A STUDY OF METABOLISM AND RATE OF GAII WITH LAMBS USIMG PELLETED AND HOM-PELLETED RATIONS
by

WAENE DAVIS STRIEGEL

,
B. S., Iansas State College of Agrioulture and Applied Scienee, 1954

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIEMCE

Departanent of Animal Husbandry
ransas state colldge OF AGRICULTURE AND APPLIED SCIENCE
$\angle D$1
REVIEW OF LITERATURE 1
EXPERTMMEXTEAL PROCEDURE 5
Foeding Trial 5
Metabolism Stuay 7
RESULTS AND DISCUSSION 10
Feoding Trial 10
Metabolisui Stuay 23
GENERAL DISCUSSION 17
SUMASARY AND OBSERVATIONS 19
ACKIONLBDGMENTS 23
LITERATURE CITED 24
APPENDIX 26

table of comicmis
 table of comicmis

Commercial lamb feeders have shown an inereased interest in pelleted rations in recent yoars. Exporimontel work indieates that these rations generally produce more rapid and efficient gains than similar rations in non-pelleted form. The advantage of preparing feed in pelleted form seome to be most ovident when the avallable roughage is of poor quality. Pelleting apparently improves the palatability of the feedstuff, thereby promoting increased oonsumption.

In this experiment, a comparison is made between pelleted and nonpelleted rations in regard to feedlot performance, digestibility and nitrogen retention. Although lambs were used in these trials, it is thought that the results obtained can be applied to eattle as well.

Ration with two different ratios of roughage to concentrate were utilised. In addition, the source of roughage in the pelleted rations was either suncured alfalfa hay or dehydrated alfalfa hay.

This study should help provide a clearer understanding as to the rela tive merits of pelleted and non-pelleted rations in the feeding of ruminant animals.

REVIEW OF LITERATURE

In recent years, increasing interest has been shown in the polleting of ration for sheep. Some of the first research work reported on the use of pellets was that conducted at Mew Mexico A. and M. in 1950. Heale (9) conducted trials over a three year period in which low quality alfalfa hay was combined with sorghum grain and molassea in pelleted form. A nonpelleted ration consisting of high quality al falfa hay and sorghum grain was used as a control ration. Results from these trials revealed that the
lambs on the pelleted ration gained more rapidly and utilised their feed more efficiently than the lambs on the non-pelleted ration. It should be noted, however, that the pelleted ration contained molasses while the nonpelleted ration did not inolude this ingredient.

Later work by Neale (10) compared pelleted rationa of varying proporm tions of roughage to concontrate. Pellets containing 70 peroent, 60 pereent and 50 percent roughage were fed to both light and heavy lambs. The light lambs exhibited a slight and the heavy lambs a marked inerease in rate of gain and feed efficiency with the pellets of higher roughage level.

Recent studies at the Illinois Agricultural Raperiment Station (2) Indioated that little or no advantage was to be gained from pelleting rations consisting of alfalfe meal and corn. The pelleting of rations containing timothy meal and oorn considerably increased both rate and efficiency of gain. The results of this woric and that by Meale (9), (10) indioate that pelleting of low quality roughages provides a means of obtaining more complete and effioient utilization of those types of feed.

Evidence is also available indloating that lambs will show greator performance with pelleted rations than the same ration in non-pelleted form. Thomas, et al. (18) found that lambs on pelleted rations of hay and grain gained faster and more effictently than lambs fed whole grain and long hay. Similar results were resorded by Jordan, ot al. (5) who elso reported that the lambs on all pelleted rations developed an apparont oraving for roughage and began to chew on feed bunks and fence posts during the latter stages of the trial.

Work at Eansas State College (1) during the last few years is in accordanoe with that previously mentioned in that lambs on pelleted rations show an inerease in rate of gain and feed effioienoy over lambs on ifliar
non-pelleted rations. In these trials, ratione of 55 percent roughage and 45 peroent corn were compared to rations of 65 percent roughage and 35 peroent corn. It wes found that the $55-45$ rationa gave results superior to those of the 65-35 ration whether the ration wore fed in natural form or as pellets.

Lindahl and Davis (6) fed rations consisting of 50 percent alfalfa hay, 45 percent corn and 5 percent blackstrap molasses, in $100 s e$ form and as pellete to lambs. Lambs on the non-pelleted ration geined 0.34 pound per head per day while those receiving pellets gained 0.42 pound per head per day. Feed required per hundred pounds gein was 908 and 772 pounds respeetively for the loose and pelloted ration.

John (4) found that lambs given pelleted rations made faster and more efficient gains than lambe given similar nonopelleted rations. In the work reported by John, thero wat ono instanoe of a non-polleted ration producing better results than a similar ration in pelleted form, but the lambs on the polletod ration had gone off feed during the foeding poriod. John (4) reported that pelleted rations containing 65 percent alfal pa hay and 85 percont corn gave significantly better results in the feediot than did pelloted rations containing 55 percent alfalfa hay and 45 peroent corn. This Ie not consistent with the resulte reported by Bell and oo-workers (1). However, non-polleted 55-45 rations prodsced faster and more efficiont gaing than did 65-35 non-pelleted rations.

Hays (s) conduoted a fooding trial with lambe using polloted and nonpelleted rations with varying ratios of roughage to concontrate. In addition, the pelleted rations contained either aunoured or dehydrated al falfa hay as the souree of roughage. Lambs gained faster and more efficiently on the pelleted rations. The pellets contalning suncured alfalfa hay gave better results than those containing dehydrated alfalfa hay. A ratio of 55 percent
roughage and 45 pereent concentrate was more effioiont and eoonomical than a. 65 - 35 ratio in the non-pelleted rations. Pelleted rations, however, gave alightly larger gains with the higher proportion of roughage, but the advantage in effioiency and economy was inconsistent.

While most workers report more faverable resulte from feeding pelleted rations than non-pelleted rations, some trials have failed to indioate suoh resulte. In experiments oonducted at Oklahome A. and M. Gollege (11) 1ittle or no inerease in feed efficienoy or rate of gain was noted from pelleted rations over similar non-pelleted rations. Sohnelder, et al. (12) also could deteot no benefit from the pelleting of rations.

In a metaboliam atudy by John (4), lanms fed pelleted rations had significantly higher protein and ether extract digestion coeffioients than lambs fed nonopelleted rations. The digestion ooefficient for orude plber was anoh lower in the pelleted rations. There were no notioeable differences between the total digestible mutrient values of the pelloted and non-pelleted rations, but in the $55-45$ rations, the total digestible nutrient values were signifioantly higher than in the 65-35 rations. The average percent nitrogen retained per lamb was much greater in the pelloted rations than in the nonpelleted rations.

Hays (3) oondueted a motabolism study with lamba using pelleted and non-pelleted rations having a $60-40$ roughage to oonoent rate ratio and pelleted rations having a $55-45$ ratio. In addition, the souroe of roughege in the pellets was either sunoured or dehydrated al falfa hay. The digestion ooefficients, total digeatible nutrients, and nitrogen retention were highest in the pelleted rations containing 55 persent roughage and 45 pereent corn. While there were but slight differenoes in the digestion ooeffioients and total digestible nutrients between the $60-40$ pelleted and non-pelleted
rations, the non-pelleted ration had a signifieantly lower nitrogen reten tion than the pelleted rations. There were no oonsistent difforonoes betweon the results from pellets containing sunoured or dehydrated alfalfa hay.

Digestion trials were conducted by Long, ot al. (7) in which wether lambs were fed Identioal rations in natural, ground and pelleted forze The rations consiated of 30 percent prairie hay, 20 percont alfalfa hey, 84 percent corm, 8 percent cottonseed meal, and 8 percent cane molasses. Results indieated that grinding of the foed tended to dearease digestibility while pelleting of the ground ration raised the digestibility to the original level. There was no significant difforence in overall ilgestibility betweon the rations in pelleted and natural form.

The aotral foeding of pelleted rations on a commercial basis has been iimited due to the high cost of preparation of the pellets. At the present cost of polleting, there appears to be $12 t t l e$, if any, economic advantage in feeding pellets aince the cost of pelleting offsets the saving in feed.

EXPERINENTAL PROCEIDRE

Feoding Trial

One hundred and twenty-six lambs were used in this trial. The lambs Fere purchased at the ITansas City Stook Yards on Ootober 10, 1956, and upon arrival at the Kansas State Colloge sheop barns, were put in dry lot. The lambs received prairie hay and water for the first two days and after that, were given long alfalfa hay, com and oata. This ration was continued until the first day of the feoding period.

In late Ootober, the lambs were individually weighed, ear tagged, and divided into six lots of 21 animals esch. Assigrment to lots was made
according to weight to insure an equal diatribution of light and heavy lambs in all lots. The lambe were then placod in six soparate pons, all of which were covered on the morth by an open-fineed shed. The lambs were startod on test November 6.

Experimental rations were assigned to the varioull lots as follows
Lot 1. Pelleted ration - Pellets consisted of 60 pereent suneured alfalfa hay and 10 percant com. Chopped alfalfa hay was added to the ration to achieve a ratio of 65 percent roughage to 35 percent concentrate.

Lot 2. Pelleted ration - Pellets consisted of 50 percent sunoured alfalfa hay and 50 percont com. Chopped alfalfa hay was added to the ration to achieve a ratio of 55 percent roughage to 45 percent conoentrate.

Lot 3. Non-pelleted ration - Retion consisted of 65 percent chopped alfalfa hay and 35 percont corn.

Lot 4. Non-pelleted ration - Ration consisted of 55 percent chopped alfalfa hay and 45 percent corm.

Lot 5. Pelleted ration - Pellets consisted of 60 percent dehydrated alfalfa hay and 40 percont corn. Chopped alfalfa hay was added to the ration to achiseve a ratio of 65 percent roughage to 35 percent conoentrato.

Lot 6. Pelleted ration - Pellets consisted of 50 percent dehydrated alfalfa hay and 50 percent oorn. Chopped alfalfa hay was added to the ration to achieve a ratio of 55 percent roughage to 45 percent concentrate.

The alfalfa hay used in this experiment was harvestod from the same field. The hey for the dehydrated pellets was taken to the mill for dohydration as soon as it was out. The hay for the suncured pellets was allowed to oure in the field, baled and then taken to the mill for grinding and pelleting. The hay used in the non-pelleted rations was fleld eured, baled, and then put through a forage chopper just prior to the atart of the
feeding trial. All the corn for the trial came from the same bulk lot at the Manhattan insll.

After the lambe were started on the experimental rations, the amount fed dally was gradually inereased until oach lot was recelving all they would clean up. Feeding was done twiee daily and any feed not consumed was woighed baok and the anount reoorded. Salt and mater were kept before the lambs at all times. The lambe were weighed individually at the beginning and at two-weok intervals throughout the trial. The feeding period lasted 88 daya, terminating on February 2, 1957. Upon completion of the feading period, the lembs were taken to the St. Joseph Stock Yards and sold. After slaughter, V.S.D.A. carcass grades were obteined for each lamb.

Average daily gain, feed intake, foed oonsumed per hundred pounds of gain, caroass grades, and feed cost were reoorded. Representative samples of all types of pellets, coma and alfalfa hay wore taken to the ohemstry laboratory for analysis. Results of these analyses are found in Table 1.

Metabolism Stady

The same rations were used in the metabolism study that were used in the feeding trial. The metabolism study was divided into two phases. The rations in Phase I contained 65 percont roughage and 35 percent coneentrate while these in Phase II contained 55 pereent roughage and 45 peroent conoeno trate. In both phases, one ration consisted of ohopped alfalfa hay and ground yellow corn, another of dehydrated alfalfa hay and yellow corn in pelleted form, and a third of sunoured alfalfa hay and yellow corn in pelleted form. The pelleta in Phase I contained 60 percent alfalfa and 40 percent corm. Chopped alfalfa hay wes added to the pellote in Phase I in amounts necessary to aohieve the 65-85 ratio. Pellets in Phase II
Table 1. Chemioal analysis of feeds used in the feeding trial and netabolism study.

Feods	1 Protein	8	Ether Extraot	$\begin{array}{r} 1 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \text { Crude } \\ & \text { Plber } \end{aligned}$	1 Moisture	$3 \text { Ash }$	1 FFreo 1. Extraet	\& Carbo- \& hydrates
	8		\%		8	\%	$\%$	\%	\%
Dehydrated Pellets $(60-40)^{1}$	15.38		S. 63		18.12	6.03	8.55	48.29	66.41
Suneured Pellets $(60-40)^{2}$	15.38		2.81		15.15	6. 58	6.45	53.65	68.80
Alfalfa Hay	15.50		1.66		29.30	5.94	9.28	38.32	67.62
Yellow Corn	11.31		3. 86		2.14	8.55	2.83	72.31	74.45
Alfalfa Hay ${ }^{4}$	18.00		1.78		25.59	5.77	10.02	38.84	64.48
Dehydrated Pellets (50-50)	13. 56		4.39		15. 51	6.47	6.65	53.42	68.95
Suncured Pellets $(50-50)^{6}$	14.15		3.07		13.10	6.85	5.48	57.37	70.47

[^0]contained 50 percent alfalfa and 50 perowat corn. Chopped alfalfa hay was added to the pellots in Phese II in amounts neoessary to achieve the 55-45 ratio.

Eight of the hearlest lambs from the original group purahased in Kansas City were selected for the metaboliam trials. These lambs were brought to the metabolism room and placed in metabolism orates on November 10, 1956. They were immediately started on an epproximate full foed of the experimental rations. Feeding was done twiee daily and water wes kept before the lambs at all times. A week was allowed for the lambs to become accustomed to the erates and diet. On November 17, the first colleotion period of Phase I began. Each colleotion period covered a span of seven conseoutive days. Since only eight metabolism orates were available, three lambs each were on two of the rations and two lambs were on the third ration during each oollection period. At the ond of each colleotion period, the rations were rotated and a three dey adjustment period was allowed before beginning the next colleotion period. In this manner, colleotions were obtained from all the lambs on each retion of the trial.

One lamb of the original eight failed to eat during the initial adjustment period and was replaoed by a lamb whioh soon exhibited signs of 111ness and also had to be replaced. This accounta for the fact that only seven lambe are shown in the first colleotion period.

The feces from each lamb was collected every evening during the colleotion period. This was weighed and a 5 peroent aliquot placed in a porcelainised pan which in turn was placed in an oven set at 65 degrees Centigrade. After the seventh day of colleotion, the oven wes turned up to 95 degrees Centigrade until the feees were oompletely dry. The dry feees were then weighed, transforred to glass jars and taken to the chenistry
laboratory for analysis.
The urine was also colleoted overy 24 hours, the volume reeorded, and a representative sample placed in a glass jar. A few drops of toluene were added as a preservative. Upon completion of a oolleotion period, the urine samples were taken to the ohenistry laboratory for nitrogen analysis.

RESULTS AND DISCUSSIOM

Feeding Trial

It is pointed out thet the pellets used in this experiment contained of ther 60 pereant roughage and 40 percent concontrate or 50 peroent roughege and 50 percent soneontrate. Chopped alfalfa hay was added to the pellets to make a ration containing either 65 percent roughage and $\$ 5$ pereent concentrate or 55 pereent roughage and 45 percent ooncentrate. In addition, the source of roughage in the pellets wan either dehydrated or suneured alfalfa hay. In the following discussions, rations consisting of pellete made with 60 percent suncured alfalfa hay and 40 percont com plus enough ohopped alfalfa hay to make a ration having a 65-35 roughage to coneentrate ratio, WIll be spoken of as $65-35$ suncured pollets. Reference to the other rations will be made in a 11 ke manner.

Results of the feeding trial are given in Table 2. The lambs made more rapid gains when fod pelleted rations than when fod similar non-pelleted rations in all cases but one. This expeption was with the 55-45 dehydrated pellets. The rate of gain from this ration was essentially the same as that from the 55-45 non-pelleted ration. The inoreased ratea of gain apparm ently resulted from more officient feed utilization since the total amount of foed consumed was less with the pelleted rations than with the non-pelleted
Table 2. Feed-lot performance of lembs fod pelleted and non-pelleted rations.

Lot mumber	8	2	8 S	4	5	8
Ration	$\begin{aligned} & \text { 60\% sun. } \\ & \text { : alf. hay } \\ & \text { 40\% corn } \\ & \text { \& Pellets } \\ & \hline \end{aligned}$	50% sun. alf. hay 50% eorn Pellots	$\begin{aligned} & 65 \% \text { choppad! } \\ & \text { alf. hay } \\ & \text { 35\% ground } \\ & \text { corn } \\ & \hline \end{aligned}$	55% ohopped alfe hay 45% ground corn	$\begin{aligned} & \text { 60\% dohyo } \\ & \text { : alf. hay } \\ & \text { : } 40 \% \text { oorn } \\ & \text { Pollets } \\ & \hline \end{aligned}$	\% 50% dehy. t alf. hey 8 50\% eorn 2 Pellets ${ }^{\text {* }}$
Ho. lambs per lot	21	21.	21	20	21	21
Days on feed.	88	88	88	88	88	88
Avg. initial wto per lamb	77.0	75.4	75.3	75.8	75.5	75.1
Avg. final wt. per lamb	117.5	115.0	108.8	106.1	110.6	106.2
Avg. total gain per lamb	40.5	39.6	33.4	31.0	35.1	31.1
Avge daily gain per lamb	. 459	-450	. 380	. 352	- 399	. 353
Lbs. feed daily per lamb						
Pellet	3.15	2.92			2.94	2.62
Chopped hay	. 418	. 408	2.20	1.70	. 408	. 408
Ground corn			1.16	1.35		
Lbs. foed per owt. of gein						
Pellet	684.7	647.9			735.5	740.7
Chopped hay	87.6	90.6	577.8	483.7	102.1	115.4
Ground corn			804.6	377.7		
Feed cost per owt. gein	\$16.44	\$16.45	\$16.25	\$16.89	\$19.31	\$20.24
Feed cost per lamb	\$6.66	\$6.51	\$5.43	\$5.24	\$6.78	\$6.29
Ho. lembs died				1		
Caroass grades						
Prime				2	1	
Choice	10	17	12	9	10	11
Good	11	4	9	9	10	10

* Each lamb recoived, in addition, . 4 pound of chopped alfalfa hey daily.
rations. The oost of gain with pellets containing dehydrated aifalfa hay was considerably more than that with pellots containing sunoured elfalfa hay or the non-pelleted rations. This oan be partially attributed to the high cost of dohydration.

Pellets containing sunoured alfalfa hay gave significantly better results than pellets containing dehydrated alfalfa hay. Not only did the lambs gain more rapidly on the pellets made vith sunoured hay, but the feed officionoy was grester and the cost per hundred pounds of gain lesse

Slightly faster gains were obtained from 65-85 suncured pellets then from 55-45 suncured pellets. The same wes true with the pellets oontaining dehydrated alfalfa hey. Another factor of interest is thet the 55-45 gunoured pellets produced faster gains than either of the rations containing dehydrated alfalfa. This tends to indicate that while a $66-45$ roughege to concentrate ratio may be desirable, a more important factor in obtaining good results from pellets is the utilisation of suncured elfalfa hay es the source of roughage. Feed efficienoy and cost per mundred pounds of gain were varied and inconsistent between the pellets containing different ratios of roughage to concentrate.

In the nonepelleted rations, the $65-35$ roughage to concentrate retion produced a slightly faster rate of gain and a lower cost per humdred pounds of gain than the 55-45 ration.

It is thought that the addition of a small amount of roughage to the pelieted ration, as was done in this trial, lends to more efficient utiliza tion of the pellete.

The feed prices and processing oherges used in determining the foed oost were as follows: Chopped alfalfa hay, $\$ 28.00$ per tom ground corn, \$1. 50 per bushel; dehydrated alfalfa hay, $\$ 37.00$ per ton; grinding hay for
the pellats, $\$ 5.00$ per ton, and mixing and pelloting, $\$ 5.00$ per ton. On the basis of these ifgures, the $60-40$ sunoured pellets cost $\$ 44.44$ per ton, the 50-50 suncured pellets cost $\$ 46.80$ per ton, the $60-40$ dehydrated pellets oost $\$ 48.62$ per ton and the $50-50$ dehydrated pellets cost 850.28 per ton.

One lamb died during the next to last woek of the trial due to enterotoxemia.

Metabolism Study

The average values for the metebolism study are found in Tables 5 and 4.
Digestion Frial. With the rations containing 65 percont roughage and 35 percent concentrate, the lambe recelving aunoured pellets had a higher total digestible mutrient value than the lambe on the non-pelleted ration. The non-pelleted ration, however, gave a higher total digestibie nutrient value than the pelleted ration with dehydrated alfalfa hay. In the 55-45 rations, the ame relationship existed. The better results obtained from sunoured pellets are in agreement with results of the feeding trial. The $55-45$ rations produced considerably higher total digestible mutrient values than the 65-35 rations.

There was little difference in the digestion coefficients for orude fiber in any of the pelleted rations. The fiber digestion coefficionts for both of the non-pelleted rations were essentially the same and were considerably higher then these of the pelleted rations. The digestion oom efficient values for erude fiber in this trial were considerably higher in the pelleted rations then those reported previously for aimilar trials (Hays, 8). (John, 4). The small amount of chopped elfalfa hay added to the pellets is thought to have alded in the digestion of erude Piber. Pellets elone, due to their compactness, would probably tend to move more rapidiy
Table 3. Digestibility study with lambs.*

Table 4. Average resulte of nitrogen balance study with lambe. *

$\begin{aligned} & \text { Ho. of } \\ & \text { Lambs } \end{aligned}$	Ration		$\begin{aligned} & \text { Grams: } \\ & \text { dry : } \\ & \text { fooes: } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Grams: } \\ & \text { II in } \\ & \text { feces: } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { \% } 8 \\ & \text { in } \\ & \text { foeses } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Total: } \\ & \text { mi. of: } \\ & \text { urinet } \end{aligned}$	Grams: 音 5 n urines	$\begin{aligned} & 8 \mathrm{~K} \\ & 8 \text { in } \\ & \text { ingine } \\ & \hline \end{aligned}$	Total 笮 In feoes and urin	\% In feos: and uri		$\begin{aligned} & \text { \% N rou } \\ & \text { stained } \\ & \text { isby lamb } \end{aligned}$
$7{ }^{\text {* }}$	$65-35 \mathrm{DP}^{1}$	255. 53	2108	51.92	33.29	16032	84.78	54.50	136.78	87.79	18.99	12.21
8	65-35 8P ${ }^{2}$	158.02	2775	41.76	27.11	14928	89.99	58.42	132.00	85.55	22.27	14.47
8	65-35 AFA C ${ }^{\text {3 }}$	139.41	1849	41.75	30.65	13146	88.45	63.44	131.18	94.09	8.23	5.91
8	$55-45 \mathrm{DP}^{4}$	155.52	2095	54. 15	34.82	20295	73.96	47.56	115.61	82.38	27.40	27.62
8	$55.458 \mathrm{P}^{5}$	152.86	1712	42,87	28.23	11521	78.35	51.59	121.22	79.82	30.63	20.18
8	55-45 AHACC ${ }^{6}$	100.82	1701	44.00	27.36	10640	87.11	54.16	131.11	81.52	29.70	18.48

[^1]through the digestive traet than pellets accompanied by roughage. Not only would the roughage delay the passage of the pellets through the digestive tract, but it would also add bulk to the ration. This would help to avoid the formation of a doughlike mase in the digestive traet which would not be readily attaoked by the digestive juices (Maynard and Loosli, 8).

The suncured pellets produced considerably highor digeation coefficients for orude protein than did the pelleta containing dehydrated alfalfa hay. The 65-s5 sunoured pellets geve a slightly higher value for protein than did the $68-35$ non-pelleted ration, however, the values for $55-45$ sunoured pellets and the $55-45$ non-pelleted ration were essentially the samee.

The $55-45$ rations gave much higher digestion coeffleienta for ether extract than did the 65-35 rations. Pellets containing dehyirated alfalfs hay had considerably higher values than either the suncured pellets or the non-pelloted rations.

Sunoured pellete produeed alightly higher digestion coefficients for nitrogen-free extraet than did the nonmpelleted rationg. The non-pelleted rations gave higher values than did the dehydrated pellets. The rations containing 55 percont roughage produced nomewhet higher digestion coeffieients for nitrogen-free extraot than did the rations containing 65 percent roughage.

胃itrogen Balance. The differences in nitrogen retention in the retions containing 55 percent roughage and 45 percent ooncentrate wore slight. The 65-35 ration consisting of chopped elfalfa hay and corn, however, produced a. mexh lower nitrogen retention than did the $65-55$ pelleted rations. This difference wes largely due to the failure of two of the lambs to eat properly, during which time they exhibited a negative nitregen balance. The average percent nitrogen retained for the $55-45$ rations was considerably higher than for the 65-55 retions.

GEIERAL DISCUSSIOII

In this experiment it was found that lambs being fattoned on pelloted rations consisting of suncured alfalfa hay and com gained more rapidly and had bottor foed effioloney than lambs being fod pelloted rations conslisting of dehydrated alfalfa hay and ground corn or non-pelloted rations oonsisting of ohopped alfalfe hay and ground corm. The better results obtained from the pelleted rations containing sunoured alfelfa hay are in agreement with other work previously reported (Hays, 3). Many of the experimonts found in the interature report the use of molasses in the pellets along with the other ingrodients. Even with this factor to consider, it is genorally agreed that pelloted rations produce more rapid and efficient gains in lambs than similar rations in non-pelleted form. These results further confinm this obsorvation, but only when sunoured alfalfa hay was used as the souree of roughage in the pellets.

Results from this experimont showed that the rate of gain and feed efflelenoy in the suncured pellets having different ratios of roughage to conoentrate were essentially the same. Also, the cost per hundred pounds of gain was the semo. This laok of variability between the different ratios of roughage to ooncentrate is not in agreemont with the work conduoted by Hays (3), who reported that his results definitely confirmed a greater fsed offioloncy of polloted rations containing a $55-45$ roughage to conoentrate ratio over rations comtaining a 65-35 ratio.

Jordan, ot al. (5), roported that lambs on all-polleted rations doveloped an apparent craving for roughage and bogan ohowing on foed bunks and fonce posts. The lambs in this experiment reoelved approximately of pound of ohopped alfalfa hay along with the pollots. Ho signs of a oraving for
roughage were noted. It is also thought that the addition of this small amount of roughage to the ration helps to effeet a more complete breakdom of the arude fiber in the ration. The digestion coeffioients for the orude fiber are considerably highor in this experiment than in the trial conducted by John (4) in which no edditional roughage was added to the pelletse

Results from this triel comparing the rate of gain and feed effioieney between pelleted rations containing dehydrated elfalfa hay as the souroe of roughage and nonmpelleted rations are in agreenent with the work reported by Cate, et el. (2), In which they found that there was little or no advantage to be gained from pelleting rations consiating of alfalfa meal and corn. The pellets containing dehydrated alfalfa not only failed to produce an appreciable inorease in rate and officioney of gain over non-pelleted rations, but the cost of the dehydrated pellets raised the cost per hundred pounds of gain considerably above that for nopmelleted rations.

Only one other worizer, Hays (3), used pelleted rations containing either sunoured alfalfa hay or dehydratod alfalfa hay, so only one comparison oan be dram betweon the relative morits of pellets containing these two sources of roughage. The astual values for the total digestible nutrients and the various digestion coerficients varied somewhat between this experiment and the work conducted by Hays (3). However, the results of the metabolism studies of the two trials are in fairly close agreement as far as relative differences between the different rations is concerned except in the oase of the erude fiber digestion coefficientse Hays reperted a much lower value for the $60-40$ pelleted rations than for the $55-45$ pelleted rations, but this is thought to be due to the faot that Hays did not add ohopped alfalfa hay to his $60-40$ pellots.

Hitrogen retention was higher with the $55-45$ rations, than with the

65-85 rations. There was little difference in the percent of nitrogen retained in the 55-45 rations.

In the 65-35 rations, the non-pelleted ration produoed a muoh lower nitrogen balance than did either of the pelloted rations. This low value is largely attributed to the failure of two lambs to eat properly while on the non-pelleted ration.

The lambs used in the metabolism study were the heaviest of the group of lambs purchased for both the feeding trial and metabolism study. It is believed by some people that animals confined to orates for experimental purposes exhibit extreme states of unthriftiness and loss of weight during this oonfingent. A point of interest is thet the lambs utilised in this metabolism study had an average weight exaotly the same at the ond of the trial as at the beginning although thoy did lose oonsiderable musole tone due to laok of exereise.

SUMEARY AND OBSERVATIOMS

One hundred and twentywix lambs were used in the feeding trial of this experiment. They were assigned to lots acoerding to weight in order to Insure a uniform average sise of lambs in each lot. There were six lots of twenty-one lambs each. Pelleted and non-pelleted rations with two different ratios of roughage to eoncentrate were fed. In addition, dehydrated alfalfa hay was used for the source of roughege in one sot of pellets while suncured alfalfa hey was used in the other set.

It was found that the lambs made more rapid gains on the pelleted retions than on the non-pelleted rations in all oases but one. The inereased rates of gain were apparently due to more effioient foed uthlization rather than increased feed intake since the lambs on the non-pelleted rations
consumed more feed than those on the pelleted rations.
Pellots containing suncured alfalfa hay as the source of roughage produced faster and more economical gains than pellets with dehydrated alfalfa hay as the souree of roughage.

Where dehydrated alfalfa hay was the souree of roughage, the 65-35 pelleted ration produced best results. When suncured alfalfa hay was the souree of roughage, there was no signifleant difference in economy and rate of gain between the pellots containing the two different ratios of roughage to coneentrate.

The cost per hundred pounds of gain was approximately the same for the non-pelletod rations and the polleted rations containing suncured alfalpa hay. The cost was considerably higher with pellets containing denydrated alfalfa hay. This can be partially attributed to the high eost of dehydration.

Bight wether lambs were used in the metaboliam atudy of this experiment. These lambs were fod the same rations that were used in the feediot trial. Each lamb was on each ration for one week with a three-day edjustment period in between. There was ilttle difference in the total digestible mutrient value for any of the rations containing the same ratio of roughage to ooncontrate. The rations containing 55 percent roughage and 45 percent coneontrate produced somewhat higher total digestible nutrient values than did the 65-35 rations. Digestion coeffiolents for crude flber were significantly higher in the nonopelleted rations. Digestion coefficionts for ether extraot were higher in the rations oontaining 55 percent roughage and 45 pereent concentrate, with the pelleted rations containing dehydrated alfalfa hay having considerably the highest value.

The palleted rations containing sunoured alfalfa hay and the non-pelleted
rations gave orude protein digestion coefficients that were essentially the same. The erude protein digestion oofficients for the pelleted rations containing dehydrated alfalfa hay were somewhat lower than those in the other rations. There was no significant differemee in the digestion oom efficients of nitrogen-free extract in eny of the rations, however, the $55-45$ rations held a slight edge over the $65-35$ rations in this value.

There was ilttle difference in the average amount of nitrogen retained among the 55-45 rations. Nitrogen retention from the $65-35$ rations wes mach the lowest in the non-pelleted ration. It is thought that this low value resulted largely from the fallure of two of the lambs to eat properly. The overall average for nitrogen retenti on was signiricantly higher in the rations containing 55 percent roughage and 45 percent eoncentrateo

The following observations were mide from this experiments
Lambs gained as fast or faster on polleted rations than on similar rations in non-pelleted form.

Pellets containing sunoured alfalfa hay produced more rapid and eeonomical geins than pellets oontaining dehydrated alfalfa hay.

Pelloted rations containing suncured alfalia hay as the source of roughage produced higher total digestible nutrient velues than non-pelleted. rations or pelleted rations conteining dehydrated alfalfa hay. This difference was slight in the case of the non-pelleted rations.

Rations containing 55 percent roughage and 45 percent conoentrate produoed higher total digestible nutrient values than rath ons having a 65-35 roughege to concentrate ratio.

Digestion coeffidents of crude fiber were higher in non-pelleted rations than in pelleted rations.

Digestion coeffioients for crude protein were lower in the pelleted
rations contasning dehydrated alfalfa hay than in polleted rations containing suncured alfalfa hay or the noz-pelleted rations.

Rations containing 55 percent roughage and 45 pereent concearirate prom dueed highor digestion coefficients for ether axtrect then rations con taining 65 pereent roughage and 35 percent concentrate.

Polleted rations containing dehyirated elfalfa hay produced higher aigestion coeffieients for ether extract than pelleted rations containing suncured alfalfe hay or the non-pelleted rations.

ACIIOWLEDGMENTS

The author wishes to express his deepest appreoiation to Dr. Draytford Richardson, major instruetor, for his essistance and guidance in conducting the experiment and preparing the manuseript; and to Carl Menzies and Ted Melson for their help with the feeding triel.

The author is eapeoially gratesul to his wife, Anne Striegel, not only for impiretion, but elso for her essistancein the proparation of data and typing of the manuacript.

LITERATURE CITRD

2. Bell, T. Donald, Draytford Richardson, J. S. Hughes and D. Parrisho The relationship of physical balanoe and energy value in oheop rations, बumaer, 1953. Kansas Agri. Expt. Sta. C 308 (1954).
3. Cate, H. A., J. M. Lewis, R. J. Webb, M. E. Mansfiold and U. S. Garrigus. The effeot of pelleting rations of varied quality and feed utilization by lambs. J. Ani. So1. 14:157-142 (1955).
4. Hays, Leonard E.

Comparative effioien oy of utilization of pelleted and un-pelleted rations of varying consentrations for fattoning lambs. A Master's Thesis, Departament of Animal Huabandry, Kansas State College, Manhattan. (1956).
4. John, Russel E.

The oomparative digestibility and feeding efficieney of pelletod and non-pelleted rations for feeder lambs. A Mester's Thesis, Department of Andmal Husbandry, Iansas State College, Manhattan. (1955).
5. Jordan, P. S., H. G. Croom and E. F. Ferrin.

Lamb feed trials, 1955-1954. Minn. West Central Expt. Sta. Morris S-44 (1954).
6. Lindahl, I. L. and R. E. Davis. Effeet of pelleting on the digestibility of lamb diets. Abst. J. An1. Soi. 14,1215 (1955).
7. Long, T. A*, A. B. Melson and R. MaoViear. Bffect of grinding and pelleting upon digeatibility of a ration by 1ambe. J. Ani. So1. 14:947-950 (1955).
8. Maymard, L. A. and J. K. Loosil. Animal llutrition. New Yorki MoGraw-Hill, p. 48 (1956).
9. Heale, P. E.

Alfalfa cubes for fattening lambe and wethers. NoM. Agri. Expt. Sta. Bull. Ho. 375 (1953).
10. Heale, P. E.

Aifalfa culve mixtures for fattening lambs. Mol. Agri. Expt. Sta. Bu11. Mo. 898 (1955).
11. Noble, R. Lo, Lo S. Pope, Swight Stephens and Ro We MacVicaro Fattening test with western feeder lambs. Okla. AaM Feeders' Day Report, 1952-1953.
12. Sohnoider, B. Ho, L. C. Luoe and E. E. Goodwin. Pea supplements, pelleting, self-feeding, and pea vine silage in lamb fattoning. J. Ani. So1. 12:950-951 (1953).
25. Thomas, O. O., J. L. Van Horn, T. Aasheim and Art Hoversland.

Lambifattoning tests, 1952-1954. Mont. Agri. Expt. Sta. C 80 (1955).

APPEMDIX
Table 5. Digestibility study with leabs using a pelleted ration consisting of 60 percent dehydrated alfalfa hay and 40 pereent oorn plus enough ohoppod alfalfa hay to meke a $65-35$ ratio.

Table 5. (conol.)

		Totel grams fed	\% Pro- teIn	$\begin{aligned} & \text { Grama } \\ & \text { orude } \\ & \text { protein } \end{aligned}$	$\begin{gathered} 8 \\ \text { 3ther } \\ \text { streot } \end{gathered}$: Granis : ether extract	$x 2.25$	8 8 : :Crudes Piber:	Grams orude flber		Grans H.F.E.	Total nutrient digested	\%
49	Pellets	5600	15.38	861. 28	S. 68	203.28		18.12	1014.72	48.29	2704. 24		
	Alf. hay	840	15. 50	130.20	1.66	13.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		217.22			1260.84		3026.12		
	Feoes	2366	14.91	352.77	3.20	75.71		37.69	891.74	30.14	713.11		
	$\mathrm{Am}^{7} \mathrm{t}$ di	gested		638.71		141.51	\$18.39		369.10		2313.01	3639.21	56.50
	Dig. 00	offiei		64.41		65.14			29.27		76.43		
120	Pellets	5600	15.38	861.28	S. 63	203.28		18.12	1014.72	48. 29	2704.24		
	Alf. hay	840	15.50	150.20	1.66	13.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		217.22			1260.84		3026.12		
	Feces	1972	15.45	304.67	2.97	58.56		37.19	735.38	29.94	590.41		
	$\mathrm{Am}^{\prime} \mathrm{t}^{\text {d }}$ ds	gested		686.81		158.66	556.98		527.46		2435.71	4006.96	62.21
	Dig. 0	ffici	ent	69.27		73.04			41.83		80.48		
149	Pellets	5600	15.38	861.28	3.63	205.28		18.12	1014.72	48.29	2704.24		
	Alf. hay	840	15.50	130.20	1.66	13.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		217.22			1260.84		3026.12		
	Feees	2226	15.90	353.93	3.72	82.80		36.20	805.81	30.08	669.58		
	$\mathrm{Am}^{7} \mathrm{t}$ di	gested		637.55		134.42	502.44		455.03		2356.54	3751.56	58.25
	Dig. ∞	offiei	ont	64.30		61.88			S6.08		77.87		
Total fed 44,200Total				6804.86		1491.11			8652.10		20770.64		
				4539.53		1010.30	2273.17		3183.65		16397.77	26394.12	59.72
Total شigested Dig. ooerficient				66.72		67.75			36.79		78.94		

Table 6. Digeatibility study with lembs using a pelloted ration consisting of 60 peroent suncured alfalfa hay and 40 percent com plus enough ohopped alfalfa hay to make a $65-35$ ratio.

		Total grams fed		Grams crude protein:	\% sther atract	Grams ether extract	$\times 2.25$	1% sCrude: stiber:	Grams orude fiber	\%	$\begin{aligned} & \text { Grames } \\ & \text { NoF.E. } \end{aligned}$	Total mutrients ingested	T.D.
81	Pellets	5600	15.38	861. 28	2.81	157.36		15.15	848.40	53.65	3004.40		
	Alf. hay	840	15.50	130.20	1.66	13.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		171.30			1094. 52		5326.28		
	Feoes	1807	14.85	268.33	2.87	51.86		36.90	666.78	35.29	601.55		
				723.15		119.44	268.74		427.74		2724.73	4144.36	64.35
	Dig. coefficient			72.93		69.72			39.08		81.91		
77	Pellets	5600	15.38	861. 28	2.82	157.38		15.15	848.40	53.65	3004.40		
	Alf. hay	840	15.50	150.20	1.66	15.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		171.30			1094.52		3326.28		
	Feces	1871	13.26	248.09	3.42	63.98		38.33	717.15	32.45	607.13		
	$\mathrm{Am}^{\text {¢ }}$ 't $\mathrm{ds}^{\text {d }}$	gested		743.38		107.32	241.47		\$77.37		2719.15	4081.38	65.37
	Dig. coefficient			74.97		62.65			34.47		81.74		
5626	Pellets	5600	15.38	861.28	2.81	157.36		25.15	848.40	55.65	3004.40		
	Alf. hay	840	15.50	130.20	1.66	13.94		29.30	246.12	38.32	321.88		
	Total	6440		991.48		171.30			1094. 52		3326.28		
	Feces	1738	14.56	253.05	3.33	57.87		36.13	628.80	32.52	565.18		
	$\mathrm{An}^{\prime} \mathrm{t}$ d ${ }^{\text {d }}$	gested		738.43		113.43	255.21		465.72		2761.09	4220.45	65.53
	Digo coefficient			74.47		66.21			42. 55		88.00		
71	Pellets	4368	15.38	671.79	2.81	122.74		15.15	661.75	53.65	2343.45		
	Alf. hay	642	15.50	99.51	1.66	10.65		29.30	188.10	38.32	246.01		
	Total	5010		761.30		133.39			849.85		2589.44		
	Feces	1293	13.84	178.95	S. 65	47.19		37.56	485.65	31.86	411.94		
	Am't digested Dig. coefficient			582.35		86.20	193. 95		364.20		2177.50	3318.00	66.22
				76.49		64.62			42.85		84.09		

Table 6. (oonel.)

Table 7.

$\begin{array}{r} L^{2} \\ \hline \end{array}$		Total grems fod		Grams crude protein		Grams ether extract:	$x 2.25$:Crudes fifer:	Grams erude fiber	$: \frac{x}{8}$	$\begin{aligned} & \text { Grams } \\ & 8 \\ & \mathrm{~F}_{0} \mathrm{~F}_{0} \mathrm{E}_{0} \end{aligned}$	Total miriont igested	\%
21	Alf. hay	4150	15.50	640.15	1.66	68.55		29.30	1210.09	58.32	1582.61		
	Corn	2226	11.31	251.76	3.86	85.92		2.14	47.68	72.81	1609.62		
	Total	6356		891.91		154.47			1257.72		3192.23		
	Feees	1925	14.72	282.87	3.53	67.88		38.70	744.20	31.03	596.70		
	$A \mathrm{~m}^{1} \mathrm{t}$ di	gested		609.04		86.59	194.82		513.52		2595.53	3912.91	61.56
	Dig. 0	efficie		68.28		56.05			40.82		81.80		
77	Alf. hay	4130	15.50	640.15	1.66	68.55		29.30	1210.09	38.32	1582.61		
	Corn	2226	11.31	251.76	3.86	85.92		2.14	47.65	72.31	1609.62		
	Total	6356		891.91		154.47			1257.72		3192.23		
	Feces	1812	13.84	250.78	S. 67	66.50		37.91	686.92	31.58	571.14		
	Ast ${ }^{\text {ct }}$ di	gested		641.13		87.97	197.93		570.80		2621.09	4030.95	65.41
	Dig. ${ }^{\circ}$	effiei	ent	7.88		56.94			45.38		82.10		
5626	Alf. hay	4150	15.50	640.15	2.66	68.55		29.30	1210.09	38.512	1582.51		
	Corn	2226	11.31	251.76	3.86	85.92		2.14	47.63	72.31	1609.62		
	Total	6358		891.91		154.47			1257.72		3192. 23		
	Feoes	1985	14.45	286.83	S. 20	63.52		36.44	723.35	34.59	686.61		
	An't di	gested		605.08		90.95	204.65		534.39		2505.62	3849.72	60.58
	Dig. 0	efflel		67.84		58.87			42.48		78.49		
7	Alf. hay	4130	15.50	640.15	1.66	68.55		29.30	1210.09	38.32	1582.51		
	Corn	2226	11.31	251.76	3.86	85.92		2.14	47.65	72.31	1609.62		
	Total	6556		891.91		154.47			1257.72		3192.25		
	Feess	1682	14.21	239.01	2.49	41.88		56.88	620.32	34.16	574.57		
	$\mathrm{Am}^{9} \mathrm{t}$ di	geated		652.90		112.59	253. 32		637.40		2617.66	4161.28	65.47
	Dig. 0	effiod	ent	73.20		72.88			50.67		82.00		

Table 7. (oonol.)

Table 8. Digeatibility study with leabs uaing a pelleted ration consisting of 50 percont dehydrated

15.51	781.70	53.42	2692.36
25.59	143.30	38.84	217.50
	925.00		2909.86
35.46	588.99	33.94	563.74
	336.01		2346.12
	36.32		80.62
15.51	1033.58	53.42	3559.90

8
0
0
0
0

合

8
0
0
0
0

8
$\stackrel{\circ}{\circ}$
$\stackrel{y}{\circ}$
0

 $\begin{array}{lrl}15.51 & 1033.58 & 53.42 \\ 25.59 & 186.29 & 38.84\end{array}$
$36.98 \quad 884.93 \quad 31.42$
292.54
292.54
12.95
305.49
59.87
245.62
 $\begin{array}{rr}4.39 & 292.54 \\ 1.78 & 12.95 \\ & 305.49 \\ 2.44 & 58.38 \\ & 247.11 \\ & 80.88\end{array}$
$\begin{array}{rr}4.39 & 221.25 \\ 1.78 & 9.96 \\ & 231.21 \\ 1.98 & 31.73 \\ & 199.48 \\ & 86.27\end{array}$ 21 Pellets $5040 \quad 13.56 \quad 683.42$ 100.80 704.22
784.22
525.61
67.02
903.63 903.03
181.04
1034.67
365.25
669.42
64. 69
903.63 181.04
1034.67

No
Ň
\%i
on
64.89
383.42 100.80
784.22 \% 웅 68.21 $\begin{array}{lll}13.56 & 903.63 & 4.39 \\ 18.00 & 131.04 & 1.78\end{array}$
$\begin{array}{lll}\text { Pellets } & 6664 & 13.56 \\ 728 & 18.00\end{array}$ 15.86 Dig. coofficient eoes 2503 Total 5826 Pellets A1F. hay 7392 18.00 $\begin{array}{lr}\text { Pellets } & 5040 \\ \text { Alf. hay } \\ 560\end{array}$ $\begin{array}{lll}\text { Peses } & 1651 & 15.57\end{array}$

Am't digested 2. 60
$4689.12 \quad 63.42$
8
80
80
Table 8. (oonel.)

10	Pellets	6664	13.56	905.65	4.39	292.54		15.51	1055.58	53.42	3559.90		
	Alf. hay	728	18.00	131.04	1.78	12.95		25.59	186.29	38.84	282.75		
	Total	7392		1034.67		305.49			1219.87		3842.65		
	Feces	2181	16.18	352.88	1.71	37.29		35.83	757.85	35.64	777.30		
	An't di	gested		681.79		268.20	603.45		482.04		S065.35	4832.68	65.37
	Dig. co	fitiol	ont	65.89		87.79			39.51		79.77		
49	Pellets	6664	13.56	903.68	4.39	292.54		15.51	1033.58	55.42	3559.90		
	Alf. hay	728	18.00	131.04	1.78	12.95		25.59	186. 29	38.84	282.75		
	Total	7392		1034.67		505.49			1219.87		3842.65		
	Feoes	2235	17.58	388.44	1.97	44.02		81.49	703.80	36. 46	814.88		
	$A^{\text {m }}$ 't di	gerted		646.25		261.47	588. 50		516.07		5027.77	4778.37	64.64
	Dig. ec	efflor	ont	62.45		85. 59			42.30		78.78		
120	Pelleta	6664	13.56	903.65	4.39	292.54		15. 51	1035.58	53.42	3559.90		
	Alf. hay	728	18.00	131.04	1.78	12.95		25.59	186.29	58.84	282.75		
	Total	7392		1034.67		305.49			1219.87		3842.65		
	Feces	2045	16.35	533.94	2.84	58.07		37.13	759.30	31.69	648.06		
	Am't di	gested		700.73		247.42	556.69		460.57		5194.59	4912.58	66.45
	Dig. 00	offici	ent	67.72		80.99			57.75		83.18		
149	Pellets	6864	13.56	903.63	4.59	292. 54		15.51	1035. 58	53.42	3559.90		
	Alf. hey	728	18.00	131.04	1.78	12.95		25.59	186.29	58.84	282.75		
	Total	7392		1054.67		305.49			1219.87		3842.65		
	Feces	2341	16.92	396.09	3. 51	82.16		35.08	821.22	52.89	769.96		
	$\mathrm{Am}^{7} \mathrm{t}$ di	gested		638.58		223.33	502.49		398.65		S072.70	4612.42	62.39
	Dig. 0	effici	ent	61.71		73.10			32.67		79.96		
Total fod 55,552				7776.46		2295.36			9169.22		28875.62		
Total digested Dig. coefficient				5068.74		1875.84	4220.64		3285.06		23320.75	35895.17	64.61
				65.18		81.72			35.82		80.76		

Table 9. Digestibility atudy with lanbs using a pelleted ration oonsisting of 50 percent sunoured alfalfa hay and 50 percent corn plus anough ohopped alfalfa hay to maice a $55-45$ ratio.

		$\begin{aligned} & \text { Total } \\ & \text { grams } \\ & \text { fod } \end{aligned}$		$\begin{aligned} & \text { Grame } \\ & \text { orude } \\ & \text { protern } \end{aligned}$		Grams : ether: axtract:	$x 2.25$	$\begin{aligned} & 8 \text { \% } 8 \\ & \text { sCrudes } \\ & \text { sfibers } \end{aligned}$	$\begin{aligned} & \text { Grame } \\ & \text { erude } \\ & \text { fiber } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { IHoF。E } \\ & \hline \end{aligned}$	Grams H.F.E. $:$	Total artrients igestod	$\begin{gathered} \% \\ T_{0} D_{0} \mathrm{~N}_{0} \\ \hline \end{gathered}$
21	Pellets	5814	14.15	821.51	3.07	178.48		13.10	761.63	57.37	3335.49		
	Alf. hay	638	18.00	114.84	1.78	11.35		25.59	163.26	38.84	247.79		
	Total	6452		936.35		189.83			924.89		3583.28		
	Feees	1776	14.47	256.98	4.05	71.57		36.32	645.04	34.78	616.80		
	Am't digested. Dig. coefflicient			679.37		118.26	266.08		279.85		2966.48	4191.78	64.96
				72.55		62.29			50.25		82.78		
77	Pellets	6664	14.15	941.62	3.07	204.58		13.10	872.98	57.37	3825.15		
	Alf. hay	728	18.00	151.04	1.78	12.95		25.59	186. 29	38.84	282.75		
	Total	7392		1072.66		217.53			1059.27		4105.88		
	Feces	1849	15.45	285.30	3.30	61.01		36.15	668.41	33.69	622.92		
	$\mathrm{Am}^{\text {² }}$ t di	gested		787.36		156.52	352.17		590.86		\$482.96	5012.35	67.80
	Dig.	effici		73.40		72.95			36.89		34.82		
5626	Pellets	6664	14.13	941.62	3.07	204. 58		18.10	872.98	57.37	3823.13		
	Alf. hay	728	18.00	131.04	1.78	12.95		25.59	186.29	58.84	282.75		
	Total	7392		1072.66		217.53			1059. 27		4105.88		
	Feces	1806	16.21	501.50	3.07	55.44		35.04	632.82	35.89	612.05		
	Am't di	geated		77.16		162.09	364.70		426.45		3493.83	5056.14	68.40
	Dig. ∞	effioi		71.89		74.51			40.25		85.09		
72	Pellets	4590	14.15	648. 56	3.07	140.91		18.10	601.29	57.37	2633. 28		
	41f. hay	510	18.00	91.80	1.78	9.07		25. 59	130.50	38.84	198.08		
	Total	5100		740.36		149.98			731.79		2831.36		
	Feces	1209	14.73	178.08	3.00	36.27		35.86	433.54	33.60	406.22		
	Am't ds	geated		562.28		113.7	255.84		298. 25		2425.14	8541. 51	69.44
	Dig. ${ }^{\circ}$	effici	ont	75.94		75.81			40.75		85.65		

$\begin{array}{llll}13.10 & 761.63 & 57.37 & 3335.49\end{array}$ $\begin{array}{rr}163.26 & 38.84 \\ 924.89 & 247.79 \\ 645.04 .34 .78 & 616.88 \\ 279.85 & 2966.48 \\ 50.25 & 82.78\end{array}$
3825.15
282.75
4105.88
622.92
3482.96
84.82
M
H2
N
N

10
N․
\%

:

용

7.37
25.59 186.29 38.84
\%
872.98
186.29
1059.27
668.41
390.86
36.89
872.9857 .37 186.2958 .84
1059.27
品
$352.17^{36.15}$
178.48
11.35
189.83
36.32
13.10
118.26 266.08
3.07
1.78
4.03

Pellets 5814 14.18 822.51
A1f. hay 638 18.00 114.84
otal 6452 936.35 $\begin{array}{lllll}\text { Feees } & 1776 & 14.47 & 256.98\end{array}$
72.55

Pellota 6664 14.15 941.62 18.00131 .04 1072.66
285.30
787.36
73.40
941.62 941.64
131.04
1072.66
301.50
77.16

6626 Pellets 666414.13 21
Table 9. (conol.)

105 Pellets 5040 14.13 712.15 3.07 154.72
9.96
164.68
7

0
0
0
0
on
on
0
0
0
0
3731. 69 66.68

3823.13		
282.75		
4105.88		
695.98		
3409.90	4866.92	65.84
83.04		
29056.04		67.08
24403.66	35100.78	
85.98		

Table 10. Digestibility study with lambs using a non-polleted ration oonsisting of 55 percent ohopped alfalfa hay and 45 percent ground oorn.

	8 3 8 8	Total gram fod		Grams orude protein	$\begin{aligned} & \text { Ether } \\ & \text { atraef } \end{aligned}$		x2.25		$\begin{aligned} & \text { Grams } \\ & \text { : orude } \\ & \text { flber } \end{aligned}$		Greaus NoPoE。	Total nutrionte digested	\%
21	Alf. hay	3080	18.00	554.40	1.78	54.82		25. 59	788.17	38.84	1196.27		
	Corn	2520	11.31	285.01	5.86	97.27		2.14	55.92	72.31	1822.21		
	Total	5600		839.41		152.09			842.09		5018.48		
	Feoes	1305	16.11	210.23	3.67	47.89		35.49	437.04	35.98	443.43		
	Am't di	gested		629.18		104.20	234.45		405.05		2575.05	3843.73	68.65
	Dige 0	effios		74.95		68.51			48.10		85.30		
77	Alf. hay	4060	18.00	730.80	1.78	72.26		25.59	1038.95	38.84	1576.90		
	Corn	3332	11.31	376.84	3.86	128.61		2.14	71.30	72.31	2409.86		
	Total	7392		1107.64		200.87			1110.25		3986. 26		
	Feces	1745	15.48	270.12	3.18	54.61		33.50	584.57	35.49	619.30		
	$\mathrm{Am}^{1} \mathrm{t}^{\text {d }}$ di	gested		837.52		146.26	329.08		525.68		5366.96	5059.24	68.44
	Dig. ∞	affios		75.62		72.81			47.54		84.46		
5626	Alf. hay	4060	18.00	730.80	1.78	72.26		25. 59	1088.95	38.84	1576.90		
	Corn	5332	11.31	376.84	3.86	128.61		2.14	7.50	72.51	2409.36		
	Total	7392		1107.64		200.87			1110.25		3986.26		
	Feces	1851	16.68	508.74	2.22	41.09		29.01	536.97	38.61	714.67		
	$A^{\text {m }}$ * t ds	gosted		798.90		159.78	359.50		573.28		3271.59	5003.27	67.68
	DIg. 00	offioi		72.12		79.54			51.63		82.07		
71	Alf. hay	5780	18.00	680.40	1.78	67.28		25. 59	967.30	58.84	1468.15		
	Corn	5100	11.31	350.61	3.86	119.66		2.14	66.34	72.31	2241. 61		
	Total	6880		1031.01		186.94			1033.64		3709.76		
	Feces	1712	15.37	263.18	3.54	60.60		34.70	594.06	34.44	589.61		
	$\mathrm{Am}^{\text {'t }}$ di	gested		767.88		126.34	284.26		439.58		3120.15	4611.87	67.03
	Dig. ${ }_{0}$	efflei	ent	74.47		67.58			42.52		84.10		

Table 10. (conole)

Table 11. Kitrogen belanoe study with lambs.

Lamb	$\begin{aligned} & \text { : Grame } \\ & \text { II } \\ & \text { :oonsumed } \end{aligned}$	$\begin{aligned} & \text { sGrams: } \\ & \text { i dry : } \\ & \text { difeoss } \end{aligned}$	$G r_{\mathrm{ams}} \mathrm{ms}$ in feoes:	$\begin{aligned} & 8 \mathrm{H} \\ & \text { in } \\ & \text { feoes } \end{aligned}$	$\begin{aligned} & 8 \text { Total } \\ & 8 \text { mil } \\ & \text { sin urine } \\ & \hline \end{aligned}$	Grams: II 18 urines		: Total II: 3 in feoes: and uminos	$\begin{aligned} & \text { \%II in } \\ & \text { foees } \\ & \text { and urin } \end{aligned}$	$\begin{aligned} & \hline \text { Grane } \\ & t \text { I } \\ & \text { osretaineds } \\ & \hline \end{aligned}$	\% rotained by lamb
	Dehydrated Pollets (65-35)*										
21	156.95	1882	46.28	35.79	6050	75.56	55.17	121.84	88.96	15.12	11.04
77	158.65	2239	54.23	34.18	8420	85.06	55.61	139.29	87.79	19.37	12.21
71	158.63	1897	44.49	28.04	4420	86.54	54.55	151.03	82.59	27.62	17.42
108	158.63	2174	55.61	35.05	10050	80.40	50.68	136.01	85.73	22.64	14.27
49	158.63	2366	56.44	35.57	37790	93.72	59.07	150.15	94.64	8.50	5.36
120	158.63	1972	48.74	50.72	6470	85.46	52.61	132.20	83.35	26.44	16.67
149	158.63	2226	56.62	35.69	38050	88.60	55.85	145.22	91.54	13.42	8.46
Total Average	1088.75	14756	362.41	$35.29{ }^{112250}$		593.38		955.74		135.11	
							54.50		87.79		12.21
	Suncured Pellets (65-35)*										
21	158.63	1807	42.93	27.06	9010	85.77	54.06	128.70	81.12	29.95	18.88
77	158.65	187	39.69	25.02	12810	86.46	54.50	126.15	79.52	52. 49	20.48
5626	158.65	1738	40.48	25. 51	25720	105.45	68.47	145.93	91.98	12.72	8.02
71	121.80	1293	28.49	25.49	2935	81.24	66.69	109.86	90.18	11.96	9.82
108	158.63	1841	45.86	28.91	11450	90.11	56.80	135.97	85. 71	22.67	14.29
49	158.65	1700	57.48	23.62	13510	104.61	65.94	142.09	89. 56	16.56	10.44
120	158.63	1966	47.05	29.66	5300	85.15	52.41	130.20	82.07	28.44	17.95
149	158.65	2019	52.00	32.78	38890	85.16	53.68	137.16	86.46	21.49	13.54
Total Average	1232.21	14205	334.11	27.11^{1}	119425	719.95	58.42	1056.06	85.53	176.28	14.47

Table 11. (oont.)

Chopped Alfalfa Hay and Ground Corn (65-35)
90.58
87.31
108.14
87.82
90.52
93.58
102.82
93.52
94.09
65.92

219.25
 32.38

 84.03
 84.49 108.45
 81.7012250
 1049. 50
 63.44
 106575707.62

81.70
28.11

เั
a
․․
․
5.

名

1115.3514798
341.89
30.65
 28.50 8. 34.90 § 45.70 Total
Average

21
77
5626
71
108
49
120
149
142.70
142.70
142.70
142.70
142.70
142.70
116.48
142.70
Table 11. (conol.)

[^2]
A STUDY OF METABOLISM AND RATE OF GATN WITH LAYBS USIMG PELLETED AND NOK-PELLETED RATIONS

by

WAINE DAVIS STRIEGEL
3. S., Kansas State College of Agrieulture and Applied Soience, 1954

AN ABSTRACT OF A TEESIS
subraitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Departanent of Animal Husbandsy

EANSAS STATE COLLDGE
OF AGRICULTURS AND APPLTED SCIENCE

This experiment was designed to study the feedlot performanee, digestibility, and nitrogen retontion from pelleted and non-pelleted rations having two different ratios of roughage to concentrate. In addition, the pellots contained of ther dehydrated or suncured alfalfe hay as the souree of roughage.

One hundred and thisty-four lembe were used, with the eight heaviest being selected for the metabolism study. The lambs used in the foeding trial were divided into $s i x$ lots of 21 animis each.

The same rations were used in both the feeding trial and metnbolism study. The experimental rations were as followss (1) Pellets containing 60 percent dehydrated alfalfa hay and 40 peromet corm plus enough choppod alfalfa hay to make a $65-35$ ratio. (2) Pollots containing 60 pereent sunoured alfalfa hay and 40 peroent corn plus onough chopped alfalfa hay to make a $65-55$ ratio. (s) Non-pelleted ration consisting of 65 pereent chopped alfalfa hay and 35 percent ground yellow corn. (4) Pellots containing 50 percent dehydrated alfalfa hay and 50 percent corn plus enough chopped alfalfa hay to make a $55-45$ ratio. (5) Pellets containing 50 percent sun cured alfalfa hay and 50 peroent corn plue enough chopped alfalfa hay to make a $55-45$ ratio. (6) Non-pelleted ration consisting of 55 percent chopped a.lfalfa hay and 45 percent ground yellow oorn.

It was found that lambs boing fattened on pel leted rations containing suncured alfalfa hay gained more rapidiy and had better feed afficienoy than lambs on pellets oontaining dehydrated alfalfa hily or on non-pelleted rations. There was little difference in rate of gain, feed afficieney and cost per hundred pounds of gain between suncured pellets having different ratios of reughege to ooncentrete. In the dehydrated pellets and the non-pelleted rations, rate and economy of gain were best in the rations containing the higher level of roughage. The oost of gain was about the same for the
suncured pellets and the non-pelleted rations. Cost of gain for the dahydrated pellets was oonsiderably higher.

Total digestible mutriant values wore higher in the $55-45$ rathons than In the 65-35 rations. Pollets containing dohydrated alfalfa hay gave the lewest total digestible mutrient values, suncured pellets gave the highest, and the values for the non-pelleted rations fell between the two. Digestion coefficieats for crude protein were lowest in the dehydrated pellets. There wes little difformee betwoen the protein digestion cocffioients for sunoured pellets and the non-pelleted rations. The two differeat levels of roughage to concontrate produced no significent differenses in oxude protein digestion coeffioients. Ether extract digestion coeffioients were considerably higher in the dehydrated pellets than in the other two rations. Rations oontaining 55 percent roughage gave a. higher value for ether extract than did the rations oontaining 65 percent roughage. There was little difforenoe in the digestion coeffioients for orude fiber In any of the pelleted rations. Fiber digestion coeffioients for both of the nonmpelleted rations wore essentially the same and were considerably higher than those for the pelleted rations. The 55-45 rations produced slightly higher digesthon eooffielents for nitrogen-free extract than did the $65-35$ rations. There was little difference in the values for nitrogon-free extract within the rations containing the same ratio of roughage to soncentrate.

The 55-45 rations produoed higher everage percents of nitrogen retention than did the 65-55 rathons. There was ilttle difference in nitrogen retontion from the 55-45 rattons, while in the 65-35 rations, the non-pelleted ration gave a mach lower value than did the pelloted rations. It is thought that this low value was due to the faslure of two of the larbs on the nonpelleted ration to eat properly.

[^0]: 1 Pellets consisting of 60 percent dehydrated alfalfa hay and 40 percent corn used in the foeding trial and metabolism study. Chopped alfalfa hay was added to make a $65-35$ ratio. 2 Pellets consisting of 60 percent sunoured alfalfa hay and 40 percent eorn used in the feeding trial and metaboliam study. Chopped alfalfa hey was added to make a 65-35 ratio.

 3 Alfalfs hay used in Phase I.
 5 pellets oonsisting of 50 pereent dehydrated alfalfa hay and 50 percent eorn used in the feeding trial and metabolism study. Chopped alfalfa hay was addod to make a $55-45$ ratio.

 6 Pellets consisting of 50 percent suncured alfalfa hay and 50 pereent oorn used in the feeding trial and metabolism study. Chopped alfala hay was added to make a $55-45$ ratio.

[^1]: * Individual Lamb results are shown in Appendix Table 11.
 * One lamb was renoved due to illness.

 1 Represents pellets containing 60 percent dehydrated alfalfa hay and 40 peroant eorn plus oncugh ohopped
 2 Represents pellets containing 60 peroent auncured alfalfa hey and 40 percent oorn plus enough chopped
 4 Represents pellets containing 50 percent dehydrated alfelfa hay and 50 pereent corn plus enough chopped
 5 Represents pellets containing 50 percent sunoured alfalfa hay and 50 percent corn plus onough chopped alfelfa hay to mke a 55-45 ratio.

 6 Represents a non-pelleted ration consisting of 55 percent ohopped alfalfa hay end 45 percent ground

[^2]: * Pellets contained 60 percent roughage and 40 percent concentrete. Bnough ehopped alfalfa hay was added to make a $65-35$ ratio.

 Pellets contained 50 percent roughage and 40 peroent coneentrate. Bnough ohopped alfalfa hay was added to make a $55-45$ ratio.

