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Abstract 

 Estrogen-derived DNA adducts in human could be the initiating step of breast and prostate 

cancer, as the scientific literature suggests. Previous studies demonstrated that 4-hydroxy-estrone 

(estradiol)-1-N3Adenine and 4-hydroxy-estrone (estradiol)-1-N7Guanine were the most 

abundant adducts found in urine of human subjects. Sensitive detection of these adducts in urine 

samples could lead to better breast and prostate cancer risk assessment. The standard adducts 

were synthesized and characterized by NMR and mass spectrometry. Since these adducts are not 

fluorescent at room temperature an aminomethyl (-CH2NH2) linker was introduced at the C-17 

position for derivatization with fluorescence label. This linker allowed to attach highly 

fluorescent water soluble quantum dots (QDs) for indirect adduct detection. A direct gram-scale 

synthesis of highly fluorescent, photostable water soluble QDs was executed by developing a 

new class of 4,4’-bipyridinium salt based twin ligands with 85% and 15% of carboxylic acid and 

maleimide termini, respectively. These ligands not only stabilized the QDs in water but also 

provided versatile linkers for two labeling strategies. The twin ligands were afforded by a facile 

synthesis through SN2 nucleophilic substitution reaction. Labeling of adducts was achieved via a 

covalent coupling between the (-CH2NH2) linker and the carboxyl (-COOH) terminal ligand on 

the QDs.  However, ELISA experiments utilizing an IgM antibody didn’t reveal any measurable 

signal from adduct-QD complexes suggesting that one QD is bound to a large number of adducts 

through –COOH terminal ligands present on QD surface. To explore the binding capabilities of 

QDs in more detail, a maleimide terminal ligand (a twin partner on the QDs) was synthesized to 

explore the thiol (-SH) functionality of thiopyrene. Preliminary ELISA showed that these QDs 

gave detectable fluorescent signal originating from the  pyrene-S-QD    8E11 monoclonal 

antibody (mAb) complex when QD was selectively excited at 470 nm. This clearly indicates that 

it is necessary to develop a strategy for a distinct 1:1 labeling procedure between QD and the 

adduct of interest. In addition, IgG (instead of IgM) antibodies should be developed for biosensor 

application. The latter could afford binding of mAb in upright position, leading to an increase in 

surface density of mAb and better detection limit.  
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Abstract 

Estrogen-derived DNA adducts in human could be the initiating step of breast and prostate 

cancer, as the scientific literature suggests. Previous studies demonstrated that 4-hydroxy-estrone 

(estradiol)-1-N3Adenine and 4-hydroxy-estrone (estradiol)-1-N7Guanine were the most 

abundant adducts found in urine of human subjects. Sensitive detection of these adducts in urine 

samples could lead to better breast and prostate cancer risk assessment. The standard adducts 

were synthesized and characterized by NMR and mass spectrometry. Since these adducts are not 

fluorescent at room temperature an aminomethyl (-CH2NH2) linker was introduced at the C-17 

position for derivatization with fluorescence label. This linker allowed to attach highly 

fluorescent water soluble quantum dots (QDs) for indirect adduct detection. A direct gram-scale 

synthesis of highly fluorescent, photostable water soluble QDs was executed by developing a 

new class of 4,4’-bipyridinium salt based twin ligands with 85% and 15% of carboxylic acid and 

maleimide termini, respectively. These ligands not only stabilized the QDs in water but also 

provided versatile linkers for two labeling strategies. The twin ligands were afforded by a facile 

synthesis through SN2 nucleophilic substitution reaction. Labeling of adducts was achieved via a 

covalent coupling between the (-CH2NH2) linker and the carboxyl (-COOH) terminal ligand on 

the QDs.  However, ELISA experiments utilizing an IgM antibody didn’t reveal any measurable 

signal from adduct-QD complexes suggesting that one QD is bound to a large number of adducts 

through –COOH terminal ligands present on QD surface. To explore the binding capabilities of 

QDs in more detail, a maleimide terminal ligand (a twin partner on the QDs) was synthesized to 

explore the thiol (-SH) functionality of thiopyrene. Preliminary ELISA showed that these QDs 

gave detectable fluorescent signal originating from the  pyrene-S-QD    8E11 monoclonal 

antibody (mAb) complex when QD was selectively excited at 470 nm. This clearly indicates that 

it is necessary to develop a strategy for a distinct 1:1 labeling procedure between QD and the 

adduct of interest. In addition, IgG (instead of IgM) antibodies should be developed for biosensor 

application. The latter could afford binding of mAb in upright position, leading to an increase in 

surface density of mAb and better detection limit. 
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                                                    Preface 

             In the summer of 2008, Dr. Tej Shrestha, who was a graduate student in the Bossmann 

group at that time, and I were working on a project to synthesize a photochromic switch. I was 

involved in introducing a maleimide functionality to 4,4’-bipyridine, which Tej was going to use 

to synthesize the photochromic spirodihydroindolizine (DHI) switch.  This led to the synthesis of 

maleimide derivative of a 4,4’-bipyridinium salt. At that time, I was also struggling to synthesize 

a ligand, which can stabilize quantum dots (QDs) in water. The idea of using the maleimide 

derivative of 4,4’-bipyridinium salt appealed to me. We were able to synthesize CdSe QDs by 

using this ligand but the QDs were hardly water soluble. This made me develop more synthetic 

modifications to design a ligand, which is water-soluble before and after nanoparticle surface 

stabilization. Tej was also involved in synthesizing a carboxylic acid derivative of 4,4’-

bipyridinium salt, which was readily dissolved in water. Our conversation convinced me that this 

compound should make QDs water soluble through carboxyl functional group on this ligand, 

even after QD surface stabilization through the lone pair of the sp
2
-nitrogen on 4,4’-bipyridine. I 

decided to use about 85% of the carboxylic acid and 15% of the maleimide derivative of the 4,4’-

bipyridinium salt ligand. This resulted in the first direct synthesis of water soluble QDs by 

applying an evaporation-co-condensation-reflux technique with two ligands to be used for 

double labeling. This was a great learning experience for me in the sense that one molecule can 

be used to solve more than one research problem.  

             A similar technique is used by nature to solve biochemical problems. For example, 

cyclic adenosine monophosphate (cAMP) is a secondary messenger used by bacterium E. coli to 

signal hunger and is recruited by neurons for memory storage. The cAMP pathway is also used 

by the kidney and the liver to bring about metabolic changes. Thus, evolution does not 

synthesize an entirely new compound to produce a new adaptive mechanism. The molecular 

geneticist François Jacob writes,” Evolution is not an original engineer that sets out to solve new 

problems with completely new sets of solutions. Evolution is a tinkerer. It uses the same 

collection of genes time and again in slightly different ways.”  



 xiv 

             Research in the laboratory offers one solution to more than one problem. Using one 

molecule to solve multiple problems reduces not only waste in terms of money and time, but also 

in terms of intellect.  
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CHAPTER 1 - Introduction 

According to the American Chemical Society, breast cancer is the dominant cause of death of 

women in US.
1
 In 2010, 207,090 women will be diagnosed with breast cancer. 39,840 will have 

to die from this type of cancer. (http://www.cancer.gov/cancertopics/types/breast). The National 

Cancer Institute estimated that 217,730 men will be diagnosed with and 32,050 men will die of 

cancer of the prostate in 2010. (http://seer.cancer.gov/statfacts/html/prost.html) Noninvasive 

diagnosis of breast and prostate cancer risk will be an easy and effective way to enhance the 

standard of human life and to prolong the patients’ life itself. The gender hormone estrogen is 

known to act as mild carcinogen, probably initiating breast cancer.
2, 3

 It is hypothesized that the 

oxidation of estrogen forms catechol estrogen quinines and estrone (estradiol) quinones [E1(E2)-

Q], which in turn react with DNA initiating breast cancer.
4
 Thus, catechol estrogen quinones are 

endogenous chemical carcinogens which form specific depurinating estrogen-DNA adducts, 

predominantly, 4-hydroxyestrone(estradiol)-1-N3Adenine [4-OHE1(E2)-1-N3Ade] and 4-

hydroxyestrone(estradiol)-1-N7Guanine [4-OHE1(E2)-1-N7Gua]. Both are leading to cell 

transformation.
5, 6, 7  

DNA-estrogen adducts are released from the affected cells into the blood 

stream and finally, are excreted in urine. These adducts are potential biomarkers for both breast 

and prostate cancer. A diagnosis tool based on monoclonal antibodies (MAbs) has been sought to 

develop in order to investigate the hypothesis that metabolically activated endogenous estrogens 

are involved in the initiation of breast and prostate cancers. Highly sensitive detection of various 

estrogen derived biomarkers in urine samples of breast and prostate cancer patients and healthy 

control subjects is the objective of this approach. This involves the chemical synthesis of 

standard estrogen-DNA adducts and their structural modifications of these adducts for the 

conjugation of fluorescent tags and the N418 antibody in order to target dendritic cell (DC), 

professional antigen presenting cells to raise IgG antibody against these adducts.
8
 In addition, 

water soluble, highly fluorescent, stable quantum dots (QDs) were synthesized in order to 

enhance the sensitivity of the biomonitoring technique for cancer risk by improving the limit of 

detection of estrogen-derived DNA adducts.  
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Fig 1.1 Biosynthesis and metabolic activation/deactivation pathways of the estrogens, E1 and 

E2
9 

 

1.1. Biomarkers of Breast Cancer Risk 

 

Metabolic activation pathways of estrogen lead to the formation of estrogen quinines, which can 

act as endogeneous chemical carcinogens unless the deactivation pathways are switched on. (Fig 

1.1) 
9
 The quinones react with DNA forming DNA-estrogen adducts that initiate point mutations 

on the DNA double helix. On the contrary, the deactivation pathway involves methylation of 

catechol derivatives to form methoxy catechol estrogens,
10

 reduction of quinones by quinone 

reductase 
11

 and conjugation of quinones with glutathione (GSH).
12

 

A study of depurinating estrogen-DNA adducts in the urine of healthy women, high-risk women 

(Gail Model score >1.66%) and women with breast cancer found that N3Ade and N7Gua 

adducts of 4-OHE1(E2) play a major role, whereas the adducts of 2-OHE1(E2) play a minor role. 

(Fig 1.2)
13

 The results of this study are consistent with the hypothesis that DNA-estrogen adducts 



 3 

are a causative factor in the etiology of breast cancer. The Y-axis of the Figure 2 represents the 

ratio of depurinating DNA adducts divided by their respective estrogen metabolites and 

conjugates.  

 

Fig 1.2 N3Ade and N7Gua adducts of 4-OHE1(E2) and 2-OHE1(E2) in the urine of healthy 

women, high risk women and women with breast cancer 
13 

 

1.1.1. Estrogens As Tumor Initiators 

 

The hypothesis that estrogen can act as epigenetic carcinogen was supported by the discovery 

that specific oxidative metabolites of estrogen can react with DNA resulting in cancer initiation 

in hormone-dependent and independent tissues.
14, 15, 16, 17

 This hypothesis is based on 

experiments on estrogen metabolism,
18, 19, 20

 formation of DNA adducts,
21, 22, 23

carcinogenicity,
24, 

25
 mutagenicity

14, 15, 16, 17
 and cell transformation.

26, 27, 28
 Highly reactive CE-3, 4-Q and, to a 

lesser extent, CE-2, 3-Q, initiate electrophilic substitution reactions at purine bases of DNA 

leading to point mutations which in turn, initiate breast, prostate cancer.
17

 

 

Similar redox potentials of both 4-OHE1 (E2) and 2-OHE1 (E2) suggest that the greater 

carcinogenicity of 4-OHE1 (E2) than 2-OHE1(E2) is attributed to much higher level of 

depurinating DNA adducts formed by E1(E2)-3, 4-Q compared to E1(E2)-2, 3-Q.
29

 

 

Both breast and prostate cancer is preceded by the imbalance estrogen homeostasis as evidenced 

by overexpression of CYP19 in target tissues
30, 31, 32

 and/or the presence of unregulated sulfatase 

that converts excess stored E1-sulfate to E1.
 33, 34

 It has also been observed that there is more E2 

present in target tissues than would be predicted from plasma concentrations. A level of 



 4 

catechol-O-methyltransferase (COMT) activity is responsible for insufficient methylation of 4-

OHE1(E2), making it susceptible for oxidation into catechol quinones.
35

 Paucity of GSH and/or 

quinone reductase and/or CYP reductase could result in a higher level of E1(E2)-3, 4-Q, leading 

to DNA mutation.  

 

A study to compare the levels of estrogen and DNA-derived estrogen metabolites in breast tissue 

of women with breast cancer and healthy control subjects suggests that higher estrogen hormone 

levels exist in women with carcinoma than in controls. In addition, the levels of 4-OHE1(E2) are 

four times higher in women with breast cancer than in the control group. (Fig 1.3)
20

 

 

Fig 1.3 Relative abundances of estrogen metabolites in non-tumor breast tissue of women with 

breast cancer vs. control
20

 

 

1.1.2. In vitro/in vivo evidence of estrogen-induced carcinogenesis 

 

In vivo studies on severely compromised immune-deficient (SCID) mice and in vitro studies on 

human breast epithelium, ER-α negative MCF-10F cells, respectively, showed that E2 and its 

metabolites are mutagenic. Colony efficiency of MCF-10F was used to determine the 

carcinogenicity of E2, 2-OHE2, 4-OHE2 or 16α-OHE2 and it was found that colony efficiency 

and invasiveness of E2 and 4-OHE2 treated cells was greater than of the other two.
36

 When 0.007 

nM or 70 nM doses of E2 or 4-OHE2 was administered, ER-α negative MCF-10F cells were 

transformed exhibiting loss of heterozygosity (LOH) in the region 13q12.3. The same doses also 

induce a 5-bp deletion in TP53 exon 4 of chromosome 17 in cells.
37

 The mutagenic pathway is 

estrogen receptor pathway independent as anti-estrogen did not prevent any mutation.  
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1.2. Biomarkers of Prostate Cancer Risk 

 

 The relationship between estrogens and prostate cancer is less than concrete.
38

 The higher levels 

of estrogen observed in African American men may be responsible for twofold higher risk of 

prostate cancer compared with European-American men.
39

 Testosterone and estrogen 

experiments performed on Noble rats showed that 100% of rats had ductal adenocarcinoma of 

the prostate upon combined treatment but, 40% of rats developing prostate cancer upon only 

testosterone treatment. However, only 4% incidence of prostate cancer was reported upon 

treatment with 5α-dihydrotestosterone which cannot be converted to E2, which is suggested 

resulting from estrogen induced initiation and testosterone induced promotion of prostate 

cancer.
40, 41

 

 

Three analytical methods have been used to determine possible biomarkers for human prostate 

cancer. N7Gua and N3Ade adducts of 4-OHE1- and 4-OHE2 are strongly phosphorescent when 

excited at 257 nm in a high energy laser at 77K, with limit of detection (LOD) in the low 

femtomole range.
42

 Capillary electrophoresis with field amplified sample stacking (FASS) 

achieved the limit of detection of the estrogen metabolites in ~3 X 10
-8

 M range.
43, 44

 A 

monoclonal antibody (MAb) based technique was used to identify 4-OHE1-1-N3Ade adduct in 

human urine samples from men with prostate cancer and healthy men as controls. The urine 

samples were analyzed using an immunoaffinity column packed with MAb developed against the 

4-OHE1-1-N3Ade adducts. These adducts eluted from the immunoaffinity columns were 

analyzed by laser-excited 77K luminescence spectroscopy and liquid chromatography interfaced 

with tandem mass spectrometry (LC/MS/MS). The urine samples were also further analyzed by 

capillary electrophoresis with FASS and detected by absorbance based electrograms. (Fig 3)
43 

MAb based biosensor has the potential to detect the DNA-estrogen adducts in urine samples of 

prostate and breast cancer making it a possible commercial tool of diagnosis.  

 

LC/MS/MS played an important role in assigning the peaks of the samples eluted from the 

immunoaffinity columns. The daughter peaks m/z 135.9 and 296.0 were obtained from 

fragmentation of 4-OHE1-1-N3Ade adduct parent ion, m/z 420.1 suggesting that this adduct may 

be a biomarker for the risk of developing prostate cancer. (Fig 1.4)
43
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Fig 1.4 Detection of 4-OHE1-1-N3Ade adduct in human urine samples with prostate cancer and 

healthy men as controls. Right inset: phosphorescence spectrum for sample 1, 4 and 6 at 77K, 

Left inset: LC/MS/MS for sample 11 showing the 4-OHE1-1-N3Ade peak at m/z 420.1 and its 

fragmentations
43

 

 

2. Quantum Dots: A Brief Overview 

 

Quantum dots, which form the smallest regime of nanoparticles, are semiconductor nanocrystals of 

the sizes between 2 and 10 nm. They have size- and composition-tunable electronic and optical 

properties with sharp, Gaussian-type emission spectra. The following table 1.1 shows the large 

absorption coefficient of quantum dots across a wide spectral range.
45

 These are definite advantages 

of quantum dots over traditional dyes as imaging agent in vivo and in vitro.   

 

Quantum dots are semiconductors composed of atoms from groups II-VI or III-V elements of 

periodic table
46

 e.g. CdSe. CdTe, InP etc. Their brightness is attributed to the quantization of energy 

levels due to confinement of an electron in a three dimensional box. The optical properties of these 

dots can be manipulated by a shell around it. Such dots are known as core-shell quantum dots. e.g. 

CdSe-ZnS, InP-ZnS, InP-CdSe etc. 
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Table 1.1. Size and composition tunable properties of quantum dots (www.evidenttech.com)
45

 

 

 

2.1. Electronic and Optical Properties of Quantum Dots 

 

A quantum dot, also often called an artificial atom, represents the electron confinement in a 

sphere smaller than its exciton (electron-hole) Bohr radius which gives rise to discrete energy 

levels. The band gap, ΔE, between the valance and conduction band of the semiconductor is a 

function of the nanocrystal’s size. (Fig 1.5) 

        

                       A                                                                 B 

Fig 1.5 A. electron confinement in a sphere B. a typical semiconductor with band gap,  

Δ E, between the valance band and conduction band  

Δ

E 

Conduction Band 

Valence Band 
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As the quantum dot size increases, ΔE decreases and there is a red shift in the first excitation 

peak. The emission can be tuned to even the far-red and near-infrared (NIR) region by increasing 

the size. Electronic excitations at short wavelengths are possible due to presence of multiple 

electronic states as the quantum dot size increases.
46

 Large molar extinction coefficients across a 

wide spectral range allow in simultaneous excitation of multiple color Q-dots with single light 

source. (Fig 1.6) 

 

                            A                                                                                          B 

Fig 1.6 A. Absorption Spectra and B. Emission Spectra of CdSe quantum dots. As the Q-dot 

size increases the absorption and emission maxima shift to longer Wavelength (or, red shift) 

(www.evidenttech.com). 

 

These dots have slightly lower quantum yield than the traditional organic dyes, but they have 

much larger absorption cross-sections and low rate of photobleaching. Molar extinction 

coefficients of Q-dots are about 10
5
 – 10

6
 M

-1
 cm

-1
 which are 10-100 times larger than dyes.

 47, 48
 

 

2.2. Surface modification of quantum dots for biocompatibility 

 

Quantum dots are synthesized in organic solvents and therefore, incompatible to use in vivo and 

in vitro. Q-dot solubilization in aqueous phase can be achieved by attaching these dots with polar 

ligands. The tri-(n-octyl) phosphine oxide passivated quantum dot surface can be functionalized 

by adding a layer of amphiphilic molecules such as cross-linked polymer shell 
49

, amphiphilic 

triblock copolymer 
50

 or phospholipids micelles.
51

 (Fig 1.7) 
52 
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Fig 1.7 Quantum dot functionalization to solubilize in aqueous buffer by adding amphiphilic 

polymer coat around TOPO passivated Q-dot surface
52

 

 

TOPO exchange with other ligands such as thiol,
53

 amine,
54 

containing molecules can bring the 

Q-dot from the nonpolar organic to polar aqueous layer. (Fig 1.8)
52

 

 

The direct synthesis of water soluble QDs is hardly reported in literature. Twin ligands based on 

a 4,4’-bipyridinium salt were synthesized to use as QD surface stabilizing ligands during 

quantum dot synthesis by using the Solvated Metal Atom Dispersion (SMAD) technique. 

Narrowing of QD size distribution was achieved by digestive ripening.  
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Fig 1.8 Ligand exchange is another way to functionalize the Q-dots to enhance its 

biocompatibility
52

 

 

Use of amphiphilic poly(acrylic acid) as a primary coat on Q-dots followed by methoxy-

terminated poly-(ethylene glycol) (mPEG) coating makes them biocompatible for in vivo 

imaging of lymph nodes, liver, spleen and bone marrow of mice.
55

 PEGylation of Q-dots reduces 

its uptake by reticuloendothelian system and thereby increases circulating lifetime. Other ligands 

such as streptavidin to detect Her2 cancer markers,
56 

secondary antibodies to detect the integrin 

αv subunit in SK-N-SH human neuroblastoma cells
57 

and recognition peptides for protein 

recognition
57 

are also used to link the quantum dots.  

 

3. Research Plans and Executions 

 

The chemical synthesis of DNA-estrogen adducts is essential for indirect detection of these 

adducts present in women of high-risk and breast cancer subjects. Two structural modifications 

of the DNA-derived estrogen adducts are important for (a) labeling of water soluble QDs through 
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aminomethyl (-CH2NH2) linker for fluorescent imaging in order to lower the limit of detection of 

these adducts and (b) labeling of N418 MAbs through carboxyl linker (-COOH) for DC targeted 

immunological response in host animal in an attempt to generate MAbs against DNA-estrogen 

adducts. (Figure 1.9) 

A                                                                 B 

HO

OH

OH

NH2

                

HO

OH

OH

N
H

OH

O

O

 

Fig 1.9 (A) 4-OH-E2-17-aminomethane for labeling of QDs through –CH2NH2 group; (B) 4-

OH-E2-17-amidopropanoic acid for N418 MAb labeling through carboxylic acid group (-COOH) 

 

The challenges of synthesizing water soluble QDs are met with the synthesis of novel twin 

ligands based on a 4,4’-bipyridinium salt. (Fig 1.10) These ligands are used to stabilize the 

surface of CdSe and CdTe QDs and to make them water soluble. This direct synthesis of aqueous 

QDs is carried out by using solvated metal atom dispersion (SMAD) followed by narrowing of 

size distribution through digestive ripening.
58

 DNA-estrogen adducts are labeled with these QDs 

covalently  and sought to use them for a biomonitoring technique. 

                                              

N

N

O OH

Br

        

N

N

N

O

O

Br

 

Fig 1.10 A new class of 4,4’-bipyridinium salt based ligands has been synthesized to obtain 

aqueous QDs 

 

Future direction of this research involves the use of QD labeled DNA-derived estrogen adducts 

to develop MAb based biosensors on glass, polymer and/or silicon wafer substrates with multiple 

patches on the surfacefor sensitive and selective detection of estrogen derived biomarkers based 
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on a novel “first-come-first-serve” approach. This approach will provide excellent methodology 

for identification of estrogen derived biomarkers and cost-effective devices for future clinical 

applications.  
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CHAPTER 2 - Synthesis of Estrogen-Derived DNA Adducts and 

Their Structural Modifications for Conjugation 

                                                                   ABSTRACT 

 

A variety of experimental evidence led to the hypothesis that catechol estrogen-3, 4-quinones 

(CE-3, 4-Q) react with DNA to initiate cancer. CE-3, 4-Q reacts with DNA purine bases to form 

depurinating adducts: N3-adenine and N7-guanine adducts of 4-hydroxyestrone (estradiol) [4-

OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua]. These depurinating estrogen-derived DNA 

adducts are released and found in urine of women at high risk and women with breast cancer 

making these adducts potential biomarkers. It is feasible that by inhibiting formation of estrogen-

derived DNA adducts, one could prevent initiation of breast cancer. Therefore new 

methodologies for detection of these adducts need to be developed. The organic synthesis of the 

standard adducts and their structural modifications to conjugate with highly fluorescent quantum 

dots (QDs) and to form a hapten for monoclonal antibody (mAb) generation are described in this 

chapter. 

 

2.1. Introduction 

The hypothesis that certain estrogen metabolites reacts with purine bases of DNA to induce point 

mutation on the double helix initiating breast cancer is based on experiments on estrogen 

metabolism,
1, 2, 3

 formation of estrogen derived DNA adducts,
4, 5, 6

 carcinogenicity,
7, 8, 9

 

mutagenicity
10, 11, 12

 and cell transformation.
13, 14, 15

  

 

Estrogen can undergo enzymatic activation through P450 1B1 to form catechol estrogens (CE), 

particularly 4-CE which in turn oxidizes to endogenous carcinogenic catechol estrogen-3,4-

quinones (CE-3,4-Q). (Fig 1) CE-3,4-Q  initiates 1,4-Michael addition with both purine bases of 

DNA forming estrogen-derived DNA adducts; 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. 

A competing deactivation pathway is switched on when ubiquitous catechol-O-methyltransferase 

(COMT) catalyzes O-methylation of 4-OHE1(E2). Another deactivation pathway involves 

redirection of quinones either to glutathione (GSH) conjugates in presence of GSH/S-transferase 

or CE through quinone reductase. (Fig 2.1)
16
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Fig 2.1 Enzymatic activation and deactivation pathway for 4-hydroxylated estrogen
16

 

If the deactivation pathways are switched off, CS-3,4-quinones reaction with purine bases of 

DNA resulting depurinating adducts. These adducts are shed from DNA by breaking the glycosyl 

bond and finally, expressed in the urine of women at high-risk or with breast cancer. 

 

2.2. Synthesis of Standard Estrogen-Derived DNA Adducts 

 

In order to determine the estrogen-derived DNA adducts in human urine samples through 

indirect method, standard adducts were synthesized.
16

 The first step of synthesis of DNA-

estrogen adduct involves the nitration of estrone (E1). 4-NO2-E1 recrystallizes and 2-NO2-E1 

remains in the solution making the separation easier. (Scheme 2.1) 

Scheme 2.1 Nitration of estrone (E1) 
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One possible explanation for the solubility of 2-NO2-E1 is its enhanced salvation with water 

through N-O
-
 while there is steric hindrance to rotation about N-C bond in 4-NO2-E1 making it 

locked into intramolecular H-bonding. This resulted in hindered solvation of compound 2 with 

water and, therefore in crystallization of it from aqueous solution. (Fig 2.2)
17

 

 

 

Fig 2.2 2-NO2-E1 remained soluble in solvent due to enhanced solvation through N-O bond 

 

Carbonyl group (-C=O) of 4-NO2-E1 (2) was enantio-selectively reduced by sodium borohydride 

(NaBH4) to form 4-NO2-17β-estradiol (4) which was treated with Na2S2O4 to form 4-NH2-17β-

estradiol (5) in 98% yield. In the final step, 4-NH2-17β-estradiol (5) was converted into 4-OHE2 

on treatment with NaIO4-KI couple with 28.3% yield. (Scheme 2.2) 
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Scheme 2.2 Synthesis of 4-hydroxyestradiol (4-OHE2) 

 

The synthesis of 4-OHE1 was carried out in similar fashion except that the ketonic C=O was not 

reduced. (Scheme 2.3) 

Scheme 2.3 Synthesis of 4-hydroxyestrone (4-OHE1) 

 

 

4-OH-E2 (7a) was converted into a quinone by treatment with MnO2. The quinone was a 

substrate for 1,4-Michael addition by 2’-deoxyguanosine(dG) and adenine to yield 4-OHE1(E2)-

1-N7Gua and 4-OHE1(E2)-1-N3Ade respectively. (Scheme 2.4) An attempt to use 2’-

deoxyadenosine (dA) was failed on account of steric hindrance offered by deoxyribose group at 

N9 while the electrophile E1(E2)-3,4-Q approached the N3 of dA.
16
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Scheme 2.4 Estrogen derived DNA adduct synthesis 

 

2.3. Synthesis of Aminomethyl Linker at C-17 Position of DNA-Estrogen 

Adducts 

 

The labeling strategy for estrogen-derived DNA adducts required to synthesize a linker. A 

primary amine (RNH2) linker was selected to serve the purpose of labeling through carboxylic 

acid (-COOH) in a coupling reaction. Highly fluorescent, photostable aqueous quantum dots 

(QDs) synthesized in our lab can be conjugated by this strategy. Keeping this in mind, an 

aminomethyl (-CH2NH2) group was attached to 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua. 

(Scheme 2.5) 
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Scheme 2.5 Synthesis of aminomethyl (-CH2NH2) linker on 4-OHE2 

 

Once the aminomethyl (-CH2NH2) linker was established on C-17 of 15, estrogen-derived DNA 

adducts were synthesized by 1. oxidizing compound 15 with MnO2 to form 3,4-quinone 

derivative, which acted as an electrophile initiating a 1,4-Michael addition to adenine, a purine 

base resulting 4-OHE2-17-AM-1-N3Adenine (16) and to 2’-deoxyguanosine (dG) to yield 4-

OHE2-17-AM-1-N7Guanine (17). (Scheme 2.6) 
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Scheme 2.6 Synthesis of estrogen-derived DNA adducts with the aminomethyl (-CH2NH2) linker  

 

 

2.4. Experimental Section 

All chemical reactions were carried out using Schlenk techniques under argon atmosphere unless 

otherwise noted. Anhydrous solvents were used in all the reactions unless stated. 

HPLC. HPLC purification was carried out on a Waters 600E solvent delivery system equipped 

with a Waters 990 photodiod array (PDA) detector interfaced with an APC-IV Powermate 

computer. A preparatory reverse phase HPLC was conducted by using SunFire
TM

 PrepC 18 

OBD
TM

 10 µm, (30x500mm) column at a flow rate of 25 mL/min. The gradient was started with 

30% MeOH  and 70% (water + 0.1% trifluoro acetic acid (TFA)) with a linear gradient to 100% 

MeOH in 30 minutes. 
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Synthesis of compound 2 and 3 

 

 

A two necked round bottom flask, fitted with a stir bar and a thermometer, was charged with 

estrone (E1) (10g, 0.037 mol), followed by addition of glacial acetic acid (300 mL). The reaction 

mixture was allowed to heat up to 120 
0
C at which the white suspension dissolved. The reaction 

mixture was then allowed to cool down slowly until it reached 50 
0
C-55 

0
C. A warm (50 

0
C-55 

0
C) nitrating agent (100 mL water + 2.5 mL 70% HNO3 + 0.1g NaNO2) was added dropwise. 

The solution slowly turned dark brown. Once the addition of the nitrating agent was complete, 

the reaction mixture was allowed to cool to room temperature. After 1h at room temperature, it 

was placed overnight in refrigerator (4
o
C). The brown colored solid was filtered in vacuum and 

washed with 3*100 mL cold water yielding 4.3g of 4-nitroestrone (2, 37%) 

4-nitroestrone (2) 

1
H- NMR (CDCl3, 400MHz) δ (ppm): 9.5 (s, 1H), 7.5 (d, J= 9Hz, 1H), 7.0 (d, J= 8.8Hz, 1H), 

3.23 (m, 1H), 3.0 (dd, J =5.4, 8.5Hz, 1H, H-6, 1H), 2.50 (dd, J = 8.7, 16.1 Hz, 1 H, H-16), 2.35 

(m, 1 H), 2.36 (m, 1H), 2.23-2.0 (m, 4H), 1.98-1.90 (m, 1 H), 0.94 (s, 3H, CH3), 1.70-1.35 (m, 

remaining H).  

13
C-NMR (CD3Cl3, 400MHz) δ (ppm): 220.6, 152.4, 134.2, 133.5, 133.1, 116.9, 50.3, 48.0, 44.6, 

37.3, 36.0, 31.7, 28.0, 26.4, 26.1, 21.6, 14.0 

2-nitroestrone (3) 

1
H- NMR (CDCl3, 400MHz) δ (ppm): 10.4 (s, 1H), 7.9 (s, 1H), 6.8 (s, 1H), 2.9 (m, 1H), 2.5 (dd, 

1H), 2.4 (dd, 1H), 2.2 (m, 1H), 2.0 (m, 1H), 1.64-1.46 (m, 4H), 0.92 (s, 3H, CH3) 

13
C-NMR (CDCl3, 400MHz) δ (ppm): 220.5, 153.0, 149.0, 133.3, 132, 121.7, 119.1, 50.5, 48.0, 

43.6, 37.8, 36, 31.4, 29.8, 26.0, 25.8, 21.7, 13.9 
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Synthesis of Compound 4 

 

 

4-NO2E1 (2g, 6.34 mmol) was added to 120 mL methanol (4
o
C)  in a 500 mL beaker, followed 

by dropwise addition of 0.8 mL 20% NaOH solution. The solution was warmed in order to 

dissolve all 4-NO2E1. Once the reaction reached room temperature, a solution of NaBH4 (0.8g, 

0.021 mol) in 120 mL methanol was added to the reaction mixture. The reaction was stirred for 

half an hour and allowed to stand overnight in the dark. The red reaction mixture was diluted by 

adding it to 600 mL water. Quenching the excess of NaBH4 and its reaction products by 

acidification by 4 mL conc. HCl led to a yellow precipitate. The mixture was kept in  the 

refrigerator for 1h, filtered, dried over vacuo to obtain 1.75g (yield 87.5%) of 4-NO2E2. 

1
H- NMR (CDCl3, 400MHz) δ (ppm): 9.5 (s, 1H), 7.5 (d, J= 8.8Hz, 1H), 6.9 (d, J= 9.0Hz, 1H), 

3.7 (t, J= 8Hz, 1H), 3.2 (m, 1H), 2.9 (dd, J= 5Hz, 1H), 2.31(m, 1H), 2.2 (m, 2H), 1.9(m, 2H), 

1.7(t X qu, 1H), 1.4-1.1 (m, 8H), 0.80 (s, 3H) 

13
C-NMR (CDCl3, 400MHz) δ (ppm): 152.3, 134.5, 134.2, 133.2, 116.6, 81.9, 50, 44.6, 43.3, 

37.7, 36.8, 30.8, 28.2, 26.8, 23.1, 11.3 

 

Synthesis of Compound 5 

 

A two necked 1 L round bottom flask fitted with reflux condenser and stir bar was charged with 

compound 4 (2.25 g, 7.1 mmol), which was then dissolved in 300 mL acetone and 60 mL water. 

The reaction was treated with 60 mL 1M NaOH and allowed to reflux. At reflux temperature, 
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Na2S2O4 was added in small portions to make sure no violent reaction took place. The color of 

the solution started to change from reddish brown to pale yellow. The reaction was further stirred 

at reflux for half an hour. Most of acetone was removed in a rotavap and the pH of the solution 

was decreased to 6 by adding HCl. The acidic solution was then kept in the refrigerator (4
o
C) 

overnight. The yellow solid was filtered to obtain 2.0g (yield 98.5%) of compound 5. 

1
H- NMR (DMSO-d6, 400MHz) δ (ppm): 8.8 (s, br, 1H), 6.47 (d, J= 8.2Hz, 1H), 6.39 (d, J= 

8.2Hz, 1H), 4.5 (d, J= 5Hz, 1H), 4.0 (s, br, 2H), 3.5 (sext, J= 3.8Hz, 2H), 2.54 (d, 1H), 2.3 (m, 

1H), 2.2 (m, 1H), 2.0 (m, 1H), 1.8 (m, 3H), 1.6 (m, 1H), 1.4-1.0 (m, rest of H), 0.64 (s, 3H) 

13
C- NMR (DMSO-d6, 400MHz) δ (ppm): 141.6, 133.1, 131.1, 121, 113.0, 111.4, 80.2, 55.0, 

49.7, 43.9, 42.7, 38.0, 36.7, 30, 27, 26.3, 24.5, 22.9, and 11.3 

Synthesis of Compound 7b 

 

 

Compound 5 (1g, 3.48 mmol) was dissolved in 300 mL glacial acetic acid. NaIO4 (10g, 0.046 

mol) was dissolved in 700 mL 0.1N HCl in a 2 L beaker. The solution of compound 5 was added 

dropwise to the solution of NaIO4 within three minutes. The reaction was then stirred for half an 

hour at room temperature. The color changed from yellow to red. The quinine was extracted with 

3 x 200 mL chloroform. KI (3g, 0.018 mol) was added to the combined organic layers and 

shaked well in separatory funnel. The organic layer was then washed with 3 x 100 mL 5% 

sodium bisulfate, 3 x 100 mL ultrapure water. The organic layer was evaporated in rotavap to 

yield 0.92g crude product 7b which was purified by HPLC.  
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Fig 2.3 Prep-HPLC purification of 4-OHE1 (20.76 min) 

1
H- NMR (DMSO-d6, 400MHz) δ (ppm): 8.9 (s, 1H), 8.0 (s, 1H), 6.55 (s, 2H), 2.8 (dd, J= 5.5Hz, 

1H), 2.46 (dd, J= 8.3Hz, 1H), 2.3 (m, 1H), 2.15-1.9 (m, 4H), 1.75-1.2 (m, rest of H), 0.8 (s, 3H) 

13
C- NMR (DMSO-d6, 400MHz) δ (ppm): 220, 142.3, 131.0, 123.7, 115.3, 112.4, 55.0, 49.7, 

47.3, 43.7, 37.5, 35.5, 31.4, 26, 25.7, 23.5, 21.2, 13.5 

 

 

Fig 2.4 4-OHE2 eluted at 20.54 min under prep-HPLC conditions 

1
H- NMR (DMSO-d6, 400MHz) δ (ppm): 8.9 (s, br, 1H), 8.0 (s, br, 1H), 6.5 (s, 2H), 3.2 (d, 1H), 

2.46 (dd, J= 8.3Hz, 1H), 2.3 (m, 1H), 2.15-1.9 (m, 4H), 1.75-1.2 (m, rest of H), 0.8 (s, 3H) 
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13
C- NMR (DMSO-d6, 400MHz) δ (ppm): 142.3, 141.5, 131.0, 123.7, 115.3, 112.4, 55.0, 49.7, 

47.3, 43.7, 37.5, 35.5, 31.4, 26, 25.7, 23.5, 21.2, 13.5  

Synthesis of Compound 10a and 10b 

 

Compound 7b (0.1g, 0.346 mmol) was dissolved in dry acetonitrile (10 mL) in a 50 mL round 

bottom flask. The solution temperature was cooled down to 0 
0
C by using an ice bath within 15 

minutes. The oxidizing agent MnO2 (0.2g, 2.3 mmol) was added and the reaction was stirred for 

30 min at 0 
0
C. The reaction was then filtered by means of a syringe and divided into two parts 

of 5 mL each.  

2’-deoxyguanosine (2’-dG) (0.495g, was dissolved in 10 mL 1:1 acetic acid : water. 5 mL 

filtered solution of 3, 4-quinone estradiol was added to the above reaction and allowed to stir at 

room temperature for 5h. The reaction mixture was then subjected to prep HPLC to obtain pure 

10b.  

A 
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B 

 

Fig 2.5 4-OHE1-1-N7Gua was eluted at 10.63 min (A) and 4-OHE2-1-N7Gua adduct peak 

showed at 11.62 min (B) 

 

Synthesis of Compound 11a and 11b 

 

 

Adenine (0.235g, 1.74 mmol) was dissolved in 10 mL 1:1 acetic acid: water. 5 mL solution of 3, 

4-quinone estradiol was added. The mixture was allowed to stir at room temperature for 5h. The 

crude reaction mixture was then purified by preparative HPLC affording pure 11a.  
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Fig 2.6 The peak at 10.88 min represented the 4-OHE1-1-N3Ade adduct 

 

Fig 2.7 Estradiol derived adenine adduct (11b) was purified through prep HPLC (11.85 min). 

Excess adenine was also recovered (6.727 min) 

Synthesis of acetonide (12) 
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4-OHE1 (100 mg, 0.35 mmol), 2,2-dimethoxypropane (200 µL) and a catalytic amount of P2O5 

were suspended in dry toluene. The mixture was heated under reflux with a soxhlet extractor 

containing CaCl2. The reaction mixture was refluxed for 2 h. Additional 2, 2-dimethoxypropane 

was added if required for the completion of reaction (TLC control). Refluxing was continued 

until TLC showed no starting material. The reaction mixture was treated with 1 M solution of 

Na2CO3 (10 mL) after cooling to room temperature. The organic layer separated and the aqueous 

layer was extracted with hot toluene (2 times). The combined toluene layers were washed with 

water and dried over sodium sulfate. After evaporation of solvent, a dark yellow colored oil was 

obtained, which was purified on silica gel column. Yield 70%.  

 

1
H NMR (CDCl3): 6.72 (d, J = 8.3 Hz, 1 H, H-1), 6.56 (d, J = 8.3 Hz, 1 H, H-2), 2.84 (dd, J 

=5.4, 8.5 Hz , 1H, H-6), 2.65 (m , 1 H, H-6), 2.50 (dd, J = 8.7, 16.1 Hz, 1 H, H-16), 2.35 (m, 1 

H), 2.36 (m, 1H), 2.23-2.0 (m, 4H), 1.98-1.90 (m, 1 H), 1.67 (s,3 H, CH3), 1.66(s,3 H, CH3), 0.91 

(s,3 H, CH3), 1.70-1.35 (m, remaining H). FAB-MS: m/z 327.4312 [(M+H)
+
] corresponding to 

C21H27O3 calc. 327.4293. 

 

Synthesis of protected cyanohydrine (13) 

 

Under argon and at room temperature a 25 mL round bottom flask was charged with anhydrous 

THF (0.5 mL), lithium methoxide (1.2 mg) and trimethylsilyl cyanide (250 ul). The resulting 

yellow colored solution was stirred for 10 min and solid acetonide (7, 172 mg, 0.53 mmol) was 

added. The stirring was continued for 6h. After completion, the reaction was quenched with 10% 

Na2CO3 (3 mL) and extracted with tert-butyl methyl ether (3 times). Combined ether layers were 

evaporated to afford an oily product and used as such for the next step. Yield 225 mg (95%). 
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Synthesis of aminomethylestradiol (14) 

 

The crude 13 (225 mg) was dissolved in toluene (2 mL) and 300 ul of RedAl
®

 was added. The 

reaction mixture was stirred at 70
o
C for 4h and then at room temperature for overnight. 

Completion of reaction was checked by TLC. The reaction was carefully quenched with 1 M 

NaOH (2 mL), resulting in two layers. The upper layer (organic) was removed; the aqueous layer 

(lower) was extracted with hot toluene (2 times) and combined. After evaporation, the gummy 

material was obtained and used as such for the next step. Yield 159 mg (~70%). 

 

 

Synthesis of 4-hydroxy-17-aminomethylestradiol (15) 

 

The crude 14 was treated with trifluoroactic acid at 100 
o
C for 5 min and then brought to room 

temperature. The mixture was left to stir at room temperature until HPLC analysis indicated the 

complete removal of protective acetonoid group. After completion, the reaction mixture was 

directly injected into preparative HPLC under reverse phase condition to purify the target 

catechol (15). Yield 85%. 
1
H NMR (DMSO-d6): 7.80 (br s, 3 H, exchangeable with D2O 

shaking), 6.66 ( d, J = 8.3 Hz, 1 H, H-1), 6.55 (d, J = 8.3 Hz. 1 H, H-2), 2.93 (m, 1 H, 17-

CH2NH2), 2.88 (m, 1 H, 17-CH2NH2), 2.73 (m, 1 H), 2.66 (m, 1 H), 2.50 (m, 2 H), 0.82 (s, 3 H, 

CH3), 2.20-0.9 (m, remaining H). FAB-MS: m/z 318.4356 [(M+H)
+
] corresponding to C19H28O3 

calc. 318.4306. 
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HPLC Conditions. Preparative reverse phase HPLC was conducted at a flow rate of 25 mL/min. 

The gradient was started with 10% acetonitrile and 90% (water + 0.1% trifluoro acetic acid 

(TFA)) with a linear gradient to 100% acetonitrile in 30 minutes. (Fig 8)  

 

Fig 2.8 4-OHE2-17-AM was purified through prep HPLC (10.54 min) 

 

Synthesis of 4-hydroxy-17-aminomethylestradiol-1-N3Ade (16) 

 

The catechol 10 (10 mg) was oxidized to quinone with MnO2 (20 mg) in acetonitrile (2 mL) at 0 

o
C. After 30 min, the yellowish-green quinone solution was added to a stirred solution of adenine 

(10 eq) in a mixture (1:1) of acetic acid/water. The reaction was stirred for 10 h and then the  

adenine adduct was purified by preparative HPLC. 

Analytical HPLC. Analytical HPLC was performed with column phenomenex (250x4.60 mm) 

with flow rate of 1mL/min and injection volume of 100 µL. The initial concentration used was 

10% acetonitrile and 90% (water +0.1%TFA) with a linear gradient reaching 100% acetonitrile 

in 10 minutes. 
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Fig 2.9 Analytical HPLC purification of 4-OHE2-17-aminomethyl-1-N3Ade (3.85 min) 

 

2.5. Discussion 

Chemical synthesis of estrogen-derived DNA adducts: 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua 

are important for the indirect detection of these adducts in urine samples of women at high-risk 

of and with breast cancer. Structures of these compounds were elucidated with 
1
H-, 

13
C- NMR, 

supported by tandem mass spectrometry (MS/MS) on both an ion trap and a quadrupole time-of-

flight (QTOF) mass spectrometer. 

 

The linker synthesis is significant in executing the labeling strategies discussed in my thesis. 

Introduction of an aminomethyl (-CH2NH2) group in C17 of 4-OHE2 was achieved with the 

intension to connect with a molecule with a carboxyl (-COOH) functional group. The primary 

NH2 group initiates faster nucleophilic reaction than the aromatic NH2 group present on purine 

DNA bases, thereby, selectively labeling through primary NH2 group. (Fig 2.10) 
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Fig 2.10 The logic behind preferential conjugation through primary amine linker is higher 

nucleophilicity of this group. 

 

2.6. Conclusions 

The synthesis of estrogen-derived DNA adducts has been orchestrated in order to use them in 

developing a diagnostic tool to detect these adducts in urine of subjects with breast or prostate 

cancer. An aminomethyl linker has also been introduced in C17 of these adducts to label them 

with molecules such as organic dyes, aqueous QDs containing carboxylic acid terminal. The 

labeling of these adducts with aqueous QDs have been discussed in chapter 4.  
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CHAPTER 3- Direct Synthesis of Aqueous Quantum Dots through a 

4, 4’-bipyridine-Based Twin Ligand Strategy 

ABSTRACT 

 

Fig 3.1 Direct synthesis of water soluble CdSe and CdTe quantum dots by evaporation-

cocondensation-reflux technique 

We report a new class of derivatized 4,4’-bipyridinium ligands for use in synthesizing highly 

fluorescent, extremely stable, water soluble CdSe and CdTe quantum dots (QDs) for 

bioconjugation. We employed an evaporation-condensation technique, also known as solvated 

metal atom dispersion (SMAD), followed by a digestive ripening procedure. This method has 

been used to synthesize both metal nanoparticles and semiconductors in the gram scale with 

several stabilizing ligands in various solvents.  The SMAD technique comprised evaporation/ 

condensation and stabilization of CdSe or CdTe in tetrahydrofuran (THF). The as-prepared 

product was then digestively ripened both in water and dimethyl formamide (DMF), leading to 

narrowing of the particle size distributions.  The ligands were synthesized by nucleophilic 
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substitution (SN2) reactions using 4,4’-bipyridine as a nucleophile. Confocal microscopy images 

confirmed the orange color of the nanocrystalline QDs with diameters of ~5nm that have been 

also observed by using TEM (transmission electron microscopy). As a part of our strategy, 85% 

of the 4,4’-bipyridinium salt was synthesized as propionic acid derivative and used to both 

stabilize the QDs in water and label basic amino acids and different biomarkers utilizing the 

carboxylic acid functional group.  15% of the 4,4’-bipyridinium salt was synthesized as N-propyl 

maleimide and used as second ligand in order to label any protein containing the amino acid 

cysteine by means of a 1, 4- Michael addition.  

3.1. Introduction 

The discovery of quantum dots (QDs) and their bright luminescence has inspired scientists to 

explore their application as bioimaging agents in medical diagnostics,
1,2

 as photosensitizing 

agents in the photodynamic therapy of cancer,
3,4

 and as components if solar cells 
5,6

 and light 

emitting devices (LEDs).
7-8

 Quantum dots feature size and composition tunable electronic and 

optical properties with sharp, Gaussian emission spectra in addition to large absorption 

coefficients across a wide spectral range.
9-11 

These are definite advantages of QDs over 

traditional dyes as imaging agent in vivo and in vitro.  Most reported syntheses of QDs are 

carried out by using hydrophobic ligand encapsulation.
12, 13 

However, the importance of 

synthesizing biocompatible, aqueous QDs is immense, especially for the purpose of labeling of 

monoclonal antibody and biomarkers.  Dubois et. al. reported a synthesis of aqueous QDs by 

exchanging the initial hydrophobic ligand trioctylphosphine oxide (TOPO) with the hydrophilic 

ligand dithiocarbamate. This ligand exchange method required the presence of a ZnS shell 

around the CdSe core to prevent the extinction of photoluminescence. 
14

 Other synthesis 

procedures involved QD surface modification through imidazole-based random copolymer 

ligands,
15

 and surfactant/lipid micelles,
16

 resulting in large (diameter>10nm) supramolecular 

assemblies. These aqueous QDs can be monoconjugated through either carboxylate terminal or 

amine terminal groups. Direct synthesis of aqueous QDs from bulk CdSe or CdTe by twin 

ligands for double bioconjugation was not known to date. Our synthesis comprises of the 

environment-friendly evaporation-condensation method known as Solvated Metal Atom 

Dispersion (SMAD) technique, followed by digestive ripening to obtain stable, monodisperse, 

orange colored QDs. The SMAD technique has already been used to synthesize hydrophobic 

QDs,
18  

both aqueous and non-aqueous gold colloids,
19, 20

 and silver nanoparticles with biocidal 

activity.
21 

The biggest advantages of this synthesis are the independence of the solvent and ligand 
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choice, no metal salt byproduct formation, and the possibility to scale up the reaction to gram 

scale for industrial applications. The choice of 4,4’-bipyridinium salts as ligands for QD 

stabilization and bioconjugation was inspired by the success of ligand exchange experiments in 

our lab though the stability of QDs after ligand exchange was not enough for further application. 

We decided to use 4, 4’-bipyridinium salts for direct surface passivation of CdSe and CdTe QDs 

through SMAD. The synthesis of aqueous CdSe and CdTe QDs was achieved by the following 

twin ligands: 1. 4,4’-bipyridinium carboxylic acid (3) used for water solubility through H-

bonding with water and 2. 4,4’-bipyridinium maleimide (7) used for coupling with cysteine-SH 

through 1, 4-conjugate addition or Michael addition reaction. (Fig 3.2) 

                                                                  

Fig 3.2 4,4’-bipyridinium salt based twin ligands used to synthesize aqueous QDs 

QDs synthesized in gram quantities in a SMAD reactor in water had narrow size distributions 

from 4 nm to 4.5 nm. This was achieved by using the “digestive ripening” technique, which has 

been pioneered by Dr. Klabunde at Kansas State University.
22, 23, 24

 This process involves 

refluxing of the as-prepared SMAD colloid in a solvent resulting in a remarkable narrowing of 

the size distribution observed in TEM experiments. The UV-/Vis, fluorescence microscopy and 

confocal microscopy images also confirm the synthesis of water soluble QDs. 
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3.2. Experimental Section 

Scheme 3.1 Flow Diagram of Synthetic Steps of Water Soluble QDs through Evaporation-

Condensation  

 

 

 

3.2.1. CdSe-Water- 4,4’-bipyridinium Ligands Colloid:  
 

A 39-boron nitride crucible (from Mathis) was assembled in the SMAD reactor and 0.20g of 

CdSe (1.04 mmol) was added to the crucible. Ligand 3 (9.71g, 31.4 mmol) and ligand (2.2g, 5.2 

mmol), dissolved in 40 mL degassed nanopure water was placed at the bottom of the reactor 

together with a stir bar. The reactor was attached to 100 mL degassed THF in a Schlenk tube. 

The reactor was then cooled down to 77 K by immersing it in a liquid nitrogen filled Dewar, 

followed by the complete evacuation of the reactor until a vacuum or 0.53 Pa  was reached. 15 

mL THF was evaporated in 30 min. forming a layer of solvent on the walls of the reactor. Bulk 

CdSe on the crucible was heated slowly and co-condensed with THF (60 mL) over a period of 3 

h. The frozen matrix had a brownish red color at the end of the vapor deposition process. Once 
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the process was complete, the Dewar was removed and the reactor was filled with argon. The 

frozen matrix was melted by heating from outside with a heat gun. The melted matrix was 

allowed to stir for 30 min. The as-prepared brown red matrix was siphoned under argon into a 

Schlenk tube. 

 

The Schlenk tube containing the freshly prepared CdSe-colloid, which was stabilized by the 

twin-4,4’-dipyridinium ligands in THF/water, was connected to a vacuum line and the THF was 

evaporated overnight. The total volume of the final colloid was 40 mL containing 0.20g of CdSe.  

 

3.2.2. Digestive Ripening:  

 

The CdSe-colloid, stabilized by the twin-4,4’-dipyridinium ligands in water, was divided into 

two parts. 20 mL of this suspension was filled in a 100 mL round bottom flask with a glass 

window for UV/Vis-detection.  The round bottom flask was connected with a UV/Vis-

spectrometer on-a-chip through an optical fiber for the recording of continuous UV/Vis spectra. 

The colloid was refluxed under argon for 8h. 

 

Another 20 mL colloid was subjected to high vacuum to evaporate the water, thus forming the 

dry product. It was transferred to a 100 mL round bottom flask and dissolved in 20 mL dry DMF. 

5 mL of oleyl amine was also added to increase the rate of monodisperse particle formation.
25

 

The reaction was refluxed for 3h under argon. QD in DMF was placed in an ultracentrifuge 

(8000 RPM) for 15 minutes and the precipitate was dissolved in water.  

 

3.3. Characterization  

 

UV/Vis Spectroscopy:  

UV/Vis absorption spectra were measured by using a DH-2000 optical spectrophotometer 

(Ocean Optics Inc.) 

 

Fluorescence Spectroscopy:  

Fluorescence spectra were obtained by using Fluoro Max-2 instrument from HORIBA Jobin 

Yvon Company. These samples were excited at 400 nm with slit width of 5 nm. 
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Photoluminescence Spectroscopy  

The photoluminescence (PL) quantum yield of CdSe and CdTe was calculated relative to 

Rhodamine 6G in methanol assuming its PL quantum yield as 95%.
25, 26

 

                                                Φem = ΦS(I/IS)(AS/A)(n
2
/ns

2
) 

Where, I(QD) and IS(standard) are the integrated emission peak areas and  

           A(QD) and AS(standard) are absorption (<0.1) at 480 nm 

           n(QD) and nS(standard) are the refractive indices of the solvents 

           Φem and ΦS are the PL quantum yield for the QD and standard respectively. 

 

Transmission Electron Microscopy  

TEM images were taken on a Philips CM100 operating at 100 kV. The samples were prepared 

by a drop of 3 µL CdSe and CdTe solution in water on a carbon-coated Formvar copper grid. 

The grids were allowed to dry overnight in vacuum in a desiccator.  

 

3.4. Results and Discussion  

 

The SMAD technique was first reported in 1986. It has been successfully used to synthesize 

metal nanoparticles and semiconductor nanocrystals.
18,23,27

 We have performed the facile 

synthesis of two 4, 4’-bipyridinium ligands with high yields affording grams of the products, 

which were required for stabilizing CdSe and CdTe semiconductor nanocryctals synthesized by 

SMAD .  

 

Synthesis of the 4,4’-Bipyridine Based Twin Ligands 

The choice of the ligand was inspired by our preliminary work in ligand exchange between 4,4’-

bipyridine and trioctylphosphine oxide (TOPO) though the QDs resulted after the ligand 

exchange had broad size distribution making them less useful for bioconjugation. 

The logic behind the use of 85% carboxylic acid terminal derivative of 4, 4’-bipyridine (3) was 

to solubilize the QDs in water. The one step synthesis of 3 consisted of a nucleophilic 

substitution reaction by a SN2 mechanism in DMF affording 80.2% yield. (Scheme 3.2) 
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Scheme 3.2  Synthesis of carboxylic acid derivative of 4,4’-bipyridine 

 

Our initial attempt to use a terminal maleimide derivative of 4, 4’-bipyridine (7) as ligand for QD 

stabilization was not successful, as the ligand was water soluble only before binding with the 

QDs, resulting in their rapid aggregation after QD synthesis. Compound 7 was prepared in a two-

step chemical synthesis. The maleimide (4) served as a nucleophile in a Mitsunobu reaction, 

leading to compound 6 in 70% yield.
28

 In the second step, 4,4’-bipyridine acted as nucleophile to 

displace the bromide in the C-Br bond of 6 . It is important to permit this reaction to run for three 

days at 35 
0
C in order to form the mono-substituted product. (Scheme 3.3) 

Scheme 3.3 Synthesis of maleimide derivative of 4,4’-bipyridine 

 

The 85:15/(3):(7) ligand ratio approach solved not only the water solubility problem, but also 

introduced two sites for potential double bioconjugation. The double bioconjugation schemes 

through –COOH and maleimide termini will be reported in chapter 4.   

UV/Vis-Data Analysis 

It is noteworthy that the positions of the UV/Vis-absorption maxima/shoulders of the CdTe 

quantum dots that have been prepared in DMF and in water differ by 50nm. In accordance with 

the literature, the observed red shift can be attributed to a larger particle size when ripened in 
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DMF, compared to in water. (Fig 3.3)  The CdTe QDs growth was expedited by addition of 5 

mL of oleylamine, which acted as a weak amine stabilizer, thereby, helping in growth kinetics.
25
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 Fig 3.3 UV-vis spectra of CdSe ripened in water and in DMF  

The evolution of particle size during digestive ripening of QDs was monitored through dynamic 

UV-vis spectra. It was observed that there was change in particle size distribution as well as 

enhanced absorbance as the particles were ripened for extended period of time. (Fig 3.4) 
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Fig 3.4 Evolution of absorbance spectra for CdSe (A) and CdTe (B) during digestive ripening 

The fluorescence spectra of CdSe and CdTe QDs complimented the UV-Vis data as there was a 

red shift by about 50nm in CdTe spectrum emphasizing larger sized CdTe QDs. (Fig 3.5) 
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Fig 3.5 Fluorescence spectra of CdSe and CdTe QDs synthesized by twin ligand strategy 

The QY (quantum yield) of the aqueous QDs found to be 12% which is comparable to QY of 16-

28% for QDs in organic solvents when QDs are excited at 390nm with slit width of 5nm.
18, 25

 

(Table 3.1.) 

 

Table 3.1. Quantum yield of water soluble QDs 

QDs Absorbances λ max, fluorescence Intensity QY (%) 

CdTe 0.09 572 nm 1.1*10
6
 12 

CdSe 0.09 530 nm 2.4*10
6
 25 

 

The TEM images showed the average particle size of both CdSe and CdTe QDs to be 4.0 nm and 

4.5 nm respectively. (Fig 3.6) The orange color of these QDs was confirmed with confocal 

microscopy. (Please refer to the following supporting information) 
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Fig 3.6 TEM images of (a) CdSe ripened in DMF for 8h and (b) CdTe QDs ripened in DMF for 

3h  

Photostability Experiments 

The aqueous QDs were excited consecutively at 488 nm once in every second for 500 successive 

illuminations at laser powers of 1 mW, 1.5 mW and 1.9 mW.  The photostability of these QDs 

was compared with QDs synthesized in organic solvents through SMAD technique-digestive 

ripening.
18

 The mean life time (1/τ) of both aqueous QDs and organic QDs stabilized by 

trioctylphosphine oxide (TOPO) ligand probably have similar lifetimes as there is a lot of 

variability in the numbers. (See Appendix B)   

 

These results seem to suggest they are similar. The QDs can be  "photoactivated" by illumination 

and that would lead to an increase in  "on" times - and could erroneously be interpreted as an 

increase in lifetime, if the time transients aren't long enough (i.e., the particles aren't actually 

bleaching by the end of the 500 frames). 

 

The comparison of images of both the CdTe types taken at zero second and four seconds after 

illumination with 1.9 mW, 488 nm wavelength laser shows fluorescence decay of the QDs. (Fig 

3.7) This opens a window of opportunity for the use of aqueous QDs for biomedical application 

in future.  
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A. Aq. CdTe, 1.9mW, Time 0s                     Aq. CdTe, 1.9mW, Time 4s 

 

B. CdTe-TOPO, 1.9mW, Time 0s                        CdTe, 1.9mW, Time 4s 

 

Fig 3.7 The real time images of aqueous CdTe stabilized by 4,4’-bipyridinium salt based 

ligands (A) and CdTe-TOPO in toluene (B) at the start of the experiment and after 4s of 

illumination with 1.9mW laser power.  

 

3.5. Conclusions 

We have achieved the direct synthesis of aqueous CdSe and CdTe QDs by SMAD, followed by 

digestive ripening. The result were highly fluorescent and photostable QDs. We will use the new 

QDs as imaging “tools” in detecting DNA-estrogen adducts, which are potential biomarkers for 
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breast and prostate cancer.
29, 30

 It is noteworthy that QD synthesis from water resulted in lower 

quantum yields of luminescence, but significant photostability. Besides the water solubility, the 

biggest advantage of these QDs is the possibility of double bioconjugation through both –COOH 

and maleimide termini. A multitude of in vitro and possible in vivo application of these QDs can 

be envisioned in the field of biomedical research.  
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CHAPTER 3- Direct Synthesis of Aqueous Quantum Dots through a 

4, 4’-bipyridine-Based Twin Ligand Strategy 

Supporting Information 

 

Chemical Synthesis of 4,4’-bipyridinium salt based ligands 

 

1. Synthesis of 4,4’-bipyridinium carboxylic acid (3) 

                                                    

4, 4’-bipyridine (1) (4g, 0.025mol) and 3-bromo-propanoic acid (2) (3.85g, 0.025mol) 

were charged into a 250 mL round bottom flask and dissolved in 60 mL DMF. The reaction was 

then heated to 80 
0
C for 6 h. Greenish yellow precipitate started to form in half an hour of 

heating. Once the reaction mixture was cooled down to room temperature, it was kept in 

refrigerator (4 
0
C) for half an hour.  

The greenish yellow solid was filtered and washed with cold ethanol (3* 10 mL) and 

dried under vacuo. DMF of the filtrate was removed further under high vacuo while heating 

leading to more product formation. (Yield 80.2%) 

0.5g of the compound was crystallized from hot ethanol and allowed to return to room 

temperature. The compound was kept in refrigerator overnight.  

1
H- NMR (d6-DMSO, 400MHz) δ (ppm): δ 12.75 (br, s, 1H), 9.26 (d, J = 5.1 Hz, 2H), 

8.88 (d, J = 5.4 Hz, 2H), 8.64 (d, J = 6.6 Hz, 2H), 8.05 (d, J = 6.6 Hz, 2H), 4.84 (t, J = , 2H), 

3.14 (t, J = , 2H) 

13
C NMR (d6-DMSO, 400MHz) δ (ppm):   

δ 171.7, 152.5, 151.0, 145.9, 141, 125.1, 122.0, 56.1, 34.4 
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2. Synthesis of N-propylbromomaleimide (6)         

 

           

PPh3 (1.35g, 5.15 mmol) was charged in a 100 mL round bottom flask and dissolved in 20 

mL dry THF. The temperature of the reaction was brought down to -78 
0
C by using dry 

ice/acetone. Diisopropyl azo dicarboxylate (1.01 mL, 5.15 mmol) was added dropwise to the 

reaction mixture over 2 minutes resulting yellow solution. The reaction was stirred for 10 

minutes followed by addition of 3-bromo propanol (0.77 mL, 8.5 mmol) for over 2 min. 

After 5 minutes of stirring, maleimide (0.5g, 5.15 mmol) was added in solid form at – 78 
0
C 

which dissolved in another 10 min. The reaction was then, brought to room temperature and 

allowed to stir at room temperature for 10 hours. A dark grey solution was resulted and TLC 

at 2:1 hexane: EtOAc showed formation of product. The reaction mixture was concentrated 

under raotavap and applied to silica gel. Column with an eluant of 2:1 hexane: EtOAc. After 

removing solvent, 0.78 g (69.64 %) pale yellow crystal of N-propyl bromo maleimide was 

obtained.  

Melting Point: 45 
0
C. 

1
H- NMR (CDCl3, 400MHz) δ (ppm): 6.72 (singlet, 2H), 3.68 (triplet, J= 6.8Hz, 2H), 3.37 

(triplet, J=6.6, 2H), 2.18 (quintet, J=6.6 Hz, 2H).  

        13
C-NMR (CDCl3, 400 MHz) δ (ppm): 170.82, 134.43, 36.82, 31.69, and 29.82. 

     IR data (cm 
-1

, dropcast on KBr): 

     3088.48, 2960.46, 2924.61, 1700.71, 1408.82, 1234.71, 

 

3. Synthesis of N-propylmaleimide 4,4’-dipyridinium salt (7) 
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0.1 g (0.641 mmol) of 4, 4’-bipyridine and 0.14g (0.641 mmol) of N-propylbromo 

maleimide (6) was heated in 8 mL anhydrous dichloromethane40 
0
C for 24 hours. This resulted 

in mono quaternization of 4,4’-bipyridine. The light brown salt was filtered and dried under 

vacuum to obtain 0.15g (62.5%).  

Melting Point: 312 
0
C. 

1
H- NMR (d6-DMSO, 400MHz) δ (ppm): 9.19 (doublet, J = 6.8 Hz, 2H), 8.84 (doublet, J 

= 6.24 Hz, 2H), 8.62(doublet, J = 6.8 Hz), 8.0 (doublet, J =  6.24 Hz, 2H), 7.05 (singlet, 2H), 4.6 

(triplet, J = 8 Hz, 2H), 3.5(triplet, J = 6.4Hz, 2H), 2.16(quintet, J = 6.8Hz, 2H). 

13
C-NMR (d6-DMSO, 400 MHz) δ (ppm): 171.1, 152.3, 151.0, 145.4, 140.8, 134.7, 

125.3, 121.8, 58.0, 34.0, 30.0 

IR Data (cm
-1

, dropcast on KBr) 

2950.21, 2919.5, 2847.8, 1700.71, 1639.26, 1465.15, 1408.82, 1362.79, 1178.38, 814.8, 

697.0 

 

Confocal Microscopy Images. Confocal images of the QDs were based on Zeiss LSM 5 

PASCAL (Laser Scanning Confocal Microscope) at exciting wavelength of 488 nm  

 

Fig 3.S1 Confocal image of CdTe QDs on TEM grids showed orange color   
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CHAPTER 4-Double Conjugation Schemes with Aqueous Quantum 

Dots Synthesized by Twin Ligand Strategy 

 

                                                               ABSTRACT 

Double conjugation schemes have been developed by using a new class of aqueous CdSe and 

CeTe quantum dots (QDs), synthesized by an evaporation/co-condensation method, followed by 

digestive ripening. These QDs were synthesized by applying a 4,4’-bipyridine based twin ligand 

strategy for achieving both water solubility and covalent conjugation. We will use these novel 

quantum dots to label (a) potential breast and prostate cancer biomarkers: 4-hydroxy-estradiol-2-

N3-Adenine (4-OH-E2-N3-Ade) and 4-hydroxy-estradiol-2-N7-Guanine (4-OH-E2-N7-Gua) 

adducts through an EDC/NHS coupling reaction of the 4,4’-bipyridinium carboxylic acid ligand, 

and (b) the known carcinogen thio-pyrene through a 1,4- Michael addition reaction of the 4,4’-

bipyridinium maleimide terminal ligand. The labeling of QDs with DNA-estrogen adducts and 

thio-pyrene was established by using ion exchange high pressure liquid chromatography (HPLC) 

and capillary electrophoresis. Imaging of the interactions of QD-labeled adducts and antibodies 

by applying ELISA substantiated the in vitro application of the novel QDs.  

 

4.1 Introduction 

Employing quantum dots (QDs) in bioimaging and sensing has become an “explosive” field of 

research during the last decade. Size tunable fluorescence,
1
 resistance to photobleaching, 

opportunities for chemical QD surface modifications
2, 3, 4

, and superior signal brightness
5, 6

 have 

made QDs a more appealing imaging tools than traditional organic dyes. Several QD 

bioconjugation schemes have been developed for the quantitative determination of cancer in 

serum and saliva.
7
 Immunofluorescent cell imaging,

8
 redox coupled assemblies for in vitro and 

intracellular pH sensing,
9
 and background free biomolecule detection

10
 have been developed as 

well. 

 

One of the paradigms of my thesis is that estrogen can act as an epigenetic carcinogen inducing 

point mutation in DNA double helix initiating breast cancer in women.
11, 12

 This mutation results 

possibly in depurinating DNA-estrogen adducts: 4-hydroxyestrone (estradiol)-1-N3Adenine [4-

OHE1(E2)-1-N3Ade] and 4-hydroxyestrone(estradiol)-1-N7Guanine [4-OHE1(E2)-1-N7Gua] are 

significantly enhanced in the urine of high risk women and women with breast cancer.
13

 DNA-
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estrogen adducts are possible biomarkers for breast and prostate cancer risk. Therefore, the 

development of a diagnostic biosensor based on a fluorescently labeled monoclonal IgG antibody 

is highly desired for early breast and prostate cancer diagnosis. The limit of detection (LOD) of 

the estrogen metabolites is in the range of 3x10
-8

 M.
14, 15

 In an attempt to enhance the imaging 

sensitivity of the biosensor, water soluble CdSe and CdTe QDs have been synthesized. (Fig 4.1) 

The emission maximum of the CdTe QD that has been used for bio-labeling is ~570nm and we 

will term it as QD-570.  
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 Fig 4.1 Fluorescence spectrum of CdTe QDs (QD-570) synthesized by 4, 4’-bipyridinium 

ligands for double conjugation 

Superlative photostability and large molar extinction coefficients of QDs are the motivation 

behind their use as bioimaging tools. A new class of derivatized 4, 4’-bipyridinium ligands has 

been synthesized for QD surface stabilization in water.
16

 One of the surface ligands of the QDs 

was exploited to label DNA-estrogen adducts through its –COOH functional group, yielding the 

labeled adducts 4 and 5. (Scheme 4.1) 
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Scheme 4.1 Conjugation of DNA-estrogen adducts with CdTe QDs 

  

Pyrene is a polycyclic aromatic hydrocarbon (PAH) and a structural part of benzo[a]pyrene 

(BaP), a potent carcinogen believed to be the major cause of lung cancer. Benzo[a]pyrene is the 

most widely studied PAH. It undergoes metabolic activation through the “bay region diol 

epoxide”.
17, 18

 Analysis of human urinary metabolites of BaP showed the structural similarity 

with pyrene. Fluorescent labeling of these analytes with QDs is an important step in developing 

biosensor to detect metabolically activated BaP derivatives. We report a second conjugation 

scheme between aqueous QD synthesized by using the maleimide group and thio-pyrene. 

(Scheme 4.2) 
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Scheme 4.2 Conjugation of thiopyrene with CdTe QDs  

 

4.2 Experimental Section  

General procedure for bioconjugation of DNA-17-aminomethyl-estradiol 

adducts with QDs through –COOH terminal ligand 

 

CdTe QDs (10mg) was dissolved in phosphate buffered saline solution (PBS, pH~7.4, 10mM) to 

obtain a solution of 10mg/mL. This solution was incubated with 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDC, 5mg) and N-hydroxysuccinimide (NHS, 3mg) for 2h 

with continuous gentle mixing to activate QDs. The QD solution was divided into two parts of 

0.5mL each for two labeling procedures.  

 

2.2 mM solution of 4-OH-E2-17-AM-1-N7-guanine (15 mg in 5 mL) and 1.1 mM solution of 4-

OH-E2-17-AM-1-N3-adenine (5 mg in 1 mL) was prepared in PBS buffer (pH~7.4, 10mM). 

DNA-estrogen adduct solution (1.0 mL) was added to activated QD solution (0.5mL) for two 

labeling experiments. Each resulting mixture was incubated for 3h at room temperature under 

gentle shaking. This mixture was stored at 4 
0
C overnight to allow unreacted EDC to hydrolyze 

and lose its activity. The solution was then dialyzed in a MW 3500 cut-off tube for 8h resulting 

in only QD labeled DNA-estrogen adducts.  
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General procedure for bioconjugation of thiopyrene with QDs through the 

ligand featuring the terminal maleimide functionality  

 

A 25 mL round bottom flask was charged with thiopyrene (10mg, 0.04mmol) and 10mL CdTe 

QD solution, which resulted in a suspension. 0.5mL of DMF was added to dissolve thiopyrene 

and the resulting mixture was stirred overnight at room temperature. The excess of thiopyrene 

was removed by dialysis in a MW 3500 cut-off tube for 8h resulting only QD labeled thiopyrene. 

Thiopyrene and QD labeled thiopyrene were analyzed by HPLC using an ion exchange column 

(POROS HQ/20; 10mmDx100mmL) 

 

4.3 Estimation of IgM antibody 

I. BCA protein estimation kit (from pierce) to estimate concentration of IgM antibody 

Dilute this antibody to a final concentration of 50 ng/100 ul (= 0.5 ug/ml) in 50 mM 

carbonate buffer (pH~9.6)  

Note: For one plate, 96 x 100 µl = ~10 mL IgM solution in carbonate buffer. This means 

there is at least 5 µg IgM antibodies for one plate.  

II. Direct ELISA Procedure: 

1. Deliver 100 µl of IgM antibody solution in each well. Use a 8-chanel pipette to reduce 

the timing error. 

2. Incubate overnight at 4 oC under static conditions. 

3. Throw away the content and then, wash the well with washing buffer (0.5% tween 20 in 

PBS buffer pH~7.4, this will be called PBST now on) *3 times. During washing use 

multichanel pipette and make sure the attached antibody or any liquid from one well 

should never go into any other wells, otherwise there will be cross-well contamination.  

4. Fill all ELISA well with 5% nonfat milk in PBS buffer (weigh 5g non fat dry milk and 

dissolve in 100 mL of PBST buffer) 

5. Incubate for 2h at RT 

6. Throw away everything and wash the wells with washing buffer *3 as in step 3 

7. 12 column * 8 rows 

8. Each column *8 for one concentration 

9. Keep column 2 empty, fill column 1,3-12 with 100 μL of PBS buffer 

10. Column 2: 1 μM of adduct labeled with QD  
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11. Column 3: 100 μL of 1 μM of adduct labeled with QD 

12. Use a multi-channel pipette to mix the column 3 and then transfer 100 microL of solution 

from column 3 in to column 4, and so on until you reach column 12. 

13. Discard 100 microL from column 12 making 100 microL in each well 

14. Incubate for 2 h at RT and throw away with the content 

15. Wash with washing buffer*3 

16. Measure the intensity under plate reader 

 

4.4 Results and Discussion 

4.4.1 High Pressure Liquid Chromatography (HPLC): In order to determine the binding 

between the QDs and DNA-estrogen adducts and thiopyrene, a HPLC procedure was developed. 

HPLC chromatograms of QD-570, 4-OH-17-aminomethylestradiol-1-N7-Guanine and their 

assembly are shown in Figure 4.2. The QD conjugated adduct eluted at 21 min, which is the 

average of only QD-570 (33min) and only the adduct (12min).  

A 
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B 

 

C. 

  

Fig 4.2 HPLC chromatograms of QD-570 (10
-7

mg/mL) (A) 4-OH-E2-17-AM-1-N7-guanine (B) 

and QD-4-OH-E2-17-AM-1-N7-guanine (C) Upon binding of QD-570, the adduct peak shifts 

from 12 min to 21 min confirming QD-adduct assembly 

 

The HPLC chromatograms for QD-570, 4-OH-17-aminomethylestradiol-1-N3-Adenine and their 

conjugation showed three distinct peaks confirming QD-570 labeling. (Fig 4.3) The larger 

elution time for CdTe-4-OH-E2-17-AM-1-N3-adenine (26 min) is possibly due to aggregation of 

QD-adduct assemblies as seen under transmission electron microscopy (TEM). The aggregation 
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may be the result of QD-adduct assemblies through both aromatic and aliphatic amines present in 

4-OH-E2-17-AM-1-N3-adenine. The broad peak signifies polydisperse particles after 

bioconjugation. (B in Fig 4.3) 

A 

 

B 

 Fig 4.3 HPLC chromatograms of 4-OH-E2-17-AM-1-N3-adenine (A) and CdTe-4-OH-E2-17-

AM-1-N3-adenine (B) 

Thio-pyrene and its conjugate with QD-570 have shown similar elution peaks in HPLC (21min, 

21.5min respectively). The bioconjugation is confirmed as no QD-570 peak is observed in the 

HPLC chromatogram of the CdTe-S-pyrene. (Fig 4.4) 
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A  

  

B 

 Fig 4.4 HPLC chromatogram of thio-pyrene (A) and CdTe-S-pyrene conjuagate (B). The QD-

570 peak at 33 min is not observed after bioconjugation making sure successful labeling. 

The HPLC peaks of the QD-570, DNA-estrogen adducts, thiopyrene and their conjugates with 

QD-570 are summarized in the table 4.1.  

Table 4.1 Elution time for DNA-estrogen adducts, CdTe QD and DNA-estrogen-QD conjugates 

             QD, adducts and conjugates Elution Time 

(min) 

CdTe QD 33 

4-OH-17-aminomethlyestradiol-2-Guanine 12 

4-OH-17-aminomethlyestradiol-2-Guanine-QD 21 
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4-OH-17-aminomethlyestradiol-2-Adenine 37 

4-OH-17-aminomethlyestradiol-2-Adenine-QD 26 

Thiopyrene 21 

Pyrene-S-QD 21.5 

  

4.4.2 ELISA  

In order to confirm the labeling of DNA-derived estrogen adducts through carboxylic acid (-

COOH) functional group or thiopyrene through maleimide functionality present on CdTe QDs, a 

direct enzyme linked immunosorbent assay (ELISA) was performed. IgM antibody raised against 

DNA-estrogen adducts was used to recognize the labeled adducts on an ELISA plate (from 

where is the antibody). No fluorescent signal could be recorded with IVIS Lumina II equipped 

with a charge-coupled device (CCD) camera. However, ELISA test with 8E11 monoclonal 

antibody (mAb),
19

 used to recognize the pyrene moiety of CdTe labeled thiopyrene showed 

fluorescent signal from CdTe. The wells on ELISA plate was excited at 470nm and images were 

captured by CCD camera confirming the bioconjugation. (Fig 4.5) 

 

Fig 4.5 CdTe labeled thiopyrene excited at 470 nm for 10 s captured in CCD camera; 

commercial QD-620 was used to compare intensity with our QD-570 

 

The lack of fluorescent signal from the adduct-QD-570 conjugates was most likely due to low 

concentration of QDs as there was statistically large number of adduct per QD-570 through about 

85% carboxylic acid terminal ligand present on the surface of QD. (Fig 4.6) On the other hand, 

there was statistically much less number of thiopyrene per QD-570 since thiopyrene bound 

covalently only through 15% maleimide terminal ligand used to stabilize the QDs thereby 
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increasing population of pyrene-S-QD-570 being recognized by 8E11 mAb, an IgG type of 

antibody.  

 

 

 

Fig 4.6 Crowding of DNA-Estrogen adducts around CdTe QDs through –COOH group 

 

In addition, the IgM antibodies used to recognize DNA-estrogen-QD-570 conjugates are 

transmembrane proteins present in B-cell membranes. IgM antibodies are pentamers produced in 

a primary response to an antigen.
20

 The large size of IgM make it difficult to diffuse well in the 

intercellular tissue fluids and hence, found in low concentration. It undergoes maturation through 

heavy chain class switching (from µ chain to γ chain) into serum-soluble IgG. (Fig 4.7)  The 

steric hindrance offered by the IgM molecule is the probable reason for weak antibody-antigen 

interaction. It is important to develop IgG type antibody for better recognition. An effort is 

ongoing in the Iowa State University, Ames, Iowa in the direction of generating IgG type 

antibody against DNA-derived estrogen adducts, which has the potential to resolve the low 

binding constant of first generation IgM antibodies.  
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Fig 4.7 Maturation of IgM molecules into IgG requires heavy chain class switching 

 

In summary, the lack of fluorescence signal from estrogen-derived DNA adduct labeled with 

QD-570 in ELISA experiment may be due to (1) low concentration of QD-570 which has 

statistically very high number of adducts, (2) steric hindrance to non-covalent antibody-antigen 

interaction due to crowding of adducts around the QD-570 and (3) large size of IgM molecule 

(molecular weight 180,000) offers steric resistance to antibody-antigen interaction. (Fig 4.8) 

 

 

Fig 4.8 Summary of possible reasons for lack of fluorescence in ELISA experiment  
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4.5 Conclusions 

The synthesis of water-soluble CdTe nanoparticles by using twin 4,4’-bipyridinium salt based 

ligands featuring either a terminal carboxylic acid group or a maleimide unit, has been reported. 

Two bioconjugation schemes using these water soluble CdTe QDs are principally possible. This 

demonstrates the importance of this new class of QD stabilizing ligands. We envision not only 

bioconjugation of molecules with primary amine or thiol functional group through this strategy, 

but also photochemistry, such as Förster resonance energy transfer (FRET) on the QD surface.  
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CHAPTER 5- Concluding Remarks 

Several challenging hurdles had to be overcome in our continuous effort to meet the goal of 

developing a commercial biosensor for indirect detection of the estrogen-derived DNA adducts 

in urine samples of women at high-risk and with breast cancer.  It started with the chemical 

synthesis of DNA-estrogen adducts, 4-OH-E1(E2)-1-N3Ade and 4-OH-E1(E2)-1-N7Gua, 

potential biomarkers for breast and prostate cancer. In order to enhance the sensitivity of 

detection i.e. identifying these adducts at low concentration such as femtomolar (10
-15 

M) level, a 

labeling strategy with highly fluorescent quantum dots (QDs) had to be devised. An 

aminomethyl (-CH2NH2) linker was introduced at C-17 of these biomarkers for labeling strategy.  

 

The challenge of synthesizing water soluble QDs was met by using a new class of 4,4’-

bipyridinium salt based twin ligands. These ligands were used both to stabilize the QD 

nanocrystal surface and to label estrogen-derived DNA adducts. Direct synthesis of the aqueous 

QDs by metal evaporation-co condensation-reflux technique was able to subvert the problem of 

nanoparticle aggregation in water and broad emission spectrum. These QDs were found to be 

more photostable than traditional organic solvent soluble QDs synthesized by the same 

technique, thereby, opening a window for biomedical applications.  

 

A double labeling strategy was developed with QDs being stabilized by two ligand systems. 

HPLC and ELISA studies showed labeling of thiopyrene through the maleimide functionality 

present on aqueous QDs. The success of ELISA test proved that the 8E11, an IgG antibody-QD 

labeled thiopyrene binding was strong and this methodology can be used to capture fluorescent 

signals through antibody-QD labeled antigen. The second labeling strategy of estrogen-DNA 

adducts through carboxylic acid (-COOH) terminal ligand of QDs was demonstrated by using 

anion exchange HPLC, though the ELISA experiment indicated that the concentration of QDs 

per adducts was too low to capture a fluorescent signal. Part of the problem may be the inability 

of the IgM immunoglobulin used on ELISA plate to recognize these adducts at the low 

concentrations required for detection. IgM is a transmembrane protein formed as a result of 

primary immune response on a B-cell membrane. Maturation of IgM takes place through heavy 

chain class switching from µ to γ heavy chain resulting in an IgG antibody, a water soluble 

protein with high binding constant to the antigen present in blood serum.  
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The problem of very low concentration of QDs labeling the estrogen-derived DNA adducts was 

construed as statistically large number of adducts per QD due to 85% carboxylic acid (-COOH) 

terminal ligand on QDs. This interpretation was supported by detectable fluorescent signal from 

QDs labeling thiopyrene as it was labeled through only 15% maleimide terminal ligand present 

on QDs. In order to enhance the concentration of QDs per adduct, the labeling strategy has to be 

modified to a dilutly adduct labeled QD solution to decrease the probability of reaction between 

aminomethyl group (-CH2NH2) on the estrogen-DNA adduct and the carboxyl (-COOH) group 

on the QDs. This will probably result in labeling these adducts with QDs in 1:1 ratio permitting 

positive ELISA results. 

 

It is our intention to develop monoclonal IgG antibodies against the potential breast cancer 

biomarkers; 4-OH-E1(E2)-N3Ade and 4-OH-E1(E2)-N7Gua. One strategy would be to direct 

these adducts towards a special phagocyte known as dendritic cells (DCs) in a host animal. It 

would require labeling these adducts with an IgG antibody, N418, which is known to recognize 

the DC cell surface. Thus labeled adducts would, hopefully, be taken up by DCs and undergo 

proteolytic cleavage inside the cell finally exhibiting the estrogen-derived DNA adducts 

embedded in the histocompatibility complex II (MHC II) on the cell surface. Antigens exhibited 

on the DC surface have to activate T-helper (TH) cells through MHC II-T-cell receptor (TCR) 

interaction inducing TH cell to undergo a clonal expansion. Thus, proliferated TH cells come 

across rare B-cells presenting exactly same estrogen-derived DNA adducts through MHC II 

activating B-cells to undergo clonal expansion. This, in turn, leads to production of IgG antibody 

from IgM antibody present on B-cell membrane by heavy chain class switching. This rather 

complicated mechanism makes IgG antibody generation challenging.   

 

In summary, the central theme of my research was organic synthesis of standard estrogen-

derived DNA adducts and an aminomethyl (CH2NH2) linker at C-17 position, synthesis of a new 

class of 4,4’-bipyridinium salt based twin ligands, synthesis of water soluble QDs and finally, 

conjugating these QDs through CH2NH2 linker. Evaporation-co-condensation-reflux technique 

introduced by Prof. Kenneth J. Klabunde research group at Kansas State University was used to 

synthesize the QDs. Water soluble QDs were found to be more photostable than QDs 

synthesized in toluene and superlative photostability of these QDs has made them an appealing 

bioimaging tool in biomedical research.  
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Appendix A - 1
H and 

13
C NMR and Mass Spectra 

A 1. 
1
H and 

13
C NMR Spectra 

A 1.1 CHAPTER 2 

Synthesis of Estrogen-Derived DNA Adducts and Their Structural Modifications for 

Conjugation  
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A1.2 CHAPTER 3 

Direct Synthesis of Aqueous Quantum Dots through a 4,4’-bipyridine-Based Twin Ligand 

Strategy 
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A2. Mass Spectrometry 

A2.1. CHAPTER 2 
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Appendix B - QD Photostability Experiment 

Continuous wave (CW) laser of excitation wavelength 488nm from Spectra-Physics (made in 

Thiland) equipped with Nikon eclipse Ti microscope was used.  

Glass films of CdTe QDs (approximately 1µM concentration) were prepared from a solution of 

20 µL QDs in 1 mL poly(vinylalcohol) in HPLC grade water.  

 

The laser experiment parameters 

1. Acquisition Mode- Kinetics 

2. Trigger Mode- Internal 

3. Exposure Time- 1 second 

4. Accumulation cycle time- 1.288 second 

5. Number of accumulations- 1 

6. Kinetic cycle time- 1.288second 

7. Frequency- 0.77639 Hz 

8. Readout mode- full resolution image 

9. Readout time- 1MHz at 16-bit 

10. Pre-amplifier gain- 5.1X 

11. Output amplifier- conventional 

12. Baseline offset (counts)- 0 

Data Processing 

Image J and plotted in Igor (modified by Professor Daniel Higgins, Department of Chemistry, 

Kansas State University)  

B 1. QD Population Decay Histograms at Three Laser Powers 
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B 1.1 Laser Power = 1.9 mW; Frames 300, 500 

 

 

 



 93 

 

 

B 1.2 Laser Power = 1.5 mW; Frames 300, 500 
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B 1.3 Laser Power = 1.0 mW; Frames 300, 500 
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Table B.1 Life Time of aqueous CdTe 

1.9 mW 1.9 mW 1.5 mW 1.5 mW 1.0 mW 1.0 mW 

Frames 

(Seconds) 

  300  

   500  300      500     300 500  

45.4 25 28.6 40 13.3 19 

33.3 33.3 7.14 32.2 16.6 12.34 

43.4 N/A 5 N/A 23.25 N/A 

 

B 2. Population of Aqueous CdSe Vs Time (Second) at Three Laser Powers 

B 2.1. Laser Power = 1.9 mW; Frames 300, 500 
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B 2.2 Laser Power = 1.5 mW; Frames 300, 500 
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B 2.3 Laser Power = 1.0 mW; Frames 300, 500 
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Table B.2 Life Time of aqueous CdSe 

1.9 mW 1.9 mW 1.5 mW 1.5 mW 1.0 mW 1.0 mW 

Frames 

(Seconds) 

 300  

   500  300      500     300 500  

27.7 58.8 12.5 9.1 12.5 16.6 

25 43.48 50 41.6 33.3 16.6 

 

B 3. Population of Toluene-Dissolved CdTe Vs Time (Second) at Three Laser Powers 

B 3.1. Laser Power = 1.9 mW; Frames 300, 500 
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B 3.2 Laser Power = 1.5 mW; Frames 300, 500 
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B 3.3 Laser Power = 1.0 mW; Frames 300, 500 

 

 

 

 

Table B.3 Life time of organic CdTe 

1.9 mW 1.9 mW 1.5 mW 1.5 mW 1.0 mW 1.0 mW 

Frames 

(Seconds) 

300  

   500  300      500     300 500  

77 50 33.3 25 25 16.13 
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B4. Still Images from Videos at 0 s and 4s 

 

      Aq. CdTe, 1.5mW, Time 0s                     Aq. CdTe, 1.5 mW, Time 4s 

 

 CdTe-TOPO, 1.5mW, Time 0s                 CdTe-TOPO, 1.5mW, Time 4s 
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                             Aq. CdTe, 1.0 mW, Time 0s                  Aq. CdTe, 1.0 mW, Time 4s 

    

       

     CdTe-TOPO, 1.0mW, Time 0s                     CdTe-TOPO, 1.0mW, Time 4s 
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Appendix C - Images from and Confocal and TEM  

C.1 Confocal Images of 4,4’-bipyridinium salt based ligands 
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C2. TEM images of CdTe labeled estrogen-derived DNA adducts 

 

 

 

 


