/éHE APPLICATION OF
ARTIFICIAL INTELLIGENCE TECHNIQUES
TO SOFTWARE MAINTENAHC%/

by
WAYNE LOUIS WERBELOW

B.S., University of Wyoming, 1979

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

Approved by:

Maqpr Professor

LD

2668

RY

19§5

Wy
c. 1
1.

2.

B

/

Introduction.ceeesas

CONTENTS

| A11202 9b498Y

* e 4 08

L I A B)

Definitions and the Need for Intelligent Tools in
Software Maintenance....oveveeceecee

2.1. The Software Development Life Cyclee.......

2.2. What

2.3. Artificial Intelligence Technigues..

is Software Maintenance?...

LI R I I I A

8 8 w8

EIE I

2.4. Motivation for Intelligent Tools in Software
Maintenante.eevsssnsssemsnans

Historical Background and Current Research.....

3.1. Intelligent Program Assistants...........

3.2. Software Maintenance Tocls in Programming

Environment8esesveesscsscecae

3.%. Miscellaneous Maintenance ToO0lSeesceossss

Critical Evaluation and Further Study..cesseees

4.1. Intelligent Program Assistants.....

4.2. Boftware Maintenance Tools in Programming
Environments...

4.3. Miscellaneous Maintenance To00lS..eescessa

A Practical Application of an Intelligent Tool......

5.1. A Maintenance Environment...

5.2. Intelligent Tool Application...seseccecesecess

Conclusion

M

-~ W™

13
14

&2
30 -
32
23

36
79
39
99
45
49

Figure 1.

Figure 2.

LIST OF FIGURES

The Programmer's Apprentice Architecture.....

The PRL Implementation for IPE.....ececvvenen

1. Introduction

The rising cost of computer software development and
specifically software maintenance has generated much concern
in recent years. Maintenance is now being viewed as a major
limiting factor on the capabilities of software systems for
several reasons. First, even though the cost of computer
nardware has declined, the cost of professional programmers
has 1increased dramatically. Second, with the programming
projects becoming more and more complex, extra programmers are
being added to maintain software. Third, more technical
background knowledge is ©being required +to make the correct
changes %o software.

Applications using Artificial Intelligence (AI)
techniques have grown gignificantly in recent years.
Intelligent tools have ©been designed to aid doctors in
treating their patients, geologists in drilling for oil,
engineers in finding faults in computer systems and scientists
in identifying organic compounds [Kobler82]. All of these
intelligent +tools have a common underlying concept which
allows them to handle a mixture of symbolic and heuristic
information. S0 why not apply AI concepts toward helping
programmers to program? Researchers in this area have been
concentrating on designing knowledge-based intelligent tools,
also known as expert systems, which coordinate the individual
steps of software development - requirements, specifications,
design, code generation, testing and maintenance.

This paper presents a viewpoint of what computer software

maintenance is and how AI techniques might be applied as tools
to aid computer programmers in the maintenance of software.
Jim Gallagher, in a joint project effort, will focus on the
applicability of AI techniques +to requirements engineering

[Gallagher85].

2. Definitions and the Need for Intelligent Tools 1in

Software Maintenance

This section describes +the terminology used in the
remainder of this paper. It also explains why intelligent
tools are needed to aid in the maintenance of software.
First, the traditional software development 1life cycle is
discussed. Most of +the tools presented in +this paper follow
thig paradigm. Other tools, 1like the User Software
Engineering (USE) Environment [Wassermen83] and the
Knowledge-Based Software Assistant (KBSA) [Green83] follow the
rapid prototyping methodology [Connell84]. Rapid prototyping
generates the actual program code, through user interaction on
a prototype system, from high-level requirements and
specifications. Next, software maintenance and its problems
are described. Artificial intelligence techniques are
described next. These include knowledge-based systems and
expert systems. Finally, the reasons why software maintenance
would benefit from the wuse of artificial intelligence tools

are explored.

2.1. The Software Development Life Cycle

Software maintenance 1is just one phase of the software
development process. This process is traditionally called the
software development life cycle and is comprised of three main
phases each of which is Dbroken into wvarious steps
[Pressman82]. Phase one is the planning phase and consists of
a software plan (feasibility study), requirements analysis
(problem identification) and specification (stated solution to
the problem). The second phase is the development phase which
consists of preliminary design (module definitions, interfaces
and data structures), detailed design (procedural
descriptions), coding (generation of the software) and testing
(unit, integration and validation testing). The third and
final phase in the software development life <cycle is the
maintenance phase (ongoing modification of the software).
Many times these steps are not sequentially followed and can
overlap (e.g. some code for a program could be written before
another program is finished with detailed design). Also,
feedback 1loops from one step to a previous one can result
(e.g. problems found during testing could relate back to code

changes or even specification and design changes).

2.2. What is Software Maintenance?

"Software maintenance is all those activities associated
with a software system after the system has been initially
defined, developed, deployed, and accepted as operational.”

[Dean82] Software maintenance comprises the final phase in the

software 1life cycle. It is, by far, the most costly and
lengthy of all the steps in the life cycle.

The following sections describe the similarity of the
maintenance 1life cycle 1is to the software development life
cycle, the reasons behind maintenance and the current software

maintenance environment.

2.2.1. The Software Maintenance Life Cycle

The maintenance phase, although wusually defined as being
in the software life cycle, can also be looked upon as having
its very own life cycle. It can be divided into phases and
steps which parallel the software development life cycle. The
steps include the following:

1. Re-negotiate the software plan - 1Is the change

feasible? Can it be handled manually or not at all?

2. Re-analyze requirements - identify the problem with
the software.

3. Re-specify - identify what the solution will be.

4. Re-design - add more detail +to the solution and
identify which modules or data structures will
change.

5. Re-code - Make the changes to the programs noting
that o0ld code may have to change and new code may be
added.

6. Re-test - Verify that the solution meets the changed
specifications and that it hasn't affected other

programs or data indirectly.

Like the software development 1life cycle steps, the
maintenance steps can overlap and include feedback loops to
previous steps. In practice, these formal steps are usually
not followed and the initial steps are often times ignored
completely. This may be advantageous if the change is simple,
especially when *trying to reduce +the time and cost of
maintenance. If the change 1is more complex and possibly
modifies the specifications, then the various steps should be

followed.

2.2.2. Why is maintenance done?

Most software developments are expensive. 8o once the
development is done and a bug is found or enhancements are
requested, then it would Dbe extremely expensive and
time-consuming +to throw away the software and start over.
Therefore, the software system needs to evolve and change over
time.

Usually maintenance is associated with a modification
request to the software system from users or others affected
by the system. This modification request can take on many
forms. TFirst, the system needs to be fixed (a bug was found
which did not follow the specification or was implemented
wrongly). Second, the environment of the system changed (e.g.
the operating system changed). Third, the system needs to be
rewritten to make it structured or more efficient. And
lastly, the system's requirements or specifications have

changed (been enhanced or due to weak initial specifications).

This last modification type accounts for almost half of all

software maintenance activity [Pressman82].
2.2.5. The Software Maintenance Environment

Software maintenance is performed in a more dynamic
environment than other phases of +the development cycle -
mainly due to 1its duration and the fact that changes are
constantly being made to +the software. This can create
special problems for the software maintenance programmer.

To most computer programmers, software maintenance is the
least desirable function in the software development cycle.
Frequently, as soon as a software gsystem 1is developed and
implemented, the‘ designers (usually senior programmers)
announce to management that they do NOT want to be placed on a
maintenance team. Even if they are assigned to a maintenance
task and it has a poor environment (i.e. primitive editors,
languages, and compilers), then the good programmers are
likely to look for another job elsewhere. Thus, the original
designers may no longer be present or accessible and
programmers with less expertise must maintain the system.

Another aspect of the maintenance environment is that
frequently there is little or no documentation to support the
programs. Requirements, specifications and implementation
considerations may not be included in the system documentation
because they were conveyed in memos or merely by discussions
between the designers. Also, if the programs are modified due

to changes 1in requirements or gpecifications, then the

documents supporting the requirements and specifications
should be updated. This 1is rarely done due to time
limitations, lack of interest or because "nobody reads those
things anyway!"

The administration of software changes can range from one
person making a change, cutting the program into production
and not telling anybody about it, to a preferred but
complicated and time-consuming modification request procedure.
The latter procedure consists of the following steps:

1. A request from the users is entered into the problem
tracking system. This system accesses and controls
the modification requests stored in a database or
file.

2. The request is assigned to a programmer. (Sometimes
this is done arbitrarily, so it may get re-assigned
later.)

3. The programmer decides when +the change can actually
be made. (This, in itself, is one of the most
difficult decisions a programmer has to make.)

4. The maintenance life cycle 1is adhered to by
generating all the necessary documents, getting the
appropriate signatures and, of course, making the
change to the program.

5. Finally, the users and the other programmers are

informed about the change.

2.3. Artificial Intelligence Techniques

"Artificial Intelligence (AI) is the science and art of
automating problem-solving processes that are informal,
heuristic and symbolic in nature. The simplest definition of
AT is any activity +that is performed by a non-human entity
(typically a digital computer) and that is usually considered
to require intelligence when performed by humans." [McCune83]

The concept of AI has been in existence for about
twenty-five years. It grew from theories of mathematical
logic and computation to theories of cybernetics and
self-organizing systems. AI is entering a new generation
which consists of practical applications that are starting to
reach the marketplace.

ATl techniques such as heuristic reasoning (i.e. "rule of
thumb" versus strict algorithms), learning, natural language
understanding and knowledge-based representation are Dbeing
applied as intelligent tools to many different problem areas
such ag 1image processing, speech recognition, medical
diagnosis, o0il drilling and automatic programming. These
intelligent tools are comprised of knowledge-based systems and
expert systems, which try to understand the problem and give a
solution based on the information in their knowledge base and
some governing rules or inferences. These are discussed in

the next sections.

2.3.1. Knowledge-based Representation

Knowledge representation has been defined as "a

combination of data structures (declarative) and interpretive

procedures (procedural) that, if used 1in the right way in a
program, will lead to 'knowledgeable' behavior" [Barr81]. The
data structures are usually represented internally by facts or
rules in syntactic (formal notation), semantic (related to the
meaning) and pragmatic (application specific) formats. A
regular database contains only raw data. A knowledge base
contains data also but has an inference mechanism to interpret

the data into a knowledgeable form [McCalla83].
2.3.2. Expert Systems

Expert systems are knowledge-based systems which are
"programs capable of simulating the problem-solving behavior
of a human planner by using rules derived from previous
experience and empirical observation” [Dyers4]. Expert
systems differ from regular programs in the way they are
organized. Regular programs consist of structured algorithms
and data. Human knowledge, on the other hand, is not as
structured. It consists of basic fragments of 'know-how'.
These fragments are applied 1in new and different ways to
derive 1intelligent human decisions. Expert systems, to
gimulate human knowledge, must retrieve information from a
knowledge base using these fragments of knowledge [Hayes84].

A human expert who seems +to have all the right answers
will use a knowledge base also. The knowledge base in this
case may be the expert's brain or it may be books,rdocuments,
other experts, or a computer. No matter what +the knowledge

base 1is, the expert knows where to find the answer. When

10

knowledge is transferred from a human expert to another human,
it may be forgotten or interpreted wrongly. Yet, if this same
knowledge could be +transferred from +the human expert toc a
computer that could represent knowledge, then another person
could acgquire the knowledge and use it. This would make the
expert knowledge more widely accessible.

Expert systems have been applied to different
disciplines. Table 1 shows just a few examples of expert

systems [Kobler82], [Frenkel85] and [Goering84].

2.4. Motivation for Intelligent Tools in Software Maintenance

A good tool will wusually help in getting the job done
faster and cheaper and help control consistency between
different aspects of the job. This is very true when applying
tools toward software development and especially maintenance.
Current (non-AI) tools 1like text editors, compilers and
debuggers have helped the software industry immensely. Yet,
these alone are not going to be good enough. The need for
intelligent tools exists because of rising costs,
deteriorating quality and to reduce the mundane maintenance

tasks commonly required by a typical programmer.

2.4.1. Software Maintenance Cost

The cost of maintaining software has skyrocketed in the

past few years mainly due to the rising cost of skilled

programmers and the amount of time and effort needed %o

M

TABLE 1

AREA OF NAME OF
APPLICATION SYSTEM DESCRIPTION

Communication ACE Aids in telephone cable
maintenance.

Education GUIDON Teaches by eliciting and
correcting answers to a series of
questions.

Engineering DART Aids in the diagnosis of computer
system faults.

Drilling Diagnosis and correction of

Advisor 0il-well drilling problems.

XCON Configures computer systems for
DEC.

Geology PROSPECTOR Aids in locating potential mineral
deposits.

Knowledge ART A frame-based and rule-based

Engineering expert system development tool.

EMYCIN A rule-based consultant derived
from MYCIN.

KEE A framed-based and rule-based
expert system development tool.

S.1 Easy-to-use frame-based expert
system development tool.

TEIRESIAS Assists in transferring knowledge
to a system from a human expert.

Mathematics MACSYMA Aids mathematicians with tasks
such as polynomial factoring and
symbolic integration.

Medicine CADUCEUS Assists diagnoses in internal
medicine.

MYCIN Identifies certain bacterial
infections and suggests treatment.
Uses "judgmental" knowledge.

Science COPY Looks at a complex tower of blocks
and builds a mirror image of it
using "vision" and a mechanical
arm.

DENDRAL Helps in the identification of

organic compounds.

12

maintain the software. These costs are usually measured in
millions of dollars for large software systems and in billions
of dollars for the U.S. government software systems. Software
maintenance costs usually range from 60% to 75% of the total
software development costs [Dean82]. To reduce these costs,
easy-to-use intelligent +tools must be created to improve the

productivity of software programmers.

2.4.2. BSoftware Maintenance Quality

Improvements in software guality could potentially be a
side-effect of introducing intelligent tools for maintenance
due to more consistent programming practices, more structured
code, and better program and documentation control. Since
everyone will be using +the same environment and specifically,
the same intelligent tools to modify and generate new code,
then most programming errors will be found before the program

is implemented into the production environment.

2.4.3. Mundane Programming Chores

Mundane programming tasks can take up a large portion of
a programmer's time and effort. These tasks include keeping
track of all +the different versions of programs, knowing the
correct syntax of the programming language(s), remembering the
many commands of the program editor(s), documenting programs
and using debuggers and compilers. The mundane +%tasks could

begin to disappear when intelligent tools are used. An

L

intelligent program assistant can help a programmer in many

ways.

1. Error Checking - misspellings, wrong parameters.
Current systems just check for syntax.

2. Questions Answered - Before making a change, the

programmer may ask, how is this program called and
what are the parameters?
3. Trivia - The programmer wouldn't need to know all the
little facts and intricacies of the program.
4. Debugging - A programmer could ask, which procedure
set a certain variable to 3? The tool would execute
a trace and then possibly backtrack to find +the
answer.
5. Program Tracking - Keep track of all current versions
of programs and archive o0ld versions.
These helpful aids could allow extra time for the programmer
to become more creative in solving the initial problem by

simplifying the design, code and modification of the software.
3. Historical Background and Current Research

When talking about computer programming and especially
intelligent tools to aid programming, historical background
and current research actually start to blend together. Since
many projects described in this paper may not be operational
at this time, the reference to current research actually
refers to the time the article was written.

This section describes intelligent program assistants,

14

programming environments and miscellaneous maintenance tools

which use Artificial Intelligence techniques.
3.1. Intelligent Program Assistants

Tools which help programmers edit programs have been
around for some time. Initially they were very primitive
allowing only one line to be modified and having a limited
scope of commands. Now program editors allow for full screen
editing and include a large amount of commands (sometimes too
many for most people to remember). Examples are the Visual
Editor (vi), used with the UNIX operating system, and IBM's
Structured Programming TFacility (SPF) running under the MVS
operating system. Although these editors are nice and make
editing of programs easier, they don't do any syntactic or
semantic checking. Some editors do allow the programmer to
build macros or supersets of commands to make editing more
efficient and to perform checking of the program's syntax.

An analogy has been made concerning program assistants
and typists [Shapiro84]. Basic editors are like a non-English
speaking typist. The program's text 1is entered with a
word-for-word copy and no changes are made from the original.
An English speaking typist would be similar +to a
syntax-oriented editor which can find misspellings and
syntactical errors. Compilers do this for programmers now,

but it is usually done after the editing session, so if an

1« UNIX is a trademark of AT&T Bell Laboratories.

15

error shows up on the compiled listing, the programmer has to
re-edit the program. A more 1intelligent program assistant
could mimic a typist who is also an English teacher. It would
know about the domain of programming on a specific programming
language and make general programming suggestions, catch
certain types of semantic errors, help stylize and improve the
overall flow of +the program. Finally, 1if the program
asgistant is familiar with the application that the program is
dealing with, (similar to a typist who has the same knowledge
or background as the author), then it could help develop
algorithmic structures and catch certain types of pragmatic
(or application specific) errors. The program assistants
described in this paper are of the type associated with the

typist as an English teacher.

3.1.1. Programmer's Apprentice

The Programmers' Apprentice is the classical example of
an intelligent tool to aid programmers with the task of
programming. It is being designed and implemented by Charles
Rich [Rich78], Howard Shrobe and Richard Waters [Waters82] at
the Artificial Intelligence Laboratory at +the Massachusetts
Institute of Technology (MIT). The basic intent of the
Apprentice is that the programmer will still do the difficult
parts of design and implementation, while the Apprentice will
serve as an expert programmer and critic (as if looking over
the programmer's shoulder). It can keep track of details and

assist the programmer in documentation, verification,

16

debugging, and modification of programs. It actually augments
the existing environment of text editors, interpreters and
compilers instead of replacing it. The programmer has the
choice to use the existing environment directly or to use the
Apprentice.

The underlying design of the Programmer's Apprentice is a
representation or plan which contains all the 1logical
properties of an algorithm and serves as the basis for
understanding the knowledge of programming. The plan is not
dependent on any specific programming language although
current usage has been limited +to LISP. The plan can
represent a wide variety of programming constructs from simple
loops to complex hashing functions.

The Programmer's Apprentice is composed of five
integrated modules. Figure 1 shows the architecture of the
Programmer's Apprentice [Waters82]. One module is the
analyzer which constructs a plan from a given program. It
does not matter if the program was created or modified by an
ordinary text editor or Dby the Programmer's Apprentice. This
alone allows the Programmer's Apprentice +to be implemented
into an existing environment. The coder module, which does
the opposite of the analyzer, generates program text
corresponding to a plan. Pieces of +the analyzer and coder
modules are program language dependent and would have to be
modified for different languages. The drawer module draws
graphiéal representations of plans. The plan 1library module
contains plan fragments which are standard or common dats

structures or algorithms. The plan editor module allows the

17

CODER DRAUWER

ANALYZER

=
PLAN |4 PLAN
EDITOR LIBRARY

FIGURE 1. THE PROGRAMMER’S APPRENTICE ARCHITECTURE

programmer to modify the program by modifying the plan. Using
the plan library to store common plans, a programmer cah
easily and accurately build or maintain programs. The
Programmer's Apprentice is a very ambitious project which will
take several years of refinement to produce a workable and

efficient product.
3.1.2. Intelligent Program Editor (IPE)

The Intelligent Program Editor (IPE) is another

"programmer's apprentice" which allows the programmer to

18

better understand what +the program does (input and output
information) and what it contains (data structures and flow
control information). Daniel Shapiro, Jeffery Dean, and Brian
McCune [Shapiro84] are currently designing and implementing
IPE at Advanced Information and Decision Systems in
California. Initially, it will only support the Ada
programming language. The main idea in IPE 1is to explicitly
represent textual, syntactic and semantic structures in
programs. This is done with a knowledge base which contains
the representations, and a search mechanism called the Program
Reference Language (PRL), which locates pieces of programs
based on descriptions from +the programmer. Both of these
comprise the Extended Program Module (EFPM).

The EPM can be thought of as a smart database management
system for creating and maintaining programs. The database of
program structures contains seven different types or levels of
representations of which programs are comprised. First, and
most basic, 1is the textual representation which is concerned
with words and delineators and is similar to most basic text
editors. Second, 1is the syntactical representation which
provides the vocabulary for programming constructs like "for"
loops, parameters and procedures. Next is data and control
flow representation which provides the vocabulary relating to
the 1logical structure of the program. The next level of
representation is the segmented parse level which defines a
program in terms of its data and control flow such as
identifying subfunctions of loops. The next level is more

abstract and considers programs to be built with common

19

structures. These are called typical programming patterns
(TPPs) and include such notions as 1list insertions, variable
interchanges and hash table functions. These are similar in
nature to the plans of the Programmer's Apprentice. The next,
and most complex level, is the intentional aggregate
representation which associates larger program fragments with
key concepts that are supplied by the programmer. A
collection of TPPs that are functionally similar may be
defined as an intentional aggregate. The 1last 1level of
representation is the all-important documentation. It spans
all the other levels of representation and allows a
programmer, for example, to explain why some data flow or loop
construct was used.

The Program Reference Language (PRL) allows the
programmer to specify a program region to be explained for
further understanding by searching four of the database
representations. The four levels are the textual, syntactic,
segmented parse and the +typical programming patterns. They
are connected by a code region which associates program
features with the physical regions of the program. See Figure
2. Depending on what the programmer needs to know about the
program; the PRL will search the appropriate data base(s) and
link the corresponding documentation to the findings.

The PRL uses two different search techniques. PFirst, the
programmer makes a "stab in the dark" at selecting the region
needed. By applying more conditions and restrictions to the
initial selection, PRL is able +to 1locate the appropriate

information. The second method uses a technique called code

SYNTAX
P¥E§¥ﬁ" TREE

JAY i
Z CODE REGIONEE:

AV AV

GMENT TYPICAL
SEPARSEED PROGRAMMING
PATTERNS

FIGURE 2. THE PRL IMPLEMENTATION FOR IPE

painting which intersects a collection of items together to
satisfy the conditions imposed by the programmer. PRL
overlays the regions of code with +these items and colors
(figuratively) some items red and the others yellow- If a
region comes up orange, then it has all the properties that

were requested (or it is at least close enough).

3.1.3. PROUST

PROUST is a knowledge-based program understanding system

which analyzes and "understands" Pascal programs written by

21

novice programmers. Its developers are W. Lewis Johnson and
Elliot Soloway from Yale TUniversity. PROUST uses an ordinary
Pascal program as input and finds the most likely mapping
between the program and the program's requirements and
specification. It uses a knowledge base of programming plans
(similar to the Programmer's Apprentice plans), some
programming strategies and a pool of common program bugs. The
PROUST developers define a bug to be "sections of code whose
behavior fails to agree with the program specification". "In
general, bugs are not properties of programs, but rather are
properties of the relationship between programs and
intentions." [Johnson84]

As mentioned above, the programming plans which PROUST
uses are abstracted procedures or strategies that represent
key elements to aid in finding the actual intention of the
code. One problem 1in using plans is that novice programmers
may not use the same plan as an expert so the designers have
extended PROUST's knowledge base to include extra plans. This
extension causes more problems because there are more plans to
choose from and the programmer has to spend extra time to
determine which plan +to wuse. Also, a program is not
necessarily free of bugs simply by adding more plans +to the
program. Organization of plans then becomes crucial. PROUST
solves these problems by wusing goal decomposition of the
programs. A goal decomposition consists of a description of
gubtasks represented in a hierarchical organization,
indications of +the interactions and relationships among the

subtasks, and a mapping from the subtasks' requirements to the

22

plans that are used to implement them. The plans which a goal
decomposition specifies are then matched against the program
and this results in a mapping from the program requirements to
the individual statements. The results from a study on the
use of PROUST were fairly promising. More than 200 programs
were chosen from students and 72% of these were completely
analyzed by PROUST. Of those programs analyzed, PROUST was
correct 95% of the time. PROUST is only able to understand
small Pascal programs (less than two pages in 1length) at the

current time [Johnson 84].
3.1.4. EMACS

EMACS 1is an extensible display editor which allows a
programmer to add new functions or change existing editing
functions. Even though, by itself, it is .not truly an
intelligent tool wusing AI techniques, it can be modified to
include an extension which is an intelligent tool. The tools
added could be knowledgeable enough to understand and analyze
a program that is being edited. Richard Stallman [Stallmansi]
of MIT has developed EMACS into a very powerful and successful
product. Several hundred companies and universities are using
EMACS.

The extensions to EMACS are really functions written in
the same language as EMACS. LISP is usually the language base
that EMACS uses, although any interpretive programming
language can be used as well Dbecause as EMACS is executing it

can accept new functions and then execute them.

23

Unfortunately, PL/I, Pascal, C and other compiled languages
are more difficult to implement with EMACS and have much less
extensibility.

One extension EMACS uses is called TAGS which aids in
editing large programs. It records each function or procedure
in a program, states what file defines it and the position in
the file. This allows the programmer to find the location of
a piece of code very easily.

EMACS also contains the ability to self-document the
extensions and functions it wuses. This 1is very helpful to
those programmers who need +o0o know what the extension or
function does.

Another useful function of EMACS is its ability to undo
the a command that was entered. This 1is powerful since it
allows a programmer to "test out"™ what the code or
documentation will look like without saving and re-editing the

file.

3.2. Software Maintenance Tools in Programming Environments

The software maintenance tools mentioned in this section

are not strictly used for the maintenance of software but can

also be used in the software development process as well.

3.2.1. TUNIX

The UNIX operating system is quickly becoming a standard

24

throughout the country. Many corporations are converting to
it and hundreds of universities have used it for teaching
purposes for many years. It was created by Dennis Ritchie and
Ken Thompson in the late 70's [Kernighan81].

Although UNIX is not a programming environment which has
a lot of integrated, 1intelligent tools, it is an excellent
environment to build such tools. The User Software
Engineering Environment (USE), discussed below, uses UNIX as
its underlying environment. The ©Shell environment in UNIX is
an extensible, easy-to-use command interpreter which allows
the programmer to do high-level functions, such as file
manipulation, program compilation and execution of wuser
defined macros. UNIX has some very useful tools with which
programmers can easily modify programs and track programs and
documentation.

As mentioned earlier, the Visual Editor (vi) is a very
powerful full-screen editor which allows a programmer to
easily modify a program. Vi will do automatic indention (user
defined), search and replace items (locally or globally) and
it allows easy access the Shell environment.

The "make" command is a software tool that maintains,
updates, and regenerates groups of computer programs. It
provides a method +to store all +the information needed to
assemble small programs (usually C programs) into a large,
more sophisticated one. A file <called a makefile holds the
file names of +the small programs, the steps necessary to
generate the large program, and specifies the dependencies

among the files. When make executes the makefile, the date

25

and time the small programs were last modified are checked and
the operations needed %o update +them are performed in
sequence. Then, make continues +to create the overall large
program.

The Source Code Control System (SCCS) allows the complete
tracking of a program's source ccde and its corresponding
documentation. When modifications are made to a program, a
new version number is automatically generated and the changes
(or deltas) are attached to the old version. This makes any
version accessible at any point in time. Documentation can
accompany the change detailing what the change was, who made
the change, when the change occurred and why it was needed.

The UNIX Consultant (UC) is an intelligent tool which
augments the UNIX environment [Wilensky84]. UC is written in
- FRANZ LISP and PEARL, an AI language. It is =a natural
language help facility which helps beginning users +to learn
the UNIX commands and structures. It has a knowledge base of
the English language and UNIX commands. New UNIX commands are

easily added to the knowledge base by the UC Teacher.

3.2.2. USE

The User Software Engineering (USE) is really a
methodology that subscribes to the rapid prototyping paradigm.
This methodology is supported by the Unified Support
Environment which contains five integrated tools. All five
were developed in the UNIX environment by Anthony Wasserman

[Wasserman8s3.

26

The first tool 1is called Troll which is a relational
database management system wusing a relational algebra-like
language. It 1is accessed by the other three tools and used
for storage and retrieval of information. It does not use a
central area of internal storage. Instead, it wuses shared
UNIX directories or even an individual's private directory as
the database. The second tool 1is RAPID (RApid Prototyping of
Interactive Dialogues) which helps the programmer +to quickly
construct a prototype. It uses state +transition diagrams to
link data structures and algorithms (pieces of programs very
gsimilar +to the Programmer's Apprentice plans) to the
programmer's dialogue. The third tool is PLAIN (Programming
LAnguage for INteréction). It 1is derived from Pascal and
allows the efficient use of string handling, exception
handling, pattern matching and Troll database management. The
fourth tool is called Focus. It 1is an easy-to-use,
screen-oriented interface to the Troll database. The last
tool 1is really an environment by itself. It 1is the
Interactive Development Environment (IDE) which uses the Troll
database to keep track of all development and maintenance
activities and to control program versions. It also
simplifies the +task of compiling, 1linking and loading of
programs. IDE keeps information about the status of the
program development or modification so reports can easily be

generated for other programmers and management.

3.2.3. Interlisp

2

Interlisp, 1like UNIX, 1is another popular programming
environment, especially for those programmers who like and use
LISP [Teitelman81]. It 1is integrated and extensible and
contains powerful +tools 1like Masterscope, DWIM, and the
Programmer's Assistant.

Masterscope is a tool which interactively analyzes and
performs a cross-reference on programs to help a programmer
determine if a change will affect other programs. It reports
which functions are «c¢alled, where and how variables are
referenced, set and bound, and record declarations. The
programmer can then 1look at the information (held in a
database) or have Masterscope search for the individual items
needed. It 1is extensible and can be modified with LISP
funcfions to manipulate the database information. Masterscope
can be invoked by the program editor when a question about a
change arises. It uses DWIM (described below) to help update
automatically and explain any assumptions it made.

DWIM (Do What I Mean) is a very interesting tool for
programmers. As soon as DWIM notices a misspelling of a
command or LISP function, it then attempts to correct the
misspelling. It first searches for a list of valid commands
or recently used functions. If it finds a match, it then
corrects the command or function and any future misspellings
of the same type. The use of DWIM can be modified so that
selected parameters could be left out of a program and DWIM
would then search and find the appropriate parameter or value
and insert it without ever telling the programmer.

The Programmer's Assistant in Interlisp actively records,

28

(in a history 1list) the programmer's input, any side effects
of the input and the results of operations on the input.
There are several commands which can manipulate the data in
the history 1list. The first command, REDO, allows the
programmer to repeat one or more operations. The FIX command
invokes the Interl}sp editor to make changes to the program
and then re-executes the changes. The USE command allows a
substitution of the 1input to be made Ybefore re-executing the
program. The UNDO command, one of the most 1liked and needed
commands in programming, allows the cancellation of effects on
certain operations. The programmer can regain lost
information or flip between +the original program and the
changed program.

Interlisp-D 1is an interactive, user-friendly interface
between the programmer and Interlisp. Many windows can be
opened up simultaneously on the CRT screen. This allows a
programmer to be editting a program and applying Masterscope

on another program at the same time.

3.2.4. POPLOG

POPLOG is an integrated programming environment that uses
LISP, PROLOG, and POP-11 as its wunderlying language support.
It was initially developed for AI research and teaching at the
University of BSussex in Brighton, England by Steve Hardy
[Hardy83]. Its use, now, is toward general applications like
expert systems and rapid prototyping of software.

POPLOG is also an efficient programming environment. A

29

programmer working in POPLOG doesn't have to re-compile a
whole program after changes are made, instead, the current
state of the compile is saved as images so, just the modified
piece of +the program is re-compiled. Since the editor,
compiler, 1loader, debugger and on-line documentation are
integrated into one system, then modifications to programs can
be made more efficiently.

The three languages that POPLOG fully supports (LISP,
PROLOG and POP-11) allow a programmer to choose the proper
language type in which to implement the solution to a problem.
All three languages are compiled into an intermediate language
and that language 1is then compiled into machine code. In
addition, POPLOG supports the use of Pascal, Ada, C and
Fortran routines to be linked in.

The on-line documentation facility simplifies the usage
of POPLOG. It contains help files, teach files, reference
files and manuals. These files can be accessed by explicitly
typing help, teach or ref and then +the command, or by
highlighting the command in the editor and hitting the help
key. A window, with the information requested, will be

displayed on the screen.
3.2.5. KBSA

The Knowledge-Based Software Assistant (KBSA) is a rapid
prototyping environment which generates code from the
requirements specification [Green83]. The KBSA proposes that

software developers incrementally refine decisions which

30

produces the formal specification. During the maintenance
phase, the programmer would modify the specification and
regenerate the program by "replaying" the development process.
A new version number would then be connected to the change.
This process would abandon the current notion that maintenance
is just "patching" of the implementation and would force the
maintenance phase to follow the same guidelines of the
development phase. |

At the center of the KBSA structure is the framework,
consisting of an activities coordinator, which wvalidates,
records and coordinates all activities Dbetween the support
system, project management and the development process, and a
knowledge base manager, which contains a semantic model of the
entire project.

The support system contains version and access controls,
the inference engine (to extrapolate information from the
knowledge base), integrated tools and user interfaces (using a
workstation with high-resolution graphiecs).

The project management system coordinates the policies
and procedures defined for the development process, aids in
task assignments, allows easier communications between all
those involved and provides +the necessary documentation tools

for the entire development process.
3.3. Miscellaneous Maintenance Tools

The following maintenance tools are what most programmers

would like +to see 1in a maintenance programming environment.

31

-~

These are just a select set of tools that designers of

programming environments are still researching [Dean82].

3.3.1. Programming Language Stylizer

A programming language stylizer can check programs to
make sure they adhere to certain pre-defined standards and
style guidelines. These guidelines will not be built-in, but
can be created 1independently to provide uniqueness for
different programming projects.

When the stylizer is executed, it will provide a list of
violations. The intelligent program editor could then be
invoked to help the programmer fix the violations by
highlighting the affected areas or by actually making the
changes to the program automatically. If the violations are
not necessary for various reasons, then the programmer can be
allowed to suppress any printing of violations after the first

printing of the program.

3.3.2. Change Propagation Detector

During the maintenance of programs, a programmer makes a
change and does not realize the change may affect other parts
of the program. So, after testing is done and a bug was found
(caused from the original change), then another change must be
made. This can be a "vicious" cycle and a nightmare to a
programmer.

A change propagation detector could help identify

Je

possible side-effects of modifications. It could use the
syntax and semantics of the programming language to find the
potential bugs. It could easily be able to determine the
effects on basic data structures, but could have difficulty
with pointers and indirect referencing. The editor could be
invoked to highlight the possible bug to let the programmer
know it exists. The Masterscope system in the Interlisp

programming environment is similar to this concept.
3«3.3%. Programming Tutor

Programmers usually need to look up information about the
programming language or some aspect of the programming
environment. If this information were %o be put on-line and
allow the computer to "do +the talking", then the programmer
would not have to interrupt the current session to find the
answer.

The programming tutor should have some intelligence built
into it. It should know about the programming environment as
well as knowing the specific level of expertise of the
programmer. The tutor could actually have the programmer
write a program,‘compile it and run it, and simultaneously the
programmer is interactively asking questions. The UNIX

Consultant is a good example of an intelligent program tutor.
4. Critical Evaluation and PFurther Study

This section critically evaluates the intelligent tools

2

described in the previous section. It explains the advantages

and the limitations of each tool.

4.1. Intelligent Program Assistants

The Programmer's Apprentice, if implemented by design,
will help revolutionize software programming and certainly aid
in software maintenance. A major advantage that it has over
the other intelligent program assistants, is its ability to be
easily integrated into an existing environment. Due to its
modularity, only two modules, the analyzer and the coder,
would have to change when it is implemented 1into a different
environment with different programming languages. Another
advantage 1is that the programmer is not forced to use the
Programmer's Apprentice, but will want to wuse it anyway
because of its power to catch most programming errors. The
drawer module allows a user-friendly mode of viewing the plans
of data structures and algorithms.

One problem with the Programmer's Apprentice 1is that it
is currently being designed exclusively for LISP and that
implementation may be years away. Eventually, more languages
need to be included to make it more of a viable product.

The Intelligent Program Editor (IPE) is also modular in
design and allows the documentation to be retrieved at any
level of representation. The code painting technique, used by
the Program Reference Language (PRL) to find a region of code
the programmer was looking for, is an interesting and unique

method.

34

A major problem with IPE 1is that the seven different
levels of representation would have to be modified if it were
to be applied to other programming languages.

PROUST has some good aspects, but they are overshadowed
by its limitations. PROUST can understand programs by mapping
the program reguirements +to individual statements in the
program, which directly verifies that the program is correct
(assuming the requirements were correct). Another advantage
is PROUST can be applied +to existing programs without
modification to the programs.

Unfortunately, PROUST can only handle very small Pascal
programs. This drastically reduces its chances of becoming a
good usable tool unless its developers were to allow larger
programs in various languages. Also, if the program does not
have any requirements or the requirements are outdated, then
the programmer would have to create some requirements
(possibly from the actual code itself).

EMACS 1is a good display editor mostly due to its
extensibility. 1Intelligent tools have been written to expand
its usefulness. The TAGS function allows the programmer to
efficiently find pieces of code to be modified. Also, the
self-documentation ability is a nice feature for +those
programmers who forget what the extension or function is
called or what it does.

One drawback of EMACS is that LISP is the only language
that is allowed easy extensibility. If a compiled language
like Pascal or C is wused as the base for EMACS, +then the

extensions have to be programmed in a dialect of LISP.

35

Incremental compilers and interpreters for previously compiled
languages are being developed. These will then allow EMACS to
be extensible for many other languages. Also, EMACS has a
very large set of commands for editing. This can be a problem
if the programmer forgets the commands and needs to look them
up every time.

High-level 1languages 1like Pascal, C and COBOL were
designed to hide the assembly code of programs so programmers
did not have to know assembler. Yet, there were many
occasions where we had to look at the assembled code to find
out why a COBOL or PL/I program didn't work 1like it was
intended to. Since some of us had very little experience with
the assembly language, an expert assembly programmer had to
help analyze the progran. A limitation, or at 1least a
concern, of using very high-level languages, like Programmer's
Apprentice and the 1Intelligent Program Editor, will be the
hiding of what the machine is actually doing. This causes the
programmer to be more dependent on the developer and the
supplier of the software. To prevent this from happening, the
software must be developed so that there isn't a need to know
what the machine is doing at a lower level (almost impossible
to do), or the software must be extensible to allow for lower
level analysis and modification for specific applications.

Future 1intelligent program assistants, which generate
code strictly from the program specification (automatic
programming) may not be very popular among programmers because
most programmers enjoy designing software. These tools, on

the other hand, will be well received by non-programmers or

36

programmers, who are involved with identifying solutions
(requirements and specifications) +to0 problems, because the
program could be automatically generated from some high level

description (specification).

4.2. BSoftware Maintenance Tools in Programming Environments

The UNIX programming environment is a good environment to
use when maintaining software. I have a biased opinion, of
course, because UNIX was developed by Bell Laboratories and I
work for AT&T. I mainly use UNIX for writing memoranda and
sending mail to other users.

The primary advantage of UNIX is its availability and
portability. It 1is becoming very popular and runs on small
microcomputers to large mainframes. The make command 1is a
very powerful tool to +the maintenance programmer since it
"remembers" the dependencies of many programs so the
programmer doesn't have +to. Another good tool 1is the Source
Code Control System (SCCS). It does an excellent job of
keeping track of the source code and documentation of large
software projects in the maintenance environment. There have
been many times when going back to an older version has helped
in certain situations. The UNIX Consultant (UC) has not been
as popular as UNIX itself, but it is also a much newer
product. It is a good %00l when teaching users how to use
UNIX.

A drawback of UNIX is that most people find UNIX hard to

use due to the staggering number of commands that are

2

available. This is true of the Visual EBditor (vi). There are
so many commands to remember that if you don't use it
frequently, it becomes difficult to wuse. That's why the UNIX
Consultant comes in handy. Yet, for those who are expert
users of UNIX, UC is really not needed. Another difficulty is
in the make command. The makefiles are very difficult +to
build initially for large software projects and require the
programmer to decide whether one program is dependent on
another program.

The User Software Engineering (USE) environment has some
good integrated, modular tools. The primary maintenance tool
is the Interactive Development Environment (IDE) which
controls the program versions.

The tools in USE lack the intelligence needed to really
be able to handle a large programming environment.

The Interlisp environment has some nice features.
Masterscope can really help a programmer when trying to search
for certain pieces of code. I have spent a 1lot of time
looking through listings of programs looking for a particular
section of code. DWIM (Do What I Mean) is needed in every
programming environment since it actually tries {and succeeds)
in second guessing the programmer. The Programmer's Assistant
is especially a good tool because of the UNDO and +the other
associated commands. There have been many occasions where I
wished I could undo certain changes (not starting the editing
session over). The Interlisp-D interface allows easy and
efficient access to the Interlisp environment.

The main limitation of Interlisp is it only supports the

38

LISP programming language and most businesses currently do not
use LISP or even know what it 1is. LISP has always had a
difficult time gaining a stronghold anywhere but universities
and research centers. Maybe by creating such easy-to-use,
intelligent tools and programming environments, like
Interlisp, businesses will eventually take notice and use LISP
or intelligent tools programmed in LISP.

POPLOG's primary advantage is its ability to use several
languages in the environment. Allowing routines of other
languages to be linked into the environment is very powerful.
Also, the capability of stopping a compile, making a change to
the source, and re-compiling only the affected piece of the
program is very efficient (not only for +the machine, but
especially for the programmer). The on-line documentation
feature, allowing usage at many levels, is also very powerful
and allows a user to understand commands easily.

POPLOG is not very well known and has wusually been used
only in education and research disciplines, but it is now
being marketed in the United States.

The Knowledge Based Software Assistant (KBSA) has a good
theory behind it. That 1is, maintenance programming is just
"patching” of code and by developing and maintaining a proper
specification for a program, then the program can be generated
automatically with the correct changes. Also, the maintenance
environment closely parallels the development environment.

The KBSA presents a few problems. First, it will only be
focusing on extremely large software projects of greater than

one million lines of code. Which means it may not be feasible

39

to use it for smaller projects. Second, it will take up to 15
years to complete the project, assuming the U.S. government
will grant them the money needed for the project. Finally, if
the software system is very 1large and the software is changed
frequently (i.e. "replayed"), then it could extremely tax the
computer hardware (unless it is very large or it is a parallel
processing machine).

The maintenance tocls in programming environments will
need to be even more integrated and more intelligent to be

used for the entire software life cycle.

4.3. Miscellaneous Maintenance Tools

All three miscellaneous maintenance tools presented have
not yet ©been developed to their full potential and have
limited capabilities (like being dependent on a particular
language). They could be excellent tools, though, and should
provide the programmer with an easier mechanism to maintain

programs.
5. A Practical Application of an Intelligent Tool

The following section describes how just one of the
intelligent tools, Masterscope in Interlisp, could be applied
(with some modifications) to a "real world" maintenance

environment.

5.1. A Maintenance Environment

40

For the past six years I have been a computer programmer
for AT&T in Denver, Colorado. I maintained several large
COBOL and PL/I programs which were part of a large order
processing software project. I also coordinated the changes
and production "ecut-ins"™ (i.e. linking programs into the
production environment) for over 500 programs each averaging
1,000 lines of code. At its heyday, it required approximately
50 people to maintain the software. Currently, the product it
supports is Dbeing phased out and therefore, programmers will
not be needed to support it except for occasional problems.

Even though this software project is dying there are many
other software projects in AT&T and other companies which
could benefif from the intelligent tools described 1in this
paper. This software project serves as an example to show how
the applicability of an Artificial Intelligence technique, a
change propagation detector, can help in saving a maintenance
programmer's time and effort and therefore, the overall cost
of maintenance.

This large software system supported an order processing
environment <for Private Branch Exchange (PBX) +telephone
systems. These systems were sold to retail businesses, hotels
and motels, universities and governments - both domestic and
foreign. The PBX systems were configured with various feature
packages and memory sizes to fit an individual customer's
needs. The foreign market required different features,
functions and hardware than the domestic market. Over the

years, many enhancements and changes were made to the product

41

to satisfy the changing customers' requirements. These
product changes required changes in the order processing
software system which I helped to maintain.

The order processing system served several purposes.
First, it allowed orders +to be entered from other AT&T
locations throughout the country. An order resulted from a
questionnaire filled out by a prospective customer. Next, the
order was checked for erroneous or mismatched data. If the
order had some errors or problems, then changes were made and
the order was reprocessed (re-submitted to the computer).
This iteration could happen many times because an order was
seldom free of errors when it was initially entered. After
the order was "clean" of errors, it would continue Dbeing
processed through the software system and a Customer Order
Document (COD) would be generated, which documented all of the
customized hardware and software features for an individual
customer. Finally, a magnetic cartridge tape <containing all
of the customer's gpecific information (or customer
translations) was generated. This cartridge tape, which was
used to load the PBX's internal memory, and the COD were then
gsent to the customer's site along with the PBX hardware
(cabinets, circuit packs, cabling and telephones). Another
aspect of the order processing system was to allow existing
PBX's at customer sites to be updated with new features and
enhancements. This required the customer +to¢ mail in the
magnetic cartridge tape. The information (customer
translations) was then "pulled off" the tape, merged with new

information from an order and then checked for errors. A new

42

COD and cartridge tape were then mailed back to the customer
for re-installation.

The order processing software system contained four major
subsystems. The first was the order entry sybsystem written
entirely in COBOL. This subsystem used the raw questionnaire
data as input. This input information was heavily checked for
errors. There were usually several "data checks" for every
gquestion in the gquestionnaire. This subsystem was by far the
largest in size of all subsystems and required much more
effort and knowledge to maintain it. The main output from the
order entry subsystem consisted of intermediate customer
franslation files and a data file which contained the internal
linkage sections from the COBOL programs. These files served
as 1input into subsequent subsystems. The second subsystem
generated the COD and was written in COBOL. It used the order
entry subsystem's output files and the internal linkage data
file as input. It used COBOL's report generation facility to
produce a document which reflected the customer's order. The
third subsystem, also written in COBQOL, created the magnetic
cartridge tape containing all of the customer's translation
information. The input to this subsystem was the order entry
subsystem's output files. The 1internal linkage data file was
not used as input. The fourth subsystem was written in PL/I
and allowed an existing customer to add or change features.
It was called the blowback subsystem since the old translation
information was "blown back" onto a new +tape. This blowback
subsystem performed <functions that were opposite to the

cartridge tape generation subsystem. Its input was the o0ld

43

customer's tape and its output was the intermediate files
gimilar to those produced by the order entry subsystem. These
files were actually input to the order entry subsystem which
also had the questionnaire data as input.

Problems consistently arose when changes were made to a2
subsystem without verifying whether or not the changes
affected the same subsystem or other subsystems. For example,
the information on the cartridge tape was supposed to match
the printed information in +the COD and what the customer
originally ordered on the gquestionnaire. Prequently, there
were mismatches due to one programmer making a change to a
subsystem and not telling another programmer about 1it,
assuming it did not affect anybody else's programs. The
problem was found and the programs were then modified to bring
the cartridge tape and COD into agreement with the
questionnaire. This modification process was sometimes
extensive as more changes were made and more mismatches were
encountered. Another area of inconsistency was between the
magnetic cartridge tape subsystem and the blowback subsystem.
Since one was written in COBOL and the other in PL/I, a
language barrier was created. The cartridge tape subsystem
was usually changed first so that new PBX machines would have
the newest features. The changes to the blowback subsystem,
meanwhile, would usually lag behind.

There were four main reasons why these changes were not
caught before being cut into production. First; pressure from
the users group and their management forced many gquick changes

to the system which meant very little time was spent to verify

44

and test the changes. Changes were made by submitting a batch
compile of the COBOL or PL/I program, waiting for the output
(sometimes several hours or even a whole day), submitting a
batch test order, which may not have been up-to-date, waiting
a whole day for the test +to execute and then verify its
output, and finally, submitting a Dbatch job to 1link the
program into production. If the program had-syntax errors or
the +test failed, then the process was even slower and the
users became more impatient. Second, the programmers,
including myself, initially had no idea what side-effects
could occur from making a "harmless" change. Since the system
had very little documentation to support it, we had to stumble
along by making a change, testing it (as best as we could) and
then 1linking it into production. At times, the production
environment seemed to be our only test vehicle and the users
would get upset and frustrated. Third, the cartridge tape
subsystem did not use the internal linkage file +that the COD
subsystem used. This caused an enormous amount of
inconsistencies between the cartridge tape and +the COD.
Changes were made that affected +the internal linkage and
therefore, the COD was changed but the tape would not be
changed. Fourth, the inconsistencies between the blowback
subsystem and the cartridge tape subsystem were mainly caused
by one person wupdating +the cartridge +tape subsystem using
COBOL and another person updating the blowback subsystem using
PL/I. This was complicated by the same change being made to
the different subsystems at different times (often months

apart).

45

Eventually, changes to the programs became easier to
control since experience, 4through +trial and error (mostly
error), grew into a human "knowledge base". A few key
programmers would remember what happened when a change was
made to a particular program and the effect it had on other
programs in the same subsystem or other subsystems. Other
programmers were asked by the key programmers to make changes
to a program because another programmer was making a change
that would affect that program. Problems still arose since
the key programmer would forget about a program that could be
affected, not Dbe asked by another programmer if the change
affects other programs, or be transferred to another project.

An intelligent tool with the concept of a change
propagation detector would have made the whole project (and

the users) much easier to work with.
5.2. Intelligent Tool Application

One existing intelligent tool discussed previously, seems
suited to the problems in the maintenance environment
described above. The tool is Masterscope which is found in
the Interlisp programming environment. As described earlier,
its purpose is +to analyze programs and to build a program
cross-reference database. The underlying concept of
Masterscope is to provide the wuser with all the programs that
would be affected if a particular change was made. This
concept is very similar +to a change propagation detection

tool.

46

When applying Masterscope to the maintenance environment,
one glaring limitation 1is recognized. Masterscope is only
used in the Interlisp environment and 1is restricted to the
LISP programming language. This, Dby 1itself, drastically
reduces its usefulness as a general tool. In fact, most of
the 1intelligent tools ©being designed and implemented today
will only help a very small percentage of the existing
software maintenance projects. This is mainly because the
majority of research on 1intelligent tools is being done by
researchers who work with LISP and Prolog and recognize the
potential those languages have in Artificial Intelligence. It
is also due to the fact that the researchers 1like shortcuts
too, so they use their tools just for themselves initially.

Another problem with Masterscope, when applied to the
maintenance environment, is its 1lack of support for
application specific knowledge. Actually, most intelligent
tools have not yet reached this goal of making the tool smart
enough to discern what is right for a particular application.
An enormous amount of knowledge would have to be stored for
this purpose. An example would be: If a change is made to the
order entry subsystem, could it affect the COD and the tape?
If it affects the COD, it may not necessarily affect the tape
(i.e. changes in descriptions of features but no customer
translation changes). If it affects the tape, does it have
any affect on the blowback subsystem? All these factors and
decisions would have to be made while +the program is being
edited. Right now it doesn't seem feasible to expect such an

application specific tool to be built with the current

A7

hardware and software. Therefore, research in this area is
still continuing.

For the purpose of this paper, assume that Masterscope
was designed to be used in a COBOL or PL/I environment and
that it had +the capability +to understand and analyze
application specific information. This would make it a very
powerful and extremely valuable tool in today's software
maintenance environment. It could determine whether or not a
change would affect other programs and other subsystems and
alsoc provide reasons why programs should or should not be
updated due to any peculiarities.

Designing a new Masterscope for COBOL or PL/I should
seemingly be easier Dbecause all of the variables and data
structures are declared in a special section at the beginning
of each program. This would allow Masterscope to find all the
occurrences of the same variable or data structure throughout
the programs. If +the variable names are different between
programs (which is usually the case), but are used in the same
‘context, then Masterscope could note this fact and recall it
later when a change affects the variable. In the maintenance
environment described above, the modified Masterscope would
have to know both COBOL and PL/I so that it could bridge the
gap between the blowback subsystem and the other subsystems.
This could create interesting design problems, but it should
be attainable.

COBOL has a linkage declaration section for any global
variables that are passed between programs and subsystems.

This 1linkage section would have +to be checked for changes

48

since its structure must be identical throughout all of the
programs that use it. This linkage section usually contains a
lot of key information about +the application itself and could
be used to Masterscope's benefit +to help determine the proper
changes to the right programs. In the maintenance
environment, the 1linkage section contained the customized
hardware configuration and any feature the customer ordered.

COBOL 1is a verbose language (wordy, but with limited
commands) which can handle variable and procedure names up to
32 characters long. It is supposed to ©be a self-documenting
language, but it only seems that way when the programmer is
thinking up new variable names. These variable names may be
interpreted differently by other programmers later. We always
had problems finding what would be affected by a certain
change because of very 1little existing documentation. If a
database of connected documentation did exist (like some
fortunate maintenance projects have), then Masterscope could
be modified to also detect and possibly update any changes to
the documentation. One drawback with this is that the
documentation database would need to ©be extremely large for a
large project 1like the one I described. The cross-reference
database would be large also. Luckily, computer hardware is
continually allowing more and more information to be stored so
this may not be as much of a problem in the future.

Almost all of the problems in the above maintenance
environment would be solved by applying a modified Masterscope
as an intelligent +tool. Changes to programs would no longer

require massive guess-work on the programmer's part.

49

Masterscope would recognize changes 1in a subsystem, determine
if changes are required in the other subsystems and alert the
appropriate programmers. Inconsistencies between subsystems
would disappear since Masterscope would recognize what
programs used certain variables and data structures.
Masterscope would be an interactive system which would
allow the programmers to immediately find where all of the
changes need to be applied and could provide reasons why. By
using an integrated, intelligent editor, the programmer could
quickly and efficiently make the necessary changes, update the
documentation, and begin testing. There would be fewer (if
any) iterations of program editing and therefore the modified
program could be placed into production sooner and with a

higher level of confidence that it would execute properly.
6. Conclusion

With the cost of software maintenance increasing rapidly,
new techniqués and tools will be needed to help software
maintenance programmers modify code efficiently and
effectively. These tools must be integrated, intelligent and
extensible.

Artificial Intelligent techniques, when applied to the
software maintenance problem, address most of these issues.
The intelligent program assistants and programming
environments described in this paper have made a gallant
effort to reduce the cost of software maintenance. Yet, most

are still on the drawing board and won't be available for many

50

years, or are being used now, but have 1limited capabilities
(e.g. supports only one programming language).

Over the course of the next decade, I envision
intelligent software tools being developed and used just as
basic editors and compilers are developed and used today. The
software programmer could evolve into someone who knows how to
solve problems (at a much higher level of thinking), instead

of someone who only knows how to code and maintain a program.

[Barrsi]

[Connell84]

[Dean82]

[Dyers4]

[Frenkel85]

[Gallaghers8s]

[Goerings84]

[Green83]

[Hardy83]

[Hayes84]

[Johnson84]

BIBLIOGRAPHY

Barr, Avron; PFeigenbaum, Edward A. The Handbook
of Artificial Intelligence, Vols. 1=2, Kaufman,
Tos Alfos, California, 1981.

Connell, John; Brice Linda "“Rapid Prototyping"
Datamation, August 1984, pp. 93-100.

Dean, Jeffery 8S.; McCune, Brian ©P. Advanced
Tools for Software Maintenance, Advanced
Information & Decision Systems, Mountain View,
California, December 1982.

Dyer, Charles A. "Expert Systems in Software
Maintainability", 1984 Proceedings Annual
Reliability and Maintainability Symposium, 1984,
pp. <295-299.

Frenkel, KXaren A. "Toward Automating +the
Software Development Cycle", Communications of
the ACM, Vol. 28, No. 6, dJune 1985, pp.
578-589.

Gallagher, Jim The Application of Artificial
Intelligence Technigues to Requirements
Engineering, Kansas State University, 1985.

Goering, Richard "Do-it-yourself Development
Tools ©Speed AI Applications" Computer Design,
December 1984, pp. 29-39.

Green, Cordell; Luckham, David; Blaxer, Robert;
Cheatham, Thomas; Rich, Charles Report on a
Knowledge Based Software Assistan%, Kestrel
Institute, Palo Alto, California, 108%.

Hardy, Steve; Sloman, Aaron "POPLOG: A Multi-
Purpose Program Development Environment"
Microprocessor Software Quarterly, November
1983, pp. 1-34.

Hayes-Roth, Frederick "The Knowledge-Based
Expert System: A Tutorial", Computer, Vol. 17
No. 9, September 1984, pp. T1-28. ’

Johnson, W. Lewis; Soloway, Elliot "PROUST:
Knowledge-Based Program Understanding",
Proceedings of the Seventh International
Conference on Software ZEngineering, March 1084,
pp. 369-380.

[Kernighan81]

[Koblers2]

[McCalla83]

[McCune83 |

[Pressman82]

[Rich78]

[Shapiro84]

[Stallmansi]

[Teitelman81]

[Wasserman83]

[Waters82]

[Wilensky84]

2

Kernighan, Brian W.; Mashey, dJohn R. "The UNIX
Programming BEnvironment", Computer, Vol. 14,
No. 4, April 1981, pp. 12-24.

Kobler, Dr. Virginia; McDaniel, Ms. Bonnie G.
"Expert Systems: Status and Perspectives"
Compsac 1982, pp. 565-570.

MeCalla, Gordon; Cercone, Nick "Approaches to
Knowledge Representation", Computer, Vol. 16,
No. 10, October 1983, pp. 12—55.

McCune, Brian P.; Dean, Jeffery S. "Trends for
Advanced Software Tools", IEEE EBlectronics and
Aerospace Conference, 1983, pp. 291-298.

Pressman, Roger Software Engineering: A
Practitioner's Approach, McGraw Hill, 1982.

Rich, Charles; Shrobe, Howard E. "Initigl
Report on a Lisp Programmer's Apprentice™ IEEE
Transactions on Software Engineering, November
1978, pp. 456-467.

Shapiro, Daniel G.; Dean, Jeffrey §S.; McCune,
Brian P. "A Knowledge Base for Supporting An
Intelligent Program Editor", Proceedings of the
Seventh International Conference on Software
Engineering, March 1984, pp. 381-386.

Stallman, Richard M. "EMACS: The Extensible,
Customizable, Self-Documenting Display Editor",
Proceedings of +the ACM SIGPLAN SIGCA Symposium
on Text Manipulation, June 1981, pp. 147-156.

Teitelman, Warren; Masinter, Larry "The
Interlisp Programming Environment", Computer,
Vol. 14, No. 4, April 1981, pp. 25-34.

Wasserman, Anthony I. "The Unified Support
Environment: Tool Support for the User Software
Engineering Methodology", IEEE Softfair -
Software Development: Tools, Techniques and
Alternatives, 1983, pp. 145-153.

Waters, Richard C. "The Programmer's
Apprentice: Knowledge Based Program Editing"
LEEE Transactions on Software Engineering,
January 1982, pp. 1-12.

Wilensky, Robert; Arens, Yigel; Chin, David
"Talking to UNIX in English: An QOverview of UC",
Communications of the ACM, Vol. 27, No. 6,
June 1984, pp.574-593.

THE APPLICATION OF
ARTIFICIAL INTELLIGENCE TECHNIQUES
TO SOFTWARE MAINTENANCE

by
WAYNE LOUIS WERBELOW

B.3., University of Wyoming, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

ABSTRACT

This paper examines current research which applies
Artificial Intelligence (AI) techniques to the software
maintenance task. Definitions of what is meant by software
maintenance and Al techniques (used by intelligent tools) are
given. Current effort is divided into producing intelligent
program assistants, software maintenance +tools in 1large
programming environments and miscellaneous maintenance tools.
A critical evaluation of these efforts are discussed and the
advantages and limitations are examined. A practical
application of an intelligent tool is given to support the

need of applying AI techniques to software maintenance.

