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Abstract

Statistical tools to detect nonlinear relationship between variables are commonly needed

in various practices. The first part of the dissertation presents a test of independence between

a response variable, either discrete or continuous, and a continuous covariate after adjusting

for heteroscedastic treatment effects. The method first involves augmenting each pair of the

data for all treatments with a fixed number of nearest neighbors as pseudo-replicates. A

test statistic is then constructed by taking the difference of two quadratic forms. Using such

differences eliminate the need to estimate any nonlinear regression function, reducing the

computational time. Although using a fixed number of nearest neighbors poses significant

difficulty in the inference compared to when the number of nearest neighbors goes to infinity,

the parametric standardizing rate is obtained for the asymptotic distribution of the proposed

test statistics. Numerical studies show that the new test procedure maintains the intended

type I error rate and has robust power to detect nonlinear dependency in the presence of

outliers. The second part of the dissertation discusses the theory and numerical studies for

testing the nonparametric effects of no covariate-treatment interaction and no main covariate

based on the decomposition of the conditional mean of regression function that is potentially

nonlinear. A similar test was discussed in Wang and Akritas (2006) for the effects defined

through the decomposition of the conditional distribution function, but with the number of

pseudo-replicates going to infinity. Consequently, their test statistics have slow convergence

rates and computational speeds. Both test limitations are overcome using new model and

tests. The last part of the dissertation develops theory and numerical studies to test for no

covariate-treatment interaction, no simple covariate and no main covariate effects for cases

when the number of factor levels and the number of covariate values are large.
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Chapter 1

Introduction

Statistical tools to detect general relationships between variables are commonly needed in

various research disciplines. The following examples describe some relationships between a

response variable and a covariate in the presence of some discrete factors using a random

sample (Xij, Yij) observed from the ith treatment, i = 1, . . . , a, j = 1, . . . , ni.

Example 1

(a) ANCOVA model: Yij = µ + αi + βXij + γiXij + εij, where Xij and εij are independent.

(b) Let Yij = gi(Xij − µ) + εij for some unknown functions gi(·), where Xij and εij are

independent. The dependence of Yij on Xij can be through the main effect of the

covariate or the covariate-treatment interaction on the conditional mean E(Yij|Xij).

Further, E(Yij|Xij) may be arbitrarily linear or nonlinear functions of Xij.

(c) Given Xij, Yij is a Bernoulli random variable with success probability pij, such that the

logit(pij) = gi(Xij) for some unknown functions gi(·). Here Yij is binary and depends

on Xij in the success probability.

(d) Given Xij, Yij is a Poisson random variable with mean pij = gi(Xij). In this example,

Yij depends on Xij through both the mean and variance function.

Example 1 (a) is the commonly used textbook model. The test for no main covariate

effect and covariate-treatment interaction effect can be carried out using the likelihood

1



approach in classical linear models or the nonparametric approach by McKean and Schrader

(1980) (see also the Drop test by Terpstra and Mckean 2005). Only linear relationship is

captured in this model. In practice, the relationship may be nonlinear and the tests based

on assumption of linearity may not detect such relationship. In fact, let Yij and Xij be as

specified in Example 1 (b) with gi(x) being symmetric functions around µi. Assume that

Xij are independent with mean µi and symmetric distribution around µi. Then Xij and Yij

are uncorrelated regardless of the distributions of Xij and εij as long as the above conditions

are satisfied. This is easily verified by noting that (x−µi) ·gi(x−µi) is an odd function and

Xij has a symmetric distribution around µi. Example 1 (b) allows nonlinear relationship

between the response and the covariate. When considering only the data for one treatment

(i.e. a = 1) and where the mean of Y is a continuous function of X, testing the independence

of X and Y is accomplished by testing the hypothesis of constant regression against a general

alternative. This is a special case of lack-of-fit or goodness-of-fit testing in regression, (cf

Eubank and Hart 1992; Müller 1992; Hardle and Mammen 1993; Dette and Munk 1998;

Dette 1999, to mention a few). When there is more than one treatment (a > 1), one may

carry out a test given in the aforementioned references for each treatment and the individual

tests are combined to produce an overall measure of dependence between the response and

covariate. If the conditional distribution of the response variable comes from the exponential

family, then the nonlinear relationship may be studied through generalized additive models

(GAM) using a smoother such as spline or loess (Hastie and Tibshirani 1990), or penalized

smoothing spline (Wood, 2000, 2008). When the conditional distribution is beyond the

exponential family, GAM may be very liberal as shown in the simulation studies presented

in the dissertation.

To incorporate discrete observations (Example 1 (c)), mutual information (MI) is used

as a dependency measure (D’haeseleer et al. 1998; Butte and Kohane 2000). However,

one of the disadvantages of MI is the need to estimate the joint and marginal probability

distribution functions for the response and covariate variables.

When significant dependency is found, a natural question is whether the response variable

depends on the covariate in the same way for all treatments (covariate effect) or depends on

2



the covariate through its interaction with the treatment. Wang and Akritas (2006) proposed

a test for no nonparametric main covariate effect and no treatment-covariate interaction

effect adjusted for the effect of factors using the nonparametric ANCOVA model introduced

by Akritas et al. (2000). The one-way ANCOVA is converted to an artificial two-way

ANOVA design using pseudo-replicates. The asymptotic distribution of their test statistics

have a standardizing rate N1/2k−1/2, where N is the total number of covariate values in

all treatments and k is the number of pseudo-replicates per covariate value. In Wang and

Akritas (2006), k is required to approach infinity at a rate faster than log(N) and typically

at rate N1/2. This rate falls in the range of a regular standardizing rate for nonparametric

test statistics, Nα, where 0 < α < 1/2 (cf. Müller 1992). One disadvantage of their tests

is that the test performance depends on the number of pseudo-replicates and the number

of covariate values in each treatment group, denoted as ni. For example, for ni = 30, the

estimated type I error at level 0.05 in one of their simulation studies is 0.089 when k = 3,

and 0.042 when k = 7. For ni = 50, the type I error estimate is 0.070 when k = 5, and

0.042 when k = 9 (see Table 2 of Wang and Akritas 2006). In addition, the tests in Wang

and Akritas (2006) are very computationally extensive. For ni = 200, it took 263 minutes

to perform a single test for both the covariate and interaction effect. For ni = 500, a

single test of Wang and Akritas (2006) did not finish in 5 days. (The performance is based

on a computer with Intel (R) Pentium M processor 1.86GHz, 1GB of RAM.) With such

limitations, the tests in Wang and Akritas (2006) are not practicable.

This dissertation is divided into three parts. The first part consists of a computationally

feasible nonparametric test to effectively detect general dependency between two variables

after adjusting for the heteroscedastic treatment effects. A fixed number of nearest-neighbor

pseudo-replicates augment each pair of treatment level and covariate value combinations.

The test statistics are constructed as a difference between two quadratic forms, both of

which are common estimates of linear combinations of the variances and conditional vari-

ances. The results are given under the null hypothesis. By using a fixed number of nearest-

neighbors augmentation, the standardizing rate for the new test statistics achieved the rate

for parametric analysis of
√

N .

3



Part 2 of the dissertation consists the tests for no main covariate effect and no covariate-

treatment interaction effect under their corresponding null hypotheses. The same parametric

standardizing rate
√

N is achieved for all statistics. For exactly the same data that took

263 minutes for the Wang and Akritas (2006) test, the new tests finished all the hypotheses

testing within 3.28 minutes; for the test that Wang and Akritas (2006) could not finish in

5 days, it only took 17 minutes for the new tests to perform all hypotheses considered in

this dissertation. Therefore, comparing available literature on nonparametric hypotheses

testing related to the effect of a covariate on the response, the contribution of this research

is not only its parametric standardizing rate for the test statistics, but also on its efficient

computational advantage.

The third part of the dissertation extends the nonparametric tests for no covariate-

treatment interaction, no main covariate and no simple covariate effect to case when both

the treatment level and covariate values in each treatment levels are large.

The rest of the dissertation is organized as follows. Chapter 2 will give a literature review

of the available methods; Chapter 3 will be devoted to the theory and application of the

new nonparametric test to detect general dependency between the response variable and

covariate adjusted for heteroscedastic treatment effects; Chapter 4 presents the theory and

numerical study for the new nonparametric of no main covariate and no covariate-treatment

interaction effect for case when number of treatment level is small; Chapter 5 presents the

theory and numerical study for the test of no main covariate and no covariate-treatment

interaction effect for case when when both the treatment level and covariate values in each

treatment levels are large. Chapter 6 presents a summary and post-dissertation research.
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Chapter 2

Literature Review

In this chapter, reviews of available methods are given in conjunction with their relevance

toward either testing for independence of covariate and response, covariate-treatment inter-

action or main covariate efffects.

2.1 Testing the Relationship of Two Variables Taking

into Account the Existence of Treatment

2.1.1 Likelihood Ratio Test

The most intuitive way of testing for association of two variables is using a likelihood ratio

test. A likelihood ratio test (LRT) is a general test procedure that is based on the ratio of

likelihood functions. It is used to compare the fit of the two models for the data. Generally,

the likelihood ratio test can also be performed under a general linear model (GLM) or a

generalized linear model (GLMz). In this section we discuss two versions of LRT; one for the

linear model, one for the generalized linear model. In both cases, the test for independence

of response and covariate adjusted for treatment is implemented by testing for no covariate

simple effect i.e. test for covariate plus treatment-covariate interaction effect equals zero.

a) Likelihood Ratio Test for the Simple Effect of Covariate when Response

Variable Is Continuous.

Let (Xij, Yij), i = 1, . . . , a, j = 1, . . . , ni, denote pairs of covariates and responses from
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the j-th observation of the i-th treatment. Suppose a model

E(Y|X) = βTX = β0 + β1X1 + β2X2 + β3X1X2, (2.1.1)

is fitted to the data where X1 is a dummy indicator variable for treatment effect, X2 is a

continuous covariate variable and the matrix X is the design matrix and βT = (β0, β1, β2, β3).

To test any null hypothesis H0 regarding the parameter β, use the generalized likelihood

ratio

LR = −2 log

(
ÃL at H0

ÃL at Ha

)
(2.1.2)

= 2(la − l0),

where L is a likelihood function, la = log ÃL at Ha and l0 = log ÃL at H0. When the sample

size is large (2.1.2) has approximated χ2 distribution with degree of freedom equals to the

number of parameters being estimated (Harrel 2002).

The no simple effect of covariate of Y and X is specified by the hypothesis

H0 : β2 = β3 = 0. (2.1.3)

To test (2.1.3) using a likelihood ratio statistic, one can first fit two separate models M0

and M1. Define l0 and l1 as the log likelihoods under the models M0 and M1 respectively,

where the model M0 as E(Y|X) = β0 + β1X1 + β2X2 + β3X1X2 and the model M1 as

E(Y|X) = β0+β1X1. The hypothesis (2.1.3) is tested by using statistic LRstat = −2(l0−l1).

b) Likelihood Ratio Test for the Effect of Covariate on Discrete Response

Variables (Deviance Test)

It is well known that when a response variable is nominal or ordinal, a traditional

regression model will not apply. The generalized linear model has widely been used for

the analysis of categorical responses. The proposed method will accommodate not only
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continuous response variables but also categorical responses. In this section we will discuss

the likelihood ratio test when the response variable is discrete. Let the distribution of

random variables Y1, · · ·YN come from an exponential family, i.e.

f(yi) = exp{yiθi − b(θi)

ai(φ)
+ c(yi, φ)}

where θi and φ are parameters and ai(φ), b(θi) and c(yi, φ) are known functions.

When Yi comes from an exponential family, then

E(Yi) = µi = b′(θi)

Var(Yi) = σ2
i = b′′(θi)ai(φ)

A generalized linear model uses a monotone link function g such that

g(µi) = xT
i β = ηi, (2.1.4)

where xi is a p x 1 vector of explanatory variables and β is a p x 1 vector of parameters.

The parameters β can be estimated by the maximum likelihood estimation method which

then can be obtained by an iterative weighted least squares procedure.

The likelihood ratio test that is used to test the parameter β is called a deviance test.

The deviance test is typically used to compare two nested models and therefore can be used

to test for the significance of parameters. Define the likelihood ratio

λ =
L(bmax;y)

L(b;y)
,

where bmax is the maximum likelihood estimator for βmax under a saturated model or full

model, and b is the maximum likelihood estimator for β under any other model. With the

same assumed distribution and link function, the L(bmax;y) will be larger than any other

likelihood function. The likelihood ratio λ can be used as a tool to test the goodness of fit

for the model. However, the log likelihood of λ defined in (2.1.5) is more widely used in
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practice.

log λ = l(bmax; y)− l(b;y). (2.1.5)

In Dobson (2002), the expression 2 log λ was called a deviance. The deviance can be used

in hypothesis testing for checking whether the alternative model M1 fits better than the null

model M0. The hypotheses are written as; H0 : β = β0 = [β1 · · · βq]
T and Ha : β = β1 =

[β1 · · · βp]
T where q < p < N. The difference of two deviances from the null model and the

alternative is used to test H0 against Ha, i.e

∆D = D0 −D1 (2.1.6)

= 2[l(bmax;y)− l(b0;y)]− 2[l(bmax;y)− l(b1;y)]

= 2 [l(b1;y)− l(b0;y)] .

McCullagh and Nelder (1993) discussed that the exact sampling distribution of (2.1.6) is

not available except in the Normal-theory linear model and certain special cases including

simple design from exponential and inverse Gaussian distribution. Dobson (2002) stated

that if both models fit the data well, D0 ∼ χ2(N − q) and D1 ∼ χ2(N − p). Thus the

estimated sampling distribution for ∆D is χ2(p−q). A large value of ∆D indicates that the

model under the alternative is preferred. However, McCullagh and Nelder (1993) commented

further that the χ2 approximation is not very good even when n →∞. In the case when the

response is normally distributed or comes from other distributions with nuisance parameters

that are not estimated, the data may not fully estimate the deviance. To eliminate the

nuisance parameter, the test statistic

F =
D0 −D1

p− q
/

D1

N − p
(2.1.7)

is used instead of ∆D. When the null hypothesis is correct F will be approximated by a

central F (p− q, N − p) distribution. Thus, a large F value indicates that H0 is not correct.

In R, the procedure is performed using the drop1 function after fitting the two generalized
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linear models. Basically, the function drop1 will calculate the difference of the deviance from

the null model and the alternative model. For instance, to test for no covariate treatment

interaction, drop1 will calculate the difference of the deviance for models containing the

interaction term with that of no interaction term. In addition to the p values calculated

from the deviance test when each term is eliminated, the Akaike’s information criterion

(AIC) value is also provided. So, these AIC values are compared further to find which

model is more appropriate.

To test the simple effect of covariate on the response when the response is discrete,

proceed in a manner similar to part a) above except that the link function is modeled as a

linear function of X instead of E(Y|X) using (2.1.7).

Although the likelihood ratio test for GLM or GLMz can be used to test the dependency

of two variables, the performance of the LRTs is good only when (2.1.1) and (2.1.4) are

satisfied. For continuous response variables the LRT test would not be able to powerfully

detect any nonlinear contribution of X on the conditional mean of Y . A similar situation

applies to the deviance test, i.e., the formulation is not general enough to detect the depen-

dency of the conditional mean of Y on X if there is no linear relationship between g(.) and

X.

2.1.2 Wald Type Test for Discrete Response Variable

In this subsection, we will briefly describe a Wald type test in the context of the generalized

linear model in (2.1.4). The test will be used in the simulation studies to compare with

the performance of our proposed test for Bernoulli response. A Wald statistic using the

maximum likelihood estimate for the model in (2.1.4) is

(b− β)TI(b)(b− β), (2.1.8)

where b is the maximum likelihood estimate for β and I is the information matrix. The

statistics (2.1.8) can then be used to test hypothesis H0 : β = β0 = [β1 · · · βp] = 0 and

Ha : β 6= β0. The asymptotic sampling distribution of (2.1.8) is χ2(p). In the case where
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the response is normally distributed, (2.1.8) is an exact result.

2.1.3 General Additive Models (GAM)

General additive models can be used as an alternative to GLM or GLMz. They allow a

nonlinear dependency of the conditional mean of the response variable on the predictor

variables. Hastie and Tibshirani (1990) discuss the theory and applications of GAM, while

Venables and Ripley (1997) discuss how the GAM are implemented using S-Plus package

called “gam” which is also available in R. In this section we discuss briefly the GAM to

test the independence of response with explanatory variables for both cases of continuous

and discrete response variables. Hastie and Tibshirani (1990) stated that the goal for the

additive model is to generalize the GLM in the sense that the GAM will fit a general model

not necessarily linear to the data. The idea is to let the data dictate the relationship of

response variable and the explanatory variable. The general additive model (GAM)is defined

as:

Y = α +

p∑
j=1

fj(Xj) + ε, (2.1.9)

where Xj’s are independent of ε, E(ε) = 0 and Var(ε) = σ2. The function fj’s are assumed

to be smooth and could be estimated by a “scatter plot smoother” (Hastie and Tibshirani

1990). These
∑p

j=1 fj(Xj) are viewed as the estimates for p-variate response surfaces. There

are many ways of estimating these fj’s. One of the ways is to estimate each function by an

arbitrary smoother (Hastie and Tibshirani 1990). These smoothers include cubic smoothing

splines, locally-weighted running-line, kernel and loess. However Venables and Ripley (1997)

commented that these methods are very computer intensive.

The independence of response and covariate variables can be tested by an approach as

in LRT except that the estimates of the parameters are obtained from GAM methods which

may not involve the maximum likelihood estimation method. When the fj’s are linear, a

least square method is used for estimation. In R the additive model is performed by the

function “gam” which is included in the package “gam”. The GAM can also be used for
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discrete response variables.

Hastie and Tibshirani (1990) discussed how to fit the additive models to the data with

the backfitting algorithm below;

Backfitting Algorithm

(i) Initialize: α = ave(yi), fj = f 0
j , j = 1, . . . , p

(ii) Cycle: j = 1, . . . , p, 1, . . . , p, . . .

fj = Sj(y − α−∑
k 6=j fk|xj)

(iii) Continue (ii) until the individual functions do not change.

The function Sj(y|xj) is the smooth function of y on xj. Basically, in the backfitting

algorithm, we fit a smooth function to the residual Y − α − ∑
k 6=j fk|xj) against xj using

scatterplot smoother. It is repeated until fj does not change. Penalized smoothing spline

(Wood 2000, 2008) can also be used to estimate the fj.

Instead of equation (2.1.9), the alternating conditional expectation method (ACE) con-

siders

θ(Y ) = α +

p∑
j=1

fj(Xj) + ε,

where θ is an invertible smooth function. ACE based the choice of θ and fj by maximizing

the correlation between α +
∑p

j=1 fj(Xj) and θ. The ACE algorithm was based on Breiman

and Friedman (1985).

2.1.4 Drop test

From a nonparametric approach, robust nonparametric methods discussed by McKean and

Schrader (1980) (see also Hettmansperger and McKean (1998) sec 3.6) can be used as an

alternative to the traditional linear model. Therefore, the methods can accommodate the ex-

istence of treatment effects in the models. Terpstra and Mckean (2005) discussed a few rank-

based linear model approaches and provided the R code for some of the techniques discussed.
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These R codes can be downloaded from http://www.stat.wmich.edu/mckean/HMC/Rcode.

These rank-based approaches are based on weighted Wilcoxon procedures. A robust AN-

COVA model can be performed by a “drop in dispersion test” (Terpstra and Mckean 2005)

which they also called a drop test.

Briefly discussed here is the procedure for the drop test as explained in Terpstra and

Mckean (2005). The notation also follows from Terpstra and Mckean (2005). The general

linear model is written as;

Yi = β0 + xT
i β + ei (2.1.10)

where Yi is the ith response observation and i = 1, . . . , n. xi denote a p x 1 vector of

explanatory variables, β = (β1, β2, . . . , βp)
T is a p x 1 vector of regression parameter and

β0 is the intercept parameter. For the rank-based analyses of linear models, the εi are

independent and identically distributed (iid) from a continuous distribution function F

such that F (0) = 1/2 and the corresponding density function f such that f(0) > 0.

Terpstra and Mckean (2005) stated that when F deviates from normal distribution, the

Wilcoxon procedure outperformed the least square procedures (LS). The Wilcoxon proce-

dure basically estimates β by finding the solution that minimizes the dispersion function;

DR(β) =
n∑

i=1

[
R[εi(β)]− n + 1

2

]
εi(β), (2.1.11)

where εi(β) = Yi −XT
i β and R[εi(β)] denotes the rank of εi(β) among {εj(β)}.

According to Terpstra and Mckean (2005), instead of minimizing (2.1.11), an alternative

objective function

DWR(β) =
∑

1≤i<j≤n

bij|εj(β)− εi(β)| (2.1.12)

is minimized to accommodate the possibility that the independent variable comes from

an observational study and might be contaminated. This is the case since the Wilcoxon

procedure is robust only in regard to a response variable. In (2.1.12), bij is the weight in
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the i, j comparison. Hence the solution that minimized (2.1.12) is called a WW-estimate.

Hettmansperger and McKean (1998) showed that when bij = 1 for i 6= j and 0 otherwise,

DWR(β) = 2DR(β).

According to Terpstra and Mckean (2005), the WW estimate is computed by using the

L1 regression routine by treating bij(Yj − Yi) and bij(Xj − Xi) as the response variables

and design points respectively. The package quantreg written by Roger Koenker is used

to calculate the WW estimate because the L1 regression estimate is equivalent to quantile

regression estimates implemented in the quantreg package. The quantiles regression was

introduced by Koenker and Basset (1978).

Testing regarding the parameter β is done by the hypotheses;

H0 : Aβ = 0 versus H0 : Aβ 6= 0, (2.1.13)

where A is q x p matrix of full row rank. The drop in dispersion test statistic

SRD =

√
12

nτ̂
[DWR(β̂r)−DWR(β̂f )] (2.1.14)

is used to test (2.1.13). In (2.1.14), τ̂ is the consistent estimator of τ , where τ = {√12E[f(ε1)]}−1.

In Terpstra and Mckean (2005), τ = 1/2. The β̂r is the Wilcoxon (WIL) estimate for β in

the reduced model and the β̂f is the Wilcoxon (WIL) estimate for β in the full model.

Then, SRD
d→ ∑q

i=1 λiχ
2
i where λ1, λ2, . . . , λq are q positive eigenvalues of V(C−1−C+),

where

C+ =

[
C−1

r 0

0 0

]
,

and C = limn→∞ 1
n
XTWX, where W is n x n matrix whose elements are

wij =

{
− 1

n
bij ; i 6= j

1
n

∑n
k=1 bik ; i = j.

Hettmansperger and McKean (1998) suggested bootstrapping or simulation to find the p-
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value for test statistic (2.1.14). Because the drop test only considers Wilcoxon weight bij = 1,

all the q eigenvalues are all equal to 1. Thus the limiting distribution for SRD is χ2(q).

However Terpstra and Mckean (2005) showed in the simulation studies that the test that

rejects H0 if FR = SRD/q > F1−α(q, n − p − 1) is a better test for the testing hypotheses

(2.1.13).

2.2 Testing Relationship of Two Variables without

Incorporating Treatment in the Model

This section describes some of the methods that could be used to test the independence of

two variables but without incorporating the treatment effect in the model, i.e. treatment

level a = 1. These methods include parametric approaches and nonparametric approaches.

2.2.1 Goodness of Fit Tests

Goodness of fit tests could be performed to assess the relationship of two variables. Tra-

ditionally, in order to investigate whether there exists a relationship between two variables

one would create a scatter plot, followed by the traditional parametric regression to analyze

the data. A goodness of fit test then is used to test the fit of the postulated regression

model. However, the existence of treatment in the model will be overlooked if the goodness

of fit test for regression is to be used to see whether the two variables are related or not.

There is already much literature discussing goodness of fit; among them, Eubank and

Hart (1992), Muller (1992), Azzalini and Bowman (1993), Hardle and Mammen (1993),

Dette and Munk (1998), Dette (1999), Akritas and Papadatos (2004).

Consider the regression model used in Eubank and Hart (1992):

Yj = g(xj) + εj, j = 1, . . . , n, (2.2.1)

where (x1, Y1), . . . , (xn, Yn) are the observed data, 0 ≤ x1 < x2 < · · · < xn ≤ 1 are the

fixed design points, εj’s are i.i.d random variables such that E(εj) = 0 and Var(ε1) = σ2.
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Assume that g(x) =
∑p

j=1 βjtj(x) for all x ∈ [0, 1]. Those goodness of fit tests make use

of both parametric regression and nonparametric regression. The nonparametric regression

approaches used in the above mentioned literature directly or indirectly deal with some

smoothing parameter or bandwidth if using kernel density method, thus are generally com-

putationally intensive. Testing if the conditional mean of Y depends on X in the model

(2.2.1) is done by testing H0 : g(·) = β. Basically, the goodness of fit test is a special case of

GAM where p=1. However, this dissertation does not compare the proposed test with the

goodness of fit test.

2.2.2 Mutual Information (MI)

An approach that uses directly the concept that two variables are independent when the

joint density function of the two variables is a product of the marginal density functions is a

mutual information (MI) measure. D’haeseleer et al. (1998) and Butte and Kohane (2000)

consider using MI as a dependency measure. This measure is used to detect a more general

relationship between two variables including cases of discrete response variable.

For two continuous random variables X and Y, MI is defined as

I(X; Y ) =

∫

x

∫

y

f(x, y) log
f(x, y)

f(x)f(y)
dxdy,

where f(x, y) is the joint density of X and Y and f(x) and f(y) are the marginal densities

of X and Y respectively. Note that X and Y are independent if and only if I(X; Y ) = 0.

Furthermore, the higher the MI the more closely the two variables X and Y are associated

with one another. In order to estimate MI, the marginal density of X and Y and the joint

density of X and Y will have to be estimated. Kraskov et al. (2004) discussed methods of

estimating MI based on kth nearest neighbor statistics. Another common method to estimate

MI is to use the density functions by kernel density estimators discussed in Steuer et al.

(2002). Because estimating MI entails estimating density functions, it is cost ineffective. In

addition to estimating the density functions, there is no theory available for the distribution

of the estimated MI. Furthermore, it is not clear how to extend the approach of MI measures
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to include the presence of treatment effects in the model. Test procedures developed for the

dissertation not only eliminate the need to estimate the probability density function (as in

MI) but also derive the asymptotic distribution of the test statistics and take into account

the existence of treatment effects in the model.

2.2.3 Pearson’s Correlation, Spearman’s ρ and Kendal’s τ

A correlation based approach such as Pearson’s correlation, Spearman’s ρ and Kendal’s

τ could also be used to assess a monotone relationship of two variables. However, these

methods do not incorporate any treatment effect in the models. Although the Spearman’s

ρ and the Kendal’s τ do not assume a specific distribution assumption for the variables, the

simulation study shows that these two tests do not perform well when the relationship of Y

and X is quadratic.

2.3 Analysis of Covariance (ANCOVA)

A more common model that could be used as a basis of detecting the relationships of two

variables in the existence of treatments in the model is the traditional analysis of covariance

(ANCOVA). For a response variable Y and a covariate variable X, the traditional ANCOVA

model is yij = µ + µi + βi xij + εij, where εi ∼ N(0, σ2) and i = 1, . . . , a and j = 1, . . . , ni.

In this model the slope in each treatment group is allowed to differ. In this dissertation,

the aforementioned method is labeled as a CF test. Standard assumptions of ANCOVA

model include homogeneity of variances and normality in the error term. The hypothesis

H0v : β1 = · · · = βa = 0 could be used to test for no simple covariate effect. When H0v

is true, the conditional mean of the response variable Y does not vary linearly with the

covariate. Clearly the ANCOVA model could be used as a test for the existence of linear

relationships of two continuous variables but is not suitable for testing general association.

In this dissertation, the test of no main covariate and no covariate-treatment interaction

effects for the ANCOVA model is compared to that of the proposed test in Chapter 4 and

Chapter 5. Because the ANCOVA model is a parametric approach, its inferences depend
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on the satisfaction of assumptions such as constant variance of error. Often, the data do

not satisfy these parametric assumptions. The proposed method should be free from any

specific parametric distribution assumptions.

2.4 Nonparametric Methods for ANCOVA Model

In general, a test of association between two variables in the presence of treatment can be

formulated by a one-way ANCOVA model. Because the proposed test is developed under a

nonparametric model, which makes use of ANCOVA setting, this Section will discuss a few

nonparametric methods and some factors that motivate the construction of the proposed

nonparametric method.

2.4.1 Fully Nonparametric (FNP) Model

The proposed tests for general dependency between two variables in the presence of treat-

ment effects could be formulated under the fully nonparametric model (FNP) initially used

for nonlinear analysis of covariance introduced by Akritas et al. (2000). Let (Xij, Yij),

i = 1, . . . , a, j = 1, . . . , ni, denote the set of covariates and responses from the j-th obser-

vation of the i-th group. The FNP model assumes that the conditional distribution of Yij

given Xij = x depends on the treatment group i and the covariate value x, i.e.,

Yij|Xij = x ∼ Fix(y). (2.4.1)

Akritas et al. (2000) defined the model (2.4.1) to be completely nonparametric because

there is no specification how the Fix(y) changes for any i and x. This model can be used

to test the independence of Y and X because if Y is independent of X the conditional

distribution of Y given X = x will not depend on X. Akritas et al. (2000) further discussed

that for an arbitrary cumulative distribution of X, GX(x), sets

F i·(y) =

∫
Fix(y)dGX(x), and F ·x(y) =

1

a

a∑
i=1

Fix(y). (2.4.2)
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They suggested the following possible hypotheses of interest:

No main treatment effect , or Fi·(y) do not depend on i; (2.4.3)

No main covariate effect , or F·x(y) do not depend on x; (2.4.4)

No treatment covariate interaction effect , or Fix(y) = Fi·(y) + Kx(y); (2.4.5)

No simple treatment effect , or Fix(y) do not depend on i; (2.4.6)

No simple covariate effect , or Fix(y) do not depend on x, (2.4.7)

where Kx(y) in (2.4.5) is a function independent of i. The hypotheses (2.4.3) and (2.4.6) were

considered by Wang and Akritas (2006). Akritas, Antoniou, and Wang (2003) considered

testing (2.4.3) and (2.4.5), while Wang and Akritas (2006) tested (2.4.4) and (2.4.5).

Furthermore, Akritas et al. (2000) decomposed the conditional cumulative distribution

function into

Fix(y) = M(y) + Ai(y) + Dx(y) + Cix(y). (2.4.8)

where

M(y) = a−1

a∑
i=1

F i·(y), Ai(y) = F i·(y)−M(y), Dx(y) = F ·x(y)−M(y),

and Cix(y) = Fix(y)−M(y)− Ai(y)−Dx(y).

Note that this notation is similar in Wang and Akritas (2006). In this decomposition,

similar to the traditional ANCOVA model, Ai(y) is the nonparametric covariate-adjusted

main effect of treatment group i, Dx(y) is the nonparametric main effect of the covariate

value x, and Cix(y) is the nonparametric interaction effect between treatment group i and
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covariate value x. From the above decomposition, the hypotheses

H0(A) : Ai(y) = 0 for all x and all y (2.4.9)

H0(D) : Dx(y) = 0 for all x and all y, (2.4.10)

H0(C) : Cix(y) = 0 for all x and all y, (2.4.11)

H0(A + C) : Ai(y) + Cix(y) = 0 for all x and all y, (2.4.12)

H0(B) : Dx(y) + Cix(y) = 0 for all x and all y, (2.4.13)

can also be used to test the hypotheses (2.4.3), (2.4.4), (2.4.5), (2.4.6) and (2.4.7) respec-

tively.

Akritas et al. (2000) proposed a test for nonlinear higher-way ANCOVA under the FNP

model. The hypotheses discussed were: no main treatment effect, no simple treatment effect

and no interaction between treatments effects adjusted for covariate. The test developed in

Akritas et al. (2000) can be used as an alternative to the classical ANCOVA because it allows

nonlinear relationships between response and covariate and is completely nonparametric.

Hence it does not require the assumptions needed for classical ANCOVA. However Akritas

et al. (2000) did not discuss how this FNP model can be used in testing the independence

of response and covariate adjusted for treatments, i.e. testing for no simple covariate effect

adjusted for treatment.

2.4.2 FNP Model in Higher-way ANCOVA with at Most Three

Covariates

The methodology of Akritas et al. (2000) is extended to include two and three covariates in

Tsangari and Akritas (2004). Tsangari and Akritas (2004) also discussed the same hypothe-

ses as in Akritas et al. (2000) with the addition of two and three covariates. Akritas et al.

(2000) and Tsangari and Akritas (2004) approaches rely on consistent estimation of the

conditional distribution function of the response given covariate values using a Nadaraya-

Watson kernel estimator. In addition to the difficulty in determining the window bandwidth
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k, they require the number of observations in each window to go to infinity. However, us-

ing such bandwidth also entails the number of observations per window to be of order

k(k−1/4)p, where p is the number of covariates in the model (Tsangari and Akritas 2004),

see also Akritas, Antoniou, and Wang (2003). This term goes to infinity unless there are no

more than three covariates in the model and therefore the method cannot be extended to

handle cases with more than three covariates. In practice, many analyses require the use of

multiple factors and multiple covariates.

2.4.3 FNP Model in Testing No Main Covariate and No Main

Covariate-treatment Interaction Effects.

Wang and Akritas (2006) proposed a test for nonparametric no main covariate effect and

no covariate-treatment interaction effect adjusted for treatment using the FNP for one-way

ANCOVA model. The test in Wang and Akritas (2006) was developed based on treating a

covariate as a factor with a large number of levels thus changing the setting of a one-way

ANCOVA model into a two-way hypothetical ANOVA model. With this modification, the

setting induces at most one observation in each cell, thus the need to introduce pseudo-

replicates. The simple one-way ANCOVA design can now be treated as a two-way ANOVA

design with one observation per cell. The pseudo-replicates are created within each cell

in the two-way hypothetical ANOVA model. This method of creating pseudo-replicates

is used both in Akritas et al. (2003) and Wang and Akritas (2006). First pool all the

covariate values Xij and put them in ascending order and relabel them as: X1, X2, . . . , XN ,

where N =
∑a

i=1 ni. These ordered pooled covariate values act as a factor with levels

X1, X2, . . . , XN in the hypothetical two-way ANOVA design.

To create some replications in the analysis, a window or cell Cic of size k centered at

Xc is created, where c = 1, 2, · · ·, N. The window Cic will consist of k paired observations

(Xij, Yij) whose covariate values Xij are closest to Xc in ranks, among Xi1, · · ·, Xini
such
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that Yij will be in the Cic window if the corresponding Xij satisfy

|F̂X,i(Xij)− F̂X,i(Xc)| ≤ k − 1

2ni

,

where F̂X,i(x) is the empirical cumulative distribution function of X in the ith group. If k

is odd, then the window is symmetric about the center. If (Xc ∈ group i) the window Cic

will include (Xc, Yij) whereas if (Xc /∈ group i), the window Cic will be centered at Xij,

which is closest to Xc.

To differentiate between the original observation Yij and the observation in the hypo-

thetical ANOVA, label the t-th observation in the (i, c) of the hypothetical ANOVA by Uict.

Note that after the augmentation, Uict’s are not independent.

The test statistics in Wang and Akritas (2006) are constructed in a manner similar to

the traditional ANOVA model. Define

MSTD(U) = ak(N − 1)−1

N∑
c=1

(
U ·c· − U ···

)2
(2.4.14)

MSTC(U) = k(a− 1)−1(N − 1)−1

N∑
c=1

a∑
i=1

(
U ic· − U i·· − U ·c· + U ···

)2
, (2.4.15)

MSE(U) = {Na(k − 1)}−1

a∑
i=1

N∑
c=1

k∑
t=1

(
Uict − U ic·

)2
. (2.4.16)

Wang and Akritas (2006) studied the asymptotic distribution of

N1/2k−1/2TD=N1/2k−1/2(MSTD−MSE) and N1/2k−1/2TC = N1/2k−1/2(MSTC −MSE)

which are used to test the hypotheses (2.4.10) and (2.4.11) respectively. In this dissertation,

these tests are referred to as WA tests. The theory behind the result in Wang and Akritas

(2006) assumes that the number of pseudo-replicates k, used in each cell (window) goes to

infinity as the total number of pooled covariate values N becomes large. Specifically, their

test statistics have a standardizing rate of N1/2k−1/2. Even though Wang and Akritas (2006)

developed asymptotic distribution for testing no main covariate and no main covariate-

treatment interaction effect, their simulation studies only show the observed type I error

and power for testing no covariate-treatment interaction effect, not for test of no main
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covariate effect.

Their simulation studies show that the performance of the WA test depends on the

window size being used and the number of covariate values in each treatment group, denoted

as ni. From Table 2 of Wang and Akritas (2006) it is seen that the observed type I error

is liberal for small k and as the window size increases the observed type I error rate seems

to be conservative. For example, when ni = 30 and k = 3, the observed type I error rate is

0.089 and when k = 7, the observed type I error rate is 0.042. Another drawback associated

with the WA test is that the requirement of the number of pseudo-replicates increases with

ni, thus can escalate the computation time dramatically as shown in the simulation studies

in Section 4.5.

Furthermore, with multiple covariates Wang and Akritas (2006) suggested to proceed

the same way as in a single covariate case by treating the covariate factor as a whole.

However, the covariate effect of interest to an applied researcher is often a specific covariate

rather than the combined values of all the covariates. In addition, Wang and Akritas

(2006) suggest constructing nearest neighbors windows in the same way as with the single

covariate case, which augments the window with pseudo-replicates of size going to infinity.

With high dimensional setting, as the number of covariates in the data set increases, the

points spread out with additional dimensions that make the sample space sparse and this

makes it impractical to use the tools that require window size to go to infinity (Parson et al.

(2004)). This phenomenon is called the curse of dimensionality. Figure 2.1 illustrates this

phenomenon where increasing dimensions cause a decrease in the number of data-points to

be captured in a unit line, square or cube.

Hastie et al. (2001) discussed further the curse of dimensionality problem. Suppose a

nearest neighbor approach was used to capture r percent of the observation from a uniformly

distributed in a p-dimensional unit hypercube. Then, the expected edge length is ep(r) =

r1/p. When p=10, e10(0.01) = 0.63 and e10(0.1) = 0.8 with total range of each input is 1.0.

This means that to capture 1% or 10% of the data to form a local average, 63% or 80% of

each input variable must be used and such a neighborhood is not local anymore. Thus, high

dimensional analysis is susceptible to the problem of curse of dimensionality.
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Figure 2.1: Curse of Dimensionality
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More importantly, besides the unsuitability of the WA test for high dimensional data,

Wang and Akritas (2006) only derived tests for no main covariate and no main covariate-

treatment interaction effects separately. They did not discuss a test for no simple covariate

effect adjusted for treatment.

2.4.4 Further Comments on Wang and Akritas (2006)’s

Wang and Akritas (2006) stated that the performance of their test is generally good when

the window size is
√

N but should be of order O(N3/5). However, the simulation studies

performed in Wang and Akritas (2006) paper are limited to the use of smaller window sizes

than the recommended value of
√

N . For example, in Table 2 of Wang and Akritas (2006),

when ni = 30 which corresponds to N = 60 for a = 2, the largest window size that is used

in the simulation is 7, while the recommended window size is between 7.7 and 11.7. Because

the assumption used for the theory is large k, we expect that the WA tests use the larger

window sizes or at least the upper bound of the specified value. If Wang and Akritas (2006)

included window sizes larger than 7 the power of the test would be smaller than 0.742 based

on the pattern displayed in the table. Similarly with ni = 50, N = 100 and a = 2, the

largest window size used is 9, while the recommended window size is between 10 and 15.8.

The power of the WA test seems to decrease when the window size is increased.
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Chapter 3

Method of Detecting Dependency of

Two Variables in the Presence of

Treatment Effect

This chapter discusses the construction of the proposed nonparametric test of independence

between two variables after adjusting for heteroscedastic treatment effects. Some applica-

tions and simulation studies are presented. The content of this chapter along with some

additional materials are published in the Canadian Journal of Statistics, Volume 38, Issue

3, 2010, pages 408-433.

3.1 Introduction

Correlation based approaches such as Pearson’s correlation, Spearman’s ρ, or Kendall’s

τ evaluate linear relationship between two variables without accounting for the effect of

factors. The method of alternating conditional expectations (ACE, Breiman and Friedman

1985) is an extended correlation approach that transforms both the response and covariate

to achieve maximum correlation. Examples that allow hypothesis testing include likelihood

methods from linear or generalized linear models, drop test (Terpstra and Mckean 2005),

generalized additive models (GAM) using a smoother such as spline or loess (Hastie and

Tibshirani 1990), or penalized smoothing spline (Wood 2000, 2008).
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These approaches have provided flexible tools to discover the dependency between vari-

ables. However, there are often practical data that do not satisfy the assumptions required

by these methods. For example, correlation based approaches typically are not sensitive

enough to pick up nonlinear dependence; likelihood based methods are restrictive to the

distributional assumptions; ACE assumes that conditional on the transformed covariates,

the transformed response variable follows a normal distribution with constant variance; the

GAM approaches are only applicable to exponential families and outliers can seriously dis-

tort the transformations leading to inaccurate inference. In a particular example (see the

EFT study in subsection 3.3.2), all these methods except ACE found a significant rela-

tionship between the response and covariate with an outlier (influential observation) in the

data and producing a contrary result when the outlier is replaced by a median response. A

simulation study discovered that the type I error rate at level 0.01 in the presence of outliers

produced from mixture distributions with a lognormal component is as high as 0.206 for the

GAM methods, and 0.748 for the correlation based approaches. Robust methods valid for

distributions beyond an exponential family that are resistent to outliers while maintaining

high power to detect nonlinear dependence are developed here.

Whether two variables are independent or not is inherently defined through distribu-

tion functions. One may consider using mutual information (MI) as a dependency measure

(D’haeseleer et al. 1998; Butte and Kohane 2000). The MI measures the expected distance

(under the joint distribution) between the log of the joint probability density function (pdf)

and the log of the product of the marginal density functions. It equals zero if and only if

the variables are independent. Before the MI can be used, the joint and marginal pdfs need

to be estimated from the same set of data. In addition, there is no MI theory available

to determine the threshold for significance of the dependence. Other directions for testing

mutual independence without estimating the pdfs are through combinations of asymptoti-

cally independent Cramér-von Mises statistics derived from a Möbius decomposition of the

empirical copula process (Deheauvels 1981; Genest and Rémilland 2004, and the references

therein), or based on a normalized estimated distance between the joint and the marginal

characteristic functions. When there are heteroscedastic treatment effects, it is not clear
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how to extend these tests to determine independence adjusted for treatment effects.

This chapter presents a nonparametric test that effectively detects general dependence

between two variables after adjusting for the heteroscedastic treatment effects. A fixed

number of nearest-neighbor pseudo-replicates will be used to augment each treatment level

and covariate value combination. Test statistics are constructed by comparing two quadratic

forms, both of which are common estimates of linear combinations of the variances and

conditional variances. The asymptotic results are obtained under the null hypothesis. Note

that the regular standardizing rate for a nonparametric test statistic is Nα, where 0 < α <

1/2. By using a fixed number of nearest-neighbors augmentation, the standardizing rate of

the test statistics achieved the rate for parametric analysis
√

N under the null hypotheses.

The empirical studies show that the proposed test maintains intended type I error control

while achieving competitive or better power compared to available methods when the data

have a certain chance to have unusual observations from a skewed distribution such as a

lognormal distribution.

3.2 Main Results

3.2.1 Construction of Test Statistics

The following notation and conditions will be used throughout this dissertation. Let (Xij, Yij),

j = 1, . . . , ni, be a random sample from treatment i. Suppose Yij|Xij = x ∼ Fi(y|x) for

some unknown conditional distribution function Fi(y|x).

Assume:

• The fourth conditional central moments of Yij given Xij = x are uniformly bounded

for all i and x.

• Let fX,i(x) and FX,i(x) be the marginal density and distribution functions of Xij.

Assume FX,i(x) is differentiable at all x.

• Denote F̂X,i(x) = n−1
i

∑ni

j=1 I(Xij ≤ x) the empirical distribution of Xij. Assume that

min1≤i≤a ni and max1≤i≤a ni are of the same order. Denote X = (X11, . . . , X1n1 , . . . , Xana)
′
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to be the vector of all covariate values.

Independence between the two variables in all treatments is described in hypothesis:

H0: Fi(y|x) does not depend on x, for all i, y. (3.2.1)

Note that the difference between this problem and the testing of independence using a

single sample from the same distribution is that the data in different treatment levels have

different distributions. To effectively use these data, the samples from all treatment levels

should contribute to the power of the test and therefore reduce the sample size requirement

for each treatment. To achieve this, augment each treatment under the null hypothesis to

have more observations using k−nearest neighbors. For convenience, take k to be an odd

number. Specifically, treatment i and covariate value Xi1j1 define a cell indexed by (i, c),

where c =
∑i1

i′=1 ni′−ni1 + j1. In other words, for each i, there are N =
∑a

i1=1 ni1 cells as i1

goes from 1 to a and j1 goes from 1 to ni1 . The set of indices for the covariate values used

in the augmented cell (i, c) is denoted by Cic. Augments cell (i, c) using observations from

treatment i as follows.

1. For i1 = i, the cell (i, c) contains (Xij1 , Yij1). In addition, select k − 1 pairs of other

observations in treatment i whose covariate values are among the k-closest to Xij1

in rank. That is, (Xij, Yij) is selected for augmentation of cell (i, c) if and only if

ni|F̂X,i(Xij1)− F̂X,i(Xij)| ≤ k−1
2

.

2. For i1 6= i, i.e., (Xi1j1 , Yi1j1) is not in treatment i. First find the covariate value in

treatment i that is closest to Xi1j1 in absolute difference. Denote Xij to be the closest.

Then, select additional k − 1 pairs of observations in treatment i such that their

covariate values are among the k closest to Xij in ranks centered at the rank of Xij.

Thus, (Xij′ , Yij′) is selected to augment cell (i, c) if ni|F̂X,i(Xij′)− F̂X,i(Xij)| ≤ k−1
2

.

The first part is similar to the idea used in the k-nearest-neighbor regression with a single

identically distributed independent sample using a special weight function defined through
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the ranks of the covariate values. The extra augmentation in the second part is aimed to

capture possible dependence of the response variable on the covariate through its interactions

with the factor. In both cases, the augmented response values in cell (i, c) are denoted as

Uict, t = 1, . . . , k. Note that under the null hypothesis, the distribution of Yij does not depend

on Xij. The k-nearest neighbors are selected based on the covariate values. Therefore, the

augmentation simply adds more observations under the null hypothesis. However, under the

alternative, the conditional distribution of Yij depends on Xij. Then such an augmentation

will add some observations that increase the between-cell variations. The difference, BN −
WN , between the average between- and within-cell variations for all treatments using the

augmented observations is used as a test statistic, where BN and WN are defined below with

U ic· = k−1
∑k

t=1 Uict, U i·· = N−1
∑N

c=1 U ic· :

BN = ka−1(N − 1)−1

N∑
c=1

a∑
i=1

(
U ic· − U i··

)2

= ka−1(N − 1)−1

a∑
i=1

a∑
i1=1

ni1∑
j1=1

[
k−1

ni∑
j=1

YijI

(
ni|F̂X,i(Xi1j1)− F̂X,i(Xij)| ≤ k − 1

2

)
−

(Nk)−1

a∑
i2=1

ni2∑
j2=1

ni∑
j=1

YijI

(
ni|F̂X,i(Xi2j2)− F̂X,i(Xij)| ≤ k − 1

2

)]2

,

WN = {Na(k − 1)}−1

a∑
i=1

N∑
c=1

k∑
t=1

(
Uict − U ic·

)2

= {Na(k − 1)}−1

a∑
i=1

a∑
i1=1

ni1∑
j1=1

ni∑
j=1

[
YijI

(
ni|F̂X,i(Xi1j1)− F̂X,i(Xij)| ≤ k − 1

2

)
−

k−1

ni∑
j2=1

Yij2I

(
ni|F̂X,i(Xi1j1)− F̂X,i(Xij2)| ≤

k − 1

2

)]2

.

The idea seems straightforward. However, the technical difficulty is high as the aug-

mented observations {Uict, c = 1, . . . , N, t = 1, . . . , k} are not independent since the obser-

vations are repeatedly used during the augmentation. If k is allowed to go to infinity with

N , then techniques from nonparametric smoothing such as kernel regression is borrowed as

the k here would play a similar role as the bandwidth for kernel regression. For a fixed finite
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k, the inference basically relies on a combination of counting techniques, theory for spacings

of order statistics, and some theory for quadratic forms.

3.2.2 Results Under the Null Hypothesis

To obtain the asymptotic distribution of
√

N(BN −WN), first find a projection of it. The

standardizing rate is
√

N where k is finite. Note that even though Uict are independent for

different i, Hájek’s projection cannot be applied because that projection will not simplify

the problem where a is finite. Instead, by denoting Zict = Uict−E(Uict|X), project BN onto

the space span by the functions of

{Zc, c = 1, . . . , N} where Zc = (Z1c1, · · ·, Zack)
′. (3.2.2)

Note that Zc, c = 1, . . . , N , are not independent. Hence this projection is not implemented

in a traditional sense. Meanwhile, BN does not have to be centered before the projection

as is required in Hájek’s projection. Instead, BN and WN have the same expectation under

the null hypothesis if the cell observations are true replicates. Proceed by partitioning the

quadratic form BN into a major summation over c and another summation over c and c′,

c 6= c′, i.e., under H0,

BN = PB(Z) + SB(Z), where Z = (Z′1, . . . ,Z
′
N)′,

and

PB(Z) =
k

aN

a∑
i=1

N∑
c=1

Z
2

ic·, SB(Z) = − k

aN(N − 1)

a∑
i

N∑

c 6=c′
Zic·Zic′·. (3.2.3)
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Then PB(Z) is a projection of BN onto the space in (3.2.2) and BN−WN = (PB(Z)−WN)+

SB(Z) = TB + SB(Z), where

TB = [a(k − 1)N ]−1

a∑
i=1

N∑
c=1

k∑

t6=t′
ZictZict′ (3.2.4)

= [a(k − 1)N ]−1

a∑
i=1

N∑
c=1

k∑

t6=t′
(Uict − E(Uict|X))(Uict′ − E(Uict′|X))

= [a(k − 1)N ]−1

a∑
i=1

ni∑

j 6=j′
(Yij − E(Yij|X))(Yij′ − E(Yij′|X))

N∑
c=1

I(j ∈ Cic)I(j′ ∈ Cic)

= [a(k − 1)N ]−1

a∑
i=1

ni∑

j 6=j′
(Yij − E(Yij|X))(Yij′ − E(Yij′|X))Kijj′ , (3.2.5)

where

Kijj′ =
N∑

c=1

I(j ∈ Cic)I(j′ ∈ Cic). (3.2.6)

Note that the term in (3.2.4) is closely related to the expected correlation between every pair

of response values with a correlation induced by their dependence on X. The Kijj′ in (3.2.6)

plays the role of a weight function which connects the response locally with the empirical

distribution function of Xij. The TB term in (3.2.4) is more intuitive than
√

N(BN −WN)

to evaluate the effect of Xij on Yij. However, TB can not be calculated from the sample as

E(Yij′|X) is unknown. On the other hand,
√

N(BN − WN) is directly obtained from the

sample.

The following lemma shows that
√

NSB(Z) is asymptotically negligible. Derive the

asymptotic distribution of
√

NTB by showing that it satisfies the conditions for the central

limit theorem for clean quadratic forms by de Jong (1987). The result is stated in Theorem

3.2.2.

Lemma 3.2.1. (Projection of BN)

Let SB(Z) be as defined in (3.2.3). If the assumptions in subsection 3.2.1 are satisfied, then

as N →∞,
√

NSB(Z) → 0 in probability.

Proof of Lemma 3.2.1
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It is sufficient to show that E(
√

NSB(Z)) → 0 and Var(
√

NSB(Z)) → 0.

E(SB(Z)) = − k

aN(N − 1)

a∑
i=1

N∑

c 6=c′
E

{
E(Zic·Zic′·|X)

}
. (3.2.7)

Because E(Y 2
ij |Xij) is uniformly bounded for all i, j, there exists some finite M1 > 0 such

that

|E(Zic·Zic′·|X)| ≤ 1

k2

k∑
t=1

k∑

t′=1

|E(ZictZic′t′|X)|

≤ 1

k2

k∑
t=1

k∑

t′=1

[E(Z2
ict|X)E(Z2

ict′|X)]1/2 ≤ M1. (3.2.8)

When the observations in cell (i, c) and cell (i, c′) do not have overlap, E(Zic·Zic′·) =

E(Zic·)E(Zic′·) = 0, giving the following result:

a∑
i=1

N∑

c 6=c′
E(Zic·Zic′·|X) = O

(
a∑

i=1

N∑

c 6=c′
I(|c′ − c| ≤ k)E(Zic·Zic′·|X)

)
= O(N),

implying that

E(
√

NSB(Z)) = O(N−1/2) → 0 as N →∞.

Next to be shown is that Var(
√

NSB(Z)) goes to 0 as N → ∞. Because E(
√

NSB(Z))

goes to 0, it remains to show that E(
∑N

c 6=c′ Zic·Zic′·)2/N3 → 0.

E(
N∑

c 6=c′
Zic·Zic′·)2 ≤

N∑

c 6=c′

N∑

c1 6=c′1

|E(Zic·Zic′·Zic1·Zic′1·)|

≤
N∑

c,c′,c1,c′1

|E(Zic·Zic′·Zic1·Zic′1·)|(2I1(c, c
′, c1, c

′
1) + 3 I2(c, c

′, c1, c
′
1) (3.2.9)

+3 I3(c, c
′, c1, c

′
1) + 4I4(c, c

′, c1, c
′
1)), (3.2.10)

where I1(·) in (3.2.9) is the indicator function for cases that either c, c′, c1, c
′
1 fall into three

non-overlapping cells where two non-overlapping cells contain one of the c′s and one of the
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cells contains two members of c, c′, c1, c
′
1; I2(·) in (3.2.9) is the indicator function for cases

that c, c′, c1, c
′
1 are evenly divided into two non-overlapping cells; I3(·) in (3.2.10) is the

indicator function for cases that c, c′, c1, c
′
1 are in two non-overlapping cells, such that one

cell contains three of the c′s and the other contains one of the c′s. Finally I4(·) in (3.2.10)

is the indicator function for cases that c, c′, c1, c
′
1 are all in the same cell. The expectation

in (3.2.9) is zero since the observations in non-overlapping cells are independent. Therefore,

Var(
√

NSB(Z)) =
k2

a2N(N − 1)2
E

(
N∑

c 6=c′
Zic·Zic′·

)2

≤ k2

a2N(N − 1)2
{O(N2)} = O(N−1),

and the proof is completed.

Theorem 3.2.2. Under H0 in (3.2.1) and the assumptions given in subsection 3.2.1,

√
N(BN −WN) → N(0, lim

N→∞
γ2

N),

where

γ2
N =

4

Na2(k − 1)2

a∑
i

ni∑

j<j′
E

{
σ2

i (Xij)σ
2
i (Xij′)

[
B2

ijj′ + Bijj′

−2I(j′∗ − j∗ ≤ (k − 1)/2)]} I(j′∗ − j∗ ≤ k − 1) + O(N−1),

with Bijj′ =
∑a

i1,i1 6=i

(
ni1

ni
di1i(Xij) + 1

)
[k−(j′∗−j∗)]I(j′∗−j∗ ≤ k−1), di1i(x) = fX,i1(x)/fX,i(x)

and j∗ < j′∗, where j∗, j′∗ are the ranks of Xij and Xij′ among covariate values in treatment

i.

An estimator of σ2
i (Xij) is the sample variance σ̂2

i (Xij) calculated using the augmented

observations for the cell determined by i and Xij, i.e.,

σ̂2
i (Xij) =

k

k − 1

{
1

k

ni∑

l=1

Y 2
il I

[
|F̂X,i(Xil)− F̂X,i(Xij)| ≤ k − 1

2ni

]

−
(

1

k

ni∑

l=1

Yil I

[
|F̂X,i(Xil)− F̂X,i(Xij)| ≤ k − 1

2ni

])2


 .

The term
kni1

ni
di1i(Xij) is estimated by the number of times that (Xij, Yij) is selected for
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augmentation of cell determined by i and Xi1j4 for all j4 = 1, . . . , ni1 . That is,

ni1

ni

d̂i1i(Xij) = k−1

ni1∑
j4=1

I

(
|F̂X,i(Xij)− F̂X,i(Xi1j4)| ≤

k − 1

2ni

)
. (3.2.11)

This is because

di1i(Xij)

ni

=
1

k

∫
I

(
|FX,i(Xij − FX,i(x)| ≤ k − 1

2ni

)
dFX,i1(x) + Op(N

−3/2).

Sketch Proof of Theorem 3.2.2

By Lemma 3.2.1,
√

N(BN −WN) has the same asymptotic distribution as
√

NTB. The

asymptotic variance of this statistic is obtained in Lemma 3.2.3. The asymptotic normality

for the test statistic is shown here. Let t
(2)
iji′j′ = (Yij − E(Yij|X))(Yi′j′ − E(Yi′j′|X))Kijj′ ,

where Kijj′ is defined in (3.2.6), and write

√
NTB =

√
N

Na(k − 1)

∑

i,i′,j,j′
t
(2)
iji′j′I(i = i′)I(j 6= j′) =

∑

1≤l1≤N

∑

1≤l2≤N

Vl1l2 ,

where l1 = l(i, j) and l2 = l(i, j′) are defined through a one to one index mapping function

l(i, j) =

{
j for i = 1∑i−1

i2=1 ni2 + j for i > 1,
(3.2.12)

and

Vl1l2 =

{ √
N

Na(k−1)
(Yl1 − E(Yl1|X))(Yl2 − E(Yl2|X)) Kl1l2 for i = i′ and j 6= j′

0 otherwise.
(3.2.13)

Here Kl1l2 is same as Kijj′ but using index l1, l2:

Kl1l2 =

{ ∑a
i1

∑ni1
j1

I(l1 ∈ CiXi1j1
)I(l2 ∈ CiXi1j1

) for i = 1∑a
i1

∑ni1
j1

I(
∑i−1

i2=1 ni2 + l1 ∈ CiXi1j1
)I(

∑i−1
i2=1 ni2 + l2 ∈ CiXi1j1

) for i > 1.
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Note that Vl1l2 = Vl2l1 . Therefore

√
NTB = 2

∑

1≤l1<l2≤N

Vl1l2 (3.2.14)

is a clean quadratic form as in de Jong (1987). To show that Var(
√

NTB)−1/2
√

NTB
L−→

N(0, 1), show that Proposition 3.2 in de Jong (1987) can be applied, i.e., show that G1, G2

and G3 (defined below) are of smaller order than that of [Var(
√

NTB)]4 = O(1). Let

l3 = l(i, j3), and l4 = l(i, j4). Define G1 =
∑

1≤l1<l2≤N E(V 4
l1l2

),

G2 =
∑

1≤l1<l2<l3≤N{E(V 2
l1l2

V 2
l1l3

) + E(V 2
l2l1

V 2
l2l3

) + E(V 2
l3l1

V 2
l3l2

)}, and

G3 =
∑

1≤l1<l2<l3<l4≤N{E(Vl1l2Vl1l3Vl4l2Vl4l3)+E(Vl1l2Vl1l4Vl3l2Vl3l4)+E(Vl1l3Vl1l4Vl2l3Vl2l4)}.
First, show that the order of G1 is o(1). It suffices to consider only the case that Vl1l2 6= 0.

When the response has finite conditional fourth moment, there exists some finite M0 > 0,

such that

E(V 4
l1l2

I(Vl1l2 6= 0)) =
16

N2a4(k − 1)4
E{E[((Yl1 − E(Yl1|X))(Yl2 − E(Yl2|X))|X) (Kl1l2)]

4}

=
16

N2a4(k − 1)4
E{E[((Yl1 − E(Yl1|X))4E(Yl2 − E(Yl2|X))4|X)K4

l1l2
]}

≤ M0

N2a4(k − 1)4
E(K4

l1l2
).

Thus

E(K4
l1l2

)=E(K4
ijj′)=E



E

[
N∑

c=1

I(j ∈ Cic)I(j′ ∈ Cic)

]4
∣∣∣∣∣∣
Xij, Xij′



=E(D1 + D2 + D3 + D4),
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where

D1 = E

(
N∑

c=1

I(j ∈ Cic)I(j′ ∈ Cic)

∣∣∣∣∣ Xij, Xij′

)
,

D2 = E

[ ∑

c1 6=c2

I(j ∈ Cic1)I(j′ ∈ Cic1)I(j ∈ Cic2)I(j′ ∈ Cic2)|Xij, Xij′

]
I(c1 6= c2),

D3 = E

{
E

[ ∑

c1 6=c2 6=c3

I(j ∈ Cic1)I(j′ ∈ Cic1)I(j ∈ Cic2)I(j′ ∈ Cic2)

I(j ∈ Cic3)I(j′ ∈ Cic3)|Xij, Xij′ ]} ,

D4 = E{E[
∑
c1

∑
c2

∑
c3

∑
c4

I(j ∈ Cic1)I(j′ ∈ Cic1)I(j ∈ Cic2)I(j′ ∈ Cic2)I(j ∈ Cic3)

I(j′ ∈ Cic3)]I(j ∈ Cic4)I(j′ ∈ Cic4)|Xij, Xij′}I(c1 6= c2 6= c3 6= c4).

It can be shown that the Dm, m = 1, 2, 3, 4, are of Op(1) and thus E(K4
l1l2

) = O(1). In fact,

Kijj′ are bounded counts, so that

D1 = E(Kijj′|Xij, Xij′) = Op(1)I(j′∗ − j∗ ≤ (k − 1)). (3.2.15)

The result in (3.2.15) is obtained from (3.2.22) in the Appendix. Next D2 ≤ E2(Kijj′|Xij,

Xij′) = O(1)I(j′∗ − j∗ ≤ (k − 1)). Similarly D3 ≤ E3(Kijj′|Xij, Xij′) = O(1)I(j′∗ − j∗ ≤
(k−1)). Lastly, D4 ≤ E4(Kijj′|Xij, Xij′) = O(1)I(j′∗− j∗ ≤ (k−1)). Therefore, E(Kl1l2)

4 =

O(1)I(l2∗ − l1∗ ≤ (k − 1)), and E(V 4
l1l2

) = O(N−2)I(l2∗ − l1∗ ≤ k − 1), where l1∗ = l(i, j∗),
l2∗ = l(i, j′∗). Thus, G1 = O(N−1) = o(1).

Next is to show that the order of G2 is o(1) when l1 < l2 < l3, that is, i = i′, j <

j′ and j < j3. First show that E(K2
l1l2

K2
l1l3

) is bounded and E(V 2
l1l2

V 2
l1l3

) is of order O(N−2).
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By Equation (3.2.13),

E(V 2
l1l2

V 2
l1l3

) = E{E[16(N2a4k4)−1(Yl1 − E(Yl1|X))2(Yl2 − E(Yl2|X))2K2
l1l2

(Yl1 − E(Yl1|X))2(Yl3 − E(Yl3|X))2K2
l1l3
|X]}

= E{16(N2a4k4)−1E[(Yl1 − E(Yl1|X))4|X]E[(Yl2 − E(Yl2|X))2|X]K2
l1l2

E[(Yl3 − E(Yl3|X))2|X]K2
l1l3
}

≤ M2

N2a4k4
E(K2

l1l2
K2

l1l3
) for some finite M2 > 0.

Applying the Cauchy-Schwartz inequality obtains

E(K2
l1l2

K2
l1l3

) ≤ [E(Kl1l2)
4E(Kl1l3)

4]1/2 = O(1)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1).(3.2.16)

The last equation in (3.2.16) follows from the previous result that E(Kl1l2)
4 = O(1). There-

fore

E(V 2
l1l2

V 2
l1l3

) = O(N−2)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1).

It can be shown similarly that the order for E(V 2
l2l1

V 2
l2l3

) and E(V 2
l3l1

V 2
l3l2

) is O(N−2). There-

fore, G2 = O(N−1)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1) = o(1).

Next, to establish that G3 = o(1) for the case i = i′, j < j′ < j3 < j4, i.e., l1 < l2 < l3 <

l4, requires first showing that E(Kl1l2Kl1l3Kl4l2Kl4l3) is bounded and E(Vl1l2Vl1l3Vl4l2Vl4l3) =
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O(N−2). Consider

E(Vl1l2Vl1l3Vl4l2Vl4l3)

= E{E[
1

N2a4k4
(Yl1−E(Yl1|X))(Yl2−E(Yl2|X))Kl1l2(Yl1−E(Yl1|X))(Yl3−E(Yl3|X))Kl1l3

(Yl4 − E(Yl4|X))(Yl2 − E(Yl2|X))Kl4l2(Yl4 − E(Yl4|X))(Yl3 − E(Yl3|X))Kl4l3|X]}

= E{E[
1

N2a4k4
(Yl1 − E(Yl1|X))2(Yl2 − E(Yl2|X))2(Yl3 − E(Yl3|X))2(Yl4 − E(Yl4|X))2]

Kl1l2Kl1l3Kl4l2Kl4l3}

≤ M3

N2a4k4
E(Kl1l2Kl1l3Kl4l2Kl4l3).

This leads to

E(Kl1l2Kl1l3Kl4l2Kl4l3) ≤ [E(Kl1l2Kl1l3)
2E(Kl4l2Kl4l3)

2]1/2

= O(1)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1)

I(l∗2 − l∗4 ≤ k − 1)I(l∗3 − l∗4 ≤ k − 1).

It is shown similarly that E(Kl1l2Kl1l4Kl3l2Kl3l4) and E(Kl1l3Kl1l4Kl2l3Kl2l4) are also of O(1).

Therefore, E(Vl1l2Vl1l3Vl4l2Vl4l3) = O(N−2)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1)I(l∗2 − l∗4 ≤
k − 1)I(l∗3 − l∗4 ≤ k − 1). So, G3 = O(N−1) = o(1).

Lemma 3.2.3. Under the conditions of Theorem 3.2.2, as N →∞, Var(
√

NTB)−γ2
N → 0.

Proof of Lemma 3.2.3. Write Var(
√

NTB) = E(Var(
√

NTB|X)) + Var(
√

NE(TB|X)).

Show that Var(
√

NE(TB|X)) = 0 and E(Var(
√

NTB|X))− γ2
N → 0.

It is clear that Var(
√

NE(TB|X)) = 0 because by the definition of TB in (3.2.4),

E(
√

NTB|X) = E

(
N−1/2

a(k − 1)

a∑
i=1

∑

j 6=j′
(Yij−E(Yij|X))(Yij′ − E(Yij′|X))

∣∣∣∣∣X
)
Kijj′

= 0 a.s. (3.2.17)
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Next, show that E(Var(
√

NTB|X))− γ2 → 0. Let

tijj′ = (Yij − E(Yij|X))(Yij′ − E(Yij′|X))Kijj′ .

Then

E(Var(
√

NTB|X))

= E

[
1

Na2(k − 1)2
Var

(
a∑

i=1

∑

j 6=j′
tijj′|X

)]

=
2

Na2(k − 1)2
E

(
a∑
i

∑

j 6=j′
E(t2ijj′|X)

)

=
2

Na2(k − 1)2
E

[
a∑
i

∑

j 6=j′
E ((Yij − E(Yij|X))(Yij′ − E(Yij′|X)) Kijj′|X))2

]

=
2

Na2(k − 1)2
E

[
a∑
i

∑

j 6=j′
σ2

i (Xij)σ
2
i (Xij′)K

2
ijj′

]

=
4

Na2(k − 1)2
E

{
a∑
i

∑

j<j′
σ2

i (Xij)σ
2
i (Xij′)E

[
K2

ijj′
∣∣ Xij, Xij′

]
}

=
4

Na2(k − 1)2
E

{
a∑
i

∑

j<j′
σ2

i (Xij)σ
2
i (Xij′)[E

2(Kijj′|Xij,Xij′)+Var(Kijj′|Xij,Xij′)]

}
.(3.2.18)

Let Xi(j∗) be the order statistic for Xij within group i. Without loss of generality, assume

that Xij < Xij′ so that j∗ < j′∗. The conditional expectation is obtained by considering

whether a covariate value Xc is in group i or not. Denote (Xc ∈ group i1) as Xi1j1 . Then,

if i1 6= i,

Λijj′i1 = E(j ∈ Cic1 , j
′ ∈ Cic1)|Xij, Xij′)

= P (Xij ∈ Cic1 , Xij′ ∈ Cic1|(Xij, Xij′)) =

∫ Xij+Dij

Xij−Lij

fX,i1(x)dxI(j′∗ − j∗ ≤ k − 1),

where Dij = the upper k/2 spacing and Lij = the lower (k/2− (j′∗ − j∗)) spacing from Xij.
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Applying Taylor’s expansion twice, write

Λijj′i1 =

[
fX,i1(Xij)

FX,i(Xij + Dij)− FX,i(Xij − Lij)

fX,i(Xij)
+ Op(N

−2)

]
I(j′∗ − j∗ ≤ k − 1).

From properties of spacings in Pyke (1965)

E(FX,i(Xij + Dij)− FX,i(Xij − Lij)|Xij, Xij′) =
[k − (j′∗ − j∗)]

ni + 1
I(j′∗ − j∗ ≤ k − 1).

Therefore, for Xc ∈ group i1 6= i,

E(Λijj′i1|Xij, Xij′) =

[
fX,i1(Xij)

fX,i(Xij)

k − (j′∗ − j∗)
ni + 1

+ Op(N
−2)

]
I(j′∗ − j∗ ≤ k − 1). (3.2.19)

If i1 = i and Xij1 6= Xij and Xij1 6= Xij′ , detailed inspection yields

E(Λijj′i|Xij,Xij′)=

[
k − (j′∗ − j∗)− 2I(j′∗−j∗ ≤(k − 1)/2)

ni+1
+Op(N

−2)

]
I(j′∗ −j∗ ≤k − 1);(3.2.20)

if i1 = i and Xij1 = Xij (or symmetrically Xij1 = Xij′), then

Λijj′i = I(j′∗ ∈ CiXi(j∗)) = I (j′∗ − j∗ ≤ (k − 1)/2) . (3.2.21)

Collecting terms from (3.2.19), (3.2.20), and (3.2.21), with Bijj′ defined in Theorem 3.2.2

giving

E (Kijj′|Xij, Xij′) =
[
Bijj′ + Op(N

−2)
]
I(j′∗ − j∗ ≤ k − 1). (3.2.22)

Now consider the conditional variance. Note that when Xc ∈ {Xij, Xij′}, the term in
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Kijj′ is a constant. Therefore,

Var (Kijj′|Xij, Xij′)

= Var

(
N∑

c=1

I(j ∈ Cic)I(j′ ∈ Cic)I(Xc /∈ {Xij, Xij′})
∣∣∣∣∣ Xij, Xij′

)

=
N∑
c1

N∑
c2

{E[I(j ∈ Cic1)I(j′ ∈ Cic1)I(j ∈ Cic2)I(j′ ∈ Cic2)|Xij, Xij′ ]

−E[I(j ∈ Cic1)I(j′ ∈ Cic1)|Xij, Xij′ ]E[I(j ∈ Cic2)I(j′ ∈ Cic2)|Xij, Xij′ ]}

×I(Xc1 /∈ {Xij, Xij′})I(Xc2 /∈ {Xij, Xij′})

=
N∑
c

E [I(j ∈ Cic)I(j′ ∈ Cic)I(Xc /∈ {Xij, Xij′})|Xij, Xij′ ] (3.2.23)

−
N∑

c=1

[E(I(j ∈ Cic)I(j′ ∈ Cic)|Xij, Xij′)]
2I(Xc /∈ {Xij, Xij′}),

where the last equality is due to the fact that the indicator functions involving c1 and c2 are

conditionally independent when c1 6= c2 and neither c1, c2 is Xij or Xij′ . Plugging (3.2.19)

through (3.2.22) into (3.2.23), obtains

Var (Kijj′|Xij, Xij′) =

[(
a∑

i1,i1 6=i

ni1

ni

di1i(Xij) + 1

)
[k − (j′∗ − j∗)] (3.2.24)

−2I(j′∗ − j∗ ≤ (k − 1)/2) + Op(N
−1)

]
I(j′∗ − j∗ ≤ k − 1).

Putting (3.2.22) and (3.2.24) into (3.2.18),

E(Var(
√

NTB|X)) =
4

Na2(k − 1)2

a∑
i

ni∑

j<j′
E

{
σ2

i (Xij)σ
2
i (Xij′)

[
B2

ijj′ + Bijj′ (3.2.25)

−2I(j′∗ − j∗ ≤ (k − 1)/2)]} I(j′∗ − j∗ ≤ k − 1) + O(N−1) = γ2
N ,

where γ2
N is defined in Theorem 3.2.2.
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3.3 Numerical Results

The following tests will be considered for comparison with the proposed test (pNP) in

this section: the score test from GAM using spline (GAM Spline) or loess smoothing (GAM

Loess) with quasilikelihood, drop test, likelihood ratio test from GAM using penalized splines

(GAM Pspline), likelihood ratio test from linear models (LRT), test of association based

on Pearson’s correlation, Spearman’s ρ and Kendall’s τ . All the computation is carried

out in R 2.8.1. Package gam is used for GAM Spline or loess smoothing; package mgcv is

used for GAM Pspline; package acepack is used for ACE test. The drop test is obtained

from http://www.stat.wmich.edu/mckean/HMC/Rcode/ and command cor.test is used for

the three correlation based tests. Except for the proposed test and three correlation based

tests, the significance of dependence on the covariate for the rest of the tests is obtained

through comparing the log-likelihood or residual deviance from two models using an F test

(see Chap. 12 of Faraway (2006)), one model includes the covariate, treatment, and their

interaction effects, and the other model includes only the treatment effect. Comparison

with ACE is given only in subsection 3.3.3 and has been removed from other comparisons

because this test consistently produces highly inflated type I error rates.

For the proposed test, trials were conducted with the number of nearest neighbors k =

3, 5, 7 when ni = 30 and ni = 50 for a few data generation settings (linear alternative,

quadratic alternative, binary data with log-odds to be the cosine function of the covariate).

A slight reduction in the type I error and slight increase in the power was observed as

k increases. However, the difference was too small to discriminate among the different

k values. Therefore, the rest of the simulation and data analysis for this chapter, solely

provides results for k = 3.

3.3.1 Analysis of Ozone Concentration Data - Detection of Non-

linear Dependence

The ozone data in R faraway package contains daily measurements of ozone concentrations

(O3) and 9 meteorological variables in the Los Angeles basin for 330 days of 1976. The
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relationship of ozone concentration with two other variables, day of year (doy) and wind

speed is considered here for illustration. Wind has only 11 integer values and is split into 4

intervals. The intervals are low for values 0, 1, 2, medium for values 3, 4, 5, medium high for

values 6, 7, 8, and high for values 9, 10, 11.

The scatter plot of the data in Figure 3.1 suggests that the variable doy is related

to the O3 in a quadratic relationship. However, this relationship is not evident due to

large variations of O3. The variation of O3 is low at small or large values of doy and

increases as O3 value approaches the peak concentration. A similar variation patten is

observed for O3 versus wind. This suggests strong heteroscedasticity for wind levels and

that the conditional variance of O3 given doy changes with doy. Regression based methods

typically only evaluate if the mean regression function depends on the covariate regardless

of whether the conditional variance depends on the covariate or not. In this example, even

if the quadratic relationship of O3 on doy can be attributed to its dependence on the wind

level, the dependence of O3 on doy through variances is still apparent. When applying

all the tests mentioned in the beginning of this section, a significant doy effect on O3 was

detected by the new test (p-value = 0), GAM with spline (p = 9.6×10−34), GAM with loess

smoothing (p = 1.9 × 10−33), GAM with penalized spline (p = 6.9 × 10−36). None of the

other tests was significant (p-values are 0.390 for the drop test, 0.214 for the likelihood ratio

test, 0.186 for Kendall’s correlation test, 0.335 for Spearman’s correlation test, and 0.220

for Pearson’s correlation test). This is reasonable because this group of tests only access

monotone relationships.

3.3.2 Application to EFT Study - Resistance to Outliers

In this subsection, the new test was applied to a data set in Aitkin et al. (1989, p. 70)

containing a sample of 24 children randomly selected from fifth-grade students attending

a state primary school in a Sydney suburb. Each student was assigned to one of two

experimental groups given different instructions: Corner group and Row group. The total

time in seconds to conduct a test of Wechsler Intelligence Scale for Children (WISC) was
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Figure 3.1: Scatter plot of ozone vs wind or doy.

recorded for each child. Each child was also tested for “field dependence” using an Embedded

Figures Test (EFT). The objective of the study was to evaluate if the time to complete a

WISC test was affected by field dependence. Figure 3.2 gives a scatter plot of Time vs

EFT for each group. The observation at the upper right corner (139, 739) is an unusual

observation that has large influence for linear or nonlinear regression fit.

Five different linear models were considered in Aitkin et al. (1989, p.83 - p.104) with

extensive discussions. They advised the readers to be cautious with small sample sizes be-

cause some of the fitted models produced conflicting interpretations. All the tests considered

in this section are applied to this data set. The p−value for the test is given in the top

row of Table 3.1 and Table 3.2. The new test is the only one that yielded a nonsignificant

result. All other tests are significant at 0.05 level though some are not significant at 0.01

level. The second row in Table 3.1 and Table 3.2 gives the p−values of the tests when

the outlier (139, 739) is replaced by the median time in the Row group. With this single

change, the new test produced consistent results but all the other tests change their p-values
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dramatically yielding non-significant results at 0.05 level.

Figure 3.2: Scatter plot of Time vs EFT for each instruction group.
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Table 3.1: P−values for test of no association before and after the outlier is replaced by the
median time in the Row group- adjusting for treatment effect

GAM GAM GAM
pNP Spline Loess Pspline Drop test LRT

Original data 0.729 0.033 0.041 0.013 0.035 0.002
Outlier replaced 0.369 0.385 0.347 0.145 0.305 0.306

Table 3.2: P−values for test of no association before and after the outlier is replaced by the
median time in the Row group-correlation approach

Kendall Spearman Pearson
Original data 0.017 0.021 0.006

Outlier replaced 0.059 0.067 0.178

The ground truth of whether time is associated with EFT or not is not known, but Aitkin

et al. (1989, p. 76) did give a comment: “It is worth stressing that none of the models is

a true representation of the population. If we could take a complete census of fifth grade

children in the school, and administer the EFT and WISC tests to all of them, we would

find that the mean completion time for children with each EFT score in each experimental
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group did not lie on a straight line.” In the next subsection, the performance of these tests

is explored using simulation studies.

3.3.3 Simulation Study

This subsection reports a simulation study conducted to investigate type I error and power

performance for the tests applied to the previous two applications. The type I error estimates

are obtained for data having various probabilities of containing outliers. The power is

presented for one setting. For group 1, the data were generated following:

X1j ∼ Unif(7, 128) and Y1j ∼ Unif(219, 543), (3.3.1)

where 7 and 128 are the minimum and maximum values of EFT in the corner group and 219

and 543 are the minimum and maximum values of Time in the corner group. The response

and covariate for the other group were generated from a mixture of a Beta and a lognormal

distribution as follows

{
(r2 − r1)Z2j, where Z2j ∼ Beta(1.2, 3) with probability p0

10Q2j, where Q2j ∼ lognormal(1.2, 2) with probability 1− p0,
(3.3.2)

where r1 and r2 are the lower and upper bound of the observed real data. That is, r1 =

26, r2 = 74 for EFT were used to generate X2j, and r1 = 196, r2 = 525 for Time were used

to generate Y2j.

The type I error estimates at level 0.01 based on 2000 runs for different values of p0 and

ni are given in Table 3.3. The new test is the only test having an acceptable type I error

estimate under all mixing proportions. Smaller p0 corresponds to bigger mixing percentage

for the lognormal observations which leads to a higher chance of outliers. The type I error

rates for the GAM tests increase as the chance of outliers increases. The drop test has a

similar pattern as the GAM Loess test even though it has smaller type I errors. An opposite

pattern was observed for the three correlation based tests. The type I error for the LRT

test is inflated but does not change as dramatically as the other available tests. The ACE
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test has consistently high type I errors (at least 0.22) for all cases. Therefore, ACE was

eliminated from further comparisons.

Table 3.3: Proportion of rejections under H0 in (3.2.1) at level 0.01 following the model
(3.3.1) and (3.3.2).

Mixture Estimated Type I error at 0.01 level
proportion GAM GAM GAM

ni p0X p0Y pNP ACE Spline Loess Pspline Drop Test LRT
0.1 0.6 0.012 0.307 0.139 0.110 0.183 0.129 0.077
0.1 0.1 0.013 0.351 0.121 0.097 0.149 0.056 0.074

12 0.2 0.2 0.008 0.340 0.094 0.084 0.134 0.050 0.061
0.4 0.4 0.006 0.309 0.085 0.070 0.104 0.047 0.064
0.5 0.5 0.007 0.289 0.073 0.071 0.088 0.035 0.054
0.6 0.6 0.010 0.282 0.044 0.039 0.066 0.034 0.043
0.1 0.6 0.013 0.330 0.101 0.151 0.202 0.147 0.056
0.1 0.1 0.005 0.366 0.134 0.090 0.163 0.058 0.060

20 0.2 0.2 0.005 0.342 0.130 0.081 0.156 0.052 0.058
0.4 0.4 0.004 0.311 0.092 0.065 0.126 0.048 0.055
0.5 0.5 0.008 0.298 0.093 0.068 0.096 0.037 0.045
0.6 0.6 0.009 0.284 0.070 0.059 0.072 0.034 0.037
0.1 0.6 0.006 0.270 0.082 0.150 0.206 0.176 0.047
0.1 0.1 0.008 0.336 0.143 0.082 0.185 0.063 0.048

30 0.2 0.2 0.005 0.306 0.146 0.072 0.172 0.054 0.048
0.4 0.4 0.004 0.260 0.111 0.062 0.126 0.046 0.049
0.5 0.5 0.004 0.251 0.101 0.066 0.107 0.044 0.042
0.6 0.6 0.005 0.228 0.077 0.052 0.084 0.036 0.042

For power comparisons, the departures from the null hypothesis in a quadratic relation-

ship is considered where for the variables in one group, the data were generated from

X1j ∼ Unif(7, 128) and Y1j = τ(X1j − E(X1j))
2 + ε1j, where ε1j ∼ Unif(−5, 15).(3.3.3)

For the other group, X2j were generated from the mixture distribution in (3.3.2) with

p0 = 0.1; Y2j were independently generated from the mixture distribution in (3.3.2) with

p0 = 0.6 and were independent from X2j.

The proportion of rejections at level 0.01 when ni = 12 are presented in Figure 3.3 as τ

increases from 0 to 2.5. The plot is busy for smaller values of τ so these values are presented

also in Table 3.5 and Table 3.6. The power estimates were also obtained for some additional

values of τ between 2.5 and 10. But the power stays at the plateau so they are not presented.
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Table 3.4: Proportion of rejections under H0 (3.2.1) following model (3.3.1) and (3.3.2) at
level 0.01 - correlation based tests

Mixture Estimated Type I error at 0.01 level
ni p0X p0Y Kendall Spearman Pearson

0.1 0.6 0.041 0.049 0.080
0.1 0.1 0.037 0.037 0.048

12 0.2 0.2 0.071 0.075 0.050
0.4 0.4 0.134 0.142 0.075
0.5 0.5 0.191 0.213 0.118
0.6 0.6 0.256 0.292 0.153
0.1 0.6 0.068 0.071 0.072
0.1 0.1 0.069 0.069 0.043

20 0.2 0.2 0.119 0.128 0.048
0.4 0.4 0.236 0.246 0.061
0.5 0.5 0.374 0.403 0.090
0.6 0.6 0.508 0.547 0.134
0.1 0.6 0.117 0.120 0.070
0.1 0.1 0.094 0.095 0.040

30 0.2 0.2 0.159 0.169 0.040
0.4 0.4 0.416 0.426 0.050
0.5 0.5 0.560 0.575 0.063
0.6 0.6 0.717 0.749 0.114

The value τ = 0 corresponds to the null hypothesis. The GAM Loess and GAM Pspline

have similar power to the proposed test but they have inflated type I error rates. The GAM

Spline has lower power than the other two GAM tests. The three correlation based tests

have inflated type I error under H0 due to outliers and the proportion of rejections reduces

to the true level as τ increases. This is because Xij and Yij are uncorrelated although Y1j is

not independent of X1j and the signal to noise ratio increases as τ increases. The power of

the drop test and LRT test lies in between the GAM Spline and the three correlation based

tests. For ni = 20 or 30, the proportion of rejections for all tests are reported in Table 3.5

and Table 3.6. In this simulation setting, the proposed test outperforms all other tests in

terms of both the estimated type I error and power. The GAM tests were developed for the

exponentially family and the mixture component log-normal distribution is not a member

of the exponential family. This explains the observed lower power for the GAM tests.

In summary, the simulation study suggests that the proposed test not only offers reliable

type I error estimates for our simulated data in the presence of outliers which lead to inflated

47



0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Empirical Power at Level 0.01 when ni=12

τ

Pr
op

or
tio

n 
of

 R
ej

ec
tio

ns

pNP
GAM.Spline
GAM.Loess
GAM.Pspline
Drop.Test

LRT
Kendall
Spearman
Pearson

Figure 3.3: Empirical power at level 0.01 based on 2000 runs when the data from one group
were from a mixture of beta and lognormal distribution with ni = 12. and the other group
were from equation (3.3.3).

type I error estimated for the GAM and other tests, but also maintains high power to detect

nonlinear dependence.
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Table 3.5: Empirical power at level 0.01 based on 2000 runs when ni = 20 and 30 where the data from
one group was from a mixture of beta and lognormal distribution with ni = 12. and the other group was
from equation (3.3.3).

Estimated power at 0.01 level
ni τ pNP GAM GAM GAM Drop LRT

Loess Spline Pspline
0 0.012 0.110 0.139 0.183 0.129 0.077

12 0.1 0.274 0.345 0.269 0.386 0.075 0.100
0.3 0.531 0.532 0.382 0.556 0.146 0.151
0.4 0.568 0.555 0.376 0.587 0.152 0.147

0 0.013 0.101 0.151 0.202 0.147 0.056
0.1 0.485 0.423 0.273 0.435 0.085 0.080
0.2 0.692 0.599 0.336 0.556 0.133 0.106
0.3 0.775 0.651 0.364 0.608 0.160 0.116

20 0.5 0.853 0.768 0.430 0.666 0.215 0.117
1.0 0.927 0.831 0.440 0.736 0.248 0.128
1.5 0.959 0.869 0.460 0.730 0.246 0.121
2.0 0.964 0.875 0.469 0.730 0.245 0.126
2.5 0.976 0.883 0.478 0.751 0.260 0.126
3.0 0.973 0.883 0.455 0.740 0.254 0.122

0 0.006 0.082 0.150 0.206 0.176 0.047
0.1 0.438 0.458 0.263 0.453 0.098 0.061
0.2 0.682 0.666 0.340 0.536 0.127 0.077
0.3 0.778 0.750 0.372 0.580 0.176 0.086

30 0.5 0.879 0.830 0.415 0.643 0.232 0.102
1.0 0.955 0.895 0.446 0.688 0.270 0.105
1.5 0.972 0.909 0.452 0.701 0.283 0.110
2.0 0.989 0.935 0.459 0.708 0.275 0.104
2.5 0.991 0.936 0.457 0.704 0.299 0.123
3.0 0.989 0.936 0.464 0.694 0.275 0.103

49



Table 3.6: Empirical power at level 0.01 based on 2000 runs when ni = 20 and 30 where the data from
one group was from a mixture of beta and lognormal distribution with ni = 12. and the other group was
from equation (3.3.3) - correlation based tests.

Estimated power at 0.01 level
ni τ Kendall Spearman Pearson

0 0.041 0.049 0.080
12 0.1 0.017 0.012 0.031

0.3 0.027 0.016 0.022
0.4 0.026 0.016 0.018

0 0.068 0.071 0.072
0.1 0.024 0.021 0.031
0.2 0.029 0.021 0.019
0.3 0.032 0.025 0.012

20 0.5 0.041 0.024 0.008
1.0 0.064 0.042 0.010
1.5 0.074 0.053 0.007
2.0 0.102 0.074 0.007
2.5 0.084 0.058 0.006
3.0 0.073 0.048 0.004

0 0.117 0.120 0.070
0.1 0.022 0.016 0.047
0.2 0.032 0.020 0.027
0.3 0.040 0.026 0.018

30 0.5 0.056 0.034 0.005
1.0 0.090 0.064 0.007
1.5 0.093 0.066 0.004
2.0 0.107 0.076 0.002
2.5 0.116 0.084 0.002
3.0 0.138 0.088 0.002
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Chapter 4

New Nonparametric Tests when

Treatment Level a is Small

4.1 Nonparametric Tests of No Covariate-Treatment

Interaction and No Main Covariate Effects

The method discussed in Chapter 3 can be used to determine whether or not the response

variable is independent of the covariate after adjusting for treatment effects. When it is

found that Y is not independent of the covariate, the next step is to determine whether

the dependence is through covariate-treatment interaction or through the main covariate

variable. For example, in the ozone study in Section 3.3.1, the independence test was

shown to be significant. The ozone (O3) concentration is not independent of doy. The next

question to be resolved is whether the dependence of O3 and doy is through the doy and

wind interaction or through the day of year (doy) alone. The tests developed in this chapter

successfully address this issue.

There are many available methods to test for no main covariate and no covariate-

treatment interaction effects. Some of them were discussed in Chapter 1. The methods

such as likelihood ratio test, traditional ANCOVA and drop test are convenient, but are

restricted to the presence of linear dependence of the response and covariate. Methods in-

tended for discrete response variables, such as the Wald type test and the deviance test are
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also restricted to linear dependence. In addition, methods just mentioned are also restricted

to constant variance of the response within each treatment. In term of the nonparametric

ANCOVA model approach, the test by Wang and Akritas (2006) discussed in Section 2.4.3

could be used to accommodate the heteroscedasticity treatment effect, except that it has

been shown in the simulation studies that it is unreasonably computationally extensive.

This chapter develops the theory of no main covariate and no main covariate-treatment

interaction effects that are not restricted to constant variance, distributional assumption or

linear relationship of covariate and response. The tests are developed using an approach

similar to that in Chapter 3. Section 4.2 presents the nonparametric model and the hy-

potheses of interest that are used for the new tests and will also review and discuss two

models that are relevant for the formulation of the nonparametric model.

4.2 Models and Hypotheses

Before discussing the formulation of the model to be used for the hypotheses of interest,

the model and hypotheses for no covariate-treatment and no main covariate effect in the

traditional one-way ANCOVA setting as well as in Wang and Akritas (2006) are presented

for discussion.

First, recall that the one-way ANCOVA model is written as: Yij = µi + εij where µi is

the conditional mean, εij is independent N(0, σ2) with i = 1, ..., a; j = 1, ..., ni. Further,

the conditional mean decomposes into µi = µ. + αi + βx + γix where µ. is a constant, αi

constitutes fixed treatment effects and (β + γi) is the regression coefficient for the relation

between X and Y . From the above model, the conditional mean of Yij given Xij = x is

given by:

E(Yij|Xij = x) = µ. + αi + βx + γix. (4.2.1)

Therefore, the no covariate-treatment interaction and the no main covariate effects from the
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model (4.2.1), correspond to the hypotheses:

H0γ : γi = 0 for all i and H0β : β = 0 respectively.

These hypotheses are similar to testing the equality of slopes and testing whether the slopes

are 0 respectively. Under H0γ, the conditional mean of Y given x in different treatment

levels is modeled with parallel linear lines. Notice here that these hypotheses are restricted

to the assumption of a linear association between X and Y . In general, when there is

no covariate-treatment interaction effect the regression curves will be parallel in all the

treatment levels.

On the other hand, Wang and Akritas (2006) used the fully nonparametric model (FNP)

as in Akritas et al. (2000) which is based on the decomposition of the conditional CDF,

Fix(y) of Yij given Xij = x. The FNP model is written as

Fix(y) = M(y) + Ai(y) + Dx(y) + Cix(y), (4.2.2)

as described in section 2.4.1. The decomposition in (4.2.2) was developed by mimicking

the decomposition of the two-way ANOVA model, where the column factor is replaced

by an artificial factor created from combining all the covariate levels in all of the row

factor levels. Here, Fix(y) is the conditional distribution of Yij given Xij = x. Define

F̄i.(y) =
∫∞
−∞ Fix(y)dG(x) for any chosen cumulative density function G(x) and F̄.x(y) =

a−1
∑

i Fix(y), then the terms in (4.2.2) are M(y) = a−1
∑a

i=1 F̄i.(y), Ai(y) = F̄i.(y)−M(y),

Dx(y) = F̄.(y)−M(y) and Cix(y) = Fix(y)− F̄i.(y)− F̄.x(y) + M(y). The hypotheses of no

covariate-treatment interaction and no main covariate effects in Wang and Akritas (2006)

are given as:

H0C : Cix(y) = 0 for all i, x, and y and H0D : Dx(y) = 0 for all x and y.

respectively. When there is no covariate-treatment interaction effect, i.e H0C in the FNP

model is true, Fix(y) is a mixture distribution consisting of two components in which one
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component depends only on i and the other component depends on x. The M(y) term

makes the right hand side of (4.2.2) a valid conditional CDF.

An in-depth look at the two sets of hypotheses above examines two examples using

two different conditional distributions of Y given X, which are exponential and normal

distributions to illustrate the hypothesis of no covariate-treatment interaction effect under

the H0γ and under the H0C . The examples presented below provide the motivation for

the construction of the nonparametric model and hypotheses for the proposed tests of no

covariate-treatment interaction and no main covariate effects.

Example 1a. Exponential Distribution with Quadratic Conditional Mean

Suppose the response variable Y follows an exponential distribution with the conditional

mean in treatment i being

E(Yij|Xij = x) =
1

λi

= mi(x− 5)2 + bi, i = 1, 2. (4.2.3)

The cumulative conditional density function of Yij given Xij then is written as:

FYi|Xij=x(y) = 1− e
− y

mi(x−5)2+bi . (4.2.4)

When mi = m, (4.2.4) becomes FYi|Xij=x(y) = 1 − e
− y

(m(x−5)2+bi) , and (4.2.3) becomes

E(Yij|Xij = x) = λ−1
i = m(x − 5)2 + bi, i = 1, 2. The hypothesis H0γ is clearly satisfied

because the two conditional expectations differ only in the intercepts. The scatter plot in

the top left panel of Figure 4.1 illustrates the case where the mean of the conditional ex-

ponential distribution is modeled with (4.2.3) for mi = 2, b1 = 2 and b2 = 10. The scatter

plot clearly shows that there is no covariate-treatment interaction when viewed from the

behavior of the observations.

For the nonparametric hypotheses in Wang and Akritas (2006), when there is no covariate-

treatment interaction effect i.e H0C : Cix(y) = 0, the cumulative conditional function be-

comes Fix(y) = M(y) + Ai(y) + Dx(y). The cumulative conditional distribution in (4.2.4)

cannot be decomposed into the sum of a function that depends on i and y only and another
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function that depends on x and y only. Therefore, the hypothesis H0C is not satisfied for

this specific example. Because it is difficult to infer from the graphs of the two conditional

distributions when H0C is true, the curve of the differences in the two conditional distribu-

tions F1(y|x)−F2(y|x), was plotted which should not depend on x for all y under H0C . The

illustration in the top right hand panel of Figure 4.1, shows that the curve F1(y|x)−F2(y|x)

is not independent of x for each y under H0C . This example shows that the H0C hypothesis

is not suitable to describe the no covariate-treatment interaction effect in terms of the be-

havior of observations. The next example shows a situation similar to the current example

but where the response variable Y follows a normal distribution.

Example 1b: Normal Distribution with a Sinusoidal Conditional Mean

Suppose the response variable follows a normal distribution with the conditional mean

in treatment i being

E(Yij|Xij = x) = mi sin(10πx) + bi, i = 1, 2. (4.2.5)

The cumulative conditional density function of Yij given Xij then is written as:

FYij |Xij=x(t) =

∫ t

−∞

1√
2πσ

e−[y−(mi sin(10πx)+bi)]
2/(2σ2)dy. (4.2.6)

When mi = m, the scatter plot of the conditional means from the model (4.2.5) with m = 4

is displayed in the bottom left panel in Figure 4.1. The scatter plot based on the behavior

of the observations exhibits a no covariate-treatment interaction effect. On the other hand,

because the conditional CDF in (4.2.6) cannot be written in a closed form, it is difficult to

determine whether it can be written in an additive form of a function that depends on i

and y only and another function that depends on x and y only. Consequently, the curve of

difference of the two conditional CDF’s, F1(y|x) − F2(y|x) according to (4.2.6) is plotted.

The graph on the bottom right panel in Figure 4.1 indicates that F1(y|x) − F2(y|x) still

depends on X for each Y , contradicting the hypothesis H0C .

From the two examples above, we see that the parametric effect of covariate-treatment
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interaction using the traditional ANCOVA model based on decomposition of the conditional

mean captures the behavior of observations better than using the hypothesis H0C in the

FNP model. As a suitable hypothesis regarding the behavior of the observations cannot

be achieved by decomposing the conditional distribution function of Yij given Xij = x

following Wang and Akritas (2006), an alternative decomposition is needed. To remedy the

linear relationship restriction between the response and covariate, the decomposition of the

conditional mean of Yij given Xij = x into nonparametric covariate-treatment interaction

and no main covariate and no main treatment effects is considered. The decomposition will

not restrict any linear association between Y and X. There are already some existing models

that could be used, such as the general additive model (GAM) Y = α +
∑p

j=1 fj(Xj) + ε

from Hastie and Tibshirani (1990). The GAM does not require fj to be linear, but their

method not only uses scatter plot smoothers such as computer-intensive splines to estimate

fj, it is also restricted to response variables from the exponential family.

To construct a model that not only can accommodate nonlinear relationship between Y

and X, and is also not restricted to exponential family and constant variance assumptions,

assume the conditional distribution of Yij given Xij = x is Fi(y|x), then decompose the

conditional mean of Yij given Xij = x, into

E(Yij|Xij = x) = µix = µ + αi + η(x) + ξi(x), (4.2.7)

where for some continuous covariate X with probability distribution function fX(x) and

its cumulative distribution function FX(x) and where µ = 1
a

∑a
i=1

∫
µix dFX(x), µi =

∫
µix dFX(x), µx = 1

a

∑
i µix, αi = µi − µ, η(x) = µx − µ, and ξi(x) = µix − µi − µx + µ.

Following the one-way ANCOVA interpretation, µ is the overall mean, αi is the treatment

effects, η(x) is the main covariate effect which is a function that depends on x, and ξi(x) is

the covariate-treatment interaction effect which is a function that depends on i and x. Here,

there is no restriction to any specific distribution or constant variance of the response within

each treatment. The error terms are independent with mean 0. The hypotheses to test the

no covariate-treatment interaction and the no main covariate effects using the model (4.2.7)
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are:

H0ξ : ξi(x) = 0 for all i, all x and (4.2.8)

H0η : η(x) = 0 for all x (4.2.9)

respectively.

4.3 Test Statistics

The same notation and conditional distribution assumptions in section 3.2.1 will be used

in the construction of the test statistics to test the hypotheses of no main covariate effect

H0η and no covariate-treatment interaction effects H0ξ. Let (Xij, Yij), j = 1, . . . , ni be the

original random sample from treatment i with conditional distribution of Y given X as

Fi(y|x). Following the approach in Chapter 3, combine all the covariate values and arrange

them in ascending order and treat the covariate as a factor with many levels. This creates

a two-way ANOVA setting without replication. The pseudo replications then are created

using the same technique as in subsection 3.2.1 by augmenting each cell (i, c) with k nearest

neighbors using observations from the ith treatment level. Denote Uict to be the observations

in the augmented cell (i, c), then U ic. = k−1
∑k

t Uict and U i.. = N−1
∑N

c=1 U ic.. Denote

QN = ak(N − 1)−1

N∑
c=1

(
U ·c· − U ···

)2
,

GN = k(a− 1)−1(N − 1)−1

N∑
c=1

a∑
i=1

(
U ic· − U i·· − U ·c· + U ···

)2
,

WN = {Na(k − 1)}−1

a∑
i=1

N∑
c=1

k∑
t=1

(
Uict − U ic·

)2
.

Note that WN is the same as in subsection 3.2.1. Then, the test statistics Tcov =
√

N(QN −
WN) and Tint =

√
N(GN − WN) are used to test the hypotheses of no main covariate
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effect H0η (4.2.9) and no covariate-treatment interaction effect H0ξ (4.2.8) respectively. The

development of the asymptotic distribution for Tcov and Tint is similar to the development

of the asymptotic distribution of the test statistic in Chapter 3. The lemmas and theorems

in the next section provide the theoretical results.

4.4 Asymptotic Distribution of the Test Statistics

Following the procedure in Section 3.2.2, denote Zict = Uict −E(Uict|X). Then QN and GN

defined in the previous section are projected onto the the space produced by the span of

some functions of {Zc, c = 1, . . . , N}, where Zc = (Z1c1, . . . , Zack)
′. In Section 4.4.1, Lemma

4.4.1 shows how the projection of QN is accomplished, followed by Theorem 4.4.2 showing

the asymptotic distribution of Tcov. In Section 4.4.2 Lemma 4.4.3 shows how the projection

of GN is accomplished and Theorem 4.4.4 showing the asymptotic distribution of Tint.

4.4.1 No Main Covariate Effect

Lemma 4.4.1. If the assumptions in subsection 3.2.1 are satisfied, let

QN = PQ(Z) + RQ(Z) (4.4.1)

where PQ(Z) =
ak

N

N∑
c=1

Z
2

.c. and RQ(Z) =
ak

N(N − 1)

N∑

c 6=c′
Z .c.Z .c′.. (4.4.2)

Then,
√

NRQ(Z)
p→ 0 as N →∞

Proof of Lemma 4.4.1

It is sufficient to show that E(
√

NRQ(Z)) −→ 0 and Var(
√

NRQ(Z)) −→ 0.

E(RQ(Z)) =
k

aN(N − 1)
E

{
a∑

i=1

N∑

c 6=c′
Zic·Zic′·

}
+

k

aN(N − 1)
E

{
a∑

i6=i′

N∑

c 6=c′
Zic·Zi′c′·

}
.

The second term of E(RQ(Z)) vanishes because observations from different treatments are

independent. The first term in E(RQ(Z)) was shown in the proof of lemma 3.2.1 to go to 0

as N →∞
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Next is to show that V ar(
√

NRQ(Z)) goes to 0 as N →∞. Because E(
√

NRQ(Z)) goes

to 0, it remains to show that E(
∑N

c 6=c′ Z ·c·Z ·c′·)2 also goes to 0. Write

E(
N∑

c 6=c′
Z ·c·Z ·c′·)2 =

N∑

c 6=c′

N∑

c1 6=c′1

E(Z ·c·Z ·c′·Z ·c1·Z ·c′1·) = 3A + B

where

A =
a∑

i1 6=i2

N∑

c 6=c′

N∑

c1 6=c′1

E(Zi1c·Zi1c′·Zi2c1·Zi2c′1·),

B =
a∑

i1=1

N∑

c 6=c′

N∑

c1 6=c′1

E(Zi1c·Zi1c′·Zi1c1·Zi1c′1·).

and when the cardinality of {i1, i2, i3, i4} is greater than 2, E(Zi1c·Zi2c′·Zi3c1·Zi4c′1·) = 0. The

expectation is not equal to 0 if the cardinality of {i1, i2, i3, i4} is less than or equal to 2. A

contains the three cases where the cardinality is equal to two; (i) when i1 = i3 and i2 = i4

(ii) when i1 = i2 and i3 = i4 and (iii) when i1 = i4 and i2 = i3. B corresponds to the

case that the cardinality is one. It was shown in the proof of lemma 3.2.1 that B vanishes

asymptotically. Hence we need only to consider A,

|A| =

∣∣∣∣∣∣

a∑

i1 6=i2

N∑

c 6=c′

N∑

c1 6=c′1

E(Zi1c·Zi1c′·Zi2c1·Zi2c′1·)

∣∣∣∣∣∣
(4.4.3)

≤
a∑

i1 6=i2

N∑

c 6=c′

N∑

c1 6=c′1

|E(Zi1c·Zi1c′·)E(Zi2c1·Zi2c′1·)| ≤ 4a(a− 1)(N − 1)2k2M2
1 ≤ O(N2),

where M1 is finite and was defined in equation (3.2.8).
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Therefore

Var(
√

NRQ(Z)) = V ar

( √
Nak

N(N − 1)

N∑

c 6=c′
Z ·c·Z ·c′·

)

=
a2k2N

N2(N − 1)2
V ar

(
N∑

c 6=c′
Z ·c·Z ·c′·

)

≤ a2k2

N(N − 1)2
{O[N2] + O[N2]} ≤ O(N−1),

which goes to zero when N goes to infinity.2

Theorem 4.4.2. Assume that H0η is true and the assumptions in Theorem 3.2.2 are sat-

isfied then,
√

N(QN(U)−WN(U)) → N(0, limN→∞ γ2
N + limN→∞ ϕ2

N), where γ2
N is defined

in Theorem 3.2.2 and

ϕ2
N =

2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t)+E(Miji′j′|Sij,t, Si′j′,t)

]}

+ ∆iji′j′(t1, t2)}+ O(N−1),

σ2
i = Var(Yij|Xij), Miji′j′ =

∑N
r I(j ∈ Cic)I(j′ ∈ Ci′c), Sij,t = (Xij, L

(t/2
ij , U

(t/2
ij ), U

t/2
ij and

L
t/2
ij be the upper and lower t/2 spacings from Xij,

∆iji′j′(t1, t2) =I
(
max{Xij − L

(t1/2)
ij , Xi′j′ − L

(t2/2)
i′j′ } ≤ min{Xij + U

(t1/2)
ij , Xi′j′ + U

(t2/2)
i′j′ }

)
.

Proof of Theorem 4.4.2

After applying Lemma 4.4.1, it remains to show that
√

N(PQ(Z))−WN(Z)) is asymptot-

ically normal. After algebraic simplification,
√

N(PQ(Z))−WN(Z)) is written as
√

N(TB +

TQ), where

TB =
1

Na(k − 1)

a∑
i=1

N∑
c=1

k∑

t6=t′
ZictZict′ same as equation (3.2.4)

TQ =
k

Na

a∑

i6=i′

N∑
c=1

Zic·Zi′c·. (4.4.4)
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The proof for the theorem is shown by verifying

Var[
√

N(TB + TQ)|X]
p→ lim

N→∞
(γ2

N + ϕ2
N), (4.4.5)

√
N(TB + TQ)√√

NVar[(TB + TQ)|X]
→ N(0, 1). (4.4.6)

First show that Cov(TB, TQ)|X)=0.

Cov((TB, TQ)|X) =
k

N2a2(k − 1)

a∑

i6=i′

N∑
c=1

a∑
i1=1

N∑
c1=1

k∑

t1 6=t1′

Cov(Zic·Zi′c·, Zi1c1t1Zi1c1t1′ |X)

=
k

N2a2(k − 1)

a∑

i6=i′

N∑
c=1

a∑
i1=1

N∑
c=1

k∑

t6=t′

1

k2

k∑
t

k∑

t′
Cov(ZictZi′ct′ , Zi1c1t1Zi1c1t1′|X)

=
k

N2a2(k − 1)

a∑

i6=i′

N∑
c=1

a∑
i1=1

N∑
c=1

k∑

t6=t′

1

k2

k∑
t

k∑

t′

(
E(ZictZi′ct′Zi1c1t1Zi1c1t1′ |X)

− E(ZictZi′ct′|X)E(Zi1c1t1Zi1c1t1′ |X)
)

= 0. (4.4.7)

The last equation is true because observations from different treatment are independent i.e.

E(ZictZi′ct′) = E(Zict)E(Zi′ct′) = 0. Because Cov((TB, TQ)|X) is 0, the condition (4.4.5) is

shown by demonstrating V ar(N1/2TB|X) → lim
N→∞

γ2
N and (E[Var(N1/2TQ|X)] − ϕ2

N) → 0.

The convergence of V ar(N1/2TB|X) was shown in lemma 3.2.3.

Write Var(
√

NTQ) = E(Var(
√

NTQ|X)) + Var(
√

NE(TQ|X)). Then

Var(
√

NE(TQ|X)) = 0 and E(Var(
√

NTQ|X))− lim
N→∞

ϕ2
N → 0.

It is clear that Var(
√

NE(TQ|X)) = 0, since by the definition of TQ in (4.4.4), the

observations from different treatment are independent, thus E(
√

NTQ|X) = 0 a.s. Next,

E(Var(
√

NTQ|X))

= E

{
V ar

(
k√
Na

a∑

i6=i′

N∑
c=1

(U ic·−E(U ic·|X))(U i′c· − E(U i′c·|X))

∣∣∣∣∣X
)}

. (4.4.8)
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Note that Uict = YijI(j ∈ Cic) and U ic· = k−1
∑ni

j=1 Yij I(j ∈ Cic), and the indicator

functions only depend on Xi and Xi′ , and not on Y, so equation (4.4.8) is written as

E



V ar


 k−1

√
Na

a∑

i6=i′

N∑
c=1

ni∑
j=1

n′i∑

j′=1

(Yij−E(Yij|X))I(j ∈ Cic)(Yi′j′ − E(Yi′j′|X))I(j′ ∈ Ci′c)

∣∣∣∣∣∣
X







=E



V ar




a∑

i6=i′

ni∑
j=1

n′i∑

j′=1

(Yij−E(Yij|X))(Yi′j′−E(Yi′j′|X))

∣∣∣∣∣∣
X




[
N∑

c=1

I(j ∈ Cic)I(j′ ∈ Ci′c)√
Nak

]2


 .

Denote tii′jj′ = (Yij−E(Yij|X))(Yi′j′−E(Yi′j′|X)). Then the right hand side of the equation

above becomes

E





a∑

i6=i′

a∑

i1 6=i′1

ni∑
j

ni′∑

j′

ni1∑

j′1

ni′1∑

j′1

Cov
(
tii′jj′ , ti1i′1j1j′1

∣∣X)
[

N∑
c=1

I(j ∈ Cic)I(j′ ∈ Ci′c)√
Nak

]2




=E





a∑

i6=i′

a∑

i1 6=i′1

ni∑
j

ni′∑

j′

ni1∑
j1

ni′1∑

j′1

E
(
tii′jj′ti1i′1j1j′1

∣∣X)
[

N∑
c=1

I(j ∈ Cic)I(j′ ∈Ci′c)√
Nak

]2


 , (4.4.9)

where the equality (4.4.9) is true because E(tii′jj′|X) = E[Yij − E(Yij|X)|X]E[Yi′j′ −
E(Yi′j′|X)|X] = 0 due to the fact that observations from different treatments are inde-

pendent. Further, E(tii′jj′ ti1i1′j1j1′|X) = 0 in the following four cases:

• Case 1. Either {i, i′, i1, i′1} or {j, j′, j1, j
′
1} has four different values.

• Case 2. Either {i, i′, i1, i′1} or {j, j′, j1, j
′
1} has three different values.

• Case 3. i = i1 and i′ = i′1 but j 6= j1 or j′ 6= j′1.

• Case 4. i = i′1 and i′ = i1 but j 6= j′1 or j′ 6= j1.

The remaining cases in the summations include (i, j) = (i1, j1) and (i′, j′) = (i′1, j
′
1) or

(i, j) = (i′1, j
′
1) and (i′, j′) = (i1, j1). In such cases E(tii′jj′ti1i1′j1j1′|X) = E[t2ii′jj′|X]. Note

that tii′jj′ = tii′j′j. Consequently, denoting Miji′j′ =
∑N

c I(j ∈ Cic)I(j′ ∈ Ci′c), equa-
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tion(4.4.9) is written as

E





2

Na2

a∑

i6=i′

1

k2

ni∑
j

ni′∑

j′
E[t2ii′jj′|X]

(
N∑
r

I(j ∈ Cic)I(j′ ∈ Ci′c)

)2


 (4.4.10)

= E

{
2

Na2

a∑

i6=i′

1

k2

ni∑
j

ni′∑

j′
σ2

i (Xij)σ
2
i′(Xi′j′) (Miji′j′)

2

}

= E

{
2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t) + Var(Miji′j′|Sij,t, Si′j′,t)

]
}

=
2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t)

+Var(Miji′j′|Sij,t, Si′j′,t)] ∆iji′j′(t1, t2)} , (4.4.11)

where Sij,t = (Xij, L
(t/2
ij , U

(t/2
ij ), U

t/2
ij and L

t/2
ij are the upper and lower t/2 spacings from Xij

and

∆iji′j′(t1, t2) = I
(
max{Xij − L

(t1/2)
ij , Xi′j′ − L

(t2/2)
i′j′ } ≤ min{Xij + U

(t1/2)
ij , Xi′j′ + U

(t2/2)
i′j′ }

)
.

Denote Xc as Xi1j1 when Xc refers to the j1th covariate value in group i1. Because the aug-

mentation for Cic only uses observations from group i and that for Ci′c only uses observations

from group i′, so event {j ∈ Cic} and {j′ ∈ Ci′c} are independent. Thus,

E(Miji′j′|Sij,t, Si′j′,t) =
∑

r

E[I(j ∈ Cic)I(j′ ∈ Ci′c)|Sij,t, Si′j′,t] (4.4.12)

=
∑
i1

∑
j1

P (j ∈ Ci,Xi1j1
, j′ ∈ Ci′,Xi1j1

|Sij,t, Si′j′,t) (4.4.13)

Consider

P (j ∈ Ci,Xi1j1
, j′ ∈ Ci′,Xi1j1

|Sij,t, Si′j′,t)

=





∫ min{Xij+U
(t1/2)
ij , Xi′j′+U

(t2/2)

i′j′ }
max{Xij−L

(t1/2)
ij , Xi′j′−L

(t2/2)

i′j′ }
gi1(x)dx∆iji′j′(t1, t2), i1 6= i, i′ or j1 6= j, j′;

I(j′ ∈ Ci′,Xij
), i1 = i, j1 = j;

I(j ∈ Ci,Xi′j′ ), i1 = i′, j1 = j′,

(4.4.14)

64



where t1 = t2 = k, if i1 6= i, i′; t1 = k − 1, t2 = k, if i1 = i, j1 6= j; t1 = k, t2 = k − 1, if

i1 = i′, j1 6= j′.

Note that

E[P (j ∈ Ci,Xi1j1
, j′ ∈ Ci′,Xi1j1

|Sij,t, Si′j′,t)|Xij, Xi′j′ ]

≤ min{P (j ∈ Ci,Xi1j1
|Xij, Xi′j′), P (j′ ∈ Ci′,Xi1j1

|Xij, Xi′j′)} = Op(N
−1),

and

E[Var(Miji′j′|Sij,t, Si′j′,t)|Xij, Xi′j′)]

=
N∑

c=1

[E(I(j ∈ Cic)I(j′ ∈ Ci′c)|Sij,t, Si′j′,t)− E2(I(j ∈ Cic)I(j′ ∈ Ci′c)|Sij,t, Si′j′,t)].

So

E[Var(Miji′j′|Sij,t, Si′j′,t)∆iji′j′(t1, t2)|Xij, Xi′j′ ] = E[Miji′j′∆iji′j′(t1, t2)|Xij, Xi′j′ ] + Op(N
−1).

Note that the indicator function in (4.4.11) ensures that the summation over j and j′

becomes a single summation of j from one to N and a summation of j′ over finitely many

values such that Xi′j′ is in the neighborhood of Xij. So,

E(Var(
√

NTQ|X))

=
2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t) + E(Miji′j′|Sij,t, Si′j′,t)

]

∆iji′j′(t1, t2)}+ O(N−1).

Therefore, [E(Var(
√

NTQ|X))−ϕ2
N ] → 0 where

ϕ2
N =

2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t) + E(Miji′j′|Sij,t, Si′j′,t)

]

∆iji′j′(t1, t2)}.
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There is no closed form for the expression of E(Miji′j′|Sij,t, Si′j′,t). It is estimated by the

total number of times the two covariate values (Xij, Xi′j′) are both used in the augmentation

of cells in the same column.

4.4.2 No Covariate-Treatment Interaction Effect

Lemma 4.4.3. Under the assumptions in subsection 3.2.1, let GN = PG(Z)+RG(Z), where

PG(Z) =
k

aN

a∑
i=1

N∑
c=1

Z
2

ic· −
k

a(a− 1)N

a∑

i6=i′

N∑
c=1

Zic·Zi′c· (4.4.15)

RG(Z) = − k

aN(N − 1)

N∑

c 6=c′

a∑
i=1

Zic·Zic′· +
k

aN(N − 1)(a− 1)

N∑

c 6=c′

a∑

i6=i′
Zic·Zi′c′·. (4.4.16)

Then
√

NRG(Z)
p→ 0 as N →∞.

The expression of RG(Z) is similar to RQ(Z) in lemma 4.4.1 except for the multiplicative

constant. Because the approaches are similar, the proof of the lemma is omitted.

Theorem 4.4.4. Under H0ξ and the conditions in Theorem 3.2.2, then

√
N(GN −WN) → N

(
0, lim

N→∞
(γ2

N +
ϕ2

N

(a− 1)2
)

)
,

as N →∞, where γ2
N and ϕ2

N are given in Theorem 3.2.2 and Theorem 4.4.2 respectively.

By Lemma 4.4.3,
√

N(GN −WN) has the same asymptotic distribution as
√

N(PG(Z)−
WN) = TB−TQ/(a−1), where TB and TQ are defined in (3.2.4) and (4.4.4) respectively. The

remaining proof follows arguments similar to those for Theorem 3.2.2, and thus is omitted.

4.5 Simulation studies

In this section, simulation studies were conducted to compare the performance of the pro-

posed pNP tests to the WA, GAM Spline, GAM loess, drop and CF tests for testing no

covariate-treatment interaction and no covariate effects. A situation where the response

variable is discrete and from a Bernoulli random variable is also studied.
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The simulations were conducted using different window sizes, k, different sample sizes

ni and different types of relationships between response and covariate. When the response

variable was continuous, two case were considered; one where there existed a linear depen-

dency and another where there existed a quadratic dependency between the response and

the covariate. Unless it is specified, in all of the examples, the random variable X was gener-

ated from a uniform distribution (0, 1), and εi is from N(0, 1). 500 simulations were run for

comparison with results reported in Wang and Akritas (2006). To determine the power of

the tests, the simulations were run using different values of τ , one set where τ represents the

slope of the linear function and another representing the vertical stretch or vertical shrink

for the quadratic function. When τ = 0 the proportion of rejections corresponds to the

estimate of type I error rate for both cases, linear and quadratic.

4.5.1 Computational Time Comparison

The running time for the proposed pNP test is first compared with WA test. The simulation

was conducted under the null hypothesis of no interaction effect for a = 3. The computer

used for this comparison has an Intel (R) Pentium M processor 1.86GHz, 1GB of RAM.

Figure 4.2 gives the running time (titled Elapsed Time) and the ratio of the running time

(titled Ratio of Elapsed Time) for the pNP test over the WA test for sample sizes from

ni = 10 to ni = 200. Comparing the running time, the pNP test is preferred over the

WA test because the pNP test is computationally less extensive than the WA test. This

is seen from the exponential increase in the ratio of elapsed time of WA and pNP tests.

This comparison supports the proposed pNP test as a much more computationally efficient

test compared to the WA test. An explanation for the observed phenomenon is that the

asymptotic variance calculation for WA test has computational complexity of O(N2). On

the other hand the new test has complexity O(N) for the asymptotic variance calculation.
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Figure 4.2: Computational Time Comparison
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4.5.2 Linear Alternative

Numerical results for covariate-treatment interaction effect

For this section, the study of the type I error estimate and power performance for the

proposed covariate-treatment interaction test when the underlying relationship between re-

sponse and covarite is linear is presented. The responses are generated from

Y1j = 0.1ε1j and Y2j = τX2j + 0.1ε2j. (4.5.1)

The type I error estimates and power performance at 0.05 level for the test of covariate-

treatment interaction are summarized in Table 4.1. The WA test result is taken from Table

1 in Wang and Akritas (2006) because their results could not be reproduced. The estimated

type I error corresponds to results when τ = 0. The results indicate that the WA test of
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no covariate-treatment interaction does not have a consistent control of the intended type I

error for smaller k. For instance, for ni = 30 and k = 3 the estimated type I error of 0.090

for the WA test is almost twice as much as α, while the estimated type I error for the pNP

test is 0.030 which is an acceptable level. Further, when ni = 30 and k = 7, the estimated

type I error improved to 0.062. On the other hand, the type I error estimates for the pNP

test are all acceptable for different values of k. Thus, in this situation, the pNP test of no

covariate treatment interaction effect is preferable to the WA test.

Table 4.1 also shows the CF test for no covariate-treatment interaction has a good type

I error estimate and power performance. The type I error estimates for case ni = 30, is

0.058. This is mainly because the CF test is uniformly the most powerful invariant test

(UMPI) in this data generation setting where the assumptions of normality, independence

and homogeneity of variance are satisfied, aside from the linear association assumption.

Like the CF test, the type I error estimate and the performance of the drop test is also

good because the error distribution for this example satisfies the needed assumption for

the drop test mentioned in section 2.1.4. In addition, the type I error estimate and power

performance for GAM spline and GAM Loess are also included in the study. When ni = 30,

the two GAM tests have liberal type I error estimates even though the power performance

is good.

For ni = 50, the result from Table 4.1 shows that the pNP test for no treatment-covariate

interaction effect has an acceptable level of the type I error estimate for the choice of k = 5, 7

and 9 and better estimates compared to the case where ni = 30. On the other hand, the

type I error estimate for the WA test for no covariate-treatment interaction effect is still

slightly elevated when k = 5, but improved for k = 7 and 9. The power for the pNP test

of no treatment-covariate interaction effect is comparable to that of the WA test. On the

other hand, when ni = 50, the type I error estimate and power performance for CF, drop,

GAM spline and GAM Loess tests are better when compared to situation when ni = 30.

In summary, the pNP test consistently produces acceptable type I errors for all sample

sizes considered while maintaining comparable power to the WA test. In addition, for the

pNP test, for the same sample sizes, a larger window size k yields a smaller type I error but
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a higher power. On the contrary, the type I error for the WA test depends on both k and

ni and it is liberal for smaller ni. This observation is consistent with the slow convergence

rate of the test statistics used for the WA test. All tests have better power performance for

larger sample sizes.

Table 4.1: Proportion of rejections at level 0.05 for testing no covariate-treatment interaction effect for
WA, pNP, GAM Spline and GAM Loess, Drop and CF tests. The response variable is from the linear
alternative model (4.5.1). The results are based on 500 simulations.

ni k τ WA.int pNP.int GAM Spline GAM loessess Drop.int CF.int
30 3 0.000 0.090 0.030 0.070 0.076 0.052 0.058

0.100 0.150 0.088 0.176 0.179 0.196 0.182
0.200 0.395 0.260 0.553 0.556 0.550 0.588
0.300 0.651 0.560 0.854 0.862 0.864 0.890

5 0.000 0.076 0.026
0.100 0.145 0.090
0.200 0.413 0.296
0.300 0.694 0.678

7 0.000 0.062 0.020
0.100 0.141 0.104
0.200 0.427 0.304
0.300 0.707 0.696

50 5 0.000 0.062 0.038 0.041 0.041 0.036 0.042
0.100 0.172 0.120 0.260 0.268 0.266 0.274
0.200 0.529 0.442 0.792 0.802 0.814 0.830
0.300 0.872 0.872 0.992 0.992 0.992 0.992

7 0.000 0.052 0.034
0.100 0.175 0.148
0.200 0.564 0.484
0.300 0.908 0.904

9 0.000 0.051 0.028
0.100 0.185 0.140
0.200 0.592 0.512
0.300 0.915 0.910

Numerical results for main covariate effect in the absence of no covariate-

treatment interaction

In this subsection the estimate of type I error and power performance of the pNP test for the

test of no main covariate effect is presented. For the p values of the test of no main covariate
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effect to be meaningful, the simulation needs to be conducted when there is no covariate-

treatment interaction in the model. Therefore, the response variable was generated by the

following model:

Yij = τXij + 0.1εij, i = 1, 2. (4.5.2)

The results of the simulation presented in Table 4.2 show that for ni = 30, all the tests

of interest except the GAM Spline have a good type I error estimate. The GAM Spline has

a slightly inflated type I error estimate of 0.06. For ni = 50, the type I error estimate for

GAM Spline (0.084) and GAM Loess (0.076) are quite inflated at 0.05 level. On the other

hand, the pNP, drop and CF tests have good type I error estimates and power performances.

In addition, the CF test has the best performance using this model as the power approaches

unity the fastest, which is to be expected for the same reasons mentioned in the above

subsection, i.e., assumptions of normality, independence and homogeneity of variance and

linear association are satisfied.

4.5.3 Quadratic Alternative

Covariate-Treatment Interaction

The study of the type I error and power performance for the proposed pNP test for covariate-

treatment interaction when the underlying relationship between the covariate and response

is quadratic is presented in this subsection. The responses are generated as follows:

Y1j = 0.1εij, Y2j = τ(X2
2j −X2j + 0.15) + 0.1εij (4.5.3)

The results for the type I error estimates and power performances at 0.05 level for tests of

no covariate-treatment interaction study are summarized in Table 4.3. The result of the

WA test is taken from Table 2 of Wang and Akritas (2006).

Similar to the study of the linear alternative, because under the null hypothesis the

estimated type I error is quite large (0.089), the power of the test of no treatment-covariate

71



Table 4.2: Proportion of rejections at level 0.05 for testing of no main covariate effect for WA Test, pNP
test, GAM spline and GAM Loess, Drop test and CF test. The response variable is from linear alternative
(4.5.2). The results are based on 500 simulations.

n k τ WA.cov pNP.cov GAM Spline GAM Loess drop CF
30 3 0.000 0.036 0.034 0.060 0.056 0.032 0.040

0.100 0.224 0.218 0.416 0.414 0.532 0.572
0.200 0.832 0.836 0.956 0.956 0.992 0.998
0.300 0.994 0.994 1.000 1.000 1.000 1.000

5 0.000 0.034 0.034
0.100 0.302 0.292
0.200 0.916 0.914
0.300 0.994 0.994

7 0.000 0.034 0.036
0.100 0.314 0.326
0.200 0.928 0.928
0.300 0.996 0.996

50 5 0.000 0.042 0.046 0.084 0.076 0.044 0.042
0.100 0.440 0.442 0.666 0.672 0.788 0.806
0.200 0.980 0.982 0.998 0.998 1.000 0.998
0.300 1.000 1.000 1.000 1.000 1.000 1.000

7 0.000 0.044 0.046
0.100 0.484 0.474
0.200 0.990 0.992
0.300 1.000 1.000

9 0.000 0.038 0.038
0.100 0.516 0.520
0.200 0.994 0.992
0.300 1.000 1.000

interaction effect for the WA test for ni = 30 and k = 3 is not very reliable. On the

other hand, for ni = 30, the pNP test has an acceptable type I error and a good power

performance for each value of k and ni considered. The type I error estimate from the GAM

Spline and GAM Loess tests are inflated when ni = 30. In addition, the GAM spline and

GAM Loess tests do not have power to detect the covariate-treatment interaction in this

setting. Similarly, the drop and the CF tests also do not have power although the estimates

of the type I error are acceptable.

When ni = 50, the pNP test has conservative type I error estimates for all values of

k used. The WA test has a high value type I error estimate when k = 5, but has an
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acceptable estimate for k = 7 and k = 9. On the other hand, both the pNP and the WA

tests for covariate-treatment interaction have comparable power for large k but the WA test

is liberal for k = 5. Although all the other tests have acceptable type I error estimates, they

do not have power at all for both ni = 30 and ni = 50.

Table 4.3: Proportion of rejections for testing no covariate-treatment interaction effect using WA, pNP,
Drop and CF tests. The response variable is from the quadratic model (4.5.3). The results are based on
500 simulations.

n k τ WA pNP GAM Spline GAM Loess drop CF
30 3 0.000 0.089 0.032 0.070 0.076 0.058 0.058

0.500 0.198 0.106 0.069 0.068 0.058 0.068
1.000 0.498 0.372 0.064 0.062 0.070 0.076
1.500 0.812 0.748 0.086 0.080 0.100 0.078

30 5 0.000 0.060 0.034
0.500 0.162 0.096
1.000 0.438 0.380
1.500 0.813 0.770

7 0.000 0.042 0.038
0.500 0.129 0.092
1.000 0.397 0.324
1.500 0.742 0.738

50 5 0.000 0.070 0.028 0.041 0.041 0.036 0.042
0.500 0.239 0.170 0.050 0.051 0.040 0.054
1.000 0.670 0.656 0.056 0.063 0.050 0.060
1.500 0.964 0.956 0.079 0.074 0.088 0.076

7 0.000 0.053 0.028
0.500 0.236 0.178
1.000 0.687 0.656
1.500 0.964 0.942

9 0.000 0.042 0.034
0.500 0.213 0.174
1.000 0.666 0.648
1.500 0.961 0.940

Main Covariate Effect

This subsection studies the type I error estimate and the power performance of the proposed

pNP test of main covariate effect when there is no covariate-treatment interaction and the

underlying relationship of response and covariate are quadratic. The data are generated as
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Table 4.4: Proportion of rejections at level 0.05 for testing no main covariate effect for WA Test, pNP
test, GAM spline and GAM Loess tests, Drop test and CF test. The response variable is from the quadratic
model (4.5.4). The results are based on 500 simulations.

n k tau WA.cov pNP.cov GAM Spline GAM Loess drop CF
30 3 0.000 0.036 0.034 0.060 0.056 0.032 0.040

0.500 0.350 0.348 0.636 0.646 0.028 0.042
1.000 0.912 0.916 1.000 0.998 0.052 0.058
1.500 0.998 0.998 1.000 1.000 0.076 0.072

5 0.000 0.034 0.032
0.500 0.358 0.362
1.000 0.940 0.942
1.500 1.000 1.000

7 0.000 0.034 0.034
0.500 0.302 0.312
1.000 0.918 0.926
1.500 0.998 0.998

50 5 0.000 0.042 0.042 0.084 0.076 0.044 0.042
0.500 0.632 0.632 0.892 0.900 0.048 0.056
1.000 1.000 1.000 1.000 1.000 0.062 0.068
1.500 1.000 1.000 1.000 1.000 0.086 0.082

7 0.000 0.044 0.046
0.500 0.660 0.668
1.000 1.000 1.000
1.500 1.000 1.000

9 0.000 0.040 0.038
0.500 0.634 0.654
1.000 1.000 1.000
1.500 1.000 1.000

follows:

Yij = τ(X2
ij −Xij + 0.15) + 0.1εij i = 1, 2 (4.5.4)

The results for the simulation of main covariate effect are recorded in Table 4.4. As

expected, the CF and drop tests did not have power at all to detect the quadratic relationship

of response and covariate. On the other hand, the proposed pNP, WA, GAM Spline and

GAM Loess tests all have good estimates of type I error and have high power to detect the

underlying quadratic relationship of response and covariate.
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4.5.4 Bernoulli Responses

Covariate-Treatment Interaction

This subsection of the simulation study discusses the type I error estimate and the power

performance of the pNP test for the response variable emerging from Bernoulli trials. For

testing the covariate-treatment interaction effect, data was generated as follows:





y1j = Bernoulli
(

exp(τcos(2πX1j))

(1+exp(τ cos(2πX1j)))

)
τ = 0, 1, 2, 3, 4

yij = Bernoulli (0.5) for i = 2, 3.
(4.5.5)

The estimates of type I error and the performance of covariate-treatment interaction effect

of the pNP test are compared with the WA, GLM Wald and GLM deviance tests. The

pNP test is used when the response variable is discrete because there is no distributional

restriction when calculating the asymptotic distribution of the test statistics. The GLM

Wald and GLM deviance tests are those commonly used when the response variable is

discrete, especially response variables from Bernoulli trials.

Table 4.5 summarizes the type I error estimates and power performance for testing

the covariate-treatment interaction effect. The column labeled as “WA.int” is copied from

Table 3 of Wang and Akritas (2006). The results show that the WA and pNP tests perform

reasonably well for sample size ni = 30. When ni = 50, the performance of WA and pNP

tests improve as window size increases. The GLM Wald and GLM deviance tests perform

well under the null hypothesis but do not have power to detect the interaction when the

alternative specified in equation (4.5.5) is true.

Main Covariate Effect

A simulation was conducted to study the type I error estimate and the power of the pNP

test for main covariate effect when the response variable is discrete, and where interaction
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does not exist between treatment and covariate under the following model:

yij = Bernoulli

(
exp(τcos(2πXij))

(1 + exp(τ cos(2πXij)))

)
i = 1, 2, 3 (4.5.6)

In this model, the relationship of response and covariate is through the probability of success

in the Bernoulli trials. The result of the simulation study is presented in Table 4.6. From

the result, it is clear that the pNP test has a good type I error of 0.042 at α level of 0.05. It

also has a very good power to detect the main covariate effect in the absence of covariate-

treatment interaction effect. On the other hand both the GLM deviance and GLM Wald

tests do not have any power to detect the main covariate effect in this simulation.

4.6 Data Analysis

This section continues the analysis of the Ozone concentration data from section 3.3.1 and

the EFT data from section 3.3.2 testing for covariate-treatment interaction and main co-

variate effects. The tests being used for the data analysis comparison are the pNP, GAM

Spline, GAM Loess, drop and CF tests.

4.6.1 Analysis of Ozone Concentration Data (continued from Chap-

ter 3)

Recall that the variables of interest in the Ozone data are response variable ozone (O3), co-

variate variable day of year (doy) and a factor wind speed which has 4 levels: low, medium,

medium high and high. Table 4.7 gives the p-values for testing the doy-wind speed interac-

tion effect. The results show that the only test that is significant is the pNP test.

On the other hand, the test of no main covariate effect is not meaningful in the presence

of the covariate-treatment interaction effect. Because the interaction effect is not significant

for GAM Spline, GAM Loess, drop and CF tests, the main doy effect is tested. The results

are given in Table 4.8, showing significant main doy effect for GAM Spline and GAM Loess

but not significant for the drop and the CF tests.
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4.6.2 Application to EFT Study (continued from Chapter 3)

This section continues the EFT data analysis from section 3.3.2. The response variable

of interest is the time in seconds for fifth grade students in a state primary school in a

Sydney suburb to finish a test of the Wechsler Intelligence Scale for Children (WISC).

The covariate variable is “field dependence” which is measured by providing an Embedded

Figures Test (EFT) within the test. Subjects were assigned different places of instruction

in either a corner group or a row group. In this dataset, there exist a pair of observations

(139, 739) from the row group that is considered as an outlier. The EFT-group interaction

test was performed using pNP, GAM Spline, GAM Loess, drop and CF tests from the

original data and when the outlier was replaced by the median time to finish the WISC test.

The p-values are recorded in Table 4.9. The results indicate nonsignificant interaction for

covariate-treatment interaction for all the tests when the original data was used and when

the outlier was replaced by the median time from the row group.

On the other hand, for testing main the EFT effect, when the original data was used, all

the other tests except the pNP test are significant at α = 0.05. When the outlier is replaced

by the median to finish the WISC test, all the other tests became nonsignificant except the

pNP test. This is also the case in reference to the results of tests of independence in Section

3.3.2. Therefore, the pNP test has a consistent result when the original observation is used

and when the outlier is replaced by the median observation in the test of independence of

response and the EFT adjusted for treatment effect (in Chapter 3) and in the test of no

main EFT effect.
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Table 4.5: Proportion of rejections at level 0.05 for testing no covariate-treatment interaction effect for
WA, pNP, GLM Wald GLM and Deviance tests. The response variable is from the model in (4.5.5). The
results are based on 500 simulations.

ni k τ WA.int pNP.int GLM.Dev GLM.Wald
30 3 0 0.060 0.036 0.060 0.044

1 0.090 0.100 0.072 0.034
2 0.306 0.234 0.074 0.044
3 0.486 0.402 0.070 0.058
4 0.590 0.542 0.076 0.062

5 0 0.026 0.016
1 0.074 0.084
2 0.266 0.248
3 0.458 0.486
4 0.596 0.628

7 0 0.016 0.022
1 0.062 0.062
2 0.206 0.208
3 0.380 0.428
4 0.518 0.586

50 5 0 0.038 0.030 0.064 0.054
1 0.094 0.094 0.050 0.038
2 0.468 0.470 0.064 0.046
3 0.746 0.750 0.052 0.048
4 0.874 0.888 0.052 0.052

7 0 0.030 0.024
1 0.096 0.096
2 0.490 0.504
3 0.800 0.816
4 0.890 0.926

9 0 0.028 0.026
1 0.078 0.110
2 0.482 0.506
3 0.788 0.828
4 0.910 0.930
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Table 4.6: Proportion of rejections at level 0.05 for testing no main covariate effect for WA, pNP, GLM
Wald and GLM deviance tests. The response variable is from the model in (4.5.6). The results are based
on 500 simulations.

n k tau pNP.cov GLM.Dev.cov GLM.Wald.cov
30 3 0 0.042 0.052 0.052

1 0.588 0.052 0.052
2 0.992 0.056 0.056
3 1.000 0.062 0.056
4 1.000 0.066 0.058

5 0 0.048
1 0.600
2 0.994
3 1.000
4 1.000

7 0 0.034
1 0.558
2 0.992
3 1.000
4 1.000

50 5 0 0.042 0.056 0.050
1 0.588 0.042 0.042
2 0.992 0.060 0.056
3 1.000 0.048 0.044
4 1.000 0.046 0.040

7 0 0.048
1 0.600
2 0.994
3 1.000
4 1.000

9 0 0.034
1 0.558
2 0.992
3 1.000
4 1.000

Table 4.7: P values for test of no doy-wind speed interaction effect of the ozone data

pNP GAM Spline GAM Loess drop CF
0.000 0.707 0.761 0.445 0.501
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Table 4.8: P values for test of no main doy effect of the ozone data

GAM Spline GAM Loess drop CF
0.000 0.000 0.210 0.064

Table 4.9: P values for test of no EFT-group interaction effect of the EFT data

pNP GAM Spline GAM Loess drop CF
Original data 0.862 0.675 0.404 0.192 0.128
Outlier replaced 0.773 0.496 0.390 0.724 0.654

Table 4.10: P values for test of no main EFT effect of the EFT data

pNP GAM Spline GAM Loess drop CF
Original data 0.474 0.015 0.026 0.013 0.006
Outlier replaced 0.569 0.413 0.386 0.129 0.142
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Chapter 5

New Nonparametric Tests when

Treatment Level a is Large

5.1 Tests of No Covariate-Treatment Interaction, No

Main Covariate and No Simple Covariate Effects

when a is Large

Statistical studies are often conducted in a setting where the treatment levels are large. Be-

cause the method in the previous chapters is constructed under a fixed number of treatment

levels, it is not suitable for data sets with a large number of treatment levels. For example, in

the ozone data discussed in Section 3.3.1, the total number of wind levels is 11. Wind levels

have to be combined in a manner that is appropriate in terms of their application that make

them suitable to be analyzed using the proposed tests from the previous two chapters. This

chapter discusses the asymptotic distributions theory, simulation studies and an application

for testing of no covariate-treatment interaction, no main covariate and no covariate simple

effects when the number of treatment level a and the covariate values ni in each treatment

level are large, thus making the total covariate values N also large.

The model (4.2.7) in Section 4.2 will be used for the construction of the hypotheses and

test statistics for the case of large a and large N to test no main covariate, no covariate-

treatment interaction and no simple covariate effect. Assume the conditional distribution
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of Yij given Xij = x is Fi(y|x), the conditional mean of Yij given Xij = x, is decomposed

into model (4.2.7) below;

E(Yij|Xij = x) = µix = µ + αi + η(x) + ξi(x),

where X is a continuous covariate with probability distribution function fX(x) and its

cumulative distribution function FX(x), µ = 1
a

∑a
i=1

∫
µix dFX(x), µi =

∫
µix dFX(x),

µx = 1
a

∑
i µix, αi = µi− µ, η(x) = µx− µ, and ξi(x) = µix− µi− µx + µ. The hypotheses

for no covariate-treatment interaction, no main covariate and no simple covariate effects

using the above model are:

H0ξ : ξi(x) = 0 for all i and x,

H0η : η(x) = 0 for all x,

H0φ : η(x) + ξi(x) = 0 for all i, and x,

respectively. The test statistics are constructed by treating the covariate as a factor with

levels c ranging from the smallest to the largest covariate values as in sections 3.2.1 and 4.3.

We still augment each cell (i, c) with k nearest neighbors using observations from the ith

treatment level and denote Uict to be the observations in the augmented cell (i, c) defined in

Section 3.2.1. Instead of having a standardized rate of
√

N , the test statistics for testing no

covariate treatment interaction and no simple covariate effects have a standardizing rate of
√

aN , while the standardizing rate for testing the no main covariate effect is
√

N. The test

statistics T 1
int =

√
aN(GN −WN), T 1

cov =
√

N(QN −WN), and T 1
sim =

√
aN(BN −WN) will

be used to test the hypotheses of no covariate-treatment interaction H0ξ, no main covariate

H0η and the no simple covariate H0φ effects respectively, where letting U ic· = k−1
∑k

t=1 Uict,
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U i·· = N−1
∑N

c=1 U ic·, then

GN = k(a− 1)−1(N − 1)−1

N∑
c=1

a∑
i=1

(
U ic· − U i·· − U ·c· + U ···

)2
,

QN = ak(N − 1)−1

N∑
c=1

(
U ·c· − U ···

)2
,

BN = ka−1(N − 1)−1
∑

i

N∑
c=1

(
U ic· − U i··

)2
,

and WN = {Na(k − 1)}−1

a∑
i=1

N∑
c=1

k∑
t=1

(
Uict − U ic·

)2
.

The next section discusses the asymptotic distribution of the test statistics mentioned

here.

5.2 Asymptotic Distribution of Test Statistics Under

the Null Hypotheses

Before the asymptotic distribution of the test statistics T 1
int, T

1
cov and T 1

sim are obtained,

the projection of the test statistics are needed. As in Section 3.2.2, denote Zict = Uict −
E(Uict|X), then GN , QN and BN defined in the previous section are projected onto the

space span by function of {Zc, c = 1, . . . , N}, where Zc = (Z1c1, . . . , Zack)
′. In the following

subsections, lemmas for the projection of the test statistics will be presented preceding the

theorems for the asymptotic distributions of the test statistics.

5.2.1 Test of No Covariate-treatment Interaction Effect.

This subsection consists of a lemma and a theorem toward the establishment of the asymp-

totic distribution of the test statistics T 1
int in the previous section. The following lemma

derives the projection of GN .
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Lemma 5.2.1. Write GN = PG(Z) + RG(Z), where

PG(Z) =
k

aN

a∑
i=1

N∑
c=1

Z
2

ic· −
k

a(a− 1)N

a∑

i6=i′

N∑
c=1

Zic·Zi′c·

and

RG(Z) = − k

aN(N − 1)

N∑

c 6=c′

a∑
i=1

Zic·Zic′· +
k

aN(N − 1)(a− 1)

N∑

c 6=c′

a∑

i6=i′
Zic·Zi′c′·

If the assumptions in Section 3.2.1 are satisfied, then as a and N go to ∞,

√
aNGN −

√
aN

k

aN

a∑
i=1

N∑
c=1

Z
2

ic· = op(1)

The lemma states that only the first term in the four term decomposition of GN is

important. The other three terms are asymptotically negligible.

Proof of Lemma 5.2.1 First write PG(Z) = P
(1)
G +P

(2)
G , where P

(1)
G = k

aN

∑a
i=1

∑N
c=1 Z

2

ic·

and P
(2)
G = k

a(a−1)N

∑a
i6=i′

∑N
c=1 Zic·Zi′c·, and RG(Z) = R

(1)
G + R

(2)
G ,

where R
(1)
G = − k

aN(N−1)

∑N
c 6=c′

∑a
i=1 Zic·Zic′· and R

(2)
G = k

aN(N−1)(a−1)

∑N
c 6=c′

∑a
i6=i′ Zic·Zi′c′·.

The proof of Lemma 5.2.1 involves showing the convergence in probability of
√

aNP
(2)
G ,

√
aNR

(1)
G and

√
aNR

(2)
G to 0 as a,N → ∞. First, E(

√
aNP

(2)
G ) → 0, because observations

from different treatments are independent. Notice that P
(2)
G = 1

a−1
TQ, where TQ is defined

in equation (4.4.4) in the proof of Theorem 4.4.2. Therefore,

Var(
√

aNP
(2)
G ) =

a

(a− 1)2
Var(

√
NTQ).

Following the argument in the proof of theorem 4.4.2, it can be seen that Var(
√

aNP
(2)
G ) =

O(a−1). Next, it will be shown that
√

aNR
(1)
G converges to 0 in probability as a and N go
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to infinity.

E(
√

aNR
(1)
G ) = E

(
−

√
aNk

aN(N − 1)

N∑

c 6=c′

a∑
i=1

Zic·Zic′·

)

= −E

[ √
Nk

N(N − 1)

N∑

c 6=c′

√
a

a

a∑
i=1

Zic·Zic′·

]

= O

( √
a√
N

)
= O


 1√

1
a

∑a
i ni


 .

Therefore, as a and ni approaches infinity, E(
√

aNR
(1)
G ) converges to 0. Moreover,

Var(
√

aNR
(1)
G ) = Var

(
−

√
aNk

aN(N − 1)

N∑

c 6=c′

a∑
i=1

Zic·Zic′·

)

=
aNk2

a2N2(N − 1)2
Var

(
N∑

c 6=c′

a∑
i=1

Zic·Zic′·

)

=
aNk2

a2N2(N − 1)2

N∑

c 6=c′

∑
i

N∑

c1 6=c1′

∑
i1

E
[
Zic.Zic′.Zi1c1.Zi1c1′.

]

= A + B

where A is the case where i 6= i1 and A = O( Na
(N−1)2

) = O( a
N

), which converge to 0 as a and

ni go to infinity. On the other hand B is for the case when i = i1 and B = O( a2N2

a2N2(N−1)2
) =

O( 1
(N−1)2

). So Var(
√

aNR
(1)
G ) → 0 because ni →∞.

Lastly, E(
√

aNR
(2)
G ) = 0 because observations from different treatments are independent

85



and

Var(
√

aNR
(2)
G ) = Var

[√
aN

k

aN(N − 1)(a− 1)

N∑

c 6=c′

a∑

i6=i′
Zic·Zi′c′·

]

=
aNk2

a2N2(N − 1)2(a− 1)2

N∑

c 6=c′

N∑

c1 6=c1′

a∑

i6=i′

a∑

i1 6=i1′

E
[
Zic·Zi′c′·Zi1c1·Zi1′c1′ ·

]

≤ aNk2

a2N2(N − 1)2(a− 1)2
O(a(a− 1)N2k2)

= O(a−1N−1)

The inequality above comes from the arguments similar to the proof of lemma 4.4.1 in

equation (4.4.3) and when i = i1.

Theorem 5.2.2. Assume that H0ξ is true and the assumptions in Section 3.2.1 are satisfied.

Then as a and N →∞,

√
aN [GN −WN ]

L−→ N(0, lim
a,N→∞

aγ2
N)

where

γ2
N =

4

Na2(k − 1)2

a∑
i

ni∑

j<j′
E

{
σ2

i (Xij)σ
2
i (Xij′)

[
B2

ijj′ + Bijj′

−2I(j′∗ − j∗ ≤ (k − 1)/2)]} I(j′∗ − j∗ ≤ k − 1) + O(N−1),

with Bijj′ =
∑a

i1,i1 6=i

(
ni1

ni
di1i(Xij) + 1

)
[k−(j′∗−j∗)]I(j′∗−j∗ ≤ k−1), di1i(x) = fX,i1(x)/fX,i(x)

and j∗ < j′∗, where j∗, j′∗ are the ranks of Xij and Xij′ among covariate values in treatment

i.
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Proof of Theorem 5.2.2 By Lemma 5.2.1,

√
aN(GN −WN)

=
√

aN

[(
k

aN

a∑
i=1

N∑
c=1

Z
2

ic·

)
−

(
1

aNk

a∑
i=1

N∑
c=1

s
∑

t

Z2
ict−

1

Nak(k − 1)

N∑
i

∑
c

∑

t6=t′
ZictZict′

)]

=
√

aN

[(
1

aNk

a∑
i=1

N∑
c=1

∑
t

Z2
ict +

1

aNk

a∑
i=1

N∑
c=1

∑

t6=t′
ZictZict′

)
−

(
1

aNk

a∑
i=1

N∑
c=1

∑
t

Z2
ict −

1

Nak(k − 1)

N∑
i

∑
c

∑

t6=t′
ZictZict′

)]

=
√

aN(TB)

where TB = 1
aN(k−1)

∑a
i=1

∑N
c=1

∑
t6=t′ ZictZict′ is defined in equation (3.2.4). First, the con-

vergence of the asymptotic variance of
√

aN(TB) will be shown. Write Var(
√

aNTB) =

E(Var(
√

aNTB|X))+Var(
√

aNE(TB|X)). Similar to equation (3.2.17), E[
√

aNTB|X] → 0,

and from equation (3.2.25), [E[Var(
√

aNTB)] − aγ2
N ] → 0 where γ2

N is defined in Theorem

5.2.2. The proof for the asymptotic normality is presented in Lemma 5.2.3 below.

Lemma 5.2.3. Under the null hypothesis of no covariate-treatment interaction H0ξ the test

statistic
√

aN(GN −WN) is asymptotically normal.

Proof of Lemma 5.2.3 From the Lemma 5.2.1,
√

aN(GN −WN) has the same asymptotic

distribution as
√

aNTB as a and N go to infinity. It remains to prove that
√

aNTB is asymp-

totically normal. Similar to the proof of Theorem 3.2.2, let t
(2)
iji′j′ = (Yij − E(Yij|X))(Yi′j′ −

E(Yi′j′|X))Kijj′ , where Kijj′ is defined in (3.2.6), and write

√
aNTB =

√
aN

Na(k − 1)

∑

i,i′,j,j′
t
(2)
iji′j′I(i = i′)I(j 6= j′) =

∑

1≤l1≤N

∑

1≤l2≤N

V G
l1l2

,

where l1 = l(i, j) and l2 = l(i, j′) are defined through a one to one index mapping function

l(i, j) =

{
j for i = 1∑i−1

i2=1 ni2 + j for i > 1,
(5.2.1)
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and

V G
l1l2

=

{ √
aN

Na(k−1)
(Yl1 − E(Yl1|X))(Yl2 − E(Yl2|X)) Kl1l2 for i = i′ and j 6= j′

0 otherwise.
(5.2.2)

Here Kl1l2 is same as Kijj′ but using index l1, l2:

Kl1l2 =

{ ∑a
i1

∑ni1
j1

I(l1 ∈ CiXi1j1
)I(l2 ∈ CiXi1j1

) for i = 1∑a
i1

∑ni1
j1

I(
∑i−1

i2=1 ni2 + l1 ∈ CiXi1j1
)I(

∑i−1
i2=1 ni2 + l2 ∈ CiXi1j1

) for i > 1.

Notice V G
l1l2

= V G
l2l1

. Therefore,

√
aNTB = 2

∑

1≤l1<l2≤N

V G
l1l2

(5.2.3)

is a clean quadratic form as in de Jong (1987). In order to show that

Var(
√

aNTB)−1/2
√

aNTB
L−→ N(0, 1), it will be shown that Proposition 3.2 in de Jong

(1987) can be applied, i.e., shows that GG
1 , GG

2 and GG
3 (defined below) are of smaller order

than that of [Var(
√

aNTB)]4 = O(1). Let l3 = l(i, j3), and l4 = l(i, j4). Define

GG
1 =

∑
1≤l1<l2≤N E(V G

l1l2
)4,

GG
2 =

∑
1≤l1<l2<l3≤N{E(V G

l1l2
V G

l1l3
)2 + E(V G

l2l1
V G

l2l3
)2 + E(V G

l3l1
V G

l3l2
)2}, and

GG
3 =

∑
1≤l1<l2<l3<l4≤N{E(V G

l1l2
V G

l1l3
V G

l4l2
V G

l4l3
)+E(V G

l1l2
V G

l1l4
V G

l3l2
V G

l3l4
)+E(V G

l1l3
V G

l1l4
V G

l2l3
V G

l2l4
)}.

Following the detailed proof of Theorem 3.2.2, it is established that

GG
1 = O(N−1a−2) = o(1),

GG
2 = O(N−1a−2)I(l∗2 − l∗1 ≤ k − 1)I(l∗3 − l∗1 ≤ k − 1) = o(1) and

GG
3 = O(N−1a−2) = o(1)

2
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5.2.2 Test of No Main Covariate Effect

This subsection presents a lemma and a theorem for the development of the asymptotic

distribution of the test statistic T 1
cov =

√
N [QN −WN ] to test no main covariate effect when

a and N are large. Similar to the traditional parametric effect, the test of no main covariate

effect is only meaningful when the test for covariate-treatment interaction is not significant.

The following lemma shows that
√

NQN is partitioned into two sums of quadratic forms. It

is shown in the lemma that one of the sums converges to 0 in probability as a and N go to

∞. The theorem for the asymptotic distribution of the test statistic T 1
cov follows the lemma.

Lemma 5.2.4. Let QN = PQ(Z) + RQ(Z) where

PQ(Z) =
ak

N

N∑
c=1

Z
2

.c. and RQ(Z) =
ak

N(N − 1)

N∑

c 6=c′
Z .c.Z .c′..

Then,
√

NRQ(Z)
p→ 0 as a and N →∞.

Proof of Lemma 5.2.4

First write

RQ(Z) =
k

aN(N − 1)

N∑

c 6=c′

∑
i

Zic.Zic′. +
k

aN(N − 1)

N∑

c 6=c′

∑

i6=i′
Zic.Zi′c′. (5.2.4)

It is sufficient to show that E(
√

NRQ(Z)) → 0 and Var(
√

NRQ(Z)) → 0 as a and N go to

∞. Then,

E(
√

NRQ(Z)) =
√

NE
k

aN(N − 1)

N∑

c 6=c′

∑
i

Zic.Zic′. +
√

NE
k

aN(N − 1)

N∑

c 6=c′

∑

i6=i′
Zic.Zi′c′. = 0

The second term goes to 0 from the assumption that observations from different treatments

are independent. From the first term,

E

(
k

aN(N − 1)

N∑

c 6=c′

∑
i

Zic.Zic′.

)
= O(N−1).

This case is similar to the proof of Lemma 3.2.1 stated in equation (3.2.7). Therefore
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√
NE[RQ(Z)] = O(N−1/2).

Next it will be shown that the variance of
√

NRQ(Z) goes to 0 as a,N → ∞. Denote

the two terms in the right hand side of (5.2.4) as R1
Q + R2

Q respectively. First it will be

shown that Cov(R1
Q, R2

Q) is 0.

Cov(R1
Q, R2

Q)

=
k2

a2N2(N − 1)2

N∑

c 6=c′

∑

i1 6=i1′

N∑

c1 6=c1′

∑
i

Cov(Zic.Zic′., Zi1c1.Zi1′c1′ .)

=
k2

a2N2(N − 1)2

N∑

c 6=c′

∑

i1 6=i1′

N∑

c1 6=c1′

∑
i

E(Zic.Zic′.Zi1c1.Zi1′c1′ .)− E(Zic.Zic′.)E(Zi1c1.Zi1′c1′ .)

=
k2

a2N2(N − 1)2

N∑

c 6=c′

∑

i1 6=i1′

N∑

c1 6=c1′

∑
i

E(Zic.Zic′.Zi1c1.Zi1′c1′ .) = 0.

Therefore Var(RQ(Z)) = Var(R1
Q) + Var(R2

Q). This is similar to the argument in the

proof of Lemma 4.3.1 with the exception that a is also tending to infinity together with N ,

Var(R1
Q) = Var

(
k

aN(N − 1)

N∑

c 6=c′

∑
i

Zic.Zic′.

)

=
k2

a2N2(N − 1)2
E

[
N∑

c 6=c′

∑
i

Zic.Zic′.

]2

=
k2

a2N2(N − 1)2

N∑

c 6=c′

∑
i

N∑

c1 6=c1′

∑
i1

E
[
Zic.Zic′.Zi1c1.Zi1c1′.

]

<
k2

a2N2(N − 1)2
[4a(a− 1)(N − 1)2k2M1 + ak2N2M2]

=
k2

a2N2(N − 1)2
O(a2N2),

where M1 and M2 are finite and were defined as in equation (3.2.8). So Var(
√

NR1
Q) =

O(N−1).
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Next,

Var(R2
Q) = Var

(
k

aN(N − 1)

N∑

c 6=c′

∑

i6=i′
Zic.Zi′c′.

)

=
k2

a2N2(N − 1)2
E

[
N∑

c 6=c′

∑

i6=i′
Zic.Zi′c′.

]2

=
k2

a2N2(N − 1)2

N∑

c 6=c′

N∑

c1 6=c1′

∑

i6=i′

∑

i1 6=i1′

E
[
Zic.Zi′c′.Zi1c1.Zi1′c1′ .

]

<
k2

a2N2(N − 1)2
[4a(a− 1)(N − 1)2k2M1]

=
k2

a2N2(N − 1)2
O(a2N2),

where M1 is finite and was defined in equation (3.2.8). Therefore, Var(
√

NR2
Q) = O(N−1).

2

Theorem 5.2.5. Assume that the hypothesis of no main covariate effect H0η is true and

the assumptions in Section 3.2.1 are satisfied then as a and N →∞,

√
N [QN −WN ]

L−→ N(0, lim
a,N→∞

ϕ2
N)

where

ϕ2
N =

2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t)+E(Miji′j′|Sij,t, Si′j′,t)

]

∆iji′j′(t1, t2)}+ O(N−1),

and σ2
i = Var(Yij|Xij), Miji′j′ =

∑N
r I(j ∈ Cic)I(j′ ∈ Ci′c), Sij,t = (Xij, L

(t/2
ij , U

(t/2
ij ), U

t/2
ij

and L
t/2
ij be the upper and lower t/2 spacings from Xij,

∆iji′j′(t1, t2) = I
(
max{Xij − L

(t1/2)
ij , Xi′j′ − L

(t2/2)
i′j′ } ≤ min{Xij + U

(t1/2)
ij , Xi′j′ + U

(t2/2)
i′j′ }

)
.

The ϕ2
N above is also defined in Theorem 4.4.2.

Sketch of Proof of Theorem 5.2.5

Only the convergence of the asymptotic variance will be presented here. The asymptotic
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normality will not be presented here because it will be similar to Lemma 5.2.3. After

applying Lemma 5.2.4,
√

N(QN −WN) is equivalent to

√
N(PQ(Z)−WN) =

√
N(TB + TD),

where

TB =
1

Na(k − 1)

a∑
i=1

N∑
c=1

k∑

t6=t′
ZictZict′ ,

TD =
k

Na

a∑

i6=i′

N∑
c=1

Zic·Zi′c·

and QN and PQ(Z) is defined in Lemma 5.2.4. The asymptotic variance of
√

N(TB+TD) will

be shown here. First, Cov(TB, TD)|X) = 0, by equation (4.4.7). Because Cov((TB, TD)|X) is 0,

the convergence of the asymptotic variance is shown by demonstrating V ar(N1/2TB|X) → 0

and V ar(N1/2TD|X) → ϕ2
N . From the proof in Lemma 5.2.1 , E[V ar(N1/2TB|X)] → γ2

N .

Therefore as a and N go to ∞, γ2
N → 0. As for V ar(N1/2TD|X), from the proof of Theorem

4.4.2,

E[V ar(N1/2TD|X)]

=
2

Na2k2

a∑

i6=i′

ni∑
j

ni′∑

j′
E

{
σ2

i (Xij)σ
2
i′(Xi′j′)

[
E2(Miji′j′|Sij,t, Si′j′,t) + E(Miji′j′|Sij,t, Si′j′,t)

]

∆iji′j′(t1, t2)}+ O(N−1)

= ϕ2
N .

Therefore, as a and N →∞, Var[
√

N(PQ(Z)−WN)] → ϕ2
N

5.2.3 Test for No Simple Covariate Effect

This subsection presents a lemma and a theorem for the development of the asymptotic

distribution of test statistics
√

aN(BN −WN) to test for the simple covariate effect.
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Lemma 5.2.6. Write

BN = ka−1(N − 1)−1

N∑
c=1

a∑
i=1

(
Zic· − Zi··

)2
= PB(Z) + SB(Z)

where

PB(Z) =
k

aN

a∑
i=1

N∑
c=1

Z
2

ic· and SB(Z) = − k

aN(N − 1)

a∑
i=1

N∑

c 6=c′
Zic·Zic′·.

When the assumptions in Section 3.2.1 are satisfied, then as a and N →∞,

√
aNBN →

√
aN

k

aN

a∑
i=1

N∑
c=1

Z
2

ic·

Proof of Lemma 5.2.6

The proof of the lemma involves showing that
√

aNSB → 0. Notice that SB = −P
(2)
G

from the proof of Lemma 5.2.1. Thus
√

aNSB → 0.

Theorem 5.2.7. Assume that H0(B) is true and the assumptions in Section 3.2.1 are

satisfied, then as a and N →∞,

√
aN(BN −WN)

L−→ N(0, lim
a,N→∞

aγ2
N)

where γ2
N is defined in Theorem 5.2.2.

Proof of Theorem 5.2.7

The proof of the theorem comes from Applying Lemma 5.2.6, and following the proof of

Theorem 5.2.2, thus it is omitted.

5.3 Numerical studies

5.3.1 Simulation Studies Setting

This section reports a simulation study to investigate the type I error and the power per-

formance of the pNP test of no covariate-treatment interaction, no main covariate and no

simple covariate effects. The pNP tests are compared to the traditional F test (CF), the
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drop test and the GAM tests using spline and loess smoothing methods. The simulation

study was conducted for a case where the number of treatment level a is set to be 20 and the

number of covariate values in each treatment level (ni) is also 20. In this setting, the covari-

ate values Xij are iid and were generated from a mixture distribution with 3 components

f1, f2 and f3 as follows:





f1(x) = Uniform(−0.5, 0) with probability (1− prop)/2

f2(x) = Uniform(0, b) with probability prop,

f3(x) = Uniform(b, 1) with probability (1− prop)/2.

(5.3.1)

The parameter prop ranges from 0.1 to 0.9 are given in Table 5.1. The values of b are 0.5

and 0.7, which will be described in the later part of this section. The responses in each

treatment level i are generated according to equation (5.3.2) below.

Yij = Xij tan (θi) I(0 < Xij ≤ bi) + bi tan (θi) I(Xij > bi)− (10 θi/ τ)
√
|Xij| εij (5.3.2)

where εij ∼ Weibull (shape = 2, scale = 5 |Xij − 0.5|).
Because the pNP test was constructed without any specific distributional and constant

variance assumptions, this model is particularly suitable to evaluate the performance of the

proposed test under a nonconstant variance setting with a nonnormal distribution. The

nonconstant conditional variance term is described by the term 10 θ/τ
√|xij| εij. This is a

covariate-treatment dependent error terms. Given Xij = x, the conditional variance of the

error term is written as:

Var

(
10 θi/τ

√
|xij| εij |Xij = x

)
= 100 θ2

i /τ
2|x| Var(εij)

= 625 θ2
i / τ 2|x|(x− 0.5)2(4− π). (5.3.3)

Notice that the variance of the observations is directly proportional to a third degree polyno-

mial in x and with θ2
i but inversely proportional with τ 2. Therefore, the conditional variance

of responses not only depend on X and τ , but also on θi, which are distinct at the different

treatment levels.
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The conditional mean of Yij given Xij for model (5.3.2) is written as

E(Yij|Xij = x) = x tan (θi) I(0 < x ≤ bi) + bi tan (θi) I(x > bi)

−(10 θi/ τ)
√
|x| E(εij)

= I + II − III (5.3.4)

where I = x tan (θi) I(0 < x ≤ bi), II = bi tan (θi) I(x > bi) and III = 25 θi/τ
√

π
√
|x| |x−

0.5|. The interaction effect exists if values of θi and bi are non identical for different treat-

ments. When θi and bi are the same for all treatment levels, these correspond to a null

hypothesis of no covariate-treatment interaction. Figures 5.1 and 5.2 illustrate the graph

of the true mean component I + II − III, component III, component I and the variance

component from the equation (5.3.3) when τ = 0.0625 and prop = 0.1 and prop = 0.9

respectively. In addition, Figure 5.2 which details τ = 0.0625 and prop = 0.9 also includes

the plot of the observations. From the graph it is seen that the linear component (I) does

not have a very strong influence in the true conditional mean for this model. The most

critical component is part III of the model.

5.3.2 Covariate-treatment Interaction

Type I error estimates for the test of no covariate-treatment interaction

The type I error estimates for the tests considered above are obtained for the no covariate-

treatment interaction effect when Xij are generated by the mixture distribution (5.3.1)

with b = 0.5. The responses are generated following the equation (5.3.2) with θ = π/4.

The type I error estimates were calculated for different values of prop and τ , where prop

values range from 0.1 to 0.9 and τ values range from 0.0625 to 1. The scatter plots in

Figure 5.3 and Figure 5.4 illustrate the data generation for the cases when τ = 0.25 and

prop = 0.5 and τ = 0.0625 and prop = 0.9 respectively. The scatter plot of data in Figure

5.3 exhibits nonlinear associations, while the data in Figure 5.4 appears to exhibit some

linear associations. In both plots, there is no significant covariate-treatment interaction
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Figure 5.1: Plot of the conditional mean components (5.3.4) and variance (5.3.3) for the
simulation prop = 0.1, and τ = 0.0625. The green line corresponds to component I+II−III,
the blue dotted line corresponds to component III, the red dashed line depicts component
I of (5.3.4) and black dotted line give the variance component (5.3.3).
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effect present but there is a main covariate effect present.

The results for the estimates of type I error at 0.01 level for this setting are presented in

Table 5.1. The table shows that the type I error estimates from GAM tests, the drop test

and the CF test are inflated with the exception of the pNP test. This is most likely due

to the fact that in this setting, the errors which correspond to component III of equation

(5.3.2) depend on the covariate values and have a nonconstant variance in different treatment

levels. Thus this result is to be expected because all the other tests except the pNP test

assume that the error has constant variance. Moreover, the type I error estimates for these

tests seem to increase as the value of prop increases for all values of τ . On the other hand,

the estimates for type I error from the pNP test for no covariate-treatment interaction are

very conservative for all values of τ and prop. Therefore, the pNP test has acceptable type

I error estimates under the complicated heteroscedastic conditional data setting.

Power performance for covariate-treatment interaction

To study the power performance of the proposed test, the covariate values were generated

using the mixture distribution in the model (5.3.1). The responses are generated following

the equation (5.3.2) with θ ranges from −0.25π to 0.2π and b = 0.5, 0.7.

The graph of the equation (5.3.2) was constructed to illustrate the relation between the

response Y and X at different values of b and θ. The covariate values X were generated from

(5.3.1) where prop = {0.1, 0.26, 0.33, 0.5, 0.9}. Figure 5.5 illustrates the setting for τ = 0.25

and prop = 0.33 while Figure 5.6 illustrates for τ = 0.25 and prop = 0.9. The scatter plots

show the existence of a covariate-treatment interaction effect. In Figure 5.5, there appears

to be a second order association between the covariate X and the response Y. In Figure

5.6, the association between X and Y is not evident. The proportion of rejections of no

covariate-treatment interaction at the 0.01 level are presented in Table 5.3 for p from 0.1 to

0.9 and τ from 0.0625 to 0.5. In general, the results indicate that the performance of the

pNP test is better than the performance of the other four comparable tests when the range

of prop goes from 0.1 to 0.5 and for all the τ values considered. When prop varies from

0.76 to 0.90 the pNP seems unable to detect the covariate-treatment interaction compared

with the other four tests. Table 5.4 shows the gradual change in performance of pNP test
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Table 5.1: Proportion of rejections at level 0.01 under the null hypothesis of no covariate-
treatment interaction effect when ni = 20, a = 20, θ = π/4 and b = 0.5 from (5.3.2). The
results are based on 1000 simulations.

τ prop pNP.5 GAM Spline GAM Loess drop CF
0.0625 0.10 0 0.226 0.224 0.055 0.096

0.26 0 0.404 0.397 0.129 0.177
0.33 0 0.437 0.435 0.216 0.240
0.50 0 0.687 0.700 0.390 0.435
0.76 0 0.934 0.948 0.521 0.881
0.90 0 0.951 0.970 0.434 0.980

0.125 0.10 0 0.226 0.224 0.055 0.096
0.26 0 0.404 0.397 0.129 0.177
0.33 0 0.437 0.435 0.216 0.240
0.50 0 0.687 0.715 0.390 0.435
0.76 0 0.934 0.948 0.521 0.881
0.90 0 0.951 0.970 0.434 0.980

0.25 0.10 0 0.226 0.224 0.055 0.097
0.26 0 0.404 0.397 0.129 0.178
0.33 0 0.437 0.435 0.216 0.240
0.50 0 0.687 0.700 0.390 0.435
0.76 0 0.935 0.948 0.521 0.881
0.90 0 0.951 0.970 0.434 0.980

0.5 0.10 0 0.226 0.224 0.055 0.097
0.26 0 0.404 0.397 0.129 0.178
0.33 0 0.437 0.435 0.216 0.241
0.50 0 0.687 0.697 0.390 0.434
0.76 0 0.935 0.948 0.521 0.879
0.90 0 0.951 0.970 0.434 0.980

for additional values of prop between 0.5 and 0.76. Although GAM Spline, GAM Loess and

CF seem to perform quite well when prop = 0.9, with p-values of 0.964, 0.697, 0.977 and

0.963 respectively. However, this could not be the correct power for these tests, because the

type I errors corresponding to this power simulation study are very inflated. Those errors

are 0.951, 0.970, 0.430 and 0.980 respectively (from Table 5.1).

Because of the inflated values of the estimated type I error for the four tests and the

very conservative values for the pNP test, one might want to see the bootstrap power level

for these tests. The results for the bootstrap power performance for the covariate-treatment

interaction tests are reported in Table 5.5. These results are based on the cutting point
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Table 5.2: The values b’s and θ’s that generate the treatment levels combination for the
simulation study for power performance of test of no covariate-treatment interaction effect.

trt 1 2 3 4 5 6 7 8 9 10
b 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7
θ −5

20
π −5

20
π −4

20
π −4

20
π −3

20
π −3

20
π −2

20
π −2

20
π −1

20
π −1

20
π

trt 11 12 13 14 15 16 17 18 19 20
b 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7
θ 0 0 1

20
π 1

20
π 2

20
π 2

20
π 3

20
π 3

20
π 4

20
π 4

20
π

(threshold) being the lower 1 percentile of the p values under the null hypothesis. Instead

of rejecting the null hypothesis when the p value is less than 0.01, the null hypothesis is

rejected when the p value is less than the corresponding threshold for all τ and prop values.

From the results in Table 5.5, the bootstrap power performance for the pNP test is better

than the result from the nonbootstrap performance. The bootstrap power for the pNP test

are all very high for all value of τ ’s and prop’s. From Table 5.3, the pNP test has very

low power for prop = 0.76 and prop = 0.9, but not in Table 5.5. The power for the pNP

test when prop = 0.76 and prop = 0.9 improved significantly when the lower 1% threshold

of p-values was used. On the other hand, the bootstrap power performance for the GAM

Spline, GAM Loess and the CF tests were very weak, especially for large values of prop,

i.e. prop = 0.76 and prop = 0.9. The bootstrap power performance for the drop test was

moderate for prop = 0.9 and prop = 0.1.

5.3.3 When There is No Covariate-treatment Interaction : Test of

No Simple Covariate effect and Test of No Main Covariate

Effect

This subsection presents type I error analysis and power performance for the tests of no

simple covariate and no main covariate effects when there is no covariate-treatment inter-

action effect in the model when compared with the other four tests stated in the previous

subsection. The setting for the simulation to estimate the type I error for the no covariate-
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Table 5.3: (Power performance) Proportion of rejections at level 0.01 for testing of no
covariate-treatment interaction ni = 20 and a = 20 using the model (5.3.2). The results are
based on 1000 simulations.

τ prop pNP.5 GAM Spline GAM Loess Drop CF
0.0625 0.10 0.999 0.701 0.698 0.856 0.697

0.26 0.999 0.655 0.656 0.728 0.652
0.33 0.999 0.797 0.802 0.863 0.799
0.50 0.990 0.754 0.759 0.795 0.750
0.76 0.099 0.761 0.759 0.709 0.739
0.90 0.059 0.964 0.967 0.977 0.963

0.125 0.10 0.999 0.708 0.709 0.845 0.701
0.26 0.999 0.660 0.657 0.731 0.659
0.33 0.999 0.801 0.809 0.853 0.804
0.50 0.991 0.763 0.765 0.804 0.763
0.76 0.098 0.763 0.760 0.686 0.741
0.90 0.059 0.966 0.967 0.976 0.963

0.25 0.10 0.999 0.716 0.719 0.842 0.714
0.26 1.000 0.673 0.672 0.689 0.669
0.33 1.000 0.815 0.820 0.850 0.813
0.50 0.990 0.772 0.773 0.780 0.776
0.76 0.112 0.766 0.766 0.656 0.761
0.90 0.049 0.967 0.969 0.969 0.964

0.50 0.10 1.000 0.744 0.742 0.804 0.745
0.26 1.000 0.696 0.700 0.670 0.695
0.33 1.000 0.839 0.837 0.823 0.831
0.50 0.989 0.790 0.797 0.762 0.790
0.76 0.104 0.775 0.772 0.633 0.752
0.90 0.067 0.968 0.972 0.970 0.967

treatment interaction effect in the subsection above will also be used in the simulation to

study the power performance for simple covariate and main covariate effects. The power

performance for testing no simple covariate and no main covariate effects was conducted

under the setting for the null hypothesis of no covariate-treatment interaction in subsection

5.3.2 described above. Before discussing the power performance for these tests, the type I

error analysis will be discussed that corresponds to the power performance setting.

The simulation setting for the null hypotheses of no simple covariate and no main co-

variate effects is such that a = 20, ni = 20 and Xij were generated following the model in
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Table 5.4: Power for no covariate-treatment interaction, no covariate simple and no main
covariate effects for pNP test with additional values of prop.

τ prop pNP.int pNP.simp pNP.cov
0.0625 0.6 0.763 0.716 0.067

0.63 0.655 0.614 0.062
0.65 0.649 0.608 0.057
0.68 0.215 0.181 0.026
0.7 0.216 0.183 0.025
0.73 0.166 0.145 0.030

0.125 0.6 0.756 0.719 0.069
0.63 0.661 0.615 0.059
0.65 0.662 0.615 0.061
0.68 0.228 0.193 0.029
0.7 0.223 0.189 0.025
0.73 0.175 0.152 0.030

0.25 0.6 0.760 0.720 0.065
0.63 0.667 0.623 0.061
0.65 0.668 0.625 0.058
0.68 0.239 0.197 0.029
0.7 0.237 0.197 0.029
0.73 0.181 0.159 0.032

0.5 0.6 0.779 0.742 0.067
0.63 0.681 0.655 0.068
0.65 0.685 0.660 0.071
0.68 0.239 0.210 0.029
0.7 0.241 0.212 0.030
0.73 0.197 0.182 0.036

(5.3.1) with b = 0.5. The responses were generated following

Yij = 0.25 tan(θi)− 25/τ θi

√
π(0.3− 0.2 prop) + 10/τ θi[εij − E(εij)] (5.3.5)

where εij = Weibull (shape = 2, scale = 5(0.5 − 0.25 prop)) + cos(θi) and the E(εij) =

[5(0.5− 0.25 prop) + cos(θi)]
√

π/2. Notice that the equation (5.3.5) does not depend on X

for all i, thus there is no simple covariate and no main covariate effect. The twenty values

of θ that contribute to the treatment effect in the model in each treatment group for this

simulation are {−3.000 π/8,−2.684 π/8,−2.368 π/8,−2.053 π/8,−1.737 π/8,−1.421 π/8,

− 1.105 π/8,−0.789 π/8,−0.474 π/8,−0.158 π/8, 0.158 π/8, 0.474 π/8, 0.790 π/8,
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Table 5.5: (Bootstrap Power performance) Proportion of rejections at level 0.01 for testing
of no covariate-treatment interaction using the lower 1 percentile of the corresponding p-
values of estimate of type I error as the cut off point for rejecting the null when ni = 20 and
a = 20 using the model (5.3.2). The results are based on 1000 simulations.

τ prop pNP GAM Spline GAM Loess drop CF
0.0625 0.1 1.000 0.298 0.287 0.727 0.474

0.26 1.000 0.101 0.109 0.390 0.282
0.33 1.000 0.160 0.184 0.518 0.405
0.5 1.000 0.048 0.060 0.274 0.200
0.76 0.977 0.004 0.003 0.131 0.022
0.9 0.900 0.062 0.038 0.736 0.053

0.125 0.1 1.000 0.305 0.297 0.721 0.481
0.26 1.000 0.101 0.112 0.404 0.288
0.33 1.000 0.166 0.192 0.551 0.413
0.5 1.000 0.049 0.058 0.274 0.203
0.76 0.974 0.004 0.003 0.115 0.023
0.9 0.915 0.062 0.040 0.688 0.053

0.25 0.1 1.000 0.313 0.308 0.666 0.495
0.26 1.000 0.105 0.117 0.373 0.299
0.33 1.000 0.181 0.204 0.510 0.425
0.5 1.000 0.054 0.063 0.240 0.212
0.76 0.936 0.004 0.003 0.080 0.024
0.9 0.953 0.064 0.045 0.669 0.054

0.5 0.1 1.000 0.347 0.335 0.659 0.525
0.26 1.000 0.119 0.135 0.325 0.334
0.33 1.000 0.209 0.233 0.458 0.452
0.5 1.000 0.064 0.067 0.222 0.236
0.76 0.945 0.005 0.003 0.077 0.026
0.9 0.963 0.073 0.051 0.660 0.059

1.105 π/8, 1.421 π/8, 1.737 π/8, 2.053 π/8, 2.368 π/8, 2.684 π/8, 3.000 π/8}. The variance

of εij in this simulation setting range between (25(0.5 − 0.25prop)2)[1 − π/4] and (5(0.5 −
0.25prop) + 1)[1− π/4]. Notice that the first two terms of the right side of equation (5.3.5)

resulted from taking the expectation of the conditional mean of Yij given Xij in the equation

(5.3.4). The results for the estimates of type I error and power performance of the tests of

simple covariate and main covariate effects for pNP, GAM, drop and CF tests are presented

in the following subsections.
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Test of No Simple Covariate effect

The estimates of type I error at 0.01 level for simple covariate effect from the model (5.3.5)

are presented in Table 5.6. The values of τ and prop used are those used in the previous

section. It is seen that the type I error estimate for the pNP test is very conservative for all

values of τ and prop. For the GAM tests and the CF test, the type I error estimates range

from 0.025 to 0.048 for all τ and prop. These results are quite inflated.

Table 5.6: Proportion of rejections at level 0.01 under the null hypothesis of no simple
covariate effect in 5.3.5 for ni = 20 and a = 20. The results are based on 1000 simulations.

τ prop pNP GAM Spline GAM Loess Drop CF
0.0625 0.1 0.001 0.033 0.030 0.172 0.033

0.26 0.000 0.031 0.029 0.180 0.033
0.33 0.000 0.048 0.048 0.170 0.046
0.5 0.000 0.030 0.029 0.184 0.025
0.76 0.002 0.035 0.034 0.158 0.031
0.9 0.000 0.042 0.039 0.157 0.040

0.125 0.1 0.000 0.034 0.034 0.195 0.036
0.26 0.000 0.031 0.029 0.182 0.033
0.33 0.000 0.048 0.048 0.179 0.046
0.5 0.000 0.030 0.029 0.169 0.025
0.76 0.003 0.035 0.034 0.157 0.031
0.9 0.000 0.042 0.039 0.166 0.040

0.25 0.1 0.000 0.033 0.030 0.187 0.033
0.26 0.000 0.031 0.029 0.185 0.033
0.33 0.000 0.048 0.048 0.171 0.046
0.5 0.000 0.030 0.029 0.179 0.025
0.76 0.001 0.035 0.034 0.158 0.031
0.9 0.000 0.042 0.039 0.166 0.040

0.5 0.1 0.001 0.034 0.034 0.188 0.036
0.26 0.000 0.031 0.029 0.174 0.033
0.33 0.000 0.048 0.048 0.179 0.046
0.5 0.000 0.030 0.029 0.184 0.025
0.76 0.002 0.035 0.034 0.156 0.031
0.9 0.000 0.042 0.039 0.167 0.040

To study the power performance for a simple covariate effect, the data were generated

under the model (5.3.2) for θ = π/4 and b = 0.5 which is also used for simulation study

to estimate the type I error for the test of no covariate-treatment interaction effect in the
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previous section. The estimated power for the simple covariate effect is presented in Table

5.7. The table demonstrates that in general, all the tests of main covariate effect discussed

here performed well. However, since the type I error estimates from Table 5.6 for the GAM

tests, drop test and CF test are inflated, the bootstrap power analysis is calculated. The

bootstrap analysis means the cutoff threshold used to determine the rejection of the null

hypotheses is the lower 1 percentile of the corresponding p-value under the null hypothesis

instead of α = 0.01. The results for the bootstrap power analysis for simple covariate effect

are presented in Table 5.8. It is seen that the bootstrap power of GAM Spline, GAM Loess

and CF test does not differ from the estimated power without the bootstrap. On the other

hand, the bootstrap power performance of the drop test becomes weaker compared to the

one without bootstrap in Table 5.7. For the pNP test, the bootstrap performance slightly

improved when the 1 percentile threshold was used from the corresponding empirical p

values under the null hypothesis.

Test of No Main Covariate Effect

Similar to the simulation study for testing the no simple covariate effect, the simulation

study to test the main covariate effect was conducted under the model (5.3.5) to estimate

the type I error rate and under the model (5.3.2) for the power performance of the pNP test.

Table 5.9 shows the estimates of type I error to test for the no main covariate effect. All

of the tests being considered here have a good estimate of type I error for all combinations

of τ and prop values considered. The results for the power performance for the test of the

main covariate effect in Table 5.10 indicate that all the tests considered have good power

under this simulation setting.
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Table 5.7: Proportion of rejections at level 0.01 to test for simple covariate effect under the
model (5.3.2) for θ = π/4 and b = 0.5, ni = 20 and a = 20. The results are based on 1000
simulations.

τ prop pNP GAM Spline GAM Loess drop CF
0.0625 0.1 1.000 1.000 1.000 0.913 0.951

0.26 1.000 1.000 1.000 0.828 0.906
0.33 1.000 1.000 1.000 0.979 0.980
0.5 0.999 1.000 1.000 0.958 0.966
0.76 0.003 1.000 1.000 0.839 0.953
0.9 0.013 1.000 1.000 0.994 0.997

0.125 0.1 1.000 1.000 1.000 0.913 0.954
0.26 1.000 1.000 1.000 0.828 0.908
0.33 1.000 1.000 1.000 0.979 0.981
0.5 0.999 1.000 1.000 0.958 0.968
0.76 0.004 1.000 1.000 0.839 0.955
0.9 0.014 1.000 1.000 0.994 0.998

0.25 0.1 1.000 1.000 1.000 0.913 0.957
0.26 1.000 1.000 1.000 0.828 0.914
0.33 1.000 1.000 1.000 0.979 0.983
0.5 1.000 1.000 1.000 0.958 0.972
0.76 0.003 1.000 1.000 0.839 0.957
0.9 0.023 1.000 1.000 0.994 0.998

0.5 0.1 1.000 1.000 1.000 0.913 0.967
0.26 1.000 1.000 1.000 0.828 0.932
0.33 1.000 1.000 1.000 0.979 0.984
0.5 1.000 1.000 1.000 0.958 0.974
0.76 0.006 1.000 1.000 0.839 0.959
0.9 0.032 1.000 1.000 0.994 0.999
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Figure 5.2: Plot of the conditional mean components (5.3.4) and variance (5.3.3) for the
simulation b = 0.7, prop = 0.9, and τ = 0.0625. with simulated data. The green line
corresponds to component I +II−III, the blue dotted line corresponds to component III,
thed red dashed line depicts component I of (5.3.4) and black dotted line give the variance
component (5.3.3).
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Figure 5.3: Scatter plot for data generated under the null hypothesis of no covariate-
treatment interaction with θ = π/4, b = 0.5, τ = 0.25 and prop = 0.5 following the
model (5.3.2).
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Figure 5.4: Scatter plot for data generated under the null hypothesis of no covariate-
treatment interaction with θ = π/4, b = 0.5, τ = 0.0625 and prop = 0.9 following the
model (5.3.2).
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Figure 5.5: Scatter plot of data generated from equation (5.3.2) when τ = 0.25 prop = 0.33
for power estimation of no covariate-treatment interaction test in which the treatment level
were generated by θi and bi values described in Table 5.2. This figure illustrates the existence
of covariate-treatment interaction in the data.
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Figure 5.6: Scatter plot of data generated from equation (5.3.2) when τ = 0.25 prop = 0.9
for power estimation of no covariate-treatment interaction test in which the treatment level
were generated by θi and bi values described in Table 5.2. This figure illustrates the existence
of covariate-treatment interaction in the data.
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Table 5.8: (Bootstrap Power performance) Proportion of rejections at level 0.01 for testing
of no simple covariate effect using the lower 1 percentile of the corresponding p-values under
the null hypothesis as the cut off point for rejecting the null when ni = 20 and a = 20 using
the model (5.3.2). The results are based on 1000 simulations

τ prop pNP GAM Spline GAM Loess drop CF
0.0625 0.1 1.000 1.000 1.000 0.434 0.923

0.26 1.000 1.000 1.000 0.261 0.855
0.33 1.000 1.000 1.000 0.450 0.920
0.5 1.000 1.000 1.000 0.357 0.926
0.76 0.180 1.000 1.000 0.296 0.912
0.9 0.259 1.000 1.000 0.870 0.993

0.125 0.1 1.000 1.000 1.000 0.468 0.907
0.26 1.000 1.000 1.000 0.258 0.858
0.33 1.000 1.000 1.000 0.491 0.922
0.5 1.000 1.000 1.000 0.358 0.929
0.76 0.138 1.000 1.000 0.267 0.914
0.9 0.258 1.000 1.000 0.847 0.993

0.25 0.1 1.000 1.000 1.000 0.423 0.932
0.26 1.000 1.000 1.000 0.262 0.864
0.33 1.000 1.000 1.000 0.469 0.923
0.5 1.000 1.000 1.000 0.317 0.935
0.76 0.209 1.000 1.000 0.216 0.915
0.9 0.303 1.000 1.000 0.830 0.994

0.5 0.1 1.000 1.000 1.000 0.352 0.926
0.26 1.000 1.000 1.000 0.220 0.883
0.33 1.000 1.000 1.000 0.437 0.942
0.5 1.000 1.000 1.000 0.296 0.940
0.76 0.187 1.000 1.000 0.196 0.918
0.9 0.365 1.000 1.000 0.824 0.995
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Table 5.9: Proportion of rejections at level 0.01 under the null hypothesis of no main
covariate effect in the model (5.3.5) when ni = 20 and a = 20. The results are based on
1000 simulations.

τ prop pNP GAM Spline GAM Loess Drop CF
0.0625 0.1 0.019 0.012 0.013 0.012 0.007

0.26 0.015 0.013 0.015 0.014 0.010
0.33 0.009 0.013 0.014 0.015 0.013
0.5 0.013 0.011 0.008 0.015 0.007
0.76 0.009 0.012 0.015 0.006 0.006
0.9 0.009 0.012 0.009 0.007 0.010

0.125 0.1 0.019 0.015 0.019 0.009 0.011
0.26 0.012 0.013 0.015 0.011 0.010
0.33 0.013 0.013 0.014 0.013 0.013
0.5 0.015 0.011 0.008 0.012 0.007
0.76 0.011 0.012 0.015 0.006 0.006
0.9 0.013 0.012 0.009 0.009 0.010

0.25 0.1 0.020 0.012 0.013 0.010 0.007
0.26 0.013 0.013 0.015 0.011 0.010
0.33 0.011 0.013 0.014 0.012 0.013
0.5 0.014 0.011 0.008 0.012 0.007
0.76 0.013 0.012 0.015 0.008 0.006
0.9 0.009 0.012 0.009 0.008 0.010

0.5 0.1 0.016 0.015 0.019 0.011 0.011
0.26 0.012 0.013 0.015 0.011 0.010
0.33 0.011 0.013 0.014 0.013 0.013
0.5 0.013 0.011 0.008 0.011 0.007
0.76 0.011 0.012 0.015 0.011 0.006
0.9 0.011 0.012 0.009 0.008 0.010
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Table 5.10: (Power performance) Proportion of rejections at level 0.01 for testing of main
covariate effect when ni = 20 and a = 20 using the model 5.3.2 with θ = π/4 and b = 0.5.

tau prop pNP GAM Spline GAM Loess drop CF
0.0625 0.1 1.000 1.000 1.000 0.995 0.999

0.26 1.000 1.000 1.000 0.981 0.989
0.33 1.000 1.000 1.000 1.000 0.997
0.5 1.000 1.000 1.000 0.995 0.988
0.76 1.000 1.000 1.000 0.833 0.652
0.9 0.999 1.000 1.000 1.000 0.935

0.125 0.1 1.000 1.000 1.000 0.999 0.999
0.26 1.000 1.000 1.000 0.985 0.991
0.33 1.000 1.000 1.000 1.000 0.997
0.5 1.000 1.000 1.000 0.999 0.989
0.76 1.000 1.000 1.000 0.836 0.663
0.9 1.000 1.000 1.000 1.000 0.937

0.25 0.1 1.000 1.000 1.000 0.997 1.000
0.26 1.000 1.000 1.000 0.987 0.995
0.33 1.000 1.000 1.000 1.000 0.998
0.5 1.000 1.000 1.000 0.998 0.990
0.76 1.000 1.000 1.000 0.871 0.675
0.9 1.000 1.000 1.000 1.000 0.948

0.5 0.1 1.000 1.000 1.000 1.000 1.000
0.26 1.000 1.000 1.000 0.989 0.997
0.33 1.000 1.000 1.000 1.000 0.999
0.5 1.000 1.000 1.000 0.997 0.992
0.76 1.000 1.000 1.000 0.895 0.711
0.9 0.999 1.000 1.000 1.000 0.954
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5.4 Data Analysis

5.4.1 Ozone Data Revisited

In this section, the ozone data which was discussed in Section 3.3.1 and Section 4.6.1 is

revisited. Here the change of ozone concentration (O3) is considered with the day of year

(doy), while different temperature levels are observed. The temperature is divided into 20

intervals and is considered as a categorical factor (trt) with 20 levels. The factor levels and

their corresponding temperature values and the number of covariate values (doy) in each

level is summarized in Table 5.11.

Table 5.11: Table of levels of temperature (trt) and its corresponding temperature values and the number
of covariate values in each level

trt 1 2 3 4 5 6 7 8 9 10
temp [24.5, 38.5) [38.5, 41.5) [41.5, 46.5) [46.5, 49.5) [49.5, 51.5) [51.5, 53.5) [53.5, 55.5) [55.5, 58.5) (58.5, 60.5) [60.5, 62.5)
ni 16 17 17 16 19 17 21 15 15 19
trt 11 12 13 14 15 16 17 18 19 20

temp [62.5, 63.5) [63.5, 65.5) [65.5, 67.5) [67.5,70.5) [70.5, 72.5) [72.5, 75.5) [75.5, 78.5) [78.5, 81.5) [81.5, 86.5) [86.5, 93.5)
ni 10 16 16 21 14 18 15 19 14 15

Tests of no covariate-treatment interaction, no main covariate and no simple covariate

effects in the data where the covariate variable is doy and the treatment (group) is temper-

ature level are performed. The quadratic like relationship between O3 and doy was depicted

in Figure 3.1 in Section 3.3.1. The scatter plot (a) in Figure 5.7 shows the relationship

between O3 and temperature. The plot shows heteroscedasticity as the variance of O3 in-

creases with the temperature level. Graph (b) in Figure 5.7 strengthens the evidence of

heteroscedasticity in graph (a). Figure 5.8 shows the relationship of O3 and doy within each

treatment level. The graph shows doy-temperature interaction effect in the data. These

were conveyed by the difference pattern of relationship between doy and O3 in different

temperature level. For example, in trt level 15, 17 and 18 the relationship of doy and O3

appears to be negatively exponential, while other at temperature levels, the relationship

between doy and O3 is not apparent.

All the tests being considered in the previous section which are the proposed pNP test,
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GAM Spline, GAM Loess, drop and CF test are used to analyze the data. The results

for testing covariate-treatment interaction, simple covariate and main covariate effect are

presented in Table 5.12. The table shows that the only test that has a significant covariate-

treatment interaction at α = 0.05 is the pNP test. This result is parallel to the results of the

simulation study for the performance of the pNP test in Table 5.3 and in Table 5.5 where

the pNP test has the highest power to detect the covariate-treatment interaction especially

in the presence of heteroscedasticity of variance in different treatments level as they appear

in Figure 5.11. All tests for the simple covariate effect of doy on O3 after adjusting for

temperature effect, show significant result at α = 0.05. However at α = 0.01, the drop

(p-value = 0.012) and the CF (p-value=041) tests do not have a significant result.

Figure 5.7: Scatter plot of ozone vs temp and box plot of ozone vs temp
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Table 5.12: P-values for test of no doy-temperature interaction, no simple doy and no main
doy effects.

Tests doy-temp int simple doy main doy
pNP 0.027 0.003 0.000

GAM Spline 0.414 0.000 0.000
GAM Loess 0.393 0.000 0.000

drop 0.099 0.012 0.002
CF 0.243 0.041 0.002
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Figure 5.8: Ozone Vs doy within temperature levels
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Chapter 6

Conclusion and Post-dissertation

Research

6.1 Conclusion

This dissertation developed nonparametric tests to study the relationship between a response

variable and a continuous covariate in the presence of categorical factors. Traditional ap-

proaches like general linear models (GLM) and generalized linear model (GLMz) cater to

specific types of response variables, e.g., GLM is suitable for a continuous response variable

and GLMz is suitable for either a continuous or a discrete response variable that comes

from an exponential family. The tests developed in this dissertation were not restricted to

any particular type of response variable. The models, hypotheses and test statistics were

formulated in a general form to incorporate both continuous and discrete response variables.

Further, the asymptotic results were obtained without any restrictions on distributional as-

sumptions, any particular link function, any constant variance or any explicit relationship

of the conditional mean of response with the given covariate.

A model employing a conditional distribution function was used to formulate the hypoth-

esis of independence in the first part of the contribution. The second and the third parts use

a model that was based on the decomposition of a conditional mean of regression function

that is potentially nonlinear. The foundation of the method developed involves augmenting
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each pair of the data for all treatments with a fixed number of nearest neighbors as pseudo-

replicates. The test statistics were constructed by taking the difference of two quadratic

forms multiplied by an appropriate standardizing rate. The asymptotic distributions of the

test statistics were obtained under a setting in which the number of nearest neighbors is

small and the number of covariate values is large. Simulation studies were presented to

evaluate the performance of the pNP test and compared to several benchmark methods.

Real applications of two data sets were also discussed.

The first part of the contribution (Chapter 3) was devoted to the development of theory

for the test of independence between a continuous covariate and a continuous or discrete

response variable after adjusting for the heteroscedastic treatment effect. In this case, the

test statistic is equivalent to the average lagged correlations between the response and

nearest neighbor local estimates of the conditional mean of response given the covariate for

each treatment group. The parametric standardizing rate was obtained for the proposed

test statistics. Numerical studies showed that the new test procedure not only maintains

the intended type I error rate, but also has robust power to detect nonlinear dependency in

the presence of outliers that might result from highly skewed distributions.

Chapter 4, the second part of the contribution, presented the theory and numerical

studies for tests of no covariate-treatment interaction and no main covariate effects specified

through a decomposition of a conditional mean of regression function that can possibly be

nonlinear. In depth discussion on the effects defined through traditional decomposition of

the mean regression function and a nonparametric decomposition of conditional distribution

function from Wang and Akritas (2006) favored the former in a possibly nonlinear form

to allow generality and appropriate interpretation based on the data. The test for no

covariate-treatment interaction effect developed in this chapter has demonstrated superior

performance in computing time, estimates of type I error and power performance compared

to the test from Wang and Akritas (2006).

Due to the need for tests that can accommodate data containing a large number of

factors or factor levels, the third part of the contribution (Chapter 5) extended the theory

in the previous two parts to the case where the number of treatment levels go to infinity.
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Results were obtained in this asymptotic setting. Simulation studies and an application

were presented.

6.2 Post-dissertation Research

The new tests currently are applicable when there is only one continuous covariate. Using

an approach similar to that used in constructing the statistics of the new tests, these new

tests could be extended to cater to the existence of more than one covariate. We will define

nearest neighbors through multivariate spacings used in Li and Liu (2008).

The new method tests only the dependency of two variables using the original observa-

tions. These results rely on finite fourth moment and the asymptotic variances are functions

of the conditional variances of the responses. Estimation of variances for skewed or heavy

tailed data often has very poor performance. A competing set of rank results may be

developed and are expected to perform better.

In addition, the methods used here could also be extended to high dimensional data by

combining asymptotic theory for the construction of the new tests with a shrinkage method.
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Appendix A

R code

A.1 pNP Tests

#The following R code is the code to do the proposed test pNP when a

#is small. dat is a dataframe with three columns; one column has

#name Y; one column has name X; the other column has name trt;

#map the index over r=1,...,N to i=1, ...a, j=1, .. n_i , r is an

#integer; n is a vector of the sample sizes

mapindex=function(r, n){

aaa=length(n)

sumn=numeric()

for ( i in 1:aaa) sumn=c(sumn, sum(n[seq(i)]) )

imap=sum(sumn<r)+1

jmap=r-sum(n[ seq(aaa)[(sumn<r)]] )

c(imap, jmap)

} # mapindex function that works for vector; first column gives the

#i’s and 2nd gives the j’s.

mapindexV=function(r, n){

aaa=length(n)
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sumn=numeric()

for ( i in 1:aaa)

sumn=c(sumn, sum(n[seq(i)]) )

imap=unlist(tapply(r, seq(length(r)),function(x) sum(sumn<x)+1 ) )

jmap=unlist(tapply(r, seq(length(r)),function(x)

x-sum(n[seq(aaa)[(sumn<x)]])))

cbind(imap, jmap)

}

##################

#i1 is the i1 th group; n is the vector of

#sample sizes; position.i1 function gives the starting and end

#position of covariate values in the i1th group among the vector

#listing all covariate values. e.g., covariate values in group 1

#start from 1st value to the n1 th value; those in group 2 start

#from n1+1 and end at n1+n2 th value.

position.i1=function(i1, n){ if (i1==1) lower=1 else

lower=sum(n[1:(i1-1)])+1 upper=sum(n[1:i1]) c(lower, upper) }

##################

# k is the number of nearest neighbors used

NPtest.new= function( dat, k) {

X=dat$X; trt=dat$trt; Y1=dat$Y;

#Y1=unlist(tapply(dat$Y, trt,standard) )

alltrt=rbind(Y1, X, unlist(tapply(X, trt, rank) ) )

n=unlist(tapply(rep(1, nrow(dat)), trt, sum))

N=sum(n); a=length(n)

for (i1 in 1:a){

locationi1=position.i1(i1,n);

orderwant=order(alltrt[2,locationi1[1]:locationi1[2]])+locationi1[1]-1;
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alltrt[,locationi1[1]:locationi1[2] ]= alltrt[,orderwant]

}

psudo<-array(0, c(a, sum(n), k))

index<-array(0, c(a,sum(n), k))

### Augment observations for each cell

##****************************************

for (i in 1:a){

for (j in 1:N){

if (i==1){

if ( j<= n[1] ) { newtrt<-alltrt[,1:n[1]]

total<-ncol(newtrt)

jj<-j

}

if (j>=n[1]+1) { newtrt<-cbind(alltrt[,1:n[1]], alltrt[, j])

total<-jj<- ncol(newtrt)

}

}

if (i>1) {

if ((j<=sum(n[1:i]))& (j>=sum(n[1:(i-1)])+1) ) {

newtrt<-alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])]

total<- ncol(newtrt)

jj<- j-sum(n[1:(i-1)])

} else {

newtrt<-cbind(alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])],alltrt[,j] )

total<-jj<-ncol(newtrt)

}

}

newtrt[3, ]<-rank(newtrt[2, ])

flag<-((jj==total)& (jj>n[i])&

c(rep(T, total-1), F) ) | (jj<=n[i])
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if ((jj==total) & (jj>n[i]) ) {newtrt[3, -jj]<- rank(newtrt[2, -jj])

total<-total-1 }

target<-newtrt[3, jj ]

newtrt<-newtrt[, flag]

if (trunc(target) <= ((k-1)/2) ) {

psudo[i,j,]<-newtrt[1,order(newtrt[3, ])[1:k]]

index[i,j, ]<-seq(1,

total)[ order(newtrt[3, ])[1:k]]}

if (trunc(target) > (total- ((k-1)/2)))

{psudo[i,j, ]<- newtrt[1, order(total-newtrt[3, ])[1:k] ]

index[i,j, ]<- seq(1, total)[ order(total-newtrt[3, ])[1:k]]

}

if ((trunc(target)<=(total-(k-1)/2 ))&(trunc(target) >((k-1)/2) ))

{

psudo[i,j,]<-newtrt[1,order((abs(newtrt[3,]-trunc(target))))[1:k] ]

index[i,j,]<-seq(1,total)[order((abs(newtrt[3,]-trunc(target))))[1:k]]

}

} #end of j

} #end of i

##****************************************

cellmean<-apply(psudo,c(1,2), mean)

colmean=apply(psudo, 2, mean)

sig<- cov(t(cellmean))

# diagonal part gives the \hat\sigma_{1,i}^2

#and off-diagonal part gives \hat\sigma_{1,i_1, i_2}

sigXij<-apply(psudo, c(1, 2), var)

# get a axN matrix with \hat\sigma_i^2(X_{ij}) =sigXij[i, j]
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MSTd=k*a*sum( (colmean-mean(psudo) )^2 ) /(sum(n)-1)

meanrk=apply(psudo,1, mean)

MSTphi=k*sum((cellmean-matrix(rep(meanrk,N),ncol=N))^2)

/((sum(n)-1)*a)

MSTc=k*sum((cellmean-matrix(rep(meanrk,N),ncol=N)-

matrix(rep(colmean,a),

ncol=N, byrow=T)+mean(cellmean) )^2 )/((a-1)*(N-1))

MSE=sum((psudo-array(rep(cellmean, k), c(a, sum(n), k)) )^2 )

/ (sum(n)*a*(k-1) )

Tsinter=(sqrt(sum(n)) * (MSTc-MSE))

Tsc=(sqrt(sum(n)) * (MSTd-MSE))

Tss=(sqrt(sum(n)) * (MSTphi-MSE))

## calculate Td1 and Td2 for diagnostics

offdiagsum=function(x){

sum(matrix(x)%*%matrix(x,ncol=length(x)))-sum(x^2)

}

Td1=k*mean( apply(cellmean, 2, offdiagsum) )/a

Td2=mean(apply(psudo, c(1,2), offdiagsum ) )/(k-1)

##****************************************

#Calculate estimate of variance for test statistics

# count is a matrix; first three columns give the value of

# i1, j2,i; the last column

# gives the number of times X_{ij_2} is used in construction

#of windows for all covariate values in group i_1

count<-matrix(-1, a^2*N, 4)

whereini=0

for( i1 in 1:a){

for (j2 in 1:N){
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for (i in 1:a){

whereini=whereini+1

if (i1==1) lower=1 else lower=sum(n[1:(i1-1)])+1

upper=sum(n[1:i1])

counti1j2i=sum(index[i,lower:upper, ]==((mapindex(j2, n)[1]==i)

*mapindex(j2,n)[2]))

count[whereini, ]=c(i1, j2, i, counti1j2i)

}}}

# to calculate the first term of asym variance

tau1.2=Exi1calc(alltrt, index, a, n, k, sigXij)

# to calculate the third term of asym variance: tau3^2

subcount= count[count[,1]!=count[,3], ]

# entries in count that i1 \ne i

prodcount1.1=tapply(subcount[,4],list(subcount[,2],subcount[,3]),sum)

# prodcount1.1 is \sum_{i_1, i_1 \ne i}^a \frac{n_{i_1}}{n_i}

#d_{i_1i}(X_{ij})

tau3=0

for (i in 1:a){

starti=position.i1(i,n)[1]-1

for (jp in starti+(2:n[i])){

for (j in (max(1, (jp-k+1)): (jp-1)) ){

Bijjp= (prodcount1.1[j,i]/k+1 ) * (k-jp+j)*(jp-j<=k-1)

tau3=tau3+ ( Bijjp^2+Bijjp-2*(jp-j<=((k-1)/2) ) )

*(jp-j<=k-1) * sigXij[i,j] *sigXij[i,jp] *(j!=jp)

} } }

tau3=tau3*4/(sum(n)*a^2*(k-1)^2)

tauAsyc=tau1.2+tau3

tauAsys=tau3

tauAsyinter=(tau1.2)/((a-1)^2) + tau3

pvalue.inter=1-pnorm(Tsinter/sqrt(tauAsyinter))
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pvalue.cov=1-pnorm(Tsc/sqrt(tauAsyc))

pvalue.sim=1-pnorm(Tss/sqrt(tauAsys))

list(Tsc=Tsc,Tss=Tss,Tsinter, tauAsyc=tauAsyc, tauAsys=tauAsys,

tauAsyinter=tauAsyinter, Td1=Td1, Td2=Td2, pvalue.cov=pvalue.cov,

pvalue.sim=pvalue.sim,pvalue.inter=pvalue.inter,

pvalues=c(pvalue.cov,pvalue.sim, pvalue.inter),

tau1.2=tau1.2,tau3=tau3)

}

#makepseudo creates pseudo observations

makepseudo=function(N,n, k, a, alltrt){

psudo<-array(0, c(a, sum(n), k))

index<-array(0, c(a,sum(n), k))

# Augment observations for each cell

#****************************************

for (i in 1:a){

for (j in 1:N){

if (i==1){

if ( j<= n[1] ) {

newtrt<-alltrt[,1:n[1]]

total<-ncol(newtrt)

jj<-j

}

if (j>=n[1]+1) {

newtrt<-cbind(alltrt[,1:n[1]], alltrt[, j])

total<-jj<- ncol(newtrt)

}

}

if (i>1) {

if ((j<=sum(n[1:i]))& (j>=sum(n[1:(i-1)])+1) ) {

newtrt<-alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])]
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total<- ncol(newtrt)

jj<- j-sum(n[1:(i-1)])

} else {

newtrt<-cbind(alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])],alltrt[,j])

total<-jj<-ncol(newtrt)

}

}

newtrt[3, ]<-rank(newtrt[2, ])

flag<-((jj==total)& (jj>n[i])& c(rep(T, total-1), F) )|(jj<=n[i])

if ((jj==total) & (jj>n[i]) ) {

newtrt[3, -jj]<- rank(newtrt[2, -jj])

total<-total-1

}

target<-newtrt[3, jj ]

newtrt<-newtrt[, flag]

if (trunc(target) <= ((k-1)/2) )

{psudo[i,j, ]<- newtrt[1, order(newtrt[3, ])[1:k]]

index[i,j, ]<- seq(1, total)[ order(newtrt[3, ])[1:k]]

}

if (trunc(target) > (total- ((k-1)/2)))

{psudo[i,j, ]<- newtrt[1, order(total-newtrt[3, ])[1:k] ]

index[i,j, ]<- seq(1, total)[ order(total-newtrt[3, ])[1:k]]

}

if ((trunc(target) <=(total-(k-1)/2 ) )&(trunc(target) >((k-1)/2)))

{

psudo[i,j,]<-newtrt[1, order((abs(newtrt[3,]-trunc(target))))[1:k]]

index[i,j, ]<- seq(1, total)[

order((abs(newtrt[3,]-trunc(target) ))) [1:k]]

}

} #end of j

} #end of i

psudo }
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Exi1calc=function(alltrt, index, a, n, k, sigXij) {

countijipjp=numeric()

for( i in 1:a){

whichparti=position.i1(i,n)[1]: position.i1(i,n)[2]

for (ip in ((1:a)[-i]) ){

whichpartip=position.i1(ip,n)[1]: position.i1(ip,n)[2]

for (j in whichparti){

tmp.jp=alltrt[2, whichpartip]-alltrt[2,j]

morejp=T; nextone=1

while ((morejp==T)||(nextone<=min(c(5*k, n[ip])))) {

jp=jprange.all[nextone]

ij=mapindex(j, n)

ipjp=mapindex(jp, n)

Pjir.jpipr.vec=numeric()

for (i1 in 1:a){

bound=low.up(i, ip,j,jp,ij,ipjp,alltrt,k,whichparti,whichpartip,index)

lowbound=bound[1]

upbound=bound[2]

morejp=(lowbound <= upbound)

if (morejp==T){

#Pjir.jpipr gives the proportion of covariates values in i_1 group fall

#in interval (max, min).

#That is \int_{max}^{min} g_{i_1}(x) dx

probvector=(alltrt[2,position.i1(i1,n)[1]:position.i1(i1,n)[2]]>lowbound)

*(alltrt[2,position.i1(i1,n)[1]:position.i1(i1,n)[2]]<=upbound )

if (i1==i) probvector[ij[2]]= sum(index[ip,jp ,]==( (ij[1]==i) *ij[2]) )

# indicator function of whether X_{ij} is used in W_{i’,X_{i’j’}}

if(i1==ip)probvector[ipjp[2]]= sum(index[i,j,]==((ipjp[1]==ip) *ipjp[2]))

# indicator function of whether X_{ij} is used in W_{i’,X_{i’j’}}
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Pjir.jpipr=mean(probvector)

} else Pjir.jpipr=0 #end of (morejp==T)

Pjir.jpipr.vec=c(Pjir.jpipr.vec, Pjir.jpipr*n[i1] )

} #end of i1

countijipjp=rbind(countijipjp, c(i,j,ip,jp, sum(Pjir.jpipr.vec),

sigXij[i,j]*sigXij[ip,jp]) )

nextone=nextone+1

morejp=morejp&(nextone<=n[ip])

} # end while

}}} # end of j, ip, and i

# the 5th column of countijipjp gives E(M_{iji’j’|C_{ij,t}, C_{i’j’,t})

countijipjp=countijipjp[countijipjp[,5]>0,]

Exi1=sum((countijipjp[,5]^2 +countijipjp[,5])

*countijipjp[,6])*2/(sum(n)*a^2*k^2)

Exi1

}

# low.up gives the lower bound max{,} and upper bound min{, }

low.up=function(i, ip, j, jp, ij, ipjp, alltrt, k, whichparti,

whichpartip, index){

ni=length(whichparti)

nip=length(whichpartip)

where1=ifelse((j-k > whichparti[1]), j-k, whichparti[1])

where2=ifelse((j+k<=whichparti[ni]), j+k, whichparti[ni])

Xijused.i=ifelse(apply(index[i, where1:where2, ]==( (ij[1]==i)

*ij[2]) , 1, sum), T, F)

# give T or F to tell whether X_{ij} is used in window W_{ir} for

#all r in group i

where1p=ifelse((jp-k > whichpartip[1]), jp-k, whichpartip[1])

where2p=ifelse((jp+k<=whichpartip[nip]), jp+k, whichpartip[nip])

Xijpused.ip=ifelse(apply(index[ip, where1p:where2p, ]==(

(ipjp[1]==ip) *ipjp[2]) , 1, sum) , T, F)

lp1=(where1:where2)[Xijused.i][1]; Lij=(alltrt[2, lp1] + alltrt[2,
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ifelse((lp1>whichparti[1]), lp1-1, lp1) ] )/2

up1=(where1:where2)[Xijused.i][length((where1:where2)[Xijused.i]) ];

Uij=(alltrt[2, up1] + alltrt[2, ifelse((up1<whichparti[ni]), up1+1,

up1) ] )/2

lp2=(where1p:where2p)[Xijpused.ip][1]; Lipjp=(alltrt[2, lp2] +

alltrt[2, ifelse((lp2>whichpartip[1]), lp2-1, lp2) ] )/2

up2=(where1p:where2p)[Xijpused.ip][length((where1p:where2p)

[Xijpused.ip])];

Uipjp=(alltrt[2, up2] + alltrt[2, ifelse((up2<whichpartip[nip]),

up2+1, up2) ] )/2

lowbound=max(Lij, Lipjp) ; upbound=min(Uij, Uipjp)

c(lowbound, upbound) }

A.2 pNP Tests When a and N Are Large

#The following R code is the code to do the proposed test pNP when a

#and N are large. The program follows that of the pNP test for small

#except for different test statistics and asymptotic variance

#Test statistics

Tsinter=(sqrt(a* sum(n)) * (MSTc-MSE))

Tsc=(sqrt(sum(n))*(MSTd-MSE))

Tss=(sqrt(a* sum(n)) * (MSTphi-MSE))

#Asymptotic Variance

tauAsyc=tau1.2 #covariate

tauAsys=a*tau3 #simple

tauAsyinter=a*tau3 #interaction
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A.3 WA Tests

# Lan Nonparametric test # i1 is the i1 th group; n is the vector of

# sample sizes;

# position.i1 function gives the starting and end position of

#covariate values in the i1th group among the vector listing all

#covariate values. e.g., covariate values in group 1 start from 1st

#value to the n1 th value; those in group 2 start from n1+1 and end

#at n1+n2 th value.

position.i1=function(i1, n){ if (i1==1) lower=1 else

lower=sum(n[1:(i1-1)])+1 upper=sum(n[1:i1]) c(lower, upper) }

#dat is a dataframe with three columns;one column has name Y

#onecolumn has name X; the other column has name trt # k is the

#number of nearest neighbors used

lan.NP2= function( dat, k) {

X=dat$X; trt=dat$trt; Y=dat$Y

alltrt=rbind(Y, X, unlist(tapply(X, trt, rank) ) )

n=unlist(tapply(rep(1, nrow(dat)), trt, sum))

N=sum(n); a=length(n)

for (i1 in 1:a){

locationi1=position.i1(i1,n);

orderwant=order(alltrt[2,locationi1[1]:locationi1[2]])+locationi1[1]-1;

alltrt[,locationi1[1]:locationi1[2] ]= alltrt[,orderwant]

}

psudo<-array(0, c(a, sum(n), k))

index<-array(0, c(a,sum(n), k))

### Augment observations for each cell

#****************************************

for (i in 1:a){

for (j in 1:N){

if (i==1){
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if ( j<= n[1] ) {

newtrt<-alltrt[,1:n[1]]

total<-ncol(newtrt)

jj<-j

}

if (j>=n[1]+1) {

newtrt<-cbind(alltrt[,1:n[1]], alltrt[, j])

total<-jj<- ncol(newtrt)

}

}

if (i>1) {

if ((j<=sum(n[1:i]))& (j>=sum(n[1:(i-1)])+1) ) {

newtrt<-alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])]

total<- ncol(newtrt)

jj<- j-sum(n[1:(i-1)])

} else {

newtrt<-cbind(alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])], alltrt[,j] )

total<-jj<-ncol(newtrt)

}

}

newtrt[3, ]<-rank(newtrt[2, ])

flag<-((jj==total)& (jj>n[i])& c(rep(T, total-1), F) ) | (jj<=n[i])

if ((jj==total) & (jj>n[i]) ) {

newtrt[3, -jj]<- rank(newtrt[2, -jj])

total<-total-1

}

target<-newtrt[3, jj ]

newtrt<-newtrt[, flag]

if (trunc(target) <= ((k-1)/2) )

{psudo[i,j, ]<- newtrt[1, order(newtrt[3, ])[1:k]]

index[i,j, ]<- seq(1, total)[ order(newtrt[3, ])[1:k]]

}
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if (trunc(target) > (total- ((k-1)/2)))

{psudo[i,j, ]<- newtrt[1, order(total-newtrt[3, ])[1:k] ]

index[i,j, ]<- seq(1, total)[ order(total-newtrt[3, ])[1:k]]

}

if ((trunc(target)<=(total-(k-1)/2 ) ) & (trunc(target) >((k-1)/2) ))

{psudo[i,j,]<- newtrt[1,

order((abs(newtrt[3,]-trunc(target) ) ))[1:k] ]

index[i,j, ]<- seq(1, total)

[ order((abs(newtrt[3,]-trunc(target) ) )) [1:k]]

}

} #end of j

} #end of i

##****************************************

cellmean<-apply(psudo, c(1,2), mean)

colmean=apply(psudo, 2, mean)

# diagonal part gives the \hat\sigma_{1,i}^2

# and off-diagonal part gives \hat\sigma_{1,i_1, i_2}

sigXij<-apply(psudo, c(1, 2), var)

# get a axN matrix with \hat\sigma_i^2(X_{ij}) =sigXij[i, j]

MSTd=k*a*sum( (colmean-mean(psudo) )^2 ) /(sum(n)-1)

meanrk=apply(psudo,1, mean)

MSTphi=k*sum( (cellmean-matrix(rep(meanrk,N),ncol=N) )^2 )

/((sum(n)-1)*a)

MSTc= k*sum((cellmean-matrix(rep(meanrk,N),ncol=N) -

matrix(rep(colmean,a), ncol=N,

byrow=T)+mean(cellmean) )^2 )/((a-1)*(N-1))

MSE= sum((psudo-array(rep(cellmean, k), c(a, sum(n), k)) )^2 )/

(sum(n)*a*(k-1) )

Tsinter=(sqrt(sum(n)) * (MSTc-MSE))/sqrt(k)

Tsc=(sqrt(sum(n)) * (MSTd-MSE))/sqrt(k)

Tss=(sqrt(sum(n)) * (MSTphi-MSE))

##****************************************
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#Calculate estimate of variance for test statistics

# countlan gives a matrix; first four columns are indices i1,i2,l1,l2

#respectively fifth column gives the count of how many times (i1, l1)

#value and (i2, l2) value are used together in the same window among

#all windows constructed. The sixth column gives the product of

#\hat{\sigma} (X_{i1l1} \hat{\sigma}(X_{i2l2}

countlan<-numeric()

for( i1 in 1:a){

for (i2 in 1:a){

for (l1 in position.i1(i1, n)[1]: position.i1(i1, n)[2] ){

for (l2 in position.i1(i2, n)[1]: position.i1(i2, n)[2] ){

whereused.l1=apply((index[i1,1:N, ]== mapindex(l1, n)[2]), 1, sum)

# gives a vector of size N with values 1 or 0;

# The jjjth element is 1 if l1 th covariate value is used in window

#construction for the jjjth window

whereused.l2=apply((index[i2,1:N, ]== mapindex(l2, n)[2]), 1, sum)

counti1i2l1l2=sum(whereused.l1*whereused.l2)

# how many times (i1, l1),(i2,l2) are both used in the same windows

# for all covariate values

countlan=rbind(countlan, c(i1, i2, l1, l2, counti1i2l1l2,

sigXij[i1, l1]*sigXij[i2, l2] ) )

}}}}

sigbycount2lan=countlan[,5]^2 * countlan[,6]

xi.index=(countlan[,1]==countlan[,2])*(countlan[,3]!=countlan[,4])

eta.index=(countlan[,1]!=countlan[,2])

xi4=3*sum(sigbycount2lan*xi.index )/(2*sum(n)*k*(k-1)^2)

eta4=3*sum(sigbycount2lan*eta.index)/(2*sum(n)*k^3)

#####

tauAsyc=(xi4+eta4)*4/(3*a^2)

tauAsyinter=(xi4+eta4/((a-1)^2))*4/(3*a^2)

pvalue.inter=1-pnorm(Tsinter/sqrt(tauAsyinter))
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pvalue.cov=1-pnorm(Tsc/sqrt(tauAsyc))

list(Tsc=Tsc,Tsinter=Tsinter, pvalues=c(pvalue.cov, pvalue.inter),

xi4=xi4,eta4=eta4)

}

A.4 Classical F Test (CF Test)

The next code run the CF test.

classical.int.simp.cov=function(dat){

try.ancova= lm(Y ~ X*factor(trt), data = dat)

drop1.int=drop1(try.ancova,scope=~.,test="F")

try.ancova1=lm(Y~factor(trt), data = dat)

try.ancova2= lm(Y~X+factor(trt),data = dat)

int.pvalue=anova(try.ancova,try.ancova2,test="F")[2,6]

sim.pvalue=anova(try.ancova,try.ancova1,test="F")[2,6]

cov.pvalue=anova(try.ancova2,try.ancova1,test="F")[2,6]

c(int.pvalue,sim.pvalue,cov.pvalue)

}

A.5 Drop Test

The following code do drop test for no covariate-treatment interaction, no simple covariate

and no main covariate effect

source("mckean.r")

all.droptest=function(dat){

fit1=lm(Y~X*as.factor(trt), data=dat)

my.mat= model.matrix(fit1)[,-1]

# my.amat is the matrix for hypothesis. H0: my.amat %x% beta=0,

#where beta is the regression

#parameter vector without intercept

a=length(levels(as.factor(dat$trt)) )

139



my.amat=matrix(0, a, ncol(my.mat))

my.amat[,-(2:a)]=rbind(cbind(diag(a-1),-rep(1,a-1)),c(rep(0,a-1), 1));

p.drop.simple=droptest(xmat=my.mat, y=dat$Y, amat=my.amat)$pval

#no simple effect of covariate

inter.amat=my.amat[-1,]

p.drop.inter=droptest(xmat=my.mat, y=dat$Y, amat=inter.amat)$pval

cov.amat=matrix(c(1,rep(0,a-1)), nrow=1)

## test of covariate effect when no interaction exists

p.drop.cov=try(droptest(xmat=my.mat[,1:a],y=dat$Y,amat=cov.amat)$pval,T)

result=c(p.drop.simple, p.drop.inter, p.drop.cov)

names(result)=c("drop.simple", "drop.inter", "drop.cov")

result

}

A.6 GAM Models (Spline and Loess)

#Method is spline

gam.spline=function(dat){

library(gam)

gam10=gam(Y ~ s(X) * factor(trt), data = dat)

gam9=gam(Y ~ s(X) + factor(trt), data = dat)

gam8=gam(Y ~factor(trt), data = dat)

int.pvalue=anova(gam10,gam9,test="F")[2,6]

cov.pvalue=anova(gam8,gam9,test="F")[2,6]

sim.pvalue=anova(gam10,gam8,test="F")[2,6]

c(int.pvalue,sim.pvalue,cov.pvalue)

}

#Method is loess

gam.loess=function(dat){

library(gam)

gaml10=gam(Y ~ lo(X) * factor(trt), data = dat)

gaml9=gam(Y ~ lo(X) + factor(trt), data = dat)
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gaml8=gam(Y ~factor(trt), data = dat)

int.pvalue=anova(gaml10,gaml9,test="F")[2,6]

cov.pvalue=anova(gaml9,gaml8,test="F")[2,6]

sim.pvalue=anova(gaml10,gaml8,test="F")[2,6]

c(int.pvalue,sim.pvalue,cov.pvalue)

}

A.7 GAM Pspline

library(mgcv) gam.mgcv=function(data){

fit1=gam(Y~s(X)+ factor(trt), data=data,family=quasi)

fit2=gam(Y~factor(trt), data=data, family=quasi)

GAM.mgcv=anova(fit1, fit2, test= "F")[2,6]

GAM.mgcv }

A.8 Correlation Based Tests

cor.test(x, y, alternative = c("two.sided", "less", "greater"),

method = c("pearson", "kendall", "spearman"),

exact = NULL, conf.level = 0.95)

A.9 ACE

library(acepack)

ACEtest=function(data){ acefit=ace(x=data$X,data$Y)

fit1=lm(acefit$ty~ acefit$tx *trt, data=data )

fit2=lm(acefit$ty~trt, data=data )

ace.p=anova(fit1, fit2, test="F")[2,6]

ace.p }

141



A.10 Wald and Deviance Tests

#Wald and Deviance Tests

my.glm=function(dat){

glmfit=glm(Y~factor(trt)*X, data=dat,family=binomial)

glmfit1=glm(Y~factor(trt)+ X, data=dat,family=binomial)

glmfit2=glm(Y~factor(trt), data=dat,family=binomial)

dev.test.int=anova(glmfit,glmfit1,test="Chisq")[2,5]

dev.test.sim=anova(glmfit,glmfit2,test="Chisq")[2,5]

dev.test.cov=anova(glmfit1,glmfit2,test="Chisq")[2,5]

library(lmtest)

galm.wald.int=waldtest(glmfit,glmfit1, test="Chisq")[2,4]

galm.wald.sim=waldtest(glmfit,glmfit2, test="Chisq")[2,4]

galm.wald.cov=waldtest(glmfit1,glmfit2, test="Chisq")[2,4]

}

A.11 Comparing Computational Time

# compare running time for the whole test used

result=numeric()

ni.list=c( 50, 80, 100, 150, 200, 500)

for (ni in ni.list){

set.seed(1)

theta=0

n=rep(ni, 3)

n1= n[1]; n2= n[2]; n3=n[3]

x1=runif(n1); x2=runif(n2) ; x3=runif(n3)

y1= rnorm(n1)

y2= theta*(x2^2-x2+0.15)+ rnorm(n2)

y3= rnorm(n3)

dat=data.frame(X=c(x1, x2, x3), Y=c(y1, y2, y3), trt=c(rep(1,

n1), rep(2, n2), rep(3, n3) ))
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k=5

thisresult=system.time(NPtest.new(dat, k) )

lan2= system.time(lan.NP2(dat, k) )

reportT=c(thisresult, lan2)

cat("ni=", ni, reportT, "\n", file="run.time.n.txt", append=T)

result=rbind(result, reportT)

}

result

A.12 Code for Simulation in Chapter 3

source("mckean.r"); source("NPtest.new.r");

source("functions.new.r");

source("compare.test.indept.functions.r")

dat.EFT=read.table("EFT.data.txt", header=T)

dat2=dat.EFT

colnames(dat2)=c("Y", "X","trt")

ranges.EFT=tapply(dat2[-10,2],dat2[-10,3], range)

ranges.time.EFT=tapply(dat2[-10,1], dat2[-10,3], range)

n=12

trt=gl(2, n, labels=c("Row","Corner") )

library(gam)

for (tau in c(0.01, 0.03,0.04, 0.09)){

perc=0.1

H0result=numeric()

for (i in 1:2000){

corner.EFT=runif(n, ranges.EFT$Corner.group[1],

ranges.EFT$Corner.group[2])

corner.time.EFT= tau*(corner.EFT-67.5)^2+runif(n, -5,15)

row.EFT=ifelse(runif(n)<perc, rbeta(n,1.2,

3)*(ranges.EFT$Row.group[2]-ranges.EFT$Row.group[1]), rlnorm(n, 1.2,

2)*(145-135) )
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row.time.EFT=ifelse(runif(n)<0.6,rbeta(n,1.2,

3)*(ranges.time.EFT$Row.group[2]-ranges.time.EFT$Row.group[1]),

rlnorm(n, 1.2, 2)*(745-735) )

thistest=alltests( data.frame(X=c(row.EFT, corner.EFT),

Y=c(row.time.EFT, corner.time.EFT ), trt) )

H0result=rbind(H0result,thistest) cat(thistest, "\n",

file=paste("no.Sin.tau", tau, ".power.txt",sep=""), append=T) }

levels005=apply(H0result, 2, function(x) mean(x<=0.05, na.rm=T) )

levels001=apply(H0result, 2, function(x) mean(x<=0.01, na.rm=T) )

cat(tau, levels005, "\n", file="no.Sin.EFT.power005.desktop.txt",

append=T)

cat(tau, levels001, "\n",

file="no.Sin.EFT.power001.desktop.txt", append=T) }

# rerun for gam becuase previous runs did not include interaction

#effect for gam

for (tau in c( 0.07, 0.08, 0.09)){

perc=0.1

H0result=numeric() for (i in 1:2000){

corner.EFT=runif(n,ranges.EFT$Corner.group[1],

ranges.EFT$Corner.group[2])

corner.time.EFT= tau*(corner.EFT-67.5)^2+runif(n, -5,15)

row.EFT=ifelse(runif(n)<perc, rbeta(n,1.2,

3)*(ranges.EFT$Row.group[2]-ranges.EFT$Row.group[1]), rlnorm(n, 1.2,

2)*(145-135) ) row.time.EFT=ifelse(runif(n)<0.6,rbeta(n,1.2,

3)*(ranges.time.EFT$Row.group[2]-ranges.time.EFT$Row.group[1]),

rlnorm(n, 1.2, 2)*(745-735) ) thistest=GAM Loess.sp(

data.frame(X=c(row.EFT, corner.EFT), Y=c(row.time.EFT,

corner.time.EFT ), trt) )

H0result=rbind(H0result,thistest) cat(thistest, "\n",

file=paste("gam.no.Sin.tau", tau,".power.txt",sep=""), append=T) }

levels005=apply(H0result, 2, function(x) mean(x<=0.05, na.rm=T) )

levels001=apply(H0result, 2, function(x) mean(x<=0.01, na.rm=T) )
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cat(tau, levels005, "\n",

file="gam.no.Sin.EFT.power005.desktop.txt", append=T)

cat(tau, levels001, "\n",

file="gam.no.Sin.EFT.power001.desktop.txt", append=T) }

# actual run is on desktop without gam and drop test

tau=2.5

n=20

trt=gl(2, n, labels=c("Row","Corner") )

perc=0.1

H0result=numeric()

for (i in 1:2000){

corner.EFT=runif(n,ranges.EFT$Corner.group[1],

ranges.EFT$Corner.group[2])

corner.time.EFT= tau*(corner.EFT-67.5)^2+runif(n, -5,15)

row.EFT=ifelse(runif(n)<perc, rbeta(n,1.2,

3)*(ranges.EFT$Row.group[2]-ranges.EFT$Row.group[1]), rlnorm(n, 1.2,

2)*(145-135) )

row.time.EFT=ifelse(runif(n)<0.6,rbeta(n,1.2,

3)*(ranges.time.EFT$Row.group[2]-ranges.time.EFT$Row.group[1]),

rlnorm(n, 1.2, 2)*(745-735) )

thistest=alltests( data.frame(X=c(row.EFT, corner.EFT),

Y=c(row.time.EFT, corner.time.EFT ), trt) )

H0result=rbind(H0result,thistest) cat(thistest, "\n",

file=paste("no.Sin.tau", tau, ".n.power.txt",sep=""), append=T) }

levels005=apply(H0result, 2, function(x) mean(x<=0.05, na.rm=T) )

levels001=apply(H0result, 2, function(x) mean(x<=0.01, na.rm=T) )

cat(tau, levels005, "\n", file="no.Sin.EFT.power005.n.txt", append=T)

cat(tau, levels001, "\n",

file="no.Sin.EFT.power001.n.txt", append=T)
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A.13 Data Generation in Chapter 4

#To estimate type I error when the association is linear.

####################

f11=function(x1,tau) {tau*x1};

f22=function(x2,tau) {tau*x2}

gen.dat=function(tau, n ){

x1=runif(n); x2=runif(n)

f1=f11(x1,tau); f2=f22(x2,tau)

y1= f1 + 0.1* rnorm(n)

y2= f2 + 0.1* rnorm(n)

dat=data.frame(X=c(x1, x2), Y=c(y1, y2 ), trt=c(rep(1, n), rep(2, n)) )

#put test here

}

################

for (n.values in c(30,50)){

for (tau.range in c(0,0.1,0.2,0.3) ) {

res1=numeric()

set.seed(400)

repli=500

for (b1 in 1:repli) {

res1=rbind(res1, gen.dat(tau=tau.range,n=n.values ))

} }

}

#Data generation to estimate power for the simulation when

#association is linear f22=function(x2,tau) {tau*x2}

gen.dat=function( n ,k,tau){

x1=runif(n); x2=runif(n)

f1=f11(x1,tau); f2=f22(x2,tau)

y1= 0.1* rnorm(n)

y2= f2 + 0.1* rnorm(n)

dat=data.frame(X=c(x1, x2),Y=c(y1,y2),trt=c(rep(1, n),rep(2,n)) )
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#put test here

}

#Data generation to estimate type I for the simulation when

#association is quadratic

f11=function(x1,tau) {tau*(x1^2 - x1 + 0.15}

f22=function(x2,tau) {tau*(x2^2 - x2 + 0.15}

gen.dat=function( n ,k,tau){

x1=runif(n); x2=runif(n)

f1=f11(x1,tau); f2=f22(x2,tau)

y1= f1 + 0.1* rnorm(n)

y2= f2 + 0.1* rnorm(n)

dat=data.frame(X=c(x1, x2),Y=c(y1,y2),trt=c(rep(1, n),rep(2, n)))

#put test here

}

#Data generation to estimate power for the simulation when

#association is quadratic

f22=function(x2,tau) {tau*(x2^2 - x2 + 0.15}

gen.dat=function( n ,k,tau){

x1=runif(n); x2=runif(n)

f1=f11(x1,tau); f2=f22(x2,tau)

y1= 0.1* rnorm(n)

y2= f2 + 0.1* rnorm(n)

dat=data.frame(X=c(x1, x2),Y=c(y1,y2),trt=c(rep(1,n),rep(2,n)))

#put test here

}

# Data generation to estimate Type I error for binomial data

f11=function(x1,tau) {tau*cos(2*pi*x1)}

f22=function(x2,tau){tau*cos(2*pi*x2)}

f33=function(x3,tau){tau*cos(2*pi*x3)}

glm.alpha=function(n,k,tau){

x1=runif(n); x2=runif(n); x3=runif(n)
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f1=f11(x1,tau); f2=f22(x2,tau); f3=f33(x3,tau)

y1=rbinom(n,1, exp(f1 )/(1+exp(f1)) )

y2=rbinom(n,1, exp(f2 )/(1+exp(f2)) )

y3=rbinom(n,1, exp(f3 )/(1+exp(f3)) )

X=c(x1, x2, x3)

Y=c(y1, y2,y3)

trt=c(rep(1, n), rep(2, n),rep(3, n)

dat=data.frame(X, Y, trt )

# Put test here

}

# Data generation to estimate power for binomial data

f11=function(x1,tau) {tau*cos(2*pi*x1)}

glm.power=function(n,k,tau){

x1=runif(n); x2=runif(n); x3=runif(n)

f1=f11(x1,tau); f2=f22(x2,tau); f3=f33(x3,tau)

y1=rbinom(n,1, exp(f1 )/(1+exp(f1)) )

y2=rbinom(n,1, 0.5 )

y3=rbinom(n,1, 0.5 )

X=c(x1, x2, x3)

Y=c(y1, y2, y3)

trt=c(rep(1, n), rep(2, n),rep(3, n)

dat=data.frame(X, Y, trt )

# Put test here

}

A.14 Data Generation for Simulation Study in Chap-

ter 5

y7f=function(x,theta,b,tau){

multiplyterm=abs(x)

myscale=5*abs((x-0.5))
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res=tan(theta)*x *(ifelse((x> 0) & (x< b),1,0)) +

b* tan(theta)* ifelse((x> b) ,1,0) -

theta*10/tau*sqrt(multiplyterm)*rweibull(length(x),shape=2,scale=myscale)

res

}

gen.dat=function(n,prop=0.5,tau){ dat=numeric(); k=1

#for (theta in (-5:4)/20*pi){ #for power

for (theta in rep(pi/4,10)){

for (b in rep(0.5,2)){

#for (b in c(0.5, 0.7)){ for power

n1=round((1-prop)/2*n )

n2=round(prop*n)

n3=n-n1-n2

x=c(runif(n1, min=-0.5, max=0), runif(n2, min=0, max=b),

runif(n3, min=b, max=1))

y=y7f(x, theta, b,tau)

dat=data.frame(rbind(dat, cbind(X=x, Y=y, trt=rep(k, length(x)))) )

k=k+1

}

}

#run tests here }

#for (tau.range in c(0.0625,0.125,0.25,0.5)){ for

#(prop.range in #c(0.10,0.26,0.33,0.50,0.76, 0.90) ){

#res1=numeric() #set.seed(400) repli= 1000 for (b1 in 1:repli){

#res1=rbind(res1,gen.dat(n=20,prop=prop.range,tau=tau.range)) } } }

A.15 Code for examples in Chapter 4

## for exponential distribution

## produce scatterplot with regression curves

b1=2; b2=10; a=2

x=runif(100, min=0, max=10)

149



yf=function(x,b){

rexp(100,rate=1/((a*(x-5)^2+b)) )}

y1=yf(x,b1)

y2=yf(x,b2)

matplot(x=x,y=cbind(y1,y2), pch=c(19, 19), col=c("blue", "orange"),

font=2, font.axis=2, font.lab=2, main="Parallel Quadratic Regression

Curves ", ylab="Response", xlab="Covariate")

regression.curve=function(x, b) (a*(x-5)^2+b) lines(sort(x),

regression.curve(sort(x), b1), col="blue", lwd=2) lines(sort(x),

regression.curve(sort(x), b2), col="orange", lwd=2)}

# plot the difference of two conditional cdf funtions and see if

#it depends on x.

cdf.exp=function(y, b, x){

pexp(y,rate=1/((a*(x-5)^2+b)) )}

F1.minusF2.YgivenX= function(x, y) {

cdf.exp(y, b1, x) - cdf.exp(y, b2, x) }

temp=range(y1, y2)

y=seq(100)/100* (temp[2]-temp[1])

x0=sort(x)

par(mar=c(2,1,3,1))

persp(x0, y, z=outer(x0, y, F1.minusF2.YgivenX ), theta=30, phi=0,

xlab="x", zla="F1(y|x) - F2(y|x)",col="light blue" ,main=NA)

ep1=expression(F[1]("y|x") - F[2]("y|x")) ep2= "Exponential

Distribution" mtext(text=ep2, side=3, line=1, font=2, cex=1.2 )

mtext(text=ep1, side=3, line=-0.5 , font=2, cex=1.2)

## For Normal distribution

b3=2;b4=6;a1=0.5

ynorm=function(x,b){

rnorm(100,mean=4*sin(a1*pi*x)+ b,sd=1)}

y3=ynorm(x,b3)
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y4=ynorm(x,b4)

matplot(x=x,y=cbind(y3,y4), pch=c(19, 19),

col=c("blue", "orange"), font=2, font.axis=2, font.lab=2,

main="Parallel Sinusoidal Regression Curves", ylab="Response",

xlab="Covariate")} regression.curve.norm=function(x, b) {

4*sin(a1*pi*x)+ b

lines(sort(x), regression.curve.norm(sort(x), b3), col="blue",

lwd=2) lines(sort(x), regression.curve.norm(sort(x), b4),

col="orange", lwd=2)

## plot the difference of two conditional cdf funtions and see if it

#depends on x.

cdf.norm=function(y, b, x) {

pnorm(y,mean=4*sin(a1*pi*x)+ b )}

norm.F1.minusF2.YgivenX= function(x, y){

cdf.norm(y, b3, x) - cdf.norm(y, b4, x) }

temp34=range(y3, y4)

y=seq(100)/100* (temp34[2]-temp34[1])

x0=sort(x) par(mar=c(2,1,3,1))

persp(x0, y, z=outer(x0, y,

norm.F1.minusF2.YgivenX ), theta=20, phi=0, xlab="x", zlab="F1(y|x)

- F2(y|x)",col="light green",main=NA)

ep1=expression(F[1]("y|x") - F[2]("y|x"))

ep2= "Normal Distribution" mtext(text=ep2, side=3, line=1,

font=2, cex=1.2 ) mtext(text=ep1,

side=3, line=-0.5 , font=2, cex=1.2)
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