
  

Near infrared quantitative chemical imaging as an objective, analytical tool for optimization of 
the industrial processing of wheat 

 
 

by 
 
 

Mark Daniel Boatwright 
 
 
 

B.S., Kansas State University, 2009 
M.S., Kansas State University, 2012 

 
 
 

AN ABSTRACT OF A DISSERTATION 
 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 

Department of Biochemistry & Molecular Biophysics  
College of Arts and Sciences 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2018 
 

  



  

Abstract 

The technique of near infrared chemical imaging has been widely used for many 

industrial applications. It offers selectivity and/or sensitivity for numerous organic functional 

groups. The advantage of the near infrared spectroscopic region is the linear relationship of 

absorbance and concentration that enables quantitation. This universally employed technique has 

been a boon for research studies in the industrial process of wheat milling for the production of 

flour. The milling process has numerous sequential grinding and sieving steps that enable 

selective physical segregation of a starch rich endosperm product from wheat. Thousands of 

spectra of purified endosperm and non-endosperm standards are collected to develop a spectral 

library. Quantitation of the purity of individual processing streams is accomplished by applying a 

partial least squares calibration that is based upon the spectral library. The quantitative chemical 

imaging technique is useful for determination of endosperm purity profiles for mill flour streams. 

These plots reveal purity changes as less pure streams are added to produce a flour blend. The 

chemical structural basis furthermore allows comparison of purity even with changes in the 

wheat blend being milled with representative standardization. Furthermore, whereas a certain 

section of sieves is responsible, for designating the material defined as flour, application of the 

spectroscopic method is obvious. Select examples of key processing streams were studied to 

show the possibility of sieve-by-sieve analysis of the physical separation to provide mill 

optimization. These novel methods of analysis would not be possible without the sensitive and 

selective method of quantitative chemical imaging. Application of this technique to a few select 

unit processes is projected to reasonably affect a 1% increase in the yield of high quality flour. 

This amounts to a significant financial gain against low profit margins. 

 
  



  

Near infrared quantitative chemical imaging as an objective, analytical tool for optimization of 
the industrial processing of wheat 

 
 

by 
 
 

Mark Daniel Boatwright 
 
 
 

B.S., Kansas State University, 2009 
M.S., Kansas State University, 2012 

 
 
 

A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Department of Biochemistry & Molecular Biophysics 
College of Arts and Sciences 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2018 
 
 

Approved by: 
 
Major Professor 
Dr. John Tomich 
 

Approved by: 
 

Major Professor 
Dr. David Wetzel 

 

 

  



  

Copyright 

© Mark Boatwright 2018. 

 

 

  



  

Abstract 

The technique of near infrared chemical imaging has been widely used for many 

industrial applications. It offers selectivity and/or sensitivity for numerous organic functional 

groups. The advantage of the near infrared spectroscopic region is the linear relationship of 

Absorbance and concentration that enables quantitation. This universally employed technique 

has been a boon for research studies in the industrial process of wheat milling for the production 

of flour. The milling process has numerous sequential grinding and sieving steps that enable 

selective physical segregation of a starch rich endosperm product from wheat. Thousands of 

spectra of purified endosperm and non-endosperm standards are collected to develop a spectral 

library. Quantitation of the purity of individual processing streams is accomplished by applying a 

partial least squares calibration that is based upon the spectral library. The quantitative chemical 

imaging technique is useful for determination of endosperm purity profiles for mill flour streams. 

These plots reveal purity changes as less pure streams are added to produce a flour blend. The 

chemical structural basis furthermore allows comparison of purity even with changes in the 

wheat blend being milled with representative standardization. Furthermore, whereas a certain 

section of sieves is responsible, for designating the material defined as flour, application of the 

spectroscopic method is obvious. Select examples of key processing streams were studied to 

show the possibility of sieve-by-sieve analysis of the physical separation to provide mill 

optimization. These novel methods of analysis would not be possible without the sensitive and 

selective method of quantitative chemical imaging. Application of this technique to a few select 

unit processes is projected to reasonably affect a 1% increase in the yield of high quality flour. 

This amounts to a significant financial gain against low profit margins.
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Chapter 1 - Industrial Processing of Wheat 

 1.1 Wheat 

Wheat has the largest growing distribution of any cultivated cereal (1). It is also the 

second largest source for worldwide caloric consumption. As such, it is a very important food 

crop with interest at a global level. The basic chemical components of wheat kernel that provide 

nutritional value include starch, protein, and cellulosic material. There are also several minor 

constituents such as lipids, minerals, and vitamins. 

 The wheat plant is classified as a grass (family Gramineae) under the genus Triticum (2). 

The primary wheat plant that is milled is the species Triticum aestivum or common wheat. 

Common wheat is traditionally divided into multiple subclasses based upon the growth pattern, 

pigmentation of the outer bran layer, and kernel characteristics (3). The differences between 

subclasses affect the processing characteristics and end use of the wheat with selective breeding 

further meeting these needs.  

 The wheat kernel has an oblong shape that is larger, and rounded at one end. The kernel 

has two asymmetrical sides. The dorsal side is smooth and rounded and contains a dent where 

the germ is located. The ventral side is rounded, but contains a horizontal crease along the 

longest axis. The average kernel varies from 8-10 mm in length (4). The shape and size have 

greatly defined the development of processing and refinement methods over time. 

 The individual kernel of wheat is organized into several distinct botanical parts (Fig. 1.1). 

The major botanical parts of the wheat kernel are the bran (the seven outermost protective 

layers), the endosperm (energy source for the growing seed), and the germ (the embryo). The 

bran is the outer, protective portion of the wheat kernel and consists of several layers 

contributing to approximately 8% of the kernel weight. The outermost layers are called the outer  
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Figure 1.1 Diagrams of the wheat kernel with labeled botanical parts (left) and cross-section (right) with 
major regions. [Reprinted from 2] 
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pericarp and consist of epidermis and the hypodermis. The adjacent inner pericarp has the 

intermediate cells, cross cells, and tube cells. The innermost layer of the bran is the seed coat, 

which is composed of the testa, pigment strand, and nucellar layers. These inner layers provide 

additional structure and the pigment strand gives the wheat kernel its coloration. 

The endosperm component has the largest contribution at 83% of the total kernel. The 

purpose of the endosperm is to provide the food source for the growing embryo. As such, it is a 

very important source of calories for human consumption. The endosperm is located inwards 

past the aleurone layer and changes from peripheral, prismatic, to central endosperm; each with a 

slightly modified chemistry and structure. Endosperm consists of starch granules embedded 

within a matrix of cellulosic cell walls and protein bodies. Wheat starch is further subdivided 

between “A” and “B” granules that are approximately 12-30 and 1-10 µm, respectively (5). 

While the individual starch granules are fairly small, the endosperm cells, composed of cell 

walls, protein matrix, and starch granules, are a minimum of 60 µm (6). There are approximately 

30,000 individual starch endosperm cells within a single wheat kernel. 

 The smallest region of the major wheat kernel botanical parts is the germ. The germ is 

surrounded by an epithelial layer and contains the embryonic axis (the growing portion of the 

germ) and the scutellum that provide nutrients in the form of lipid and protein. There are health 

benefits from the inclusion of germ in the diet including the desirable lipid composition; 

however, the chemistry of the germ makes it unreasonable for its inclusion in wheat products due 

to rancidity upon storage. 

Any chemical analysis of wheat must take into account the variation of the chemistry 

between and within the botanical parts of the kernel. These chemical compounds include starch, 

protein, water, and lipid in significant amounts (78%, 14%, and 3% by mass, respectively). The 
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starch composition of wheat is fairly constant. Protein has the largest variation per unit weight of 

the three major chemical components. This variation can occur even within kernels of the same 

cultivar (up to 10%). Regarding specific proteins, the amount of gluten between wheat cultivars 

can differ by a factor of three. This is significant because gluten storage proteins often eclipse 

50% of the total protein content of wheat. 

The wheat kernel initially begins with a significant mass of water during the growth 

process. However, when the wheat kernel matures, it begins to dry out to a moisture content of 

approximately 9-12% and metabolic activity begins to cease. The greatest amount of moisture is 

present within the endosperm, but highly variable. Lipid has a fairly minor presence in the wheat 

kernel. It is enriched within the bran and germ, but there is also a small amount buried within the 

endosperm cells. 

Also, there are several minor constituents of the wheat kernel. Wheat has a fair amount 

dietary fiber primarily in the form of nonstarch polysaccharides. These are divided amongst 

arabinoxylan and beta-glucan primarily. There is also a relevant fraction of mineral content (ash) 

that is enriched in the bran and germ. The average concentration of mineral present for the entire 

wheat kernel is 1.58%. 

Given the importance of the endosperm regarding human consumption of wheat, the 

chemical composition has been widely studied. On average, wheat endosperm contains 80% 

starch, 10% protein, and 10% of other chemical components (1). The variation of starch 

composition is highly dependent on variables during the development of individual kernels. 

Protein composition is interdependent with several external factors including soil, fertilization, 

etc.  
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 1.2 Wheat Milling Background 

Separation science has been applied to the refinement of naturally occurring materials to 

isolate the high value component. For industrial scale refinements, intermediate steps are 

required to produce a value-added material. Grain refinement (milling) is often necessary to 

obtain desired texture of end product and increase the shelf life of flour or flour products (3). 

This causes many vitamins and minerals to be removed, but they are easily with supplemental 

additives. Thus, the selected endosperm measurement focuses not on just a valuable 

measurement, but the components which negatively affect the performance of the product or 

shelf life. Non-endosperm particles are known to adversely affect the taste of mouth feel, 

including bitterness and dryness. Baking is also affected, because bran and germ soak up 

additional moisture and add weight to the dough preventing rising. More importantly, bran 

particles with their irregular shapes can break air bubbles. 

The wheat milling process consists of a combination of gradual grinding for particle size 

reduction and repeated classification by sifting. The overall efficiency of the process is measured 

by the purity and yield of product in the form of fine particulates of wheat endosperm (flour). 

Raw wheat is shipped from local elevators and sent immediately to storage bins in the mill. 

Initial separations steps include a magnet and coarse sieve to remove potential contaminants.  

Directly before the milling process, more significant cleaning and conditioning occurs. The first 

premillling cleaning step is aspiration, where airflow picks up the lightweight chaff and dust. A 

destoner follows to separate similar sized particles like rocks or glass based upon density. The 

seed separator is used to remove seeds and other material that has a different shape or length than 

the typical wheat kernel. The traditional milling process uses a period of soaking called  
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Figure 1.2 Typical flow diagram for a milling process indicating grinding, sieving, and purifier 
operations complete with operational settings and stream destinations. [Reprinted from 7] 
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tempering. The theory is that the moisture weakens the interaction between the bran and 

endosperm while softening bran to prevent its' shattering into small pieces. Alternative 

preprocessing steps can follow including debranning to remove the outermost layers of bran with 

abrasive action. 

The milling process is routinely described by a flow sheet (Fig. 1.2) where successive 

grinding operations with subsequent sifting stages are shown in detail (7). Sifting is performed 

with a stack of sieve frames with sieves of different apertures stretched upon them. This process 

is based on the principle of sorting the incoming stock after each grinding stage to different 

particle sizes with descending sieve apertures. Groups of sieves in the range between 110–220 

microns are generally shown in the flow sheet for the separation of enriched endosperm as flour.  

The flow diagram displays each unit process with a summation of incoming material 

(with shorthand notation of the origin) entering a grinding, sieving, or purifier process. Each unit 

process is also designated with a short form. The material is shown to enter a pair (or pairs) of 

grinding rolls that are denoted with the number of roll pairs, energy consumption, the pitch, the 

differential, the spiral, and the roll surface.  

Fig. 1.3 demonstrates a typical sifting surface (8). Note that a wooden frame is present 

upon which a sieve cloth is stretched. Material will typically approach the first sieve from the 

middle. As the sifter box gyrates in a mechanistic fashion, the wheat intermediate stock is also 

shaken back and forth from one side to another. In this manner, some material goes through this 

sieve cloth and the rest makes its way towards what is referred to as the tail of the sieve where it 

passes towards the side nail and down to the next sieve (Fig 1.3). The materials hit the next sieve 

from one side, known as the head of the sieve and the material passes down so forth. The thrus 

are collected in the pan and guided towards the thrus channel which goes down the side of  
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Figure 1.3 Photograph of a typical sifter box (left) and a diagram of a sifter frame (right). 
[Reprinted from 8] 

 

the section, reaches the bottom, and exits through a cloth sifter sock.  

The milling process is broken down into several stages, each with a particular goal. The 

first set of operations, referred to as the break system (Bk), consists of grinding action with 

corrugated rolls with the purpose of tearing the kernel apart to remove endosperm from the bran 

in large pieces. There are typically 5-6 break operations, beginning with the first milling step in 

the rupture of the intact wheat kernel. The material over a 1040 µm sieve for each of these 

processes is sent to the next break operation and the other sieves produce a small amount of flour 

and selectively redistribute endosperm and non-endosperm to additional processing steps. Often, 

additional sifting surface is available for these high-volume operations in the form of a Division 

sifter. 
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The next milling system for the majority of milling operations is a sizings step. This 

process is not featured in every mill, but it selectively breaks down endosperm particles and 

flattens the bran to ease the particle size based separation via sieving. A sizable amount of flour 

is produced here while providing pure endosperm for later steps and redistributing material to 

rework step. Alternatively, there is a break redust system to redistribute intermediate stock from 

the early break systems (typically 1, 2, 3 Bk) to appropriate operations. The purifier operation 

also performs a similar function. This system uses sieving under the effect of air turbulence to 

provide stock classification rather than a grinding procedure. Material is selectively graded based 

upon density and particle size into at least five stocks. These stocks are often purified middlings 

(coarse particles of purified endosperm) and non-endosperm fractions going back to the break 

system. 

The next stage is the middlings reduction system. This system is provided with clean 

middlings and uses smooth rolls that reduce the material to a particle size appropriate for flour (< 

220 µm). The general goal is to produce as much flour as possible as quickly as possible. The 

sifters often redistribute material only to the next reduction operation, however, sometimes stock 

is sent back to the late break or rework systems. 

Many milling systems feature a residue or low-grade system. These processes may 

include the tail end of the break and/or reduction systems. The purpose of these processes is to 

produce additional flour if possible and to classify the non-endosperm streams to maximize 

value. By definition, as a commodity industry, wheat milling operates with high volumes and 

low margins where every increase in value is beneficial. 
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 1.3 Mill Optimization 

An optimized milling operation requires consideration of efficiency of several processing 

factors to maximize profits. The raw wheat (grist) is the largest expenditure for the mill and 

comprises 80% of the total production costs. In the purchasing of wheat, the mill owner must 

consider the cost, extraction rate (% flour) potential, and the moisture content. The physical 

characteristics of wheat that are used to define millability are plumpness, uniformity, soundness, 

cleanliness, wheat hardness, lack of impurities, and contamination. The price of wheat products 

and byproducts fluctuates often within a calendar year. Over recent years, the overall price of 

flour has trended downward (Fig. 1.4). There are discrepancies in prices within the US market, 

but the overall trends are the same. It can be noted that the prices of both byproducts and 

products exhibit opposing trends.

 

Figure 1.4 Price in dollars/cwt of wheat (bottom) and flour (top) from quarterly reports over 
2010-2016. Note that the Minneapolis (□, o) and Kansas City (◊, Δ) markets are displayed for 
each commodity (9). 

 

Blending with wheat stock that is already in the mill's storage bins is also an option. 

Wheat must be purchased at the cheapest available price to produce flour of a specified quality 
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requested by the buyer/consumer. The relative price of product and byproduct at a particular 

point in time is also a key consideration. Electricity, capital, and salaries are secondary to the 

wheat grist. However, these costs can be limited by optimizing the overall process efficiency 

(10). Optimization of the operational efficiency is quite important. The flour milling industry in 

the US uses the measurement of the hundredweight (cwt) in pounds to describe the mass. The 

average U.S. mill approximately handles 10,000 cwt of wheat/24-hour period; however, the trend 

is towards larger mills greater than 18,000 cwt (11). As such, in the terms of flour mill wheat 

requirements or flour output, a 1% difference represents hundreds of thousands of dollars over 

the course of a year. Thus, optimization to improve yield is obvious given the low margins. 

After considering potential costs, the miller must meet certain flour quality 

characteristics, specified by the consumer or buyer. Flour purity is routinely determined by 

methods such as low mineral ash or a high brightness measurement, indicating the lack of non-

endosperm, and the miller must maximize the extraction rate to obtain a reasonable margin. This 

requires the efficiency of separation to be optimized for every individual unit process (10). With 

the average capacity of U.S. mills doubling since the 1980s and a subsequent increase in flow 

rates, this is a significant undertaking in terms of the potential economic benefit. 

Good processing efficiency and mill management requires several levels of monitoring. 

The mill manager is often regularly informed of the mill's capacity, flour output, and extraction 

by an electronic readout (10). The mill laboratory receives flour samples several times daily and 

reports measurements for percent moisture, water absorption, protein content, and flour color. 

Many of these flour measurements are directly indicative of the baking quality of the flour. 

Traditionally, the mineral ash is also determined for the mill's patent flour stream. 
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In the absence of a direct molecular organic chemical determination, the weight of the 

inorganic residue remaining after ignition of the organic material at 550 °C is used. Because the 

ash content of wheat grown in different soils of different geographical locations influenced the 

mineral content of the wheat kernel, the validity of flour ash value is diminished. In lieu of a 

direct measurement of endosperm purity, the latter brightness measurement provides an 

alternative that approximately reveals the purity of the flour samples (12). In some milling 

circles, the brightness measurement is touted as a better indicator of flour purity than ash. High 

performance liquid chromatographic data specific to ferulic acid was also used (13). The ferulic 

acid content of endosperm is negligible; therefore, a bran selective compound was available for 

spectroscopic calibration and implementation.  The high performance liquid chromatographic 

ferulic acid based calibration was a technical success, but was not readily adaptable or accepted 

by the industry based upon unfamiliarity and the entropy of the phytochemical content.  

A typical method of visualizing the contribution of each flour stream to the purity is the 

miller's curve (Fig. 1.5). Each flour stream is ordered by descending purity. The weighted  

 

Figure 1.5 Millers’ plots of ash (left) and ferulic acid (right) indicating increasing contamination 
as additional streams are added. Note the ferulic acid plot indicates an earlier purity distinction 
between two wheat varieties because of the chemical specificity. [Reprinted from 14] 
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summation of impurity is then plotted vs. the cumulative amount of product when each 

additional flour stream is added. This process can be used to evaluate blends, determine when 

specifications are no longer met, and to enable targeted optimization. However, the current 

methodology lacks a true, objective measure of the amount of endosperm present in flour 

streams.  

 

 1.4 Spectroscopic Analysis 

 1.4.1 Study of Biological Materials 

The infrared region of the electromagnetic spectrum has been widely used for the 

analysis of biological materials. Spectral bands are observed as the absorption of light, which is a 

function of a change in dipole moment for a particular molecule or chemical functional group.  

Typically, mid-IR spectral bands are caused by stretching or bending vibrations of molecules. 

The mid-infrared region (4000-400 cm-1 or 2500-25,000 nm) provides semi-quantitative 

information that is typically defined by peak heights, peak areas, and ratios thereof (15). Several 

key mid-IR bands have been identified in the past that correlate to the chemical structure distinct 

to the various botanical parts of the wheat kernel (16). This includes the major contributing 

botanical parts, endosperm and bran. Wheat endosperm has a characteristic, complex 

carbohydrate peak, a broad O-H stretching band, and muted amide bands. The outer pericarp is 

enriched in lipid content and features a detailed hemicellulose band and higher intensity protein 

absorptions.  

 The adjacent near infrared (NIR) region (12,800-4000 cm-1 or 780-2500 nm) consists of 

the overtone (n*frequency) and combination (frequency X + frequency Y) bands of the 

fundamental mid-IR absorption phenomenon. These NIR peaks are broad and overlapping; 
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however, this relatively linear region of the electromagnetic spectrum better adheres to Beer’s 

law (17). The Absorbance (A) at a particular wavelength is defined by Beer's law as equal to the 

product of an absorptivity coefficient, the pathlength, and the concentration. Thus, when all other 

factors are held constant, the near infrared region is beneficial for quantitative determination of 

analyte concentrations.  

 Typically, near infrared analysis is performed with diffuse reflectance measurements. 

Diffuse reflectance is simply defined as the reflection of rays of light as they bounce through or 

among a particulate or granular sample (Fig. 1.6). After several absorption events, the intensity 

of the ray decreases, and eventually some light is collected by an instrument lens and guided to a 

detector. 

  

Figure 1.6 Visual representation of diffuse reflectance pathways through a granular sample. 
[Reprinted from 7] 
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Near infrared analysis became routine for the field of agriculture where rapid analyses 

were needed to measure quality factors such as protein content, moisture, etc. (18). The first 

major application of near infrared analysis in the study of wheat was performed in 1976 (19). 

Prof. David Wetzel of Kansas State University used the technique to analyze the protein content 

of various farmers’ wheat samples. The NIR method was calibrated vs. the classical Kjeldahl 

protein determination. By testing individual farmers’ wheat crops before reaching an elevator 

location, high protein content necessary for bread quality wheat was identified and enabled 

segregation for different grist (blends). This method determined that wheat characteristics could 

be analyzed accurately and reliably. The technique was carried on to the breeding program where 

low-protein cultivars were removed from the gene pool and resulted in a 2.5% absolute increase 

in protein while maintaining other key desirable breeding characteristics.  

Near infrared analysis of individual flour streams was introduced by Wetzel and Posner 

in 1987 (14). The near infrared online analysis of the milling operation utilized cellulosic content 

to approximate the impurity present in a particular flour millstream. These calibrations using 

cellulose wavelengths were calibrated against high performance liquid chromatography (HPLC) 

methods for ferulic acid. Future experiments used fluorescence imaging to determine the relative 

concentration of ferulic acid within the sample. The initial calibrations for wheat purity used 

various samples, such as weighted mixtures of pure and impure material, ferulic acid content, 

and different granulations. However, there were several instrumental inadequacies and the 

analytical focus was on determination of the contaminant rather than the actual analyte (purified 

endosperm). 
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 1.4.2 Spectroscopic Chemical Imaging 

 The combination of spectroscopic techniques and microscopy have been attempted since 

the 1950’s (20). The technique of spectroscopic imaging provides a wealth of data with the 

benefit of chemical information with the spatial distribution. Commercial distribution of viable 

microspectroscopic imaging systems with a point by point mapping procedure became available 

in the 1990’s (21). The pioneering work of Neil Lewis and Ira Levin in 1994 (22), led to the 

development of array detection that allowed for simultaneous acquisition of greater than 80,000 

pixels.  

The commercial product resulting from that patent was the Spectral Dimensions 

SapphireTM (Malvern Instruments, Columbia, MD) chemical imaging system. It was equipped 

with liquid crystal tunable filter (LCTF) programmable electronic wavelength switching and a 

thermoelectrically-cooled 320 x 256 Indium Antimonide (InSb) focal plane array (FPA) detector 

sensitive in the 1100-2400 nm range. The lens used to capture the radiation diffusely reflected 

off of the specimen on the stage provided a 12.8 x 10.2 mm field of view (FOV), resulting in a 

40 µm pixel size (Fig. 1.7).  

 
Figure 1.7 Optical diagram of the NIR FPA imaging system. [Reprinted from 23] 
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Alternatively, 38.4 mm x 30.7 mm and 3.2 mm x 2.6 mm FOVs with 120 µm and 10 µm pixel 

sizes, respectively, were available from the manufacturer. A defocused highly polished stainless 

steel plate or similar material is used to set the dark current. The maximum reflection (or 

background current) is defined using a ceramic reflectance standard (available from a number of 

commercial vendors) in focus on the stage. These spectral standards are optimized by monitoring 

and maximizing the oscilloscope reading for image intensity and uniformity on the diagnostic 

screen. They are used to standardize the reflectance measurement for the particular instrumental 

settings. Microprocessor controlled stare time and electronic wavelength switching were used to 

acquire data.  

Alternatively, linear (push broom) array instruments have been developed with a 

microprocessor controlled stage to enable large scale data acquisition. Commercial instruments 

are currently available from Middleton Spectral Vision (Middleton, WI) and Specim (Finland). 

These instruments feature a linear mercury cadmium telluride (MCT) detector array with 256 

individual elements (Fig. 1.8). Each individual detector pixel for the array had a spatial 

resolution of 30 µm, for a sum total x-dimension of 1 cm and the scanning for the y-dimension of 

the stage allows acquisition of a total FOV of approximately 15 cm2.  The instrument requires a 

four stage thermoelectric cooling process to minimize thermal noise. The default spectral 

resolution for the instrument is 5 nm and covers a range of 1100-2500 nm for a total of 256 data 

points. The linear array instrument requires optimization of the stage scanning and camera 

settings to avoid distortion of the image.  
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Figure 1.8 Photograph of the Middleton Spectral Vision near infrared imaging spectrometer. 
 

 The spectroscopic data for both instruments are exported in the form of reflectance data. 

Conversion to Absorbance is necessary to develop linear relationships for concentration. Spectral 

truncation allows for the removal of non-analyte bands and those that shift, such as the water 

band at 1940 nm. These and other transformations can be accomplished with spectral imaging 

software such as ISys (Malvern Instruments, Columbia, MD). A common way to think of 

spectroscopic data is in an amalgam of chemical information and noise. Ideally the information 

would overrun the noise; however, sometimes chemometric analysis is needed to get the most 

out of the data (24). Chemometric techniques allow the user to remove noise, extract the most 

from the data, and use the information to produce quantitative results. However, one must exhibit 

caution and be assured that there is information within the data that relates to the sample 

properties or analyte. 
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One such chemometric technique is partial least squares (PLS). Developing a spectral 

library requires absorbance data corresponding to a range of concentration data. The formation of 

a data set enables calibration. A calibration set should use all mixture components, show mutual 

independence, span all conditions or chemical contrast, and cover the concentration range. Our 

simple binary measurements, the entire concentration range is covered, however, the 

concentrations in between are not. This is remedied by the similarly mixed chemical response for 

both the endosperm and non-endosperm standards. The major advantage of PLS as an analytical 

technique is that the concentrations of every chemical species present within the analytical 

matrix is not necessary for quantitative analysis. 

 Normalization and other spectral preprocessing techniques are often required to correct 

for external factors that could adversely affect quantitative analysis such as atmospheric changes 

and detector drift. Baseline subtraction helps account for atmospheric drift in the spectrum. The 

normalization procedure used for our method is defined as “mean center and scale to unit 

variance by spectrum”. For this procedure, the amplitude of each image spectrum is adjusted 

individually according to the mean spectrum to remove differences due to pathlength while 

preserving the band shapes to increase the effectiveness of the spectral classification (25). The 

exact details of this normalization technique are protected by the developer, Spectral 

Dimensions, Inc. (Olney, MD). 

For our NIR quantitative chemical imaging technique, application of a novel PLS 

algorithm is necessary to distinguish between binary mixtures. The differentiation is derived 

from the multivariate characterization via spectral libraries of the components present in the solid 

binary mixture. ISysTM dedicated imaging software furnished by the manufacturer (Malvern 
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Instruments, Columbia, MD) was used to calculate the numerical analytical results. Post-run 

image contrast was produced with the benefit of histogram truncation of the PLS image. 

 

 1.4.3 NIR Chemical Imaging Background 

Vibrational spectroscopic chemical imaging enables noncontact quantitative analysis 

within the FOV in microscopic or macro dimensions.  Near infrared chemical imaging has its 

roots in the pharmaceutical industry (26). For these examples, the sharp spectral bands for 

chemical substances enables easy distinction and imaging provides useful information on the 

distribution of active ingredients by highlighting them in false colors. Although identifying and 

assessing the census and distribution of active ingredients in a matrix of excipient for a 

pharmaceutical tablet is now commonplace from vibrational hyperspectral chemical imaging, 

application to solid mixtures in general is relatively uncommon.  

 The technology has found limited use in the commodity industry and has been used for 

food adulteration (27), process characterization (28), and for bacterial contamination (29). The 

first application of near infrared chemical imaging in our laboratory was to determine the ease to 

germination of wheat kernels (30). This method used a principal components analysis (PCA) to 

analyze key factors based upon spectroscopic responses that would highlight the regions of the 

kernel where evidence of active growth of the embryo was presented. Another classification 

technique was used to determine the class of wheat, waxy vs. non-waxy wheat (31). The waxy 

wheat was enriched in lipid content and several key wavelengths enabled effortless detection. 

In analytical chemistry, physical isolation of the analyte is necessary as a part of its 

identification and determination; e.g., chromatographic separation precedes measurement by a 

detector with suitable sensitivity and selectivity. Chemical imaging takes a completely different 
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approach. In quantitative imaging, the spatially resolved pixels are spectroscopically identified as 

analyte. Our first application of near infrared quantitative chemical imaging provided a solution 

to determine the efficiency of mixing for solid commodity mixtures for the animal feed industry 

(28). Formulated feeds require proper mixing to assure uniformity before further processing such 

as extrusion cooking; however, in practice, a minimum residence time is preferable to avoid 

unmixing and additional processing costs. The use of near infrared chemical imaging enabled use 

of formulation components as a tracer. This was preceded by the use of traditional inorganic 

tracers that have aberrant mixing characteristics and are inedible. The feed ingredients studied 

included a high starch base (corn meal) and two high protein supplements (soybean meal and 

bloodmeal).  

The large chemical differences between the starch, lipid, and protein concentration for the 

filler and protein supplements enable easy spectroscopic discrimination to quantitate the mixture 

composition. Chemical imaging was used in this application to show single wavelength 

spectroscopic contrast to distinguish between different formulated feed ingredients within a 

mixture.  Subsequent applications studied binary mixtures to determine the efficiency of mixing 

as a function of screw conveyor mixing cycles. Mixing efficiency was determined by minimum 

standard deviation between samples taken from different parts of the mixer. These experiments 

were the basis for the development of the binary PLS algorithm.   

 

 1.4.4 Spectroscopic Bands of Grains 

The fundamental vibrations in the mid-IR region have several distinct bands that have 

enabled contrast between each botanical part of wheat (16). Some of these differences remain in 

the near infrared overtones and combination bands (18). Fig. 1.9 illustrates the large spectral 
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differences between the two purified major chemical components of wheat, starch and protein 

(gluten). However, the mean spectrum of wheat features overlap of many of these bands, and the 

signal for protein and cellulosic material is diminished in the mixture, hence the need for 

chemometrics. The raw spectra of bran vs. endosperm exhibit smaller spectral differences than 

the individual components, but these features are sufficient to make the distinction (Fig. 1.10). 

 
 
Figure 1.9 Mean spectra obtained from wheat starch, wheat gluten, and an entire kernel. Note 
that the distinctive bands for starch and protein are subdued in the intact wheat kernel. 
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Figure 1.10 Chemical images displaying endosperm purity in warm false colors arising from 
specifying near infrared bands selective for endosperm (top right) and non-endosperm (bottom 
right), respectively. Note the expanded color scale. [Reprinted from 23] 

  

 1.5 NIR Chemical Imaging of Wheat 

 1.5.1 Previous Experimentation 

 The complex chemical composition of wheat requires significant statistical calculations 

of spectral data to obtain reliable quantitation. The experimental averaging of thousands of 

spectra as spectroscopic standards for endosperm and non-endosperm defines the unique 

chemical 

 composition of that portion of the kernel. The variation between the ratio of starch to protein, 

among other components, fluctuates between different wheat varieties, individual kernels, and 

even specific regions of the kernel. Thus, the spectral libraries must be comprehensive and 

unique to the wheat blend (grist) being milled. 
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            The first application of the chemical imaging technique to wheat milling featured samples 

from a Brazilian commercial mill (23). This experiment involved the optimization of unit process 

settings for a single purifier operation. The purpose of the purifier operation is to take  

  
Figure 1.11 False color images of purifier streams before (left) and after (right) adjustment. Note 
the calculated % endosperm and mass balance (red). After adjustment, the product yield (FC & 
SC) increased from 65% to 77% with a corresponding reduction in rework. Note the expanded 
color scale that indicates endosperm purity with warm false colors. [Reprinted from 23] 

 

processing streams containing both endosperm and non-endosperm from the initial break system 

and selectively direct them to further processing steps (Fig. 1.11). For the initial 

experimentation, a modified false color scale was used. 

 A secondary milling experiment was designed to show a typical distribution of 

endosperm after a grinding and sieving operation for the first break and second break unit 

processes (23). This experiment took place in the Kansas State University Pilot Mill in 

Shellenberger Hall. The rudimentary NIR imaging procedure was customized in further 

experiments, but featured the unique development of an algorithm to average the results of 

separate PLS determinations for endosperm and non-endosperm. Subsequently, a significant 

laboratory scale experiment was conducted on laboratory scale mills in the Grain Science 

Department to study the effect of different combinations of roll gap openings for the first break 
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and second break grinding rolls in purity terms (32). Efficiency was defined as the fraction of 

endosperm that was released before the fourth break grinding operation.  

       The construction of a cumulative endosperm millers’ curve was presented by acquiring 

the combined flour streams from the more recently constructed pilot scale Hal Ross Mill on the 

Kansas State University campus (33). The general purpose for a millers’ curve is to find the 

combinations of flour streams that can be included in the blend for the production of a pure, high 

value patent flour from a mill. The review article primarily discussed prior methods for 

determining the purity (or lack thereof) for individual millstreams. 

 Chemical imaging has also been used to illustrate that the wheat kernel could be treated 

in a ternary manner. A quantitative method was developed to show distinction between the 

endosperm, bran, germ, and aleurone portions of the wheat kernel.  These portions were chosen 

because they are readily separated or dissected in sufficient quantity. The four individual 

components were isolated and used to develop a spectral library. That enabled subsequent 

quantitation of each wheat kernel component present within synthetic mixtures produced from 

the pure substances. 

 

 1.5.2 Experimental Optimization  

The fundamental vibrational frequencies in the mid infrared are the basis of near infrared 

combination and overtone bands and the mid infrared spectra of distinct botanical parts of the 

wheat kernel have been well documented (18). However, the major molecular components also 

have many similar bands in the mid infrared spectrum. The major distinctions are the shape of O-

H stretch vs. N-H stretch, the ratio of the Amide I band to those of other frequencies, and the 
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shape of the polysaccharide or cellulosic component. Also, quantitation of the mid infrared bands 

is difficult based upon the adherence to Beer’s law. 

The near infrared region of the electromagnetic spectrum is quite useful in spite of lower 

intensities and broad, overlapping bands because linearity is achieved in a useful region. The two 

major distinctions in the near infrared spectrum for endosperm vs. non-endosperm are revealed 

as the ratio of a pair bands appearing between 1650 nm and 1850 nm, and the shape of the starch 

band at 2100 nm is altered by the contribution from the two protein bands at 2060 nm and 2180 

nm (Fig. 1.12). Almost every individual agglomerate produced from the milling of wheat  

 
Figure 1.12 (Left) Truncated spectra of endosperm (red) and non-endosperm (blue). (Right) 
Partial least squares factor loadings 1-4 (red, blue, green, and purple, respectively). Note that 
factor loading 1 resembles the library standard spectrum of endosperm. 
 
contains a mixture of several different chemical components. Each class of wheat has a different 

range of the protein to starch ratio for endosperm and non-endosperm. PLS statistical analysis 

can produce quantitation of the mixture of chemical components or constituents. The first 

experiments leading to the quantitation of endosperm (23) utilized the data acquisition software 

default (1200-2400 nm at 10 nm increments). The water band at 1940 nm (1850-2000 nm) and 
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adjacent spectral valleys are truncated from the spectrum because the heat from the NIR source 

causes significant fluctuation as moisture content changes. The region from 1200-1540 nm was 

also removed because baseline correction of this region was difficult. 

The partial least squares data treatment operates by developing factors for the interrelated 

matrices of concentration data and spectroscopic data in the form of scores and loadings (24). 

The spectral and concentration data are first expressed as matrices. The data is then projected 

upon calculated factors as vectors (Fig.1.13). The best fit linear vectors are then calculated (Fig. 

XXX) and models are developed to account for variance that occurs between the concentrations 

of analytes of interest and the absorbance (or scaled variant thereof). Numerous PLS factors are 

generated in the process to quantify the variance, however, a minimum number should be 

included to provide a robust calibration. Often, an extensive number of factors attributed only to 

noise within the spectrum are present depending on the number of mixture components.  

    

 
Figure 1.13 Example of spectra in a linear space with varying amounts of two components (left). 
The spectra plotted against the calculated best fit regression coefficients upon which they are 
based. [Reprinted from 25] 
 

A predicted residual sum of errors (PRESS) plot is used to determine when the number of 

factors has produced a robust calibration (24). For the analysis of a binary mixture, four factors 
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appears to be an ideal number. The individual factor loadings can be extracted to see if chemical 

information is still being included in the variance between analytes. Note from Fig. 1.12, that 

factors one through four exhibit significant sharp bands. Factors 1 and 2 bear strong statistical 

significance and match the spectral features of endosperm. Sharp bands corresponding to protein 

and starch are still present in Factors 3 and 4. The factor loadings are presented as an intensity 

index or multiplier at each wavelength of the spectrum. Multiplication of the coefficients to the 

spectral values provides the quantitative result according to the chosen data class. 

The consistent goal since the original proof of principle has been to limit the spectral 

window. The next experimentation removed the bands of relatively low intensities found at 

shorter and longer wavelengths (32). These regions also had lower overall contributions in the 

PLS loadings. Variation in intensities among individual pixels was highest in these regions. The 

most recent milling experimentation has focused on a shorter wavelength range at 3 nm 

increments. These feature the carbohydrate band slope (2150-2230 nm) furthest from the water 

band which overlaps with the protein combination band at 2180 nm. The second spectral region 

used is from 1650-1788 nm where the changing band ratio occurs. In addition, a baseline point is 

present at 2230 nm. 

 

 1.6 Wheat Milling Sample Acquisition 

Specimens are routinely collected for analysis from various milling product or 

intermediate streams during operation of either commercial, pilot, or laboratory scale mills. For 

the purpose of the spectroscopic measurement for endosperm content, bran and the very purest 

endosperm stream isolated during the milling process are obtained for standards for non-

endosperm and endosperm, respectively. Samples of processing streams are readily collected 
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during routine operation of a mill. Flour mills often have custom spouting that allows for direct 

sample collection. Alternatively, samples can also be grabbed from below the grinding rolls or 

from below the sifter. Sample collection is usually done concurrently with a stopwatch 

measurement to approximate the flow rate.  

The samples are well mixed before imaging to reduce error. There are numerous options 

for sample presentation, but the sample must be flattened or compacted to reduce scattering and 

have a level plane for imaging. Typically, this includes a sample cup and a glass slide for mild 

compression. Spectra for each image pixel in the field of view are then collected simultaneously 

to enable quantitative summation.  

 

 1.7 Analytical Considerations for Quantitative Chemical Imaging 

 Focal plane array near infrared imaging reveals the distribution and local relative 

prominence of a select analyte in a solid matrix (26). Quantitative analysis is achieved by 

statistical multivariate pattern recognition. Thus, the validity of results from employing 

quantitative chemical imaging is subject to analytical image precision among replicate fields of 

view. Pixel size compatibility with particle size is a matter of concern; an adequate FOV that 

both attains representative sample area, and produces a practical pixel size is preferred. Using 

fresh replicate FOVs vs. replicate images from the same sample eliminates the variable of 

change over time. Replicate specimens of the same lot are essential for coarse granular 

heterogeneous solid mixtures, whereas in contrast, a single finely ground homogeneous 

endosperm specimen may, in fact, be representative.  

For near-infrared quantitative imaging, luck of the draw determines if the FOV subjected 

to analysis is, in fact, representative of the bulk for heterogeneous mixtures. Averaging fields of 
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view depends on the nature of the particulate material involved and the heterogeneity of the 

mixture. The size and shape of the specimen particles also has an influence. Vibrational 

spectroscopic (chemical) imaging has proven useful and practical, but it is not necessarily part of 

the classical chemical instrumental analysis toolbox; consequently, questioning its analytical 

validity is appropriate.   

 The analytical validity of quantitative analysis of solid binary mixtures is dependent on 

the photometric precision of a single FOV as well as the precision among multiple FOVs taken 

from the same solid mixture lot. In either case, producing distinct, reproducible image contrast is 

an important issue. With the use of a biological sample of an intermediately sized wheat milling 

processing stream (approximately 750 µm), the precision among seven replicate FOV’s taken 

after vigorous mixing from the same lot had a respectable relative standard deviation of 1.9%. 

The coarsest streams (> 1000µm) had a relative standard deviation of approximately 3%. The 

relative standard deviation for fine flour streams were shown to average approximately 0.8%  

Afterwards, the effect of replicate sequential spectra for staring over time was observed. 

These were collected at periods of four minutes with continuous staring at the same FOV for a 

total of 28 minutes. While spectra were obtained, some heat from the four illuminating lamps 

was dissipated by a continuously operated fan. For a series of seven successive images from 

staring at the same FOV, the apparent percentage endosperm decreased from an initial value of 

85.4% to a final reading of 80.0%. This resulted in a mean endosperm concentration of 82.3% 

with a relative standard deviation of 4.0%. Fig. 1.14 shows the decrease in the percent 

endosperm over time. This shows that there are definitely some concerns in reusing the same 

sample of leaving the sample on the stage too long. 
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Figure 1.14 Endosperm quantitative result of same mixture over staring time. 

 

 Fig. 1.15 shows the result of imaging a handmade mixture of small particles of flour and 

large flakes of bran. Large bran flakes covering the small particles could obscure or completely 

substitute the chemistry of the smaller particles. Note the emergence of pixels containing  

 
Figure 1.15 Chemical images (left) and photomicrographs (right) showing mixtures of wheat 
bran flakes and a granular wheat endosperm mixture. . Note the expanded color scale that 
indicates endosperm purity with warm false colors. Images were taken from well-mixed (top), 
agitated (middle), and additionally agitated (bottom) mixtures. 
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non-endosperm after lightly shaking the sample container between measurements. With near- 

infrared spectroscopic imaging, the greater depth of penetration of diffuse reflection partially 

compensated for the surface coverage; however, if the large flakes are completely covered with 

fine, highly scattering particles, then the chemistry of the small particles will largely substitute 

for that of the flakes. The only solution to this dilemma is to acquire replicates for each sample 

and develop a consistent mixing/sampling procedure. 

  

 1.8 Abbreviations 

Bk – Break 

CWT – Hundredweight 

NIR – Near infrared 

HPLC – High performance liquid chromatography 

InSb – Indium Antimonide 

FPA – Focal plane array 

FOV – Field of view 

MCT – Mercury-cadmium-telluride  

PLS – Partial least squares 

PCA – Principle components analysis 

PRESS – Predicted residual sum of errors 
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Chapter 2 - Endosperm Purity Profiling: Commercial Mill Streams Preceded by 

Debranning via Application of Quantitative Chemical Imaging  

 

 2.1 Abstract 

The following chapter was slightly modified from its original publication as: Boatwright, 

M. D., Posner, E. S., Lopes, R., & Wetzel, D. L. (2015). Profiling endosperm purity of 

commercial mill streams preceded by debranning using quantitative chemical imaging. Cereal 

Foods World, 60(5), 211-216 (https://doi.org/10.1094/CFW-60-5-0211). Vibrational 

spectroscopic data obtained simultaneously in a rectangular detector array enables analysis of a 

heterogeneous mixture of solids that constitute wheat flour by the pixel. The analyses of 81,920 

near infrared spectra following followed by partial least squares data treatment enables 

determination of the endosperm purity vs. non-endosperm content for each individual pixel. 

Heterogeneity is revealed by the resulting image and a mathematical weighted summation 

provides the composite composition for the field of view. The advantages of the solid state 

technology employed in this modern method include high sensitivity of individual Indium 

Antimonide detector elements and programmed electronic wavelength switching of the liquid 

crystal tunable filter operating with no moving parts. The organic chemical content of endosperm 

(primarily starch and protein) is compared to non-endosperm (cell walls, aleurone, pericarp, etc.) 

by the vibrational spectroscopic response of different molecules within the solid mixture. This 

objective quantitative chemical imaging method is applied to determine the endosperm purity 

profile for 29 flour streams of a commercial flour mill in which the break system is preceded by 

a debranning operation. A cumulative flour endosperm purity plot reveals distinct changes in 

purity as successively less pure streams are incorporated to increase the yield. The sensitivity and 
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chemical structural basis of the endosperm purity method described should be useful to assess 

the effect on the efficiency of new equipment installation or significant changes of operational 

settings on a commercial milling process. 

 

 2.2 Introduction 

Abrasive debranning has been the norm for covered grains resulting in traditional 

“polished” white rice (1). At present, in common wheat milling, preceding the break system with 

debranning equipment is definitely not yet commonplace. The increased energy cost and the 

capital cost of the hardware are issues that require economic justification based on the overall 

mill efficiency and product purity considerations. However, a significant capacity increase for 

existing mill equipment, with appropriate changes in the flow sheet, results in a reduction in 

energy cost (kWh/ton of wheat) for pre-debranning usage. Hard wheat milling is one area where 

adaptation of the debranning prior to milling has become an option that reportedly results in a 

practical pay back (2). The ideal debranning operation in hard wheat milling would evenly 

remove the outer layers of the pericarp without losing any endosperm or breaking kernels. 

Potential benefits include the removal of harmful elements from the kernel surface, flour streams 

with higher “brightness”, and increased flour extraction and mill capacity (3). Debranning 

operations also allow optimization to provide a high quantity of aleurone product. Removal of 

these outer layers can also help reduce the alpha-amylase activity, particularly for wheat that has 

been subject to sprout damage. 

Direct endosperm purity assessment of individual mill streams by the chemical imaging 

technique was previously introduced (4-6). Those studies were restricted to individual unit 

processes such as an individual purifier, laboratory table top milling study of the break system, 
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or ranking flour stream purity of an experimental pilot mill. Laboratory sieving of post-break 

fractions were also reported (7). In this paper, we report the endosperm purity profile of 29 

streams of a commercial flour mill running at a capacity of 204 hundredweight (CWT) per 24 

hours in which the break system is preceded by abrasive debranners (3). Our investigation team 

includes the head operative miller on site. He shouldered the responsibility for each operational 

parameter setting and supervised the stopwatch timed collection for each of the product streams 

for weighing and various quality analyses. The specimens produced on site in Brazil during a 

routine commercial production process were sent by air courier to the Kansas State University 

Microbeam Molecular Spectroscopy laboratory where the endosperm purity was determined via 

quantitative chemical imaging with a research model imaging spectrometer (8).  

We believe that this is the first reported wheat flour endosperm purity profile of a 

common wheat commercial milling operation where a debranning process precedes the break 

system. The objective is to use the best possible chemical definition of wheat endosperm purity 

to produce this profile. Traditionally, the miller is concerned with the “brightness” of the flour 

(9, 10) or a low ash value as being a good attribute. However, the “brightness” involves only the 

part of the electromagnetic spectrum that the human eye can see, whereas the chemical 

endosperm purity profiling is selective for the endosperm in the presence of non-endosperm, and 

thus a binary chemical mixture is assessed for purity with respect to endosperm vs. non-

endosperm.  

In the case reported here, the endosperm purity is directly assessed for 29 individual 

product mill streams of a commercial wheat mill in which an abrasive debranning operation is a 

pretreatment. Our purpose is to objectively measure, calculate, and present the numerical 

endosperm purity multiplied by the yield of the purest stream first and subsequently add the 
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cumulative contribution of each subsequent, slightly less pure mill stream. As each successive 

stream is added, the overall yield increases, and a slight degradation in the composite endosperm 

purity occurs. The resulting endosperm profile enables the operative miller to determine the point 

at which a cutoff is required to maintain the purity specifications required by the flour customer 

(10). The chemical composition of the endosperm and non-endosperm is determined from 

quantitative chemical imaging by the individual pixel. Each image pixel results from an 

individual near infrared spectrum representing the chemical composition of that pixel (8, 11). 

This method represents a totally objective measurement where 81,920 spectra from the 

field of view produce chemically defined individual analyses. These analyses are tabulated to 

produce the objective flour stream endosperm purity on a chemical structural basis. The 

subjective visual appearance of “brightness” of the flour from any given stream or mixture 

operates from a bulk reflection response rather than from that of individual pixels. Our purpose 

in this study has been to apply the objective chemically defined pixel counting method of 

assessing endosperm purity and expecting the “brightness” from bulk color measurement to 

represent an essentially parallel assessment of purity. The endosperm chemically defined purity 

is primarily composed of starch and protein (12). The presence of non-endosperm in a field of 

view is indicative of the incomplete separation of the wheat kernel endosperm from the bran. 

Ash determination (13), however, merely measures the inorganic (mineral) residue remaining 

after ignition. Application of the more precise partial least squares (PLS) data treatment to 

chemically defined endosperm purity is addressed in the imaging subheading under 

Experimental. The intent is to maximize the yield of flour that meets purity specifications. 
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 2.3. Experimental 

 2.3.1. Commercial Wheat Mill 

 A commercial mill operated in Brazil having a capacity of 204 CWT/24 hours and 

operating on three shifts (Fig. 2.1) was the source of all flour streams used in this experiment.  

Figure 2.1 Flow sheet of the 204 CWT/24 hour commercial flour mill equipped with abrasive 
debranning technology. 

 
The grist for this experiment was from two Brazilian wheat varieties described as Quartzo (70%) 

and Supera (30%). Both varieties are grown in Brazil on a regular basis and therefore the raw 
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material used is typical for the flour produced for relatively local consumption. The abrasive 

debranning equipment was a Satake VTA Abrasion Debranner, model 10AB-L (Hiroshima, 

Japan). The two units that were installed prior to the double high first/second break rolls have 

been in operation for approximately 18 months and adjusted to maximize efficiency since that 

time. A vertically mounted set of stones produces the abrasive action required to remove the 

bran.  A business consideration was responsible for introduction of this step prior to the break 

system with the object of producing a brighter product at an improved extraction rate. The 

“brightness” of the final flour is appealing to the customer and obviously constitutes high purity 

with respect to the bran. Under typical operating conditions, 4%-6% of the total kernel weight is 

removed from the incoming wheat. The abrasion is applied directly to the cheeks of each wheat 

kernel that represents approximately 80 percent of the total bran content of the individual kernel. 

Essentially, abrasive debranning results in removal of all the outer pericarp, the inner pericarp, 

and to a reasonable extent most of the testa of the exposed portion of the wheat kernel (14).  

After the debranning operation, the mill featured only four break (B) operations. This was 

because less scraping action was required due to most of the bran being removed by the 

debranning operation. Three divisor (DD) sifters were included to handle the large amount of 

break stock fines and distribute them to flour, sizings (Siz), and the reduction process (C). The 

break system also sent a lot of material to the first purifier (P) for sorting by density. The first 

sifter was responsible for organizing material for the sizings operation. The remainder of the 

purifiers were responsible for sending material to B3 and R2G/F (break redust), relaying material 

to and from sizings, and tailings (1T). 

The two sizings operations were responsible for preferentially reducing endosperm and 

flattening any contaminated particles (2). The goal was to produce some additional flour, and 
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redistribute material to the secondary break system, purifiers, and reduction system. The Mills 

reduction system consisted of six operations. Each of these processes produces a fair quantity of 

flour, sends coarse material to the 1T and quality (Qu) reclamation steps, and distributes the 

intermediate material to the next reduction step. The mill also included two TS (vibrosifters) 

operations that produced flour and C5 stock. There were also three bran dusters (BR) that 

produced bran and flour streams. Similar to other milling operations, a high volume of clean 

stock was also ground into flour by the reduction system. 

 

 2.3.2. Specimens 

Specimens were collected from each product stream during operation of the mill on a 

regular production shift. The break release was set to 40% on first break and 70% on second 

break for the double high break roll. The time of collection was monitored with a stopwatch so 

that the contents of each sample container would represent the quantity for a specific time 

interval and could be weighed to reflect the flow rate at that particular position; in parallel with 

the corresponding purity determination. Twenty-nine streams were sampled this way to produce 

specimens for subsequent endosperm purity assessment in the analytical research lab at Kansas 

State University. In addition to collection of flour from each individual product stream and 

replicates retained for local measurement of color and ash, spectroscopic standards were 

obtained. Bran specimens obtained from the debranning process and the very purest endosperm 

from the 1st middlings reduction operation were used as standards to enable calibrating the 

quantitative imaging method with respect to the raw material, and contrasted to the waste 

material removed by the debranner and the purest endosperm product from this new mill 

operation.  Addition of the debranning capability has increased production of the mill by 13%. 



42 

This analytical experiment represents the first opportunity to use objective chemically defined 

endosperm purity assessment applied to common wheat milling with a debranner. 

 

 2.3.3. Instrumentation 

A Sapphire model near infrared imaging system (Malvern Instruments Ltd., 

Westborough, MA) that provides 81,920 near infrared spectra per field of view was used to 

acquire spectral data cubes for each flour sample. Data for each sample was collected in 

triplicate. The operation of this instrument with respect to individual intermediate and flour 

streams of wheat milling has been described previously (4, 5). The near infrared imaging 

spectrometer equipped with four quartz tungsten halogen source lamps employs a rectangular 

thermoelectrically cooled array of Indium Antimonide detector elements (8). A liquid crystal 

tunable filter provides electronic wavelength switching that enables simultaneous spectral 

acquisition at each x, y location in the detector array with no moving parts. The associated 

software controls the optical data acquisition after establishing the maximum reflectance when 

focusing on the surface of a ceramic standard and obtaining the dark current value with no object 

at the focal point of the quartz objective. Before spectral acquisition, the granular sample 

material is placed in a metal planchette and covered with a 1-in. × 1.5-in. glass microscope slide. 

Within the 1200-2400 nm available wavelength range, select segments were scanned. A scanning 

step size of 3 nm was used to limit acquisition stare time while providing adequate spectral 

resolution to discriminate pure endosperm from non-endosperm. 

For “brightness” measurements, a Konica Minolta (Ramsay, NJ) reflectance Chroma 

Meter (CR-410) equipped with a pulsed xenon flash lamp, optical fiber conductor, and diffusing 

elements illuminates the circular target (50 mm) area. Reflected radiation 90 degrees from the 
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specimen surface is transmitted to six silicon photodiode detectors. The repeatability standard 

deviation specification was 0.07 absorbance units. The 1931 CIE defined color space (15) 

response of three wavelength spectral features for colorimetry were closely matched. Whereas all 

flour streams have a similar “brightness”, because in the highly white specimens where the 

optical response slope is small, discrimination between similar flour streams is a photometric 

challenge. Visible color (L* value) was measured on site with the Chroma Meter to obtain a 

numerical index of “brightness” that the consumer expects. A more sophisticated reflection 

spectrometer potentially applied to color measurement that is marketed by the same 

manufacturer and other vendors provides a 10 nm bandpass with a xenon flash lamp source, a 

fixed spectrograph, and a 60 element silicon photodiode array. Nevertheless, the visible 

absorption bands of the wheat bran are broad in nature. 

Broad band electronic spectra phenomena and vibrational spectra are contrasted in the 

following consideration. The fundamental distinction is that broad band color results from 

excitation of electrons. In contrast, the vibrational motion of chemically bonded atoms reveals 

molecular structural features (16). From first principles, the vibrational features provide chemical 

discrimination. It is fortuitous that the rate of change in the log (1/Reflectance) that accompanies 

the change in chemical composition is readily measured by the pixel. Chemical heterogeneity is 

revealed from the image and allows mathematical summation of values within the field of view. 

The slope of the cumulative endosperm purity curve and the endosperm contribution of each 

flour stream allows computation of the net purity achieved by selective exclusion of one or more 

inferior flour streams. 
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 2.3.4. Quantitative Near Infrared Imaging Procedure 

The chemical structural difference between endosperm and non-endosperm was used to 

sort and identify the pixels of each image spectroscopically. For each pixel, a near infrared 

spectrum was produced in 3 nm steps from 1650-1788 and 2150-2228 nm. If a simple binary 

designation of 1 for endosperm and 0 for less than 0.5 endosperm were designated, the arithmetic 

would amount to simply counting the pixels of endosperm and dividing by the total number of 

pixels. The area targeted for analysis was 12.81 mm x 10.24 mm and results in a pixel size of 40 

µm. The raw image intensity of each image pixel is first converted to Absorbance, which 

describes optical density. The spectra are then baseline corrected and normalized. 

We routinely use a partial least squares data treatment (17) so that the binary designation 

is replaced by giving an intermediate value to each of the 81,920 pixels in the field of view 

interrogated. In our previous experimentation, careful establishment of the purity (endosperm) 

standard was selectively acquired for that purpose, and the impurity (non-endosperm) was 

spectroscopically defined by clean bran. PLS classification according to spectral libraries (more 

than 240,000 spectra for each component) defining endosperm and non-endosperm is then 

applied to determine a pure endosperm multivariate identity reflected in the z-axis value for each 

pixel.  The intensity limits from 1 to 0 for endosperm and non-endosperm correspond to warm 

and cool colors assigned, respectively to the maximum and minimum of the scale. Skill and 

experience is required to critically subjectively examine the data and select the appropriate 

threshold value below which data are excluded. Whereas care is taken in establishing the 

maximum purity standard and in contrast the impurity of the bran, standardized data handling 

makes the subsequent routine calculations objective.  It is possible with PLS data treatment to 
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assign a specific endosperm percentage to each pixel and obtain the resulting summation. The 

relative standard deviation for fine flour streams were shown to average approximately 0.8% 

 

 2.4 Results and Discussion 

Table 1 ranks the individual flour streams in descending order of endosperm purity with 

their respective flow and extraction rates listed. Multiplication of a particular endosperm purity  

Table 2.1 Flour stream rank by endosperm purity 

Stream Rank % Endo (kg/h)  Ext'n         
DD1 1 1 99.4 309.0         3.9         

DD1#2 2/3 2 96.3 261.0         3.3         
DD1 2 3 95.8 82.5         1.0         

SIZA 1 4 95.3 452.4         5.7         
SIZB 1 5 94.9 150.0         1.9         

DD1#2 1 6 94.8 232.0         2.9         
B3 7 94.4 315.0         4.0         

R21 8 94.4 351.0         4.4         
SIZA 2 9 94.1 2.4         0.0         

C1 1 10 94.0 1112.4       14.0         
C2 2/3 11 93.8 21.0         0.3         

SIZAF 1 12 93.2 366.0         4.6         
C1 2 13 93.1 17.6         0.2         
TS2 14 92.6 54.0         0.7         

SIZB 2 15 92.4 41.0         0.5         
C1 3 16 92.3 8.1         0.1         

B4 17 91.8 416.4         5.2         
C2 1 18 91.8 370.2         4.6         

DD2-1 19 91.6 337.5         4.2         
C3 1 20 91.0 249.0         3.1         

TRF06 21 91.0 27.0         0.3         
TS1 22 90.5 117.0         1.5         
C5 23 89.5 135.0         1.7         
C4 24 89.2 81.0         1.0         
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1T 25 88.7 132.0         1.7         
QU 26 87.7 113.0         1.4         

C3 2/3 27 85.9 160.5         2.0         
C6 28 81.9 82.5         1.0         

DD2 2/3 29 81.2 16.1         0.2         
 

by the corresponding flow rate produces the individual flour stream contribution of pure 

endosperm. The weighted combination of successive streams produces an endosperm purity 

profile in terms of descending purity and increasing yield. The cumulative endosperm purity is 

shown in Fig. 2.2, based upon selective near infrared wavelength absorption data dependent on 

the chemical structural differences between the endosperm (analyte) and the non-endosperm 

present in the flour matrix. The rate of change in the optical response is a function of the 

 

Figure 2.2 Cumulative percent endosperm calculated from endosperm purity multiplied by flow 
rate. As each successively inferior stream is added, value for the combination is recalculated. 
 
increased cumulative flour yield as inferior flour streams are added to the product composition.  
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In contrast, the range of the broad band color measurement is severely limited (Fig. 2.3); 

however, in general, the response is parallel to the negative slope of the objective chemical 

values shown in Fig. 2.2. The permutation of the broad band numerical value differs somewhat 

from the purity rank that is objective and based on chemical structural contrast. This apparent 

aberration was anticipated because of the broad band width of 50 nm at the half height of the 

absorption band produced by the visible color filter with an appropriate wavelength maximum.  

 

 
Figure 2.3 The cumulative reflectance intensity of visible light showing limited contrast for 
cumulative percent total product (■). A Konica Minolta reflectance Chroma Meter (CR-410) was 
used to obtain visible color (L* value) measurements. Shown to scale with endosperm 
measurement (■). 

 
Near infrared interference filter instruments typically have a 10 nm band width at half height for 

each filter. For the liquid crystal tunable filter imaging spectrometer used to produce the direct 
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endosperm purity profile, three nanometer wavelength increments are reported throughout the 

selected range.   

 Based on the premise that the chemical structural basis for endosperm purity is both 

objective and has a practical range, we have elected to designate the quantitative near infrared 

image based data as the model. Select near infrared chemical images which highlight endosperm 

purity in warm (red) colors for individual flour streams appear in Fig. 2.4. These images extend 

over both the endosperm purity range (99.4-81.2%) and the cumulative % total product range for 

Fig. 2.2. In contrast, the broad band color results that are narrowly ranged with sometimes 

    

Figure 2.4 False color images and respective endosperm purity for flour streams collected from 
DD1 1 (99.4%), DD1#2 1 (94.8%), C1 1 (94.0%), DD2-1 (91.6%), and DD2 2/3 (81.2%). Note 
the expanded color scale that indicates endosperm purity with warm false colors.. Each is 
representative of different points across the cumulative endosperm curve. 

 
overlapping values produce a permutation inconsistent with the results from quantitative 

imaging. Note the sequential list in descending order of endosperm purity of individual color 

readings and rank (see footnote 1). Note also, in the same sequence, the listed ash values and 

rank (see footnote 2). Whereas the ash (mineral residue after ignition) does not reflect the 

organic species present in the non-endosperm, aleurone, pericarp, germ, etc., the result of 

plotting ash vs. endosperm purity produces a shotgun pattern with, as anticipated, a somewhat 

negative slope (Fig. 2.5). At a primitive time and place where wheat was locally grown, locally 

milled, 
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locally sold, and locally consumed, low ash was a measure of the miller’s resources and skill. A 

large variation of the mineral content of the soil in which the wheat is grown compromises ash as 

a meaningful indicator of flour impurity. At long last in the 21st century, a quantitative imaging 

chemical structural measurement of endosperm purity is defined. This new analytical capability 

is practical to more accurately assess the result of a change in milling equipment or operating 

parameters. On a daily basis, however, the broad band color or “brightness” incrementally 

decreases in concert with chemically defined endosperm purity. Thus, endosperm purity serves  

as a more objective baseline. 

  

Figure 2.5. Ash residue after ignition in a muffle furnace reveals the mineral content that is not 
related to the organic non-endosperm content of each flour stream. The result of plotting ash vs. 
endosperm purity produces a shotgun pattern. 
 

From these data, an operative miller can make appropriate decisions to fill orders and 

meet the specification. This also allows the miller to determine the penalty of adding additional 

streams in terms of decreasing the endosperm purity. The cutoff point for streams with less 

endosperm reduces the overall yield but the endosperm purity index for traditional operation 

allows future calculations for blending where the purity number is retained, but the flow rate is 
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updated for a different run. A similarity exists between the cumulative endosperm purity 

obtained for the milling system with debranning and a traditional milling process (6).  

 In the market that exists for the products of this mill, endosperm purity results in a 10-

15% premium for material of certain purity. Just as unconventional, North American hard wheat 

milling has a ratio of patent to clear flour for a different economic output (2). In this case, the 

ability to designate and maintain high value flour production sold at a premium price affects the 

economic benefits derived by careful operation of the mill to get the best possible separation of 

endosperm from non-endosperm.   

 

 2.5. Summary 

 It can be very informative for the miller to be aware of mill performance in objective 

terms based on endosperm purity directly determined from detailed quantitative chemical 

imaging. Unlike flour color, it is not dependent upon the bran color. Also, visual mill inspection 

is very subjective and the interpretation of results can vary from miller to miller. Methods of 

flour color determination are often affected by flour particle size. Smaller particles increase the 

reflectance and may enhance the perceived whiteness of the flour (9). 

Unlike ash, the inorganic component of the outer layer of the kernel, the chemical 

imaging approach does not depend on the soil from which the wheat was grown. While ash fits 

into Baker specifications and can be useful for adjustment of Mills, ash itself does not affect 

flour properties. As such, ash may not be the best measurement for flour quality. The near 

infrared chemical imaging technique with a selective determination of endosperm purity 

provides a beneficial alternative for optimizing mill flour blends. 
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 2.6. Abbreviations 

CWT – Hundredweight 

PLS – Partial least squares 

B – Break 

DD – Divisor 

Siz – Sizings  

C – Reduction  

P – Purifier  

R2G/F – Redust   

T – Tailings  

Qu – Quality  

TS – Vibrosifter 

Br – Bran duster  

CIE – Commission Internationael de l’Eclairage  
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 2.8. Footnotes 

1) Permutation of  color values (with their respective purity ranking) in order were 94.8 (12), 94.6 
(1), 94.5 (10), 94.2 (16), 94.1 (18), 94.0 (18), 94.0 (9), 94.0 (6), 93.9 (13), 93.8 (3), 93.7 (5), 93.7 
(2), 93.5 (14), 93.3 (15), 93.2 (11), 93.0 (7), 92.8 (8), 92.3 (19), 92.2 (4), 92.2 (26), 92.2 (29), 
92.2 (20), 92.1 (27), 92.0 (24), 91.9 (17) 91.5 (23), 90.8 (25), 89.7 (22), 88.4 (28), and 88.0 (21). 

2) Permutation of ash values (with their respective purity ranking) in order were 0.44 (12), 0.45 (1), 
0.47 (10), 0.48 (16), 0.50 (9), 0.53 (6), 0.54 (5), 0.54 (13), 0.54 (3), 0.58 (2), 0.62 (14), 0.63 ( 15), 
0.63 (11), 0.65 (7), 0.69 (8), 0.72 (19), 0.74 (4), 0.83 (26), 0.84 (20), 0.85 (27), 0.89 (24), 0.90 
(17), 0.97 (23), 1.00 (25), 1.12 (22), 1.30 (28), and 1.51 (21). 
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Chapter 3 - Endosperm Purity Profile Comparison of Different Milling Operations 

 

 3.1 Introduction 

The primary goal for the wheat milling industry is to produce a high volume of flour at 

sufficient purity (1). These values are often contracted with the purchaser; such as a bakery. The 

construction of a cumulative millers' curve allows the miller to view the effect of individual flour 

streams being added to the blend for commercial wheat milling operation while maximizing the 

patent flour yield at the purity specification expected by the buyer (2). All flour streams are 

ordered from highest to lowest purity and the weighted combination of the purity measurement is 

plotted vs. the yield for that blend.  

Heretofore, the traditional millers' curve has presented the amount of impurity present in 

the flour. These methods are dependent upon the type of wheat being milled. As such, a direct 

comparison is not meaningful unless the wheat being milled is the same grist (blend). For our 

purposes, determination of the endosperm contents combined with the flour stream flow rates 

would be favorable to show the purity changes after the weighted addition of streams. The 

chemical structural basis of an endosperm measurement is only limited by the amount of 

endosperm present in the wheat. The amount of endosperm in the wheat kernel is highly 

conserved between wheat blends used in the wheat milling industry (3). Wheat selection by the 

miller and the operation of the cleaning house typically bypasses the inclusion of small kernels 

that have slightly higher non-endosperm content ratio and thereby decrease the major variable in 

the analysis. 

The standardization to endosperm concentration allows for efficiency comparisons 

between different wheat blends and milling operations. This includes the ability to express the 
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difference between different milling operations in meaningful terms. Three milling operations 

with very different preprocessing steps were selected for the purpose of this comparison 

(tempering, debranning, and wheat cleaning only). 

The preprocessing procedures for wheat milling have remained fairly unchanged in the 

past few decades or more (1). Rigorous cleaning steps have always been required to provide grist 

free of impurities that reduce the yield potential, potentially damage equipment, or adulterate the 

product. Traditionally, tempering of the wheat with fixed, prolonged exposure to moisture with 

mixing mellows the bran texture and enables effective separation of endosperm from non-

endosperm. However, debranning technology before grinding offers several benefits that have 

shown an ability to outweigh the extra costs in capital equipment and electricity (4, 5). Likewise, 

the commissioning process for a developing mill with religious stipulations for the production of 

matza presented a challenge for milling success with the restriction of limited preprocessing. A 

comparison of the cumulative millers' curves for these three operations details their purity trends, 

and the benefits and limitations of preprocessing. 

The technique of infrared spectroscopic imaging enables the revelation of the chemical 

environment for microscopic fields of view (6, 7). Infrared imaging studies of wheat have 

enabled discrimination of the individual botanical parts of plant material including wheat (8-10). 

However, the near infrared region is better for quantitative studies in comparison to the mid-IR 

region (11). Near infrared chemical imaging for the selective determination of the organic 

endosperm content within wheat milling streams has been demonstrated by past experimentation 

at Kansas State University (5, 12, 13). 
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3.2 Experimental 

 3.2.1 Wheat Milling Operations 

            Three different flour milling operations were studied. This included a previous study (5) 

at the Hal Ross demonstration mill at Kansas State University with a capacity of 24 metric tons 

per 24 hours and 15 flour streams (Fig. 3.1). This mill had a minimized processing scheme with 

several combined flour streams, a double high first and second break roll, and limited operational 

flexibility. The wheat grist during the experimental study was Kansas hard white winter wheat. 

The first of the two commercial mills was a Brazilian mill with a capacity of 204 metric 

tons per 24 hours with 31 flour streams. The mill had recently modified the flow to 

accommodate a debranning preprocessing operation. The mill details are featured in Chapter 2 

(13). The grist was a unique blend of semi-soft Brazilian wheat.  

The second commercial mill was an Israeli mill with no preprocessing that operated at 

187 metric tons per 24 hours. The mill was using a grist of Romanian soft wheat at the time of 

experimentation. The mill had several unit processes divided into fine and coarse flour streams 

for 44 total product streams. The mill featured flour streams from five breaks (B), three divisor 

sifters (Div), 12 reduction operations (C), and a vibrosifter (Vibro). For a traditional milling 

process, flour production is typically weighted toward the first few (primary) reduction 

operations. The break and divisor sifters primarily handle material of mixed purity and the 

vibrosifter sieves material from the air handling system. 

 

 3.2.2 Specimens 

Grab samples of flour streams were collected during standard operation of each mill. This 

occurred either below the sifter or at a sampling spout. Flow rates are calculated by taking a  
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Figure 3.1 Flow diagram for the Hal Ross flour mill. 
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stopwatch measurement as samples were collected (< 1 minute). The mass of the material was 

then multiplied out to a 24 hour period. 

 

 3.2. 3 Instrumentation 

The Kansas State and Brazilian milling data was acquired with a Malvern Sapphire® near 

infrared quantitative imager (Malvern Instruments Ltd., Westborough, MA). A solid state liquid 

crystal tunable filter (LCTF) enabled scanning the NIR spectrum from a broadband quartz 

tungsten halogen source (14). A thermoelectrically cooled Indium Antimonide (InSb) focal plane 

rectangular detector array captured the spectrum for 81,920 individual pixels. The nominal pixel 

size was 40 um. Each flour stream was imaged in triplicate. The preliminary experiments at 

Kansas State University used a spectral windows of 1540-1850 nm and 2000-2400 nm with 10 

nm steps. For the Brazilian milling experiment, the spectral region was refined to 1650-1788 and 

2150-2228 nm (3 nm steps). 

The Israel milling data was acquired later with a Middleton Spectral Vision (Middleton, 

WI) linear array near infrared imaging spectrometer. The wavelengths were all scanned 

simultaneously. The spectral window was slightly modified for the new instrument to 1650-1790 

nm and 2100-2230 nm. This instrument had a pixel size of approximately 30 um and the 

scanning was set for a 256 x 393 pixel data cube. 

 

 3.2.4 Quantitative Near Infrared Imaging Procedure 

The raw individual pixel intensities for all samples were converted to Absorbance; 

baseline corrected and normalized before partial least squares (PLS) classification according to 
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spectral libraries (more than 240,000 spectra for each standard). The individual experiments each 

required development of independent libraries that represented the wheat grists' specific 

endosperm and non-endosperm standards. After application of the PLS characterization and 

algorithm, each pixel was assigned a score from 1 (pure endosperm) to 0 (non-endosperm) and 

the summation yields the quantitative % endosperm result as in past experiments (5). Details of 

the spectroscopic measurement and analysis procedure are detailed in Chapter 1. Previous 

studies had determined the relative standard deviation for fine flour streams were to average 

approximately 0.8% 

 

 3.3 Results and Discussion 

 3.3.1 Construction of the Endosperm Millers' Curve 

The flow rates for flour streams indicated that 50% of the flour was produced from the 

first six reduction operations. The entire reduction operation was responsible for 72% of the total 

flour production. The average load for each step of the milling operation was 3.5%. Eight of the 

23 milling operations had a value greater than the mean; indicating that the milling yield was 

distinctly weighted towards a few processes.  

The flour production for the Jerusalem mill was essentially divided into 4 categories of flour 

purity (Fig. 3.2). 

1. The highest purity material ran from a range of 91.2 to 88.1% endosperm for a 38% 

contribution to the total flour mass. 

2. The second slope region featured material from 87.1 to 78.7% endosperm and contained 

40% of the total flour output. 
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3. The first major drop off for cumulative flour purity consisted of material from a small 

purity range of 74.7 to 71% with 21.1% of the total flour. This large decrease in 

cumulative purity was a significant decline in comparison to the previous slope. 

4. The last 2.5% of the flour content was added to the byproduct streams for the milling 

process because it had an endosperm purity of only 66.4 to 50.0%. 

Figure 3.2 Cumulative endosperm curve for the Jerusalem commercial mill without 
preprocessing. Note the four slopes changes as inferior product is added to the flour blend.  

 

There were several unexpected trends and inconsistencies in the millers' curve for the 

mill under contracted commissioning. Several flour streams appeared to be out of order for the 

current operation of that mill. Many early reduction flours had low purity values, including the 

fine flours for C3, C4, and C7 at curve positions #21, #22, and #35 respectively. The Vibro flour 

also had a lower than anticipated flow rate for a soft wheat mill that included a significant 
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amount of fines. An additional Vibro sifter was added at a later date as a result to handle the 

more difficult to sift filter flour. All of the C5 and C6 flour streams had endosperm purity values 

that were relatively high in comparison to the preceding reduction operations.  

In theory, for an ideal milling operation, the flour for the fine set of flour sieves would 

have a higher purity and extraction than the coarse fraction. However, in this case, four milling 

processes produced a coarse flour at a higher extraction level. The B5 and C5 milling operations 

in particular had double and triple the amount of coarse flour, respectively. This was anticipated 

for the B5 operation that handles coarse material with a lot of non-endosperm contamination. 

However, the C5 milling operation should contain a fairly large amount of purified endosperm to 

easily produce a significant quantity of fine flour. 

Given the importance of the reduction system, a separate curve was subsequently 

produced to describe this process (Fig 3.3). The initial drop off in flour purity for the complete 

millers curve (Fig. 3.2) is shown to have been derived from the reduction process. After the 

initial drop, the curve levels off for a brief period. However, the middle of the reduction process 

features a steep decline in flour purity. This would be expected as acceptable for part of the 

secondary reduction system, but this region of the current working operation included 

approximately only 15% of the total mill flow for a 3% drop in cumulative endosperm purity. 

In contrast, the brightness millers' curve for the Jerusalem mill had a significantly smaller 

range and instantaneous slopes than the other two curves. However, for this milling operation, 

the brightness curve serves some use because there are several large observable differences 

between the streams of high purity. This provides evidence of some usefulness for colorimetry as 

a quality analysis technique in the milling industry. 
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Figure 3.3 Cumulative endosperm curve for the Jerusalem commercial mill reduction system. 
Note the departures in the curve in comparison to the original plot.  

 

 3.3.2 Preprocessing Comparison: Debranning vs. Tempering 

      The purity profile comparison of flour production provides an enlightening exercise. Near 

infrared analysis provided an objective terminology that allowed comparison of flour purity from 

soft and hard wheats (Fig. 3.4). We clearly note several benefits for the debranning operation, 

including the production of high value flour streams, increased overall yield at a fixed purity, and  

higher value of flour from end of mill processing steps. However, for flours of an average purity 

value, there was little benefit between the two milling processes. Given our past experiments, a 

reasonable cutoff for endosperm purity appeared to be 93%. Thus, the debranning operation 

increased the yield of high-value flour. 

From this endosperm purity profile comparison, we note several benefits of the 

debranning operation: 1) higher purity of “straight grade” flour, 2) increased “straight grade” 

flour yield, and 3) the production of high purity flour streams. Straight grade flour is generally  
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Figure 3.4 Cumulative endosperm curve comparison of a conventional pilot mill and 
commercial mill equipped with debranning.  
 
defined as the mixture of all potential flour streams in the mill. Higher purity flour typically 

ranging from a 50-60% yield is often referred to as "patent" flour. When compared to traditional 

cutoffs based on color or ash, a reasonable endosperm purity cutoff for patent flour appears to be 

93%. Following this reasoning, the debranning operation increases the patent flour yield 

significantly.  

Several differences were seen in the distribution and purity of flour for the different 

milling systems (Fig. 3.5). A significant shift was observed towards earlier flour production in 

the overall flow for the debranning operation, including a reduced priority of the reduction 

system. The debranning operation also had a large contribution of redust flour that also precedes 

the sizings, reduction, or recovery system.  The conventional process, in contrast, required 

significant production from the recovery system.  
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Figure 3.5 Milling system comparisons of total flow and endosperm purity for a mill with and 
without debranning.    

 
Increased purity was observed for all flour streams produced after the debranning 

operation with the exception of the reduction system. This differing set of milling priorities 

presents the opportunity for a shorter milling flow with the help of the debranning operation. As 

such, the company could either produce a larger amount of patent flour yield or balance the cost 

of the debranning equipment with less capital cost of equipment and a smaller mill footprint. 

 

 3.3.3 Comparison of Multiple Milling Operations 

Here the three endosperm purity profiles are presented in two ways, an expanded scale and a 

common scaling. First off is the expanded scale (Fig. 3.6) that highlights the trends as a function 

of the purity range for that particular curve. By using this method, we see that the pilot scale mill 

maintains a certain level of desired purity for a higher yield, however, the purity falls off the 

most at the end of the milling process. The conventional pilot mill also featured a limited flour 
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yield. The Israeli mill had a steady decline in purity but it also rapidly decreased for the last 

 

Figure 3.6 Cumulative millers' curves for a conventional pilot scale (◊), commercial scale with 
debranning (□), and a pretreatment free commercial scale (Δ) milling operation with an 
expanded scale. 
 
few flour streams, but this mill had extraction levels much higher than the milling industry norm. 

This mechanism shows that the established mill with debranning had a high initial change in 

purity, but there was extreme value in maintaining purity over time, with no strong deviation 

after the first 20% of high value flour. 

Fig. 3.7, shows the three mills on a common scale. This served well to highlight the 

differences between a milling operation with and without the preprocessing or pretreatment of 

wheat. Debranning and tempering of the wheat greatly improved the initial purity of the flour 

and overall value of the straight grade flour. A steep initial decline in impurity was noted for the 

start of the debranning operation and the end of the conventional pilot milling process, however, 

the Israeli millers' curve remains steadier. The other item of note is that the final purity of the 
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straight grade flour for the other two operations was higher than the initial purity of the Israeli 

mill by approximately 6%. 

 

Figure 3.7 Cumulative millers' curves for a conventional pilot scale (◊), commercial scale with 
debranning (□), and a pretreatment free commercial scale (Δ) milling operation with a common 
scale. 

 

 3.4 Conclusion 

Near infrared chemical imaging enabled direct comparison of different flour mills on the 

basis of endosperm purity. Each preprocessing step caused redistribution of the high value 

material, and the lack thereof resulted in lower quality material. The key difference in curve 

shape is produced by the debranning operation. High value streams are produced and even the 

lower value streams result in significant value. With the near infrared purity profile, a miller can 

observe trends over time and reevaluate the performance with wheat changes. The miller can 

also compare the results to the desired order of production efficiency and make the corrective 

changes. This method also allows a company to observe the effect of significant processing or 
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equipment changes and custom tailor or implement them in its other mills. The quantitative 

chemical imaging technique allows selectivity and sensitivity that is not offered by traditional 

methods. 

 

 3.5 List of Abbreviations 

CWT – Hundredweight 

B – Break 

Div – Divisor 

C – Reduction   

LCTF – Liquid crystal tunable filter 

InSb – Indium Antimonide  

PLS – Partial least squares 

 

 3.6 References 

1. Posner, E.S.; Hibbs, A.N. (Eds.). (1997). Wheat Flour Milling. American Association of Cereal 
Chemists Inc: Minnesota. 

2. Wheat Intake/Mill Performance/Quality Control. Module 11. (1989). In: Workbook Series; The 
Incorporated National Association of British and Irish Millers Limited. London, England. 

3. Shewry, P.R., Hawkesford, M.J., Piironen, V., Lampi, A.M., Gebruers, K., Boros, D., & Ward, J.L. 
(2013). Natural variation in grain composition of wheat and related cereals. Journal of Agricultural 
and Food Chemistry. 61(35), 8295-8303  

4. Gregory, D. (2010). Debranning: A miller’s perspective. International Miller. Quart. 1:37. 
5. Wetzel, D. L. (2013). Positive assessment of mill stream endosperm purity using chemical 

imaging. Cereal Foods World. 58(3), 133-137. 
6. Robinson, J.W; Frame, A.M.S.; Frame II, G.M. (2005). Infrared Spectroscopy. 

In: Undergraduate Instrumental Analysis. Marcel Decker. New York; 213-310. 
7. Budevska, B.O. (2002). Vibrational spectroscopy imaging of agricultural products. Handbook of 

Vibrational Spectroscopy. Wiley: Hoboken, New Jersey. 
8. Budevska, B.O., Sum, S.T., & Jones, T.J. (2003). Application of multivariate curve resolution for 

analysis of FT-IR microspectroscopic images of in situ plant tissue. Applied Spectroscopy. 57(2), 
124-131. 

9. Barron, C., Parker, M. L., Mills, E. N. C., Rouau, X., & Wilson, R.H. (2005). FTIR imaging of 
wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to 
grain hardness. Planta. 220(5), 667-677. 



67 

10. Philippe, S., Robert, P., Barron, C., Saulnier, L., & Guillon, F. (2006). Deposition of cell wall 
polysaccharides in wheat endosperm during grain development: Fourier transform-infrared 
microspectroscopy study. Journal of Agricultural and Food Chemistry. 54(6), 2303-2308. 

11. Wetzel, D.L. (1983). Near-infrared reflectance analysis: Sleeper among spectroscopic techniques, 
Anal. Chem. 55, 1165A-1176A. 

12. Wetzel, D. L., Posner, E. S. & Dogan, H. 2010. Indium antimonide (InSb) focal plane array chemical 
imaging enables assessment of unit process efficiency for milling operation. Appl. Spectrosc. 
64(12):1320-1324. 

13. Boatwright, M.D., Posner, E.S., Lopes, R., & Wetzel, D.L. (2015). Profiling endosperm purity of 
commercial mill streams preceded by debranning using quantitative chemical imaging. Cereal Foods 
World. 60(5), 211-216. 

14. Lewis, E.N., Levin, I.W. & Treado, P.J. (1996). U.S. Patent No. 5, 528, 368. 
 
  



68 

Chapter 4 - Novel Optimization of Wheat Milling Sieving Operation and Unit Process Mass 

Balance Utilizing Selective Near Infrared Chemical Imaging  

 

 4.1 Introduction 

The wheat milling process is gradual, beginning with an intact kernel, requiring selective 

grinding and reduction of particle size; a technique that has been modified and optimized over 

the years (1). During the repeated grinding and sieving of the milling process the objective is to 

reduce the starchy endosperm product from the center of the kernel into particles below a certain 

size (212 µm). However, while the grinding operation is responsible for producing material of 

finer particle size and selectively flattening or reducing particles, the sifting process is 

responsible for defining the end product of flour milling. Separation by sieving is governed by a 

several key principles. These include the acceleration of the screen in space (gyration), speed of 

the material over the sieve surface, the amount of sieve surface (or also the number of sieves), 

the amount of material reaching each sieve surface, the granulation and shape of material on the 

sieve surface, and the actual aperture size. However, the single most important determinant of 

the particle size separation is the sieve aperture (2). Despite the dependence on outside factors to 

control granulation, the aperture size for sieves often follows a strict pattern and innovation in 

their organization has been stagnant. 

Typically, sifting in flour milling takes place within sections of a sifter box. Each sifter 

box has spouting overhead that directs material into approximately 6-12 sifter sections. Cloth 

socks are required to connect the spouting to the sifter because they allow movement with the 

sifter gyration. Fig. 4.1 is a typical description and diagram of a single sifter section and its 
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operation. Material is observed to enter the sifter from the first break rolls. Upon entering the 

sifter, the material hits a divider and is split into two sets of four sieves. The arrows and labels  

    

Figure 4.1 Typical sifter diagrams indicating sieve by sieve details (left), flow of overs (left 
center), flow of thrus (right center), and the positioning of exit spouting (right). 
 
indicate where the material is transported. The first eight sieves have duplicate sieve apertures. 

The material that passes over these eight sieves pass on to the second break operation in two 

separate streams and the thrus pass to the ninth sieve. 

On the ninth sieve of the section, there is a dot which indicates that material from above 

has entered the sieve. The material then progresses through five sieves; the overs of which go to 

P1a and the thrus continue to the next sieve and so forth. Fig. 4.1 indicates combination of thrus 
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and collection in a pan, except for sieves 20-22 that are sent to the flour stream. The fourth 

diagram indicates the destination of each stream exiting the sifter and where it can be collected. 

A common goal for the sifting operation of all mills is to have significant regulation 

regarding the removal of fines (3). Optimization of the amount of overs and thrus can help 

prevent “bare” sieving, particularly for flour sieves. Bare sieving is the terminology used to 

describe an underutilized sifting surface where abrasion and subsequent non-endosperm 

contamination can occur. One option to prevent bare sieving is to decrease the sieve aperture size 

to prevent too much material from passing through the sieve. Moderation of this change is 

important because the smaller sieves opening tend to clog, thereby increasing the time of sifting. 

For any change of sieve size, the aperture modification does not limit material based on the exact 

dimension. Sieve openings are square and material approaching 142% of the x, y dimension can 

still pass through on the diagonal.  

Also, the miller must consider that there is no correlation between particle size and 

endosperm. The sieves after each grinding stage are arranged so a set amount of flour is removed 

and intermediate streams containing non-endosperm and some endosperm are sent to additional 

processing stages.  Because some of the non-endosperm and endosperm particles are in a mixture 

of material below 212 microns, sieves with the appropriate micron size are chosen to separate as 

much pure endosperm (flour) from the mixture.  

The action on each sieve frame is inherently dissimilar. However, the traditional method 

of analysis is to view only the resultant action of multiple sieves. As such, the miller does not 

have the opportunity to examine the effect of each successive frame. By analysis of the material 

passing over and through individual sieves, the miller can directly control or monitor the flour 

being produced. However, traditional methods of analysis have made this heretofore difficult or 
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impossible (4). The brightness measurements have insufficient contrast between samples and the 

measurement of mineral ash is ineffective due to high variance and lack of selectivity. In 

contrast, near infrared chemical imaging provides a sensitive quantitative measurement with a 

chemical structural basis of endosperm. 

Sampling of individual sieves is impossible during regular operation of a flour mill. Each 

individual sieve frame is contained within the sifter box and direct sampling would require 

access within the moving sifter. The only way the sieves can be sampled is when the mill is shut 

down. Given the low margins for the milling process and time required for data acquisition, the 

only time sieve sampling is feasible would be scheduled shut down for maintenance. In every 

commercial mill, sifter sections are regularly open and inspected for their condition and 

maintenance (weekly) according to a set sequence. Thus, the first application of this novel 

analytical procedure was first proposed during the contracted optimization of a commercial mill.  

An Israeli soft wheat milling operation was the location for these unique milling 

experiments. Full access to sifter sections during the middle of routine operation was provided 

intermittently, unlike most commercial operations where profits would be affected. For this 

company, the major consumer of the flour product was the company itself; providing for 

financial flexibility. The study of soft wheat milling highlights the utilization of the near infrared 

chemical imaging technique for different milling operations. The unique chemistry of soft wheat 

varieties (5) also accounted for some differences in processing. 

The endosperm of soft wheats is amorphous and friable because the endosperm wedge 

proteins between the starch granules bond weakly (6).  The specific origin of wheat softness has 

not been verified, but it often linked to the compound puroindoline that interacts with the protein 

matrix through unknown mechanisms (7). Another factor is the positive correlation between the 
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amount of cell walls (8). The kernel is often thicker than hard wheats and more dense. Soft 

wheats have lower protein (7.0-10.5%) and are used where the final product does not require 

structural development of dough/batter, such as cookies and cake.  

The goal of later processing steps in the milling flow is to maximize the byproduct value 

and to produce extra flour of additional value with diminishing returns. However, each 

processing step sends material to several subsequent processing steps. The high volume, low 

margin nature of the flour milling industry makes it essential to optimize each individual 

operation and process setting. If a unit process is out of sync, it is important for the miller to 

quickly identify and solve the problem. Study of a flour mill during the commissioning or 

contract phase provides a unique opportunity for studying these errors. Several chemical imaging 

experiments were performed to quantify potential dysfunctional operation of key unit processes 

for the mill. Each milling process has several outgoing streams and several processing 

parameters that control the outputs. However, the miller is limited in the monitoring or action of 

mill processes and must use trial and error (9). 

The near infrared chemical imaging technique with chemical and particle size data, 

results in more informed selection on the granulation and concentration of endosperm analyte for 

flour milling streams. Chemical images and quantitative endosperm results are shown for the 

flour sieves of several key sifter sections. Testing in various milling systems of flour extracted 

from individual sieves show that it is possible to determine the size and presence of any non-

endosperm particles among the product streams. Sieve changes can then be proposed to optimize 

the separation.  
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 4.2 Experimental 

 4.2.1 Instrumentation 

Two commercial near infrared imaging instruments were used in this study. The Malvern 

Sapphire® near infrared quantitative imager (Malvern Instruments Ltd., Westborough, MA) used 

for the complementary studies was the basis of the development of the spectroscopic imaging 

technique for wheat milling streams (10). A solid state liquid crystal tunable filter (LCTF) 

enabled scanning the NIR spectrum from a broadband source (11). An Indium Antimonide 

(InSb) focal plane detector rectangular array captured the spectrum for 81,920 individual pixels. 

The spectral region used was 1650-1788 and 2150-2228 nm (3 nm steps) with a pixel size of 40 

µm.  

The second instrument was a Middleton Spectral Vision ViaSpec DAQ SWIR model no. 

MRC-303005-1 push broom array imaging spectrometer (Middleton, WI). The ViaSpec has a 

linear mercury-cadmium-telluride (MCT) detector with 320 elements at a spatial resolution of 

approximately 30 µm that requires a four stage thermoelectric cooling process. The 

microprocessor controlled stage allows for scanning a y-dimension up to 6 inches. For our 

purposes, a 393 pixel y-dimension was scanned. The default spectral resolution was 5 nm and 

covered a range of 1000-2500 nm for a total of 256 spectral channels, however, only a portion of 

this spectral region was necessary for our studies. The acquisition time for one scan was 

approximately 5 seconds. 

Several instrumental parameters were optimized before routine data acquisition could 

proceed with the Middleton Spectral Vision instrument. The stage scanning settings included 

speed of acceleration and deceleration that would provide adequate sampling for each pixel. The 

camera settings included frame rate and exposure time. The stage and camera settings had to be 
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adjusted simultaneously to avoid distorting the image. The optimized settings for the camera 

were 286 frames per second and an exposure time of 1600 µs. 

The ViaSpec spectral data cubes are acquired in the ENVI data format as an .hdr and .raw 

file. The .hdr file contains the coordinates for the x, y-dimension and the spectral wavelengths 

scanned. The .raw file contains the spectral data in the form of reflectance counts. Given a slight 

error for the stage scanning, the y-dimension for each image was either 393 or 394 frames. The 

spectral data cubes were approximately 125,000 pixels. Each sample measurement must be 

calibrated to a dark and reference current. These are acquired with a closed shutter and white 

ceramic standard, respectively. They are retaken every hour to account for atmospheric or 

detector changes. Spectral data from the ViaSpec are then imported into the Malvern ISys 

software for data processing. Some adjustments to the ISys analytical procedure were necessary 

upon transition to another spectroscopic imaging instrument. 

The first step for analysis of spectral data cubes is to convert the data into Absorbance. 

This is accomplished for both instruments (after data conversion for the ViaSpec) by performing 

spectral math with the sample (S), dark (D), and reference (R) data files. The formula is Abs = 

log 1/ [(S-D)/(R-D)]. The subsequent preprocessing steps are as follows: 

1. A baseline subtraction algorithm with a quadratic polynomial function and a baseline 

range of 0. The points for the baseline are 1650, 1688, 1750, and 2230. 

2. For the Middleton Spectral Vision instrument data only, spectral truncation of the excess 

spectral data from 1000-1650, 1790-2100, and 2230-2500 nm. 

3. A normalization (mean center and scale to unit variance by spectrum) procedure is used 

to reduce the variance between data points that are out of focus. 
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After preprocessing, spectra from select regions of replicate images of endosperm and 

non-endosperm sample data are used to develop PLS libraries in excess of 400,000 pixels. Two 

component classes are created; A, starchy endosperm based upon highly purified streams from 

the purifier operation; and B, clean bran. The normalized data files are then subjected to 2 

separate PLS1 characterization operations for each class (endosperm and non-endosperm). The 

classification gives each pixel in the image a score from 0 to 1, where 1 is an exact match to 

spectra for that library class. The two classification images are then entered into an algorithm 

(A/A+B). The mean value for all of the pixels yields the quantitative result. For wheat milling 

processing streams of an average size (approximately 750 µm), the relative standard deviation 

was determined to be 1.9%. The relative standard deviation for the coarsest streams of the 

milling process (> 1000µm) were approximately 3% and 0.8% for fine flour streams  

 

 4.2.2 Commercial Milling Operation 

The commercial mill featured in this chapter of the thesis presented a unique opportunity 

for experimentation. The scheduled and random stop/start operation of the mill, based on 

constant adjustment by the mill engineer, allowed for regular sampling within the sifter boxes. 

The soft wheat mill responsible for providing 65% of the Passover matza within Israel and the 

additional 50% of the total product was exported. The mill only requires operation five days per 

week to meet the minimum weekly flour needs of the bakery. The bakery produces cookies and 

various pastries, however, the major product is matza.  

The production of matza flour requires several considerations and adjustment throughout 

the milling process. This level of control exceeds that of the standard soft wheat mill. The 

traditional milling operation features a conditioning step with water called tempering (1). This 
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strengthens the bran and weakens the interaction between the non-endosperm and endosperm 

portions of the kernel. However, Jewish law dictates that nothing must be added to the wheat 

before it is milled. To limit the negative effect of no tempering, the mill has 4 dedicated air 

washing units that are responsible for cleaning the air and running humidity control at 65% 

relative humidity; putting the mill under a pressurized system.  

The equipment and flow were designed for the processing of soft wheats. Thus, the sieve 

configuration, apertures and air flow are often adjusted accordingly. A typical soft wheat milling 

operation has a smaller flow diagram than hard wheat mills with fewer purification steps; 

however, the sifting space (area) is larger because the material often sticks together or to the 

sieve surface (1). Soft wheat mills often have additional bran dusters or air classifiers to aid in 

the separation of flour, particularly for the break system (12). The Israeli mill has some 

modifications from the traditional soft wheat mill given the absence of tempering. The milling 

flow diagram is featured in Fig. 4.2. This milling process featured five breaks (B), two purifiers 

(P), four bran dusters (Br), three divisor sifters (Div), 12 reduction operations (C), and a 

vibrosifter. 
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Figure 4.2a Flow diagram of the Em Hachita soft wheat commercial mill. 
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Figure 4.2b Flow diagram of the Em Hachita soft wheat commercial mill. 
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Figure 4.2c Flow diagram of the Em Hachita soft wheat commercial mill. 
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Figure 4.2d Flow diagram of the Em Hachita soft wheat commercial mill. 
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Given the constraints of the unique milling process, the break system has to be gradual 

and the subsequent milling operations must pick up the slack to extract endosperm without non-

endosperm contamination. The primary breaks (B1 and B2) send a lot of material to the 

purifier where material is selectively sorted for additional processing or grinding for flour  

production in the reduction system. One key feature present within this mill is the Divisor sifters. 

These three sifters are an extension of the first four break operations. They handle the excess fine 

material that could not be separated within the initial sifting section. This process separates a 

coarse break flour fraction and the overs are sent to the reduction process (C2, C3, C5, or C7).  

The secondary break system attempts to maximize the value of byproducts such as clean 

bran etc., and to extract material of additional value for the secondary reduction system. Bran 

dusters (BR) that handle break stage material are indicated before the fourth and fifth break 

sifting, in addition to two standalone operations. Two aspirators are also shown on the diagram. 

Their purpose is to collect potential product material and send it to the Div 3 sifter. The Israeli 

mill had primary and secondary reduction systems of seven and six operations, respectively. The 

goal of the primary reduction system was to grind the purified endosperm into fine flour. The 

secondary reduction system is handles secondary break stock and attempts to produce additional 

flour of value.  

For the Em Hachita flow sheet, each sifter in the milling operation is denoted with the 

number of sections and sieves are described by number of sieves × sieve aperture size (microns). 

The diagram (Fig. 4.2) either notes that there is one or two (left and right) sifter sections or uses 

a small notation in the upper right corner. Each box within the sifter section indicates sieves with 

a common purpose/sieve aperture, where the final overs and or thrus go to a certain destination 

(i.e. C1 etc.). All product (flour) streams are indicated on the flow sheet with the designation 1-2. 
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The terms like kleie grobe, kleie fine, griess grob, and greibkleie, indicate the secondary products 

coarse bran, fine bran, germ, and shorts, respectively (13). The bran is the outer covering of the 

wheat kernel and the germ is another part of the wheat kernel that contains the developing wheat 

embryo (14). Shorts are defined as an inseparable mixture of the bran, endosperm, and germ, 

with lesser value than the individual components. 

The spectroscopic standards for the Israeli mill were fairly difficult to define and acquire. 

For previous experiments (4, 10, 15), samples from the 1st middlings reduction top operation (or 

alternatively a combination of pure flour or purifier streams) and clean bran were acquired for 

endosperm and non-endosperm, respectively. At the time of the first spectroscopic sampling, 

none of the streams heading to the C1 reduction operations had been fully optimized to the 

desired purity. Thus, material for the endosperm standard had to be collected directly from a 

single isolated fraction of high purity, perhaps feeding into the early reduction operations. After 

visual observation of the quality of various intermediate streams feeding into or departing low 

ash or high brightness operations, several purifier fractions of varying particle sizes were 

combined to produce the endosperm standard. Furthermore, several pieces of non-endosperm 

contaminant were removed from the sample. The non-endosperm standard was obtained from 

one of the byproduct streams from the B6f sifter, fine bran, that had the least amount of 

endosperm adhered to the bran.  

 

 4.2.3 Milling Operational Settings 

The Israeli mill used a Romanian soft red winter wheat during the first set of 

experimental runs. The mill was not fully optimized even though it had been commissioned for 

regular milling. This was because the buyer and miller were owned by the same company, Em 
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Hachita Ltd., and any temporary inconsistency was authorized. The mill construction specified 

for wheat of 12-14% moisture. However, this requirement was secondary to the other 

specifications (purity etc.) required by the rabbis. The Romanian wheat eventually purchased had 

a moisture level of approximately 9.75%. This made the wheat milling process without 

tempering a difficult task.   

Several equipment choices hampered the production of a sufficient quantity of pure flour.  

Each sifter frame contains sieve cleaners that perturb the sieve surface; however, they were not 

fully functional for many of the flour sieves and had to be replaced. This had caused the sifting 

space to be inefficient in the separation of fine endosperm. Also, the sieve stockings that connect 

the sifter to the spouting were not optimized and caused blockages in the sifters from the bottom 

up and complete mill shutdown. The material being sent to the purifiers was not optimized for 

the current break release settings; the amount of material released from the break system to other 

stages of the mill. Likewise, the sieve configuration on the purifier was not allowing proper 

segregation of products to the reduction operations. 

The initial goal for the milling operation was an ash value of 0.65 for patent flour at an 

extraction level of 80% with a capacity of 8.1 metric tons of wheat/hr. As of the initial 

experimentation, the milling operation was meeting the brightness specification of 89, but any 

improvements to color would be of value. The extraction level was only 77%, between the 

desired extraction level and that of a typical milling operation. This was at a reduced capacity of 

7.8 metric tons/hr. with an ash value of 0.68. Another goal was maximization for the value of 

byproducts. Improvement was a clear option because a limited amount of coarse bran was being 

produced (5%). Typical milling operations produce up to 8-10% bran (1). Subsequent milling 

alterations were necessary. 
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A few key errors in the milling process were chosen for analysis for endosperm mass 

balance. The first dysfunction studied was the effect of unbalanced grinding operation between 

duplicate unit processes used to handle the large flow rate. In these cases, either the distribution 

of material to the two grinding rolls differed or the operational settings for the grind did not 

match. The second and fourth break (B) operations were studied after observation of 

discrepancies between mill flow rates during a standard sample collection (Fig. 4.3). 

 

Figure 4.3. Milling diagrams for the second break (top) and fourth break (bottom) grinding and 
sieving operations. 

 
 Another experiment sought to highlight the current operation of the primary reduction 

operations (C2-C5) in the production of flour and distribution of byproducts. When developing 

the millers' curve for the mill it was noted that flour production had mixed purity and yield for 

these important steps. This was uncharacteristic as there should be a large flow of pure stock into 

these unit processes for the production of a high volume of flour. Collection of these samples 

was primarily below the respective sifter sections of at special sampling spouts. When possible, 

flow rates were determined to acquire mass balance data. The comparison laboratory milling 

experiments were collected after grinding and sieving on table top equipment. 
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 4.3 Results & Discussion 

 4.3.1 Sieving Experiments 

The novel portion of our experimentation is the heretofore unrealized optimization of the 

individual repeating sieves within a sifter section. The primary goal is to maximize endosperm 

purity and yield for the material passing through each individual flour sieve and optimizing 

within the 110-220 µm apertures typically used for flour sieves in the Israeli mill. The sampling 

procedure for individual streams required the milling operation to be stopped. The sifter boxes 

were opened for regular maintenance such as checking for sieve blockages and holes. Then, 

samples could be collected from the material on top of and below each sieve. This allows the 

miller to see the effective separation for each sieve and compare the effect of subsequent sieves. 

The sieving operations studied included B3, C1b, C2, C4, C5, C10, C12, and Div 3. The 

B3 sifter stack was studied as a matter of convenience, given that there were problems with 

several sieves in the stack. The B3 sifter required several sieve cleaners to be replaced because 

material was sticking below the sieve surface. The B3 operation (Fig 4.4) begins a transition in 

the break system where the material has a significantly lower amount of endosperm remaining 

and comes from the two coarsest fractions resulting from the B2 process (> 1000 µm). This sifter 

section only had three sieves devoted to the production of flour that pass through a 125 µm sieve. 

The overs were redirected to 355 µm sieves to either C4 (overs) or Div 2 (thrus). The B3 sifting 

operation had an approximately 34% enrichment for the flour streams, however, the flour was of 

negligible quality (approximately 75% endosperm). 
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Figure 4.4. Diagram of the B3 sieving operation (left) and chemical images for the overs and 
thrus (right). Note the expanded color scale that indicates endosperm purity with warm false 
colors. 
 
Table 4.1 B3 Flour Sieve Endosperm Values  

 

The initial stock to the B3 flour sieves was approximately 47% endosperm (Table 4.1). 

The lower purity stock of the overs (39.8%) would either be sent to C4 or Div 2. However, given 

the purity of this fraction, it is highly likely that this material should head to a reclamation step 

instead. Otherwise, significant optimization of the first three break operations is necessary to 

reorganize the granulation. The B3 sieving operation was later adjusted and grab sampling of the 
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flour indicated a significant increase in purity to approximately 83% endosperm for a moderate 

yield of flour. 

The C1b sifter stack is described in Fig. 4.5. The origin of C1b stock is the coarser, dense 

fines from both the P1 and P2 operation. The C1b operation sends coarse material to C4 and B3. 

More importantly, there are 6 sieves that produce a fine flour (140 µm) and 4 sieves below for a 

coarse flour (160 µm). The overs of the 160 µm flour sieves are sent to a set of 200 µm sieves 

and either C2 (overs) or C3 (thrus). The C1b operation had the second smallest flour output of 

the primary break system at approximately 2% of the total flour.   

 

Figure 4.5. Sieving diagram for the C1b reduction process. 
 

Each C1b overs stock has similar endosperm values; however, we might see some 

additional fines in the F1 overs. The C1b sifting experiment exhibited lower ash values for the 

coarse flour, but a slightly lower endosperm purity value. From Fig. 4.6, a large amount of bran 

contamination was observed in the fourth sieve flour of F1 where the overs had a higher purity 

than the thrus. Also, for the F2 sieves, the product clearly drops off for the last two sieves.   
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Figure 4.6. Chemical images of the C1b flour sieve overs and thrus. Note the enriched flour 
product and similar intensity of F1 and F2 flour images. Note the expanded color scale that 
indicates endosperm purity with warm false colors. 
 
Table 4.2 C1b flour sieve data for overs (+) and thrus (-). 
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The ash and endosperm values were contradictory for the sifting experiment indicating 

that additional aleurone or outer endosperm is present in the flour for this operation (Table 4.2). 

This material would have functional ability for baking etc., but would not meet ash standards. 

Optimization of the stock sent to the C1b process is the ideal method to increase the purity of the 

flour. This includes break system and purifier changes. Also, the spectral images and quantitative 

results indicate that decreasing the sieve aperture should remove some additional non-endosperm 

particles from the flour. 

The C2 sifter stack is described in Fig. 4.7. The origin of the incoming stock was the 

coarse fraction of Div. 1 (224-315 µm), C1a (160-224 µm), and C1b (160-200 µm). There were 

two flour streams produced on thirteen 140 µm and five 160 µm sieves, respectively. The overs 

of the C2 160 µm flour sieve are sent to two different classes of C3 material that pass over and 

through a 180 µm sieve. The C2 enrichment for flour purity was approximately 35%. 

 
Figure 4.7. Flow sheet diagram of the C2 sifting process. Note the fine and coarse flour streams 
from 8-140 µm sieves and 5-160 µm sieves, respectively. 
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Figure 4.8. Chemical images resulting from the C2 sieving analysis. Note the expanded color 
scale that indicates endosperm purity with warm false colors. 

 
Table 4.3 C2 flour sieve data for overs (+) and thrus (-). 
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From the initial C2 stock it was noted that there was still a fair amount of product 

available (Fig. 4.8). Likewise, the first initial sieving process removes a lot of product. The 

purity values for the C2 sieve increase going farther down the stack of 140 µm sieves, indicating 

that there may be a lot of initial bran contamination in the stream (Table 4.3). However, the 

purity increases for later streams and the coarse flour fraction contains a lot of endosperm in 

comparison to the fine flour (87.5% vs. 86.3%).  

Visual analysis of the sieve fractions shows that sieve #7 contains a lot of extra non-

endosperm material in the flour stream. Visual inspection of the second group of flour sieves 

shows slightly smaller particles of non-endosperm being introduced. Sieve #4 shows the most 

amount of bran contamination which matches Fig. 4.8. In comparison to the C1b stock, we note 

that the C2 operation produces a similar quality flour with an initial stock that has 14% less 

endosperm content. Adjustment of the milling procedures provided a similar amount of flour 

yield as before (the second largest of milling operations), but resulted in flour purity increases to 

89.6% and 89.8% endosperm, respectively. 

The C4 sifter experiment had 8 sieves (140 µm) that produced only one flour (Fig. 4.9). 

The C4 operation was hard to control because several moderately coarse streams are combined 

from C1a, C1b, C2, C3, and B3. However, the C4 operation had the smallest flour yield of all of 

the primary breaks. Rather, the C4 operation used several coarse sieves to produce germ and B4f 

stock with apertures of 1400 µm and 425 µm, respectively. The fines were further segregated 

into B4f (over 300 µm) and C5 (thrus) stock. The C4 sieving experiment showed an average 

31% enrichment of endosperm purity from the raw material to flour. 
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Figure 4.9. Flow sheet diagram of the C4 sifting process (left). Note the flour stream from 8-140 
µm sieves. Corresponding chemical images of the overs and thrus are also shown (right). Note 
the expanded color scale that indicates endosperm purity with warm false colors. 

 
The Div 3 sifter stack had 10 sieves (6-125 µm and 4-112 µm) devoted to the production 

of two flour streams (Fig. 4.10). The remaining material was sent to C7, the beginning of the 

secondary reduction system. The Div 3 operation handled additional B4 fines and filter flour 

acquired from the air handling system. 

One sample was excluded from the Div 3 analysis, because there was a hole in the second sieve. 

The incoming material for the process had an endosperm content of approximately 57.5% (Table 

4.4). Endosperm was readily removed down the sifter for an average enrichment of 12%; 

however, the flour had minimal value at approximately 69% endosperm throughout the sifter. 

Approximately 4% of the mill flour was attributed to Div 3, but much of this material is best 

suited for the secondary reduction system. Minor adjustments alone resulted in an increase in the 

purity of Div 3 flour to approximately 73.5%. However, the image analysis indicated there is 
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some need for some purification or a bran duster operation to filter out lightweight 

 

Figure 4.10. Flow sheet diagram of the Div 3 sifting process (left). Note that two flour streams 
are produced from 6-125 µm (coarse) and 4-112 µm (fine) sieves. Corresponding chemical 
images of the overs and thrus are also shown (right). Note the expanded color scale that indicates 
endosperm purity with warm false colors. 

 
Table 4.4 Div 3 flour sieve data for overs (+) and thrus (-). 
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non-endosperm particles. The cost effective alternative would be to increase the sifter apertures 

for the flour sieves. 

 

 4.3.2 Break System Balance 

The initial problems with imbalance for the break operations were revealed by manually 

checking the flow rates for each flour stream in the mill. The second and fourth break operations 

each have two grinding rolls and sifters devoted to their process. Collection of the flour streams 

provided for a millers' curve showed significant discrepancy between these duplicate processes.  

The second break operation features duplicate grinding and sieving operations to handle 

the material over an 1120 um sieve from the first break operation (Fig. 4.3). The second break 

sieving operations divide the material between third break coarse, third break fine, purifier 1, 

purifier 2, and a secondary sifter (Div 3) for the classification of fines and flour. The operation of 

the entire break system is highly regulated because it sets the tone for the entire milling 

operation. Purifier streams are the largest source of purified endosperm to the reduction system 

for the production of clean flour.  

Spectroscopic detection of endosperm content (Fig 4.11) revealed that the incoming 

material to second break contained 78.2% endosperm when these samples were acquired. Given 
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Figure 4.11. Purity comparisons of second break operations for a laboratory and commercial 
scale milling operations. Note that the experimental operation had an optimized first break and 
second break grinding with tempering of the wheat. The 2016 construction had limits for the 
incoming stock and grinding because of the lack of pretreatment and contracted engineer 
settings, respectively. Note the expanded color scale that indicates endosperm purity with warm 
false colors. 
 
that the wheat kernel is 83% endosperm; this would suggest that there was a lot of endosperm 

still available for removal after the 1st break operation. This indicates a major deficiency or 

systematic limitation in the release of endosperm for the early steps of the milling process. There 

are six outgoing streams from the commercial second break operation. Note that the lower purity 

material is sent to the next break operation for additional particle size reduction. High purity 

break flour was produced under the current operation of B2, and other endosperm rich streams 

are sent to the Div 1 sifter and P2b purifier for further particle size classification.  

The optimized experimental second break operation (with tempering) shown here for 

comparison corroborates the main deficiency with the current operation of the commercial mill 

(Fig. 4.11). The endosperm should be released at the early stages of the mill to maximize the 

material sent to the reduction stages. However, there is a reasonable distribution of purified 
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material being sent to additional particle based separation steps of importance (P1b, P2b, and Div 

1). 

One potential explanation for the discrepancies between duplicate milling processes is 

imbalance of flow. A slight difference in the angle of spouting could impact the amount or 

chemical makeup of material reaching the roll stand or sifter (6). Instantaneous surging of 

product particularly could cause this discontinuity in balance. This is contradictory to the desire 

to have a uniform product with respect to both particle size and endosperm purity. 

 

 4.3.3 Reduction Operation 

The early stages of the reduction system (C2-C5) were studied after observation of the 

fluctuating amounts of flour production. A traditional flow typically features maximum flour 

production in the first reduction system that decreases for each subsequent process; however, the 

Jerusalem milling operation was deficient in that respect. 

Fig. 4.12 displays the distribution of endosperm after the C2 reduction operation. Note 

that the non-endosperm particles are fairly course. The purity of the incoming material was fairly 

high 85.2%, however, it is well below the intended ideal purity of flour. This operation featured 

 more coarse than fine flour at a higher purity. The C4 fraction was almost negligible, but 

featured a relevant endosperm purity (84.5%), however, some of this material would have been 

better suited toward the C3 operation. The material sent to C3 had a significant flow rate. One of 

these streams had an endosperm purity reduction of 26%. The clear-cut, obvious way to optimize 

this operation would be to reconsider the destination of the output for the coarsest two sieves. 

The measured purity suggests sending it to C4. Also, the top sieves may need to be slightly fined 

downward to prevent excess non-endosperm material passing through. 
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Figure 4.12. Chemical images indicating distribution of C2 stock into streams of varying purity. 
The destination operations included a coarse C4 stock, two C3 streams, a fine flour fraction, and 
a coarse flour fraction. Note the expanded color scale that indicates endosperm purity with warm 
false colors. 

 
By the C4 operation, only 60% endosperm is present (Fig. 4.13). A single medium flour 

with an endosperm purity of 82.5% was produced. The material being sent to B4 had an 

appropriate purity with most of the endosperm having been removed. However, for the streams  

being sent to the C5 operation, the endosperm purity is higher than that of the incoming material. 

Optimization of the material entering this singular process is necessary to better reflect its 

function in the milling operation. One key place for improvement would be the optimization of 

the purifier settings, including selection of the sieves to be used. Ideally, the flour purity at this 

point of the reduction system should be much higher. If it was impossible to optimize the 

upstream process settings, the flour sieves chosen should definitely be changed and perhaps this 

operation could be divided into two destination streams. Another option was to decrease the gap  
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Figure 4.13. Chemical images indicating distribution of C4 stock into streams of varying purity. 
The destination operations included a coarse B4 stock, a C5 stream, and a single lower quality 
flour fraction. Note the expanded color scale that indicates endosperm purity with warm false 
colors. 
 
setting of the C4 rolls to reduce the particle size and avoid having clean endosperm agglomerates 

being sent to the C5 operation. 

The results of the commercial C2 reduction operation was compared to a laboratory 

sieving experiment (Fig. 4.14). The two reduction operations handle material of similar purity  

being ground. The main difference between these two operations is that the commercial mill 

delivers material to two reduction operations rather than to a reclamation step. The purity of one 

of the commercial mill C3 fractions was of inferior quality. Future operational changes could 

alter this distribution, but in the meantime, this material should be sent elsewhere in the 

reduction system. 
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Figure 4.14. Purity comparisons of reduction operations for a laboratory and commercial scale 
mill flow. Note that the both operations feature relatively pure incoming stock and segregate it 
between a significant mass of product, the next reduction step, and some further processing step. 
The optimized experiment understandably had higher purity incoming stock and flour. Note the 
expanded color scale that indicates endosperm purity with warm false colors. 

 

 4.4 Summary 

Whereas the flour sieves are responsible for determining the final product, it is only 

logical significant optimization and analysis occurs at this level. However, previous methods of 

purity analysis for wheat milling have not enabled a sensitive and objective measurement. The 

technique of near infrared quantitative analysis provides these qualities (16, 17). Here we have 

shown near infrared quantitative numerical and imaging results that will enable optimization. 

Chemical images have revealed large particles of contamination that can be removed by 

alteration of the sifter aperture size. It also revealed small purity differences in between 

individual sieves, and identified the purity differences between the overs and thrus. As described 

previously (4), the presented endosperm values confirm the errors in the “purity” determination 

by ash. The near infrared chemical imaging technique as it stands would be very useful in 
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determining operational deficiencies for sifter set up in between weekly mill maintenance 

scheduled shutdowns of several hours.  

Also, the optimization of each processing step is essential to redistribute material to 

different processing steps based upon particle size and the availability of endosperm (9). Near 

infrared quantitative chemical imaging enables the previously unavailable determination of 

endosperm concentration as a purity measurement. The objective, chemical structural technique 

produces high distinction between endosperm purity and particle size distribution within 

chemical images.  

The current operation of the second break and early reduction system was highlighted 

and corrective action has been suggested for this particular milling operation based upon the 

results. Also, the mixed purity response of the primary reduction system was observed in 

chemical terms with false color imaging results. Optimization of the analytical technique and 

spectroscopic imaging software could eventually provide automation and direct results on the 

day of analysis for significant economic benefit. 

 

 4.5 Abbreviations 

LCTF – Liquid Antimonide 

SWIR – Short wavelength infrared 

MCT – Mercury-cadmium-telluride  

ENVI – Environment for visualizing images 

PLS – Partial least squares 

B – Break 

P – Purifier  
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Br – Bran duster  

D – Divisor 

C – Reduction  
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Chapter 5 - Summary and Future Direction 

The novel aspect of the near infrared chemical imaging approach for wheat milling is that 

the enhanced sensitivity, compared to previous methods of analysis, enables optimization of the 

flour (product) sieves. Chemical imaging analysis of the material flowing over or passing 

through each individual flour (product) allows determination of an optimal sieve aperture size to 

achieve high purity and maximize the yield. Furthermore, this quantitative spectroscopic imaging 

method can be used for any intermediate stream or product streams of the wheat milling process. 

Additional opportunities for application of this analytical approach include the optimization of 

key unit processes at early stages in the processing flow, or customization of other coarse sieve 

openings to selectively separate the analyte from other material in the mixture.  

Guidance with the near infrared spectroscopic quantitative determination of endosperm is 

a practical approach to increase mill production. Collection of samples is readily done while the 

mill is shut down for periodic routine maintenance. The optimization of the flour sieves has the 

potential to increase the yield by a minimum of 1% annually with the intent to extend the yield to 

2-3%. Taking the worldwide wheat usage into consideration (approximately 730 million tons 

annually), the potential exists for a 1% increase of 7.3 million tons, or approximately $2.2 billion 

annually. Even when considering a single average capacity flour mill (454 tons/24 hrs.); 

increasing the extraction rate by only 1% would produce an additional 1275 tons of flour. Thus, a 

1% increase in extraction rate for the “average” mill would approximately produce an additional 

$380,000 annually. Taking into account larger benefits, flour mills could potentially produce a > 

$1,000,000 payoff. 

Software and instrumental advances in the field of spectroscopy have picked up 

momentum in recent years. Computer scripts or “macros” can enable follow through of a 
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spectroscopic chemometrics procedure, and rapidly increase the throughput of the 

experimentation. In the field of instrumentation, the linear array is commercially available from 

multiple companies. Array instrumentation provides an enhanced output with data acquisition of 

thousands of pixels. An obvious target for instrumental development is the cost of the array 

detection. Previous experiments have determined that spectral libraries cannot provide enough 

data to cover the chemical differences within or between particles of the endosperm and non-

endosperm standards without a large number of pixels. The imaging aspect is also important to 

reveal the varying chemical distribution and particle size statistics.  

Near infrared spectroscopic imaging offers a chemical structural approach selective for 

the composite endosperm analyte. The technique looks at the purity in positive terms rather than 

the unfavorable material with an objective, binary approach of endosperm product vs. non-

endosperm. These features are in contrast to the indirect methods used to determine impurity 

based upon inorganic residue (ash) or pigmentation (color). With the current instrumentation, 

chemical imaging can serve central laboratories for the milling industry, but there is also a future 

expectation to analyze samples at line within a timely manner for the purpose of making the 

necessary grinding and sieve configuration corrections. This would occur while the mill is shut 

down for scheduled maintenance. For these considerations, leasing of an expensive piece of 

diagnostic equipment is a realistic option for the reluctant miller. 
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Appendix A - Copyright Permission for Chapter 2 
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Appendix B - Reasoning for the term matza 

 


