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Abstract

p-Modulus was adopted by Graph Theory from Complex Analysis and became a pow-

erful and versatile tool for exploring the structure of graphs and networks. Clustering and

community detection, the construction of a large class of graph metrics, measures of central-

ity, hierarchical graph decomposition, and the solution to game-theoretic models of secure

network broadcast are successful applications. The flexibility of p-modulus allows it to be ap-

plied to a wide variety of graph types; the essential definitions are easily adapted for directed

or undirected graphs, for weighted or unweighted graphs, for simple graphs or multigraphs, or

even for hypergraphs. In this work, we study application of p-modulus to temporal networks

— that is, networks whose structure can change over time.

We introduce a definition of temporal p-modulus for a temporal graph with discrete time

availability moments assigned to edges. We provide theorems allowing to adjust static p-

modulus algorithms to compute temporal p-modulus. We present the dual problem. For

the p = 2 case, it has a probabilistic interpretation. Also, we give a mass-transportation

interpretation of temporal Modulus for various values of 1 ≤ p ≤ ∞. We consider different

types of penalty function and study properties of temporal p-modulus with it. We show

examples on several standard graphs modified to temporal ones. Time-respecting paths are

given special attention. In order to obtain an efficient numerical algorithm to compute p-

modulus we adjust the well-know Dijkstra algorithm to find optimal paths by two criteria

— that is, time of arrival and static length. We compare this algorithm with another way:

building a directed static graph equivalent to a given temporal one and running classic

Dijkstra algorithm. Computational complexity estimates for both algorithms are the same.
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Chapter 1

Background. Modulus on Static

Graphs.

1.1 Introduction

Discrete p-modulus (see, e.g., [2, 3, 7, 8]) has proven to be a powerful and versatile tool

for exploring the structure of graphs and networks. Applications discovered thus far include

clustering and community detection [15], the construction of a large class of graph metrics [5],

measures of centrality [14], hierarchical graph decomposition [4], and the solution to game-

theoretic models of secure network broadcast [6]. The flexibility of p-modulus allows it to

be applied to a wide variety of graph types; the essential definitions are easily adapted

for directed or undirected graphs, for weighted or unweighted graphs, for simple graphs or

multigraphs, or even for hypergraphs. In this dissertation, we begin the exploration of p-

modulus applied to temporal networks—that is, networks whose structure can change over

time.

1



1.2 Static Graph

Consider a finite weighted (static) graph G = (V,E, σ) with vertex set V , edge set E, and

positive edge weights σ : E → (0,∞). To keep notation compact, we shall assume that

G is simple and undirected; extensions to more complicated graph structures are typically

straightforward. The case σ ≡ 1 can be interpreted as the case of an unweighted graph. In

what follows, it will frequently be convenient to adopt linear algebra notation. To this end,

we shall also think of σ as a positive abstract vector indexed by the edge set E, and write

σ ∈ RE
>0. In order to distinguish this case from that of temporal graphs discussed in the

next section, we will sometimes refer to G = (V,E, σ) as a static graph.

1.3 Objects, families, usage

By a family of objects on G, we shall mean a collection, Γ, of abstract objects defined through

some relationship with G. For example, each of the following is a possible choice for Γ.

• The family of spanning trees of G.

• The family of simple cycles in G.

• The family of all paths connecting two distinct vertices s and t in G.

• The family of all walks that traverse at least k edges (where k is some positive integer).

In order to keep the narrative simple, we shall assume that Γ is a finite set. A theory can

also be established for infinite families, but more care must be taken (see, e.g., [8, Sec. 7]).

A usage matrix, N ∈ RΓ×E
≥0 , is an abstract matrix assigning a nonnegative value N (γ, e)

to each pair (γ, e) ∈ Γ × E. There is no prescribed rule for making this definition, though

the “natural” definition often suffices in most cases. For example, if the objects in Γ can be

identified with subsets of edges (as in the case of spanning trees, cycles and paths), then a
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natural definition for N is

N (γ, e) =


1 if e ∈ γ,

0 if e /∈ γ.
(1.1)

For walks, it is often useful to store a traversal count instead. For some sets of objects, it

also proves useful to allow N to take non-integer values.

1.3.1 Densities, admissibility and modulus

By a density on G, we mean a non-negative vector on the edges, ρ ∈ RE
≥0. Each density

provides a way to assess a type of cost on the objects in Γ. It is helpful to think of ρ(e) as

a cost per unit usage for edge e. The total usage costs incurred by an object γ ∈ Γ, often

referred to as the ρ-length of γ, is defined as

`ρ(γ) :=
∑
e∈E
N (γ, e)ρ(e) = (Nρ)(γ).

In words, the ρ-length of an object is the accumulation of its edge usage costs.

In the theory of p-modulus, special attention is paid to the densities that assess a min-

imum unit cost to all objects in the family of interest. Such densities are called admissible

for the family Γ. The collection of all admissible densities, Adm(Γ), is defined as

Adm(Γ) := {ρ ∈ RE
≥0 : `ρ(γ) ≥ 1 ∀γ ∈ Γ}.

We will often express this set of lengths inequalities in linear algebra notation as Nρ ≥ 1,

where 1 ∈ RΓ is the vector of all ones. To each density ρ is assigned a p-energy (parametrized

by p ∈ [1,∞] as well as the edge weights σ), which is defined as

Ep,σ(ρ) =


∑
e∈E

σ(e)ρ(e)p if 1 ≤ p <∞,

sup
e∈E

σ(e)ρ(e) if p =∞.
(1.2)
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Finally, the p-modulus of the family Γ is defined as the value of an optimization problem:

Modp,σ(Γ) = min
ρ∈Adm(Γ)

Ep,σ(ρ). (1.3)

Geometrically, p-modulus is simply the distance in RE (measured by a weighted p-norm)

between the origin and the closed, convex set Adm(Γ). From this, it is clear that the

minimum is attained. A density ρ∗ ∈ Adm(Γ) whose energy coincides with the p-modulus is

called an optimal density. When p ∈ (1,∞), the strict convexity of the p-norm implies that

there is a unique optimal ρ∗.

1.3.2 An example

The following is a helpful example found, e.g., in [2]. Consider a graph composed of k parallel

paths, each with ` hops, connecting a vertex s to another vertex t. For simplicity, let σ ≡ 1.

For the family Γ, we choose Γ = Γ(s, t), the family of paths connecting from s to t (so

|Γ| = k). From symmetry arguments, it is easy to guess that an optimal density is ρ∗ = 1
`
,

regardless the value of p and, therefore, that

Modp,1(Γ(s, t)) = Ep,1(ρ∗) = k`

(
1

`

)p
=

k

`p−1
.

This demonstrates a general heuristic that modulus is made large by a combination of “diver-

sity” (in this case, more paths from s to t) and “shortness” (in this case, shorter paths from

s to t). The parameter p adjusts the relative sensitivity of modulus to these two quantities:

smaller p for more sensitivity to diversity, larger p for more sensitivity to shortness.

1.3.3 Interpretations of modulus

In practice, both the value Modp,σ(Γ) as well as the value of the optimal density ρ∗ contain

useful information about the underlying graph G. Some intuition about the meaning of

modulus can be developed by considering specific examples. In the next section, we will use
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the intuition gathered here to propose method for adapting p-modulus to families of objects

on temporal graphs.

Modulus as dissipated power

For p ∈ (1,∞), it is possible to relate p-modulus to the dissipated power in a (generally

nonlinear) resistor network. In this interpretation, we view the edges of the graph as non-

linear resistors and the vertices as junctions at which these resistors are joined. Along each

resistor, we assume a relationship between the potential drop and current flow of the form

current = σ × voltagep−1.

(In the case p = 2, this is simply Ohm’s law for a resistor with conductance σ.)

Now consider distinct vertices s, t ∈ V and suppose a unit voltage potential drop is

induced between these two junctions. From Dirichlet’s minimum power principle, one would

expect a steady-state response determined by a potential φ ∈ RV (the voltage at each

junction) which minimizes the total dissipated power, leading to the following optimization

problem.

minimize
φ∈RV

∑
{x,y}∈E

σ({x, y})|φ(x)− φ(y)|p

subject to φ(s) = 0, φ(t) = 1.

(1.4)

Notice that, for each edge e = {x, y} ∈ E, we are associating σ(e) with the conductance

of the resistor assigned to that edge. The relationship to p-modulus is expressed in the

following Theorem [2, Thm. 4.2].

Theorem 1. Let p ∈ (1,∞), let s, t ∈ V be distinct vertices, and let Γ = Γ(s, t) be the family

of paths connecting s to t in G with N defined as in (1.1). Let ρ∗ be the unique optimal

density for p-modulus, and let φ∗ be the unique optimal potential for (1.4). Then

ρ∗(e) = |φ∗(x)− φ∗(y)| for all e = {x, y} ∈ E.
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Consequently,

Modp,σ(Γ) = Ep,σ(ρ∗) =
∑
{x,y}∈E

σ({x, y})|φ∗(x)− φ∗(y)|p.

In words, the p-modulus for the family of connecting paths Γ = Γ(s, t) coincides with the

minimum dissipated power of the nonlinear resistor network. Moreover, the optimal density

ρ∗(e) coincides with the absolute potential difference across the resistor associated with edge

e.

Modulus as a metric

A related way of understanding modulus is through its connection to graph metrics. As

described in [3], for any p ∈ (1,∞) with conjugate Hölder exponent q = p/(p − 1), the

function δp : V × V → R defined as

δp(x, y) =


0 if x = y,

Modp,σ(Γ(x, y))−
q
p if x 6= y

is a metric on the vertices. In the special case p = q = 2, this metric coincides with the

effective resistance metric due to the connection established above. Moreover, it was shown

that when p = 1, Mod1,σ(Γ(x, y))−1 coincides with the minimum cut metric (with edge

capacities provided by σ) and when p =∞, Mod∞,σ(Γ(x, y))−1 coincides with the shortest-

path metric with edge lengths provided by σ−1.

The probabilistic interpretation of modulus and expected overlap

Finally, we review briefly the probabilistic interpretation of p-modulus developed in [3, 7].

Adopting the notation of the references, we fix a family Γ and consider a random object

γ ∈ Γ. (The underline notation is used to distinguish the random object γ from its possible

instantiations γ.) This random object is modeled through its distribution, or law, which

takes the form of a probability mass function (pmf) µ : Γ → R that assigns to each object
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in Γ its probability of selection. That is, we think of µ as the probability

µ(γ) = Pµ(γ = γ),

with the subscripted µ indicating that the probability depends on the choice of distribution.

We denote by P(Γ) the set of all possible pmfs on Γ. That is,

P(Γ) =
{
µ ∈ RΓ

≥0 : µT1 = 1
}
.

We shall use the notation γ ∼ µ to indicate the relationship between a random variable and

its underlying pmf.

For a random object γ ∼ µ and a fixed edge e ∈ E, the quantity N (γ, e) is a real-valued

random variable. Its expectation, called the expected edge usage for edge e plays a special

role in this interpretation of modulus, and is identified by the symbol η(e). That is,

η(e) = Eµ(N (γ, e)) =
∑
γ∈Γ

N (γ, e)µ(γ) = (NTµ)(e).

In the special case that N takes the form (1.1), η(e) can be understood as a marginal

probability:

η(e) =
∑
γ∈Γ

1e∈γµ(γ) = Pµ(e ∈ γ).

The probabilistic interpretation of modulus developed in [3, 7] is summarized in the

following theorem.

Theorem 2. Let Γ be a family of objects on G and let p ∈ (1,∞) and q = p/(p− 1). Define

the conjugate edge weights σ̂(e) = σ(e)−
q
p . Then,

Modp,σ(Γ) =

 min
µ∈P(Γ)

η=NTµ

∑
e∈E

σ̂(e)η(e)q

−
p
q

=

 min
µ∈P(Γ)

η=NTµ

Eq,σ̂(η)

−
p
q

.

Moreover, while there may be infinitely many optimal pmfs µ∗ for the right-hand side, there
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is a unique optimal η∗ = N Tµ∗ that is related to the optimal ρ∗ from p-modulus as follows.

σ(e)ρ∗(e)p

Ep,σ(ρ∗)
=
σ̂(e)η∗(e)q

Eq,σ̂(η∗)
.

When σ ≡ 1, p = 2 and N has the form (1.1), this probabilistic interpretation has

a particularly intuitive meaning. Given any pmf µ, we may consider two independent,

identically distributed random objects γ, γ′ ∼ µ. If we think of these two objects as subsets

of E, then it can be seen that

∑
e∈E

η(e)2 = Eµ(|γ ∩ γ′|),

the expected size of the intersection between the two objects. This is often called the expected

overlap of the objects. In this setting, the p-modulus problem is equivalent to choosing a

pmf µ so that this expected overlap is minimized.

There are also versions of Theorem 2 for the cases p ∈ {1,∞}. These are necessarily

weaker due to lack of uniqueness.

Theorem 3. Let Γ be a family of objects on G, then

Mod1,σ(Γ)−1 = min
µ∈P(Γ)

η=NTµ

E∞,σ−1(η) and Mod∞,σ(Γ)−1 = min
µ∈P(Γ)

η=NTµ

E1,σ−1(η).

Using the probabilistic interpretation, we can gain more insight into the earlier observa-

tion that modulus measures a balance between diversity and shortness. To see this, consider

an arbitrary family Γ and note that the constant density ρ = (minN1)−11 (the reciprocal

of the minimum row sum of N ) is admissible. For p ∈ (1,∞), this implies that

Modp,σ(Γ) ≤ σ(E)

(minN1)p
,

where

σ(E) =
∑
e∈E

σ(e).

8



When N has large row sums (corresponding to “long” or “heavy” objects), this forces the

modulus to be small.

On the other hand, the uniform distribution µ = |Γ|−11 is one possible pmf for Theorem 2,

which provides a lower bound on modulus. With this choice,

η(e) = |Γ|−1(N T1)(e) ≤ |Γ|−1 maxN T1,

where maxN T1 is the maximum column sum of N . Thus,

Modp,σ(Γ)−1 ≤ σ̂(E)
p
q

|Γ|p
(maxN T1)p.

When N has small column sums (corresponding to edges that are not used by many objects),

this forces the modulus to be large.
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Chapter 2

Temporal p-Modulus on graphs

Having reviewed the definition of modulus and some of its interpretations, we now focus our

attention on extending the p-modulus framework to objects on temporal graphs.

2.0.1 A model for temporal networks

In order to demonstrate the use of p-modulus on temporal networks, we must first choose a

suitable network model. For this dissertation, we have chosen the “contact sequence” graph

described in [12, Sec. 3]. Conceptually, this type of graph can be represented as a quadruple

G = (V,E, σ, T ), where the added property T encodes the temporal information. For this

dissertation, we will consider T as a function T : E → 2R; to each edge, e ∈ E, T (e) assigns

a discrete, positive set of times t ∈ R>0 during which e is available for use. To simplify the

discussion, we shall assume that T (e) is finite for each e. The associated graph Ǧ = (V,E, σ)

with temporal information stripped away is often called the static graph or aggregated graph.

2.0.2 Objects on temporal networks

The next step in extending p-modulus to temporal networks is to select a family of objects,

Γ. Intuitively, each object should be somehow associated with the graph G and should take

into account the temporal information. As in the non-temporal setting, it is evident that

there is a great deal of flexibility in defining an object. A fairly broad class of families can
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be obtained by considering subsets of edge-time pairs. A concrete example of such a family

is the family of time respecting paths between s and t as described in [12, Sec. 4.2]. These

are sets of the form {(e1, t1), (e2, t2), . . . , (ek, tk)} where the edges e1e2 · · · ek form a path

(traversed in order) from s to t, and the times satisfy t1 < t2 < · · · < tk and ti ∈ T (ei) for

all i, k is the number of hops in this path. In this example, one sees the connection between

the underlying graph structure (the edges must trace a path from s to t) and the temporal

data (the edges must be traversed in a prescribed temporal order).

2.0.3 Density and energy

There are two relatively natural ways to define the concept of density on a temporal graph.

The first is to assign a value ρ(e) to each edge e ∈ E. The second is to assign a value ρ(e, t)

to each edge-time pair. A practical way to accommodate either option, or even a mixture

of both, is to allow G to have parallel edges. In other words, G (and, therefore, Ǧ) is a

multigraph with edge set E. Each edge e has a set T (e) of one or more availability times

and is assigned a value ρ(e) by a density ρ ∈ RE
≥0. In this way, the definition of energy (1.2)

remains unchanged in the temporal case. All that remains in order to define a temporal

version of modulus, then, is to find a suitable definition for the usage matrix N ∈ RΓ×E.

2.0.4 Usage for temporal objects

Here, we describe possible strategies for defining a temporal version of usage, assuming a

particular structure on the family of temporal objects. Our goal is not to develop a single

generic approach for all families of temporal objects, but instead to provide the basis for a

temporal p-modulus framework by way of example.

Specifically, we shall consider a family Γ whose objects can be identified with sets of the

form

γ = {(e1, t1), (e2, t2), . . . , (ek, tk)} with ti ∈ T (ei) for i = 1, 2, . . . , k.

In words, the objects we consider will be sets of edge-time pairs with the requirement that
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the time occurring in the pair is one of the available times of the corresponding edge. To

simplify the discussion, we shall also assume that no edge appears more than once in a given

object (i.e., that the edges ei are unique in γ). This class of family is a natural generalization

of the time respecting paths.

Associated with each object γ ∈ Γ is a natural projection γ̌ ∈ 2E defined as

γ̌ = {e1, e2, . . . , ek}.

Since we assumed that γ cannot have repeated edges, it follows that |γ̌| = |γ|. In this way,

we can think of γ̌ as a projected object on the aggregated graph Ǧ. The collection of all

projections of temporal objects in Γ forms a family of objects on Ǧ, which we denote Γ̌.

That is,

Γ̌ = {γ̌ : γ ∈ Γ}.

Since each γ̌ ∈ Γ̌ is a subset of E, a natural choice of usage matrix for this aggregated

family is Ň of the form (1.1). We seek to define a usage matrix N on Γ by incorporating

temporal information into Ň . We shall do this by means of a strictly monotonic tempo-

ral penalty function (or time-penalty function) ϕ : R → R≥0. In general, we will think

of ϕ as monotonically increasing, though it is possible to envision applications wherein a

monotonically decreasing ϕ would be of interest.

Per-edge time penalization

In order to find a suitable usage matrix, one might consider modifying the concept of ρ-length

by incorporating temporal information independently on each edge. For example, given a

density ρ and an object γ ∈ Γ, one could define

`ρ(γ) =
k∑
i=1

f(ρ(ei), ϕ(ti)).
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In order to apply the established p-modulus apparatus to the family of temporal objects, we

need to find a usage matrix N ∈ RΓ×E
≥0 with the property that

`ρ(γ) ≥ 1 ⇐⇒ (Nρ)(γ) ≥ 1.

There is no reason to expect such a matrix to exist in general, but for certain choices of f it

does.

For example, if f is the multiplication operator, then

`ρ(γ) =
k∑
i=1

ρ(ek)ϕ(tk) =
∑
e∈E
N (γ, e)ρ(e),

where

N (γ, e) =


ϕ(t) if (e, t) ∈ γ,

0 if e /∈ γ̌.
(2.1)

If f instead is the addition operator then

`ρ(γ) = `ρ(γ̌) +
k∑
i=1

ϕ(tk).

Requiring that `ρ(γ) ≥ 1 is equivalent to requiring that

`ρ(γ̌) ≥ 1−
k∑
i=1

ϕ(tk).

Since ρ and ϕ are non-negative, we may assume without loss of generality (by possibly

removing objects from Γ) that the right-hand side of the inequality is strictly positive for all

γ̌ ∈ Γ̌. If we define

ϕ(γ) =
k∑
i=1

ϕ(tk),
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then the minimum ρ-length constraint can be written as

1 ≤ `ρ(γ̌)

1− ϕ(γ)
=
∑
e∈E

Ň (γ̌, e)

1− ϕ(γ)
ρ(e),

which provides the temporal usage matrix

N (γ, e) =
Ň (γ̌, e)

1− ϕ(γ)
.

Per-object time penalization

Alternatively, one might assign a time penalty to the object as a whole and combine this

with ρ-length on the aggregated graph. As an example, we could define a length of the form

`ρ(γ) = f(`ρ(γ̌), ϕ(γ)), where ϕ(γ) = max
i
ϕ(ti).

Natural assumptions on f would be non-negativity and monotonicity in each argument—

larger ρ-length in the aggregated graph and larger time penalties both induce larger temporal

ρ-length. Moreover, in order to avoid the trivial minimizer ρ∗ ≡ 0 and to ensure that the set

of admissible densities is non-empty, we will assume the following.

1. For all γ ∈ Γ, f(0, ϕ(γ)) < 1

2. For all γ ∈ Γ, f(`, ϕ(γ)) ≥ 1 for sufficiently large `.

If we further require that f be right continuous in its first argument, then to every γ ∈ Γ we

may assign a critical length `∗(γ) > 0 so that

`ρ(γ) ≥ 1 ⇐⇒ `ρ(γ̌) ≥ `∗(γ).

In this case, the temporal usage matrix, N , that we seek can be found from the minimum
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length inequalities, since `ρ(γ) ≥ 1 if and only if

1 ≤ `ρ(γ̌)

`∗(γ)
=
∑
e∈E

Ň (γ̌, e)

`∗(γ)
ρ(e),

so we should choose

N (γ, e) =
Ň (γ̌, e)

`∗(γ)
.

In the particular case that f is the multiplication operator, we obtain

N (γ, e) = ϕ(γ)Ň (γ̌, e). (2.2)

If f is the addition operator, then the usage matrix is

N (γ, e) =
Ň (γ̌, e)

1− ϕ(γ)
,

under the additional assumption that ϕ(γ) < 1 for all γ ∈ Γ.

Some general assumptions

All of the above possibilities can be realized by choosing N of the form

N (γ, e) = ψ(γ, e)Ň (γ̌, e), (2.3)

where ψ performs some type of “temporal weighting.” For the remainder of this d, we shall

consider this as a general form of temporal usage matrix.

By making some basic assumptions on this function ψ, it is possible to translate a large

portion of the modulus theory developed for non-temporal graphs to the temporal setting.

For the remainder of this dissertation, we shall make the following assumptions about ψ.

Assumption 1. The function ψ is universal in the sense that it is defined for any set γ of
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the form

γ = {(e1, t1), (e2, t2), . . . , (ek, tk)} with ei ∈ E and ti > 0 for i = 1, 2, . . . , k,

and any e ∈ E. This allows us to consider ψ separately from the particular choice of temporal

object family Γ.

Assumption 2. The function ψ is monotonic with respect to inclusions. If γ′ ⊆ γ, then

ψ(γ′, e) ≤ ψ(γ, e).

Assumption 3. The function ψ is monotonic with respect to time. If γ = {(e1, t1), · · · , (ek, tk)}

and γ′ = {(e1, t
′
1), · · · , (ek, t′k)} with t′i ≤ ti for all i, then ψ(γ′, e) ≤ ψ(γ, e).

Assumption 4. If γλ = {(e1, λt1), · · · , (ek, λtk)} (parametrized by λ > 0) then the function

λ 7→ ψ(γλ, e) is continuous for each e and

lim
λ→0+

ψ(γλ, e) = 1.

For the usage examples described previously, these assumptions can be satisfied by

suitable assumptions on the function ϕ. In the following, we consider a generic set γ =

{(e1, t1), . . . , (ek, tk)}.

Multiplicative per-edge penalization. In this case,

ψ(γ, e) =


ϕ(t) if (e, t) ∈ γ,

1 if e /∈ γ̌.
(2.4)

The assumptions are met if ϕ is a continuous, increasing function satisfying ϕ(0) = 1.
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Additive per-edge penalization. In this case,

ψ(γ, e) =


(

1−
k∑
i=1

ϕ(tk)

)−1

if e ∈ γ̌,

1 if e /∈ γ̌.

(Special care must be taken if the sum equals or exceeds 1.) The assumptions are met if ϕ

is a continuous, increasing function satisfying ϕ(0) = 0.

Multiplicative per-object penalization. In this case,

ψ(γ, e) =


maxϕ(ti) if e ∈ γ̌,

1 if e /∈ γ̌.
(2.5)

The assumptions are met if ϕ is a continuous, increasing function satisfying ϕ(0) = 1.

Additive per-object penalization. In this case,

ψ(γ, e) =


(1−maxϕ(ti))

−1 if e ∈ γ̌,

1 if e /∈ γ̌.

(Special care must be taken if the maximum equals or exceeds 1.) The assumptions are met

if ϕ is a continuous, increasing function satisfying ϕ(0) = 0.

2.0.5 Modulus of a family of temporal objects

Using the procedure outlined above, we have now developed the concepts of density and

energy on a temporal graph G and the concept of usage on a temporal object γ ∈ Γ. With

these definition in hand, the p-modulus of Γ can be defined exactly as in (1.3). In this way,

we have incorporated all needed temporal information into the usage matrix N and, when

it is convenient, we may think of Γ as a family of objects on the aggregated graph Ǧ. This
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allows properties of modulus to translate more or less directly from the non-temporal to the

temporal case.

2.1 A mass transport interpretation of modulus

To help provide some intuition about what temporal modulus measures, we now describe a

mass transport interpretation based on the probabilistic interpretation of modulus described

in Section 1.3.3. For this discussion, we focus on the family Γ = Γtrp(s, t) of time respecting

paths passing from a vertex s to another vertex t in a temporal graph G. Note that, in this

case, the projected family Γ̌ is a subset of Γ(s, t), the family of paths connecting s to t in Ǧ.

This inclusion is strict if there are paths γ̌ ∈ Γ̌ that cannot be traced while respecting the

temporal constraint. Moreover, |Γ̌| ≤ |Γ|, and this inequality is strict if there are multiple

ways to trace some path while respecting time. For a temporal usage matrix, we adopt an

N of the form (2.3), with Ň as in (1.1).

Every pmf µ ∈ P(Γ) can be thought of as a plan for transporting one unit of mass along

the time respecting paths from s to t. For any path γ ∈ Γ, µ(γ) provides the fraction of

mass that should be sent along γ. In this way, we can view temporal modulus within the

class of optimal mass transport problems, with p, σ and ψ defining the fitness function as

follows.

First, every plan incurs a per edge usage cost

η(e) =
∑
γ∈Γ

N (γ, e)µ(γ) =
∑
γ∈Γ

ψ(γ, e)Ň (γ, e)µ(γ) =
∑
γ∈Γe

ψ(γ, e)µ(γ),

where Γe = {γ ∈ Γ : e ∈ γ̌} is the subfamily of paths that traverse edge e. The quantity

ψ(γ, e) can be thought of as an amount of some resource per unit mass consumed when

transporting this unit mass along edge e of γ. Examples of ψ can be found in Section 2.0.4.

Since the temporal penalty function ϕ is assumed to be increasing, paths that cross edges

a later times tend to consume more resource per unit mass than paths traversing edges at

earlier times. The quantity η(e), then, is the accumulated resource expenditure on edge e
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Figure 2.1: Example 2.1. Multi edge simple graph.

required to enact the plan µ.

The values p and σ then define the global fitness function Eq,σ̂(η) that we seek to minimize

by choosing the plan µ. For example, if we simply wish to minimize the total resource

expenditure (i.e., the sum of η(e) across all edges), this corresponds to setting p = ∞ and

σ ≡ 1. On the other hand, if we wish to minimize the maximum resource expenditure across

all edges, then we would set p = 1 and σ ≡ 1. More generally, σ(e) allows us to adjust the

importance of edge e within the fitness function and p provides us a way of interpolating

between the extremes of minimizing the sum of σ−1(e)η(e) and minimizing the maximum

of σ−1(e)η(e). In particular, 2-modulus corresponds to minimizing the sum of σ−1(e)η(e)2

across all edges and bears a striking resemblance to effective resistance if we think of η(e) as

a generalized “current” flowing across edge e.

2.2 Examples

The following examples demonstrate the ability for p-modulus to incorporate temporal in-

formation. In the examples, we will consider the two types of temporal usage matrix, those

corresponding to the the per-edge multiplicative penalty (2.4) and the multiplicative per-

object penalty (2.5).

Example 1. Consider a graph G with two vertices, a and b, and a collection of parallel

edges {e1, e2, . . . , em}, each with a single available time T (ei) = {ti} (see Figure 2.1). In this
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case, (2.4) and (2.5) give the same usage matrix. The length constraints on ρ are

ϕ(ti)ρ(ei) ≥ 1 i = 1, 2, . . . ,m.

Since we seek to minimize Ep,σ(ρ), it is straightforward to check that ρ∗(ei) = ϕ(ti)
−1 is an

optimal density, so

Modp,σ(Γtrp(a, b)) =


m∑
i=1

σ(ei)
ϕ(ti)p

if p <∞,

max
i

σ(ei)
ϕ(ti)

if p =∞.

Each object in this example is a single edge-time pair, γi = {(ei, ti)} for i = 1, 2, . . . ,m.

From Theorem 2 one can see that the optimal mass transport plan when p ∈ (1,∞) assigns

γi a mass proportional to σ(ei)ϕ(ti)
− p
q . For p ≈ 1, this mass is primarily determined by

the relative sizes of the σ(ei)—larger capacity edges will be assigned more mass regardless

the availability time. For p � 1, it is primarily determined by the relative sizes of the

ϕ(ti)—edges that are available at early times will be assigned more mass regardless their

capacity.

Example 2. Consider a path graph Pn with n vertices and ` = n− 1 edges {e1, e2, . . . , e`}

which, when traversed in order, connect the vertex a to b. Assume that each edge has a

single available time T (ei) = {ti} and that t1 < t2 < · · · < t` so that Γtrp(a, b) contains a

single time respecting path γ = {(e1, t1), (e2, t2), . . . , (e`, t`)}. Since there is a single path, the

optimal mass transport plan is to assign all mass to this path. Thus, the optimal expected

edge usage is η∗(e) = N (γ, e) = ψ(γ, e). For p ∈ (1,∞), Theorem 2 shows that

Modp,σ(Γtrp(a, b)) =

(∑̀
i=1

σ̂(ei)ψ(γ, ei)
q

)− p
q

.

If we choose per-edge temporal penalization, then

Modp,σ(Γtrp(a, b)) =

(∑̀
i=1

σ̂(ei)ϕ(ti)
q

)− p
q

.
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a x2 xl b[t1] [tl]

Figure 2.2: Example 2. Consecutive connection graph.

On the other hand, if we choose per-object temporal penalization, then

Modp,σ(Γtrp(a, b)) = ϕ(t`)
−p
(∑̀

i=1

σ̂(ei)

)− p
q

.

Modulus decreases as the available times of the edges in the path increase.

Example 3 (Parallel Paths Graph ). As a temporal version of the example in Sec-

tion 1.3.2 (see Figure 2.3), consider k identical copies of the path graph described in the

previous example, all glued together at common end vertices a and b. From the symmetry

of the configuration, it is evident that each of the k paths will be assigned a mass of 1/k by

the optimal transport plan, so for e ∈ γ, η∗(e) = ψ(γ, e)/k. Applying Theorem 2 once again

shows that

Modp,σ(Γtrp(a, b)) =

(
k

r∑
i=1

σ̂(ei)
ψ(γ, ei)

q

kq

)− p
q

.

If σ ≡ 1, then per-edge penalization and per-object penalization respectively yield

Modp,1(Γtrp(a, b)) = k

(
r∑
i=1

ϕ(ti)
q

)− p
q

and Modp,1(Γtrp(a, b)) =
k

rp−1
ϕ(tr)

−p,

showing the triple interaction among the number of paths, the (graph) lengths of the paths,

and the time required to traverse the paths on the temporal graph.

From [2] we also know that p-modulus is a continuous function w.r.t. p.

Since ϕ is non-decreasing, 1-modulus for both per-edge penalization and per-object one

is

Mod1,1(Γtrp(a, b))
Cont.
== lim

p→1
Modp,1(Γtrp(a, b)) = kϕ(τr)

−1,
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Figure 2.3: Example 3. Parallel paths graph.

a

b

ts [1]

[2] [T ′]

[T ]

Figure 2.4: Example 4. Paw graph with T ′ > 2, T > 1

The ∞-modulus for per-edge penalization is

Mod∞,1(Γtrp(a, b))
Cont.
== lim

p→∞
Modp,1(Γtrp(a, b))

1
p =

(
r∑
i=1

ϕ(τi)

)−1

.

Since k, r ≥ 1, ∞-Modulus for object-edge penalization is

Mod∞,1(Γtrp(a, b))
Cont.
== lim

p→∞
Modp,1(Γtrp(a, b))

1
p =

1

r
ϕ(τr)

−1.

We also can conclude that optimal maximizer for the dual problem is the vector µ∗ =
1

k
1.

Example 4 (Paw Graph ). Let’s compute 2-Modulus on a set of time-respecting paths Γ

from s to t in the graph on Figure 2.4, where all weights on the edges are assumed to be 1,

and ϕ(t) is a non-decreasing positive per-object penalization.

For convenience we denote ϕ(T ) =: α, ϕ(T ′) =: β. First, we find the usage matrix N of
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the temporal graph. The time-dependent distance of a path ω is

lτρ(ω) = ϕ(τ(ω))lρ(ω) = ϕ(τ(ω))
∑
e

Ňρ(e)

The essential [7] set of paths consists only of two objects: Γtmp = {s → a → t, s → a →

b → t}. And so the temporal usage matrix can be found through the usage matrix of the

static part of the graph as

∑
e

N (ω, e)ρ(e) =
∑
e

ϕ(τ(ω))Ň (ω, e)ρ(e)

Thus,

N =

α α 0 0

β 0 β β



Let µ =

 δ

1− δ

 , where 0 ≤ δ ≤ 1. Then

Mod2,1(Γtrp(s, t)) =

(
min
µ∈P(Γ)

(µTN (N )T µ)

)−1

=

 min
µ∈P(Γ)

(µT

2α2 αβ

αβ 3β2

µ)


−1

=

(
min
δ∈[0,1]

(2α2δ2 + 2αβ(1− δ)δ + (1− δ)23β2

)−1

. (2.6)

In order to minimize this value by δ we take the derivative with respect to δ and set it

equal to zero:

2(2α2 + 3β2 − 2αβ)δ + 2αβ − 6β2 = 0.

Solving this now for δ we get

δ∗ =
β(3β − α)

2α2 − 2αβ + 3β2
.

Notice that if 3β < α then δ∗ = 0 and if β(3β − α) > 2α2 − 2αβ + 3β2, which is 2α < β
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then δ∗ = 1.

So, the value of Mod2(Γtrp(s, t)) can be found by substitution of this optimal δ∗ to (2.6):

Mod2,1(Γtrp(s, t)) =


(3β2)−1, if δ∗ = 0 (3β < α)

(2α2)−1, if δ∗ = 1 (3α < β)

(2α2−2αβ+3β2)2

2α2β2[(2β−α)2+(2β−α)(2α−β)+(3/2)(2α−β)2]
, if 0 < δ∗ < 1 (β/2 ≤ α ≤ 3β)

The optimal density by Theorem 2 is

ρ∗ = Mod2,1(Γtrp(s, t))(N )Tµ∗

Case p = 1:

Let’s compute temporal 1-Modulus.

Mod1,1(Γtrp(s, t))−1 = min
µ∈P(Γtrp(s,t))

max
e∈E

(N (·, e))Tµ

= min
µ∈P(Γtrp(s,t))

max
e∈E
{αδ + β(1− δ), αδ, β(1− δ), β(1− δ)} = min

δ∈[0,1]
{αδ + β(1− δ)}

Thus,

Mod1,1(Γtrp(s, t))−1 =

 β, if α > β and δ = 0

α, if α ≤ β and δ = 1

The minimizer ρ∗ is not unique. For example, it can be ρ∗ = (1/min(α, β), 0, 0, 0)T .

Case p =∞:

Mod∞,1(Γtrp(s, t))−1 = min
µ∈P(Γtrp(s,t))

∑
e∈E

(N (·, e))Tµ = min
δ∈[0,1]

{2αδ + 3β(1− δ)}

=

 3β, if 2α > 3β and δ = 0

2α, if 2α ≤ 3β and δ = 1

One of optimal densities is ρ∗ = (1/min(2α, 3β), 1/2α, 1/3β, 1/3β)T .
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General p case:

Modp,σ(Γtrp(s, t))−
q
p = min

µ∈P(Γtrp(s,t))

∑
e∈E

ηq = min
µ∈P(Γtrp(s,t))

∑
e∈E

(
(N (·, e))Tµ

)q
= min

δ∈[0,1]
{[αδ + β(1− δ)]q + [ αδ]q + 2[β(1− δ)]q}.

Applying Calculus, we have that the optimal δ is the solution of the equation:

(α− β)[(α− β)δ + β]q−1 + [αβ]q−1 − 2β(β(1− δ))q−1 = 0.

On the Figure 4 , one can see the set of the solutions. Observe that there is one blue

horizontal line α/β = 3/2 corresponds to the case p = ∞ and red curves converge to a

horizontal line α/β = 1, which corresponds to the case p = 1.

0.0 0.2 0.4 0.6 0.8 1.0
delta

0

1

2

3

4

R

Figure 2.5: Optimal δ for R = α/β.
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Figure 2.6: Example 5. Complete graph.

By Theorem 2, the optimal density can be found from:

(ρ∗e)
q
p = Modp,1(Γtrp(s, t))N (·, e)Tµ∗

Example 5 (Complete Graph). Consider a complete graph Kn with n nodes (Figure

2.6). Choose some pair of nodes s and t to be source and sink, respectively. Assign the same

weights on all edges σ = 1 and set of time windows T on edges in the following way:

1)τ (s,t) = t1.

2) τ (x,y) = t2, if the node x 6= t, node y 6= t and y 6= s.

3) τ (x,t) = t3, if the node x 6= s and x 6= t.

Let’s compute p-modulus for Kn on Γ, the set of time-respecting paths from s to t.

Only two types of paths s ; t can be optimal (best either by static length or arrival

time):

1) The straight one-hop path from s to t with time t1,

2) Any two-hop path from s to any node different from s and t with the time window t2

then from this node to t with the time window t3 (There exist n− 2 of them.).

Any other path won’t bring us to t faster than t1 or t3 and the travel cost will be strictly

more than 2, i.e. it is dominated by previously described paths and so cannot be in the

optimal set.
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p-modulus is the solution of the minimization problem

minimize
ρ1,ρ2,ρ3

ρp1 + (n− 2)(ρp2 + ρp3),

where ρ1 is the density on the edge with the assigned time window t1, the density ρ2 is on

the edges going from s to any node, which is not s or t. The density ρ3 belongs to any edge

going to t from any node except s and t.

The constraints for the modulus problem with per-edge penalization ϕ(t) are:

ρ1ϕ(t1) ≥ 1,

ρ2ϕ(t2) + ρ3ϕ(t3) ≥ 1.

If t2 ≥ t3 then 2-hop (or more) temporal paths from s to t are impossible. Consequently,

ρ2 = ρ3 = 0 and by Beurling (Theorem [8, Theorem 4.2]) we have only one condition

ρ1 =
1

ϕ(t1)
.

If t2 < t3, we apply KKT conditions:

pρp−1
i = λϕ(ti), i = 1, 2.

Since p− 1 =
q

p
, we obtain ρi = λ̃ϕ

q
p (ti), i = 1, 2. Plugging it back into the constraint, we

have 1 = λ̃(ϕ(t2)q + ϕ(t3)q). Thus,

ρi =
ϕ(ti)

p
p

ϕ(t2)q + ϕ(t3)q
, i = 1, 2.

The constraints for the modulus problem with per-object penalization ϕ(t) are:

ρ1ϕ(t1) ≥ 1,
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(ρ2 + ρ3)ϕ(t3) ≥ 1.

If t2 > t3,

ρ1 =
1

ϕ(t− 1)
.

If t2 < t3 then by symmetry

ρ2 = ρ3 =
1

2ϕ(t3)
.

Therefore, for both per-edge and per-object penalization, if t2 ≥ t3

Modp,1(Γ) =
1

ϕ(t1)p
, for 1 ≤ p <∞,

Mod∞,1(Γ) =
1

ϕ(t1)
.

If t2 < t3 then for per-edge penalization case, we have

Modp,1(Γ) =
1

ϕ(t1)p
+ (n− 2) (ϕ(t2)q + ϕ(t3)q)−

p
q , for 1 < p <∞,

lim
p→1

Modp,1(Γ) =
1

ϕ(t1)
+

1

max{ ϕ(t2) + ϕ(t3)}
.

Mod∞,1(Γ) = max

{
1

ϕ(t1)
,

1

ϕ(t2) + ϕ(t3)

}
.

And with per-object penalization, we have

Modp,1(Γ) =
1

ϕ(t1)p
+

2(n− 2)

2pϕ(t3)p
, for 1 ≤ p <∞,

Mod∞,1(Γ) = max

{
1

ϕ(t1)
,

1

2ϕ(t3)

}
.

Now let’s compute the same multiplicative temporal p-modulus with per-object penal-
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ization through the duel problem. Choose µ =

 Θ

1−Θ

: With probability Θ go straight

from s to t. With probability 1−Θ choose uniformly among all 2-hop paths form s to t.

By Theorem 2,

Modp,σ(Γ)−
q
p = min

µ∈P(Γ)

∑
e∈E

σ̂(e)η(e)q,

where η = (N )Tµ.

Dual densities:

η1 = Θϕ(t1) and η2 = η3 =
1−Θ

n− 2
ϕ(t3). (2.7)

The dual energy is

Ep,σ(µ) = (Θϕ(t1))p + 2(n− 2)

(
1−Θ

n− 2
ϕ(t2)

)p
.

Let’s consider the ratio:

η1

η2

=

(
ρ1

ρ2

) q
p

=

(
2ϕ(t3)

ϕ(t1)

) q
p

Also,
η1

η2

=
Θ(n− 2)

1−Θ

ϕ(t1)

ϕ(t3)
.

Combining last two equations, we have

(n− 2)
η1

η2

Θ = (1−Θ)

(
2ϕ(t3)

ϕ(t1)

) q
p

Θ =

(
2ϕ(t3)
ϕ(t1)

) q
p

(n− 2)ϕ(t1)
ϕ(t3)

+
(

2ϕ(t3)
ϕ(t1)

) q
p

.

Plugging in this optimal Θ in (2.7) we obtain optimal dual densities and they, being used

in the formula of dual energy, give optimal dual energy.
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For simplicity of formulas, we show this process for p = 2:

E(η) =
4ϕ(t1)2ϕ(t3)4

[(n− 2)ϕ(t1)2 + 2ϕ(t3)2]2
+

2(n− 2)ϕ(t1)4ϕ(t3)2

[(n− 2)ϕ(t1)2 + 2ϕ(t3)2]2

=
2ϕ(t1)2ϕ(t3)2

(n− 2)ϕ(t1)2 + 2ϕ(t3)2
= ϕ(t1)2Θ.

Therefore,

Mod2,1(Γ) ≥ n− 2

2ϕ(ω)2
+

1

ϕ(t1)2
=

1

ϕ(t1)2Θ
.

Now we consider the case t3 > t2.

For upper bound guess on edge with t1: ρ1 = Θϕ(t1)
1

Θϕ(t1)2
=

1

ϕ(t1)
. And on the edges

with t2, t3: ρ1 = ρ2 = 1−Θ
n−2

ϕ(t3) 1
Θϕ(t1)2

.

Note that it is admissible because the direct path s→ t has length ϕ(t1)
ϕ(t1)

= 1 and all other

paths with two hops have length ϕ(t3)
[

1
2ϕ(t3)

+ 1
2ϕ(t3)

]
= 1.

Thus,

Mod2,1(Γ) =
1

ϕ(t3)2
+ 2(n− 2)

(
1

ϕ(t3)2

)
=

1

ϕ(t1)2
+

n− 2

2ϕ(t3)2
.

In the case when t3 ≤ t2, the optimal densities are ρ1 = 1
ϕ(t1)

and all other are zero.

Hence

Mod2,1(Γ) =
1

ϕ(t1)2
.

So, we have obtained the same Modulus.

2.3 Conclusion of the chapter

We have defined temporal p-modulus in the form, where the time penalty function can be

conveniently included and reflects temporal property of a particular application. We have

showed that the Dual Theorem stays for temporal p-modulus. We have demonstrated some

properties of temporal modulus on simple graph examples.
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Chapter 3

Temporal p-Modulus and

time-respecting paths

In Chapter 2 we introduced Modulus on general temporal families of objects on graphs. The

analytical computations of Modulus we showed in examples become quite problematic on

bigger graphs. For the latter ones we need numerical methods. For very big graphs [13], for

which the size cannot be even computed precisely, only estimated, we might need a special

approach. In this work, we talk only about “reasonably big” graphs. To compute p-Modulus

on static graphs there exists an efficient numerical algorithm, presented in [8]. This chapter

is about adjusting this algorithm to time-respecting paths on temporal graphs.

First, we reintroduce some notions from Chapter 2 in a more formal way.

3.1 Background. Time-respecting paths.

Definition 1 (Temporal Graph). Let temporal graph be a quadruple G = (V,E, T, σ),

where V is the set of vertices (nodes), E is the set of directed edges with assigned weights,

i.e. there exists σ : E → R>0, and T : E → 2R such that T (e) = (te1, t
e
2, ...) is a finite

increasing sequence of time moments (instant time windows), when edge e ∈ E is available.

In this dissertation, we always assume that for each considered graph there is some
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enumeration of the edges. So, a directed edge connecting two vertices a, b ∈ V is denoted by

ab or just by a natural number, corresponding to the number of that edge.

In some literature [16], [11] one can meet temporal graph under the names dynamic graph,

evolving graph etc.

Definition 2 (Temporal Object). Let G = (V,E, T, σ) be a temporal graph. A time-

respecting object or temporal object γ̂ is a sequence of pairs ((γ1, τ1), ..., (γ|E|, τ|E|)), where

γi is a non-negative real number representing some information about i-th element of E and

τi is one of the time moments of i-th edge in E chosen in some way from T (ei).

Only finite graphs and finite objects will be considered in this dissertation.

Next definitions use the notion of density ρ ∈ R|E|≥0 of the edges in a graph. One way to

think of it is that density ρ ∈ R|E|≥0 is the usage (“importance”) the edges by (for) all given

objects on a graph together .

Definition 3 (p-Energy). We call p-energy on a temporal graph G = (V,E, T, σ) for density

ρ ∈ R|E|≥0 the function

Ep,σ(ρ) =


∑
e∈E

σ(e)ρpe, if 1 ≤ p <∞

sup
e∈E

σ(e)ρe, if p =∞
.

Definition 4 (Undirected edge). Undirected edge between a and b is a pair of directed

edges {ab, ba} with σ(ab) = σ(ba) and T (ab) = T (ba) if there exists only one element in the

vector ρ corresponding to {ab, ba}.

For linguistic convenience, we will omit the words ”directed” and ”undirected” when it

is clear from the context.

Notice that if σ is assigned to a graph once and does not change ever, ρ is a variable on

a graph under our control.

Definition 5 (Temporal p-Modulus). Let Γtmp be a set of temporal objects on a tem-

poral graph G = (V,E, T, σ), max-function be a map S : Γtmp → R such that S(γ̂) =

max(γi,τi)∈γ̂(τi) for any γ̂ = ((γ1, τ1), ..., (γn, τn)) ∈ Γtmp, n = |E|. Let wrap function f be
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a non-negative function of two arguments with the properties: non-decreasing by both ar-

guments, continuous from the right on first argument and for any γ̂ ∈ Γtmp there exists

ρ ≥ 0 such that f(lρ(γ̂), S(γ̂)) ≥ 1, where lρ(γ̂) :=
∑n

i=1 γiρi is called static total usage cost.

Temporal p-Modulus, for 1 ≤ p ≤ ∞ on a set of objects Γtmp of a temporal graph G is

Modtmpp,σ (Γtmp) = min
ρ≥0, ltmp

ρ (γ̂)≥1 ∀γ̂∈Γtmp
Ep,σ(ρ),

where ltmp
ρ (γ̂) := f [lρ(γ̂), S(γ̂)] is called total usage cost. The vector minimizer ρ∗ for the

problem above is called optimal density.

�

Definition 6 (Projection and Usage Matrix). Let projection of temporal object to a

static object be a map π : Γtmp → Γ such that π(γ̂) = (γ1, ...γ|E|) for all γ̂ ∈ Γtmp.

Then N (Γ) = N (π(Γtmp)) =


π(γ̂1)

. . .

π(γ̂|Γ
tmp|)

, where γ̂i ∈ Γtmp. We denote a column of N

corresponding to an edge e ∈ E as Ne and an element of N in i-th row and j-th column

as N (i, j) and so we will do for temporal usage matrix.

Let function α : Γtmp → R be define by

α(γ̂) := inf
ρ
{x : f [lρ(γ̂), S(γ̂)] ≥ 1 ∧ x = lρ(γ̂)} ∀ γ̂ ∈ Γtmp. (3.1)

The temporal usage matrix of Γtmp is obtained from N by

N tmp(γ̂, e) =
N (γ̂, e)

α(γ̂)
∀ e ∈ E, ∀ γ̂ ∈ Γtmp. (3.2)

The rows of N tmp are called reduced temporal objects.

Theorem 4. Let N tmp be a temporal usage matrix of Γtmp.
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Then temporal p-Modulus in Definition 5 for 1 ≤ p ≤ ∞ can be computed as

Modtmp
p,σ (Γtmp) = min

ρ∈R|E|≥0 ∧ N tmpρ≥1

Ep,σ(ρ).

Proof. Observe that if f(lρ(γ), S(γ̂)) ≥ 1 then α(γ̂) ≤ lρ(γ).

On the other hand, α(γ̂) > 0 because lρ(γ) > 0 for all ρ. Therefore

f(lρ(γ), S(γ̂)) ≥ 1 =⇒ lρ(γ)/α(γ̂) ≥ 1.

According to Definition 5 and to (3.1) value α(γ̂) exists for all γ̂ ∈ Γtmp. So, if

f(lρ(γ), S(γ)) < 1 then due to non-decreasing of f inequality α(γ̂) > lρ(γ) is valid. That

yields

f(lρ(γ), S(γ̂)) < 1 =⇒ lρ(γ)/α(γ̂) < 1.

And all together

f(lρ(γ), S(γ̂)) ≥? 1 ⇐⇒ lρ(γ)/α(γ̂) ≥ 1.

Remembering that ltmpρ (γ̂) = f(lρ(γ), S(γ)) and lρ(γ) =
∑
e∈E
N (γ, e)ρe we have

ltmpρ (γ̂) ≥ 1 ⇐⇒
∑
e∈E

N (γ, e)

α(γ̂)
ρe ≥ 1

(3.2)⇐⇒
∑
e∈E
N tmp(γ, e)ρe ≥ 1.

Or (
(∀ γ̂ ∈ Γtmp) ltmpρ (γ̂) ≥ 1

)
⇐⇒ N tmpρ ≥ 1. (3.3)

Remark 1. Theorem 4 says that, for computation of Modulus, it’s enough to have only

information contained inN tmp instead of knowledge of function f and numbers {S(γ̂)}γ̂∈Γtmp .

From now, unless it causes confusion, we will call reduced temporal objects simply by objects.

Definition 5 gives us big variety of wrap function f . So far we consider only two versions

of f . Let’s present them.
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Definition 7 (Time-Penalty and Additive Temporal p-Modulus). Let time-penalty

function be a non-decreasing function ϕ : R → R≥0. Let wrap function in Definition 5 be

f(x, y) = x+ ϕ(y). Then the temporal p-Modulus with such f for 1 ≤ p ≤ ∞ on Γtmp we

call Additive Temporal p-Modulus.

Lemma 1. Let additive temporal p-modulus be defined on a family of temporal objects

Γtmp and time-penalty function ϕ satisfy ϕ(x) < 1 for all x. Then temporal usage matrix is

provided by

N tmp(γ̂, e) =
N (γ̂, e)

1− ϕ(S(γ̂))
, e ∈ E, γ̂ ∈ Γtmp.

The notations are taken from Definition 5 and Theorem 4.

Proof. Since

ltmp
ρ (γ̂) = lρ(π(γ̂)) + ϕ(S(γ̂)) ≥ 1 (3.4)

condition ϕ(S(γ̂)) < 1 provides existence of such density ρ that the non-strict inequality

(3.4) becomes equality and we have α(γ̂) = 1− ϕ(S(γ̂)). Apply Theorem 4.

It appears that in applications, the intuitive choice of time-penalty function ϕ is easier

when wrap function is a product of its arguments.

Definition 8 (Multiplicative Temporal p-Modulus). Let ϕ be time-penalty function

and wrap function in Definition 5 be f(x, y) = xϕ(y). Then the temporal p-Modulus with

such f for 1 ≤ p ≤ ∞ on Γtmp we call Multiplicative Temporal p-Modulus.

Lemma 2. Let multiplicative temporal p-modulus be defined on a family of temporal objects

Γtmp and time-penalty function ϕ satisfy ϕ(x) > 0 for all x. Then temporal usage matrix is

provided by

N tmp(γ̂, e) = N (γ̂, e)ϕ(S(γ̂)), e ∈ E, γ̂ ∈ Γtmp.

The notations are taken from Definition 5 and Theorem 4.
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Proof. Since

ltmp
ρ (γ̂) = lρ(π(γ̂))ϕ(S(γ̂)) ≥ 1 (3.5)

condition ϕ(S(γ̂)) > 0 provides existence of such density ρ that the non-strict inequality

(3.5) becomes equality and we have α(γ̂) = 1/ϕ(S(γ̂)). Apply Theorem 4.

3.2 Algorithm for Modulus.

Let’s define a function shortest as γ∗ = shortest(ρ) =⇒ ∀γ ∈ Γ : lρ(γ
∗) ≤ lρ(γ). Al-

gorithmically, the function shortest can be implemented by means of Dijkstras algorithm

[1, Theorem 7.15]. Let A(Γ′) denote the admissible set of density ρ on the family Γ′. To

approximate Mod(Γ) with an error tolerance of 0 < εtol < 1 in [8] there is the following

Algorithm of Modulus approximation.

0. ρ←− 0

1. Γ′ ←− ∅

2. loop

3. γ ←− shortest(ρ)

4. if lρ(γ)p ≥ 1− εtol then

5. stop

6. end if

7. Γ′ ←− Γ′ ∪ γ

8. ρ←− argmin{Ep(ρ) : ρ ∈ A(Γ′)}

10. end loop

It is easy to see that to adjust the algorithm above to temporal modulus, all we need

is just to change lρ to the temporal total usage cost function `tmp
ρ and provide shortest for

temporal or time-respecting paths.
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a c b d1 3, 4 5

Figure 3.1: Example of a simple temporal graph.

3.3 Temporal modulus on time-respecting paths

Let’s introduce one important special case of temporal object.

Definition 9 (Time-respecting Path). Let G = (V,E, T, σ) be a temporal graph with

some enumeration of edges. A time-respecting path (TRP) of length m ∈ N ∪∞ on a G is

a sequence of pairs ((ek1 , tk1), (ek2 , tk2), ..., (ekm , tkm)), such that ek1 ,..., ekm are sequentially

connected edges of G, i.e. eki = ab and eki+1
= cd implies b = c for i = 1,m− 1. The time

moments tkj satisfy tk1 < tk2 < ... < tkm , where tkj ∈ T (ekj) for all j. If TRP has no loops,

then we call it simple TRP.

TRP is also known in some literature [16] as time-dependent path.

Problem 1.

Compute temporal p-Modulus on Γa;b, a set of TRPs from a node a (source) to the node

b (sink).

To solve that problem we need to form a temporal usage matrix for Γa;b. First, let’s

observe that all TRP with loops can be disregarded since their total usage cost is always

greater than the same TRP with the loop cut off. For the TRP with no loops, we can easily

build a usage matrix. For example, on Figure 3.1 there are two significant (meaningful as

constraints) TRPs: ((ac, 1), (cb, 3)) and ((ac, 2), (cb, 3)). A temporal usage matrix would be

Na;b =

ϕ(3) ϕ(3) 0

ϕ(4) ϕ(4) 0


The existing algorithm for computing static p-Modulus on a set Γ of paths uses a shortest

path algorithm as an inside tool. Thus, to adjust Modulus for temporal graphs we have to
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define some equivalent to shortest paths for time-respecting paths and invent an algorithm

to find it.

To find shortest path on a static graph, there is well-known Dijkstra algorithm with

Min Heap [9] with complexity O(|E| log |V |) and with Fibonacci Heap [10] with complexity

O(|E|+ |V | log |V |).

3.3.1 Pareto optimal set of paths on a temporal graph

On temporal graphs the concept of best path becomes more complicated than on static ones.

Now we have two criteria of quality: time of arrival to the destination point and cost to cross

all the edges of the path. Before using any idea to combine these two into one, it makes

sense to find the Pareto set of TRP in this two-criteria space.

Definition 10. Let Ξ, Λ be ordered sets and ξ1, ξ2 ∈ Ξ and λ1, λ2 ∈ Λ. We say that a

pair (ξ1, λ1) dominates (ξ2, λ2) and write (ξ1, λ1) � (ξ2, λ2) if either ξ1 > ξ2 and λ1 ≥ λ2 or

ξ1 ≥ ξ2 and λ1 > λ2.

Definition 11. Let binary relation “�” be defined on Ξ × Λ as in definition above. A set

of pairs P ⊆ D ⊆ Ξ× Λ is called Pareto set of D and denote P (D) if

P = {y′ ∈ D : {y′′ ∈ D : y′ � y′′} = ∅}. (3.6)

For a node u ∈ V , we call a pair of a node and time (v, t) a virtual node of u if uv ∈ E

and t ∈ T (uv). Let a be the source node. We’ll say a virtual node (v, t) is reachable if there

exists TRP γ̂ from a to v (denote γ : a; v) such that S(γ̂) = t.

Given ρ, ϕ, S as in Definition 5 we have got lρ(γ̂) and S(γ̂) as two criteria of optimality

of TRP. We’ll call them in this subsection length and arrival time, respectively. The pair

(lρ(π(γ̂)), S(γ̂)) is called value-pair of TRP γ̂.

In fact, the algorithms we present in this subsection work if the length l : π(Γtmp)→ R≥0
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a c b1, 2 3

Figure 3.2: Example of multiplicity of TRP a; b.

is additive, i.e. for any TRP u; v ∈ Γtmp and for any node c on u; v

l(π(u; v)) = l(π(u; c)) + l(π(c; v)).

For convenience of the narration we introduce the following

Definition 12. Let Γa;b be a set of all TRP from a to b. The function F : Γa;b → R≥0×R≥0

such that F (γ̂) = (lρ(γ̂), S(γ̂)) for any γ̂ ∈ Γa;b is called TRP-meter.

Definition 13. A TRP γ̂ : a ; b is Pareto optimal if, for any other TRP γ̂′ : a ; b,

the value of TRP-meter F (γ̂′) = (l(γ̂′), S(γ̂′)) is not dominated by F (γ̂) = (l(γ̂), S(γ̂)), i.e.

F (γ̂) 6� F (γ̂′).

It is not hard to see that the set value-pairs of all Pareto optimal TRP a; b is a Pareto

set of value-pairs of all TRP from a; b.

In the view of future computations of Modulus on a set of TRP a ; b (where we just

have to satisfy the constrains on all TRP), we don’t really need to find all optimal TRP but

we want the set of TRP forming the Pareto set of value-pairs of all TRP from a; b. What

is the difference? Two different TRP may have the same length and arrival time. First, they

may go through different nodes. Second, there might be a multiplicity if they go through the

same nodes but in different time moments. On the Figure 3.2), there are two TRP a ; b.

One goes from a to c either at the time moment 1 or 2, the value-pair will be the same

because the length is the same since they go through the same edges and the arrival time is

3.

The following is a very inefficient but algorithmically simple way of finding Pareto set

P (F (Γa;b)) and the set of all Pareto optimal TRP.

Algorithm 0.
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Let Γa;b be the set of all TRP from node a to node b on a temporal graph G. Let

D = F (Γa;b). Now we form a Pareto set P (D) by removing from D consequently in

arbitrary order all dominating elements. So, as a result we obtain (3.6). It is easy to see

that F−1(P (D)) is the set of all Pareto optimal TRP.

In practice, for graphs with just n nodes, |Γa;b| may be greater than (n − 2)!. Thus,

Algorithm 0 is unrealistic.

Problem 1.1. For nodes a, b ∈ V , find P (F (Γa;b)) and some subset R ⊆ F−1(P (F (Γa;b)))

such that each value-pair from P (F (Γa;b)) has at least one TRP in R.

For the upcoming Algorithm 1 we will build TRP satisfying the following

Principle of Optimality in Forward Direction: Let pa;b be a Pareto optimal TRP

from a to b. Then for each intermediate node c of pa;b, the sub-path pa;c is also a Pareto

optimal TRP a to c.

The idea of Two-dimensional Dijkstra Algorithm.

In order to understand how to search efficiently for Pareto optimal TRP, we imagine an

associated static graph. In this graph, each node u ∈ V is split into a set, ∪τ (u, τ), of virtual

nodes indicating the node and arrival time. We will study the computational complexity of

running Dijkstra on this graph as an upper bound for the Two-dimensional Dijkstra in the

upcoming Section 3.3.3. This algorithm can be made more efficient by using the following

observations.

Consider the step of visiting a given virtual node (u, τ). When exploring the neighbors,

we do not need to consider all virtual neighbors, rather, for each neighbor v of u, we need

only consider the virtual neighbor (v, q) such that

q = arg min{r ∈ T (uv) : r > τ}, (3.7)

as long as such a time exists. Moreover, once a virtual node (u, τ) has been visited, no

virtual node of the form (u, q) with q ≥ τ need to be explored. To see this, suppose that

γ ∈ Γa;u is the first TRP to reach node u (and does so at time τ). Due to the nature of
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Dijkstra’s algorithm,

`ρ(π(γ)) = min
γ′:a;u

`ρ(π(γ′)).

These observations suggest the following modified Dijkstra algorithm.

Variables and Functions:

For the convenience of the code, nodes are enumerated as {1, 2, ..., |V |} and called by

these numbers. The set Q holds the quadruples (l, τ, u, p) describing the frontier of the

explored part of the graph by paths going from a, where u is the node of the frontier, τ is

the arrival time to u, l is the path length from a to u, and p the predecessor node. Q is

implemented as a min-heap ordered first by l and then by τ . In fact, in our Python code,

min-heap uses lexicographical order for all four entries. So, the ties by first two arguments

will be resolved by the numerical names of nodes.

The function heappop returns four elements of the minimum quadruple from Q in sense

of lexicographical order and simultaneously delete this quadruple from Q and resorting the

rest of Q.

The function heappush adds to Q a new quadruple and then sorts Q.

The function rho(u,v) returns the density on the edge uv.

The list minTau contains the time moments we have arrived at each node or ∞ if the

node not visited yet.

The function TemporalNeighbors(u, t) returns the earliest reachable virtual neighbors

of (u, t), i.e. the set {(v, qv)}, such that each time moment qv is the minimum when the

neighbor v is reachable after time moment t (see (3.7)).

Input: Temporal graph G = (V,E, T ) with assigned σ and a starting point a ∈ V and

a final point b ∈ V .

Output: The set Dist holds the tuples that have been computed in order which allows

to build easily the whole set of Pareto optimal TRP from a to b.

In fact, the set Dist can be imaged as tree with the root at a. We can grow all the

branches (i.e. optimal TRP) as following. Extract next quadruple from Q. Find in the

ends of a growing branch a node (which is in 4-th position of the quadruple) and continue
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the branch by 3-d position of the quadruple. If the search in the ends of the branches is

unsuccessful, that means that we reached the start node a.

The final result after decoding Dist as above is the collection of singly connected lists,

which are the set of TRP from a to all other nodes.

The Python pseudo-code of the ideas above:

Algorithm 1. (Two-dimensional Dijkstra)

0: Q = {(0, 0, a,None)}

1: Dist = {}

2: for u in V :

3: minTau[u] =∞

4: while Q :

5: l, t, u, (p,τ) = heappop(Q)

6: if t < minTau[u] :

7: Dist[u][t]= ( l, (p,τ))

8: minTau[u] = t

9: for (v, q) in TemporalNeighbors (u, t):

10: if minTau[b] > t:

11: heappush(Q, (l + rho ( uv ), q , v , (u, t)))

To retrace a path from Dist for an optimal value pair (l∗, t∗), one can apply a simple

Algorithm 2.

0: cur = ( b, t∗)

1: path = [ ]

2: while cur != None:

3: path.append(cur[0])

4: cur = Dist[cur[0]][cur[1]][1]

Theorem 5. For a, b ∈ V Algorithms 1,2 find P (Γa;b) and R ⊂ F−1(P (Γa;b)) such that

each value-pair from P (F (Γa;b)) has at least one TRP in R.
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Proof. Let’s fix b ∈ V and show that every TRP a; b obtained by Algorithms 1, 2 is Pareto

optimal.

If a quadruple (l, t, b, p) has bubbled to the top of the heap Q, the associated virtual

node (b, t) is closer in sense of length to the source node than any other node in the heap,

because heap sorts (by heappop and heappush) quadruples in lexicographic order. Now if

t is smaller than minTau[b], then the value-pair (l, t) should belong to Pareto set. since all

other value-pairs with greater arrival time have already been discovered. On the other hand,

if t is no smaller than minTau[b], then a dominating pair has already been discovered and

(l, t) is not in Pareto set.

Now we show that if there exists a Pareto Optimal TRP γ : a; b for b ∈ V then it will

be found by Algorithms 1, 2. Assume that γ with the values (l, t) at b has not been found by

Algorithms 1, 2. There are two options: either Algorithm 1 got to the predecessor pred(b) of b

or it stopped γ somewhere else before. The first is possible only if in the line 6 of Algorithm

1 the condition t < minTau[u] was not satisfied. That means that (l, t) dominates pairs

obtained by some other paths, which reached b. Thus, γ is simply not a Pareto Optimal

TRP a ; b, which contradicts the assumptions. Hence, γ stopped at pred(pred(b)) or

somewhere else before. Repeating previous steps recurrently we follow path γ backwards

and come all the way to the node a. Here we have to conclude that γ never left the starting

point a and hence doesn’t exist. The source of contradiction is in the assumption. Therefore,

every Pareto Optimal TRP has been found by Algorithms 1, 2.

Proposition 1. Let U be the set virtual nodes passed by TRPs from Γa;b. Then a virtual

node (v, t) is added to Q in Algorithm 1 if and only if (v, t) is a temporal neighbor of some

point in U .

Proof. By Theorem 5, the virtual nodes, which temporal neighbors are getting added to Q,

lie on Pareto paths to virtual nodes U . Thus, by Algorithm 1 (v, t) can be added to Q if

and only if this (v, t) is a temporal neighbor of some virtual node from U .

Theorem 6. Let M be an upper bound on the number of all time moments of a temporal

graph G = (V,E, T ). The complexity of Two-Dimensional Dijkstra on a temporal graph is
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O(M |E| log(M |V |)).

Proof. Let’s denote R :=
∑

(v,t)∈P deg((v, t)), where the degree deg of a virtual node we

understand as the number of reachable nodes from v.

It is known that the most computationally expensive operation in Dijkstra algorithm

with Fibonacci heap is sorting of Q, which happens in the loop twice: for deletions and

additions. Same must happen in Algorithm 1. We run the loop for Q no more than R

times. By Proposition 1, each time we either do nothing or remove from Q. That is done

by Fibonacci heap and takes O(logR) operations. Also we add to Q. There is no need to

count additions on each step since the final amount of additions (all together from the loop)

must be equal to the amount of deletions.

Thus, the upper bound on computational complexity of Algorithm 1 is O(R log(R)).

Now let’s see that

O(R log(R)) = O

 ∑
(v,t)∈P

deg((v, t)) log

 ∑
(v,t)∈P

deg((v, t))



≤ O

(∑
v∈V

Mdeg(v)

)
log

(∑
v∈V

Mdeg(v)

)

= O (M2|E| log (M2|E|)) (By Handshaking Lemma)

= O
(
M |E| log

(
M |V |2

))
= O (M |E| log (M |V |)) .

3.3.2 Computing total usage cost on Pareto set of value-pairs

After we obtained Pareto set of value-pairs P (F (Γa;b)) by algorithm 1 we can easily compute

the total usage cost l(γ̂)tmp = l(γ̂)ϕ(S(γ̂)) and find the minimum one. This is a Python code

for that:

Algorithm 3.

0: options = [( dist[b][t][0], t) for t in dist[b]]
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Figure 3.3: A simple temporal graph.

1: costs = [l * TimePenalty(t) for (l, t) in options]

2: ind = np.argmin(costs)

3: l, t = options[ind]

Thus, now Problem 1 can be solved by an algorithm in [2], where we satisfy iteratively

the most violated constraint.

3.3.3 Converting temporal graph to static one

Let’s think of another way to solve Problem 1. Instead of considering a family of temporal

objects, we can transform the graph to a static one and translate the problem to well-known

to us p-Modulus on a static graph.

A temporal graph can be converted into a static directed graph G′ = (V ′, E ′) by the

following.

Procedure 1:

0) Create a set of pairs {(v, 0)}, where v is a node from V . That’s gonna be layer #0 G′.

Then repeat for all existing in G time moments 0 < n ≤ maxe∈E(τ(e)) the following:

1) Create a layer #n of G′ (set of pairs {(v, n)}) by copying all nodes V of G.

2) Connect all pairs of previous layer with corresponding pairs (v, n) by a directed edges

with the weight 0 on it.

3) If a node y of G at time n had an edge with a weight w to it from some node x of G,

connect the copy of y in layer #n with the copy of x in the previous layer by a directed edge

x− > y with the weight w.

Look at the example on Figures 3.4
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s, 0 s, 1 s, 2 s, 3

a, 0 a, 1 a, 2 a, 3

b, 0 b, 1 b, 2 b, 3

t, 0 t, 1 t, 2 t, 3

Figure 3.4: The static representation of the temporal graph in Figure 3.3.

Theorem 7. The weighted temporal graph G with discrete time moments on edges is equiv-

alent to the static graph G′ (denote G ∼ G′ ) in sense of minimal total usage cost path

problem up to the ”time” component of the weighted time-respecting distance dρ(s, t):

dρ(s, t) = min
(t,r)∈V ′

f [d′ρ((s, 0), (t, r)), ϕ(r)],

where d′ρ is the ρ-distance on G′. The minimum is taken only for existing paths.

Proof. Assume there exists a shortest path a→ b = {ae1x1e2...enb} with the time moments

{τ1τ2...τn} ⊂ T , where T is the set of all edge time moments of G . Let’s show there exists a

path (a, 0)→ (b, τn) in G′. Since e1 ∈ a→ b, according to (2) and (3) of Procedure 1, there

must exist layers #0,#t1,#t2, ...,#τ1 of G′, where τ1 > ti ∈ T . Another words if there are

edge time moments in graph G earlier than τ1 then we understand this as ”seating” at the

node a in G before getting to x1 at τ1 or going through the chain of duplicates till the last

of them is connected to (x1, τ1), i.e. (a, 0) → (a, t1) → (a, t2) → ... → (x1, τ1) in G′. Then,

similarly, we get to (x2, τ2) and so on. Thus, (a, 0) is path connected to (b, τn) in G′.

Consider now some directed shortest path (a, τ1) → (b, τn) in G′. Any edge e on this

path is either edge between duplicates, which corresponds to ”seating” on the node, or

(x, τ ∗) → (y, τ ∗∗) for some τ ∗ < τ ∗∗. According to Procedure 1, the last edge could appear
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only if there exists an edge x→ y at moment τ ∗∗ in G. So, all edges and nodes of a path in

G′ have corresponding temporal edges and nodes in G. Obviously, the partial order of layers

in G′ and partial order between time moments on edges of any path G are the same.

The distance dρ(a → b) = f [
∑n

i=1wi, ϕ(τn)], where wi is the weight on ei. Meanwhile,

the distance d′ρ((a, 0)→ (b, τn)) =
∑n

i=1wi.

All is left to show that there is no paths (a, 0) → (b, τn′) in G′ such that f [d′ρ((a, 0) →

(b, τn)), ϕ(τn)] > f [d′ρ((a, 0) → (b, τn′)), ϕ(τn′)]. Assume it is not true. Then as we have

shown above for this (a, 0)→ (b, τn′) there must exist a→ b with the finishing time moment

τn′ < τn, since f is non-decreasing by both arguments function and ϕ is non-decreasing as

well . Hence, this last path had to be the shortest one between a and b in G. Contradiction.

Theorem 8. Let G = (V,E, T ) be a temporal graph and M be an upper bound of the number

of all time moment on the edges of G. Then the complexity of Dijkstra on a temporal graph

converted to a static one is O(M |E| log(M |V |).

Proof. Let G′ = (V ′, E ′) be a static graph obtained by Procedure 1 from a temporal graph

G = (c). Consider a problem of finding a Pareto set of TRP from node a to node b in

G. In Theorem 7 we have showed that it is equivalent to family of shortest paths between

nodes (a, 0) and {(b, t̃)}, where t̃ > 0, obtained by replication of the nodes of G for all time

moments of graph existence.

As it’s known the complexity of Dijkstra on a static graph is O(|E ′| + |V ′| log(V ′)). So,

all we need is to estimate the number of virtual nodes |V ′| and virtual edges |E ′| in terms

of |V |, |E| and M .

It is easy to see that |V ′| = M |V |. The number of edges of waiting on the nodes

(meaning going from replicate to another) is |Ewait| ≤ |V |(M − 1). Also we have edges

between replicates of different nodes |Emove ≤ |E|M . So, |E ′| = |Ewait| + |Emove|. Thus,

|E ′| ≤ (|E|+ |V |)M . Then the complexity of shortest problem on G′ is

O ((|E|+ |V |)M log(M |V |)) = O(|E|M log(M |V |)).
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Thus, we proved that the computational complexity of two-dimensional (temporal)

Dijkstra is the same that the computational complexity of one-dimensional (classic) Dijkstra

on the converted to static graph. However, evidently, the first approach uses less memory.

3.3.4 Parallel rule of temporal p-modulus

Theorem 9 (Parallel Rule). If a temporal graph G = (V,E, T ) consists of two subgraphs

G = A ∪ B, wherer A = (VA, EA, TA) and B = (VB, EB, TB) such that they connected only

in two nodes a and b (A ∩ B = {a, b}), then temporal p-modulus of G on Γ, the set of

time-respecting paths from a to b, equals to the sum of temporal p-moduli of A and B on the

subsets ΓA, ΓB of objects Γ associated with A and B, respectively:

Modp(G,Γ) = Modp(A,ΓA) + Modp(B,ΓB).

Proof. Consider the temporal p-modulus of G on Γ:

Modp(G,Γ) = min
ρe∈E

{∑
e∈E

σ(e)|ρe|p
∣∣∣∣ ∑
e∈E
N tmp
e ρe ≥ 1

}
.

Since Γ is the set of time-respecting paths going from a to b we can be split it into two

subsets Γ = ΓA ∪ ΓB, where ΓA and ΓB are the sets of time-respecting paths from a to b

going through nodes of A and B, respectively. Moreover, any non-direct path from a to b of

ΓA cannot go through B and no paths of ΓB can go through A except perhaps for the direct

path (a, b) if exists, otherwise we would get self-intersections. Thus, the intersection of two

subsets of objects is ΓA ∩ ΓB = (a, b). To simplify our notations, without loss of generality

let’s assume that if such a direct path from a to b exists it belongs only to the graph A but

not B, so we can always say ΓA ∩ ΓB = ∅.

Notice that for multiplicative modulus N tmp(γ, e) = N (γ, e)ϕ(γ) and, for additive mod-

ulus, N tmp(γ, e) =
N (γ, e)

1− ϕ(γ)
, where ϕ is the time-penalty function in the definition of G.
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Then for both multiplicative and additive moduli if γ ∈ A ϕ(γ) = ϕ(τA), where τA is some

moment of time on EA. Similarly, if γ ∈ B ϕ(γ) = ϕ(τB), where τB is some moment of time

on EB. Since EA ∩ EB = ∅ rows of the matrix N tmp corresponding to EA are completely

independent of EB and vice versa. Thus, we can rearrange this matrix as follows:

N tmp =

N tmp
A

N tmp
B

 .
Now observe that

Modp(G,Γ) = min
ρe∈(EA∪EB)


∑
ρe∈EA

σ(e)|ρe|p +
∑
ρe∈EB

σ(e)|ρe|p
∣∣∣∣∑
e∈E

N tmp
A

N tmp
B


e

ρe ≥ 1

 =

min
ρe∈EA

{ ∑
ρe∈EA

σ(e)|ρe|p
∣∣∣∣∑
e∈E
N tmp
A ≥ 1

}
+ min

ρe∈EB

{ ∑
ρe∈EB

σ(e)|ρe|p
∣∣∣∣∑
e∈E
N tmp
B ≥ 1

}
=

Modp(A,ΓA) + Modp(B,ΓB)

3.4 Homogeneous modulus

It would be nice to have a property of time scaling for p-Modulus. Meaning:

Modp(Γ
λ) = A(λ)Modp(Γ), (3.8)

where Γλ is the set of time-dependent objects Γ on the same graph G but all the assigned

time windows on edges are multiplied by λ. Using the Definition 5, (3.8) implies (ρλi )
p = Aρpi

for all i, where {ρλi } is the optimal density of Modp(Γ
λ).
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Assume the the function f from Definition 5 has the following property

f(x, λy) = g(λ)f(x, y), (3.9)

where λ is the time scaling coefficient, g is some real-valued function. Then

ltmp
ρ (γ) = f(lρ(π(γ)), S(γ)) = g(S(γ))f(lρ(γ), 1) = g(S(γ))f(lρ(γ)).

Assume f is continuous and strictly increasing, also g(y) > 0 if y > 0.

Let’s rewrite the constraint according to these assumptions. The inequality ltmp
ρ (γ) ≥ 1

is equivalent to f(lρ(π(γ))) ≥ 1

g(S(γ))
or lρ(π(γ)) ≥ f−1

(
1

g(S(γ))

)
. Thus

[
f−1

(
1

g(S(γ))

)]−1

lρ(π(γ)) ≥ 1.

And so,

N tmp(γ, e) =

[
f−1

(
1

g(S(γ))

)]−1

N (π(γ), e)

Observe that A(λ)
1
p =

[
f−1

(
1

g(λ)

)]−1

. So, in order to have Homogeneous p-Modulus we it

is sufficient to have the following property

[
f−1

(
1

g(λy)

)]−1

= λk
[
f−1

(
1

g(y)

)]−1

, (3.10)

where k is some real number.

Remark 2. Notice that if both f−1 and g are homogeneous of degrees d1 and d2, respectively,

such that d1 − d2 = k, then (3.10) is true. However, this is not a necessary condition. For

example, two functions y(x) = x+ 5 and z(x) = x− 5 are not homogeneous but y(z(x)) = x

is. That means that we are not limited to choose only homogeneous f−1 and g to get a

Homogeneous Modulus.

Example of Homogeneous p-Modulus
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Let f(x) = x, g(y) = ϕ(y) . Then we get N tmp(γ, e) = ϕ(τ(γ))N (π(γ), e). If one choose

ϕ(y) = yk we get Homogeneous p-Modulus.

Example of Non-Homogeneous p-Modulus

For some applications it can be reasonable to have f(x) = x and g(0) = 1, because then

lim
λ→0+

[
ltmp
ρ (γ) = f(lρ(π(γ)), S(γ))

]
= lρ(π(γ)) (3.11)

and

N tmp(γ, e) = ϕ(τ(γ))N (π(γ), e),

where ϕ is continuous, increasing function function such that ϕ(0) = 1.

One can choose ϕ to be ϕ(y) = eαy or ϕ(y) = 1 + αyk, where α is some time-scaling

coefficient and k is some real number.

Alas, the homogeneous modulus and property (3.11) cannot go together.

3.5 Examples of numerical computation of temporal

modulus

Example 6 (Complete Graphs). Consider the graph G in Example 5 of Chapter 2 with

the number of nodes n = 7 and time windows on the edges: t1 = 0.8, t2 = 2.775, t3 = 3.8

(see Figure 3.5). Let the per-object penalization be ϕ(t) = et and σ = 1. Let’s compute the

2-modulus of the family of time-respecting paths s; t on G.

The densities are ρ1 = 1
ϕ(t1)

= e−0.8 ≈ 0.449328 and ρ2 = ρ3 = 1
2ϕ(t3)

= 0.5e−3.8 ≈

0.011185. Thus,

Mod2,1 =
1

ϕ(t1)2
+

2(7− 2)

22ϕ(t3)2
≈ 0.202209.

The python code with the implemented Algorithm of Modulus approximation in Section

3.2 and Algorithm 1 in Section 3.3.1 for the problem above converges in 7 steps giving

ρ1 = 0.449328, ρ2 = ρ3 = 0.011185 and the value of modulus equals to 0.2031. Thus, error
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Figure 3.5: Example 6. Complete 7-node temporal graph. Nodes “0” and “1” denote nodes
s and t, respectively.

is about 0.4% for the value of modulus and about the machine error for the densities.

Example 7 (Trivial multi-graph). Let’s consider an example of a trivial multi-graph G,

where nodes s and t are connected by two edges e1, e2 with single time windows 1.0 and 2.0,

respectively, σ = 1 (see Figure 3.6). Running the code with the implemented Algorithm of

Modulus approximation in Section 3.2 and Algorithm 1 in Section 3.3.1 on a set of time-

respecting paths s ; t of G with the per-object penalization ϕ(t) = et. , we obtain the

value of 2-modulus 0.1537 on the third iteration when the machine stopped with the error

estimate equal to 1.806 · 10−16. The optimal densities are ρ1 = 0.367879 and ρ2 = 0.135335.

Now let us compute 2-modulus on the simple graph version of G, meaning s and t are

connected by a single edge e1 with two time windows assigned [1.0, 2.0], σ = 1 (see Figure

3.7). Running the same code for time-respecting paths s; t of G, we receive that the value

of 2-modulus equals to 0.1353 and optimal density is ρ1 = 0.367879.

The fact that ρ1 is the same in both versions of G above is expected.
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Figure 3.6: Example 7. Trivial airplane connection graph. Nodes “0” and “1” denote nodes
s and t, respectively.

Figure 3.7: Example 7. Trivial railroad connection. Nodes “0” and “1” denote nodes s and
t, respectively.
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Figure 3.8: Example 8. Random graph. Nodes “0” and “1” denote nodes s and t, respec-
tively.

Example 8 (Random graph). Here we build a random temporal graph. A 15-node graph

G, σ = 1, with maximum 5 time moments with integer value from 0 to 20 per edge has

been generated by the code in Appendix A (see Figure 3.8). Let the per-object penalization

be ϕ(t) = et.

By the same code mentioned in previous examples, we compute the value of 2-modulus

and optimal densities of the family of TRP s ; t (s and t are just two random nodes in

G). Because of the random nature of G, the answer varies with every run. The histogram

of these values for 100 runs is in Figure 3.9. In Figures 3.10 and 3.10, we show the optimal

densities for two random seeds.
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Figure 3.9: Example 8. Histogram of values of modulus of TRP on random graph G.

Figure 3.10: Densities of 2-
modulus in Example 8, first random
seed.

Figure 3.11: Sorted densities of 2-
modulus in Example 8, second ran-
dom seed.
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Appendix A

Python code for generation of random

temporal multi-graph

import networkx as nx

import random

from itertools import combinations

def RandTempGraphAir(n,Edmax,Tmax,nT=1):

# n — number of nodes, Edmax — maximum number of edges between two nodes,

# nT — number of time moments on an edge, Tmax — max value of the time moment

G = nx.MultiGraph()

G.add nodes from(range(0,n))

Ed=[ ]

for (u,v) in combinations( G.nodes(data=False), 2 ):

nEd = random.randint(0, Edmax) #uniform distribution

for i in range(0,nEd):

Ed.append((u,v,’sigma’:1.0,’t’:[random.randint(0, Tmax) for i in range(0,nT)]))

G.add edges from(Ed)

return G

58


	Title Page
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Background. Modulus on Static Graphs.
	Introduction
	Static Graph
	Objects, families, usage
	Densities, admissibility and modulus
	An example
	Interpretations of modulus


	Temporal p-Modulus on graphs
	A model for temporal networks
	Objects on temporal networks
	Density and energy
	Usage for temporal objects
	Modulus of a family of temporal objects

	A mass transport interpretation of modulus
	Examples
	Conclusion of the chapter

	Temporal p-Modulus and time-respecting paths
	Background. Time-respecting paths.
	Algorithm for Modulus.
	Temporal modulus on time-respecting paths
	Pareto optimal set of paths on a temporal graph
	Computing total usage cost on Pareto set of value-pairs
	Converting temporal graph to static one
	Parallel rule of temporal p-modulus

	Homogeneous modulus
	Examples of numerical computation of temporal modulus

	Bibliography
	Python code for generation of random temporal multi-graph

