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Abstract 
 

Aegilops tauschii, the D-genome donor of modern wheat, has served as an important 

source of genetic variation in wheat breeding.  The objective of this research was to characterize 

and utilize multiple Ae. tauschii-derived pest resistance genes contained in the germplasm 

KS96WGRC40. 

Two Ae. tauschii-derived genes, H23 and Cmc4, provide resistance to the Hessian fly 

(HF) and wheat curl mite (WCM), respectively.  A linkage analysis of a testcross population 

estimated 32.67% recombination between H23 and Cmc4 on chromosome 6DS in wheat 

indicating that the two genes are not tightly linked as previous mapping reports show.  Haplotype 

data of recombinant lines and physical mapping of linked microsatellite markers located Cmc4 

distal to H23.  Haplotype data indicated that both KS89WGRC04 and KS96WGRC40 have the 

distal portion of 6DS derived from Ae. tauschii.  Microsatellite primer pairs BARC183 and 

GDM036 were more useful than the previously published linked markers in identifying lines 

carrying Cmc4 and H23, respectively. 

Through phenotypic selection and advancement within the testcross population, three 

TC1F2:4 lines were identified as homozygous resistant for H23 and Cmc4 and have the complete 

terminal segment of 6DS from Ae. tauschii.  Two lines are more desirable than the original 

germplasm releases and can serve as a source of resistance to both HF and WCM in an elite 

background. 

A linkage analysis of a segregating recombinant inbred line population identified an Ae. 

tauschii-derived gene of major effect conferring resistance to Septoria leaf blotch (STB) and 

another Ae. tauschii-derived gene of major effect conferring resistance to soil-borne wheat 



 

mosaic virus (SBWMV) in the germplasm KS96WGRC40.  The STB resistance gene in 

KS96WGRC40 is located in the distal 40% of the short arm of chromosome 7D flanked by 

microsatellite markers Xgwm044 and Xbarc126.  Two previously reported STB genes, Stb4 and 

Stb5, have been mapped to 7DS in the same region as the STB resistance gene in 

KS96WGRC40.  The uniqueness of the STB resistance genes on 7DS is questionable.  The 

SBWMV resistance gene in KS96WGRC40 is located on chromosome 5DL linked to 

microsatellite marker Xcfd010.  The SBWMV resistance gene within KS96WGRC40 was 

derived from TA2397 via KS95WGRC33. 
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Abstract 
 

Aegilops tauschii, the D-genome donor of modern wheat, has served as an important 

source of genetic variation in wheat breeding.  The objective of this research was to characterize 

and utilize multiple Ae. tauschii-derived pest resistance genes contained in the germplasm 

KS96WGRC40. 

Two Ae. tauschii-derived genes, H23 and Cmc4, provide resistance to the Hessian fly 

(HF) and wheat curl mite (WCM), respectively.  A linkage analysis of a testcross population 

estimated 32.67% recombination between H23 and Cmc4 on chromosome 6DS in wheat 

indicating that the two genes are not tightly linked as previous mapping reports show.  Haplotype 

data of recombinant lines and physical mapping of linked microsatellite markers located Cmc4 

distal to H23.  Haplotype data indicated that both KS89WGRC04 and KS96WGRC40 have the 

distal portion of 6DS derived from Ae. tauschii.  Microsatellite primer pairs BARC183 and 

GDM036 were more useful than the previously published linked markers in identifying lines 

carrying Cmc4 and H23, respectively. 

Through phenotypic selection and advancement within the testcross population, three 

TC1F2:4 lines were identified as homozygous resistant for H23 and Cmc4 and have the complete 

terminal segment of 6DS from Ae. tauschii.  Two lines are more desirable than the original 

germplasm releases and can serve as a source of resistance to both HF and WCM in an elite 

background. 

A linkage analysis of a segregating recombinant inbred line population identified an Ae. 

tauschii-derived gene of major effect conferring resistance to Septoria leaf blotch (STB) and 

another Ae. tauschii-derived gene of major effect conferring resistance to soil-borne wheat 

mosaic virus (SBWMV) in the germplasm KS96WGRC40.  The STB resistance gene in 



 

KS96WGRC40 is located in the distal 40% of the short arm of chromosome 7D flanked by 

microsatellite markers Xgwm044 and Xbarc126.  Two previously reported STB genes, Stb4 and 

Stb5, have been mapped to 7DS in the same region as the STB resistance gene in 

KS96WGRC40.  The uniqueness of the STB resistance genes on 7DS is questionable.  The 

SBWMV resistance gene in KS96WGRC40 is located on chromosome 5DL linked to 

microsatellite marker Xcfd010.  The SBWMV resistance gene within KS96WGRC40 was 

derived from TA2397 via KS95WGRC33. 
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CHAPTER 1 LITERATURE REVIEW 

Wheat Production 
Common wheat, Triticum aestivum L., is a grass species belonging to the tribe 

Triticeae.  Among all of the grain crops it possesses the unique ability to produce an 

elastic dough, which can be made into leavened bread.  Due to its wide adaptation to 

many climates, wheat is grown all over the world.  More land is committed to wheat 

production than any other commercial crop worldwide (Briggle and Curtis, 1987).  The 

major wheat producing countries of the world include: Russia, China, India, Australia, 

Canada, and the United States. 

In the US, six market classes of wheat are grown: hard red winter, soft red winter, 

hard red spring, hard white, soft white, and durum.  The US market classes are defined by 

end use milling and baking characteristics and are associated with geographical 

production regions.  Hard red winter wheat is milled to make bread flour and is produced 

throughout the Midwest.  Soft red winter wheat is milled into flour traditionally used for 

biscuits, cookies, pastries, pancakes, and crackers.  The majority of soft red winter wheat 

is produced in regions east of the Mississippi River.  In the colder climates of the 

northern Great Plains, hard red spring wheat is produced.  Spring wheat is the premier 

bread wheat flour and is also used to make pizza dough, croissants, and bagels.  Along 

side both red wheat classes, two white wheat classes are grown.  Hard white wheat is 

devoted to the production of fresh noodles, tortillas, and bulgur.  A concentrated area for 

the production of hard white wheat is located in the Pacific Northwest.  Soft white wheat 

is used to make whole grain extruded products and is grown in similar regions as soft red 
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wheat.  Durum wheat (Triticum turgidum L. var. durum) is milled to make pasta flour; 

most US production of durum wheat is concentrated in North Dakota and the desert west. 

Wheat Evolution 
Common wheat (Triticum aestivum L.) has a very large genome.  Possessing an 

estimated 16 billion base pairs of DNA (Arumuganathan and Earle, 1991), it has over 

five times as much DNA as humans (Venter et al., 2001).  Triticum aestivum (2n=6x=42) 

is an allohexaploid consisting of three genomes (AABBDD) that came together through 

two separate natural amphiploidization events to create common wheat.   

Approximately 0.5 million years ago, two wild diploid species created a wild 

tetraploid species through the process of hybridization and spontaneous chromosome 

doubling.  One of the wild diploid species was Triticum urartu (genomes AA), the A-

genome donor of common wheat (Dvorak et al., 1993).  The other diploid species is 

considered to be Aegilops speltoides (genomes SS), the potential B genome donor of 

common wheat (Maestra and Naranjo, 1998).  These two diploids crossed and produced 

the wild tetraploid species Triticum turgidum ssp. dicoccoides (genomes BBAA), also 

known as wild emmer wheat.  Wild emmer wheat was domesticated into the cultivated 

emmer wheat species Triticum turgidum ssp. dicoccon. 

The second amphiploidization event was explained by McFadden and Sears 

(1946).  They determined that the wild diploid goatgrass species Aegilops tauschii was 

the D-genome donor of common wheat.  Ae. tauschii (genomes DD) hybridized with the 

cultivated emmer wheat species Triticum turgidum ssp dicoccon (genomes BBAA), and 

after spontaneous chromosome doubling resulted in the formation of common hexaploid 

wheat (genomes BBAADD).  Based on the variation at 55 loci, Dvorak et al. (1998) 
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suggested Transcaucasia and southwestern Caspian Iran as the birthplace of common 

hexaploid wheat.   

Use of Progenitor Species in Wheat Improvement 
The creation of common hexaploid wheat through the process of 

amphiploidization occurred naturally.  Wheat geneticists have reproduced synthetic 

hexaploid wheats, but doing so requires embryo rescue techniques.  Consequently, 

natural amphiploids must have been rare.  The domestication of these rare natural 

amphiploids reduced the amount of genetic diversity within hexaploid wheat even more.  

Therefore, the genetic bottlenecks of amphiploidization and domestication severely 

limited the amount of variation within common wheat.  For comparison, Ae. tauschii, the 

D-genome donor of common wheat, has a mean adjusted polymorphic index of 0.41, 

while common wheat has a mean adjusted polymorphic index of only 0.04 (Cox, 1998). 

This lack of diversity within common wheat influences wheat breeding.  In order 

to develop improved wheat varieties, breeders must have variation from which to select.  

To that end, wheat breeders and geneticists have turned to the genetic variation existing 

in wheat’s progenitor species.  Potentially all members of the Triticeae tribe can be 

utilized as a source of genetic variation in wheat (Feldman and Sears, 1981).  There are 

numerous examples of gene transfers between various progenitor species and common 

wheat for many varied traits.   

The D-genome donor Ae. tauschii has been heavily utilized as a source of useful 

traits for wheat improvement since the amount of recombination between Ae. tauschii 

chromosomes and D-genome wheat chromosomes can be very close to the amount of 

recombination between two wheat chromosomes (Jones et al., 1995).  Most of the Ae. 
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tauschii introgression work has focused on improving resistance to biotic stresses such as 

diseases or pests (Table 1.1).  A few gene transfers providing tolerance to abiotic stresses 

such as cold tolerance, salt tolerance, and pre-harvest sprouting have been reported 

(Schachtman et al., 1992; Limin and Fowler, 1993; Xiu-Jin et al., 1997).  Beyond the 

reported improvements in qualitative traits, Ae. tauschii may also be a source of 

beneficial QTL effects for kernel weight and grain protein (Fritz et al., 1995; Cox et al., 

1990).  Clearly, Ae. tauschii is an important source of genetic variation for wheat 

improvement. 
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Table 1.1.  Wheat breeding improvements derived from Aegilops tauschii. 

Trait Gene Location Germplasm Reference 
Salt tolerance    Schachtman et al., 1992 
Cold hardiness    Limin and Fowler, 1993 
Sprouting tolerance   RSP Xiu-Jin et al., 1997 
Leaf rust resistance Lr39 

Lr41 
Lr42 
Lr21 
Lr22a 
Lr32 
 
 
 
 
 

2DS 
1D 
1D 
1DS 
2DS 
3D 
 
 
 
 
 
 

KS86WGRC02 
KS90WGRC10 
KS91WGRC11 
KS89WGRC07 
RL5404 
RL5713 
Syn101 
Syn701 
Syn901 
Syn301 
 
 

Raupp et al., 2001 
Cox et al., 1994B 
Cox et al., 1994B 
Huang et al., 2003 
Rowland and Kerber, 1974 
Kerber, 1987 
Assefa and Fehrmann, 2000 
Assefa and Fehrmann, 2000 
Assefa and Fehrmann, 2000 
Assefa and Fehrmann, 2000 
Manisterski et al., 1988 
Miller et al., 1992 
Tomerlin et al., 1983 

Stem rust resistance Sr29 
Sr5 

6DL 
6DS 

Etoile de Choisy 
Admonter Fruh 

Dyck and Kerber, 1977 
Kerber and Dyck, 1979 
Cox et al., 1992 

Stripe rust resistance Yr18 
Yr28 

7DS 
4DS 

Opata85 
Synthetic 

Singh and Rajaram, 1994 
Singh et al., 2000 
Ma et al., 1995 
Yildirim et al., 1995 
Yang et al., 1998 
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Table 1.1 continued.  Wheat breeding improvements derived from Aegilops tauschii. 

Trait Gene Location Germplasm Reference 
Powdery mildew resistance Pm2 

Pm19 
 Apollo 

Synthetic XX 186 
NC96BGTD1 
NC96BGTD2 
NC96BGTD3 

Lutz et al., 1995 
Lutz et al., 1995 
Murphy et al., 1998 
Murphy et al., 1998 
Murphy et al., 1998 
Gill et al., 1986 
Cox et al., 1992 
Lutz et al., 1994 
Tomerlin et al., 1983 

Eyespot resistance    Yildirim et al., 1995 
Septoria tritici resistance    McKendry and Henke, 1994 

May and Lagudah, 1992 
Septoria nodourm resistance   RL5271 Murphy et al., 2000 

Tomerlin et al., 1983 
Greenbug resistance Gbz 

Gb3 
Gb4 
Gba 
Gbx 

7D 
7D 
7D 
 
7D 

KSU97-85-3 
Largo 
CI17959 
TA4152L94 
KS89WGRC04 

Zhu et al., 2004 
Weng and Lazar, 2002 
Martin et al., 1982 
Smith and Starkey, 2003 
Weng and Lazar, 2002 

Hessian fly resistance H22 
H23 
H24 
H26 
H13 
H32 
 

1D 
6D 
3D 
4D 
6D 
3D 

KS85WGRC01 
KS89WGRC03 
KS89WGRC06 
KS92WGRC26 
Molly 
W-7984 

Raupp et al., 1993 
Raupp et al., 1993 
Raupp et al., 1993 
Cox and Hatchett, 1994 
Gill et al., 1987 
Sardesai et al., 2005 
Gill and Raupp, 1987 
Hatchett and Gill, 1981 

Russian wheat aphid resistance dn3  CIMMYT Synthetic Nkongolo et al., 1991 
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Table 1.1 continued.  Wheat breeding improvements derived from Aegilops tauschii. 

Trait Gene Location Germplasm Reference 
Wheat curl mite resistance Cmc1 

Cmc4 
6D 
6D 

ACPGR16635 
KS96WGRC40 

Whelan and Thomas, 1989 
Malik et al., 2003B 
Malik et al., 2003A 

Cereal cyst nematode resistance    Eastwood et al., 1991 
Spindle streak mosaic virus resistance   KS92WGRC21 Cox et al., 1994A 
Soil-borne mosaic virus resistance   KS92WGRC21 

KS92WGRC22 
KS89WGRC04 

Cox et al., 1994A 
Cox et al., 1994A 
Gill et al., 1991 

Tan spot resistance    
KS96WGRC39 

Siedler et al., 1993 
Cox et al., 1992 

Take-all resistance    Eastwood et al., 1993 
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Molecular Markers 
Molecular markers reveal variation in alleles between individuals at the DNA 

level.  Many different types of molecular markers are available.  The first molecular 

marker system developed was isozymes.  Isozymes are multiple forms of the same 

protein which can be separated based on size and conformation on a gel.  The first 

molecular markers based on DNA sequences were restriction fragment length 

polymorphisms (RFLPs) which are hybridization-based markers that are revealed by 

DNA probes.  The introduction of the polymerase chain reaction (PCR) led to the 

development of many different molecular marker systems including random amplified 

polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), simple 

sequence repeats (SSR), sequence tagged sites (STS), sequence characterized amplified 

regions (SCAR), and single nucleotide polymorphisms (SNP).   

SSR markers, also known as microsatellites, use primers which match unique 

sequences that flank tandemly repeated di-, tri-, or tetra-nucleotide repeats.  SSR markers 

display a co-dominant inheritance, are evenly distributed throughout the wheat genome 

(Roder et al., 1998), are highly polymorphic, are locus specific, and easy to use.  Several 

genetic linkage maps of hexaploid wheat have been generated using different mapping 

populations and different molecular marker systems (Devos and Gale, 1997; Roder et al., 

1998; Pestova et al. 2000; Gupta et al., 2002).  Four of these maps have been 

consolidated into one high-density consensus map of hexaploid wheat (Somers et al., 

2004) that contains 1,235 mircosatellite markers.  The availability of a high-density 

consensus map and numerous PCR based molecular markers has greatly improved the 

genetic characterization of hexaploid wheat. 



 

9 

Molecular markers can be used to tag particular genes of interest through the 

process of marker-assisted selection (MAS).  In MAS, markers linked to traits of interest 

are used to select desired alleles through the process of indirect selection.  Plants 

containing undesirable alleles are discarded in early generations thus saving valuable 

resources.  Molecular markers suitable for MAS in wheat have been identified that are 

linked to 24 fungal resistance genes, three viral resistance genes, nine insect resistance 

genes, seven quality traits, and three abiotic stress traits (http://maswheat.ucdavis.edu, 

verified 19 May 2006).   

An example of MAS in wheat involves the selection of lines resistant to Fusarium 

head blight (Fusarium graminearum Schwabe).  Anderson et al. (2001) identified a QTL 

for resistance to Fusarium head blight in the Chinese cultivar Sumai-3.  This QTL, named 

Qfhs.ndsu-3BS, is flanked by microsatellite markers Xgwm493 and Xgwm533 (Anderson 

et al., 2001).  Selecting for the resistant allele at the Xgwm533 marker locus, Yang et al. 

(2003) was able to identify seven of the eight most resistant lines in a doubled haploid 

population.  Phenotypic screening for Fusarium head blight is time consuming, laborious, 

requires plants be grown until flowering, and is heavily influenced by environmental 

conditions.  Screening lines with the molecular markers Xgwm493 and Xgwm533 can be 

completed with relative ease at any stage of plant growth and is not influenced by 

environmental conditions. 

Molecular markers can also be used to pyramid multiple desired genes into a 

single germplasm.  Tar’an et al. (2003) successfully used three molecular markers to 

pyramid two ascochyta blight resistance genes and one anthracnose resistance gene in 11 

lines of lentil (Lens culinaris Medik). 
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Biology of the Wheat Curl Mite  
The wheat curl mite (WCM), Aceria tosichella Keifer, is a microscopic arthropod 

pest previously identified as Aceria tulipae.  The WCM belongs to the class Arachnida 

and thus is not an insect.  The WCM has an elongated cylindrical soft body, forcep-like 

mouthparts, two pairs of legs, and no antennae. 

Wheat plants infested with WCMs show distinctive leaf rolling or curling.  

Emerging wheat leaves can become trapped in tightly rolled leaves preventing the normal 

elongation of new leaves.  Under high infestations on seedlings in the greenhouse, plant 

death can occur (Harvey et al., 2002).  The more important threat from WCM infestations 

is the transmission of plant viruses.  Two economically important viruses of wheat, the 

high plains virus (Seifers et al., 1997) and the wheat streak mosaic virus (Slykhuis, 1955), 

are vectored by the WCM.  Wheat streak mosaic virus caused a 13% yield loss statewide 

in Kansas wheat in 1998 (Bockus et al., 2001), with losses in individual fields being 

much greater.  In addition to vectoring yield-damaging viruses, nonviruliferous WCMs 

can also reduce yield by as much as 17% (Harvey et al., 2000) when compared to 

naturally infected control plots. 

Female WCMs lay eggs longitudinally between the veins of wheat leaves.  

Females hatch from fertilized eggs while males hatch from unfertilized eggs.  After 

hatching, WCMs develop through two nymphal instars into adults.  Virus transmission 

does not occur through the egg and must be acquired by the WCM by feeding on virus 

infected plant tissue (Oldfield and Proeseler, 1996).  The life cycle of the WCM is 

completed in 8-10 days.  Travel is accomplished by wind and hitchhiking on insects and 

even birds (Jeppson et al., 1975).  Distribution of the WCM is worldwide (Oldfield and 

Proeseler, 1996). 
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Different collections of the WCM vary in their ability to infest different varieties 

of wheat (Harvey et al, 1999).  Malik (2001) reported that six collections of WCMs, 

identified as the Kansas, Montana, Alberta, Nebraska, Texas, and South Dakota strains, 

caused differential reactions on known WCM resistance genes and in accessions of Ae. 

tauschii. 

The host range of the WCM is extremely wide.  First identified from tulip (Tulipa 

spp.) bulbs by Keifer in 1938, the WCM has also been reported on onion (Allium cepa L.) 

and garlic (Allium sativum L.) (Slykhuis, 1955).  Various species of wild and cultivated 

grasses serve as reproductive hosts to the WCM including:  wheat, barley (Hordeum 

vulgare L.), corn (Zea mays L.), Sudan grass (Sorghum vulgare var. sudanense), and 

sorghum (Sorghum bicolor) (Connin, 1956).  In the US Great Plains, the WCM has no 

problem finding other grass hosts on which to over-summer. 

Genetics of Resistance to the Wheat Curl Mite 
Resistance to the WCM does exist within the wheat genome itself (Harvey and 

Martin, 1992).  However, four named genes reported to confer resistance to the WCM 

have been transferred to wheat from related species (Table 1.2).  Thomas and Conner 

(1986) transferred a single dominant gene from Ae. squarrosa L. (syn Ae. tauschii 

(Coss.). Schmal.) to wheat and named the gene Cmc1.  Thomas and Whelan (1991) 

estimated that Cmc1 was independent of the centromere of chromosome 6DS in 

monotelodisomic wheat plants.  Cmc2 was transferred to wheat from Agropyron 

elongatum (Host.) Beauv. (Whelan and Hart, 1988).  Rye (Secale cereale L.) has also 

served as a source of WCM resistance.  The T1AL⋅1RS translocation in the wheat 

cultivar Amigo (Sebesta et al., 1994) provides resistance to WCMs and has been given 
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the designation Cmc3 (Malik et al., 2003B).  The Amigo source of resistance has been 

utilized in such cultivars as TAM107, TAM200, and Century.  Another resistance gene 

transferred from Ae. tauschii has been designated as Cmc4 and was located in the distal 

region of chromosome 6DS by Malik et al. (2003B).  Cmc1 and Cmc4 are both located on 

chromosome 6DS in wheat; allelism tests show that Cmc1 and Cmc4 segregate 

independently (Malik, 2001). 

Other sources of WCM resistance have been reported in Haynaldia villosa L. 

Schur. (Chen et al., 1996) and the T1BL⋅1RS translocation from rye in the wheat cultivar 

Salmon (Zeller, 1973; Martin et al., 1976).  A translocation from Elytrigia pontica 

(Podp.) Holub conferred resistance to WCMs as reported by Whelan et al. (1986). 

Resistance to the WCM also provides protection against the high plains virus and 

the wheat streak mosaic virus, as the WCM is the only known vector for both viruses.  

Resistance to the WCM in wheat can breakdown over time as shown in the cultivar 

TAM107 by Harvey et al. (1997). 

Table 1.2.  Sources, chromosome locations, and markers linked to named wheat curl mite 
resistance genes in wheat. 

Gene Source Linked Markers Location Reference 
Cmc1 Aegilops tauschii  6DS Thomas and 

Conner, 1986; 
Whelan and 
Thomas, 1989 

Cmc2 Agropyron elongatum  6A Whelan and Hart, 
1988 

Cmc3 ‘Amigo’ wheat T1AL•1RS  1RS Malik et al., 2003B 
Cmc4 Aegilops tauschii Xgdm141 6DS Malik et al., 2003B 
 

Biology of the Hessian Fly  
The Hessian fly, Mayetiola destructor (Say), is an arthropod pest classified in the 

order Diptera, suborder Nematocera, and group Cecidomyiidae.  Members of the 
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Cecidomyiidae or gall midge group are classified as having long antennae, one pair of 

wings with no crossveins, and phytophagous larvae.  The larvae of the Hessian fly hatch 

from small glossy red eggs.  Larvae grow through various stages of instar development 

feeding on wheat sheaths until pupating.  The puparium is not active and referred to as 

the flaxseed stage because of its resemblance to the seed of flax (Linum usitatissimum 

L.).  The flaxseed stage serves to overwinter and/or oversummer the Hessian fly.  Adults 

emerge from the flaxseed stage, mate, and soon die.  The adult Hessian fly does not feed.  

An adult female Hessian fly can lay between 200-300 eggs in her short 2-3 day lifespan.  

In winter wheat growing regions adults can be seen both in the fall and spring.   

Hessian fly larvae feed on wheat seedlings at the crown.  Wheat plants injured by 

larval feeding are stunted and have a broader, more erect, darker green appearance 

(Gallun, 1965).  Under heavy infestations, young wheat plants can die.  Typically, only 

infested wheat stems will die thus reducing tiller numbers per plant and yield per 

harvested area (Sadras et al., 1999). 

The Hessian fly is distributed throughout the major wheat growing regions of the 

world including Europe, Northern Asia, North Africa, North America, and New Zealand.  

The most recent survey in 1997 states that it had not been reported in Japan, Mexico, 

South America, or Australia  (Ratcliffe and Hatchett, 1997).  The Hessian fly was named 

according to the generally believed oral history that it was first introduced in the US by 

infested straw brought with Hessian soldiers during the American Revolutionary war.  

Numerous other introductions of the pest have undoubtedly occurred throughout 

American history, closely following the paths of immigrants as they brought along with 

them their preferred wheat cultivars (Somsen and Oppenlander, 1975).   
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The pioneering entomologist R. H. Painter first described the existence of 

different biological races of the Hessian fly in 1930 while working at Kansas State 

University.  Sixteen races (i.e. biotypes or strains) of Hessian fly have now been 

identified (Patterson et al., 1992) according to their ability to infest a set of differential 

wheat cultivars.  

Genetics of Resistance to the Hessian Fly 
Plant resistance to Hessian fly is controlled by the mechanism of antibiosis 

(Painter, 1951) in which larvae die after feeding on plants.  Thirty-two Hessian fly 

resistance genes, H1 to H32, have been named to date (Table 1.3) (McIntosh et al., 2003; 

Ratcliffe and Hatchett, 1997, Sardesai et al., 2005).  The majority of Hessian fly 

resistance genes have been mapped to chromosome 5A in wheat (Ratcliffe and Hatchett, 

1997) although their location on 5A is suspect due to linkage of these genes with H9 

which as recently determined to be located on chromosome 1A, along with H10, and H11 

(Liu et al., 2005A).  Genes H20 and H21 are located on chromosome 2B (Amri et al., 

1990; Friebe et al., 1990).  Chromosome 6D contains two genes, H13 and H23 (Gill et 

al., 1987; Raupp et al., 1993).  Raupp et al. (1993) demonstrated that H13 and H23 were 

separate genes based on allelism crosses and segregation ratios.  They reported that while 

both H13 and H23 lie on chromosome 6D they are different genes and are approximately 

25 ± 5 map units apart from each other.  Other Hessian fly resistance genes have been 

mapped to chromosomes 1D, 3D, 4B, 4D, 5B, 5D, and 6B while seven named genes 

remain unmapped (Ratcliffe and Hatchett, 1997). 

Genes conferring resistance to Hessian fly in wheat have been identified and 

transferred from the following species: Triticum turgidum L. var. durum, Triticum 
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turgidum ssp. dicoccum, Ae. tauschii (Coss.) Schmal., Secale cereale L., Ae. ventricosa 

and Ae. triuncialis (Ratcliffe and Hatchett, 1997; Liu et al, 2005B; Delibes et al., 1997; 

McIntosh et al., 2003).  About half of the resistance genes have been identified in 

Triticum turgidum L. var. durum making this species an important source for Hessian fly 

resistance in wheat.  Ae. tauschii is the source of resistance genes H13, H22, H23, H24, 

and H26 (Ratcliffe and Hatchett, 1997).  Two genes, H21 and H25, were donated from 

Secale cereale L. germplasms and were transferred to wheat via wheat-rye translocations.  

Resistance to Hessian fly in common wheat itself does exist as eight named genes have 

been identified in Triticum aestivum germplasms. 
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Table 1.3.  Sources and chromosome locations of named Hessian fly resistance genes in 
wheat (Summarized from Ratcliffe and Hatchett, 1997 with additions from McIntosh et 
al., 2003; Sardesai et al., 2005, Liu et al., 2005A and Liu et al., 2005B). 

Gene Source Location 
H1 T. aestivum L. Unknown 
H2 T. aestivum L. Unknown 
H3 T. aestivum L. 5A? 
h4 T. aestivum L. Unknown 
H5 T. aestivum L. 1A 
H6 T. turgidum L. var. durum 5A? 
H7 T. aestivum L. 5D 
H8 T. aestivum L. Unknown 
H9 T. turgidum L. var. durum 1A 
H10 T. turgidum L. var. durum 1A 
H11 T. turgidum L. var. durum 1A 
H12 T. aestivum L. 5A? 
H13 Ae. tauschii 6D 
H14 T. turgidum L. var. durum Unknown 
H15 T. turgidum L. var. durum 5A? 
H16 T. turgidum L. var. durum 5A? 
H17 T. turgidum L. var. durum 5A? 
H18 T. turgidum L. var. durum Unknown 
H19 T. turgidum L. var. durum 5A? 
H20 T. turgidum L. var. durum 2B 
H21 Secale cereale L. 2B 
H22 Ae. tauschii 1D 
H23 Ae. tauschii 6D 
H24 Ae. tauschii 3D 
H25 Secale cereale L. 4B, 6B 
H26 Ae. tauschii 4D 
H27 Ae. ventricosa 4MV 
H28 T. turgidum L. var. durum 5A? 
H29 T. turgidum L. var. durum 5A? 
H30 Ae. triuncialis Unknown 
H31 T. turgidum L. var. durum 5BS 
H32 Ae. tauschii 3DL 
Hdic T. turgidum ssp. dicoccum 1A 

 

Biology of Septoria Leaf Blotch 
Septoria tritici Roberge in Desmaz. (telomorph Mycosphaerella graminicola 

(Fuckel) J. Schrot in Cohn) is an ascomycete fungal pathogen of wheat that produces 
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chlorotic and necrotic lesions on wheat leaves commonly referred to as Septoria leaf 

blotch (STB).  STB causes wheat yield losses throughout every wheat-growing region on 

every continent (Eyal, 1999).  Many grasses can serve as hosts to STB including but not 

limited to the genera: Agropyron, Bromus, Festuca, Hordeum, Poa, Secale, and Triticum 

(Eyal, 1999). 

The disease cycle of STB in wheat has both a sexual and asexual stage.  Doyle 

(2004) summarized the STB disease cycle in wheat.  The sexual stage starts with the 

release of asci from within a pseudothecium fruiting structure.  When the relative 

humidity is high these asci release ascospores that are dispersed by wind currents.   Upon 

landing on a compatible host the ascospores germinate and cause disease.   In the 

developing necrotic leaf tissue, pycnidia will form.  Pycnidia are asexual fruiting bodies 

that extrude pycnidiospores.  Pycnidiospores are rain-splashed onto adjacent leaves 

where they will germinate and cause more disease if conditions are favorable.  Mycelium 

can develop on wheat leaves if environmental conditions are favorable.  A lesion of STB 

can form the sexual pseudothecium or the asexual pycnidia.  Pseudothecia serve as the 

overwintering structures and typically develop from older lesions on stubble.  Pycnidia 

serve to rapidly produce more infectious pycnidiospores, which spread STB lesions 

throughout a growing crop. 

McDonald et al. (1995) used DNA based molecular markers to study the 

population genetics of M. graminicola.  From this work they concluded that many 

different genotypes of the fungus are present within a single wheat field.  Fungal 

genotypes are distributed randomly throughout a wheat field with each lesion on a 

particular leaf typically belonging to a different fungal genotype.  The researchers also 
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studied the population structure between different field populations of M. graminicola 

and found a high degree of similarity between two geographically diverse fungal 

populations within the United States.  They suggest that the center of origin for M. 

graminicola is the Middle East based on measures of genetic diversity in an Israeli fungal 

isolate. 

Genetics of Resistance to Septoria Leaf Blotch 
Both qualitative and quantitative modes of inheritance of STB resistance have 

been identified in wheat depending on the source of resistance examined.  Rosielle and 

Brown (1979) reported simple genetic control of resistance in genotypes ‘Veranopolis’ 

and ‘IAS-20’ while genotype ‘Seabreeze’ contained a more complex genetic control.  

Shaner and Finney (1982) found that resistant cultivars could be obtained from crosses of 

susceptible parents.  In fact, the soft red winter wheat cultivars Caldwell, Knox, and Beau 

were developed from susceptible parents and contain quantitative resistance to STB 

(Shaner and Finney, 1982). 

While quantitative gene effects for STB resistance are evident in some 

germplasms, qualitative effects are predominant.  The presence of additive gene effects 

for STB resistance is evident in many experiments (Jlibene et al., 1994; Zhang et al., 

2001; Rosielle and Brown, 1979; Shaner and Finney, 1982).  The inheritance of seedling 

STB resistance as reported by Zhang et al. (2001) is greatly influenced by additive gene 

effects.  In their eight parent diallel experiment, general combining ability (GCA) effects 

far outweighed specific combining ability effects.  In an adult plant resistance diallel 

experiment, Jlibene et al. (1994) also reported highly significant GCA effects.  

Reciprocal maternal effects of STB resistance have also been observed (Zhang et al., 
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2001; Jlibene et al., 1994).  Cowger et al. (2000) clearly showed a gene-for-gene 

interaction between a M. graminicola isolate from Oregon and the wheat cultivar Gene.  

When released as a cultivar, Gene was resistant to STB; however, this resistance has 

since been defeated by virulent isolates of M. graminicola in Oregon. 

Resistance has been found in several Australian varieties of Triticum aestivum L.  

while a large number of Australian Triticum turgidum L. var. durum varieties may be 

immune (Rosielle, 1972).  McKendry and Henke (1994) evaluated 254 accessions of 

wheat progenitor species and found resistance to STB in accessions of Triticum 

speltoides and Ae. tauschii. 

R. E. Wilson was the first to name specific genes controlling resistance to STB in 

wheat (Wilson, 1985).  He designated Stb1 for the resistance in ‘Bulgaria’, Stb2 for the 

resistance in ‘Veranopolis’, and Stb3 for the resistance in ‘Israel493’.  Five additional 

STB resistance genes have been named in wheat to date.  The genes Stb4, Stb6, and Stb7 

were all designated in wheat cultivars.  The genes Stb5 and Stb8 were designated in the 

synthetic hexaploid wheats ‘Synthetic6X’ and ‘W7984’, respectively.  The original 

source of resistance for Stb5 and Stb8 was traced back to the donor species Ae. tauschii 

(Arraiano et al., 2001; Adhikari et al., 2003). 

Chromosome locations and linked molecular markers have been published for all 

eight of the named STB genes (Table 1.4).  Linkage analysis and physical mapping of 

Stb1 placed SSR marker Xbarc74 2.8 cM distal from Stb1 (Adhikari et al., 2004C).  The 

SSR markers Xgwm389 and Xgwm533.1 were mapped approximately 1 cM distal to Stb2 

with marker Xgwm493 located 3.7 cM proximal to Stb2 (Adhikari et al., 2004B).  The 

resistance gene Stb3 has been located on chromosome 6DS with the marker Xgdm132 



 

20 

linked at a distance of 3.0 cM (Adhikari et al., 2004B), but there currently exists doubt as 

to the linkage of Xgdm132 and Stb3 (S. Goodwin, personal communication).  Resistance 

genes Stb4 and Stb5 are both located on chromosome 7DS near the centromere (Adhikari 

et al., 2004A; Arraiano et al., 2001).  Resistance gene Stb4 is 0.7 cM distal to SSR 

marker Xgwm111 (Adhikari et al., 2004A).  Resistance gene Stb5 was mapped 7.2 cM 

distal to SSR marker Xgwm44 and 11.9 cM distal to Xgwm111 (Arraiano et al., 2001).  

Brading et al. (2002) placed Stb6 on chromosome 3AS and detected linkage with the SSR 

marker Xgwm369 which was mapped at a distance of 2.0 cM.  The resistance gene Stb7 is 

located on the distal end of chromosome 4AL, 0.5 to 0.3 cM distal to Xwmc313 

(McCartney et al., 2003).  The SSR markers Xgwm146 and Xgwm577 flank resistance 

gene Stb8 at distances of 3.5 and 5.3 cM respectively on chromosome 7BL (Adhikari et 

al., 2003). 
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Table 1.4.  Sources, chromosome locations, and markers linked to named Septoria leaf 
blotch resistance genes in wheat. 

Gene Source Linked Markers Location Reference 
Stb1 T. aestivum 

‘Bulgaria88’ 
Xbarc74 5BL Adhikari et al., 

2004C 
Stb2 T. aestivum 

‘Veranopolis’ 
Xgwm389, 
Xgwm533.1, 
Xgwm493 

3BS Adhikari et al., 
2004B 

Stb3 T. aestivum 
‘Israel493’ 

Xgdm132 6DS Adhikari et al., 
2004B 

Stb4 T. aestivum 
‘Tadinia’ 

Xgwm111 7DS Adhikari et al., 
2004A 

Stb5 Synthetic 
hexaploid 
‘Syn6X’ 

Xgwm44 7DS Arraiano et al., 
2001 

Stb6 T. aestivum 
‘Flame’ 

Xgwm369 3AS Brading et al., 
2002 

Stb7 T. aestivum 
‘ST6’ 

Xwmc313 4AL McCartney et 
al., 2003 

Stb8 Synthetic 
hexaploid 
‘W7984’ 

Xgwm146, 
Xgwm577 

7BL Adhikari et al., 
2003 

 

Biology of Soil-borne Wheat Mosaic Virus  
Soil-borne wheat mosaic virus (SBWMV) is a destructive pathogen of wheat that 

belongs to the viral group Furovirus.  The disease was first described in Illinois by 

McKinney (1923) and can now be found in most winter wheat-growing regions 

throughout the world including most recently the United Kingdom (Clover et al., 2001).  

Shirako and Wilson (1993) determined the complete nucleotide sequences of RNAs one 

and two of a SBWMV isolate collected from Nebraska.  Based on this sequence and other 

biological characteristics, Shirako et al. (2000) concluded that four strains of the virus 

exist – the American, Chinese, European, and Japanese.   

The soil inhabiting fungus Polymyxa graminis vectors SBWMV (Rao and Brakke, 

1969).  Symptoms of SBWMV on wheat seedlings include mostly yellow to light green 
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leaves with darker green mottling and stunting.  Depending on environmental conditions, 

infected seedlings may be able to recover a dark green appearance.  Yield losses to 

SBWMV have been estimated as high as 45% in Kansas (Nykaza, 1978). 

Genetics of Resistance to Soil-borne Wheat Mosaic Virus 
During the late 1970’s SBWMV was the most devastating disease of winter wheat 

in Kansas (Bockus et al., 2001).  Following several epidemic years, breeding for 

resistance to SBWMV was considered a priority by Kansas State University wheat 

breeders.   With the use of specific breeding nurseries in severely infested SBWMV 

fields, several SBWMV resistant cultivars were developed and released thus drastically 

reducing the losses due to SBWMV (Bockus et al., 2001).  Although many Kansas 

cultivars contain resistance to SBWMV, the inheritance of resistance to this virus is still 

not well understood. 

Upon investigating the resistance contained within the cultivars Shawnee, 

Centurk, and KS73256, Brunetta (1980) reported that resistance was simply inherited as a 

single dominant resistance gene.  Merkle and Smith (1983) also reported that resistance 

to SBWMV was simply inherited as a single dominant gene.  The Brazilian cultivar 

Embrapa 16 contains two SBWMV resistance genes (Barbosa et al., 2001).  The hard red 

winter wheat cultivar Karl92 contains a putative SBWMV resistance QTL on 

chromosome 5D which explains 38% of the phenotypic variation (Narasimhamoorthy, 

2003).  One heritability estimate for SBWMV resistance in wheat can be obtained from 

the literature and is relatively high being over 40% (Barbosa et al., 2001). 

Driskel et al. (2002) demonstrated that the SBWMV resistance in cultivars 

Tonkawa, Hawk, and Newton did not block the systemic spread of SBWMV within the 
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plant.  The authors hypothesize that virus resistance functions in the plant roots and must 

block virus infection but not virus movement. 

Many hard red winter wheat germplasms have been released by the Wheat 

Genetics Resource Center at Kansas State University that have resistance to SBWMV 

(Cox et al., 1994A; Gill et al., 1991).  However, the inheritance of this resistance has not 

been characterized for these or any other SBWMV resistance sources. 
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CHAPTER 2 ANALYSIS OF RESISTANCE TO HESSIAN 
FLY AND WHEAT CURL MITE ON THE SHORT ARM OF 

CHROMOSOME 6D OF WHEAT 

Introduction 
Wheat curl mites (WCMs), Aceria tosichella Keifer, and Hessian fly (HF), 

Mayetiola destructor (Say), are two pests of common wheat that reduce yield.  In the US 

nonviruliferous WCMs can directly reduce yield by as much as 30% when compared to 

naturally infected control plots (Harvey et al., 2002).  Along with direct reductions in 

yield, the WCM can also cause further damage by vectoring two important viruses, the 

high plains virus and the wheat streak mosaic virus (Seifers et al., 1997; Slykhuis, 1955). 

Wheat streak mosaic virus caused a 13% yield loss statewide in Kansas wheat in 1998 

(Bockus et al., 2001), with losses in individual fields being much greater.   

The Hessian fly is distributed throughout the major wheat growing regions of the 

world including Europe, Northern Asia, North Africa, North America, and New Zealand.  

The HF can cause total crop failure of susceptible wheat varieties in regions of North 

Africa (Amri et al., 1992).  In the Pacific Northwest region of the US, growing HF 

resistant wheat cultivars can increase grain yields by as much as 68% in comparison with 

susceptible cultivars (Smiley et al., 2004).  Host plant resistance to the WCM and to the 

HF has been identified in wheat and is considered to be the most reliable and economical 

means of control (Hatchett et al., 1987).  

Two major resistance genes, Cmc4 and H23, provide protection against WCMs 

and HF, respectively.  Both of these pest resistance genes were derived from Aegilops 

tauschii and have been mapped to chromosome 6D in wheat (Ma et al., 1993; Malik et 

al., 2003).  The WCM resistance gene Cmc4 was mapped to the terminal portion of 
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chromosome 6DS linked to microsattelite marker Xgdm141 at a distance of 4.1 cM 

(Malik et al., 2003).  HF resistance gene H23 was also located on chromosome 6DS in 

the distal region (Ma et al., 1993). 

The Cmc4 gene was transferred to wheat germplasm KS96WGRC40 from the Ae. 

tauschii accession TA2397.  TA2397 belongs to the Ae. tauschii subspecies typica and 

was originally collected in Afghanistan.  The Cmc4 gene is widely effective in the United 

States, providing resistance to collections of the WCM from Kansas, Montana, and 

Nebraska (Malik et al., 2003).  Wheat germplasm KS96WGRC40 contains another WCM 

resistance gene designated as Cmc3 located on chromosome 1RS of the wheat-rye 

translocation T1AL⋅1RS, derived from the wheat cultivar TAM107 background of the 

germplasm.  The Cmc3 gene is not effective against WCMs in Kansas.  The rye specific 

microsatellite primer SCM09 can be used to test for the presence of the 1RS segment 

(Malik et al., 2003). 

The H23 gene was transferred to wheat germplasm KS89WGRC03 from the Ae. 

tauschii accession TA1642 (Raupp et al., 1993).  TA1642 was collected in Iran and 

belongs to the strangulata subspecies.  The H23 gene provides resistance to HF biotype 

D, GP, and L (Gill et al., 1991).  Wheat germplasm KS89WGRC04 has a gene 

transferred from Ae. tauschii accession TA1695 that also provides resistance to HF 

biotype D, GP, and L.  No segregation was observed in a population of more than 200 F2 

individuals from a cross between KS89WGRC03 and KS89WGRC04 inoculated with HF 

biotype L.  This indicates that KS89WGRC04 also has the H23 gene (Singh, 

unpublished). 
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Previous mapping studies suggest that Cmc4 and H23 should be in close 

proximity to each other (Liu et al., 2005, Malik et al., 2003, Ma et al., 1993).  The 

published linkage maps for Cmc4 and H23 (Figures 2.1 and 2.2) both contain the RFLP 

marker XksuG48.a.  Malik et al. (2003) located Cmc4 11.4 cM proximal to XksuG48.a 

(Figure 2.1).  Ma et al. (1993) placed the H23 gene 15.6 cM from XksuG48.a, but the 

small number of markers in their map of 6DS did not allow them to determine if the 

resistance gene was distal or proximal (Figure 2.2).  Based on these two linkage maps, 

the distance between Cmc4 and H23 ranges from 4.2 cM to 27.0 cM, depending on the 

orientation of the genes with respect to XksuG48.a.   

 
Figure 2.1.  Linkage map of Cmc4 on wheat chromosome 6DS from Malik et al. 2003. 
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Figure 2.2.  Linkage map of H23 on wheat chromosome 6DS from Ma et al. 1993. 

 

Combining Cmc4 and H23 together in one germplasm would facilitate breeding 

efforts.  The objectives of this experiment were to estimate linkage between Cmc4 and 

H23, to combine Cmc4 and H23 in coupling within an agronomically acceptable 

background, and to validate microsatellite markers for the selection of derived lines 

containing Cmc4 and H23. 

Materials and Methods 
Plant Materials 
A testcross (TC) population was constructed from the cross 

KS89WGRC04/KS96WGRC40//Jagger.  The pedigree of KS89WGRC04 is 

Wichita*3/TA1695 (Gill et al., 1991).  KS96WGRC40 has a mostly TAM107 

background; the pedigree of KS96WGRC40 is 

TAM107*3/TA2460//TA2397/3/TAM107*3/TA2460 (Cox et al., 1999).  The F1 between 

KS89WGRC04/KS96WGRC40 was crossed to the cultivar Jagger because it is 

susceptible to both the WCM and HF and allowed for the recombinant gametes to be 

individually examined in the TC1F2 families.  In addition to serving as a tester for the 
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genetic analysis, Jagger is a widely adapted cultivar that could serve as a donor of genes 

for yield and quality to germplasm resulting from the cross. 

The H23 and Cmc4 loci can be followed at each generation during the 

development of the testcross population (Figure 2.3).  Each TC1F1 individual receives a 

susceptible allele for both Cmc4 and H23 from the tester genotype Jagger.  The other 

allele in each TC1F1 individual was inherited from the KS89WGRC04/KS96WGRC40 

F1.  The F1 could produce four different gametes: recombinant gametes Cmc4H23 or 

cmc4h23 or parental gametes cmc4H23 or Cmc4h23.  Each F1 gamete is combined with a 

Jagger gamete (cmc4h23) to produce four possible TC1F1 genotypes:  Cmc4cmc4H23h23, 

cmc4cmc4h23h23, cmc4cmc4H23h23 or Cmc4cmc4h23h23.  The TC1F1 individuals were 

selfed to produce 115 TC1F2 families. 

The TC1F2 families were evaluated for reaction to HF and WCMs in separate 

screenings.  Due to germination problems only 101 families had data recorded from both 

screenings.  Based on the results from the TC1F2 screenings, each TC1F2 family was 

classified into one of the four possible TC1F1 genotypes. 
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Figure 2.3.  Representation of the chromosome 6DS segment containing Cmc4 and H23 
during the development of TC1F2 families. 
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Hessian Fly Screening 
Twelve seeds of each family from the TC1F2 population were planted in flats and 

infested at the two-leaf stage with mature HF of the Great Plains (GP) biotype.  The HF 

resistant (KS89WGRC04) and HF susceptible (Jagger) controls were included in the 

screening.  Plants were scored 14 days after infestation.  Families were classified as either 

susceptible or segregating and the number of resistant and susceptible plants in each 

family were recorded.  Resistant individuals from segregating families were saved and 

served as the source of seed of the next generation. 

Wheat Curl Mite Screening 
Eight seeds of each family within the TC1F2 population were planted in 2” pots 

and infested with mature nonviruliferous WCMs collected in Kansas following the 

procedure of Harvey et al. (1999).  The WCM resistant (KS96WGRC40) and WCM 

susceptible (TAM107) controls were included in the screening.  Plants were scored 11 

days after infestation.  Families were classified as either susceptible or segregating and 

the number of resistant and susceptible plants in each family were recorded.  Resistant 

individuals from segregating families were saved and served as the source of seed of the 

next generation. 

Selection and Advancement 
Compiling the data from the HF and WCM screenings identified 16 families that 

segregated for resistance to both pests.  Resistant individuals from these families were 

saved and selfed to produce TC1F2:3 lines.  Forty-eight TC1F2:3 lines from 16 families 

were screened for HF in a similar fashion as described above with 25 seed per line 
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planted.  Fifteen lines homozygous resistant to HF were identified from this screening.  

These 15 homozygous HF resistant lines came from nine TC1F2 families. 

The TC1F2:3 lines that had enough seed were grown in the field during the 2004-

2005 growing season at the Kansas State University Department of Agronomy Ashland 

Bottoms Research Farm in Manhattan, KS.  Lines were each grown in a single one meter 

row.  Reaction to naturally occurring epidemics of leaf rust (caused by Puccinia triticinia 

Eriks.) and powdery mildew [caused by Blumeria graminis (DC.) E. O. Speer f. sp. 

tritici] were recorded for each line.  Overall adaptation and plant type was also noted.  

These rows were harvested in bulk and served as the source of seed of the TC1F2:4 

generation. 

The 15 homozygous HF resistant TC1F2:4 lines were screened for WCMs in a 

similar fashion as described above with 25 seed per line planted.  Three lines were 

identified as homozygous resistant for WCMs.  The three lines, U5287-(8)-24-7-1, 

U5287-(8)-42-1-1, and U5287-(4-5)-47-1-1, are homozygous for H23 and Cmc4. 

The 15 selected TC1F2:4 lines, Jagger, KS89WGRC04, and KS96WGRC40 were 

grown in the field during the 2005-2006 growing season at Ashland Bottoms Research 

Farm in Manhattan, KS.  A portion of the seed of each TC1F2:4 line was planted in a 

single one meter row in a soil-borne wheat mosaic virus (SBWMV) infected area.  

Reaction to SBWMV and to leaf rust was recorded for each line in this nursery.  The 15 

selected TC1F2:4 lines, Jagger, KS89WGRC04, and KS96WGRC40 were also grown in 3-

row, 3-meter plots in a randomized complete block design with two replications at 

Ashland Bottoms Research Farm in Manhattan, KS during the 2005-2006 growing 

season.  These plots were harvested with a research plot combine to estimate yield 
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potential.  Plant height, heading date, test weight, and thousand kernel weight was 

recorded for each plot.  Plant height was measured from the ground to the top of the 

inflorescence not including the awns.  Plots were considered headed when at least 50% of 

the plants within a plot had an entire inflorescence clear from the boot.  Test weights 

were measured with a grain analysis computer (Dickey John GAC 2000).  A Seedburo 

801 Count-A-Pak (Seedburo Equipment Co., Chicago, IL) was used to mechanically 

count a sample of 1000 kernels which was weighed to obtain thousand kernel weight.  

Genotype means from the randomized complete block experiment were generated and 

analyzed with SAS v8.0 for Windows (SAS Institute Inc., Cary, NC). 

DNA Extractions 
Leaf tissue was collected from 7-day old germinated seedlings from each of the 

15 selected TC1F2:4 lines, Jagger, Wichita, TAM107, KS96WGRC40, KS89WGRC04, 

TA1695 and TA2397.  Leaf tissue was placed in 1.5 mL microcentrifuge tubes and stored 

at -80°C and then ground to a fine powder in liquid nitrogen using a mortar and pestle 

and stored -80°C.  Small scale DNA extractions were performed by adding 500 µl 

extraction buffer [100 mM glycine, 50 mM NaCl, 10 mM EDTA, 2% SDS, and 30 mM 

sodium lauryl sarsosine] and 500 µl phenol:chloroform:isoamyl alcohol [50:49:1] to the 

ground tissue and mixing for 10 minutes at room temperature.  Samples were centrifuged 

at 8000 rpm for 10 minutes and the supernatant transferred to a new microcentrifuge tube 

with a micropipette.  An equal volume of chloroform:isoamyl alcohol [24:1] was added 

and samples were centrifuged again at 8000 rpm for 10 minutes.  The supernatant was 

transferred to a new microcentrifuge tube and mixed with 1/10 volume of 3M sodium 

acetate and one volume isopropanol for DNA precipitation.  DNA precipitation occurred 
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overnight at 4°C.  The DNA was pelleted by centrifugation at 8000 rpm for 10 minutes 

after which the isopropanol/sodium acetate mixture was poured off.  The DNA was 

washed with 70% ethyl alcohol and pelleted by centrifugation at 8000 rpm for 10 

minutes.  The ethyl alcohol was poured off and the DNA was re-suspended in 50 µl of 

1X TE buffer.  This method is adapted from Malik et al. (2003). 

Marker Analysis 
Microsatellite primer pairs located in the distal portion of wheat chromosome 

6DS, based on the wheat consensus map of Somers et al. (2004), were screened for 

polymorphisms.  Selected germplasm lines were evaluated with polymorphic markers 

from chromosome arm 6DS and primer SCM09 that is specific for the short arm of rye 

chromosome 1R.  Each 25µl polymerase chain reaction contained 2.5 µl of 10X Mg free 

PCR buffer, 3.0 µl of 2.5mM dNTP’s, 0.25 µl of Taq DNA polymerase (5 units/µl), 2.5 

µl of 25 mM magnesium chloride, 5.0 µl of genomic DNA, 10.75 µl of sterile molecular 

grade water, and 1.0 µl of 10 µM primers [0.5 µl of forward primer and 0.5 µl of reverse 

primer].  Reactions were carried out in a PTC-200 Thermal Cycler (MJ Research, 

Watertown, MA, USA).  A 10 µl aliquot of PCR product was separated by 

electrophoresis in 2.3% agarose gels to check for amplification and estimate fragment 

size.  Agarose gels were stained with ethidium bromide and visualized with an ultraviolet 

transilluminator.  From the remaining PCR product, 5 µl was separated by 

electrophoresis in 7% denaturing polyacrylamide gels.  The polyacrylamide gels were 

visualized through a silver nitrate staining process following the protocol of Bassam et al. 

(1991). 
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Deletion Mapping 
The Wheat Genetics Resource Center at Kansas State University provided the 

genetic stocks of Chinese Spring used to physically map molecular markers in the 

chromosome 6DS region.  The aneuploid stocks used in this study included:  nullisomic 

6D-tetrasomic 6A (N6D-T6A), nullisomic 6A-tetrasomic 6D (N6A-T6D) (Sears, 1966), 

ditelosomic 6DL (Dt6DL), ditelosomic 6DS (Dt6DS) (Sears and Sears, 1979), and three 

6DS deletion stocks of Chinese Spring (Endo and Gill, 1996).  Deletion stocks are 

identified by the chromosome arm carrying the deletion, the chromosome breakpoint, and 

the fraction length of the chromosome arm remaining.  Deletion stocks used in this study 

included 6DS-2-0.45, 6DS-4-0.79 and 6DS-6-0.99.  Together the aneuploid stocks and 

the deletion stocks were used to deletion bin map microsatellite markers previously 

reported to be in the distal portion of chromosome 6DS.  DNA was extracted from 

Chinese Spring, the aneuploid stocks, and the deletion stocks following the DNA 

extraction protocol outlined above.  PCR and fragment analysis was also performed 

following the protocol above.   

Results and Discussion 
Linkage Analysis of H23 and Cmc4 
The observed segregation for reaction to the HF and WCM of the TC1F2 families 

(Table 2.1) fit the segregation ratio of 1:1 expected for a single gene conferring resistance 

in each case (χ2=2.14, p>0.90).  The testcross population segregated for one dominant 

WCM resistance gene and one dominant HF resistance gene.   

The parental germplasm KS89WGRC04 was resistant to HF and susceptible to 

WCMs as tested in the phenotypic screenings for both pests.  KS96WGRC40 was 

susceptible to HF and resistant to WCMs.  The HF susceptible control Jagger and the 
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WCM susceptible control TAM107 were susceptible in each respective phenotypic 

evaluation. 

Table 2.1.  Segregation for resistance to wheat curl mite and Hessian fly from greenhouse 
screenings of a TC1F2 KS89WGRC04/KS96WGRC40//Jagger population, Manhattan, 
KS 2004. 

 Number of 
susceptible 
families 

Number of 
segregating 
families Total 

WCM screening 
Observed 
Expected 

χ2 

 
60 

52.5 
1.07 

 
45 

52.5 
1.07 

 
105 
105 
2.14 

HF screening 
Observed 
Expected 

χ2 

 
48 

55.5 
1.07 

 
63 

55.5 
1.07 

 
111 
111 
2.14 

 

Analysis of the combined results of both screenings indicated that H23 and Cmc4 

did not segregate independently and are linked (Table 2.2).  The observed segregation 

ratio deviated significantly (χ2=16.03, p>0.99) from a 1:1:1:1 ratio expected if the two 

genes segregate independently.  The frequency of recombination between the two genes 

was estimated as 32.67% ± 4.7%.  This estimate was obtained by dividing the number of 

recombinant families (33) by the total number of families (101).  The standard error of 

recombination frequency in a testcross was calculated using the following 

formula: npp /)1( ! , where p is the estimated recombination frequency (Allard, 1956). 
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Table 2.2.  Linkage analysis between Cmc4 and H23 as tested in a TC1F2 
KS89WGRC04/KS96WGRC40//Jagger population, Manhattan, KS 2004. 

TC1F2 Phenotype 
TC1F1 

Genotype 

Number of 
families 
observed 

Number of 
families 
expected χ2 

Susceptible to WCMs and HF cmc4cmc4
h23h23* 17 25.25 2.70 

Segregating for WCMs and HF Cmc4cmc
4H23h23* 16 25.25 3.39 

Segregating for WCMs and 
susceptible to HF 

Cmc4cmc
4h23h23^ 27 25.25 0.125 

Susceptible to WCMs and 
segregating for HF 

cmc4cmc4
H23h23^ 41 25.25 9.82 

Total  101 101 16.03 
*Recombinant classes 
^Parental classes 

Marker Analysis 
Thirteen microsatellite markers previously mapped to the short arm of 

chromosome 6D were screened for polymorphisms among KS89WGRC04, 

KS96WGRC40, Jagger, TAM107, Wichita, TA2397, and TA1695.  Seven polymorphic 

markers were used to haplotype the 6DS segment in 15 selected TC1F2:4 lines from the 

KS89WGRC04/KS96WGRC40//Jagger population (Table 2.3).  All of these lines were 

homozygous resistant to HF and three lines were homozygous resistant to both HF and 

WCMs.  The order of the markers in Table 2.3 is subjective; the latest hexaploid wheat 

consensus map of chromosome 6D does not contain Xgdm141 or Xgdm036 (Somers et 

al., 2004).  The positions of Xgdm141 and Xgdm036 in Table 2.4 were inferred from the 

linkage map of Liu et al. (2005).   

The physical location of each microsatellite marker given in Table 2.3 was 

determined by deletion mapping.  The D-genome specific fragments amplified by 

microsatellite primer pairs BARC183, GDM132, GDM141, CFD042, and GWM469 
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were not present in any of the 6DS deletion lines.  This places these SSR markers 

(Xbarc183, Xgdm132, Xgdm141, Xcfd042, and Xgwm469) in the most distal bin 6DS-6-

0.99-1.  The D-genome specific fragments amplified by microsatellite primer pairs 

GDM036 and BARC054 were present in the deletion line 6DS-6-0.99 and absent in all 

other deletion lines.  This indicates that deletion bin 6DS-4-0.79-0.99 contains the SSR 

markers Xgdm036 and Xbarc054.  Malik et al. (2003) placed Cmc4 in deletion bin 6DS-

6-0.99-1 which agrees with the marker analysis presented here. 

From the haplotypes of the 15 selected lines it is evident the size of the Ae. 

tauschii segment transferred to each derived line varied (Table 2.3).  Crossing over must 

have occurred at different points so that lines having a mosaic of 6DS segments derived 

from TA1695, TA2397, and Jagger were identified.  However, all three derived lines 

homozygous for both Cmc4 and H23 [U5287-(8)-24-7-1, U5287-(8)-42-1-1, and U5287-

(4-5)-47-1-1] posses the entire distal portion of 6DS from Ae. tauschii.  Lines U5287-(8)-

42-1-1 and U5287-(4-5)-47-1-1 have most of the terminal region derived from TA1695, 

with only the most distal marker Xbarc183 derived from TA2397.  Line U5287-(8)-24-7-

1 has a larger distal segment derived from TA2397, with only the more proximal marker 

Xgdm036 originating from TA1695. 

Our haplotype data indicates Cmc4 is distal to marker Xgdm141, as reported by 

Malik et al. (2003).  The KS96WGRC40 used as a control in this study contains Cmc4 

but carries the 150 base pair TAM107 allele at the marker locus Xgdm141, consistent 

with the results of Malik et al. (2003).  However, the 145 base pair TA2397 allele was 

amplified by primer pair GDM141 in eight of the 15 lines analyzed from the testcross 

population and no lines amplified the 150 base pair allele.  This suggests that the 
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KS96WGRC40 used to produce our population differed at this locus from the one used as 

a control in the study.  KS96WGRC40 was a bulk of several WCM resistant plants 

selected from KS95WGRC33 (Cox et al., 1999).  Although these plants were 

homozygous resistant to the WCM, they may have been heterogeneous for the size of the 

chromosome segment transferred from TA2397.   

Microsatellite primer pair BARC183 was more useful than GDM141 in 

identifying lines carrying Cmc4 in this set of 15 derived lines.  Two fragments were 

amplified by BARC183 from DNA of each of the hexaploid derived lines that were 

susceptiple to WCM, as well as Jagger, TAM107, KS89WGRC04, and Wichita (Figure 

2.4).  No amplification was observed for DNA of TA2397 with primer pair BARC183.  

For the WCM resistant germplasm KS96WGRC40, the TA2397-derived null allele for 

Xbarc183 replaced the larger fragment of approximately 170 base pairs (Figure 2.4).  All 

of the WCM resistant lines selected from the testcross population were also null for the 

BARC183 D-genome fragment (Table 2.3).  Malik et al. (2003) did not report linkage 

between Xbarc183 and Cmc4, presumably because the complete set of BARC 

microsatellite primers was not available at the time the mapping work was done. 

The published linkage map of H23 contains only RFLP markers that were not 

included in this marker analysis (Ma et al., 1993).  However, in a mapping population 

from the cross KS89WGRC04/Wichita, microsatellite marker Xbarc054 was located 7.3 

cM from the HF resistance gene (Singh, personal communication).  In the haplotype 

analysis reported here, the TA1695 allele amplified by BARC054 was present in only 

seven of the 15 lines homozygous resistant to HF.  However, 11 of the 15 lines had the 

160 base pair allele derived from TA1695 for marker Xgdm036, suggesting this 
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microsatellite marker may be more closely linked the H23 gene (Table 2.3).  Lines 

U5287-(8)-24-2-1 and U5287-(8)-14-3-1 are heterozygous at marker locus Xgdm036 

having both the 160 base pair allele from KS89WGRC04 and the 130 base pair allele 

from KS96WGRC40 (Table 2.3). 
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Table 2.3.  Haplotypes of 15 TC1F2:4 lines from a KS89WGRC04/KS96WGRC40//Jagger population based on seven microsatellite 
markers mapped to chromosome 6DS.  Primer pairs are in order based on the updated Somers et al., 2004 consensus map of hexaploid 
wheat chromosome 6DS posted on the GrainGenes website (http://wheat.pw.usda.gov, verified 10 April 2006) with primer pairs 
gdm141 and gdm036 inserted based on the linkage map of Liu et al., 2005. 

  Germplasm 

 

 U5287-
(8)-24-
6-1 

U5287-
(4-5)-
53-2-1 

U5287-
(4-5)-
47-1-1 

U5287-
(4-5)-
45-1-1 

U5287-
(8)-24-
4-1 

U5287-
(8)-24-2-
1 

U5287-
(8)-10-
1-1 

U5287-
(8)-9-4-
1 

U5287-
(8)-9-6-
1 

U5287-
(8)-10-2-
1 

U5287-
(8)-14-1-
1 

Markers Deletion Bin H23 H23 
Cmc04, 

H23 H23 H23 H23 H23 H23 H23 H23 H23 
Xbarc183 6DS-6-0.99-1 170 170 Null 170 170 170 175 170 175 175 170 
Xgdm132 6DS-6-0.99-1 145 145 140 145 145 145 140 140 140 140 145 
Xgdm141 6DS-6-0.99-1 145 175 175 175 145 145 175 175 175 175 145 
Xcfd042 6DS-6-0.99-1 Null 200 200 200 Null 197 200 200 200 200 197 
Xgwm469 6DS-6-0.99-1 155 155 170 160 155 155 170 170 170 170 155 
Xgdm036 6DS-4-0.79-0.99 155 160 160 160 160 160 130 160 160 160 160 160 
Xbarc054 6DS-4-0.79-0.99 190 200 200 200 190 190 190 200 200 190 190 
 
  Germplasm 

 

 U5287-
(8)-24-
7-1 

U5287-
(8)-14-3-
1 

U5287-
(8)-42-1 

U5287-
(4-5)-
56-1-1 TA1695 

KS89 
WGRC

04 TA2397 

KS96 
WGRC

40 TAM107 Wichita Jagger 

Markers Deletion Bin 
Cmc4, 
H23 H23 

Cmc4, 
H23 H23 H23 H23 Cmc04 

Cmc03, 
Cmc04 Cmc03   

Xbarc183 6DS-6-0.99-1 Null 170 Null 170 165 175 Null Null 170 170 170 
Xgdm132 6DS-6-0.99-1 145 145 140 145 140 140 145 350 150 150 145 
Xgdm141 6DS-6-0.99-1 145 145 175 145 175 175 145 150 150 125 125 
Xcfd042 6DS-6-0.99-1 Null 197 200 Null 200 200 Null 190 190 220 197 
Xgwm469 6DS-6-0.99-1 155 155 170 155 170 170 155 155 175 175 160 
Xgdm036 6DS-4-0.79-0.99 160 160 130 160 155 160 160 155 130 130 130 130 
Xbarc054 6DS-4-0.79-0.99 190 190 200 200 200 200 185 190 190 180 190 
Notes:  TA1695 alleles are in yellow.  TA2397 alleles are in green.   
Monomorphic markers are in pink.   
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Figure 2.4.  Banding pattern of microsatellite primer pair BARC183 separated on a 7% 
denaturing polyacrylamide gel visualized by silver staining. 

 
Engineering a H23/Cmc4 Linkage Block 
Fifteen TC1F2:3 families were identified as homozygous resistant for H23.  Three 

TC1F2:4 lines were identified as homozygous resistant for H23 and Cmc4 following the 

selection and advancement scheme as outlined above.  These three lines, U5287-(8)-24-

7-1, U5287-(8)-42-1-1, and U5287-(4-5)-47-1-1, are potential germplasm releases 

carrying H23 and Cmc4 in a very acceptable Jagger background.  These three lines also 

carry resistance to SBWMV (Table 2.4), presumably derived from Jagger or 

KS96WGRC40 which are both resistant to SBWMV. 

The 15 derived lines evaluated in the field varied agronomically (Table 2.4).  The 

germplasm U5287-8-42-1-1, resistant to both HF and WCM, was late maturing, heading 

eight days after Jagger (Table 2.4).  Although the other two lines that were resistant to 

U
5287-(4-5)-45-1-1 

U
5287-(4-5)-47-1-1 

U
5287-(4-5)-53-2-1 

U
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M
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W

G
R

C
40 

W
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R
C

04 
M
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both HF and WCM, U5287-8-24-7-1 and U5287-(4-5)-47-1-1, had a more acceptable 

maturity, heading one day after Jagger, U5287-(4-5)-47-1-1 had black glumes at 

maturity.  This trait is often associated with poor threshability.  The three selected lines 

have acceptable heights, test weights, thousand kernel weights, and grain yields similar to 

Jagger (Table 2.4).  All three of the potential germplasm releases surpass the 

KS89WGRC04 parent in grain yield (Table 2.4).  However, none were significantly 

different from KS96WGRC40 for yield. 

KS96WGRC40 contains the rye derived WMC resistance gene Cmc3 as well as 

Cmc4.  The rye specific microsatellite marker Xscm09 can be used to test for the presence 

of the 1RS segment.  Line U5287-(8)-24-7-1 contained the Xscm09 locus (Table 2.4), 

indicating that it also has the Cmc3 gene as well as Pm17.  Although the translocation 

T1AL⋅1RS has been heavily used by soft winter wheat breeding programs, the 

translocation is not desirable for bread-making quality. 
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Table 2.4.  Characterization of 15 selected lines derived from the population KS89WGRC04/KS96WGRC40//Jagger. 

 
Greenhouse 

Characterizations 
 Field Characterizations 

Trait 
Race 
Year 

Genotype 

Hessian Fly 
Biotype GP 

2005 
 

WCM 
KS Strain 

2005 
 

Trait 
Location 

Year 

Leaf Rust 
Kansas 

2005           2006 
 

Powdery Mildew 
Kansas 
2005 

 

SBWMV† 
Kansas 
2006 

 

Height (cm) * 
Kansas 
2006 

 
U5287-(8)-9-4-1 R S  S 50S R S 92.5 ced 
U5287-(8)-9-6-1 R S  S 10-30S R R 92.5 ced 
U5287-(8)-10-1-1 R S  S 60S S S 87.5 ed 
U5287-(8)-10-2-1 R S  S 50S S R 100 bc 
U5287-(8)-14-1-1 R S  S 5-50S H S 100 bc 
U5287-(8)-14-3-1 R S  R 10-50S R S 85 e 
U5287-(8)-24-2-1 R S  S 70S S R 97.5 bc 
U5287-(8)-24-4-1 R S  S 30S R R 100 bc 
U5287-(8)-24-6-1 R S  S 60S MR R 95 bcd 
U5287-(8)-24-7-1^ R R  S 5-50S R R 95 bcd 
U5287-(8)-42-1-1^ R R  - 5MR-30S - R 92.5 ced 
U5287-(4-5)-47-1-1^ R R  S 40S S R 102.5 b 
U5287-(4-5)-45-1-1 R S  10S 10-30S R R 117.5 a 
U5287-(4-5)-53-2-1 R S  S 50S S R 102.5 b 
U5287-(4-5)-56-1-1 R S  - 5S - R 85 e 
Jagger S S  20S 10S S R 95 bcd 
KS89WGRC04 R S  S 30-40S S R 92.5 ced 
KS96WGRC40 S R  S 60S R R 92.5 ced 
- Line was not rated. 
^ Potential germplasm release resistant to both HF and WCM. 
* Means followed by different letters are significantly different (p<0.05). 
† Soil-borne wheat mosaic virus 
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Table 2.4 cont.  Characterization of 15 selected lines derived from the population KS89WGRC04/KS96WGRC40//Jagger. 

 

 
 Field Characterizations  Molecular 

characterizations 
Trait 

Location 
Year 

Genotype  

Heading Date* 
Kansas 
2006 

Test Weight (lbs/bu)* 
Kansas 
2006 

 

TKW (g) * 
Kansas 
2006 

 

Yield (bu/acre)* 
Kansas 
2006 

  

SCM09 § 
locus 
2006 

U5287-(8)-9-4-1  5 May dc 55.30 ba 23.4 f 44.43 fe  Present 
U5287-(8)-9-6-1  8 May bc 54.00 bc 33.5 bac 59.83 fdec  Present 
U5287-(8)-10-1-1  8 May bc 56.15 ba 29.1 dec 53.05 fde  Present 
U5287-(8)-10-2-1  1 May de 56.30 ba 34.8 a 71.75 bdac  Absent 
U5287-(8)-14-1-1  2 May de 56.35 ba 28.3 de 67.19 bdac  Present 
U5287-(8)-14-3-1  12 May a 52.20 c 25.9 fe 55.44 fdec  Present 
U5287-(8)-24-2-1  29 April f 55.00 ba 27.2 fe 77.71 bac  Absent 
U5287-(8)-24-4-1  9 May ab 53.9 bc 26.3 fe 77.47 bac  Present 
U5287-(8)-24-6-1  30 April ef 55.75 ba 35.2 a 72.83 bdac  Present 
U5287-(8)-24-7-1^  1 May de 54.2 bc 35.7 a 88.55 a  Present 
U5287-(8)-42-1-1^  8 May bc 56.5 ba 29.4 bdec 63.72 bdec  Absent 
U5287-(4-5)-47-1-1^  1 May de 56.95 a 32.3 bdac 77.45 bac  Absent 
U5287-(4-5)-45-1-1  12 May a 56.5 ba 31.9 bdac 64.40 bdec  Present 
U5287-(4-5)-53-2-1  8 May bc 56.35 ba 30.1 bdec 83.87 ba  Absent 
U5287-(4-5)-56-1-1  9 May ab - 28.4 de -  Absent 
Jagger  30 April ef 55.45 ba 33.1 bac 72.49 bdac  Absent 
KS89WGRC04  10 May ab 55.90 ba 33.7 ba 40.94 f  Absent 
KS96WGRC40  1 May de 56.10 ba 35.3 a 84.41 ba  Present 
- Line was not rated. 
^ Potential germplasm release resistant to both HF and WCM. 
* Means followed by different letters are significantly different (p<0.05). TKW = thousand kernel weight 
§ Primer pair SCM09 tests for the presence of the T1AL⋅1RS translocation.
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Conclusions 
The recombination estimate of 32.67% observed in this study indicates that H23 

and Cmc4 are not tightly linked.  The observed frequency of recombination is close to the 

27.0 cM expected from previous mapping work if marker XksuG48.a were distal to Cmc4 

and proximal to H23.  However, the haplotype data of recombinant lines using SSR 

markers from 6DS located Cmc4 distal to H23.  Physical mapping of linked SSR markers 

also placed Cmc4 distal to H23.  The haplotype data indicated that in both 

KS89WGRC04 and KS96WGRC40 the distal portion of 6DS was derived from Ae. 

tauschii (Table 2.4).  The Ae. tauschii origin of the chromosome segment may have 

influenced the amount of recombination observed between H23 and Cmc4 in this 

testcross population.  Boyko et al. (2002) reported that the telomeric end of chromosome 

6DS had the highest rate of recombination among all seven of the Ae. tauschii 

chromosomes.  The maps of Ma et al. (1993) and Malik et al. (2003) were based on 

recombination between T. aestivum and Ae. tauschii derived chromosome segments.  

Further analysis of the amount of recombination between H23 and Cmc4 in crosses 

between germplasm lines having the distal portion of 6DS from Ae. tauschii and wheat 

breeding lines and/or cultivars will determine if H23 and Cmc4 will be inherited as a 

linkage block.   

Our marker analysis determined that microsatellite primer pair BARC183 was 

useful in identifying lines carrying Cmc4 and may be more closely linked to Cmc4 than 

the previously published marker Xgdm141.  However, the null allele for Xbarc183 was in 

coupling with Cmc4, limiting the use of the marker to identification of homozygous 

resistant lines.  In addition, we determined that the co-dominant microsatellite marker 

Xgdm036 may be more closely linked to H23 than previous reported markers. 
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Three TC1F2:4 lines were identified as homozygous resistant for H23 and Cmc4.  

Although all three have the complete terminal segment of 6DS from Ae. tauschii, two of 

the lines are more agronomically desirable than the original germplasm releases.  

KS89WGRC04 is a tall, later maturing line in a Wichita background that is no longer 

desirable to wheat breeders.  Although KS96WGRC40 has resistance to WCM, Septoria 

leaf blotch, and SBWMV, it is not in a background having desirable end-use quality.  The 

germplasm lines developed in this study can serve as a source of resistance to both HF 

and WCM in an elite background. 
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CHAPTER 3 GENETIC ANALYSIS OF RESISTANCE TO 
SEPTORIA LEAF BLOTCH IN KS96WGRC40 

 

Introduction 
Septoria leaf blotch (STB) is a fungal leaf disease of wheat caused by Septoria 

tritici [telomorph Mycosphaerella graminicola (Fuckel) J. Schrot.].  STB is routinely a 

problem in temperate high rainfall wheat (Triticum aestivum L.) growing regions such as 

the United Kingdom, western Australia, northwestern USA, and southeastern USA.  

Severe epidemics of STB have occurred in many Great Plains states in the USA 

whenever high rainfall occurs during the wheat growing season.  There are fungicides 

available which control STB in wheat; however, S. tritici isolates resistant to the 

strobilurin chemistry have recently been identified in Europe 

(www.rothamsted.bbsrc.ac.uk, verified 28 April 2006).  Fungicide applications are also 

expensive to apply.  Utilizing resistant cultivars is a more economic and efficient means 

of control. 

To date, eight STB resistance genes, Stb1 through Stb8, have been characterized 

from common wheat and related species (Table 3.1).  Molecular markers linked to these 

eight genes have been identified that may assist wheat breeders through marker assisted 

selection of lines carrying resistance genes.  Genes for resistance to STB have been 

identified in all three genomes of wheat.  Genes Stb1, Stb2, and Stb8 are located in the B-

genome.  Genes Stb6 and Stb7 are located in the A-genome.  Genes Stb3, Stb4, and Stb5 

are located in the D-genome.  The Stb5 and Stb8 genes were transferred from Aegilops 

tauschii (2n=2x=14, DD genome) and Triticum turgidum (2n=4x=28, AABB genomes), 

respectively, via crosses with synthetic hexaploid wheat (AABBDD genomes). 
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KS96WGRC40 is a hard red winter wheat germplasm developed at the Wheat 

Genetics Resource Center (Manhattan, KS) that has resistance derived from Ae. tauschii 

to multiple pests including the wheat curl mite, leaf rust, soil-borne wheat mosaic virus, 

and STB.  The pedigree of KS96WGRC40 is 

TAM107*3/TA2460//TA2397/3/TAM107*3/TA2460 (Cox et al., 1999).  The wheat curl 

mite resistance gene Cmc4 was characterized in KS96WGRC40 by Malik et al. (2003) 

and was derived from the Ae. tauschii accession TA2397.  KS96WGRC40 also carries 

the leaf rust resistance gene Lr39/Lr41 derived from the Ae. tauschii accession TA2460 

(Cox et al., 1999).  The STB resistance in KS96WGRC40 is derived from accession 

TA2397 of Ae. tauschii, but the inheritance of resistance has not been determined.  The 

objective of this research was to characterize the inheritance and chromosome location of 

the gene(s) for STB resistance within KS96WGRC40. 
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Table 3.1.  Sources, chromosome locations, and markers linked to previously reported 
Septoria leaf blotch resistance genes in wheat. 

Gene Source Linked Markers Location Reference 
Stb1 T. aestivum 

‘Bulgaria88’ 
Xbarc74 5BL Adhikari et al., 

2004C 
Stb2 T. aestivum 

‘Veranopolis’ 
Xgwm389, 
Xgwm533.1, 
Xgwm493 

3BS Adhikari et al., 
2004B 

Stb3 T. aestivum 
‘Israel493’ 

Xgdm132 6DS Adhikari et al., 
2004B 

Stb4 T. aestivum 
‘Tadinia’ 

Xgwm111 7DS Adhikari et al., 
2004A 

Stb5 Synthetic 
hexaploid 
‘Syn6X’ 

Xgwm44 7DS Arraiano et al., 
2001 

Stb6 T. aestivum 
‘Flame’ 

Xgwm369 3AS Brading et al., 
2002 

Stb7 T. aestivum 
‘ST6’ 

Xwmc313 4AL McCartney et 
al., 2003 

Stb8 Synthetic 
hexaploid 
‘W7984’ 

Xgwm146, 
Xgwm577 

7BL Adhikari et al., 
2003 

 

Materials and Methods 
Plant Material 
A segregating population was created from the cross KS96WGRC40/Wichita.  

KS96WGRC40 is resistant to STB (Cox et al., 1999) while Wichita is susceptible.  The 

population was advanced by single seed descent to the F5 generation, then was harvested 

in bulk.  Seventy-eight recombinant inbred lines (RILs) were used in this study.   

Three sources of previously named STB resistance genes were included in this 

study.  Dr. Steve Goodwin provided seed of ‘Israel493’, the Stb3 source, and two 

susceptible lines, ‘RAC875-2’ and ‘Taichung29’.  Seed of ‘Tadinia’, the Stb4 source, was 

provided by the USDA-ARS National Plant Germplasm Small Grains Collection, 

Aberdeen, ID.  Seed of ‘Chinese Spring-Syn6X’, the material in which Stb5 was mapped, 
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was provided by the John Innes Centre, Norwich, UK.  Dr. William Bockus of Kansas 

State University provided seed of ‘Newton’ and ‘Lakin’, while Dr. Allan Fritz also of 

Kansas State University provided seed of ‘Jagger’. 

The Wheat Genetics Resource Center at Kansas State University provided the 

aneuploid genetic stocks of Chinese Spring used to physically map the genetic markers 

linked to the STB resistance gene within KS96WGRC40.  The aneuploid stocks used in 

this study included:  nullisomic 7D-tetrasomic 7A (N7D-T7A), nullisomic 7A-tetrasomic 

7D (N7A-T7D) (Sears, 1966), ditelosomic 7DL (Dt7DL), ditelosomic 7DS (Dt7DS) 

(Sears and Sears, 1979), and two 7DS deletion stocks of Chinese Spring (Endo and Gill, 

1996).  Deletion stocks are identified by the chromosome arm carrying the deletion, the 

chromosome breakpoint, and the fraction length of the chromosome arm remaining.  

Deletion stocks used in this study included 7DS-1-0.37 and 7DS-4-0.61. 

Septoria tritici phenotyping 
A parental STB phenotyping of germplasms was completed to confirm the 

resistance in KS96WGRC40 and test the inoculation procedures.  Nine germplasms were 

included in this parental phenotyping:  KS96WGRC40, KS89WGRC04, Wichita, 

Israel493, Jagger, RAC875-2, Newton, Lakin, and Taichung29.  These nine germplasms 

were planted in plastic conical containers supported by plastic trays using a randomized 

complete block design with 20 replications.  Each conical container had one plant and 

was considered the experimental unit.  A conidial suspension was prepared from a 

mixture of two Septoria tritici isolates collected from infected wheat and represented the 

most virulent genotypes known to occur in Kansas.  The conidial suspension contained 

about 5 x 106 conidia per mL as determined by hemacytometer counts.  Knox gelatin was 

added to the conidial suspension to serve as a sticker.  Plants were inoculated with the 
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conidial suspension (35 mL/100 seedlings) at the 3-leaf stage with the use of an atomizer.  

After inoculation, the conidial suspension was allowed to dry before the plants were 

placed in a moisture chamber to maintain leaf wetness.  After 96 hours of leaf wetness, 

plants were removed from the moisture chamber and placed on a greenhouse bench.  

Eighteen days after inoculation, disease ratings on the first three leaves of each plant 

were recorded based on the percentage of leaf area covered by chlorotic/necrotic lesions.  

The disease ratings for the first three leaves were averaged for each experimental unit.  

Genotype least square means were separated by planned t tests using SAS v8.0 for 

Windows (SAS Institute Inc., Cary, NC).  This phenotyping method is adapted from the 

methods reported by Zhang et al. (2001). 

The 78 F5:7 RILs from the KS96WGRC40/Wichita population were evaluated for 

STB resistance in the greenhouse using a similar method with some modifications.  Each 

RIL was planted using a randomized complete block design with 10 replications.  The 

parents of the population (KS96WGRC40 and Wichita) were included in the evaluation.  

The entire experiment was repeated a week later to give a total of 20 replications.  The 

disease ratings for the first three leaves were averaged for each experimental unit.  Data 

were analyzed as a randomized complete block experiment with a 2 by 80 factorial 

treatment structure using SAS v8.0 for Windows (SAS Institute Inc., Cary, NC).   

DNA Extractions 
Genomic DNA was extracted from the nine parental germplasms and the Ae. 

tauschii accession TA2397, which is in the pedigree of KS96WGRC40.  Genomic DNA 

was also extracted from 78 F5:7 RILs in the KS96WGRC40/Wichita population and the 

aneuploid and deletion line stocks used in the study. 
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Leaf tissue was collected from 7-day-old germinated seedlings and placed in 1.5 

mL microcentrifuge tubes.  The tissue was stored at -80°C and then ground to a fine 

powder in liquid nitrogen using a mortar and pestle.  Ground tissue samples were stored 

at -80°C.  Small scale DNA extractions were performed by adding 500 µl extraction 

buffer [100 mM glycine, 50 mM NaCl, 10 mM EDTA, 2% SDS, and 30 mM sodium 

lauryl sarsosine] and 500 µl phenol:chloroform:isoamyl alcohol [50:49:1] to the ground 

tissue and mixing for 10 minutes at room temperature.  Samples were centrifuged at 8000 

rpm for 10 minutes and the supernatant transferred to a new microcentrifuge tube with a 

micropipette.  An equal volume of chloroform:isoamyl alcohol [24:1] was added and 

samples were centrifuged again at 8000 rpm for 10 minutes.  The supernatant was 

transferred to a new microcentrifuge tube and mixed with 1/10 volume of 3M sodium 

acetate and one volume isopropanol for DNA precipitation.  DNA precipitation occurred 

overnight at 4°C.  The DNA was pelleted by centrifugation at 8000 rpm for 10 minutes 

after which the isopropanol/sodium acetate mixture was poured off.  The DNA was 

washed with 70% ethyl alcohol and repelleted by centrifugation at 8000 rpm for 10 

minutes.  The ethyl alcohol was poured off and the DNA was resuspended in 50 µl of 1X 

TE buffer.  DNA concentrations were adjusted to 10 ng/µl with the use of a spectrometer 

(Nanodrop ND-1000, Wilmington, DE).  This method was adapted from Malik et al. 

(2003). 

Molecular Marker Analysis 
A bulk segregant analysis was used to identify polymorphic markers potentially 

linked to STB resistance (Michelmore et al., 1991).  Bulk DNA samples were prepared 

by pooling equal amounts of DNA from the ten most susceptible RILs and the ten most 
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resistant RILs.   The DNA samples of KS96WGRC40, Wichita, the resistant bulk, and 

the susceptible bulk were screened for polymorphisms with 249 D-genome specific 

microsatellite primer pairs.  Only D-genome specific primer pairs were screened for 

polymorphism because the STB resistance within KS96WGRC40 is derived from 

accession TA2397 of Ae. tauschii (Cox et al., 1999), the donor of the D-genome of 

common wheat.  The other germplasms within the pedigree of KS96WGRC40, TAM107 

and TA2460, are susceptible to STB. 

All PCR reactions were performed in 12 µl volumes and included 2.0 µl of 

genomic DNA, 1.2 µl of 10X PCR buffer with magnesium chloride, 0.96 µl of 10 mM 

dNTP’s, 0.18 µl of Taq DNA polymerase (5units/µl), 5.26 µl of sterile molecular grade 

water, 0.96 µl of 1 µM forward primer, 0.72 µl of 10 µM reverse primer, and 0.72 µl of 

one of either FAM, PET, NED, or VIC 10 µM fluorescent labels.  Reactions were carried 

out in either a PTC-200 Thermal Cycler (MJ Research, Watertown, MA,) or a Master 

Cycler EP384 System (Eppendorf, Westbury, NY).  PCR products were multiplexed by 

pooling four differently labeled PCR products across the same genomic DNA sample 

with the use of a Hydra II 96 channel microdispenser (Matrix, Hudson, NH).  PCR 

fragments were resolved in an ABI Prism 3130XL Genetic Analyzer (Applied 

Biosystems, Foster City, CA) with GeneScan-500 LIZ as an internal size standard 

(Applied Biosystems, Foster City, CA).  Fragment analysis was performed with 

GeneMarker v1.4 software (SoftGenetics, State College, PA). 

Microsatellite primer pairs identified as polymorphic based on the bulk segregant 

analysis were screened on the entire mapping population.  Linkage analysis was 

conducted with Mapmaker software (version 2.0 for Macintosh).  Map distances were 
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converted to centimorgans using the Kosambi function (Kosambi, 1944).  Linkage maps 

were generated using a maximum Kosambi distance of 50 and a minimum log of odds 

(LOD) of 3.0.   

The linkage analysis identified microsatellite primer pairs linked to the STB 

resistance gene within KS96WGRC40.  The chromosomal locations of these 

microsatellite primer pairs were previously determined in other mapping populations 

(Somers et al., 2004).  This information was used to select more microsatellite primer 

pairs in the identified chromosomal region of interest.  These additional microsatellite 

primer pairs were also screened on the population in similar fashion.   

Five microsatellite primer pairs linked to the STB resistance in KS96WGRC40 

were deletion bin mapped using the Chinese Spring aneuploid stocks.  Five additional 

microsatellite primer pairs that were not identified as linked to the STB resistance in 

KS96WGRC40 but were proximal on chromosome 7D based on the Somers et al. (2004) 

consensus map were also deletion bin mapped to have a more complete physical map of 

7D.  PCR reactions and fragment analysis for the deletion bin mapping was performed as 

described above. 

To further analyze the DNA fragments amplified by linked microsatellite primer 

pairs, several PCR fragments were also separated by electrophoresis in 7% denaturing 

polyacrylamide gels.  The polyacrylamide gels were visualized through a silver nitrate 

staining process following the protocol of Bassam et al. (1991).  

Results and Discussion 
Phenotypic screening 
Significant variation for reaction to STB was observed when the nine germplasms 

were inoculated with a mixture of isolates of S. tritici from Kansas.  The germplasm line 
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KS96WGRC40 had the lowest mean STB severity (14.23%) of the genotypes tested.  It 

had significantly higher levels for resistance in this study than the resistant lines Israel493 

(Stb3) and Jagger (Table 3.2).  Taichung29 was very susceptible to the STB isolates used 

in the screening and had the highest mean STB severity (94.17%).  Wichita, the 

susceptible parent used in the mapping population, had an intermediate mean STB 

severity of 49.70% that was significantly greater (p<0.05) than that observed for 

KS96WGRC40.  This confirms that KS96WGRC40 does contain resistance to STB as 

tested by a mixture of Kansas field isolates.  The significant differences observed for the 

parents of the mapping population also suggest that the KS96WGRC40/Wichita 

population should adequately segregate for STB resistance under the same inoculation 

procedures. 
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Table 3.2.  Least square means and standard deviations for Septoria leaf blotch (STB) 
severity for nine wheat germplasms (N = 20) screened with a mixture of Kansas Septoria 
tritici isolates in the greenhouse at Manhattan, KS 2004. 

Genotype 
STB Severity 

LS Mean* 
Standard error of STB 

Severity LS Mean 
KS96WGRC40 14.23 a 3.18 
Israel 493 26.97 b 3.63 
Jagger 27.97 b 3.27 
Wichita 49.70 c 10.01 
KS89WGRC04 57.18 c 3.03 
Rac875-2 62.33 c 4.47 
Newton 70.93 d 4.47 
Lakin 72.67 d 4.49 
Taichung29 94.17 e 1.82 
*Means followed by different letters are significantly different (p<0.05). 

 

The KS96WGRC40/Wichita population segregated for reaction to STB when 

inoculated in a similar fashion as was performed on the nine parental germplasms.  There 

were significant differences among the genotype means (p<0.01) within the population 

(Table 3.3).  In addition, there was a significant difference (p<0.01) between the two 

planting dates for the STB screening (Table 3.3).  This was expected as the two 

screenings occurred at different times and thus were affected by different environmental 

conditions.  The interaction between planting date and genotype was also significant 

(p<0.01) (Table 3.3).  However, the mean squares for genotypes was much larger than 

genotype by planting date mean squares.  The interaction was due to small, quantitative 

differences between planting dates and not qualitative differences; therefore, data of the 

two planting dates were combined. 
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Table 3.3.  ANOVA for Septoria leaf blotch resistance in a F5:7 KS96WGRC40/Wichita 
population, Manhattan, KS 2004. 

Source df Mean Square F value  
Block 9 2352.3 7.72** 
Planting Date 1 95601.5 313.73** 
Genotype 79 7585.6 23.81** 
Planting Date x Genotype 79 463.9 6.76** 
Error 1352 68.6  
Total 1520   

**p<0.01 

 

The significant variation between the two planting dates was reflected in the 

means of each planting date.  The overall phenotypic mean from the first planting date 

was 36.10% STB severity, and the overall genotype mean from the second planting date 

was 21.03% STB severity.  More disease occurred in the first planting date and was 

probably due to a more favorable environment. 

A bimodial distribution of phenotypic means was observed for the 78 F5:7 RILs, 

KS96WGRC40, and Wichita averaged across both planting dates (Figure 3.1) indicating 

a single major gene is segregating.  This distribution is somewhat skewed toward 

resistance and is reflected in the overall STB severity mean of 28.56%.  The mean STB 

severities for KS96WGRC40 and Wichita averaged across both planting dates were 

8.82% and 78.83%, respectively.  The mean STB severities for the RILs within the 

KS96WGRC40/Wichita population ranged from 4.15% to 72.53%.   

The population was classified into two separate non-overlapping groups based on 

the least significant difference of the genotype means averaged across both planting dates 

(LSD=4.36, p<0.10).  RILs with mean STB severities <32% were classified as resistant.  

Those RILs with mean STB severities >32% were classified as susceptible.  Following 
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these criteria, 47 RILs were classified as resistant and 31 RILs were classified as 

susceptible.  This segregation ratio was not significantly different from the 1:1 ratio 

expected if KS96WGRC40 contains a single STB resistance gene (χ2  = 3.28, p > 0.95). 
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Figure 3.1.  Segregation of resistance to Septoria leaf blotch in a F5:7 KS96WGRC40/Wichita RIL population.  Mean severity for each 
parent is indicated by an arrow.
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Molecular Marker Analysis 
From the 249 microsatellite primer pairs screened in the bulk segregant analysis, 

48 were polymorphic between the parents.  A preliminary linkage analysis identified one 

of these primer pairs, BARC126, to be associated with STB resistance.  The most recent 

consensus map of hexaploid wheat (Somers et al., 2004) located the Xbarc126 locus on 

the short arm of chromosome 7D.  Additional microsatellite primer pairs located on 

chromosome 7DS near Xbarc126 were used to further genotype the RIL population.  

Eight polymorphic microsatellite markers were used to construct a genetic linkage map of 

the region of the STB resistance gene (Figure 3.2A).  The order of these markers is 

somewhat consistent with the reported consensus map.  Markers Xgwm295 and Xwmc702 

are distal to Xgwm44 in the linkage map but are located proximal to Xcfd021 in the 

consensus map (Somers et al., 2004). 

A QTL analysis was performed using the quantitative data from the phenotypic 

screening of the population using QTL Cartographer software (QTL Cartographer V2.0, 

North Carolina State University).  This analysis identified a QTL explaining 75.12% of 

the variation at marker locus Xbarc126 with a LOD score of 21.0154.  This QTL analysis 

supported our classification of resistant and susceptible lines used in the qualitative 

analysis. 
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A      B 

Figure 3.2.  A.)  Partial genetic linkage map of wheat chromosome 7D constructed from 
78 F5:7 recombinant inbred lines from a KS96WGRC40/Wichita population.  B.)  
Physical map of wheat chromosome 7D.  The centromere is indicated by the two 
triangles.  The two deletion breakpoints used to physically map the microsatellite markers 
are shown in bold.  Three deletion bins are delineated by brackets and contain the 
microsatellite markers noted to the right.  Markers common to both maps are in bold. 

 

The two microsatellite markers most closely linked to the STB resistance gene 

within KS96WGRC40, Xgwm044 and Xbarc126, flanked the gene at distances of 3.4 cM 

distal and 3.4 cM proximal, respectively (Figure 3.2A).  Primer pair BARC126 amplified 

a 130 base pair fragment from DNA of KS96WGRC40 and a 144 base pair fragment 

from Wichita.  Primer pair GWM44 amplified three fragments; the fragment linked to the 
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STB resistance within KS96WGRC40 is approximately 150 base pairs in length (Figure 

3.3). 

 

 

Figure 3.3.  Banding pattern of microsatellite primer pairs BARC126 and GWM044 
separated on a 7% denaturing polyacrylamide gel visualized by silver staining.  Lane 1: 
KS96WGRC40, 2: Wichita, 3: Septoria leaf blotch resistant bulk, 4: Septoria leaf blotch 
susceptible bulk, 5: soil-borne wheat mosaic virus resistant bulk, 6: soil-borne wheat 
mosaic virus susceptible bulk, 7: TAM107, 8: TA2397. 

 

The aneuploid stocks of Chinese Spring were used to physically locate the 

microsatellite markers linked to the STB resistance gene within KS96WGRC40.  Only 

two deletion lines were used in this study (7DS-1-0.37 and 7DS-4-0.61).  Although there 

is an additional terminal 7DS deletion line (7DS-2-0.73) available, the line is maintained 

in the hemizygous condition, limited amounts of seed were available, and no plants were 

identified having the deleted chromosome. 

The STB resistance gene in KS96WGRC40 is located on the terminal portion of 

7DS between markers Xgwm44 and Xbarc126 (Figure 3.2A).  The flanking markers were 

physically located in the deletion bin 0.61-1.00 (Figure 3.2B) of chromosome 7DS.  
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Previous genetic linkage maps place Xgwm44 near the centromere (Somers et al., 2004; 

Roder et al., 1998).  However, our physical mapping of the fragment linked to STB 

resistance in the terminal region of 7DS agrees with the physical location of Xgwm44 

reported by Sourdille et al. (2004). 

The Ae. tauschii segment transferred to KS96WGRC40 from TA2397 on 

chromosome 7D is a proximal segment.  KS96WGRC40 has the TAM107 allele at locus 

Xgwm295 (Figure 3.5) which was located distal to the STB resistance gene in 

KS96WGRC40 (Figure 3.2A).  KS96WGRC40 has D-genome fragments derived from 

TA2397 at marker loci Xwmc702, Xgwm044, Xbarc126, and Xcfd021(Figure 3.5).  At 

marker locus Xgwm111 the 195 base pair fragment present in KS96WGRC40 is not 

polymorphic between TAM107 and TA2397.  Therefore, the proximal breakpoint of the 

Ae. tauschii segment in KS96WGRC40 can not be delineated. 

Comparison to Known STB Resistance Genes 
Two genes conferring resistance to STB are located on the short arm of 

chromosome 7D.  Arraiano et al. (2001) identified the STB resistance gene Stb5 in a 

Chinese Spring substitution line of ‘Syn6X’ and located this gene on wheat chromosome 

arm 7DS linked to the microsatellite marker Xgwm044 at a distance of 7.2 cM (Figure 

3.4A).  Adhikari et al. (2004A) located another STB resistance gene in the cultivar 

Tadinia, Stb4, on 7DS at a distance of 0.7 cM from the microsatellite marker Xgwm111 

(Figure 3.4B).  Our linkage analysis suggests that the STB resistance gene within 

KS96WGRC40 is located in the same chromosomal region as Stb4 and Stb5 (Figure 

3.2A).   
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A      B 

Figure 3.4. A).  Genetic linkage map of Stb5 on chromosome 7D in the wheat germplam 
Chinese Spring-Syn6X from Arraiano et al., 2001.  B).  Genetic linkage map of Stb4 on 
chromosome 7D in the wheat germplasm Tadinia from Adhikari et al., 2004A. 

 

To investigate the relationships between Stb4, Stb5, and the unnamed STB gene 

within KS96WGRC40, markers Xgwm111, Xcfd021, Xgwm44, and Xbarc126 were used 

to genotype Tadinia, Chinese Spring-Syn6X, and KS96WGRC40, along with TAM107 

(the wheat parent of KS96WGRC40) and TA2397.  Primer pair GWM044 amplified 

multiple fragments from genomic DNA of the hexaploid wheat germplasms (Figure 3.5).  

The 150 base pair TA2397-derived allele in KS96WGRC40 that was linked to STB 

resistance was also present in Chinese Spring-Syn6X.  No common TA2397-derived 

alleles were observed between Tadinia and KS96WGRC40 for other markers in this 

region (Figure 3.5). 



 

76 

 
Figure 3.5.  Banding pattern of microsatellite markers Xgwm044, Xgwm111, Xbarc126 
and Xcfd021, Xgwm295, and Xwmc702 on eight wheat germplasms.  Triangles indicate 
the bands associated with KS96WGRC40 Septoria leaf blotch resistance for each marker. 

 

Conclusions 
Hard red winter wheat germplasm KS96WGRC40 has an Ae. tauschii-derived 

gene of major effect conferring resistance to STB. Our analysis located this gene in the 

distal 40% of the short arm of chromosome 7D flanked by microsatellite markers 

Xgwm044 and Xbarc126.  These markers will be useful for marker-assisted selection 

(MAS) for STB resistance in hard red winter wheat since this is the first STB gene 

mapped in a germplasm adapted to the Southern Great Plains of the USA.  Other genes 

for which markers are available can be selected for by MAS in crosses to KS96WGRC40 

including Pm17, Cmc3, Cmc4, Lr39, and Sbwmv1. 

Two previously reported STB genes, Stb4 and Stb5, have been mapped to 7DS in 

the same region as the STB resistance gene within KS96WGRC40.  The Stb4 gene was 
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identified in the spring wheat cultivar Tadinia using a S. tritici isolate collected in Indiana 

and was useful for controlling STB in California from 1975 (Somasco et al., 1996) until 

recently as this resistance gene is no longer effective as evidenced by the cultivar Gene in 

Oregon (Cowger et al., 2000).  The Stb5 gene was derived from an unknown accession of 

Ae. tauschii which was used in the creation of Syn6X.  This resistance was identified 

using S. tritici isolate IP094269 which was collected in the Netherlands.  The STB 

resistance gene with KS96WGRC40 provides resistance to S. tritici isolates collected in 

Kansas and was also derived from Ae. tauschii.  The relationship between the fungal 

isolates used to identify these genes is unknown. 

The Stb5 gene designation is based on map location and allelism analysis with 

Stb4 has not been done.  The map of Stb4 was based primarily on AFLP markers and the 

only reference marker was Xgwm111.  Although the Stb4 gene was determined to be 

closely linked to Xgwm111, the lack of other landmarks makes it impossible to orient the 

map with reference to the centromere.  Comparison of this map with the map constructed 

in the population segregating for Stb5 is not reliable.  Particularly problematic is the 

placement of Xgwm111 in the long arm of chromosome 7D in the map of Arraiano et al. 

(2001).  Other reports, including this study, have located this marker in the short arm of 

the chromosome 7D (Somers et al., 2004; Sourdille et al., 2004).  The fragment generated 

by GWM111 that was determined to be linked to Stb4 in Tadinia is in the same size range 

as the fragment mapped in the KS96WGRC40/Wichita population.  Multiple fragments 

were amplified by this marker in the hexaploid germplasms including Chinese Spring.  It 

is possible that the locus that was physically mapped on the short arm in our study differs 

from the locus mapped by Arraiano et al. (2001).  However, the uniqueness of the STB 
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resistance genes on 7DS remains questionable.  The haplotype analysis of the region was 

not conclusive.  An analysis of populations from intercrossing these germplasms is 

necessary to clarify the allelic relationship of the STB genes. 

Chromosome 7DS of wheat contains many other useful resistance genes.  The 

durable leaf rust resistance gene Lr34 and the durable stripe rust resistance gene Yr18 are 

both located on chromosome 7DS (Nelson et al., 1997; Singh, 1992).  Liu et al. (2002) 

mapped the Russian wheat aphid resistance genes Dn1, Dn2, Dn5, Dn6, and Dnx to 

chromosome 7DS.  Therefore, this chromosome arm appears to be a common region of 

resistance gene transfer and may contain an important cluster of resistance genes for a 

wide range of pests and pathogens. 
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CHAPTER 4 GENETIC ANALYSIS OF RESISTANCE TO 
SOIL-BORNE WHEAT MOSAIC VIRUS IN KS96WGRC40 

Introduction 
Soil-borne wheat mosaic virus (SBWMV) is a destructive pathogen of wheat that 

belongs to the viral group Furovirus.  The disease was first described in Illinois by 

McKinney (1923) and can now be found in most winter wheat-growing regions 

throughout the world including most recently the United Kingdom (Clover et al., 2001).  

SBWMV is vectored by the soil inhabiting organism Polymyxa graminis (Rao and 

Brakke, 1969).  Symptoms of SBWMV on wheat seedlings include mostly yellow to light 

green leaves with darker green mottling and stunting.  Depending on environmental 

conditions, infected seedlings may be able to recover a dark green appearance.  Yield 

losses to SBWMV have been estimated as high as 45% in Kansas (Nykaza, 1978). 

During the late 1970’s SBWMV was the most devastating disease of winter wheat 

in Kansas (Bockus et al., 2001).  Following several epidemic years, breeding for 

resistance to SBWMV was considered a priority by Kansas State University wheat 

breeders.   With the use of specific breeding nurseries in severely infested SBWMV 

fields, several SBWMV resistant cultivars were developed and released thus drastically 

reducing the losses due to SBWMV (Bockus et al., 2001).  Although many winter wheat 

cultivars contain resistance to SBWMV, no single major resistance genes have been 

identified or named to date.  A SBWMV resistance QTL on chromosome 5D linked to 

microsatellite markers Xcfd10 and Xcfd86 was identified in the hard red winter wheat 

cultivar Karl92 which explained 38% of the phenotypic variation (Narasimhamoorthy, 

2003). 
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KS96WGRC40 is a hard red winter wheat germplasm developed and released by 

the USDA-ARS Plant Science and Entomology Research Unit, the Kansas Agricultural 

Experiment Station, and the Wheat Genetics Resource Center at Kansas State University.  

KS96WGRC40 contains resistance to SBWMV, wheat curl mite, Stagonospora leaf 

blotch, and Septoria leaf blotch.  KS96WGRC40 was a reselection for wheat curl mite 

resistance out of the germplasm KS95WGRC33.  The pedigree of KS96WGRC40 is 

TAM107*3/TA2460//TA2397/3/TAM107*3/TA2460 (Cox et al., 1999).   

The objective of this research was to characterize the inheritance of SBWMV 

resistance contained in KS96WGRC40.   

Materials and Methods 
Plant Material 
A segregating population was created from the cross KS96WGRC40 by Wichita.  

KS96WGRC40 is resistant to SBWMV while Wichita is susceptible.  The population was 

advanced by single seed descent to the F5 generation.  After the F5 generation, lines were 

harvested in bulk.  Seventy-eight recombinant inbred lines (RILs) were used in this study.   

SBWMV field phenotyping 
The 78 F5:7 RILs from the KS96WGRC40/Wichita population were evaluated for 

SBWMV resistance in the field at the Kansas State University Department of Agronomy 

Ashland Bottoms Research Farm during the  2004-2005 and 2005-2006 growing seasons.  

Each RIL was planted in a one-meter row using a randomized complete block design 

with two replications.  The parents of the population (KS96WGRC40 and Wichita) were 

included in the experiments.  Lines were scored as either resistant or susceptible based on 

SBWMV symptoms at Feekes growth stage three.  Susceptible SBWMV checks 

(TAM107 and Wichita) were planted alongside each entry throughout the length of the 
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field to visualize SBWMV distribution. Symptomatic leaves of TAM107 and Wichita 

were collected and submitted to the Kansas State University Department of Plant 

Pathology Plant Disease Diagnostics Lab to verify SBWMV presence by ELISA. 

SBWMV ELISA screening 
Visual evaluations of SBWMV symptoms used in conjunction with SBWMV 

ELISA were recommended by Hunger and Sherwood (1985) as the best indicator of 

resistance.  A 2.5 cm leaf sample from five random plants for each RIL and parent was 

collected from the first replication in the 2005-2006 field screening.  The leaves from the 

five plants were combined for each RIL and parent sample.  Leaf samples were collected 

at Feekes growth stage three, stored on ice in the field, and returned to the lab where they 

were stored at -80°C.  The leaf samples were tested for the presence of SBWMV by 

compound direct labeled ELISA using the protocol and supplies in an Agdia SBWMV 

test kit (Agdia, Elkhart, Indiana).  Absorbances were measured at 405 nm using a Bio-tek 

ELx800 microplate reader (Bio-tek, Winooski, Vermont).  SBWMV positive and 

negative controls were included with the Agdia test kit.  The ELISA was repeated using 

the same leaf extracts, and absorbance values from the two replicate SBWMV ELISA 

screenings were averaged. 

DNA Extractions 
Genomic DNA was extracted from the two parental germplasms (KS96WGRC40 

and Wichita) and the two Aegilops tauschii accessions TA2460 and TA2397, both of 

which are in the pedigree of KS96WGRC40.  Genomic DNA was also extracted from 78 

F5:7 RILs in the KS96WGRC40/Wichita population. 

Leaf tissue was collected from 7-day old germinated seedlings and placed in 1.5 

mL microcentrifuge tubes.  The tissue was stored at -80°C and then ground to a fine 
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powder in liquid nitrogen using a mortar and pestle.  Ground tissue samples were stored 

at -80°C.  Small scale DNA extractions were performed by adding 500 µl extraction 

buffer [100 mM glycine, 50 mM NaCl, 10 mM EDTA, 2% SDS, and 30 mM sodium 

lauryl sarsosine] and 500 µl phenol:chloroform:isoamyl alcohol [50:49:1] to the ground 

tissue and mixing for 10 minutes at room temperature.  Samples were centrifuged at 8000 

rpm for 10 minutes and the supernatant transferred to a new microcentrifuge tube with a 

micropipette.  An equal volume of chloroform:isoamyl alcohol [24:1] was added and 

samples were centrifuged again at 8000 rpm for 10 minutes.  The supernatant was 

transferred to a new microcentrifuge tube and mixed with 1/10 volume of 3M sodium 

acetate and one volume isopropanol for DNA precipitation.  DNA precipitation occurred 

overnight at 4°C.  The DNA was pelleted by centrifugation at 8000 rpm for 10 minutes 

after which the isopropanol/sodium acetate mixture was poured off.  The DNA was 

washed with 70% ethyl alcohol and repelleted by centrifugation at 8000 rpm for 10 

minutes.  The ethyl alcohol was poured off and the DNA was resuspended in 50 µl of 1X 

TE buffer.  DNA concentrations were adjusted to 10 ng/µl with the use of a spectrometer 

(Nanodrop ND-1000, Wilmington, DE).  This method was adapted from Malik et al. 

(2003). 

Molecular Marker Analysis 
A bulk segregant analysis was used to identify polymorphic markers potentially 

linked to SBWMV resistance (Michelmore et al., 1991).  Bulk DNA samples were 

prepared by pooling equal amounts of DNA from ten susceptible RILs and ten resistant 

RILs.   The DNA samples of KS96WGRC40, Wichita, the resistant bulk, and the 

susceptible bulk were screened for polymorphisms with 249 D-genome specific 
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microsatellite primer pairs.  Only D-genome specific primer pairs were screened for 

polymorphism because the SBWMV resistance within KS96WGRC40 is derived from 

Ae. tauschii.  The wheat cultivar in the pedigree of KS96WGRC40 (TAM107) is 

susceptible to SBWMV. 

PCR reactions were preformed in 12 µl volumes and included 2.0 µl of genomic 

DNA, 1.2 µl of 10X PCR buffer with magnesium chloride, 0.96 µl of 10 mM dNTP’s, 

0.18 µl of Taq DNA polymerase (5units/µl), 5.26 µl of sterile molecular grade water, 

0.96 µl of 1 µM forward primer, 0.72 µl of 10 µM reverse primer, and 0.72 µl of one of 

either FAM, PET, NED, or VIC 10 µM fluorescent labels.  Reactions were carried out in 

either a PTC-200 Thermal Cycler (MJ Research, Watertown, MA,) or a Master Cycler 

EP384 System (Eppendorf, Westbury, NY).  PCR products were multiplexed by pooling 

four differently labeled PCR products across the same genomic DNA sample with the use 

of a Hydra II 96 channel microdispenser (Matrix, Hudson, NH).  PCR fragments were 

resolved in an ABI Prism 3130XL Genetic Analyzer (Applied Biosystems, Foster City, 

CA) with GeneScan-500 LIZ as an internal size standard (Applied Biosystems, Foster 

City, CA).  Fragment analysis was performed with GeneMarker v1.4 software 

(SoftGenetics, State College, PA). 

Microsatellite primer pairs identified as polymorphic based on the bulk segregant 

analysis were screened on the entire mapping population.  Linkage analysis was 

conducted with Mapmaker software (version 2.0 for Macintosh).  Map distances were 

converted to centimorgans using the Kosambi function (Kosambi, 1944).  Linkage maps 

were generated using a maximum Kosambi distance of 50 and a minimum log of odds 

(LOD) of 3.0.   
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The linkage analysis identified microsatellite primer pairs linked to the SBWMV 

resistance gene within KS96WGRC40.  The chromosomal locations of these 

microsatellite primer pairs were previously determined in other mapping populations 

(Somers et al., 2004).  This information was used to select more microsatellite primer 

pairs in the identified chromosomal region of interest.  These additional microsatellite 

primer pairs were also screened on the population in similar fashion.   

To further analyze the DNA fragments amplified by linked microsatellite primer 

pairs, several PCR products were separated by electrophoresis in 7% denaturing 

polyacrylamide gels.  The polyacrylamide gels were visualized through a silver nitrate 

staining process following the protocol of Bassam et al. (1991). 

Marker survey of other wheat and progenitor lines for SBWMV resistance 
DNA was extracted following the above method from 23 WGRC germplasm 

releases, six hard red winter wheat cultivars, and two Ae. tauschii accessions.  PCR was 

performed with the closest markers identified from the genetic linkage map constructed 

from the KS96WGRC40/Wichita population.  Fragments were separated by 

electrophoresis in 7% denaturing polyacrylamide gels and visualized by silver staining. 

Results and Discussion 
Phenotypic screening 
The distribution of SBWMV in the 2004-2005 field screening was sporadic.  In 

those instances where the susceptible checks did not show SBWMV symptoms, 

phenotypic data were not recorded on the adjacent RIL.  The SBWMV in the 2005-2006 

field screening was evenly distributed (Figure 4.1) in the first replication.  The second 

replication planted in 2005-2006 did not show any symptomatic expression of SBWMV 

on the susceptible checks TAM107 and Wichita.  Therefore, phenotypic data were not 



 

87 

taken on the second replication in 2005-2006.  ELISA testing confirmed the presence of 

SBWMV in the susceptible checks TAM 107 and Wichita from the first replication in 

2005-2006. 

 

Figure 4.1.  Distribution of soil-borne wheat mosaic virus (SBWMV) infection in a field 
screening of 78 F5:7 recombinant inbred lines, Ashland Bottoms Research Station, 
Manhattan KS, 2006.  Dashed lines indicate the SBWMV susceptible varieties TAM107 
and Wichita. 

 

The classification of each RIL as resistant or susceptible based on the phenotypic 

evaluation was consistent between the two-year field screenings.  Therefore, the 

phenotypic data were compiled across replications and years for each RIL.  Thirty-nine 

RILs were classified as resistant; 38 RILs were classified as susceptible.  One RIL did not 

germinate in either year and so the total number of lines phenotyped was 77.  This 

segregation ratio is not significantly different from 1:1 (χ2 = 0.01, p > 0.95), as expected 

if KS96WGRC40 contains a single SBWMV resistance gene.  It is proposed that this 
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SBWMV resistance gene in KS96WGRC40 be named soil-borne wheat mosaic virus 1 

and abbreviated as Sbwmv1. 

SBWMV ELISA screening 
Average absorbance values for the RILs ranged from 0.1525 to 3.2520.  SBWMV 

resistant and susceptible lines were easily separated based on average absorbance values.  

Lines with an average absorbance value <1 were resistant.  Lines with an average 

absorbance value >2 were susceptible.  No line had an average absorbance value >1 and 

< 2.  Lines could also be easily separated by visually inspecting the microplate sample 

well color (Figure 4.2).  A yellow sample well indicates the presence of SBWMV and a 

clear sample well indicates the absence of SBWMV.  The resistant parent KS96WGRC40 

produced a negative ELISA result; the susceptible parent Wichita produced a positive 

ELISA result.  Separate positive and negative controls were included as provided in the 

SBWMV test kit.  The positive control produced a positive result, and the negative 

control produced a negative result (Figure 4.2). 
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Figure 4.2.  Soil-borne wheat mosaic virus (SBWMV) ELISA screening of a F5:7 
KS96WGRC40/Wichita recombinant inbred line population.  A yellow sample well 
indicates a positive reaction and the presence of SBWMV.  A clear sample well indicates 
a negative reaction and the absence of SBWMV.  Sample well B11 is a positive control.  
Sample well C11 is a negative control.  Sample well G10 and H10 are KS96WGRC40 
and Wichita, respectively. 

 

Comparing the SBWMV ELISA results with the phenotypic data provided some 

interesting results.  In all instances where a RIL was classified as susceptible based on the 

phenotypic expression of symptoms, the ELISA test result was positive for the presence 

of SBWMV.  Five lines (RIL #57, #76, #91, #98, and #103) were classified as resistant 

based on phenotypic expression of SBWMV symptoms, but were positive for the 

presence of SBWMV based on ELISA.  These five RILs showed no symptoms of 

SBWMV, yet contained SBWMV coat protein within their leaves (Table 4.1).  

Heterozygous RILs, sampling error in the field, or cross contamination of samples could 

all explain the presence of SBWMV coat protein in these samples.  However, no entries 
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in the SBWMV field screening appeared to be segregating for resistance.  Furthermore, 

cross contamination or sampling error would have been diluted in the sample of five 

leaves.  The absorbance values for these five RILs are all above 2.3000 and comparable 

to the absorbance value of the positive control (3.1910) used in the ELISA test kit (Table 

4.1).   

Table 4.1.  Phenotypic expression of soil-borne wheat mosaic virus (SBWMV) 
symptoms, SBWMV ELISA absorbance values, and size of fragment amplified with 
microsatellite marker Xcfd10 for nine recombinant inbred lines (RILs) from a 
KS96WRC40/Wichita population. 

Sample 

Phenotypic 
Expression of 
SBWMV Symptoms* 

SBWMV ELISA 
Absorbance values 
(405 nm)^ 

Xcfd10 
fragment 
(base pairs) 

RIL #57 R 3.1355 290 
RIL #76 R 2.3960 NOAMP 
RIL #91 R 3.0920 290 
RIL #98 R 3.1960 290 
RIL #103 R 3.0635 290 
RIL #13 S 3.1635 290 
RIL #42 S 2.8565 290 
RIL #4 R 0.1770 280 
RIL #21 R 0.1745 280 
KS96WGRC40 R 0.1845 280 
Wichita S 3.2520 290 
Positive Control† - 3.1910 - 
Negative Control† - 0.1570 - 
*Phenotypic expression of SBWMV symptoms at Feekes growth stage 3 in a naturally 
infected SBWMV field in Manhattan, KS, 2005 and 2006.  R, resistant; S, susceptible; -, 
not rated. 
^Mean absorbance values from two replicate tests, each consisting of combined leaf 
extracts from five random plants of the same genotype grown in a naturally infected 
SBWMV field in Manhattan, KS, 2006. 
†Positive and negative controls as supplied in the SBWMV ELISA test kit. 

 

Molecular Marker Analysis 
From the 249 microsatellite primer pairs screened in the bulk segregant analysis, 

48 were polymorphic between the parents.  A preliminary linkage analysis identified one 
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of these primer pairs, CFD10, to be associated with SBWMV resistance.  Marker Xcfd10 

is located on chromosome 5DL according to the most recent consensus map of hexaploid 

wheat (Somers et al., 2004).  Additional microsatellite primer pairs located on 

chromosome 5DL near Xcfd10 were used to further genotype the RIL population.  Four 

polymorphic microsatellite markers were used to construct a genetic linkage map in the 

region of the Sbwmv1 (Figure 4.3).  The closest linked marker to Sbwmv1 was Xcfd10 

and mapped 10.1 cM away from the resistance gene (Figure 4.3).  Marker Xcfd10 

amplified a 280 base pair fragment in KS96WGRC40 and a 290 base pair fragment in 

Wichita (Figure 4.4).  Unfortunately, no microsatellite markers flanking Sbwmv1 were 

identified. 

Marker Xcfd10 was more closely linked to the SBWMV ELISA screening results 

rather than the SBWMV phenotypic field screening results (Figure 4.3).  The observed 

recombination between Sbwmv1 and the ELISA screening results is explained by the five 

RILs that were scored as resistant in the field screening yet contained SBWMV coat 

protein as tested by ELISA.  These five RILs contain the susceptible allele at the marker 

locus Xcfd10 (Table 4.1).  The chromosomal region distal to Xcfd10 on chromosome 5DL 

of wheat appears to be important for SBWMV resistance.  This agrees with the results of 

Narasimhamoorthy (2003), who identified a QTL in the wheat cultivar Karl92 on 

chromosome 5DL linked to Xcfd10 and Xcfd86.  Marker Xcfd86 was polymorphic in the 

KS96WGRC40/Wichita population but was not linked to Sbwmv1. 
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Figure 4.3.  Genetic linkage map of wheat chromosome 5DL constructed from 78 F5:7 
recombinant inbred lines from a KS96WGRC40/Wichita population. 

 
Marker survey of other wheat and progenitor lines for SBWMV resistance 
The closest marker to Sbwmv1 was Xcfd10 (Figure 4.3).  KS96WGRC40, 

KS95WGRC33, and the Ae. tauschii accession TA2397 amplified the same sized 

fragment with microsatellite marker Xcfd10 (Figure 4.4).  This indicated that 

KS96WGRC40 and KS95WGRC33 contain the same SBWMV resistance gene derived 

from TA2397 and not TA2460.  KS96WRC40 and KS95WGRC33 contain the same 

SBWMV resistance gene as evidenced by both germplasms having the same Xcfd10 

resistance fragment.  KS96WGRC40 was a reselection for wheat curl mite resistance out 

of the SBWMV resistant germplasm KS95WGRC33.   

None of the other WGRC germplasm releases and wheat varieties screened had 

the same allele as KS96WGRC40 and KS95WGRC33 at the marker locus Xcfd10 (Figure 

4.4).  The WGRC germplasm releases KS92WGRC23, KS96WGRC34, KS96WGRC38, 

KS96WGRC39, KS96WGRC35, KS93WGRC26, KS92WGRC22, KS92WGRC21, and 
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KS92WGRC16 are resistant to SBWMV (G. Brown-Guedira, unpublished data).  These 

WGRC releases may contain additional SBWMV resistance genes.  ‘Heyne’, ‘Jagger’, 

‘Overley’, and ‘Karl92’ are all hard red winter wheat cultivars with resistance to 

SBWMV (A. Fritz, personal communication).  These cultivars may also contain 

additional SBWMV resistance genes different from Sbwmv1. 

 

 
Figure 4.4.  Banding pattern of microsatellite marker Xcfd10 on 23 WGRC wheat 
germplasms, six hard red winter wheat cultivars, and two Aegliops tauschii accessions. 

 

Conclusions 
KS96WGRC40 contains one major SBWMV resistance gene located on 

chromosome 5DL.  It is proposed that this SBWMV resistance gene be named resistance 

to soil-borne wheat mosaic virus 1 and abbreviated as Sbwmv1.  Microsatellite marker 

Xcfd10 is linked to this resistance gene.  Our marker data suggest that the SBWMV 

resistance gene within KS96WGRC40 was derived from Ae. tauschii accession TA2397. 

Kanyuka et al. (2004) identified a soil-borne cereal mosaic virus resistance gene 

in the UK cultivar Cadenza and proposed to name this gene SbmCz1.  Soil-borne cereal 

mosaic virus (SBCMV) is the approved species name for a European mosaic virus which 

causes symptoms similar to those caused by SBWMV in the US.  Some authors consider 

SBCMV to be a European strain of SBWMV; however, Diao et al. (1999) found only 
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70% homology between the two viruses.  It is unclear if European cultivars with 

resistance to SBCMV would also contain resistance to SBWMV or vice versa.  For these 

reasons, it is proposed that genes providing resistance to SBWMV be identified 

differently from those providing resistance to SBCMV. 

SBWMV phenotyping can be difficult in field situations and is dependent on 

adequate distribution of the virus within a field.  Planting susceptible checks throughout a 

field screening can aid in the visualization of the virus distribution.  SBWMV ELISA 

screening can be useful to strengthen phenotypic scoring.  Five RILs from an F5:7 

KS96WGRC40/Wichita population showed no visual symptoms of SBWMV yet 

contained high levels of SBWMV protein as evidenced by SBWMV ELISA absorbance 

values.  Other researchers have reported positive SBWMV ELISA absorbance values in 

resistant cultivars (Armitiage et al., 1990; Hunger and Sherwood, 1985; Hunger et al., 

1989).  To gain a better understanding of the SBWMV resistance mechanism in wheat, 

the observations on these five RILs should be repeated and sampled throughout an entire 

growing season to investigate the accumulation of SBWMV protein within leaf tissue.  
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APPENDIX 1.  PHENOTYPIC DATA COLLECTED ON 
KS96WGRC40 BY WICHITA POPULATION 

Table A1.1.  Phenotypic data collected on 78 F5:7 recombinant inbred lines from a 
KS96WGRC40/Wichita population, Manhattan, KS 2004-2006. 

Genotype 

Mean 
STB 

Severity * 

STB 
Severity 
Planting 
Date 1 ^ 

STB 
Severity 
Planting 
Date 2 ^ 

SBWMV 
ELISA 

Absorbance 
(405 nm) † 

Phenotypic 
Expression of 

SBWMV 
Symptoms § 

RIL 1 6.49 11.97 1.27 0.2205 R 
RIL 2 16.94 24.76 9.17 - S 
RIL 4 28.26 37.46 19.09 0.1770 R 
RIL 5 10.38 15.50 5.27 3.2050 S 
RIL 6 14.96 19.64 10.00 0.1675 R 
RIL 7 9.60 12.43 7.27 3.2040 S 
RIL 8 10.17 13.20 7.13 0.1985 R 
RIL 9 4.93 8.80 1.98 3.2200 S 
RIL 10 12.95 10.94 14.00 0.2095 R 
RIL 13 51.58 63.67 39.50 3.1635 S 
RIL 15 12.05 22.53 1.27 3.1495 S 
RIL 16 42.62 46.40 38.83 2.4120 S 
RIL 17 20.75 31.63 9.87 0.1895 R 
RIL 19 9.27 16.63 1.90 3.1730 S 
RIL 20 21.00 30.43 11.57 3.2160 S 
RIL 21 15.40 26.57 4.23 0.1745 R 
RIL 22 43.24 60.39 22.88 3.1825 S 
RIL 23 15.80 23.93 7.66 0.1680 R 
RIL 24 57.23 63.83 50.91 0.1525 R 
RIL 26 42.52 59.33 25.70 - - 
RIL 27 45.43 59.40 31.47 0.1830 R 
RIL 28 5.70 5.23 6.17 2.3915 S 
RIL 30 9.44 14.20 5.40 0.1715 R 
RIL 31 64.50 71.17 57.83 0.1720 R 
RIL 32 69.71 75.27 82.59 0.1760 R 
RIL 35 66.92 76.00 57.83 3.1970 S 
RIL 37 7.93 11.57 4.31 3.1715 S 

* Mean Septoria tritici leaf blotch (STB) severity averaged across two planting dates.   
^ STB severity averaged from three seedling leaves tested with Kansas isolates of Septoria tritici. 
† Mean absorbance values from two replicate tests, each consisting of combined leaf extracts from five 
random plants of the same genotype grown in a naturally infected SBWMV field in Manhattan, KS, 2006. 
§ Phenotypic expression of SBWMV symptoms at Feekes growth stage 3 in a naturally infected SBWMV 
field in Manhattan, KS, 2005 and 2006.  R, resistant; S, susceptible; -, not rated. 
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Table A1.1 cont.  Phenotypic data collected on 78 F5:7 recombinant inbred lines from a 
KS96WGRC40/Wichita population, Manhattan, KS 2004-2006. 

Genotype 

Mean 
STB 

Severity * 

STB 
Severity 
Planting 
Date 1 ^ 

STB 
Severity 
Planting 
Date 2 ^ 

SBWMV 
ELISA 

Absorbance 
(405 nm) † 

Phenotypic 
Expression of 

SBWMV 
Symptoms § 

RIL 38 40.79 47.61 34.05 3.1620 S 
RIL 41 72.53 72.83 73.03 0.1680 R 
RIL 42 30.37 40.13 20.60 2.8565 S 
RIL 43 39.12 53.03 25.20 0.1735 R 
RIL 46 37.12 45.17 28.92 0.1570 R 
RIL 47 44.03 52.87 35.20 3.2365 S 
RIL 48 7.54 11.05 3.63 3.1690 S 
RIL 49 6.44 8.96 3.43 3.1580 S 
RIL 50 56.35 64.31 48.24 3.1035 S 
RIL 51 9.74 14.53 4.59 0.1970 R 
RIL 52 35.48 41.53 29.43 0.1570 R 
RIL 53 15.11 18.77 11.88 0.1825 R 
RIL 55 26.55 33.00 20.10 0.1980 R 
RIL 56 42.24 53.89 30.09 3.1790 S 
RIL 57 22.17 30.97 13.37 3.1355 R 
RIL 58 17.30 32.50 2.10 2.3410 S 
RIL 59 25.79 36.90 14.27 2.8610 S 
RIL 60 54.60 70.00 39.20 0.1835 R 
RIL 61 52.37 63.70 41.03 0.1860 R 
RIL 62 12.07 21.27 2.71 3.1820 S 
RIL 63 12.60 16.73 8.47 3.0695 S 
RIL 64 35.13 33.10 37.17 3.1645 S 
RIL 67 13.50 20.43 6.57 3.1340 S 
RIL 68 45.12 61.37 28.87 0.1845 R 
RIL 70 6.53 10.13 2.93 0.2170 R 
RIL 71 18.28 29.37 7.20 2.8790 S 
RIL 72 54.76 66.17 42.90 0.1860 R 
RIL 73 12.76 20.08 5.37 0.2100 R 
RIL 76 48.42 52.17 44.67 2.3960 R 
RIL 77 40.77 43.67 37.87 3.0350 S 
RIL 78 7.47 12.93 2.00 3.1645 S 
RIL 79 11.87 20.70 3.03 3.1440 S 
RIL 80 13.98 13.31 15.81 0.1645 R 

* Mean Septoria tritici leaf blotch (STB) severity averaged across two planting dates.   
^ STB severity averaged from three seedling leaves tested with Kansas isolates of Septoria tritici. 
† Mean absorbance values from two replicate tests, each consisting of combined leaf extracts from five 
random plants of the same genotype grown in a naturally infected SBWMV field in Manhattan, KS, 2006. 
§ Phenotypic expression of SBWMV symptoms at Feekes growth stage 3 in a naturally infected SBWMV 
field in Manhattan, KS, 2005 and 2006.  R, resistant; S, susceptible; -, not rated. 
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Table A1.1 cont.  Phenotypic data collected on 78 F5:7 recombinant inbred lines from a 
KS96WGRC40/Wichita population, Manhattan, KS 2004-2006. 

Genotype 

Mean 
STB 

Severity * 

STB 
Severity 
Planting 
Date 1 ^ 

STB 
Severity 
Planting 
Date 2 ^ 

SBWMV 
ELISA 

Absorbance 
(405 nm) † 

Phenotypic 
Expression of 

SBWMV 
Symptoms § 

RIL 81 4.15 7.50 0.80 0.1555 R 
RIL 82 20.88 30.97 10.80 3.1990 S 
RIL 83 50.52 53.20 47.83 0.1830 R 
RIL 85 8.57 12.20 4.93 0.1585 R 
RIL 89 20.13 25.37 15.16 3.1505 S 
RIL 90 14.10 23.27 4.93 3.0935 S 
RIL 91 58.20 75.00 41.40 3.0920 R 
RIL 92 7.08 10.93 3.23 3.1555 S 
RIL 93 54.58 77.50 29.95 0.1910 R 
RIL 94 30.65 40.43 20.87 3.2150 S 
RIL 97 47.60 58.50 36.70 0.1740 R 
RIL 98 58.32 66.17 50.43 3.1960 R 
RIL 99 7.20 10.94 3.46 0.1720 R 
RIL 102 7.65 11.73 3.57 3.1615 S 
RIL 103 40.08 50.83 29.33 3.0635 R 
RIL 106 26.05 28.60 23.50 3.1480 S 
RIL 107 8.15 15.30 1.00 0.1860 R 
RIL 109 44.50 62.89 20.63 3.1960 S 
KS96WGRC40 8.82 12.00 5.63 0.1845 R 
Wichita 78.83 88.33 69.33 3.2520 S 
Overall mean 28.56 36.10 21.03 1.7732  

* Mean Septoria tritici leaf blotch (STB) severity averaged across two planting dates.   
^ STB severity averaged from three seedling leaves tested with Kansas isolates of Septoria tritici. 
† Mean absorbance values from two replicate tests, each consisting of combined leaf extracts from five 
random plants of the same genotype grown in a naturally infected SBWMV field in Manhattan, KS, 2006.  
-, not tested. 
§ Phenotypic expression of SBWMV symptoms at Feekes growth stage 3 in a naturally infected SBWMV 
field in Manhattan, KS, 2005 and 2006.  R, resistant; S, susceptible; -, not rated. 
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APPENDIX 2.  FRAGMENT SIZE OF BANDS PRODUCED 
WITH VARIOUS 6DS PRIMER PAIRS IN THE REGION OF 

H23 AND Cmc4. 
 

Table A2.1.  Estimated base pair size of amplified DNA fragments produced with various 
6DS microsatellite primer pairs in the region of H23 and Cmc4. 

Primer pair Jagger KS96WGRC40 TA2397 KS89WGRC04 TA1695 
CFD049 180 175 300 175 

200 
175 
190 
200 

BARC183 160 
170 

160 null 160 
175 

165 

BARC173 210 210 null 210 200 
CFD075 200 

400 
410 

390 
400 
410 
420 

200 
420 

190 
390 
400 
410 

190 

GDM132 145 
350 
400 

350 145 
350 

140 140 
400 

CFD013 300 275 285 250 
290 

290 

CFD001 240 235 Null 230 230 
CFD042 197 190 Null 200 200 
GWM469 150 

160 
178 

150 
155 
165 
178 

155 150 
170 

150 
170 
180 

BARC054 190 190 185 200 200 
GDM141 125 125 

150 
145 175 175 

GDM036 120 
130 

120 
130 

Null 120 
160 

120 
160 
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