parchy covariances. We
show the results for both the LOWZ and CMASS sample where
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the NGC and SGC have been combined into a single measurement.
The main result of this paper is f{0.57)c3(0.57) = 0.448 + 0.038 for
the CMASS and £(0.32)03(0.32) = 0.402 £ 0.060 for the LOWZ
sample when the AP test is performed; and f(0.57)03(0.57) = 0.438
+ 0.022 for the CMASS and £(0.32)03(0.32) = 0.497 + 0.0436
for the LOWZ sample then the AP parameters have been tuned
to their fiducial value. In the following subsections, we analyse
how these results are affected by a change in the cosmological
models (Section 7.1), how these results compares with other values
of f(z)os(z) extracted from papers based on the Data Release 11
(DR11) of the BOSS sample (Section 7.3), and how these results
compare to other values of f(z)og(z) obtained from other redshift
surveys (Section 7.4). We also present the multivariate likelihood
surface at fog, H(z)rs(zq) and Da(z)/rs(zq) (Section 7.5).

7.1 Dependence with cosmology

In this section, we study how sensitive the measurements of o, ot
and fog are respect to the assumed cosmology for converting red-
shifts into comoving distances. In order to test this effect, we have
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Figure 10. The left- and right-hand panels show the best-fitting o | (top sub-panel), o (middle sub-panel) and fo'g (bottom sub-panel) value for LOWZ and
CMASS sample, respectively, as a function of the chosen cosmological model to convert redshift into distances. The different colours show three different
models, 2y, = 0.293 (red), 2, = 0.31 (blue) and 2, = 0.332 (green). The filled squares show the results when the AP parameters are varied, whereas for the
empty squares, the AP parameters have been set to their fiducial values. In the bottom sub-panel, the horizontal dashed lines show the fog prediction assuming

GR (f(z) = Qm(2)?, with y = 0.545) and o3 = 0.815.

measured the galaxy power spectrum multipoles of the data assum-
ing two additional cosmological models, one with 2, = 0.292 and
another with @, = 0.332 (see table 4 of Gil-Marin et al. 2015
for details about these two extra cosmologies, listed as H-Planck13
and L-Planck13). These two values of €2, are at 1o tension of the
best-fitting value reported by Planck Collaboration XVI (2014). Our
power spectrum models are as described in Section 5, but based on
the linear power spectrum of the assumed cosmological model (see
fig. 6 in Gil-Marin et al. 2015 for a comparison between these linear
dark matter power spectra). In order to be consistent, we have re-
analysed the MD-ParcHy mocks assuming the new value of Q,, for
converting redshifts into comoving distances, in order to recompute
a new covariance matrix, consistent with the new measurement of
the monopole and quadrupole. In Fig. 10, we show the values of
a1, o) and fog obtained as a function of the chosen value for
for the LOWZ and CMASS sample in the left- and right-hand pan-
els, respectively, using the corresponding MD-ParcHy covariance.
The red, blue and green points show the results of assuming €2,
= 0.292,0.310,0.332, respectively. The filled symbols represent
the results when the full AP test is performed, whereas the empty
symbols represent the values fo'g obtained when the AP parameters
have been set to their fiducial value (in this case o and o are set
to 1). In the bottom sub-panel panel, the dotted horizontal coloured
lines show the corresponding value of fo's when GR is assumed and
the value of oy is set to 0.815 (which is the fiducial value for the
Planckl5 cosmology). In the «; and & panels, the horizontal black
dotted line represent the fiducial value o, = o) = 1.

For the CMASS sample, the results do not strongly depend on
the fiducial cosmology chosen. For both AP and non-AP cases, the
changes in fo'g as a function of the cosmological model assumed are
typically of ~0.5¢ . Furthermore, when the €2, = 0.31 model is as-
sumed, the tension between the observed fo g and its Planckl5+GR
prediction minimizes. Therefore, CMASS data suggests that when
GR is assumed as a theory of gravity, 2,, = 0.31 is the most likely
model among those studied. Also, for this case, the AP parameters
are the closest to the fiducial values.

For the LOWZ sample, when the AP test is performed we observe
an ~2¢ tension for Q19 = 0.293 and 0.310 on fog. The tension is
even higher when Q¢ = 0.332. Similar findings apply to the best-
fitting values of o | parameter, whereas the best-fitting value for o,

is similar for the three studied models. When the AP test is turned
off, and consequently o and «; are set to their fiducial values,
we observe that the fog tension is reduced to well within 1o for
all models studied. This suggests that the cause of the fog tension
observed in Fig. 9 cannot be explained by the choice of Q1. Thus,
according to LOWZ data, the observed Da(z)/rs(zq4) parameter is in
<20 tension with its fiducial value, which induces a <2o tension
in the observed fog compared to its Planckl5+GR prediction, due
to the correlation between parameters. This tension is relaxed when
Dx(z)/7s(zq) 1s set to its fiducial value. In any case, the 2, = 0.31
model is the choice that presents less tension between the observed
fog and its Planckl15+GR prediction.

Overall, we conclude that both CMASS and LOWZ galaxies data
is in agreement with the fiducial model ¢ = 0.31 consistent with
Planckl5 data: for the CMASS sample, the tension is below 1o and
for the LOWZ sample within 2. For both samples, Q¢ = 0.31 is
the model that minimizes the tension between the observed fog and
the predicted by Planckl5+GR.

7.2 Comparison of fo 3 with other DR11 BOSS data
releases analyses

In this section, we compare our results on fog with other studies
of RSD based on the previous DR11 of the BOSS sample. DR11
contains ~10 per cent less galaxies than DR12, however, we expect
that this change is not sufficiently large for producing significant
changes (other than systematics) in the obtained best fit of fog. In
Fig. 11, we show the measurements of fog based on the following
DR11 works (Chuang et al. 2013; Beutler et al. 2014; Reid et al.
2014; Samushia et al. 2014; Sanchez et al. 2014; Alam et al. 2015b;
Gil-Marin et al. 2015).

(i) Chuang et al. (2013) analyse the DR11 LOWZ and CMASS
two-point correlation function monopole and quadrupole in
configuration space in the range of 56 Mpc ™' < r < 200 Mpc k™!
for CMASS and 32Mpc h~! < r <200Mpch~! for LOWZ. Their
work include fo g measurements for both LOWZ and CMASS when
the AP parameters are varied, f{0.57)05(0.57) = 0.354 £ 0.059 and
f(0.32)03(0.32) = 0.384 £ 0.095.

MNRAS 460, 4188-4209 (2016)
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Figure 11. The constrains on fog from LOWZ- (left-hand panel) and CMASS-DR11 samples (right-hand panel) are displayed in black circles (Chuang et al.
2013; Beutler et al. 2014; Reid et al. 2014; Samushia et al. 2014; Sdnchez et al. 2014; Alam et al. 2015b; Gil-Marin et al. 2015). In red squares are the
predictions LOWZ and CMASS-DR12 samples, respectively, as they are listed in Table 3. Empty symbols are analysis with no-AP test, whereas filled symbols
represents analysis where AP-test is performed. The cyan and magenta bands show the 1 and 20 range, respectively, allowed by Planck TT+lowP+lensing in

the base ACDM+GR model (Planck Collaboration 2015).

(ii) Beutler et al. (2014) compute the DR11 CMASS power
spectrum monopole and quadrupole in k-space in the range of
0.01 AMpc™! < k < 0.20hMpc~'. They report f(0.57)03(0.57) =
0.419 =+ 0.044 for the CMASS sample varying the AP parameters
as well.

(iii) Samushia et al. (2014) compute the DR11 CMASS two-
point correlation function monopole and quadrupole in configura-
tion space in the range of 24 Mpch~! < r < 152Mpch~'. When
they analyse the CMASS sample, they obtain f(0.57)0(0.57) =
0.441 £ 0.044 when the AP test is performed, and f(0.57)05(0.57)
= 0.447 £ 0.028 when the AP parameters are tuned to their fiducial
value.

(iv) Sanchez et al. (2014) analyse the two-point correlation func-
tion and the clustering wedges, parallel and perpendicular, for the
DR11 LOWZ and CMASS sample using scales of 40 Mpch™! < r
< 180 Mpc ! with AP test. They report f(0.57)0'3(0.57) = 0.417
=+ 0.045 and £(0.32)05(0.32) = 0.48 & 0.10.

(v) Reid et al. (2014) perform a small scale analysis in the range
0.8Mpch~! < r < 32Mpc k™! using HOD and Planck cosmology.
They report {0.57)05(0.57) = 0.452 4+ 0.011 for the CMASS sam-
ple. Note that the errors on this measurements are considerably
smaller, but at the same time, they rely in significant modelling
and cosmological assumptions, such as tuning the AP parameters
to their fiducial value.

(vi) Alam et al. (2015b) compute the DR11 CMASS two-point
correlation function monopole and quadrupole in configuration
space in the range of 30 Mpc 4~ < r < 126 Mpc h~'. Their analysis
includes AP results and report {0.57)0(0.57) = 0.462 £ 0.041 for
the CMASS sample.

(vii) Gil-Marin et al. (2015) compute the DR11 CMASS power
spectrum monopole and bispectrum monopole in the range of
0.03AMpc™! < k < 0.17hMpc~'. They report a value of
724(0.57)03(0.57) = 0.582 & 0.084 using RSD and no AP effect*.
When this value is combined with f74"*13 = 0777 (where Plancki3
is the fiducial cosmology used in that paper; see table 4 of Gil-Marin
etal. 2015), a fog value can be obtained, f(0.57)a5(0.57) = 0.504 £

4 The quantity constrained by the power spectrum monopole in combination
with the bispectrum monopole is not ftimes o'g, but fto the power 0.43 times
og. For a more detailed discussion about this topic, see Gil-Marin et al.
(2015).
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0.069. Note that this measurement is not based on the power spec-
trum quadrupole and relies on different cosmological assumptions.

The observed differences between the DR11 results are expected
to be due to different systematics in the different models, scales and
statistics considered to describe the shape of the power spectrum or
two-point correlation function. With the exception of Chuang et al.
(2013) in CMASS, all the results are consistent within 1 and 2o.
All the results that perform an AP analysis have a well similar error
bar.

For the CMASS sample, our fo g measurement is consistent within
1o with the DR11 reported values, with the exception of Chuang
et al. (2013), which is 1.5¢0 below our findings and ~20 below
Planckl5 prediction. In particular, our results are very close to
those by Samushia et al. (2014) and Alam et al. (2015b), which
are also consistent with Planckl5 data within 1o. When the AP
parameters are tuned to their fiducial value, our result on fog is also
very close to that of Samushia et al. (2014) and consistent within
lo to the Reid et al. (2014) results.

For the LOWZ sample, our result lies between the best-fitting
values of Chuang et al. (2013) and Sanchez et al. (2014).

7.3 Comparison of the geometrical ap parameters with other
DR12 BOSS data releases analyses

In this section, we compare our results on the geometrical AP pa-
rameters, H(z)r(zq) and D(z)/rs(zq) with other studies based on
the analysis of the anisotropic 2-point function statistics of the DR12
of the BOSS sample.

In Table 4, we compare the results from this paper (RSD-PS)
with the BAO-based analysis of the anisotropic power spectrum
(BAO-PS) by Gil-Marin et al. (2016) and the BAO analysis of the
anisotropic correlation function (BAO-CF) by Cuesta et al. (2016).
The BAO analyses provide results based on the same data set used
by the RSD analysis, which we refer to as pre-reconstruction anal-
yses (Pre-BAO), and on the data set obtained after applying the
reconstruction algorithm, which we refer as post-reconstruction
analyses (Post-BAO).

The results of the pre-reconstruction analyses, Pre-BAO-PS, Pre-
BAO-CF and RSD-PS, are very consistent with each other for
both LOWZ and CMASS samples, and for both H(z)rs(zq) and
Da(2)/rs(zq). For LOWZ, H(z)rs(zq) is almost exactly the same
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Table 4. Geometrical AP parameters for LOWZ and CMASS samples:
H(2)rs(zq) (in 10° kms™! units), Da(2)/rs(zq), inferred from the BAO
power spectrum analysis (BAO-PS) (Gil-Marin et al. 2016), BAO corre-
lation function analysis (BAO-CF) (Cuesta et al. 2016), and the RSD power
spectrum analysis (RSD-PS) (this work). For the BAO analyses, we present
the pre- and post-reconstruction results, Pre-BAO and Post-BAO, respec-
tively. Note that the RSD results are essentially a pre-reconstruction analysis,
since the RSD signal is removed in the reconstruction process.

Sample Method statistic H(z)rs(zq) Da(2)/rs(zq)
Post-BAO-PS 11.64 £+ 0.62 6.85+0.17

Post-BAO-CF 11.65 £+ 0.84 6.67 +0.13

LOWZ Pre-BAO-PS 11.44 £0.75 6.48 +0.27
Pre-BAO-CF 11.44 +0.74 6.40 £+ 0.37

RSD-PS 11.41 £ 0.56 6.351+0.19

Post-BAO-PS 14.56 + 0.38 942 +0.13

Post-BAO-CF 14.75 £ 0.54 9.524+0.14

CMASS Pre-BAO-PS 14.10 + 0.65 9.42 +£0.22
Pre-BAO-CF 14.14 £ 0.71 9.51 £0.19

RSD-PS 13.92 + 0.44 9.42 +£0.15

for Pre-BAO-PS, Pre-BAO-CF and RSD-PS, and D4 (z)/rs(z4) Pre-
BAO-PS and RSD-PS are <0.5¢ apart. For CMASS, H(z)rs(zq),
there is <0.50 between RSD-PS and Pre-BAO results, and the
Dy (z)/rs(zq) result is also very consistent, being the same for RSD-
PS and Pre-BAO-PS, and very similar with Pre-BAO-CF as well
(<0.50). In general, the small differences observed between Pre-
BAO-CF and Pre-BAO-PS could come from (i) observational sys-
tematics (such as photometric calibration, systematic and fibre col-
lision weights) that may affect differently the measurement of the
correlation function and the power spectrum, (ii) from the fact that
the correlation function and power spectrum (in finite scale ranges)
do not contain exactly the same information, or (iii) simply that the
statistical noise affects the measurements differently in the same
way as a different binning of the data. The differences between
Pre-BAO-PS and RSD-PS could have their origin in systematics of
the model itself, or observational systematics that enter differently
in the BAO and RSD modelling. In any case, these systematics are
smaller than 0.50.

On the other hand, the results between post-reconstruction analy-
ses and pre-reconstruction (including RSD-PS) are more significant,
but always less than 20. Reconstruction is known to reduce non-
linear effects on the BAO signal, and some of the discrepancy could
be due to this. This is discussed in more detail in both Cuesta et al.
(2016) and Gil-Marin et al. (2016). For this reason, we recommend
using the post-reconstruction results of D (z)/rs(zq) and H(z)rs(z4),
either from Post-BAO-CF, Post-BAO-PS, or the consensus value
between both results presented in both papers, for constraining cos-
mological models. In case the value of fo 8 is wanted to be used (in
combination with the geometrical AP parameters) for constraining
cosmological models, this paper is, at present, date the only BOSS
DR12 paper that provides these measurements for the CMASS and
LOWZ samples.

7.4 Comparison with other galaxy surveys

In this section, we compare our measurement on fo'g for the LOWZ
and CMASS samples with the reported fog values of other galaxy
surveys at different redshifts, and with Planckl5 predictions.

Fig. 12 displays the different RSD analyses of redshift galaxy
surveys. The analyses with filled symbols solve simultaneously the

RSD measurement from the BOSS galaxies 4203
07 —_—
Planck + y=0.420
0.65 | SDSSMGS Planck + y=0.545 mmmmm
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Figure 12. Constraints on fog from several redshift surveys in the base
of ACDM, with f(z) = Q2 (z)": orange circle (6dFGRS by Beutler et al.
(2012)); grey triangle (SDSS Main Galaxy Sample by Howlett et al. (2015));
green inverse triangle (SDSS Luminous Red Galaxies by Oka et al. 2014);
cyan diamonds (WiggleZ by Blake et al. 2012); and purple pentagon
(VIPERS by de la Torre et al. 2013). In red squares, the results from BOSS-
DR12 for the LOWZ and CMASS sample according to Table 3. Filled
symbols represent the fog measurement when the RSD and the AP effect
is considered, and filled symbols when only RSD effect is considered. For
the empty red squares, the z-position has been slightly displaced for clar-
ity. The red, blue and green bands show the lo range allowed by Planck
TT+lowP+lensing in the base ACDM model (Planck Collaboration 2015)
when y = 0.420, 0.545 (GR) and 0.680, respectively.

RSD and AP effect, whereas those represented with empty symbols
only consider RSD, keeping the cosmology fixed.

(i) The 6dFGRS survey analysis by Beutler et al. (2012) reports
a value of f{0.067)03(0.067) = 0.423 £ 0.055. Their computation
is based on measuring the redshift space correlation function in
2D. Since the effective redshift is very low, their measurement is
insensitive to the AP effect.

(i) The SDSS Data Release 7 Main Galaxy Sample analysis
by Howlett et al. (2015) reports the measurement of the two-
point correlation function. Using only RSD effect, they obtain
£(0.15)05(0.15) = 0.447)15. When the AP effect is included®, they
obtain f(0.15)05(0.15) = 0.49*013.

(iii) The analysis of the luminous red galaxy (LRG) sample in
the Data Release 7 of the SDSS II by Oka et al. (2014) measures the
galaxy monopole, quadrupole and hexadecapole power spectrum
multipoles. They use the RSD and AP effect to report f{0.3)05(0.3)
=0.49 £ 0.09.

(iv) The WiggleZ analysis by Blake et al. (2012) measures the
galaxy correlation function and power spectrum. Considering both
RSD and AP effects, they report fog at three different redshifts,
f(0.44)03(0.44) = 0.413 £ 0.080, £(0.6)05(0.6) = 0.390 £ 0.063
and (0.73)05(0.73) = 0.437 £+ 0.072.

(v) The analysis of VIPERS by de la Torre et al. (2013) measures
the two-point correlation function. Using the RSD effect, they report
f(0.8)05(0.8) = 0.47 £ 0.08. Given the volume of the survey, the
results are very insensitive to the AP effect, which is not taken into
account.

In Fig. 12, we also plot the model predictions for Planckl5 best
fit, 2, = 0.308, when different theories of gravity are assumed.

31In this result, the AP effect is only partially included since o) and o
are set to be equal but freely vary. When both parameters are set free, the
reported value is fog = 0‘631“8:%.
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Figure 13. Likelihood surfaces of the parameters fog, Da(z)/rs(za) and H(z)rs(zq) extracted from the DR12 data, LOWZ sample (left-hand panel) and
CMASS sample (right-hand panel), using the covariance matrices provided by MD-Parcuy mocks (red ellipses) and opm mocks (blue ellipses). Each ellipse
correspond to 1o (Ax? = 2.30) and 20 (A x2 = 6.17) confidence levels, when the three parameters are marginalized. Each type of ellipse has been centred on

the minimum solution presented in Table 1.

We work on the assumption of f = Q,,(z)”. The prediction for GR
with a cosmological constant is y = 0.545, which is plotted in blue
bands (the 1o limits). We also plot the predictions for two additional
values of y, in red bands, we plot y = 0.420 and in green bands,
y = 0.680.

Under the assumption of Planckl5+GR, the y factor depends
on the dark energy equation of state, w. For ® = —1, we have the
cosmological constant prediction, y = 0.545. We observe that, in
general, all the results are in agreement with this prediction within
lo and 20 confidence levels. For dark energy models with v >
—1, such as the parametrized post-Friedman scalar field models,
y > 0.545; whereas for @ < —1, such as phantom dark energy
models, y < 0.545. In the light of results of Fig. 12, we observe that
qualitatively, redshift galaxy surveys observations slightly favour
models with w > —1, if Acolddarkmatter(CDM) + GR is assumed,
although the deviation with respect @ = —1 is not very significant.
On the other hand, if the GR condition is relaxed, y can also change.
This is the case for example of the DGP model (Dvali, Gabadadze
& Porrati 2000), whose prediction for y is 0.68, and it is slightly
favoured with respect to GR.

7.5 Correlated measurements

In this subsection, we present the multivariate Gaussian likelihoods
calculated from the DR12 data from which marginalized results
were presented in Table 1. We focus on those parameters which are
of cosmological interest, such as fog, H(z)rs(za) and Da(z)/rs(za)-
The errors of these parameters are highly correlated, as one can
infer from Fig. 7. Therefore, to jointly use these data, one needs to
use their covariance matrix.

We start by defining the data vector containing the cosmology
I

parameters of interest f{z)os(z), H(z)rs(z4) (in 10*kms™" units)
and D (z)/rs(za),
Sf(@)os(2)
DY(z) = [ H(2)r(z) [10°kms™'] |. (19)
Da(2)/rs(za)

The best-fitting values of the LOWZ and CMASS samples for these
parameters are presented in Table 1, given a covariance matrix,
either pm or MD-PArcHY.
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The covariance matrices of these parameters are,

4.1028 25.549 7.4600
CMDPATCHY — 103 —  310.08 51.366 |, (20)
- - 34912

3.7082 22.721 7.2898
cINV, =107 —  301.46 50.403 |, (21)
- - 32718

13424 10.597 3.7495
CMDPATCHY — 1073~ 179.80 34.180 |, 22)
- — 23495

1.4475 11.244 4.0507
Coss =107~ 188.6936.234 |, 23)
— - 246%

for LOWZ and CMASS samples, using the opm or MD-ParcHy
mocks to infer the best-fitting parameters from the power spectrum
multipoles measurements, as labelled. These covariance matrices
are symmetric by construction (C;; = Cj;), and consequently, we
only provide the results of half of the matrix.

From these matrices, the likelihood of any cosmological model
is given by

L o exp [_(Ddata _ Dmodel)chl(Ddala _ Dmodel)/z] , (24)

where D™%! is the vector with the model prediction for the same
cosmological parameters as D%

In Fig. 13, we show the ellipses which represent the likelihood
surface of 1o (Ax? = 2.30) and 20 (A x> = 6.17), corresponding
to the covariance matrices presented above, for LOWZ and CMASS
samples, left- and right-hand panels, respectively, for MD-Parchy
(red lines) and for Qpm mocks (blue lines). Each ellipse is centred
in the minimum solution presented in Table 1. We observe that the
differences between the covariances are small, and most of the shifts
are in the minimum where they are centred, and not in the shape
and orientation of the ellipsoid itself. Therefore, we conclude that
the difference in covariance obtained by using either MD-ParcHY
or QpM mocks is not significant.
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8 CONCLUSIONS

In this paper, we have presented a measurement of the isotropic and
anisotropic power spectrum relative to the LOS of the LOWZ and
CMASS DR12 galaxy samples of the BOSS of the SDSS III. We
have analysed the RSDs in the power spectrum multipoles and the
constraints imposed on the growth factor times the amplitude of lin-
ear power spectrum, fo's. We have also considered the geometrical
AP effect, which allows us to set constrains on the angular diam-
eter distance parameter Da(Zcs)/rs(zq) and the Hubble parameter
H(zer)r5(za). We study the BAO peak position on the monopole and
quadrupole power spectrum in a companion paper which is released
at the same time of the present paper (Gil-Marin et al. 2016).

In order to extract cosmological information from the galaxy
power spectrum multipole measurements, we have used a non-local
and non-linear bias model (McDonald & Roy 2009) which depends
on four parameters, b, by, b and bs,. Imposing that the bias is
local in Lagrangian space, b,> and b3, are set by the value of by,
and therefore only two free parameters are left to marginalize over,
b, and b,. To model the RSD, we use the TNS model (Taruya et al.
2010; Nishimichi & Taruya 2011) which has been used in previous
data releases of BOSS to describe the power spectrum multipoles,
as well as the bispectrum monopole. The RSD model depends on
the logarithmic rate of structure growth, f, on the FoG damping
parameter, o, and on the value of the shot noise. Although f is
directly related to the assumed €2, given a theory of gravity, we have
kept it free in order to test possible deviations from GR. In order to
model the real space quantities in the TNS model, we have used the
resumed perturbation theory at 2-loop order presented in Gil-Marin
etal. (2012). In our model, we have also included the geometrical AP
effect, through the dilation parameters ) and o, which modifies
the wave modes parallel and perpendicular to the LOS, respectively.
These parameters are related to the angular diameter distance and
the Hubble parameter, which we are also able to constrain. In our
analysis, we have fixed the shape of the linear power spectrum
using the fiducial cosmology 2%, but we have marginalized over
the amplitude o'g. In total, our galaxy redshift space power spectrum
model has eight free parameters we marginalize over.

We have tested possible systematics of our model using the MD-
ParcHy mocks simulations, which have been designed to reproduce
up to k >~ 0.3 A Mpc~! the power spectrum and bispectrum of data
and simulations (Kitaura et al. 2016, companion paper). Using the
mean from the 2048 simulations to gain signal, we find that we are
able to recover fog with an accuracy of <3 per cent for LOWZ and
<2 per cent for CMASS with a kyex < 0.24 2 Mpc~'. The systemat-
ics observed are significantly smaller than the statistical errors we
measure for the DR12 BOSS data, and therefore we do not consider
to correct the measurements, neither the corresponding errors.

We have computed the full covariance matrix of the power spec-
trum multipoles using two different types of galaxy mocks, 1000
realizations of Qpm mocks and 2048 realizations of MD-Parchy
mocks, and we have performed two parallel analyses using these
two covariance matrices. Since the differences in the best-fitting pa-
rameters and their corresponding errors have been found to be small,
we have decided to take the average among these two approaches,
to generate a unique set of results.

We find that for the DR12 LOWZ sample f(Ziow:)0 8(Ziowz) =
0.394 % 0.062, DA (Ziowz)/1s(za) = 6.35 £ 0.19, H(zZiowz)7s(2a) =
(11.41 4 0.56) 10* km s~', where Zjoy, = 0.32. For DR12 CMASS,
we find f(Zcmass)J8(Zcmass) = 0.444 + 0.038, DA(Zcmass)/rs(Zd) =
9.42 & 0.15, H(Zemass)rs(za) = (13.92 +0.44) 10°km's ™', where
Zemass = 0.57. A covariance matrix for these measurements was also
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presented. These are the main results of this paper and are in general
agreement with previous BOSS DR11 measurements. Furthermore,
we have been able to reduce the previous error bars on fo g, shrinking
them down to 15 per cent for LOWZ sample and 8.5 per cent for
CMASS sample, which are the most precise measurements of this
parameter at these redshifts at the moment, when the full AP effect
is considered. Additionally, if we assume that the Hubble parameter
and angular distance parameter are fixed at fiducial ACDM values,
we ﬁndf(zlowz)JS(Zlowz) =0.485 + 0.044 andf(zcmass)US(Zcmass) =
0.436 £ 0.022 for the LOWZ and CMASS samples, respectively.
In this case, the error bars represent a 9.1 per cent for LOWZ and
5.0 per cent for CMASS.

Moreover, we have analysed the data with two additional cosmo-
logical models, ©2;;, = 0.292 and 0.332, of which, in this case, we
have changed the shape of the linear power spectrum of our model,
accordingly. Overall, we observe that both CMASS and LOWZ
galaxies data are in agreement with the fiducial model Qfi¢ = 0.31
consistent with Planckl5 data: for the CMASS sample the tension is
below 1o and for the LOWZ sample within 2o°. For both samples,
when the cosmological model is changed, the value of fog only
changes by <0.5¢.

The constraints on f(zer)osZer, along with H(zew)ra(z) and
D, (Zesr)ra(zefr), Will be useful in a joint analysis with other cos-
mological data sets (in particular, cosmic microwave background
data) for setting stringent constraints on neutrino mass, dark energy,
gravity, curvature as well as number of neutrino species.
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APPENDIX A: EFFECT OF SYSTEMATIC
WEIGHTS AT LARGE SCALES

In this appendix, we study the impact of the systematic weights in
the power spectrum monopole and quadrupole of the CMASS sam-
ple. The systematic weights are designed to correct for fluctuations
in the target density caused by changes in the observational effi-
ciency (Ross et al., in preparation). The CMASS sample presents
correlations between the galaxy density at large scales and the sys-
tematic weights are designed to correct for these variations giving
an isotropic weighted field. However, the accuracy of these weights
is limited and we are interested in their accuracy not only for the
monopole, but also for the quadrupole, which we expect to be more
sensitive to these corrections.

In order to test this effect, we have analysed the CMASS data
power spectrum multipoles before (pre-systematic-weight correc-
tion power spectrum, Pp,._sy) and after the application of the system-
atic weights (post-systematic-weight correction power spectrum,
Pqy). We expect that these pre- and post-systematic-weight power
spectrum multipoles converge to the same values at sufficiently
small scales, where the fluctuations in the target density are not
relevant. However, at larger scales, where the effects of the fluc-
tuations in the target density are not negligible, they will predict
different power spectrum amplitudes. By analysing this difference,
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Figure Al. Effect of systematic weights in the CMASS data sample for the
NGC (blue dashed lines), SGC (red dashed lines) and NGC+SGC (black
solid lines). The arrows indicate the large scale cuts applied in order to
keep those scales where the correction represents less than ~5 per cent of
the signal. These k-cuts are k = 0.02/2Mpc~! for the monopole (lower
sub-panel) and k = 0.04 hMpc~! for the quadrupole (upper sub-panel).

we will estimate the percentile correction of the systematic weights
on the power spectrum multipoles. Setting a limit of ~5 per cent
correction, we define a large-scale cutoff for the power spectrum
multipoles.

This is displayed in Fig. Al, where the ratio between the data
power spectrum multipoles is shown for the monopole (lower sub-
panel) and quadrupole (upper sub-panel). The different colour lines
show this effect for the NGC, SGC, and NGC+SGC as labelled.

As expected, the effect of the systematic weights is relevant only
at large scales, where they suppress spurious correlations and has a
higher impact on the quadrupole respect to the monopole. Setting
an accuracy limit of ~5 per cent correction, we discard those scales
where the systematic weight correction on the power spectrum mul-
tipoles exceeds this limit. Furthermore, we can compute the x? for
the difference between the weighted and unweighted P© and P®.
This is x> = DC™'D’, where D = Pyys — Pyo.5ys- We obtain that for
kmin = 0.02 2 Mpc~! for the monopole and k;, = 0.04 2 Mpc™!
for the quadrupole, (as indicated by the black arrows) and
kmax = 0.25hMpc~' for both statistic, the reduced x2 is 0.044.
This means that, by applying the weights, we are maximally cor-
recting by just ~0.2¢ (0.2 ~ +/0.044) in some measured parameter.
This set a maximal impact of the known systematic without the need
of defining any particular model.

Therefore, in this paper, we will only consider for our analyses
those scales smaller than k = 0.02 hMpc~' for the monopole and
k = 0.04hMpc~! in the quadrupole, as indicated by the black
arrows.

APPENDIX B: EFFECT OF FIBRE
COLLISIONS WEIGHTS ON THE
BEST-FITTING PARAMETER ESTIMATION

In this appendix, we study the effect of the fibre collision weights
on the power spectrum multipoles, and more precisely on the fog
measurement according to the model presented in Section 5. As
described in Section 2.1, the fibre collision weights are included in
order to account for those galaxy pairs that are too close to each
other (<62 arcsec) to put two fibre detectors. The fraction of col-
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Table BI1. Fraction of collided galaxies, fog = ;[wic(x;) —
11/ >, wre(x;), for the data, for the qpm and MD-Parcuy mocks,
for the CMASS and LOWZ samples.

DR12 data set QPM MD-ParcHy
LOWZ 0.0157 0.0418 0.0148
CMASS 0.0528 0.0529 0.0349

lided galaxies, fo, = >, [wi(x;) — D1/ >, wee(x;), for the data is
presented in the first column of Table B1, for the CMASS and
LOWZ samples. Since the number density of galaxies is higher
in the CMASS sample, the fraction of collided galaxies is also
higher in this sample. The second and the third column of Ta-
ble B1 present the fraction of collided galaxies found in the opm and
MD-ParcHy mocks, respectively. For the CMASS sample, the MD-
Parcuy mocks present a smaller value of f., respect to the data and
QpPM mocks, which both are in close agreement. This is due to a lim-
itation in the resolution of substructure inside MD-ParcHy haloes.
This limitation will be solved in future versions of the MD-Parcuy
mocks. In the LOWZ sample, both data and MD-ParcHy mocks
agree well with the value of f.,, because for the number density
of galaxies of this sample, the resolution of substructure was not a
limiting factor. However, we see that gpm mocks present a higher
value of f, with respect to the data. This is due to the version of Qpm
mocks used in this paper matched an old LOWZ catalogue, where
galaxies with previously known redshifts were sub-sample to match
the BOSS close-pairs selection. This sub-sample has now been dis-
continued. As for the MD-ParcHy mocks, this will be fixed in future
releases.

In order to test the effect of the fibre collisions in the parameter
estimation, we focus on the opm mocks for the CMASS sample,
which has the higher value of f., amongst all the cases. We measure
the monopole and quadrupole of 1000 mock realizations and take
their average in order to gain signal to noise. We consider the two
following selection of galaxies.

(1) We treat the galaxies as in a real survey. When two or more
galaxies present an angular separation of <62 arcsec, we weight one
of them by the number of galaxies within the <62 arcsec angular
radius, and remove the others. This mimics what it is done with the
real data set

(i) We consider all the galaxies resolved in the mocks and weight
them equally. This is the ideal case we would have if all the targeted
galaxies in the survey were analysed spectroscopically.

The case (ii) has the correct clustering and the correct anisotropic
signal. Comparing both will show how the collision weights affect
the power spectrum multipoles and the estimation of parameters.

When we compare the power spectrum monopole (and therefore
the isotropic clustering) of cases (i) and (ii), we see that the effects of
the collision weights are degenerate with the amplitude of the shot
noise parameter, Aise, Which we treat as a free nuisance parameter.
This was already reported in Gil-Marin et al. (2015a) for the DR11
sample using prHALOS mocks (Manera et al. 2013). The effect of
the fibre collision weights in the power spectrum quadrupole (i.e. in
the anisotropic clustering) is more complex. We know that a frac-
tion of the angular close pairs correspond to galaxies which share
the same dark matter host halo. Using the regions where we have
a superposition of plates, we have estimated that this fraction is
about ~60 per cent. On the other hand, ~40 per cent of the angular
close pairs correspond to galaxies that happens to share a similar
LOS, but that are actually reasonably uncorrelated. By applying the
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Figure B1. Effect of fibre collision weights in the CMASS sample, where the fraction of collided galaxies is 0.0529. The left-hand panel display the ratio
between power spectrum quadrupole of the cases (i) and (ii) (see the text), where the fibre collisions are applied, P(Z)C‘,mbmweigm, and where all the galaxies
are considered, P® anGalaxies- The black solid line is the ratio of the measured quadrupole of 1000 realizations of the Qpm mocks, and the blue dashed line the
ratio between the best-fitting models to the cases (i) and (ii) at kyax = 0.24 A Mpc~!. The right-hand panel displays the ratio between the best-fit parameters of
the best-fitting models of the cases (i) and (ii). Top and bottom panel display the ratio at different scales.

fibre collision weights to galaxies that are actual close pairs, we
are removing signal in the direction of the LOS with respect to the
signal in the transverse direction, which is not modified. Therefore,
by applying the collision weights, the anisotropic power spectrum
is affected, which potentially can alter the estimation of fog. This
is shown in the left-hand panel of Fig. B1, where the black solid
line show the fractional change in the power spectrum quadrupole
of case (i) respect to case (ii), for opm mocks. We see that this
change is sub-per cent at large scales, but rapidly grows as we go
to smaller scales, reaching ~10 percent at k ~ 0.2 2Mpc~' and
~20 per cent at k ~ 0.25 hMpc~". In order to test the impact of this
change in the fitted parameters, we fit the RSD bias model presented
in Section 5 to the power spectrum monopole and quadrupole of
cases (i) and (ii) and compare them, using the scales 0.02 2 Mpc™!
< k < kpyay for the monopole and 0.04 hMpc™! < k < kpax for
the quadrupole, as we did for the data, varying kp,x from 0.15 to
0.24 hMpc~". The blue dashed line of Fig. B1 shows the ratio of the
best-fitting models to power spectrum multipoles of cases (i) and
(ii). We see that the difference among the models describes well
the differences in the power spectrum quadrupole produced by the
fibre collision weights. In the right-hand panel of Fig. B1, the ratio
between the best-fitting parameters, {b,03, b20s, f03, OFoGs Anoises
o), a1 } of these two models are shown. Both top and bottom pan-
els display the same ratio of parameters, but at different ranges, for
clarity. We observe that the change in the monopole and quadrupole
due to the fibre collision weights is absorbed mainly by A,ise and
byo3, which changes in the order of 20 per cent—100 per cent in the
fibre collision case respect to case (i). The FoG damping param-
eter, o rog changes by about 2.5 per cent and does not present any
significant change with the minimum scale of the fit. The AP pa-
rameters, o and o, do not present any significant change due to
the effect of fibre collisions. Finally, fos and b,03 are modified by
about ~0.5 per cent, and show no dependence with the minimum
scale of the fit. In Table B2, we summarize these results and com-
pare them with the statistical errors for the CMASS sample using
kmax = 0.24 hMpc~!.

We conclude that the effect of fibre collision are absorbed chiefly
by Anoise and byog. The impact of the fibre collision on fog and
biog is a sub-per cent. In this case, fog tend to be overestimated
with respect to the ideal case where all the galaxies were con-
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Table B2. Statistical and systematic errors caused by the effect of fibre
collisions in the free parameters of the model, for the CMASS sample at
kmax = 0.24 h Mpc’l. For the cosmological parameters, fog, o) and v | , the
systematic errors caused by the fibre collisions are much smaller than the
statistical errors of the data for the CMASS sample.

Parameter Statistical error (%) Systematic error due to fc (%)
fosg 8.5 0.5

o 3.1 0.1

o) 1.6 «<0.1

biog 1.7 0.5

byog 130 70

OFoG 9.5 1.5

Anoise 175 10

sidered, whereas b;og tend to be underestimated. Finally, the AP
parameters present changes of the order of ~~ 0.1 per cent for oy and
«0.1 percent for « | .

Since the lo statistical errors of these parameters are about
10 times larger than this systematic shift, we do not correct our
result by this effect. Because the fraction of collided galaxies in the
CMASS sample is higher than in the LOWZ sample, we expect that
these changes are also negligible in the LOWZ sample.

Unstitute of Cosmology and Gravitation, University of Portsmouth, Dennis
Sciama Building, Portsmouth PO1 3FX, UK

2Department of Physics and Astronomy, University of Utah, 115 S 1400 E,
Salt Lake City, UT 84112, USA

3Instituto de Fisica Tedrica, (UAM/CSIC), Universidad Auténoma de
Madrid, Cantoblanco, E-28049 Madrid, Spain

4Universitits-Sternwarte  Miinchen, Ludwig-Maximilians-Universitdt
Miinchen, Scheinerstrafie 1, 81679 Miinchen, Germany

3 Max-Planck-Institut fiir extraterrestrische Physik, Postfach 1312, Giessen-
bachstr., D-85741 Garching, Germany

SMcWilliams Center, Carnegie Mellon University, Pittsburgh, PA 15213,
USA

7 Leibniz-Institut fiir Astrophysik (AIP), An der Sternwarte 16, D-14482
Potsdam, Germany

8Deparz‘amento de Fisica Teorica, Universidad Autonoma de Madrid, Can-
toblanco, E-28049 Madrid, Spain

/T0Z ‘TT Arenuer uo :: e /B10'S [leuinofpuoxo'seiuw//:dny woJj papeojumod


http://mnras.oxfordjournals.org/

9 Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia,
E-18080 Granada, Spain

10Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049
Madrid, Spain

Y Center for Cosmology and AstroParticle Physics, The Ohio State Univer-
sity, Columbus, OH 43210, USA

2Department of Physics, Kansas State University, 116, Cardwell Hall,
Manhattan, KS, 66506, USA

13 National Abastumani Astrophysical Observatory, Ilia State University, 2A
Kazbegi Ave., GE-1060 Thbilisi, Georgia

RSD measurement from the BOSS galaxies 4209

4L awrence Berkeley National Lab 1 Cyclotron Road, Berkeley, CA 94720,
USA

15 Center for Cosmology and Particle Physics, Department of Physics, New
York University, New York, NY 10003, USA

16 National Astronomy Observatories, Chinese Academy of Science, Beijing,
100012, P. R. China

This paper has been typeset from a TX/IATEX file prepared by the author.

MNRAS 460, 4188-4209 (2016)

/T0Z ‘TT Arenuer uo :: e /B10'S [euinolpuo xo'seuw//:dny woJj pepeojumod


http://mnras.oxfordjournals.org/

