
A FEASIBILITY ASSESSMENT OF A FINITE ELEMENT
REAL TIME, TIME OPTIMAL CONTROLLER^

by

DONALD ALLAN SMITH

B.S., Kansas State University, 1985

A THESIS

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

MECHANICAL ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

)^{^y^P^—
Major Professor

mz

S4>5

A11S0S IBSt.16

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS lv

LIST OF TABLES vi

ACKNOWLEDGEMENTS vii

Chapter
1. INTRODUCTION 1

The development of Minimum-Time Control 1

Previous Work 2

Project Overview 7

2. GENERATION OF THE FINITE ELEMENT FINAL TIME GRID 12

The Square Grid 12

The R-Theta Grid 13

The Grid Construction 13

The Grid Formulation 14

Isochrone Solution 20

Finite Element Grid Verification 24

Generating the Control 25

The Square Grid 25

R-Theta Grid 28

3. COMPUTER TEST SYSTEM 31

The Overall System 31

Hardware Details 34

The Two PC's 34

Communication Hardware 35

Software Details 35

4. PERFORMANCE OF THE MINIMUM TIME CONTROLLER 39

Testing the Controller 39

Generating control from the square grid 43

Generating control from the R-Theta grid 45

ii

5. CONCLUSIONS AND RECOMMENDATIONS 78

Conclusions of the Investigation 78

Recommendations for Further Study 79

APPENDICES

1. THE COMMUNICATION HARDWARE 81

The PDMA-16 and DMA Hardware 81

The Mechanics of the Communication 85

The Handshaking Hardware 87

Parts List 94

2. THE COMPUTER TEST SYSTEM SOFTWARE 102

ZSIMUL and ZRSIMUL 102

HPSIMUL - Switching Curves Control 126

HPSIMUL - Finite Elements Control 133

Principle Hardware Configuration Subroutines 154

Assembly Support Subroutines 172

REFERENCES 194

iii

LIST OF ILLUSTRATIONS

1.1 Isochrone plot for a double integrator system 11

2.1 Node numbering for the R-Theta grid 15

2.2 Element numbering for the R-Theta grid 16

2.3 Finite Element Grid Performance 27

2.4 Element types for the square grid 30

2.5 Element types for the R-Theta grid 30

3.1 The computer test system 32

4.1 Pseudo-Random number set 42

4.2 Distribution of Pseudo-Random number generator 42

4.3 Isochrone plot for the square grid 44

4. 4.

a

History plot for square grid control, set 1 46

4.4.b History plot for square grid control, set 2 47

4. 5.

a

Element plot for grid 1 52

4.5.b Isochrone plot for grid 1 53

4.5.C History plot for grid 1 control, set 1 54

4.5.d History plot for grid 1 control, set 2 55

4. 6.

a

Element plot for grid 2 56

4.6.b Isochrone plot for grid 2 57

4.6.C History plot for grid 2 control, set 1 58

4.6.d History plot for grid 2 control, set 2 59

4. 7.

a

Element plot for grid 3 60

4.7.b Isochrone plot for grid 3 61

4.7.C History plot for grid 3 control, set 1 62

4.7.d History plot for grid 3 control, set 2 63

4. 8.

a

Element plot for grid 4 64

4.8.b Isochrone plot for grid 4 65

4.8.C History plot for grid 4 control, set 1 66

4.8.d History plot for grid 4 control, set 2 67

4. 9.

a

Element plot for grid 5 68

4.9.b Isochrone plot for grid 5 69

4.9.c History plot for grid 5 control, set 1 70

4.9.d History plot for grid 5 control, set 2 71

4. 10.

a

Element plot for grid 6 72

4.10.D Isochrone plot for grid 6 73

4.10.C History plot for grid 6 control, set 1 74

4.10.d History plot for grid 6 control, set 2 75

4. 11.

a

Element plot for grid 7 76

4.11.D Isochrone plot for grid 7 77

Al.l Symbol definitions for circuit diagrams 96

A1.2 Circuit diagram of the PDMA interface 97

A1.3 Circuit diagram of transfer request
frequency generator 98

A1.4 Circuit diagram of transfer request controller 99

A1.5 Circuit diagram of interrupt frequency filter 100

A1.6 Circuit board layout 101

LIST OF TABLES

4.1 Grid characteristics 51

4.2 Controller performance 51

Al.l Logic diagram of data bus enable 88

Al.2 Pin out for the 37 and the 40 connectors 90

Al.3 Zenith transfer request logic table 91

Al.4 Hewlett Packard transfer request logic table 92

vi

ACKNOWLEDGEMENTS

I would like to thank the people which have contributed to this

thesis. Thanks go to my graduate committee for their time and support,

Dr. J. Garth Thompson, Dr. Chi -Lung Huang, and Dr. Donald Lenhert. For

my major advisor, special thanks go to Dr. Warren White Jr. for his

support, direction and the confidence throughout the work. The

Department of Mechanical Engineering, Kansas State University for the

equipment and financial support. Dr. Tom Gallagher, Director of the

Computing and Telecomunications Center, David Naas , and the rest of the

Center's staff for the help and support. My parents for all the

support and advice

.

Chapter 1

INTRODUCTION

The Development of Minimum-Time Control

Automatic control systems are used in hundreds of applications.

They regulate many aspects of daily life. Simple systems to control

the temperature in a house to advanced systems to control a satellite

are all part of the technological world. A major part of the control

systems in use are based upon a proportional-integral-derivative (PID)

control. These PID controls systems are often based upon traditional

performance criteria in both the time and frequency domain such as rise

time, settling time, peak overshoot, gain margin, and phase margin.

These performance criteria are sometimes not enough to achieve the

desired design goals and another technique such as optimal control is

used.

Optimal control seeks to minimize (or maximize) a system

performance criteria, such as time, fuel, or efficiency. Minimum time

control seeks to move a system, described by the relation

X(t) = a(X(t), U(t)) (1.1)

from some initial position or state to some final configuration in the

least amount of time. For this system, X is the n dimensional state

vector, X is the rate of change of the state vector, and U is the

control driving the system.

Optimal controls are used in a variety of applications.

Manufacturing operations use optimal control techniques to minimize

production costs . Optimal control techniques are used throughout the

plant on robotic and machining equipment. More specific applications

of optimal controls are used by the military on missile tracking

systems, guidance systems, and various other weapons systems. In outer

space, the jet controls of a satellite are an on/off system, thus

bang-bang controls. The applications of optimal controls continues to

grow and expand.

Previous Work

The technological change along with the new demands on industry

in the 1950 's helped motivate the development of optimal control

theory. The mathematical development of optimal control theory was led

by Bushaw [1] and Bellman [2]. The Russian mathematician,

Pontryagin [3] published his minimum-maximum principle, "The optimal

control to obtain minimum- time response is maximum effort throughout

the interval of operation." This defined controls operating at their

limits or "bang-bang" controls. These theories were proved by

LaSalle [4] and various others. A paper by Oldenburger and

Thompson [5] was one of the first attempts to synthesize optimal

controls for design purposes. Methods were presented for finding the

switching functions in terms of the state variables for a variety of

second and third order systems. The early problems treated were simple

enough to be solved analytically. With the advent of the computer,

techniques for solving the more complicated problems were developed.

These new approaches were mainly numerical techniques.

There are four areas of numerical techniques to solve the

minimum-time problem: 1) minimization of the discretized problem,

2) iteration on the initial or final values of the costate variables,

3) iteration on the switching time of the controls, and 4) generating

control from the minimum- time isochrones.

Shetty [6] presented a finite element approach to solve for the

optimal control of a two degree of freedom manipulator. Time is

divided into uniform intervals and the state and costate variables are

treated as unknowns at each time increment. The Hamilton-Jacobi

equation is applied as a boundary condition at both the start and the

end of the interval for which the control is sought. The method

produced comparable results to those obtained by a continuous solution

method. The method is sensitive to the closeness of the initial guess.

Subrahmanyam [7] applied Newton's method to the time discretized

problem. An interpolation polynomial was used to approximate the state

and control history. A recursive formula is used to iterate until

convergence

.

The second technique used is iteration on the initial or final

values of the costate variables. The basic technique iterates on the

unknown initial values for the costate variables until convergence.

Various techniques for updating the guesses have been used.

3

Knudsen [8] used a Newton-Raphson to iterate on the guesses for a

single input, linear, time invariant system. Lastman [9] made guesses

for the initial values of the costate variables and t
f

. He then

integrated the system forward in time. He used Newton's method to

determine the switching times. Along the same path, Lasdon, Mitter,

and Warren [10] used a conjugate gradient minimization to update the

guesses. Lewine and Thorp [11] were also similar but used a

second-variation decent technique to update the guesses. Kahn and

Roth [12] used guesses for the final values of the costate vector for a

model of a kinematic chain. The system was integrated backward in time

to see if the initial state could be reached. The final values of the

costate variables were iteratively changed until close approximations

for the initial state were determined.

The third technique uses iteration on the switching times to

solve the problem. Larson [13] presented a technique he called "time

interval optimization." A Newton-Raphson iteration is used to adjust

the switching times. A successive approximation procedure, the Piccard

Method, was used to approximate the state variables. Smith [14]

presented a technique for solving a linear system for which there are n

switches. He arbitrarily chose a bang-bang control and then integrated

forward in time to get the terminal error. The terminal error was used

to improve the initial choice of the switching times by using two

parallel optimization processes. Yastreboff [15] presented a technique

also for linear systems. Control switching times are arbitrarily

selected. With the controls unbounded, the system is integrated

forward in time to the desired terminal condition. The switching times

are then adjusted to minimize the control magnitudes between each of

the intervals and then the process is repeated. The solution is

reached when the magnitude of the controls for all the intervals is the

same. Davison and Monro [16] presented a technique for solving for the

control for a non- linear time varying case. The number of switches for

the system is selected. The system is then integrated forward in time.

The switch times are varied and Rosenbrock's hill climbing method is

used to iteratively adjust the switching times. Wen and

Desrochers [17] presented a similar technique for solving for the

switching times but used a gradient method. Niemann [18] improved upon

the work of Wen and Desrochers. The original technique did not always

yield a solution to achieve the final state.

It should be noted that the switching- time optimization

techniques assume the system is bang-bang. The goal of the technique

is to find a bang-bang control to achieve the final state. At times,

such a solution is also time optimal.

The final technique covered is generating control from the

system's minimum-time isochrones. Minimum-time isochronal surfaces are

the set of states that can be taken to the final destination in the

a
same minimum time, T . The minimum- time isochronal surfaces form a

family of closed convex surfaces in the state space which expand

monotonically from the final destination as T increases from zero to

infinity. Algebraic expressions for the isochronal surfaces for

certain second order surfaces have been developed in Lee and

Markus [19], Athans and Falb [20], and Ryan [21]. Explicit algebraic

expressions have been derived for the isochronal surfaces for certain

third-order systems with real eigenvalues and a single saturable

control input by Ryan [22].

Rajendran [23] presented a technique using a finite element

approach to solve for the minimum- time isochrones of the system. The

system's state variables were treated as the independent variables

therefore, time was eliminated from the analysis. The technique

converges quickly and gives a reasonable approximation to the

minimum- time isochrones and minimum time control.

Lee and Marcus [19] presented a technique suggested by Athans and

Falb [20] for generating the control from a system's minimum-time

isochronal surfaces. Luh and Shafran [24] presented an implementation

of this technique for a fourth order linear system. The minimum-time

isochrones were calculated for a discrete set of points using a known

technique. The isochrones were approximated by a hyperellipsoidal

function. The coefficients of the set of hyperellipsoidal functions

are approximated by a set of continuous functions of state. The

continuous functions were generated by a least squares fit to the

calculated isochrone distributions. The approximate functions were

then used to determine control. An implementation of the controller

provided good results. The technique is limited by the density of the

original isochrone grid and the number of state points for the least

squares fit.

A related paper by Smith [25] presents a technique for

approximating the switching curves as linear-segments using a

least-squares fitting technique. Points on the switching curves are

generated by other known techniques. Linear segments are then fitted

to the points. He applied this procedure to obtain an approximate

expression for the switching surface of a triple integrator. The

technique is similar to the minimum- time isochrones technique because

the isochrones are approximated by a grid of discrete points.

Project Overview

This paper is an investigation into using the minimum- time

isochrones to control a system. The system used is the double

integrator problem,

& - AX + BU (1.2)

where

[S I] - »-[!]

where X. is the state variable, X. is the rate of change of the state

variable, and U is the control driving the system. The control U has

the magnitude constraint of

|U| < 1 . (1.4)

The cost function for the minimum time problem is

J -
I

f
1 dt . (1.5)

Since the constraints on U are linear, the system is bang-bang. The

optimal control Hamiltonian is

H(X(t), U(t), A(t)) - 1 + A
1
(t)x

2
(t) + A

2
(t)u(t), (1.6)

where A, is the costate variable. To minimize the optimal control

Hamiltonian, a control given by

u(t) - -sgn(A
2
(t)) (1.7)

is chosen. The sgn is the signum function. From the optimal control

Hamiltonian, the time derivatives of the costates are found to be

A,(t) - 0, (1.8. a)

and

A
2
(t) - -A^t). (1.8.b)

For this particular formulation of the minimum time double integrator

problem, Bryson and Ho [26] demonstrate a continuous dependence of the

costates on the final time as

St
X
l
- _t ,

(1.9. a)
3x,

and

at
A, - _i .

(1.9.b)

ax
2

Note that Aj and A 2 point in the direction of greatest increasing final

time. From Rajendran's [23] discrete finite element work

u - sgn(A
2

(1-X
2
A
1

)), (1.10)

the discrete form of control. The system's minimum- time isochrones can

be used to calculate A. and A„ from which the control is then

calculated. Figure 1.1 shows a plot of the isochrones of a double

integrator system.

Chapter Two develops the two discrete minimum- time isochrone

grids used. The first grid was from Rajendran's [23] development using

a square finite element grid. The second grid is developed using a

R-Theta grid based upon the switching curves.

Chapter Three describes the computer test system used to simulate

the control system. The test system consisted of 2 personal computers,

one a digital controller and the other simulates a double integrator

system. Communication was handled by using a high speed, parallel

communication link based upon Direct Memory Access (DMA)

.

Chapter Four presents the results of the simulations. Control

generated by minimum- time isochrones is compared to control generated

using the switching curves. Two sample rates were used, At - 0.02 and

0.03 seconds.

Chapter Five presents the conclusions of the investigation and

gives recommendations for further work.

INTEL is a registered trademark of the INTEL Corporation.

Hewlett Packard Vectra is a registered trademark of Hewlett Packard

Corporation. Zenith Z-159 is a registered trademark of Zenith

Corporations. MetraByte PDMA-16 Is a registered trademark of MetraByte

Corporation.

10

Figure 1.1: Isochrone plot for a double integrator system

11

Chapter 2

GENERATION OF THE FINITE ELEMENT FINAL TIME GRID

The Square Grid

The use of the square grid to generate the finite element final

time grid is a direct implementation of Rajendran's [23] work . The

work was also presented in a paper by White and Rajendran [27] . In

their development it was shown that

u- «gn[A
2
(l-x

2
A
1
)] (21)

for their discrete finite element work. Substituting Equations (1.9. a)

and (1.9.b) for ^ and A,, gives the continuum function for control of

the system from the final time grid.

For the square grid approximation, the switching curve passes

through the elements. The switching curve is approximated by a

horizontal straight line across the element, parallel to the X
±

axis.

This approximation causes discontinuity of the switching curve between

elements. Using this straight line approximation causes the system to

chatter about the straight line. The chattering increases as the state

origin is approached because the gradient of the switching curve is

also increasing in magnitude.

12

A new grid is needed to provide a smoother control. A denser

placement of nodes around the state origin would give a better

approximation of the control as the gradient of the switching curve

increases. Polar geometry would provide a better tool to satisfy these

constraints

.

The R-Theta Grid

The Grid Construction

The polar geometry grid will be based upon the switching curve of

the system. The switching curves will be approximated by the sides of

a string of elements (see nodes 1, 2, 8, 14, and 20 in Figure 2.1).

This is a linear segment approximation to the switching curve. The

number of points along the switching curve is a user input variable, #

CIRCLES. Each discrete point on the switching curve will be rotated

about the origin to generate a series of nodes . The angular

displacement of each node will be a function of an input variable. The

input variable will be the total number of rotations, # SPOKES. This

input number must be an even number to insure the symmetry of the

system and the two switching curves. To increase the number of

elements around the state origin, a user input grid scaling factor will

be used, GRID FACTOR. The radius of the current circle will be a

function of the previous circle, and the GRID FACTOR,

r.
+

. - r. * GRID FACTOR . (2.2)

13

The user specifies the total scale size, SCALE which is the radius of

the outer circle. SCALE is then combined with the number of circles

and the grid factor to determine the radius of the inner circle.

The node numbering for a simple grid is presented in Figure 2.1.

The element numbering is shown for the same grid parameters in Figure

2.2. Note the change in element styles along the row of elements on

the lower side of the switching curve in the fourth quadrant of Figure

2.2. This was implemented to keep the size of the bandwidth of the

system to a minimum.

The Grid Formulation

While it was the purpose of this investigation to determine if

the finite element isochrone distribution could be used to provide

suitable control, some opportunity existed for testing different finite

element formulations so as to assess the ability of the formulation to

provide accurate isochrone information. In a previous study ite and

Rajendran [27] used the Hamilton-Jacobi equation coupled with the

minimum time functional to determine not only the isochrone values but

also the control with an iterative solution process. The solution

produced by this method is not suitable for control purposes owing to

the large amounts of chatter as mentioned earlier. Because of this

chatter a new finite element grid based upon the switching curve was

chose for this work. The new grid eliminates the necessity of

iteratively determining the control since the problem is now linear.

Since the finite element grid can be built and the control determined

in advance by integrating the state equations backward in time, the

question arose as to what freedom does this introduce in determining

spokes - 6

circles - 4
scale - 5.0
grid factor - 2.0

Figure 2.1: Node numbering for Che R-Theta grid

15

spokes - 6

circles - 4

scale - 5

grid fact or - 2

Figure 2.2: Element numbering for Che R-Theta grid

L6

the isochrones. Specifically, if the control distribution is known is

the Hamilton-Jacobi equation sufficient to determine the isochrones? A

related question consists of finding the necessary boundary conditions

if this approach should prove possible.

To be presented are the steps leading to a pure Hamilton-Jacobi

formulation, the results of this approach, and the method selected to

provide a solution for the purposes of this investigation.

The isochrone distribution satisfies the first order partial

differential equation

Vt
f

• X - -1 (2.3)

where the V is the vector gradient operator given by

2
T

- (!_ f_ • • —) (2-*)

3x, 3x„ 3x
1 z n

for a system of order n. Equation 2.3 has many different solutions

depending upon the final state. Another way to describe Equation 2.3

is that the optimal control Hamiltonian is a constant of the motion

which can be stated on a continuum basis as

iH-i (1+A.X) - -X-7(X.Vt
f) - (2.5)

dt dt

where the time derivative translates into the spatial operator

(2.6)
dt

17

Equation (2.5) provides a second order, partial differential

equation for the final time distribution and is well suited for finite

element analysis. In order to develop a finite element formulation of

Equation (2.5) we will use the Galerkin method, as described by Huebren

and Thorton [28] . Assume the state variables are described by the

interpolation function given by

3

I
i=l

The functions N, are linear finite element interpolation polynomials

t
f
(X) - V BiCD t

f
- (NJ

T
{t

f
J . (2.7)

.j_t i

for a two dimensional domain and are the same interpolation polynomials

used by White and Rajendran [28]

.

The Galerkin method when applied to Equation (2.5) produces

-| (N) X-V(X-Vt)dD - (2.8)
J D

re
e

where D
g

is the domain of the element. Integrating Equation (2.8) by

parts produces

-[(N)(X.S)(X-Vt f)dS + f (VlNl-XKX-Vt^dD +
J s

r e j t e

e e

(N)(V-X)(X-Vt
f
)dD

e
- (2.9)

18

where S is the exterior surface of the element and S is the outward
e -

unit normal to the surface. By invoking the Hamilton- Jacobi equation

in the first and last terms of Equation (2.9) we have

(V{N).X)(X-Vt„)dD -
[((N}V.X)dD - f (N}(£.S)dS o (2.10)

J D
r e J D

e J s
e

e e e

Equation (2.10) has a symmetrical element matrix and the boundary

integral needs to be computed only on the exterior boundary of the

problem since the boundary integral cancels on inter-element

boundaries

.

The divergence of X in the right hand side of Equation (2.10)

requires some examination. In areas where the control is constant the

divergence of X vanishes. Where the control is changing the divergence

of X will consist of impulses which when integrated will provide a

contribution to the element. These contributions will occur at nodes

which are located along the switching curve. This introduces two

possible solution methods. The first is to leave the node on the

switching curve unspecified and include the nodal contribution caused

by the discontinuity of control. The second is to specify the value of

the final time at the node since this information is available from the

grid construction. Specifying the final time at the node will

eliminate the need for this particular element contribution.

An element assembly and solution procedure based upon

Equation (2.10) was developed which used the polar grid described

earlier. For the boundary conditions the user had the option of either
19

1) specifying the final time at the origin, 2) specifying the final

time at the origin and along the switching curve, or 3) specifying the

final time at the origin, along the switching curve, and on the

external boundary.

In all boundary condition cases just described, no satisfactory

solutions could be obtained by this technique. Away from the switching

curve the isochrones tended to become horizontal and resembled a

solution found by White and Rajendran [28]. At this point the

investigation into possible finite element formulations was abandoned.

The conclusion drawn from this brief examination is that

Hamilton-Jacobi together with the particular finite element

interpolation used is not sufficient to determine the minimum time

isochrones

.

Isochrone Solution

The starting point for the determination of the minimum time

isochrones is the least squares finite element formulation of White and

Rajendran [27]. In this work there is no longer a need to iterate in

order to solve for the equations owing to the method chosen to

construct the grid. To be presented is the least squares finite

element performance index, the finite element equations, and the

boundary conditions chosen to provide a solution for this

investigation.

The least squares, finite element performance index is given by

20

I
fe

-
[- [d+X'Vt

f)

2
+ K(t

f
-(2Xl x

2
).Vt

f)

2
]dA (2.11)

where K is a constant of unit magnitude which insures consistency of

dimensional units. Equation (2.11) is based upon two separate

equations. The first is the Hamilton- Jacobi equation given as

Equation (2.3). The second equation, given by

t
f
- (2x

L
x
2
)-Vt

f
(2.12)

is exactly the minimum time functional. Equation (2.12) is obtained by

repeatedly integrating the minimum time functional by parts. The

solution obtained by minimizing Equation (2.11) is the best fit to the

Hamilton-Jacobi equation and the minimum time functional.

The interpolation of the final time over an element is provided

by

t
f

- (N)
T
ft

f
) (2.13)

where (t_) is the vector of final time values at each element vertex.

The ith element of the vector {N} is given by

N
i
(x

1
,x

2
) - (aj + bjXj + CjX

2
)/2A (2.14)

where a., b. , and c are all constants determined by the elementill J

geometry and the A is the area of the triangle. The function N. has

the property of being unity at node i and zero at the remaining nodes.

Using Equation (2.13), the gradient of the final time becomes

21

vt - v(N)
T
(t) - J;

1
2A

b
l

b
2
b
3

(2.15)

The interpolation given by Equation (2.13) is substituted into

the performance index of Equation (2.11). The finite element equations

are obtained by minimizing Equation (2.11) through

3(t
f

)

I- -
fe

(2.16)

Performing the operation indicated by Equation (2.16) produces after

considerable algebra, the matrix equation

[ELM](t
f

) - (ERSV) (2.17)

where

ELM., - t (H^b.b, + H^b.c, + b.c.) + H„c.c)/A
ij ll"i"j

T
"12^i"j

T
"J
w
i' "22 1

-i-j'

[(2x + 6x)b + (x, + 3x,)c]/24
i AVE J i AVE J

[(2X, + 6x.)b + (x, + 3x,)c]/24

j AVE j AVE

+ (1 + «
iJ

)A/12 (2.18)

and

_ (b.«x, + c • u)

2 ^AVE
(2.19)

2 2

In Equations (2.18) - (2.19) the quantities x. and x„ are the
AVE AVE

centroidal values of the state variables in the element, u is the

control in the element, and S ,. is the Kronecker delta. The quantities

H.. , H.„, and H-, are given by

HH "
J,

(x* + 4x^)dA, (2.20)

A

H
12

-
J

(ux
2
+ 2Xlx 2

)dA, (2.21)

and

H
22 -J

(1 + x^)dA . (2.22)

A

Equations (2.20) - (2.22) are easily evaluated as moments of the

triangular area about the state axes.

Equation (2.17) for each element is evaluated and assembled

together to form the global system of equations in the standard finite

element fashion (see Huebren and Thorton [28]). The boundary

conditions used to complete the formulation were to specify the final

time at the state origin, along the switching curve, and at the

external boundary. The specification of the final time at the state

origin and the external boundary is a necessary step as pointed out by

White and Rajendran [27]. The specification of the final time along

the switching curve is not necessary to produce a correct solution

however, since this information was determined independently when

23

building the grid and it was desired to have accurate final time

gradients in the vicinity of the switching curve, the final time at

each switching curve node was specified.

Finite Element Grid Verification

The results of the finite element grid will be tested by two

techniques: 1) the performance index versus the number of nodes, and

2) the error from the true solution versus the number of nodes.

If the formulation for the finite element grid is correct, the

performance index given in Equation (2.11) should decrease

monotonically with increasing number of nodes. With the increase in

the number of nodes, the base ten logarithm of the number of nodes

versus the base ten logarithm of the performance index is plotted in

Figure 2.3. The data forms a straight line confirming the validity of

the solution.

The second test will be a plot of the error from the true

solution. The error is calculated by

(«=*)

2
dA

ELEMENT TRUE

t dA
'a true

(2.23)

The error should also decrease monotonically as Che number of nodes is

increased. Figure 2.3 shows a plot of the base ten logarithm of the

number of nodes versus the base ten logarithm of the error. The data

forms a straight line which confirms both the solution and the

24

convergence of the finite element results to the true solution as the

size of the elements shrinks to zero.

Generating the Control

The Square Grid

The method the control subroutine uses to generate control has

two parts: 1) determine the element number in which the current state

position is located, and 2) calculate the control based upon that

element.

The technique to determine which element corresponds to the

current state position is simplified by using the square grid shape.

Using the number of elements across the grid together with the element

size, the element in which the current state is located can quickly be

calculated.

The control calculation is a function of element type (see

Figure 2.4). For an upper element

at -(t -t)

A
1
- _ - " tX

(2.24)

8x- L

and

3tf - (t f
, -tf«)

X
2
- _ - ri ^

(2.25)

3x„ L

while for a lower element

at -CWt
2)

X
1
- - " ZA

(2.26)
3x. L

25

and

3t
f " (tfl"

t
f3 >

A, - _ - rl r
(2.27)

3x
2

L

where t,. is the final time value for node i and L is the length of the

side of the element. Equation (2.1) is evaluated at each node. If the

control is the same for all three nodes, then the element does not lie

on the switching curve and the control at any node is valid. If the

control has a different sign at any of the nodes, the current state

position must be compared to the horizontal line approximation for the

switching curve. The approximation line is located at the X„

coordinate of

x , - L (2.28)
X
1

and U. - the control at the node having the unique sign. For an upper

element, if x. is greater than x
?

then the control is opposite in sign

to U. whereas if this inequality is not satisfied then the control is

equal to U.. For a lower element, if x~ is less than x« then the
J

'2 2s

control is opposite in sign to U. however should the state point be

located on the opposite side of x„ than the control is of the same

sign as U.

.

26

X -0.500 --

-1 .000 --

-1 .500 --

-2.000

-2.500

-3.000 -L

o
o

LOO10(PERFORMANCE JUDEX)

LOO10(ERROR)

(XI 00
)

L0G10(§ NODES)

Figure 2.3: Finite element grid performance

11

The R-Theta Grid

The same main two steps are used by this subroutine as was used

by the square grid algorithm.

The technique to determine the element number in which the

current state position is located is difficult due to the grid shape.

The first step is to determine the doughnut of the current state or the

two circles between which the state is located. Four iterations of a

bisection technique are first used to reduce the solution area. The

initial values of the maximum and minimum radius are the outer radius

and zero, respectively. The minimum radius is then increased until it

is larger than the radius for the current state. The spoke number is

determined by calculating the angle between the switching curve node in

the fourth quadrant of the inner radius of the doughnut and the current

state position. To determine if the position is in the inner or outer

element, (see Figure 2.5) an imaginary line is drawn between the

current state and the state origin. The intersection of this line and

the element edge separating the upper and lower elements is calculated.

If the distance to the intersection point is greater than the distance

to the current state the element is an inner element. Failing this

test it is an outer element. Two special cases must be accounted for

which are: 1) if the current position is inside the inner-most radius,

there is only a single element to each spoke, and 2) the last spoke -

the row of elements in fourth quadrant under the switching curve form

an approximate mirror image of the other shapes just above the

switching curve.

28

The finite element grid presents a technique for solving for the

system's isochrones. The control can now be calculated by using

-at
u - sgn(_) . (2.29)

3x
2

at
The derivative is calculated by using Equation (2.15) with the

area of the triangle calculated using Equation (2.14).

29

1 L

2 L

UPPER ELEMENT LOWER ELEMENT

Figure 2,4; Elenent types for the square grid

DUTER ELEMENT

INNER ELEMENT

Figure 2,5: Element types for the R-Theta grid

30

Chapter 3

COMPUTER TEST SYSTEM

The Overall System

The computer test system is made up of two personal computers

(PC's). One computer is the digital controller and the other simulates

a double integrator system. A digital sample scheme is used to

synchronize communications between the two computers. This

communication is accomplished over a 16 bit parallel bus using Direct

Memory Access (DMA). Figure 3.1 shows the system layout.

The task of the digital controller is to wait until the control

system requests the control. When the request is made, the controller

1) receives the current state vector, 2) calculates the control for

that state, and then 3) returns the control to the dynamic system. In

a true plant-controller system, the sample rate would drive the digital

controller. The controller samples the state of the plant and then

specifies control for that instant of time.

The main function of the simulated control system begins at the

start of a sample interval. When a sample interval is signaled, the

dynamic system sends the current position to the controller. A short

time later when the system receives the control from the controller it

integrates the system forward in time using the new control.

31

ZENITH
Z-159

HEWLETT
PACKARD
VECTPA

HANDSHAKE HARDWARE

DMA CDMMUNICATIDN BUS

Figure 3,1 ; The computer test

32

The DMA communication link operates at a rate of 50,000 16-bit

words/second. The link can run up to approximately 100,000

words/second. This high speed communication link was used to minimize

the time spent transferring data between the two computers and to

relieve each processor from the communication overhead.

All control system tasks are interrupt driven. An interrupt is

sent to the control system to signal a sample time interval. The

control system initiates the DMA data transfer to send out the state

vector. When the vector has been sent out, another interrupt signal is

generated which sets a DMA transfer to receive the control. An

interrupt is generated when the new control has been received. The

system is integrated forward in time using the new control. The DMA

transfer is then set up to send out the state vector at the next sample

interrupt

.

The controller's interrupt structure is similar. The DMA cycle

is set up to receive the state vector. An interrupt is generated at

the end of the transfer of the state vector. The interrupt routine

calculates the control for that state position and then sets up the DMA

transfer to send out the control. At the end of the transfer another

interrupt is generated. This last interrupt then sets up the DMA

transfer to receive the state vector of the next sample, finishing the

cycle

.

The interrupt driven structure is a very powerful system. This

allows the central processor to be performing other tasks and only

devoting attention to servicing the interrupt when absolutely

33

necessary. However, using the interrupt structure is disadvantageous

in several ways. The software is more complicated. The development of

software and hardware in the interrupt environment is extremely

difficult. Using floating point arithmetic in the interrupt routines

further complicates the problem. The state of the central processor

has to be saved during the interrupt as well as the state of the

numeric coprocessor. The interrupt handling problem turned out to be

extremely difficult. The interrupt handling routines worked for a

large part of the time but still occasionally failed. The reason for

the occasional failures was not discovered, but was probably due to the

floating point coprocessor.

Hardware Details

The Two PC's

The controller PC is a Hewlett Packard Vectra. The central

processor is the INTEL 80286. The 80286 operates at a clock speed of 8

MHz. The HP Vectra has an INTEL 80287 numeric coprocessor. The HP

Vectra is equipped with a 20 Mbyte hard drive, a 1.2 Mbyte floppy disk

drive, a 360 Kbyte 5 1/4 inch floppy disk drive, a parallel port, and a

serial port. DOS, version 3.10 was the operating system used.

The PC being used to simulate the double integrator system is a

Zenith Z-159. The central processor is the INTEL 8086. It has a dual

clock speed of 4.77/8 MHz (all the work was done at the 8 MHz setting).

It has an INTEL 8087 numeric coprocessor. It is equipped with a 20

Mbyte hard drive, a 360 Kbyte 5 1/4 inch floppy disk drive, a parallel

34

port, and a serial port. DOS, version 3.20 was the operating system

used.

Communication Hardware

Both PC's were equipped with a MetraByte PDMA-16 communication

board. The PDMA-16 board is equipped with internal DMA and interrupt

control hardware. The PDMA board also has an 8254 programmable

interval timer. The PDMA board has the control hardware to transfer

via DMA, 8 or 16 bit data from memory to its I/O ports or from its I/O

ports to memory. The PDMA board has available for external use two

input lines: 1) the DMA transfer request, and 2) interrupt request; 6

output lines: 1) DMA transfer acknowledge, 2) the 8254 timer, 3) the

DMA transfer direction, and 4) three auxiliary lines; and 16

Input/Output data lines. The external lines are used for handshaking

and data transfer. For a complete description see the PDMA-16

technical reference manual [29].

Special hardware was used to handle the handshaking between the

PDMA-16 boards on each PC. This hardware is responsible for generating

the sample time interrupts, the DMA transfer requests, and buffering

the data bus. A detailed hardware description can be found in the

Appendix 1

.

Software Details

The two main types of software used are: 1) software used for

hardware configuration, and 2) software used for the simulation. The

software was written and compiled with 3 languages: 1) Microsoft C

V3.00, 2) Microsoft Fortran77 V3.31, and 3) Microsoft Macro Assembler

35

V4.00. Microsoft Linker V3.05 was used for linking the object modules

and libraries. All the compilation and linking was done on the Zenith

running under DOS V3.20. Most of the software was written in C. The

language is very efficient and can be used as a high or low level

language. Assembly language was used for subroutines that either

required speed, had high usage, or serviced interrupts. All the

assembly subroutines were written in a C callable format. The

development of the finite element grid was in Fortran. Rather than

rewriting the Fortran subroutines, they were interfaced with the C

language controller program. The use of all Microsoft software made

the interface of the different languages a straight-forward task.

The software used for hardware configuration was modelled after

MetraByte's PDMA software. MetraBytes's software consisted of assembly

code in a BASIC language callable format. This format was sufficiently

different from that required by the C language that implementing their

software would have required a major revision of the software. The

major hardware configuration routines are titled MODE#, where # is

either 0,1,3,7, or 8. These subroutines perform the following tasks:

0) Initialization of the hardware

1) DMA transfer set up

3) Set the output rate of the interval timer

7) Set up interrupts - Microsoft C small model format

8) Set up interrupts - Microsoft C large model format

The software for the simulation is broken up into two major

blocks. These are:

36

1) the control system - Zenith Z-159

2) the controller - Hewlett Packard Vectra.

The control system software, ZSIMUL is used to simulate a double

integrator system. Provided there is no change in the handshaking

procedure, ZSIMUL remains the same for all developments of the

controller. ZSIMUL initializes the hardware, initializes the starting

position of the control system, and begins the simulation. The path

history is saved throughout the simulation. When the termination

criteria is met, ZSIMUL restablishes the environment, writes the

history to disk, and exits. ZSIMUL looks for a user requested exit

while running the simulation. The simulation is gracefully exited by

pressing the 's' key. A graceful exit uses the program's interrupt

installation programs to return the interrupt structure to its default

state. There is a version of ZSIMUL called ZRSIMUL that generates a

pseudo - random number for the starting position. ZRSIMUL is used to

simulate a large number of starting points for the controller so that a

statistical assessment can be made of the controller performance.

The controller software, HPSIMUL initializes the hardware and

provides the control for the control system. HPSIMUL has no user

visible output other than starting and ending. The routine is in a

continuous loop waiting for ZSIMUL to ask for control. Stopping the

program is accomplished in the same manner as it was for ZSIMUL.

HPSIMUL looks for a 's' key press to exit gracefully. The routine runs

in an infinite loop so that ZRSIMUL and ZSIMUL would both work with

HPSIMUL.

37

For a complete discussion of the hardware and the communication

process see Appendix 1. A discussion of the software and a listing of

the source code is provided in Appendix 2

.

38

Chapter 4

PERFORMANCE OF THE MINIMUM TIME CONTROLLER

Testing the Controller

In Chapter One the basis of this investigation was presented.

The double integrator control system and a technique for generating the

control for the system were given. Chapter Two developed the technique

used to generate the final time grid which is used to calculate

control. Two types of grids were presented, a square grid, and an R-

Theta grid. Chapter Three presented the basic design of the computer

simulation system used. A personal computer was used to simulate a

double integrator system. Another personal computer was used as a

digital controller. A DMA communication link was used to exchange

information between the two computers.

The simulations were conducted for two different sample rates,

At- 0.02 and 0.03 seconds. Simulations were performed using each of

the finite element final time grids. The square grid did not produce

very fine control and thus was not extensively tested. The R-Theta

grid produced favorable results. Various grid densities were generated

and used to control the double integrator system. For each case, a

plot of the path history is presented for four starting positions. The

four positions are (+5, +5), (-5,-5), (+5,-1), and (-5.+1). The first

39

two points will be referred to as "set 1" while the last two points

will comprise "set 2." The positions are used in mirrored pairs as a

check since the results should be symmetrical about the origin.

The R-Theta grid was tested on 500 different starting points.

The 500 points were generated using the pseudo-random number generator

included with Microsoft C, V3.00 library denoted below as rand(). The

default seed was used as the starting point. The pseudo-random number

generator produces a integer number from to 32,767. The initial

position range of XI and X2 is ±6.0. This range is sufficient to keep

the resulting phase trajectory of XI and X2 within a range of ±28.50.

This is used to control the size of the grid required. The algorithm

to generate XI and X2 is

1. XI - rand()/5461.1667
2. X2 - rand()/5461.1667
3. SignXl - rand()
4. SignX2 - randQ
5. if signXl > 16383 then XI - -XI
6. if signX2 > 16383 then X2 - -X2

This algorithm provides a simple, repetitive way to generate a set of

numbers. Figure 4.1 shows the set of numbers generated.

To test the pseudo-random number generator, 1.6E+7 numbers were

generated. A grid was set up in the ±6.0 working space. Each element

in the grid had dimensions of 0.30 X 0.30, this produced a total of

1,600 elements. Counters were then set up for each element. The

1.6E+7 points were placed into the corresponding elements on the grid.

For each point inside an element, the counter for that element was

incremented by one. For a perfect random number generator, there

40

should be 10,000 points inside the boundaries of each element. Figure

4.2 shows a plot of the counters for the 1,600 elements. The bandwidth

about the 10,000 points-line is acceptable, thus the pseudo-random

number generator is close to a true random number generator.

The simulation is stopped when the path enters into a circle

about the state origin of radius - 0.06. This is 1% of the valid

starting range and 0.21% of the total possible path range. The

stopping radius was chosen large enough to keep the oscillation about

the final destination to a minimum. If too small a range is used,

several switches are required for the path to reach the stopping

criterion. The exact time the path crossed the stopping circle Is

calculated by finding the intersection between the stopping radius

circle and a parabolic curve fitted between the previous position and

the position inside the stopping circle.

41

f :
•' • -

-I-

udo- Random number

<»"

42

A slight error is introduced by the fourth order Runga-Kutta

integration. The integration scheme has a tendency to shift the path

towards the focus of the parabola. This causes the path to reach the

stopping circle sooner than the theoretical path would have reached it.

The effect is minimal and only occasionally causes a

better-than-optimal time to be achieved.

Generating Control From the Square Grid

The square finite element final time grid used has the dimensions

of XI - ±20.0 and X2 - ±20.0. Each element has dimensions of 1.0 X

1.0 for the base and height. Using these grid dimensions, there are

80 X 80 elements, and 41 X 41 nodes. This is a coarse grid but

provides an indication of how well it can be used to generate control.

Figure 4.3 shows an isochronel plot for this square grid. The

isochrone approximation is fair in the doughnut region between the

center and edges. The center region and the edges are not good

approximations to the true isochrones . Since the control is based upon

the gradient of the isochrones, this grid will not produce a reasonable

control in these regions.

43

Square Grid

80 X 80 elements
element size - 1 X 1 unit

Figure 4.3: Isochrone plot for the square grid

Figures 4.4. a and 4.4.b show the path history for the four test

points . The figures also show the ideal switching curve . The

controller has a tendency to chatter in the vicinity of the switching

curve. The control is poor near the exterior edges of the grid but

closer to the state origin it is adequate. The control chatters about

the straight line approximation of the switching curve in the element.

The control is unsatisfactory using this finite element grid. A grid

is needed that has a greater density of elements in the region of the

final destination. The grid should also have larger elements near the

grid exterior to reduce the storage space required.

Generating Control From the R-Theta Grid

The R-Theta grid, as discussed in Chapter Two is a grid built

upon a radial coordinate system. The four grid shape determination

factors are: 1) number of spokes (# spks) , 2) number of circles

(# circles) , 3) radius - scale (scale) , and 4) the grid factor (gridf)

.

Seven different grids were generated and used by varying the four

parameters. The first six grids provided reasonable control, the

seventh did not. The seventh grid oscillated about the final

destination and never spiraled into the stopping radius . The

parameters used for the seven grids are listed along with the figure

number for the path history for the four test points in Table 4.1. A

plot of the finite element mesh for each grid is included. An

isochronel plot for each grid is given to provide a rough estimate as

to how well the grid will generate accurate control.

45

SWITCH CURVE

/

CM

X o.ooo

-2.000

X1

Figure 4. 4. a: History plot for square grid control, set 1

46

SWITCH CURVE
3.000 ""\ /

CM

X

-2.000

SWITCH CURVE

o
q q q q

1 1

n
1

pi

1 1

*~ N ri * in

X1

(X10 00
)

Figure 4.4.b: History plot for square grid control, set 2

47

The isochrone plots for grids 1, 2, 4, and 5 are all smooth, well

shaped plots that are close to the true solution therefore should

produce a reasonable control (see Table 4.1 for the figure number of

the corresponding isochrone plots). Grid 3 has an acceptable curve

shape in the doughnut region between the edges and the center. The

isochrones on the edge and in the center regions are not very smooth.

Grid 6 is starting to produce isochrones that are not convex, which

will produce the wrong control. The number of elements is getting

small enough that the approximation region for each isochrone is

getting to large to provide good control. Grid 7 is given with only

the element plot and isochrone plot. The control produced by this grid

is oscillatory about the origin. The grid spacing has become too large

to produce a stable control.

The test points for each grid give some indication on how well

each grid performs. On several of the paths, the control switches

early, continues for a period of time, switches again, crosses the

actual switching curve, and then switches again. This produces some

interesting results. After the final switch the path is very close to

the true switching curve. This gives the system a better overall

performance because the stopping circle will be reached directly and

another cycle of switches to reach the stopping circle will not be

needed. The performance of a controller decays substantially if it

switches too late and has to switch again to drive the system to the

stopping position. Grid 3 switches its control early, but drives the

system to the final destination by chattering. Grid 6 produces

48

acceptable control, but the switch after crossing the switching curve

comes too late, thus causing another switch to be required to drive the

system to the final destination.

The grids were used to control the 500 different starting

positions generated from the pseudo-random number generator. Rather

than save the systems entire path history, the simulation final time,

the optimal final time, and a ratio of simulated/optimal of each

position was saved (the time values are the calculated time the path

crossed the stopping circle of radius - 0.06). A controller based upon

the switching curves was implemented for comparison purposes. This

controller looks at the state position at each sample time. When the

position crosses the switching curve, the control is switched. A

summary of the results is presented in Table 4.2.

Using the optimal/actual ratio, the results of the simulations

show the following performance order

1. Grid 4
Grid 2

Grid 5

Grid 1

2. Switch Curve
3. Grid 6

4. Grid 3.

The unexpected result is the placement of the controller based upon the

switching curve. This can probably be attributed to the fact that the

controller based upon the switching curves always switches after

crossing the switching curve. If the switch is late enough, the system

will have to switch again to drive the system to the stopping circle.

The controller based upon the systems isochrones often switches early

49

enough that the system does not need to switch again to drive the

system to the stopping circle. Grids 4, 2, 5, and 1 have basically the

same performance results. The results are the same for two significant

digits. Grids 6, and 3 were expected to produce poorer results because

of the grid density and shape.

The grids produce a very good control, on the average only 2%

over optimal. Smith [25] used linear segments to approximate the

switching surfaces of a triple integrator. He obtained 50% to 100%

over optimal. The problem he solved was more difficult and the grid he

used was very coarse , so only some analogy can be reached from

comparing the two.

50

GRID tt tt SPKS I CIRCLES SCALE GRIDF ELEMENT PLDT ISDCHRDNE PLDT HISTDRY PLDT

1 60 28 28.5 1.2 Fig, 4.5.Q Fig, 4.5,b Fig. 4.5.C t d

2 60 28 28,5 1.5 Fig. 4,6.a Fig. 4,6.b Fig. 4.6.C I d

3 60 28 28.5 1.0 Fig. 4.7.Q Fig. 4,7,b Fig. 4.7.C I d

4 40 18 28.5 1,5 Fig. 4.8.Q Fig. 4.8.b Fig. 4.8.C S, d

5 30 12 28.5 1.5 Fig. 4,9,a Fig. 4.9,b Fig, 4.9.C i d

6 20 9 28.5 1.8 Fig. 4. 10,

a

Fig. 4,10,b Fig, 4.10.C I d

7 16 9 28.5 1.8 Fig. 4.11.

a

Fig. 4,ll.b n.a.

Table 4.1: Grid characteristics

AVERAGE TF OPTIMAL AVERAGE TF ACTUAL OPTIMAL/ACTUAL
0.02 0.03 02 0.03 0,02 0.03

SWITCH
CURVE 7.5914 7.5914 7.8424 7.9908 0,9672 0,9457

GRID 1 7.5914 7.5914 7.7462 7.9505 0.9807 0,9542

GRID 2 7.5914 7.5914 7.6799 7.8204 0.9887 0,9700

GRID 3 7.5914 7.5914 11.7522 11,7186 0.6159 0,6190

GRID 4 7.5914 7.5914 7.6787 7,8170 0.9890 0.9705

GRID 5 7.5914 7.5914 7.6780 7,8169 0.9869 0.9704

GRID 6 7.5914 7.5914 8.1558 8,1481 0.9115 0.9132

Table 4,2: Controller performance
51

Grid 1

Spokes - 60
Circles - 28
Scale - 28.5
Grid Factor - 1.2

Figure 4. 5. a: Element plot for grid 1

52

Grid 1

Spokes - 60

Circles - 28

Scale - 28.5

Grid Factor - 1.2

Figure 4,5.b; Isochrone plot for grid 1

53

SWITCH CURVE

/

X 1.000

<N

X o.ooo

-6.000
SWITCH CURVE

c
uT n q m m

T :

d
I

d - •

(X10 01
)

X1

Figure 4.5.c: History plot for grid 1 control, set 1

S4

M
X

X1

Figure 4.5.d: History plot for grid 1 control, set 2

55

Grid 2

Spokes - 60

Circles - 28

Scale - 28.5
Grid Factor - 1.5

Figure U. 6. a: Element plot for grid 2

56

Grid 2

Spokes - 60
Circles - 28
Scale - 28.5
Grid Factor - 1.5

Figure 4 . 6 . b : Isochrone ploc for grid 2

57

SWITCH CURVE

/

X 0.000

-2.000

-4.000

SWITCH CURVE

in m ai

1
[

1

* -

(X10 01
)

X1

Figure 4.6.c: History plot for grid 2 control, set 1

58

4.000

SWITCH CURVE

3.000 ~\^/
X

2.000

y 0.000
I-

-2.000

-3.000

SWITCH CURVE

(5

q q q q q q
in

1 1 1 1
l

d * N n + iri

X1

(X10 uo
)

Figure 4.6.d: History plot .for grid 2 control, set 2

59

Grid 3

Spokes - 60

Circles - 28

Scale - 28.5
Grid Factor - 1.0

Figure 4. 7. a: Element plot for grid 3

60

Grid 3

Spokes - 60

Circles — 28

Scale - 28.5
Grid Factor - 1.0

Figure 4.7.b: Isochrone plot for grid 3

61

SWITCH CURVE
(+ 5. + 5)

N

SWITCH CURVE

m in q in •n

T 1

6 G r" •"

X1

(X10 01
)

Figure 4.7.c: History plot for grid 3 control, set 1

62

SWITCH CURVE

X

2.000

o.ooo |,, ,,
i

,,,,
i

, ... h ,,,!

X1

Figure 4.7.d: History plot for grid 3 control, set 2

63

Grid 4

Spokes - 40
Circles - 18

Scale - 28.5
Grid Factor - 1.5

Figure 4. 8. a: Element plot for grid 4

64

Grid 4

Spokes - 40
Circles — 18

Scale - 28.5
Grid Factor - 1.5

Figure 4.8.b: Isochrone plot for grid 4

65

6.000

-2.000

SWITCH CURVE

/
(+ 5.+ 5)

X1

Figure 4.8.c: History plot for grid k control, set 1

hf>

X

-2.000

-4.000

SWITCH CURVE

o o

o q o q
Ifl

1

*
1

in

I

pi

1 T
6 oj ri * in

(X10 00
)

XI

Figure 4.8.d: History plot for grid 4 control, set 2

67

Grid 5

Spokes _ 30
Circles — 12
Scale - 28.5
Grid Factor - 1.5

Figure 4. 9, a: Element plot for grid 5

68

Grid 5

Spokes
Circles
Scale
Grid Factor

30
12

28.5
1.5

Figure 4.9.b: Isochrone plot for grid 5

69

X 4.000

CM

X

SWITCH CURVE

/

SWITCH CURVE

o

in m in q If)

T 7
d

1

6 •• *

(X10 01
)

XI

Figure 4.9.c: History plot for grid 5 control, set 1

70

SWITCH CURVE

3.000 ~^\/

CM

X

-2.000

SWITCH CURVE

X1

(X10 °°)

Figure 4.9.d: History plot for grid 5 control, set 2

7L

Grid 6

Spokes - 20

Circles - 9

Scale - 28.5
Grid Factor - 1.8

Figure 4. 10. a: Element plot for grid 6

72

Grid 6

Spokes - 20

Circles - 9

Scale - 28.5
Grid Factor - 1.8

Figure 4.10.b: Isochrone plot for grid 6

73

X

SWITCH CURVE
/

0.000

-2.000

SWITCH CURVE

o o o
o

10 o m m q in

T T
o

1

6 d • -

(X10 01
)

X1

Figure 4.10.c: History plot for grid 6 control, set 1

74

4.000
/-\

° SWITCH CURVE

3.000 ^\ /
X

2.000

1.000

0.000

-2.000

-3.000

SWITCH CURVE

o o o o o o oo o
q q q

10

1 1 1 1 7
oi ri + 1)

X1

(X10 00
)

Figure 4.10.d: History plot for grid 6 control, set 2

75

Grid 7

Spokes
Circles
Scale
Grid Factor

16

9

28.5
1.8

Figure 4. 11. a: Element plot for grid 7

76

Grid 7

Spokes - 16
Circles — 9
Scale - 28.5
Grid Factor - 1.8

Figure 4.11.b: Isochrone plot for grid 7

77

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions of the Investigation

The objective of this investigation has been to control a double

integrator system by generating the control from the systems

isochrones. The isochrones are generated from a discrete finite

element final time grid. Two types of finite element grids were used,

a square grid and a polar grid. Simulations were performed on two

personal computers, one working as a digital controller and the other

simulating a double integrator plant.

The square finite element grid was developed directly from the

work of White and Rajendran [27] and Rajendran [23]. The control

produced by this grid chattered in the region around the state origin.

This was due to the horizontal linear segment approximation of the

switching curve across the element made in that investigation.

The second grid was built using a polar grid format. The grid

was built to conform to the switching curves. Using this technique,

the boundary conditions along the switching curves were enforced to

improve the results. The grids were generated on an Apollo DN3000

workstation. The time required to generate a dense grid solution was

about one minute.

78

The polar grids provided a good approximation for the system's

isochrones
. The finite element final time grid was used to generate

control for the system. The control was very good, on the average the

final times achieved were only 2% over optimal. In a digital control

application where time is discrete, this technique performs better than

using the switching curves. When the switching curves are used, the

path always crosses the curve before the control switches. If the

switch is sufficiently late, another switch will be required to drive

the system to the stopping point. The isochrone control system

switches early and chatters once or twice until the path is closely

following the switching curve. On the average this reduces the number

of times the system has to switch and reverse its path to reach the

stopping point.

White and Rajendran [27] had used the Hamilton- Jacobi equation

and the minimum time functional together with the finite element

interpolation to determine the minimum time isochrones for the system.

The formulation was repeated leaving out the minimum time functional

but the results produced a poor approximation for the system's

isochrones

.

Recommendations for Further Study

Part of the original concept of this project was to design and

implement a real time controller. The finite element grid was to be

solved in real time, meaning a coarse grid would be solved quickly and

then used by the controller to control the system while it was

resolving for the final times using a denser grid. The original

79

calculation rates achieved by Rajendran [23] had indicated that this

control technique may have been possible but the grid developed by

Rajendran did not produce an acceptable control. With the second grid,

it may be possible to build a real time controller using small grid

sizes. The subroutine to calculate the control requires about 0.02

seconds. If a sample rate of 0.03 seconds was used, about one third of

the computer's time would be available for other work. The grids with

a small number of elements provided a resonable control. Calculation

times for a grid with few elements would be reduce the previous time by

about a factor of ten. A computer with greater computational power as

the controller would reduce both the time required to calculate the

control and solve the finite element grid. There was no optimization

of the code so some reduction in time may be gained by program

optimization techniques

.

80

Appendix 1

The Communication Hardware

The communication between the two computers is across a 16 bit

parallel data bus. The communication is accomplished using Direct

Memory Access (DMA) . The communication link can transmit data at

approximately 100,000 16 bit words/second.

In the following sections, a discussion of the PDMA and DMA

hardware is covered first, followed by a discussion of the mechanics of

the communication. The hardware to handle the communication is then

covered last. The following discussion assumes some familiarity with

the personal computer's internal structure, interrupt handling, and

Direct Memory Access.

Both computers have a PDMA-16 Digital DMA interface card. The

card is manufactured by MetraByte Corporation, 440 Myles Standish

Blvd., Taunton, MA 02780, (617) 880-3000. The PDMA card simplifies the

interface with the computer's DMA process.

The PDMA and DMA Hardware

The PDMA card provides external access to the following lines

which are: 16 data lines, upper/lower byte data transfer direction

lines, transfer request line, transfer acknowledge line, interrupt

request line, 3 auxiliary digital output lines, digital voltage supply

81

line, and digital ground. The 16 data lines are bidirectional lines

for input/output. For a complete discussion see the PDMA-16 technical

reference manual [29].

The PC's DMA controller is the INTEL 8237. For a technical

description of the 8237 chip see the INTEL product specifcation

document [35]. The 8237 chip has a set of registers for configuring

and controlling the DMA process. Only the applicable modes of each

register will be discussed. The registers of user importance on the

8237 are:

1) COMMAND REGISTER - controls the overall operation of the 8237.

I/O port address 08 hex.

2) MODE REGISTER - controls the characteristics of each of the

DMA channels.

I/O port address OB hex.

3) MASK REGISTER - enable/disable selected DMA channels.

I/O port address 0A hex.

4) ADDRESS REGISTER - address of the data block. Lower 16 bits

of the 20 bit address.

I/O port address (2 x Level #)

5) BYTE COUNT REGISTER - number of bytes of data to be

transferred less one.

I/O port address (2 x Level #) + 1

6) DMA PAGE REGISTER - used for upper 4 bits of the 20 bit

address.

I/O port addresses for each mode's page register is:

82

mode and 1 at 83 hex

mode 2 at 81 hex

mode 3 at 82 hex.

There are four levels of DMA which signify the four different DMA

processes available. Level is used by RAM refresh, level 2 and 3 by

the disk drives, and level 1 is free for use.

The PDMA board is used to transfer data by DMA from memory to its

latched ports or from its latched ports to memory. The DMA process is

started by a rising edge on the transfer request line, XREQ. The 8237

DMA controller requests control of the bus from the central processor.

When the central processor completes its current command, it passes

control to the 8237 which then begins the DMA operation. Each time the

cycle is started, a falling edge pulse is sent on the transfer

acknowledge line, XACK. The DMA cycle is signaled as complete on the

rising edge of the transfer acknowledge line. At this point several

things can happen depending on which mode the 8237 is selected. The

single transfer mode is used in this work. This mode returns control

to the central processor after the transfer, therefore, for each

transfer request one byte is transferred. The PDMA modifies this so

that if the PDMA is in word transfer mode, the DMA process will

transfer 2 bytes of data for a single transfer request. Transfer

acknowledge will likewise send out a single pulse to indicate a word

transfer.

The PDMA's registers are:

1) PORT A - least significant byte of the data word.

83

2) PORT B - most significant byte of the data word.

3) DMA CONTROL REGISTER - DMA level select, enable/disable,

transfer request source, byte/word transfers, direction of port A and

port B, and bits for the output lines Aux 1 and Aux 2.

4) INTERRUPT CONTROL REGISTER - enable/disable interrupt,

hardware interrupt level, source of the interrupt - external/internal,

interrupt on the rising edge or falling edge of external input signal,

and bit for the output line Aux 3.

5) COUNTERS 0, 1, and 2 - counter registers for the 8254 interval

timer.

6) 8254 CONTROL REGISTER - mode control for each of the counters.

The DMA control register configures several parameters. It

enables/disables the PDMA transfer request signal for the selected DMA

level, selects direction of transfer, and selects the transfer request

source. The transfer request sources are:

1) the external XREQ line

2) the output of the 8254 timer.

The interrupt register disable/enables the selected hardware

interrupt (levels 2-7) and selects the interrupt request source. The

interrupt request can come from 3 sources:

1) external input on the "int" line, +edge/-edge.

2) terminal count of the 8237.

3) output of the 8254 interval timer.

The external "int" line can be configured to generate an interrupt

request on either the rising or falling edge of the input pulse. The

84

terminal count of the 8237 generates an interrupt when the number of

bytes of data has been transferred. The 8254 timer can be set to

generate a specified frequency to drive a periodic interrupt.

The Aux 1, 2, and 3 lines are three user digital output lines.

They are used in the handshaking and control process.

The Mechanics of the Communication

A DMA transfer is initiated by a rising edge transition on the

XREQ line. With the start of the DMA cycle, the transfer acknowledge

line, XACK goes low. At the completion of the DMA cycle, the XACK line

returns high. The basis of the communication cycle is to use the XACK

of the sending board to drive the XREQ of the receiving board. The

XREQ frequency of the sending board is set to a slow enough rate so

that the receiving board has completed its cycle before the sending

board sends another word. This process can then be repeated to send

unidirectional data.

To reverse the direction of the transfer, one technique would be

to call the various hardware initialization subroutines to change the

appropriate registers. To change the 8237 registers and the PDMA

registers using the DMA setup subroutine takes about 0.2 seconds. This

is to slow for a real time simulation. The 8237 has a recycle mode

that reloads the address and byte count registers after the byte count .

register reaches 0, the terminal count. In this mode, changing

direction only requires toggling the direction bits on the 8237 and

PDMA board, just 2 registers to change. The transfer request signal

would then be used to drive the second computer and its transfer

85

acknowledge would drive the transfer request of the first computer.

Handshake hardware between the two computers would handle this change.

The process of changing the two registers to change the direction

is a very fast technique. Using this process requires that all the

other registers remain the same. The address and byte count registers

must also remain the same. The actual data transferred between the two

computers is a communication vector. This vector is made up of the

current state and control, three floating point numbers. The entire

communication vector is transmitted each time a transfer cycle takes

place. Even though more data is being communicated than need be, it is

still faster than conventional techniques.

The handshake hardware has several duties;

1) The data ports of the two PDMA boards are separated by

tristate lines. The direction of the transfer is set according to the

direction outputs of each board. During the direction change process

it is possible for both ports to be in a output mode. If this

condition occurs, the ports must be separated to prevent damage to

either board.

2) When both computers are ready, the hardware starts the DMA

cycle. The Aux 1 line is used to signal a ready state from the

computer. The DMA cycle is controlled by the input clock frequency to

the sending board's XREQ. The frequency is generated by the PDMA's

counter chip outputs. The frequency should be slow enough so that the

receiving computer can finish transferring the data before the start of

the next cycle. The transfer request frequency input to the sending

86

board should be n periods long where n is the number of data transfers.

After the nth transfer, the 8237 reloads all its registers to their

initial values as defined by the recycle mode. After the nth request

the 8237 reloads all its registers and is then ready to send the same

set of data.

3) Control the handshaking between the two PDMA boards by

connecting the transfer request output to the sending PDMA's transfer

request and connecting the transfer acknowledge of the sending PDMA to

the receiving PDMA's transfer request.

4) Send the sample rate interrupt to the "control system" , the

Zenith.

The handshake hardware has to be a very "clean" system. Any

noise on the transfer request or transfer acknowledge lines will cause

spurious DMA initiations , thus putting the 2 computers out of phase

.

The PDMA's transfer request line was found to be very sensitive to

noise thus requiring the hardware to be carefully designed.

The Handshaking Hardware

The following discussion will be broken down into four major

sections. The four sections correspond to the four requirements of the

handshake hardware discussed in the previous section.

The first section of the hardware shows the 40 pin interface

between the two computers (see Figure A1.2). It also contains the data

bus connection between the two computers. The tristate buffering is

provided by an octal bus transceiver, the 74HC245 chip. The chip has

connections for 8 data lines. Two chips are used to buffer the 16 bit

87

word; the most significant byte consists of lines D15-D8 and the least

significant byte consists of lines D7-D0. The data direction is

controlled by a DIR input and the enable is controlled by a G input.

The logic diagram is shown in Table Al.l.

The direction pin is required to be at the correct state at the

transfer time only. The enable is active only when the directions of

the two boards are opposite, this is to prevent damage to either board.

Zenith DIR HP DIR Chip DIR G0X110
1 10
1 1X1
Table Al.l: Logic diagram of data bus enable

The outputs of the two boards used by the handshake hardware are

buffered through a 74HC245 chip to provide protection and a higher

current output.

The output connection of the PDMA board is a 37 pin D type male

connector. A 40 wire bus was used and connected with a 40 pin low

profile male dip connector. This was used to provide an easy interface

with the handshake hardware board. The pin numbering is different due

to this translation. The pin numbering is shown in Table A1.2.

The second section of the hardware generates the transfer request

pulse train, XFREQ (see Figure A1.3). This pulse train is generated

when both computers are ready to transmit/receive. The computers set

XK

the Aux 1 line to an on state to signal ready, ZAUX1 for the Zenith,

and HPAUX1 for the Hewlett Packard. A D-type positive edge triggered

flip-flop (74LS74) is used to sense when both signals are at a high

state. The clear is used to send a logic one when both AUX 1 lines

have gone low and back high again. This is used because the Hewlett

Packard's cycle time was considerably faster than the Zenith's. When

the outputs of the Aux 1 lines have cycled high, a monostable

multivibrator (74121) generates a pulse. This pulse is used to load a

set of cascaded up/down counters (74LS193) with a preset number. This

number is determined by a set of DIP switches. The counters then count

down to zero and stop. The clock on the counters is driven by the

output of the Zenith's PDMA 8254 interval timer, ZTOUT. The output of

the least significant bit of the counters is the pulse train with the

desired number of pulses, XFREQ. Since the least significant bit is

used to generate the pulse train, there will be (number/2) pulses

generated at a frequency of (TOUT/2) Hz. Another up/down counter is

used to count the output pulses of the least significant bit. The

output of this counter is displayed using LED's. This enables the user

to check the settings of the DIP switches during operation.

89

PIN # ON 37 PIN # ON 40
19 22

37 18

18 23
36 17

17 24
35 16
16 25
34 15

15 26
33 14

14 27
32 15

13 28
31 12

12 29
30 11

11 30

29 10
10 31

28 9

9 32

27 8

8 33

26 7

7 34
25 6

6 35
24 5

5 36

23 4

4 37
22 3

3 38

21 2

2 39
20 1

1 40

FUNCTION
AO
A DIR . OUT
Al
GND
A2
GND
A3
GND
A4
GND
A5
GND
A6
GND
A7
GND/INT 4

BO
B DIR . OUT
Bl
GND
B2

GND
B3
AUX 3 OUT
B4
AUX 2 OUT
B5
AUX 1 OUT
B6
TIMER GATE IN

B7
TIMER OUT
XFER. ACK. OUT
+5v
XFER. REQ. IN
+5v
INTERRUPT IN

Table A1.2: Pin out for the 37 and the 40 pin connectors

90

The third section of hardware controls the inputs to the transfer

request for the Zenith, ZXREQ and for the Hewlett Packard, HPXREQ (see

Figure A1.4). The process is to send the XFREQ signal to the sending

computer's XREQ and to transmit the sending computer's XACK to the

receiving computer's XREQ. This sets up the handshaking process. The

XACK of each computer is first sent to a monostable multivibrator

(74121). The natural state of the XACK is high. It was discovered

that if XREQ is high when the DMA is initialized, it senses a rising

edge since the natural state of XREQ is low. By using the monostable,

a XACK is set up with a natural state of low. A logic network is used

to set up the the proper XREQ inputs. (NOTE: XACK - the output of the

monostable multivibrators). The Zenith's transfer request, ZXREQ, is

determined by the truth table of Table A1.3. The Hewlett Packard's

transfer request, HPXREQ, is determined by the truth table of Table

A1.4.

The direction bit for the Hewlett Packard, HPDIR and for the Zenith,

ZDIR corresponds to 1 as the output state, and as the input state.

1

1 1

1 1 1

1

1 1 1

1 1

1 1 1 1

Table A1.3: Zenith transfer request logic table

91

HFDIR ZXACK XFREQ HPXREQ

1

1 1

1 1 1

1

1 1 1

1 1

1 1 1 1

Table A1.4: Hewlett Packard tranfer request logic table

The fourth section of the hardware is basically a pulse stretcher

(see Figure A1.5). The output of the Hewlett Packard's PDMA 8254

interval timer, HPTOUT, is used to generate the sample frequency. The

frequency generates a hardware interrupt at each sample time. The

pulse width of the timer's output is on the order of 10 nanoseconds.

The interrupt controller (INTEL 8259A) on the PC requires a minimum

pulse width of 350 nanoseconds. A monostable multivibrator (74121) is

used to stretch the timer's pulse width to about 300 microseconds. The

pulse is tristated so that the output of the circuit only affects the

PC's backplane during the pulse output time. This circuit is a stand

alone circuit. It could be implemented on its own expansion card.

Rather than using an expansion slot on the PC, the circuit was built

onto the Zenith's PDMA board. The ground line on pin 30 of the 37 pin

output was modified to be the input for this circuit.

The first three hardware sections were assembled on an external

board. The board layout is shown in Figure A1.6. The board has a

front and back-plane of +5V and ground respectively to help keep the

noise to a minimum. Wire wrapping was used to construct the circuit.

92

Capacitors were used throughout the circuit to minimize voltage and

ground spikes

.

93

FARTS LIST

Integrated Circuit Components

DEVICE PART # FUNCTION MFG.

SIGN

#PINS

Ul 74LS193 UP/DOWN COUNTER ETICS 16
U2 74LS193 UP/DOWN COUNTER SIGNETICS 16
U3 74LS193 UP/DOWN COUNTER SIGNETICS 16
U4 74LS74 D-TYPE F/F NAT. SEMI. 14
05 74121 MONOSTABLE MULTIV. NAT. SEMI. 14
U6 74LS32 2 -INPUT OR NAT. SEMI. 14
U7 74LS08 2 -INPUT AND NAT. SEMI. 14
U8 74LS00 2 -INPUT NAND NAT. SEMI. 14
U9 74121 MONOSTABLE MULTIV. NAT. SEMI. 14
U10 74121 MONOSTABLE MULTIV. NAT. SEMI. 14
Oil 74LS00 2 -INPUT NAND NAT. SEMI. 14
U12 74LS08 2 -INPUT AND NAT. SEMI. 14
013 74HC245 OCTAL BUS TRANS. NAT. SEMI. 20
014 74HC245 OCTAL BUS TRANS. NAT. SEMI. 20
U15 74HC245 OCTAL BUS TRANS. NAT. SEMI. 20
016 74126 TRISTATE BUFFER NAT. SEMI. 14
U17 74121 MONOSTABLE MULTIV.

Capacitors

NAT. SEMI. 14

DEVICE VALUE fuF) DESCRIPTION OTY.

CI 0.22 POLYCARBONATE 4
C2 0.1 POLYCARBONATE 10
C3 10 TANTALUM 9
C4 22 TANTALUM 2
C5 0.1 CERAMIC 12
C6 73.2 pF MICA 1
C7 2200 pF CERAMIC 6

94

Resistors

DEVICE VALUE (ohms) DESCRIPTION

Rl 390 5% CARBON
R2 2.2K 5% CARBON
R3 4.7K 5% CARBON
R4 10K 5% CARBON
R5 IK 5% CARBON

OTY.

6

1

2

2

1

CROSS REFERENCE OF INTEGRATED CIRCUIT PIN LOCATIONS TO DRAWING PAGE

DEV. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ul X X x X X X X X X X

02 X X X X X X X X X X X X X X
U3 X X X X X X X X X X X X

04 X X X X X X X X X X X X
U5 X X X X X X X
06 X X X z z z
U7 X X X X X X z z z z z z

U8 X X X X X X X X X
U9
U10
Ull z z z z z z
U12
U13 z
U14 z

U15 z

U16 A A A
U17 A A A A A A A

SYMBOL DRAWING

Z = BUS
X - X FREQ

- x"'req
A - INT

95

Browing Symbol Notes

1 DIGITAL GROUND

>— CIRCUIT INPUT

^— CIRCUIT OUTPUT

o— DN-BDARD CDNNECTIDN

V
s

DIGITAL SUPPLY VDLTAGE

Figure AIT Synboi definitions for circuit diagrams

96

a

>- u

u o
I u

2 DO I

U15

74HC245

HPXREQ^

ZXREQ>^

ZDIR>~

U14

74HC245

U13

74HC245

Figure A1.2: Circuit diagran of the PDMA interface

97

HPAUX1 >

Figure A1.3: Circuit diagram of transfer
request frequecy generator

98

HPXACK>-

HPDIR>^

ZXACK>-

ZDIR^

XFREQ> »

HPXREQ^

ZDlR^

ZXREQ<^

^
U10 R3 V

s

!°J"C7

74121

Figure A1.4: Circuit diagram of
transfer reguest controller

99

HPTDUT >-

C4

ihd

U17

R5
TC7

R4
r-AA/Vi

^-A/wUd'
|lLJ-C5 R4

74121

HARDWARE INT 4 REQUEST
ZENITH BACKPLANE

Figure A1.5' Circuit diagram of
interrupt frequency filter

101)

CID
dD
CcT)

§

8

Rl-'l

dD

U9

§dZ U2

CcT)

U3

dD

dD
(ID

U10 § Ull

U13 UH

HEWLETT PACKARD
CDNNECTIDN

U15

dD

dD

8

W5

DIP1 U6 8 U7 8 U8

U12 |M

ZENITH
CDNNECTIDN

(ID

Figure A1.6: Circuit board layout

mi

Appendix 2

The Computer Test System Software

ZSIMUL and ZRSIMUL

ZSIMUL and ZRSIMUL are the double integrator simulation programs.

Both are small model programs. All the calls to the hardware set up

programs are in the small model format.

102

*
* SIMULATION HEADER FILE
*

* information in this header is used by both HPSIMUL,
* ZSIMUL, and ZRSIMUL.

AUTHOR:
DATE:

Donald A. Smith
6/22/88

***/

/* S_RATE - 1

- 2

- 3

#define S RATE 3

sample rate 0.01
sample rate 0.02
sample rate 0.03

#define UMAX 1.0
#define MULT_1 1000
#define TOPTCIRCL 5.9973043E-2

#if S RATE — 1

#define SAMPLE 0.01
#define MULT 2 100

#elif S RATE — 2

#define SAMPLE 0.02
#define MULT 2 200

#elif S RATE — 3

#define SAMPLE 0.03
#define MULT 2 300

#elif S RATE — 4
#define SAMPLE 2.0
#undef MULT 1

#define MULT 1 1000
#define MULT 2 20000

#endif

/* define transmission rate dividers */
/* best speed to date divisors - (9,6)—185 .2 kHz; 10,10 good */
#define TRANS1_DIV 10

#define TRANS2_DIV 10

/* define functions */
#define absval(a) (((a) >) ? (a) : - (a))

void eoi_int(void)

;

void auxlon(void)

;

void auxloff (void)

;

103

void aux2on(void)

;

void aux2off (void)

;

void aux3on(void)

;

void aux3off ()

;

void send(void)

;

void receiv(void)

;

void rkg(int, float, float, float *, float *, float *)

;

float control (float *, float);

int key_push(void)

;

104

/***
*

* ZSIMUL -- simulation program for Zenith
*

* zsimul sets up a simulation of a digital control
* scheme

.

* Two interrupt routines are installed. 1) FREQ is the
* interrupt generated by sample rate, and
* 2) TERMINAL_COUNT is the interrupt generated each time
* the specified number of DMA transmissions has occurred.
* The external line AUX 1 is used to signal when the
* computer is ready to transmit or receive. AUX 2 is
* used to enable the sample frequency.

AUTHOR:
DATE:

Donald A. Smith
6/21/88

M**.),**********/

#define
#include
#include
#include
#include
#include
#include
#include
#include
#include

LINT_ARGS
<utility.h>
<stdlib.h>
<bisr.h>
<dos . h>
<malloc.h>
<stdio.h>
<conio.h>
<math.h>
"loc .h"

float x[10]

int comm bit - 0;

/* x[0]
J
-state variable xl

x[l]-state variable x2
x[2]-control u */
test variable for communication
with the interrupt routines

/* FUNCTION DEFINITIONS */
void freq(ALLREG *, ISRCTRL *, ISRMSG *)

;

void teruinal_count (ALLREG *, ISRCTRL *, ISRMSG *)

;

float intersection float, float, float, float);

mainQ
(

/* PDMA base address
int base_add - 0x300;
/* DMA mode
int dma_level - 1;

/* hardware interrupt #5 for
int tc_level = 5;

/* hardware interrupt #4 for
105

*/

*/

terminal_count

freq' */

int freq_level - 4;

/* source of ' terminal_count' interrupt */
int tc_sourc - 2;

/* source of 'freq' interrupt */
int freq_sourc - 4;

/* number of DMA transmissions */
unsigned numb_trans - 6;

/* transmit words instead of bytes */
unsigned length - 1;

/* initialize to output */
unsigned direction - 1;

/* enable DMA recycle */
unsigned recycle - 1;

/* transmit request external */
unsigned trans_sourc - 0;

unsigned data_segment

;

unsigned char workl,work2;
unsigned int work3

;

struct SREGS segregs

;

/* pointers to history storage arrays */
float *b0, *bl, *b2;

float t_final_theo, t_cross, switch_pt;
double pO, pi;

extern float x[
]

;

extern int comm_bit;

int i,j;
char char_at_keybd;
FILE *ouc_put;
char out_file[20]

;

char string [80]

;

char_at_keybd - '
!

' ; /* initialize to something else */

/* disable DMA mode 1 */
outpt(0x0a,0x05)

;

/* hardware check */
if (modeO(base_add, dma_level, tc_level))

fprintf (stderr, "error on termination of mode0\n");

/* set hardware communication line off */
auxloff ()

;

/* disable sampling frequency from the HP */
aux2off()

;

106

fprintf(stderr,"x(0) starting?\n")

;

gets(string)

;

x[0] - atof (string)

;

fprintf (stderr, "x(l) starting?\n")

;

gets(string)

;

x[l] - atof (string)

;

fprintf (stderr, "output file?\n")

;

gets(out_file)

;

out_put - fopen(out_file , "w")

;

/* calculate final time theoretical */
switch_pt - x[0]+x[l]*absval(x[l])*0.5/UMAX;
if(switch_pt < 0.0) (

pO - -1.0/(sqrt((double) (0 . 5*x[1]*x[1]
-

UMAX*x[0])));
pi - (-1.0 - p0*x[l])/UMAX;
t_final_theo - 2.0*p0*x[0] + pl*x[l];

) else if(switch_pt > 0.0) (

pO - 1.0/(sqrt((double) (0. 5*x[l]*x[l] +
UMAX*x[0])));

pi - (1.0 + p0*x[l])/UMAX;
t_final_theo - 2.0*p0*x[0] + pl*x[l];

} else {

t_final_theo - x[l];

)

/* allocate space to store path and control
history */

work3 - ((t_final_theo*3.0)/SAMPLE) * sizeof (float)

;

bO - (float *) malloc(work3)

;

bl - (float *) malloc(work3);
b2 - (float *) malloc(work3)

;

if (bO — NULL
|

| bl — NULL
|

| b2 — NULL) (

fprintf (stderr, "could not allocate memory blocks\n");
if(bO !- NULL)

free(bO);
if(bl !- NULL)

free(bl);
if(b2 !- NULL)

free(b2);
exit();

)

fprintf (stderr, "\nsample rate- %4.2f\n\n" .SAMPLE)

;

fprintf (stderr, "return to continue ->\n");
gets (string)

;

107

utintoffO;
/* install interrupt routine ' terminal_count ' */
mode7(base_add, tc_level, tc_sourc, terminal_count , 1);
/* install interrupt routine 'freq' */
mode7(base_add, freq_level, freq_sourc, freq, 1);
/* set output frequency for transmission rate */
mode3(base_add, TRANS1_DIV , TRANS2_DIV)

;

utinton()

;

/* get x() segment */
segread(&segregs)

;

data_segment - segregs . ds

;

/* " set up DMA */
model (base_add, dma_level, numb_trans , length,

direction, recycle, trans_sourc , data_segment, x)

;

/* save initial position */
b0[0] - x[0]

;

bl[0] - x[l];
b2[0] - x[2] - 0.0;

send()

;

comm_bit - 0;

fprintf (stderr , "start\n")

;

fprintf (stderr, "x0-%f xl-%f x2-%f\n" ,x[0] ,x[l] ,x[2])

;

fflush(stderr)

;

for(1-1; ; i-H-) (

/* check if exceeded history buffer */
if(i+10 > t_final_theo*3.0/SAMPLE)(

fprintf (stderr, "out of room\n");
goto kickout; /* exit the simulation */

)

/* first time start sample rate */
If (i — 1)

aux2on()

;

/* wait for sample interval or abort */
while (comm_bit —*) {

if (key_push()) (

char_at_keybd - getchQ
;

if (char_at_keybd =-= ' s ')

goto kickout; /* exit the simulation */
}

)

/* turn on line ready to send vector */
auxlon()

;

108

/* wait until position sent out or abort */
while (comm_bit — 1) {

if (key_push()) {

char_at_keybd - getch();
if (char_at_keybd —> '

s
')

goto kickout; /* exit the simulation */
}

)

/* turn on line ready to receive vector */
auxlon()

;

/* wait until vector has been received or
abort */

while(comm_bit — 2) {

if (key_push()) (

char_at_keybd - getchQ
;

if (char_at_keybd — '

s
')

goto kickout; /* quit simulation */

!

)

/* if no error save current position &
control */

if (comm_bit — 3) {

bO[i] - x[0];
bl[i] - x[l]
b2[i] - x[2]

} else {

fprintf (stderr, "error, comm_bit-%d\n" ,comm_bit)

;

break;

/* check for stopping criterion */
lf(x[0]*x[0) + x[l]*x[l] < 0.06*0.06)

break;

comm_bit - 0;

1

kickout: /* exit simulation */
/* turn off DMA mode 1 */
outpt(0x0a,0x05)

;

/* turn off sampling frequency */
aux2off();

utintoffQ;
/* uninstall interrupts */
mode7(base_add, tc_level, tc_sourc, terminal_count, 0)

;

109

mode7(base_add, freq_level, freq_sourc, freq, 0);
utinton()

;

/* calculation of exact time crossed exit
criterion */

if (comm_bit — 3)

t_cross - intersection b0[i-l], bl[i-lj, b2[i-l],
(i-l)*SAMPLE);

else
t_cross - i*SAMPLE;

/* user abort? */
if (char_at_keybd — 's')

fprintf (stderr, "user killed the program\n")

;

fprintf (stderr, "return to see results ->\n");
gets(string)

;

/* output results */

fprintf (out_put, "sample- %4.2f ".SAMPLE);
fprintf (out_put,"t opt radius to 0.0");
fprintf (out_put, "- %.7e\n" .TOPTCIRCL)

;

fprintf (out_put,"x0, xl, u, t\n");
for(j-0; j <- i; j++) (

fprintf (out_put,"%10f %10f %10f %10f\n"
.b0[j],bl[j],b2[j],j*SAMPLE);

)

fprintf (out_put, "\noptimal time to radius -%f\n"

,

(t_final_theo-TOPTCIRCL))

;

fprintf (out_put, "approximate actual time to radius");
fprintf (out_put," - %f\n" , t_cross)

;

fprintf (stderr,"\noptimal time to radius -%f\n"

,

(t_final_theo-TOPTCIRCL))

;

fprintf (stderr, "approximate actual time to radius ");
fprintf (stderr,"- %f\n" , t_cross)

;

/* free history buffer */
free(bO);
free(bl)
free(b2)

fprintf (stderr, "comm_bit- %d\nexiting. . . .\n" ,comm bit)
exit(); ~

110

/***
*

* INTERSECTION -- calculates exact time crossed exit
* criterion -- a circle of radius (sample rate)**2/4.0.
*

* intersection xOO, xlO, u, timel)
*

* intersection calculates the exact time the path
* crossed the exit criterion.
* xOO - position outside exit circle.
* xlO - position inside exit circle.
* u - maximum/minimum control.
* timel - sample time at position xOO.
*

***/

float intersection(xOO, xlO, u, timel)
float xOO, xlO;
float u, timel;

(

double k, xO_i, xli;
float time_i;
double workl , work2 , work3

;

k - xOO - xlO*xlO/2.0/u;
workl - u*u + 2.0*u*k + 0.06*0.06;
workl - sqrt(workl);
work2 - -u + workl;
work3 - -u - workl;
x0_i - (absval(work2) <- absval(work3) ? work2 : work3);
xl_i - sqrt((double) (2*u*(x0_i - k)));
time_i - timel + absval((absval(xlO) - xl_i));
return(time_i)

;

/***
*

* FREQ -- interrupt routine
* occurs at sample times.
*

*** i

void freq(pregs, pisrblk, pmsg)
AIXREG *pregs

;

ISRCTRL *pisrblk;
ISRMSG *pmsg;
{

extern int comm_bit;
static int first_time - 1;

111

/* send an end- of-interrupt to controller */
utintoffQ

;

eoi_lnt()

;

utintonQ ;

/* comm_bit —
sample time, send over vector

comm_bit >
error, did not make it from last sample
time */

if (commbit — && !first_time) (

send()

;

comm_bit - 1;

) else if (first_time) (

first_time - 0;

} else {

comm_bit — 5;

)

* TERMINAL_COUNT -- interrupt routine
* occurs when set number of DMA transmissions occurred.
*

void terminal_count(pregs, pisrblk, pmsg)
ALLREG *pregs;
ISRCTRL *pisrblk;
ISRMSG *pmsg;

{

extern int comm_bit;
extern float x[]

;

static float t, dx[2]

;

static float q[2] ;

int neq;
float h;

/* send an end-of -interrupt to controller */
utintoff ()

;

eoi_int();
utintonQ

;

/* number of first order equations */
neq - 2

;

112

/* time step */
h - SAMPLE;

/* turn off transmit/receive signal */
auxloffQ;

/* comm_bit — 1

just sent vector out
comm_bit — 2

just received vector, integrate to
next step

comm__bit > 2

error

if (comm_bit — 1) {

receivQ
;

comm_bit - 2;

}

else if (comm_bit — 2) (

comm_bit - 3;

/* integrate to next step */
rkg(neq, h, t, x, dx, q)

;

/* update time */
t +- h;

J else (

comm_bit =-6; /* error code */

113

/***
*

* ZRSIMUL -- simulation program for the Zenith
*

* zrsimul set up a simulation of a digital control system
* with the starting positions generated by a pseudo-random
* generator.
* Two Interrupt routines are installed. 1) FREQ is the
* interrupt generated by the sample rate, and
* 2) TERMINAL_COUNT is the interrupt generated each time
* the specified number of DMA transmissions has occurred.
* The external line AUX 1 Is used to signal when the
* computer is ready to transmit or receive. AUX 2 is
* used to enable the sample frequency.
*

* AUTHOR: Donald A. Smith
* DATE: 8/5/88
*

*** i

#define LINT_ARGS
#include <utility.h>
#include <stdlib.h>
#include <blsr.h>
#include <dos.h>
#include <malloc.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include "loch"

float x[10]; /* x[0]-state variable xO
x[l]-state variable xl
x[2] -control u */

int comm_bit - 0; /* test variable to tell when we have
been interupted */

/* FUNCION DEFINITIONS */
void freq(ALLREG *, ISRCTRL *, ISRMSG *)

;

void terminal_count(ALLREG *, ISRCTRL *, ISRMSG *)

;

float intersection float, float, float, float);

mainQ

/* PDMA base address */
Int base_add - 0x300;
/* DMA level */
int dma_level - 1;

/* hardware interrupt #5 for ' terminal_count'
int tc_level - 5;

114

/* hardware interrupt #4 for 'freq' */
int freq_level - 4;
/* source of ' terminal_count' interrupt */
int tc_sourc - 2

;

/* source of 'freq' interrupt */
int freq_sourc - 4;
/* number of DMA transmissions */
unsigned numb_trans - 6;
/* transmit words instead of bytes */
unsigned length - 1;
/* initialize to output */
unsigned direction - 1;
/* enable DMA recycle */
unsigned recycle - 1;

/* transmit request external */
unsigned trans_sourc - 0;
unsigned data_segment;

unsigned char workl,work2;
unsigned int work3

;

struct SREGS segregs

;

FILE *out_file;
char file_name[16]

;

float t_final_theo , switch_pt;
double pO, pi;
float xOO, xlO, xOl, xll, x0_prev, xlprev;

extern float x[
]

;

extern int comm_bit;

unsigned int i,j,k;
int iterations, start_pt;
char char_at_keybd

;

char string[80]

;

/* pointers to history array */
float hist_of[5][1001);

char_at_keybd - '
!

' ; /* initilize to some value */

/* disable DMA mode 1 */
outpt(0x0a,0x05)

;

/* hardware check */
if (modeO(base_add, dma_level, tc_level))

fprintf(stderr, "error on termination of modeO");

/* set hardware communication lin off */
auxloff();

115

/* disable sampling frequency from the HP */
aux2offO ; /* disable the hp's counter */

/* request user for number of iterations */
do (

fprintf (stderr, "number of random iterations?\n")

;

gets(string)

;

iterations - atoi(string)

;

fprintf (stderr, "starting point?\n")

;

gets(string)

;

start_pt - atoi(string)

;

if (iterations > 1000
|

| start_pt > 999)

fprintf (stderr,
"max # of iteratations is 1000\n");

) while (iterations > 1000
|

| start_pt > 999)

;

/* request user for output file */
fprintf (stderr, "file to output to?\n");
gets(file_name)

;

out_file - fopen(file_name, "w")

;

fprintf (stderr, "\nsample rate- %4,2f\n\n" .SAMPLE)

;

fprintf (stderr, "return to continue ->\n");
gets(string)

;

utintoff();
/* install ' terminal_count interrupt */
mode7(base_add, tc_level, tcsourc, terminal_count, 1)

;

/* install 'freq' interrupt */
mode7(base_add, freq_level, freq_sourc, freq, 1);
/* set output frequency for transmission rate */
mode3(base_add, TRANS1_DIV, TRANS2_DIV)

;

utinton()

I

/* get x() segment */
segread(&segregs)

;

data_segment - segregs . ds

;

/* set up DMA */
model(base_add, dma_level, numb_trans , length,

direction, recycle, trans_sourc, data_segment , x)

;

for(k - 0; k < iterations; k++)(
/* generate random number */
/* 5461.1667 - +-6 */
x[0] - rand()/5461.1667;
x[l] - rand()/5461.1667;
/* was 5462. */
x[0] - (rand() < 16383) ? x[0J : -x[0]

;

x[l] - (rand() < 16383) ? x[l] : -x[l]

i

116

/* save the number */
hist_of[0][k] - x[0];
hist_of[l][k] - xfl];
comm_bit - 0;

/* calculate optimal if at starting point */
if(k >- start_pt) (

fprintf(stderr,"%4d %10f %10f " ,k,x[0] ,x[l])

;

switch_pt - x[0]+x[l]*absval(x[l])*0.5/UMAX;
if(switchpt < 0.0) {

p0 - -1.0/(sqrt((double) (0.5*x[l]*x[l] -

UMAX*x []))) ;

pi - (-1.0 - p0*x[l])/UMAX;
t_final_theo - 2.0*p0*x[0] + pl*x[l];

) else if(switch_pt > 0.0) (

pO - 1.0/(sqrt(<double)(0.5*x[l]*x[l] +
UMAX*x[0])));

pi - (1.0 + p0*x[l])/UMAX;
t_final_theo - 2.0*p0*x[0] + pl*x[l];

} else {

t final_theo - x [1] ;

)

/* start of simulation loop */
for(i-1; ; i++) (

x0_prev - x [
J

;

xl_prev - x[l]

;

/* first time start sample rate */
if (i — 1)

aux2on()

;

/* wait for sample interval or abort */
while(comm_bit —) (

if (key_push()) (

char_at_keybd - getch();
if (char_at_keybd — 's')

/* exit the simulation */
goto kickout;

)

)

/* turn on line ready to send vector */
auxlon() ',

/* wait until position sent out
or abort */

while(comm_bit — 1) (

117

if (key_push()) (

char_at_keybd - getch();
if (char_at_keybd — '

s
')

/* exit the simulation */
goto kickout

;

)

/* turn on line to receive vector */
auxlon()

;

/* wait until vector has been recieved
or abort */

while(comm_bit — 2) (

if (key_push()) (

char_at_keybd - getch()

;

if (char_at_keybd — 's')

/* exit the simulation */
goto kickout;

}

)

/* if error abort */
if (comm_bit !- 3) (

fprintf (stderr, "error, comm_bit-%d\n"

,

comm_bit)

;

goto kickout;
]

/* check exit criterion */
if (x[0J*x[0] + x[l]*x[l] < (0.06*0.06)) (

xOO - xOprev;
xlO - xl_prev;
xOl - x[0];
xll - x[l];
break;

)

comm bit - 0;

/* turn off sampling frequency */
aux2off();

/* save in history list */
hist_of[2] [k] - i*SAMPLE;
hist_of[3] [k] - t_final_theo;

if(x[2] — 0.0) {

118

fprintf (stderr,
"u was 0.0 before intersec\n")

;

x[2] - UMAX;

)

hist_of [4] [k] - intersection(xOO, xlO, x[2)

,

hist_of [2] [k] -SAMPLE);

if((hlst_of[3][k] - TOPTCIRCL) — 0.0)

fprintf (stderr,
"TOPT subtraction was zero, %f %f\n"

,

hist_of[3] [k] .TOPTCIRCL);

fprintf (stderr, "%10f %10f %10f %10f\n"

,

hist_of [4] [k] ,hist_of [2] [k] , hist_of [3] [k]

TOPTCIRCL, hist_of (4] [k]/(hist_of [3] [k]
- TOPTCIRCL))

;

) else {

hist_of[2] [k] - hist_of[3][k] - hist_of [4] [k]

- 0.0;

)

kickout: /* exit the simulaton */
/* turn off DMA mode 1 */
outpt(0x0a,0x05)

;

/* turn off sampling frequency */
aux2off()

;

utintoff()

;

/* uninstall interrupts */
mode7(base_add, tc_level, tc_sourc, terminal_count , 0)

;

mode7(base_add, freq_level, freq_sourc, freq, 0);
utintonQ

;

if (char_at_keybd — 's') (

fprintf(stderr, "user killed the simulation\n")

;

fprintf (out_file, "user killed the simulation\n")

;

)

if (comm_blt — 5
|

| comm_blt — 6)

fprintf (out_file, "error, comm_bit-%d\n" ,comm_bit)

;

/* output results */
fprintf(outfile," sample- %4.2f ".SAMPLE);
fprintf (out_file, "t opt radius to 0.0- %.7e\n",

TOPTCIRCL)

;

fprintf (out_file,"x[0] ,x[l] , t cross,

"

fprintf (out_file," t final actual, t opt to radius");
fprintf (out_file," , t cross/t opt to rad\n");
for (i-start_pt; i < k; i++) I

119

fprintf (out_file,"%4d %10f %10f %10f %10f %10f %10f\n"
,i,hlst_of[0] [1] ,hist_of [1] [i] ,hist_of[4] [i]

,

hist_of[2][i], hlst_of[3][i] - TOPTCIRCL,
hist_of[4][i]/(hist_of[3][i] - TOPTCIRCL));

1

exit()

;

)

/***
* INTERSECTION -- calculates exact time crossed exit
* criterion --a circle of radius 0.06.
*

* intersection(x00, xlO, u, timel)
*

* xOO - position outside exit circle
* xOl - position inside exit circle
* u - maximum/minimum control
* timel - sample time a position xOO.
*

**

float intersection xOO, xlO, u, timel)
float xOO, xlO;
float u, timel;

I

double k, x0_i, xli;
float tiroe_i;

double workl , work2 , work3;

k - xOO - xl0*xl0/2.0/u;
workl - u*u + 2.0*u*k + 0.06*0.06;
if(workl < 0.0) (

fprintf (stderr, "0 in intersec, sqrt of negative,");
fprintf(stderr," %f %f %f\n" , workl, u,k)

;

workl - -workl;

)

workl - sqrt(workl);
work2 - -u + workl;
work3 - -u - workl;
x0_i - (absval(work2) <- absval(work3) ?

work2 : work3)

;

workl - 2.0*u*(x0_i - k)

;

if(workl < 0.0) (

fprintf (stderr, "1 in intersect, sqrt of negative,");
fprintf (stderr, " %f %f %f %f\n" , workl, u,x0_i,k)

;

workl - -workl

;

)

xl_i - sqrt(workl);
time_i - timel + absval((absval(xlO) - xl_i));
return(time_i)

;

120

)

*
* FREQ -- interrupt routine
* occurs at sample times
*

void freq(pregs, pisrblk, pmsg)
ALLREG *pregs

;

ISRCTRL *pisrblk;
ISRMSG *pmsg;

(

extern int comm_bit;
static int first_time - 1;

/* send an end-of -interrupt to controller */
utintoff();
eoi_int()

;

utinton()

;

/* comm_bit —
sample time, send over vector

comm_bit >
error, did not make it from last sample .

time */

if (comm_bit — && !first_time) (

send()

;

comm_bit - 1;

) else if (first_time) (

first_time - 0;

) else {

comm_bit - 5;

)

)

*

* TERMINAL_COUNT -- interrupt routine
* occurs when set number of DMA trasnmissions occured.
*

void terminal_count(pregs, pisrblk, pmsg)
ALLREG *pregs;
ISRCTRL *pisrblk;
ISRMSG *pmsg;

(

121

extern int comm__bit;

extern float x[]

;

static float t, dx[2]

;

static float q[2]

;

int neq;
float h;

/* send an end-of- interrupt to controller */
utintoffQ;
eoi_int()

;

utinton()

;

/* number of first order equations */
neq =- 2

;

h - SAMPLE;

/* turn off transmit/receive signal */
auxloff () ;

/* comm_bit — 1

just sent vector out
comm_bit — 2

just received vector, intergrate to
next step

comm_bit > 2

error */

if (comm_bit — 1) (

receivQ
;

comm_bit - 2;

}

else if (comm_bit — 2) {

/* control is over, integrate it */
comm_bit - 3;

rkg(neq, h, t, x, dx, q)

;

t +- h;

) else (

comm_bit - 6; /* error code */

122

/***
*

* DERIV -- calculates derivatives for a double integrator
*

* deriv(neq, t, x, dx)

* deriv calculates the derivatives based on the double
* integrator problem.
* dxl - x2
* dx2 - u (the control)
* neq - number of first order equations.
* t - the independent variable.
* x(i) - the dependent variable:
* x - { xl, x2, u }

.

* dx(i) - derivative of the dependent variable.
*

* AUTHOR: Donald A. Smith
* DATE: 6/21/88
*

**

deriv(neq, t, x, dx)

/* external functions called
none
*/

int neq

;

float t;

float x[] ;

float dx[]
;

(

dx[0] - x[l];
dx[l] - x[2];

)

123

* RKG -- Runga-Kutta-Gill Integration
*

* rkg(neq, h, x, y, dy, q)
*

* rkg integrates a set of first order differential
* equations

.

* Y(i) - dependent varible

.

* DY(i) - derivative of dependent variable.
* neq - number of first order equations.
* h - interval size for integration.
* q(neq) - work array.
*

* AUTHOR: Donald A. Smith
* DATA: 6/21/88
*

rkg(neq, h, x, y, dy, q)

/* external functions called
deriv(neq, x, y, dy) - calculates the derivatives
*/

int neq;

float h;

float x;

float y[]

;

float dy[
j| ;

float q[]| ;

(

/* integration constants */
float a[2];
float h2,b;
int i,j;

a[0] - 0.292893218813452;
a[l] - 1.7071067811865471;
/* zero out the work array */
for (i - 0; i < neq; i++)

q[i] - 0.0;
h2 - 0.5*h;
/* get derivatives */
deriv(neq, x, y, dy)

;

for (i-0; i < neq; i++) (

b - h2*dy[i]-q[i];
y[i] +- b;

q[i] +- 3.0*b-h2*dy[i]

;

]

124

]

x 4- h2;
for (j - 0; j < 2; j++) (

deriv(neq, x, y, dy)

;

for (i - 0; i < neq; i++) {

b - a[j]*(h*dy[i]-q[i]);
y[i] +- b;

q[i] +- 3.0*b-a[j]*h*dy[i]

;

}

)

x +- h2;
deriv(neq, x, y, dy)

;

for (1-0; i < neq; i++) {

b - O.166666666666*(h*dy[i]-2.0*q[i]);
y[i] +- b;

q[i] +- 3.0*b-h2*dy[i];
)

return(O)

;

125

HPSIMUL - Switching Curves Control

HPSIMUL is the double integrator controller program. HPSIMUL is

a small program and call only small model format subroutines. It uses

the true switching curves to calculate control.

126

/A**.*.*

HPSIMUL simulation program for Hewlett Packard
switching curve control scheme

hpsimul sets up a controller environment for the HP
computer. It calls routines to install the interrupts
and initialize the DMA controller.
One interrupt routine is installed - ' terminal_count'

.

this interrupt is generated each time the specified
number of DMA transmissions has occurred. The external
line AUX1 is used to signal the hand-shaking hardware
that the computer is ready to transmit or receive.
To gracefully exit press the 's' key.

AUTHOR

:

DATE:
Donald A.

6/21/88
Smith

**************-k-k***-k**-ti!****-):*******************-k*-k-k*ii**-k-k1:/

#define
#include
#include
#include
#include
#include
#include
#include
#include
#include

LINT_ARGS
<utility.h>
<stdlib.h>
<bisr.h>
<dos.h>
<malloc.h>
<stdio.h>
<conio.h>
<math.h>
"loch"

float x[10]

;

int comm bit - 0;

/* x[0] - state variable xl
xfl] - state variable x2
x[2] - control u */

/* test variable for communication
with the interrupt routines */

/* FUNCTION DEFINITIONS */
/* interrupt routine for terminal count*/
void terminal_count(ALLREG *, ISRCTRL *, ISRMSG *)

;

main()

(

/* base address of PDMA board */
int base_add - 0x300;
/* DMA level */
int dma_level - 1;

/* hardware interrupt for terminal_count */
int tc_level = 5;

127

/* source of terminal_count Interrupt */
int tc_sourc - 2;

/* number of DMA transmissions */
unsigned numb_trans - 6;
/* transmit words instead of bytes */
unsigned length — 1;

/* initialize direction for input */
unsigned direction - 0;

/* enable DMA recycle bit */
unsigned recycle = 1;

/* transmit request external */
unsigned trans_sourc - 0;
unsigned data_segment;

struct SREGS segregs

;

extern float x[]

;

extern int comm_bit;

int i
, j

;

char char_at_keybd;
char string [80]

;

char_at_keybd - '
!

' ; /* initialize to something */

/* disable DMA on mode 1 in case was left on */
outpt(0x0a,0x05)

;

/** hardware check */
if (modeO(base_add, dmalevel, tc_level)) (

fprintf(stderr, "error with mode 0, check hardware");
exitQ

;

)

/* set hardware communication line off */
auxloff ()

;

fprintf(stderr,"\nsample rate- %4.2f\n\n" .SAMPLE)

;

fprintf (stderr, "return to continue ->\n");
gets (string)

;

/* install interrupt routine 'terminal count' */
utintoff()

;

mode7(base_add, tc_level, tc_sourc, terminal_count, 1);
/* set output frequency of timer for sample rate */
mode3(base_add, MULT_1, MULT_2);
utinton()

»

/* get x() segment */
segread(&segregs)

;

128

data_segment - segregs.ds;
/* set up DMA */
model (base_add, dma_level, numb_trans , length,

direction, recycle, trans_sourc,
data_segment , x)

;

/* initialize to receive data */
receivQ

;

comm_bit-0;
fprintf (stderr , "start\n")

;

/*** start simulation loop */

for(i-0; ; i++) {

/* turn on line signaling ready to receive */
auxlon()

;

/* wait until vector has arrived or abort */
while (comm_bit —) {

if (key_push()) {

char_at_keybd - getchQ
;

if (char_at_keybd — '

s
')

goto kickout; /* exit the simulation */

)

}

/* received vector and calculated control
ready to send back vector */

auxlon()

;

/* wait until vector has been
sent out or user aborts */

while(comm_bit — 1) (

if (key_push()) {

char_at_keybd - getch();
if (char_at_keybd — 's')

goto kickout; /* exit the simulation */
J

/* check if error condition occurred */
if (comm_bit — 5) {

fprintf (stderr , "error code, comm_bit-%d\n"

,

comm_bit)

;

break;

)

129

/*** exit simulation */
kickout:

/* turn off DMA */
outpt(0x0a,0x05)

;

/* uninstall interrupt and set frequency to */
utintoffO

;

mode7(base_add, tc_level, tc_sourc, terminal_count, 0)

;

utinton()

;

fprintf(stderr, "interrupts changed back\n");
mode 3 (base_add, 0, 0);

/* user abort? */
if (char_at_keybd — ' s '

)

fprintf(stderr,"user killed the simulation\n")

;

fprintf (stderr, "exiting. . . . \n")

;

exit();

130

/***
*

* TERMINAL_COUNT -- interrupt routine
*

* occurs when set number of DMA transmissions has occurred.
*

**

void terminal_count(pregs
,
pisrblk, pmsg)

ALLREG *pregs;
ISRCTRL *pisrblk;
ISRMSG *pmsg;

{

extern float x[];
extern int comm_bit;

/* send an end-of -interrupt to controller */
utintoff()

;

eoi_int()

;

utinton()

;

/* turn off transmit/receive signal */
auxloff ()

;

/* comm_bit -
just received vector , reverse direction,
calculate control, and update communication

comra__bit - 1

just sent back vector, reverse
direction, and update communication

comm_bit > 1

error, set to error condition and return
*/

if (comm_bit — 0) {

send()

;

x[2] - control(x, (float) UMAX);
comm_bit - 1;

) else if (comm_bit — 1) (

receiv()

;

comm__bit -
;

} else {

comm_bit - 5;

)

131

*

* CONTROL -- calculate control based upon switching curves
*

* float control (x, umax)
*

*

* control calculates the control based upon the switching
* curves of the double integrator problem.
* x - array of xl,x2,u.
* umax - maximum limit of u for bang-bang control.
* returns a float (control)

.

*

* AUTHOR: Donald A. Smith
* DATE: 6/21/88
*

***/

#define absval(a) ((a>0)?a:-a)
#include <stdio.h>

/* external fuctlons called
none
*/

float control (x, umax)

float x[]

;

float umax;

/* parameter for location on phase plane */
float switch_curv;

switch_curv - x[0]+x[l]*absval(x[l])*0. 5/umax;

if (switch_curv > 0.) (

return(-umax)

;

) else
(

return(umax)

;

)

132

HPSIMUL Finite Elements Control

This form of HPSIMUL uses the R-Theta finite element grid of

isochrones to calculate control. It uses the large model format and

calls only large model format subroutines.

13 3

*

* SIMULATION HEADER FILE
*

* information in this header is used by HPSIMUL
*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88
*

a**/

#define LINT_ARGS
/* S_RATE - 1 -- sample rate 0.01

- 2 -- sample rate 0.02
- 3 -- sample rate 0.03 */

#define S_RATE 3

#define UMAX 1.0

/* time from termination circle to the origin */
#deflne TOPTCIRCL 5.9973043E-2

#if S_RATE — 1

#define SAMPLE 0.01
#define MULT 1 1000
#define MULT 2 100

#elif S RATE — 2

#define SAMPLE 0.02
#define MULT 1 1000
#define MULT 2 200

#elif S_RATE — 3

#define SAMPLE 0.03
#define MULT 1 1000
#define MULT 2 300

#elif S RATE — 4
#define SAMPLE 0.5
#define MULT 1 1000
#define MULT 2 5000

#endif

#define absval(a) (((a) >) ? (a) : -(a))

/* function definitions */
void eoi_int(void)

;

void auxlon(void)

;

void auxloff (void)

;

void aux2on(void)

;

void aux2off (void)

;

void aux3on(void)

;

134

void aux3off ()

;

void send(void)

;

void receiv(void)

;

void rkg(int, float, float, float *, float *, float *)

;

float control (float *, float);

int key_push(void)

;

int nodes (int, int, int *)

;

int gridlt(int, int, int *)

;

int read_in_nodes(void);
void fi_driver(void)

;

/* SCALEF is the the outer radius */
#define SCALEF 28.5

/* NUMSPKS is number of spokes */
#define NUMSPKS 15

/* NUMCIR is the number of circles */
#define NUMCIR 9

/* GRIDF is the grid factor for scaling */
#define GRIDF 1.8

/* buffer size for nodes and elements */
#define BUF_NODE 1700
#define BUF ELEM 3600

135

/***
*

* HPSIMUL -- simulation program for Hewlett Packard.
* finite element control scheme
*

* hpsimul sets up a controller environment for the HP
* computer. It calls routines to install the interrupts
* and initialize the DMA controller.
* One interrupt routine is installed - ' int_h_asm'

.

* This interrupt is generated each time the specified
* number of DMA transmissions has occurred. This
* interrupt routine is an assembly program that passes
* control to the 'C program 'my_int_hand' which
* calculates the new control. The external line
* AUX1 is used to signal the handshaking hardware
* that the computer is ready to transmit or receive.
* To gracefully exit press the '

s' key.
*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88

*************************************/**********************

#include <utility.h>
#include <stdlib.h>
#include <bisr.h>
#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include "loch"

float x[10]; /* x[0] - state variable xl
xjlj - state variable x2
x[2] - control u */

int comm_bit - 0; /* test variable for communication
with the interrupt routines */

/* x and y locations of each node */
float x_node[BUF_NODEJ

, y_node [BUF_N0DE J

;

/* node table */
int ntable[BUF_ELEM] [3]

;

/* solution vector of final times for each node */
float tf [BUF_N0DE]

;

int ib[BUF_ELEMJ;

/* FUNCTION DECLARATIONS */
void my_int_hand(void)

;

void int_h_asm(void)

;

136

main(

)

f

/* base address of PDMA board */
Int base_add - 0x300;
/* DMA level */
int dma_level - 1

;

/* hardware Interrupt for int_h_asm */
int tc_level - 5;

/* source of int_h_asm interrupt */
int tc_sourc - 2

;

/* number of DMA transmissions */
unsigned numb_trans - 6;

/* transmit words instead of bytes */
unsigned length - 1;
/* initialize direction for input */
unsigned direction - 0;
/* enable DMA recycle */
unsigned recycle - 1;

/* transmit signal external */
unsigned trans_sourc - 0;
unsigned data_segment, x_offset;
long int x_work;

struct SREGS segregs

;

extern float x[
]

;

extern int comm__bit;

int i, j;
char char_at_keybd;
char string [80]

;

char_at_keybd - '
!

' ; /* initialize to something */

/* disable DMA on mode 1 in case was left on */
outpt(0x0a,0x05)

;

/** hardware check */

if (mode0(base_add, dma_level, tc_level))

fprintf (stderr, "error with mode 0, check hardware");
fprintf (stderr, "mode0\n")

;

/* set hardware communication line off */
auxloffO;

fprintf (stderr, "\nsample rate- %4. 2f\n\n" , SAMPLE)

;

/* initialize finite element grid --

node table, nodal position, and final time*/

137

fi_driver()

;

fprintf (stderr, "return to continue ->\n");
gets (string)

;

utintoff()

;

/* install interrupt routine int_h_asm */
mode8(base_add, tc_level, tc_sourc, int_h_asm, 1);

/* set output frequency of time for sample rate */
mode3(base_add, MULT_1, MULT_2);

utinton()

;

/* break long pointer for x() into offset and
segment */

x_work — x;

data_segment = (unsigned) (x_work » 16);
x_offset - (unsigned) (x_work)

;

/* set up DMA */
model (base_add, dma_level , numb_trans , length,

direction, recycle, trans_sourc, data_segment

,

x_offset)

;

/* initialize to receive data */

receiv()

;

comm_bit— 0;

fprintf (stderr, "start\n")

;

/*** start simulation loop */

for(i-0; ; i++) {

/* turn on line signaling ready to receive */
auxlonO ;

/* wait until vector has arrived or abort */
while (comm_bit —) (

if (key_push()) (

char_at_keybd - getch();
if (char_at_keybd — '

s
')

goto kickout; /* exit the simulation */
)

)

138

/* received vector and calculated control
ready to send back vector */

auxlon()

;

/* wait until vector has been sent out or
user aborts */

while (comm_bit — 1) (

if (key_push()) (

char_at_keybd - getchQ;
if (char_at_keybd — 's')

goto kickout; /* exit the simulation */
)

)

/* check if error condition occurred */
if (comm_bit — 5) (

fprintf (stderr, "error code, comm_bit-%d\n"

,

comm_bit)

;

goto kickout; /* exit the simulation */

]

/*** exit simulation */
kickout:

/* turn off DMA */
outpt(0x0a,0x05)

;

/* uninstall interrupt and set frequency to */
utintoff()

;

mode8(base_add, tc_level, tc_sourc, int_h_asm, 0);
mode3(base_add, 0, 0);
utinton()

;

if (char_at_keybd — '
s

'

)

fprintf (stderr, "user killed the simulation\n")

;

fprintf (stderr, "exiting. . . . \n")

;

exit()

;

139

*

* CONTROL - - calculates control for double Integrator
* using finite element isochrones
*

* control(x, umax)
*

* control calculates the control for the current position
* for bang bang control for a double integrator. The
* control is calculated using the isochrones. The
* isochrones are generated by using the final times
* for each node in the finite element mesh.
* x - array of (xl, x2, u)

.

* umax - scale for max/min control.
* EXTERNAL VARIABLES:

x_node, y_node - x and y position of each node.
* ntable - node table.
* tf - final time vector for nodes
*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88
*

#include "loch"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* signed control */
#define sgncont(a) ((a) > ? umax : -umax)

float control (x, umax)

/* external functions called
none
*/

float *x;
float umax;

extern float x_node
[] , y_node

[]

;

extern int ntable[][3];
extern float tf []

;

float x_0, x_l;

/* element number */
int el_num;

140

float rad_test, rad, d_pow;
int min, max, i, j, k;

int start_node, spknum;
float a, b, c, d, theta;

int nt_0, nt_l, nt_2;

float slope_l, yints_l, slope_2, x_i, y_i;

float b_l , c_l , c_2, c_3, a_l, del2, larada, u;

/* which element is current position in? */

x_0 - x[0]
;

x_l - x[l];

/* divide by zero elemination */
if(x_0 — 0.0)

x_0 - 0.00001;
if(x_l — 0.0)

x_l - 0.00001;

/* radius to current position */
rad - x_0*x_0 + x_l*x_l;
rad - sqrt((double) rad);

/* find the circle current position is in */
for(min-0, max-NUMCIR, j-1; j<4; j++) (

i - min + (max-min)/2;

for(k-NUMCIR-i, d_pow-1.0; k>0; k--) (

d_pow *- GRIDF;

)

rad_test - SCALEF/d_pow;

if (rad < rad_test)
max - i

;

else
min - i;

)

for(min++; ; min++) (

for(k-NUMCIR-min, d_pow-1.0; k>0; k--) (

d_pow *- GRIDF;
)

rad_test - SCALEF/d_pow;
if (rad_test > rad) (

min- -

;

break;
141

)

if(min — 0) (

el_num — 1

;

start_node - 2;
} else {

el_num - NUMSPKS + (min-l)*2*NUMSPKS;
start_node - min*NUMSPKS + 2;

)

a - x_node[start_node]

;

b - y_node[start_node]

;

rad_test - a*a + b*b;
rad_test - sqrt((double) rad_test)

;

a - a/rad_test;
b - b/rad_test;
c - x_0/rad;
d - x_l/rad;

theta - atan2((double) (a*d-c*b)
, (double) (a*c+b*d))

if (theta < 0.0)

theta +- 6.28319;
spknum - (theta/6.28319)*NUMSPKS;

iff min > 0) (

el_num +— spknum*2

;

nt_0 - ntable[el_nura+l][0]
nt_l - ntable[el_num+l] [1]
nt_2 - ntable[el_num+l][2)

if (spknum < NUMSPKS - 1)
slope_l - (y_node[nt_0

]
- y_node[nt_l

(x_node[nt_0
]

- x_node[nt_l
else

slope_l - (y_node[nt_0
]

- y_node[nt_2
(x_node[nt_0

]
- x_node[nt_2

yints_l - y_node[nt_0]
-

slope_l*x_node[nt_0];
slope_2 - x_l/x_0;
x_i - yints_l/(slope_2 - slope_l)

;

y_i - slope_2 * x_i;
rad_test - x_i*x_i + y_i*y_i;
if (rad_test > rad*rad)

el_num -f— 1

;

else
el_num +— 2

;

142

]) /
]);

]) /

) else
el_num +— spknum + 1

;

nt_0 - ntable[el_num] [0]
nt_l - ntable[el_num] [1]
nt_2 - ntable[el_mun] [2]

b_l - y_node[nt_l
c_l - x_node[nt_2
c_2 - x_node[nt_0
c_3 - x_node[nt_l
a 1 - x_node[nt_l

]
- y_node[nt_2

]
- x_node[nt_l

] - x_node[nt_2
]

- x_node[nt_0
" >y_node [nt 2

x_node[nt_2]*y_node[nt_l
del2 - a_l + b_l*x_node [nt_0] +

c_l*y_node [nt_0]

;

lamda - (c_l*tf[nt_0] + c_2*tf[
c_3*tf[nt_2]) / del2;

u - sgncont(-lamda);

return(u)

;

nt_l] +

143

*

* INT_H_AS - - interrupt routine
*

* occurs when set number of DMA transmissions has
* occurred. Passes control to 'C program
* 'my_int_hand'

.

*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88
*

286c
; compile for 80286

287
; compile for 80287

E0I_P0RT EQU 20H ;port address of the
; controller

E0I_CMD EQU 20H ; interrupt acknowledge
; command

INT_DATA segment word public 'DATA'
save_ss dw 3412H

; ld stack segment
save_sp dw 0AA55H ;old stack pointer
istack dw 512 dup (0) ;new stack space
topstk dw

; top of the stack
astack dw topstk ;save address of stack
env_cop db 94 dup (?) ;space for 80287

; environment
INT_DATA ends

DGROUP GROUP INT DATA

EXTRN _my_int_hand:FAR ;c program to be called
intrp_TEXT segment para public 'CODE' jdefine as code

ASSUME cs:intrp_TEXT, ds: DGROUP, es: DGROUP
public _int_h_asm
_int_h_asm proc far ; far procedure
sti
fwalt ;wait for 80287 to catch

cli
up

push ax ;push the registers
push bx

; to save the current
push ex

; state
push dx
push si
push di
push bp
push ds

144

push es

raov

mov

TDOV

mov
mov
mov
mov

ax,SEG DGROUP
es ,ax

; segment of data

es:word ptr save_ss , ss ;save stack seg.

es:word ptr save_sp,sp ;save stack ptr.
ds , ax ; change to the new
ss , ax ; stack
sp, OFFSET es:astack

sti
FNSAVE env_cop

mov

eld

iret

bp, sp

fwait
call _my_int_hand
frstor env_cop

cli

mov ax SEG DGROUP ;r

mov es ax
mov ds es :word ptr save ss

mov ss es :word ptr save ss

mov sp es :word ptr save sp

mov dx EOI PORT ;1
mov ax EOI_CMD ;i

dx.al

pop es
pop ds
pop bp
pop di
pop si

pop dx
pop ex
pop bx

POP ax
sti
fwait

145

allow more interrupts
save environment of
the 80287

set up reference for
c program
clear direction bit
for c program
wait for 80287
call c program
restore environment of
the 80287

turn off interrupts

; restore previous stack

load the end of
interrupt for the

; controller chip
;send EOI to the

;controller chip
;pop all the registers
;to return the state
; to what it was before
;the interrupt

; restore environment
; of the 80287
;let iret enable int's
; return from interrupt

_int_h_asm endp
intrp_TEXT ends

end

146

/***
*

* MY_INT_HAND -- interrupt handler routine

* my_int_hand is called by the interrupt routine
* int_h_asm. Interrupt occurs when set number of DMA
* transmissions has occurred.
*

* EXTERNAL VARIABLES:
* x[] - array of (xl, x2 , u)
* comm_bit - communication integer
*

* AUTHOR: Donald A. Smith
* DATE: 6/23/88
*

**

#include "loch"

void my_int_hand()
{

extern float x[]

;

extern int comm_bit;

/* comm_bit -
just received vector, reverse direction

comm_bit - 1

just sent back vector, reverse
direction and update communication

comm_bit > 1

error, set to error condition and return */

if (comm_bit — 0) {

send()

;

comm_bit - 1;

x[2] - control(x, UMAX);
} else if (comm_bit — 1) {

receivQ
;

comm_bit — 0;

) else {

comm__bit - 5;

)

/* turn off transmit/receive signal */
auxloff();

147

*

* FI_DRIV -- sets up all the finite element information
*

* fi_driv()
*

* fi_driv sets all the necessary finite element
* information - node table, nodal location, and final
* time vector. The final time vector is read in from
* a user input file.
*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88
*

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "loch"

/* FUNCTION DEFINITIONS */
void fortran gridcl(int *, int *, int (*) [3], int * int *

int *)

;

void fi_driver()

/* external functions called
fprintf -- c library
node -- generates nodes and nodal position for each
gridlt -- generates nodal table
read_in_nodes -- reads in final time solution vector
*/

{

int i, j , k, count;
int nspks, ncir;
int nelm, maxnelm, nds_read;
float gridfac, scale;

extern int ntable[][3];
extern int ib[]

;

/* number of spokes */
nspks - NUMSPKS;

/* number of circles */
ncir - NUMCTR;

148

/* scale */
scale - SCALEF;

/* grid factor */
gridfac - GRIDF;

/* read in nodes (#, x, y, tf) */
nds_read - read_in_nodes()

;

maxnelm - BUF_ELEM;

/* generate node table */
gridcl(&nspks, &ncir, ntable , &nelm, &maxnelm, ib)

;

fprintf (stderr, "#nodes-%d #elements-%d\n" , nds_read, nelm)

;

/* shift node table so start with 1 */
for(i-nelm-1, j-nelm; j > 0; j--, i--) (

ntable[j][0] - ntable[i] [0]

;

ntable[j][l] - ntable[i] [1]

;

ntable[j][2] - ntable[i] [2]

;

1

149

*

* READ_IN_NODES -- read in final time vector
*

* read_in_nodes ()
*

* read_in_nodes reads in the final time vector from a
* user input file.
* EXTERNAL VARIABLES:
* tf[] - final time vector
* Returns the number of time values read into the
* the array.
*

* AUTHOR: Donald A. Smith
* DATE: 6/22/88
*

***/

#include <stdio.h>
#include <stdlib.h>
#include "loch"

read_in_nodes (

)

/* external functions called
fprintf -- c library
gets -- c library
fopen - - c library
fclose -- c library
fscanf -- c library
*/

int i, j , count;
char file_name[40]

;

FILE *data_flle;
float dummy;
extern float tf [] ;

extern float x_node
[] , y_node

[]

;

do (

fprintf (stderr, "data file?\n")

;

gets(file_name)

;

data_file - fopen(file_name , "r")

;

) while(data_file — NULL);

for(i-1;
; i-H-) j

if(i > BUF_NODE) {

fprintf (stderr, "more nodes than buffer size BUF_NODE\n")

;

fprintf (stderr, "aborting read_ln\n")

;

150

break;

)

count - fscanf(data_fi.le
1 "%d",S<j) ;

if (count —
|

| count — EOF)

break;
fscanf(data_file,"%f %f %e" ,&x_node[j

] ,&y_node[j] ,&tf [j])

;

if(fclose(data_file) !-)

fprintf(stderr,"%s was not closed\n" ,file_name)

;

return(i-1);

151

SUBROUTINE GRIDCL(NSPOKE, NCIR, NTABLE, NELM, NUMEL, IB)

C Subroutine to construct the node table for a polar mesh
C consisting of three node triangles.

c

C NSPOKE Integer*4 Input Number of spokes in mesh.
C NCIR Integer*^ Input Number of circles in mesh.

NTABLE Integer*4 Array Output The node table.
C NELM Integer*4 Output The total number of elements used.
C NUMEL Integer*4 Input Maximum number of elements.
C IB Integer*4 Array Output Array of gradient B.C. types.

INTEGER*2 NSPOKE, NCIR, NUMEL, NTABLE(3 , NUMEL) , NELM
INTEGER*2 IB (NUMEL)

C Local variables

INTEGER*4 I, J, Nl , N2 , N3 , N4

NELM -

DO 500 J - 1, NCIR
IF(J .EQ. 1) THEN

DO 100 I - 1, NSPOKE
NELM - NELM + 1

NTABLE (1, NELM) - 1

NTABLE(2,NELM) - I + 1

IF(I .EQ. NSPOKE) THEN
NTABLE (3, NELM) - 2

ELSE
NTABLE (3, NELM) -1+2

ENDIF
IF(J .EQ. NCIR) THEN

IB(NELM) - 2

ELSE
IB (NELM) -

ENDIF
100 CONTINUE

ELSE
DO 200 I - 1, NSPOKE

IF(I .NE. NSPOKE) THEN
Nl - (J-l)* NSPOKE +1+1
N2 - Nl + 1

N3 - N2 - NSPOKE
N4 - N3 - 1

NELM - NELM + 1

NTABLE(l.NELM) - Nl
NTABLE (2, NELM) - N3
NTABLE(3,NELM) - N4
IB(NELM) -
NELM - NELM + 1

152

NTABLE(l.NELM) - Nl
NTABLE(2,NELM) - N2
NTABLE(3,NELM) - N3
IF(J .EQ. NCIR) THEN

IB(NELM) - 1

ELSE
IB(NELM) -

ENDIF

200

500

ELSE
Nl - (J- 1) * NSPOKE +
N2 - Nl - NSPOKE + 1

N3 - N2 - NSPOKE
N4 - Nl - NSPOKE
NELM - NELM + 1

NTABLE(1 ,NELM) - N2
NTABLE(2 ,NELM) - N3
NTABLE(3 ,NELM) - m
IB (NELM) -
NELM - NELM + 1

NTABLE(1 ,NELM) - N2
NTABLE(2 .NELM) - N4
NTABLE(3. NELM) - Nl
IF(J .EQ. NCIR) THEN

IB (NELM) - 3

ELSE
IB(NELM) -

ENDIF
ENDIF

CONTINUE
ENDIF

CONTINUE

RETURN
END

1 + I

153

PRINCIPLE HARDWARE CONFIGURATION SUBROUTINES

Five principle routines were used for hardware initialization.

modeO

model

mode 3

mode 7

mode 8

ModeO,

Mode7 is to b<

compiled in

BLAISE C TOOL

316, Berkeley

initializes PDMA hardware;
large and small model format

sets up DMA controller chip;
large and small model format

sets up the interval counters on the PDMA board;
large and small model format

installs interrupt routines using BLAISE library
support

;

small model format
installs interrupt routines;

large model format

1, 3 can be compiled in the large or small model format,

compiled in the small model format only. Mode8 is to be

the large model format only. Mode7 uses the support of

library; BLAISE COMPUTING INC., 2560 Ninth Street, Suite

CA 94710, (415)540-5441.

154

MODEO -- initializes the PDMA hardware

modeO (base_add , dma_level, intp_level)

modeO is the initialization routine for the PDMA.
It checks if the board exists and if the ports are
working

.

base_add - base address of the board.
dma_level - user selected DMA level; 1,3.
intp_level - user selected hardware interrupt

level; 2-7.
return value is - everything initialized ok

1 - error on initialization

AUTHOR:
DATE:

Donald A. Smith
6/16/88

#include<conio . h>
#include<stdio.h>

**********/

modeO(base_add, dma_level, lntp_level)

/* external functions called
fprintf -- c library
inpt -- assembly program to do an inport
outpt -- assembly program to do an outport
*/

unsigned base_add;
unsigned dma level;
unsigned intp_level;

(

counter 1

counter 2

/* control word for counter
unsigned char cwO - 0x34;
/* control word for
unsigned char cwl - 0x74;
/* control word for
unsigned char cw2 - 0xb4;
/* work variables
unsigned char retrn, save, workl;
/*** test if base address is in valid range */
if (base_add < 0x200

|
| base_add > 0x3f8) {

155

*/

*/

V
*/

fprintf (stderr, "base address not in range of");
fprintf(stderr," 200h-3f8h \n");
fprintf (stderr, "current base address- %u\n"

,

base_add)

;

return(l)

;

)

/*** hardware tests */
/** dma testl */
/* get current value of dma control reg */
save - retrn - inpt(base_add+2)

;

/* set up first test case to output */
workl - (retrn & 0x03)

|
(0x4c)

;

/* output test case */
outpt(base_add+2, workl);
/* read back in */
retrn - inpt(base_add+2)

;

/* check if what went out - what is read back */
if (retrn !- workl)

(

fprintf (stderr, "hardware error, DMA register,");
fprintf (stderr, " test l\n")

;

return(l)

;

}

/** dma test2 */
/* set up second test case to output */
retrn - workl &- 0x03;
/* output test case */
outpt(base_add+2, workl);
/* read case back in */
retrn - inpt(base_add+2)

;

/* check if what went out - what is read back in */
if(retrn !- workl) (

fprintf (stderr, "hardware error, DMA register,");
fprintf (stderr," test 2\n");
return(l)

;

)

/* restore original contents */
outpt(base_add+2, save);
/** interrupt testl */
/* get current contents */
save - retrn - inpt(base_add+3)

;

/* output test value 54h */
outpt(base_add+3, 0x54);
/* read test value back in */
workl - inpt(base_add+3)

;

/* check if what went out - what is read back in */
if (workl !- 0x54) (

fprintf (stderr, "hardware error, interrupt");
fprintf (stderr," register, test l\n");
return(l)

;

)

156

/** interrupt test2 */
/* output test value of Oh */ =•*•

outpt(base_add+2,0x0)

;

/* read test value back */
workl - lnpt(base_add+2)

;

/* check if what went out - what is read back in */
if (workl !- 0x0) {

fprintf (stderr , "hardware error, interrupt ");

fprintf (stderr, "register, test 2\n");
return(l)

;

} v :...

/* restore to original contents */
outpt (base_add+2, save);
/* check if DMA level is a valid mode, lor- %*/
if (dma_level !-l && dma_level !-3) (-* '

''

fprintf (stderr, "DMA level must be 1 or 3, ")';

fprintf (stderr , "current-%u\n" ,dma_level) ; *

return(l);

)

: *'

/* check if interrupt level is valid range, 2-7 */
if (intp_level < 2 6& intp_level > 7) (

fprintf (stderr , "interrupt level out of range 2-7,");
"
:

fprintf (stderr, " current-%u\n" ,intp_level)

;

return(l);

)

'

/** set counters to the slowest possible value */
/* point to counter */
outpt (base_add+7, cwO)

;

/* LSB of counter */
outpt(base_add+4, Oxff)

;

"' '
''

/* MSB of counter */'.'

outpt(base_add+4, Oxff)

;

,

/* point to counter 1 */
outpt(base_add+7, cwl)

;

/* LSB of counter 1 */
outpt(base_add+5 , Oxff)

;

/* MSB of counter 1 */
outpt(base_add+5, Oxff);
/* point to counter 2 */ • .->-,

outpt (base_add+7 , cw2)

;

/* LSB of counter 2 */
outpt (base_add+6, Oxff);
/* MSB of counter 2 */ _\, / .

outpt (base_add+6, Oxff);
return(O); •.

157

*
*

* M0DE1 -- set up DMA controller chip
*

* model (base_add,dma_level,numb_trans, length, direction,
* recycle , trans_sourc , segment , offset)
*
*
* model is used to set up the DMA controller registers and
* to enable the selected DMA mode.
* base_add - base address of the PDMA board.
* dma_level - user selected DMA level, valid
* levels are 1 and 3.

* numbtrans - number of bytes/words to be
* transferred, this is dependent on the
* mode selected, byte or word transfer.
* length - what to transfer;
* - byte
* 1 - word
* direction - direction of the DMA;
* - input from the board to memory.
* 1 - output from memory to the board.
* recycle - used to allow DMA to recycle- start
* over at the end by reloading the values
* it started with;
* - off
* 1 - on
* trans_sourc - source for Xfer signal;
* - external
* 1 - timer
* segment - segment the data is located in.
* offset - offset of starting address of the array
* of data.
*

* AUTHOR: Donald A. Smith
* DATE: 6/16/88
*

model (base_add,dma_level , numb_trans , length, direction,
recycle , trans_sourc , segment , offset)

/* external functions called
inpt -- assembly program to do an inport
outpt -- assembly program to do an outport
*/

unsigned base_add;
158

unsigned dma_level;
unsigned numb_trans;
unsigned length;
unsigned direction;
unsigned recycle;
unsigned trans_sourc;
unsigned segment;
unsigned offset;

(

/* data page value
unsigned page;
/* data start address
unsigned trans_add;
/* PDMA's DMA register
unsigned pdma_reg;
/* work variables
unsigned char workl,work2;
/* work variable
unsigned long int work3;
/* DMA level 1 page register
unsigned char pagel - 0x83;
/* DMA level 3 page register
unsigned char page3 - 0x82;
/* 8237 DMA level 1 base register
unsigned char dbl - 0x02
/* 8237 DMA level 3 base
unsigned char db3 - 0x06
/* 8237 DMA level 1 byte
unsigned char del - 0x03
/* 8237 DMA level 3 byte
unsigned char dc3 - 0x07
/* 8237 DMA mask register
unsigned char dmask - 0x0a
/* 8237 DMA mode register
unsigned char dmod - 0x0b;

/* disable selected DMA level before writing
to its registers */

if (dma_level — 1) {

outpt(dmask, 0x05)

;

) else (

outpt(dmask, 0x07);
)

/* disable the dma bit in the dma control
register */

workl - inpt(base_add+2)

;

workl &- 0x7f;
outpt(base_add+2, workl);

159

*/

*/

*

*/

*/

*/

*/

*/

register */

count register*/

count register*/

*/

V

/* setup page register */
page - segment » 12

;

work3 - (unsigned long int) (segment « 4) +
(unsigned long int) offset;

/* trans_add is absolute address */
trans_add - work3

;

/* increase page if there was a carry on the
absolute address */

page +— work3 » 16;
pdma_reg - inpt(base_add+2)

;

/* zero out all but the two aux bits */
pdma_reg &- 0x30;
if (direction) (/* true-output, false-input */

if (length) /* output */
pdma_reg |- 0x07; /* word output */

else
pdma_reg |- 0x01; /* byte output */

} else {

if (length) /* input */
pdma_reg |- 0x04; /*word output, default byte*/

if (trans_sourc) /* true-timer, default external */
pdma_reg |- 0x08;

if (dma_level — 3) /* default is for level 1 */
pdma_reg |- 0x40;

pdma_reg |- 0x80; /* set enable bit */

/** set up 8237 DMA controller */
/* set for single XFER mode */
workl - dma_level

| 0x40;
if (direction) {

/* output - read transfer */
workl |- 0x08;

) else {

/* input - write transfer */
workl |- 0x04;

)

if (recycle) (

/* auto- initialize on; default off */
workl |- 0x10;

)

outpt(dmod, workl);
if (dma_level — 1) (

/** output page data for level 1 */
outpt(pagel, page);
if (length) (

/* double if byte count is words */
numb_trans *-2;

)

/* decrease byte count by 1 - DMA default */
160

numb_trans — 1;

work2 - numb_trans

;

/* output low byte of byte count */
outpt(dcl, work2);
work2 - numb_trans » 8

;

/* output high byte of byte count */
outpt(dcl, work2);
work2 - transadd;
/* output low byte of base address */
outpt(dbl, work2)

;

work2 - trans_add » 8

;

/* output high byte of base address */
outpt(dbl, work2);

) else (

/** output page data for level 3 */
outpt(page3, page);
if (length) {

/* double if byte count is words */
numb_trans *-2;

)

/* decrease byte count by 1 - DMA default */
numb_trans -- 1;
work2 - numb_trans

;

/* output low byte of byte count */
outpt(dc3, work2)

;

work2 - nurab_trans » 8

;

/* output high byte of byte count */
outpt(dc3, work2);
work2 - trans_add;
/* output low byte of base address */
outpt(db3, work2);
work2 - trans_add » 8;
/* output high byte of base address */
outpt(db3, work2);

);

/* output PDMA register */
outpt(base_add+2 ,pdma_reg)

;

/* enable mask register */
outpt(dmask,dma_level)

;

return(O)

;

161

*

* M0DE3 -- Set the counters on the PDMA board
*

* mode3(base_add, divO, divl)
*

* mode3 is used to set the output frequency for the timers
* on board the PDMA.
* base_add - port address of the PDMA.
* divO - divider for counter 0.
* divl - divider for counter 1.
* output frequency will be:
* freq - 10,000,000/(div0*divl)
*

*

* AUTHOR: Donald A. Smith
* DATE: 6/16/88
*

#include <conio.h>
#include <stdio.h>

mode3(base_add, divO, divl)

/* external functions called
inpt -- assembly program to do an inport
outpt -- assembly program to do an outport
V
unsigned base_add;
unsigned divO;
unsigned divl;

(

/* control word for counter */
unsigned char cwO - 0x34;
/* control word for counter 1 */
unsigned char cwl - 0x74;
/* work variable */
unsigned char workl;
/* work variable */
unsigned work2

;

/** set up counter #0 */
/* set counter pointer to counter */
outpt (base_add+7, cwO)

;

/* strip off upper byte */
workl - (unsigned char)div0;

162

/* output LSB of divider */
outpt(base_add+4, workl)

;

/* shift upper byte to lower byte */
work2 - divO » 8;

/* strip off upper byte of O's */
workl - (unsigned char)work2;
/* ouput MSB of divider */
outpt(base_add+4, workl);

/** set up counter #1 */
/* set counter pointer to counter 1 */
outpt(base_add+7, cwl)

;

/* strip off upper byte */
workl - (unsigned char)divl;
/* output LSB of divider 1 */
outpt(base_add+5, workl);
/* shift upper byte to lower byte */
work2 - divl » 8;

/* strip off upper byte of O's */
workl - (unsigned char)work2;
/* output MSB of divider 1 */
outpt(base_add+5, workl);
return (0)

;

163

*

* M0DE7 -- set up 2 interrupts
*

* mode7(base_add, intp_level, intp_source, service,
* action)

mode7 is used to set up and enable or disable up to 2

interrupts.
base_add - port address of the PDMA.
intp_level - user defined hardware interrupt number;

2-7.

intp_source - source of the interrupt;
|

- external input, positive slope.
int #1

j
1 - external input, negative slope.
2 - dma terminal count interrupt.

j 3 - PDMA timer interrupt.
int #2 - 4 - for use in setting up other

interrupts that the PDMA is

not involved in controlling,
service - pointer to interrupt service routine,
action - 1 enable the interrupt.

disable the interrupt.
The enable not only enables the interrupt but also sets
up the interrupt vector. You cannot use this to enable
or disable interrupts in a toggle fashion. Disable
reinstalls the previous interrupt vector and also frees
the allocated stack.

Define requirements are;
#define STACKSIZE # where # represents the maximum

size of the stack
#define NUMSTACKS # where # represents the maximum

number of stacks.
This stack number is important mainly if the
service routine is recursive. For each time
that it may be called while service the num-
stacks must at least equal that, preferable
greater by 1 so the program doesn't crash.

AUTHOR:
DATE;

Donald A.

6/16/88
Smith

#include <bisr.h>
#define STACKSIZE 1024
#define NUMSTACKS 2

char *Tnalloc()
;

164

mode7(base_add, intp_level , intp_source , service, action)

/* external functions called
free -- c library
malloc -- c library
inpt -- assembly program to do an inport
outpt -- assembly program to do an outport
isinstall -- blaise library
issetvec -- blaise library
*/

unsigned action;
char *service;
unsigned intp_source;
unsigned base_add;
unsigned intp_level;

(

/* ISR control block */
static ISRCTRL intrl_ctl, intr2_ctl;
/* pointer to ISR's stack */
static char *intupl_stack,*intup2_stack;
/* work variables */
unsigned char workl, work2

;

/*** install the interrupts */
if (action) (

/* disable interrupt level */
work2 - Oxl;

/* shift a 1 to position to mask out int */
work2 - work2 « (unsigned char)intp_level;
/* read current state */
workl - inpt(0x21);
/* code to disable selected level */
work2 |- workl;
/* disable interrupt level */
outpt(0x21, work2);

/** setup interrupt service routine */
if (intp_source < 4) (/* install interrupt #1? */

/* allocate stack space */
intupl_stack - malloc(STACKSIZE*NUMSTACKS)

;

/* install interrupt */
isinstal(intp_level+8, service, "iservice",

&intrl_ctl, intupl_stack, STACKSIZE, NUMSTACKS)

;

} else (/* then install interrupt #2 */
/* allocate stack space */

165

intup2_stack - malloc(STACKSIZE*NUMSTACKS)

;

/* install Interrupt */
isinstal(intp_level+8, service, "iservice",

&intr2_ctl, intup2 stack, STACKSIZE, NUMSTACKS)
)

/** set of PDMA control register */
if (intp_source < 4) (

/* get current content to save aux3 */
workl - inpt(base_add+3)

;

/* add interrupt level */
work2 - intp_level

|
0x08;

/* shift to left side */
work2 - work2 « 0x04;
if (intp_source — 0x03) {

/* adjust to form of control register */
intp_source++;

)

/* work2 has form except aux3 bit */
work2 |- intp_source;
/* strip all off except aux3 bit */
workl &- 0x08;
/* control byte */
work2 |- workl;
/* output control byte */
outpt(base_add+3, work2)

;

)

/** enable interrupt level */
/* shift code */
workl - 0x1;
/* shift bit to correct position */
workl - workl « intp_level;
/* get current contents */
work2 - inpt(0x21);
/* complement mask bit */
workl: (workl)

;

/* clear appropriate mask bit */
workl &- work2

;

/* set interrupt flag */
outpt(0x21, workl);
/* return, no error */
return(O)

;

/*** uninstall interrupt */
) else (

/** change the interrupt vector table back */
if (intp_source < 4) (

/* reset control register */
outpt(base_add+3, 0x0);

166

}

/** disable interrupt level */
work2 - Oxl;
/* shift a 1 to position to mask out int*/
work2 - work2 « (unsigned char)intp_level;
/* read current state */
workl - inpt(0x21)

;

/* register to disable level */
work2 |- workl;
/* disable interrupt level */
outpt(0x21, work2);

if (intp_source < 4) (

/* install previous vector */
issetvec(intp_level+8, &intrl_ctl .prev_vec)

;

/* free up allocated space */
free(intupl_stack)

;

} else (

/* install previous vector */
issetvec(intp_level+8, &intr2_ctl.prev_vec)

;

/* free up allocated space */
free(intup2_stack)

;

)

return(O)

;

)

167

*

* M0DE8 -- set up and install interrupts in a large
* model program; allows floating point in
* interrupt routines
*

* mode8(base_add, intp_level, intp_source, service,
* action)
*

* mode8 is used to set up and enable or disable up to 2
* interrupts. DOS is bypassed and all the address
* handling is done by long pointers. This will only
* work in the large model format.
*

* base_add - port address of the PDMA.
intp_level - user defined hardware interrupt number-

* 2-7.

* intp_source - source of the interrupt;
I

- external input, positive slope
int #1

|
1 - external input, negative slope

* 2 - dma terminal count interrupt
I

3- PDMA timer interrupt
* int #2 4 - for use in setting up other
* interrupts that the PDMA is not
* involved in controlling

service - pointer to interrupt service routine,
for this it is the assembly program
that passes control to the 'C program

* to do the work.
* action - 1 enable the interrupt

disable the interrupt
*

* the enable not only enables the interrupt but also sets
* up the interrupt vector. You cannot use this to enable
* or disable it in a toggle fashion. Disable reinstalls
* the previous interrupt vector and also frees up the
* allocated stack.
*

* AUTHOR: Donald A. Smith
* DATE: 6/16/88
*

mode8(base_add, intplevel, intp_source , service, action)

unsigned action;
char *service;
unsigned intp_source;
unsigned base_add;
unsigned intp_level;

168

/* previous interrupts */
static long unsigned prev_intl

,
prev_int2

;

/* pointer to interrupt table */
long unsigned *ptr;
/* work variables */
unsigned char workl, work2;

/* ptr points to interrupt table */
ptr - 0x20 + (long unsigned) (intp_level*4)

;

/*** install interrupt */
if (action) (

/* disable interrupt level */
work2 - 0x1;
/* shift a 1 to position to mask out int */
work2 - work2 « (unsigned char)intp_level

;

/* read current state */
workl - inpt(0x21);
/* register to disable level */
work2 |- workl;
/* disable interrupt level */
outpt(0x21, work2)

;

/** setup interrupt service routine */
if (intp_source < 4) { /* install interrupt #1? */

prev_intl - *ptr; /* save old interrupt */
ptr - service; / install new */

) else { /* then install interrupt #2 */
prev_int2 - *ptr; /* save old interrupt */
ptr - service; / install new */

!

/*** set of PDMA control register */
if (intp_source < 4) (

/* get current content to save aux3 */
workl - inpt(base_add+3)

;

/* add interrupt level */
work2 - intp_level

|
0x08;

/* shift to left side */
work2 - work2 « 0x04;
if (intp_source — 0x03) {

/* adjust to form of control register */
intp_source++;

)

/* work2 has form except aux3 bit */
work2 |- intp_source;

169

/* strip all off except aux3 bit */
workl &- 0x08;
/* control byte */
work2 |- workl;
/* output control byte */
outpt(base_add+3, work2)

;

)

/** enable interrupt level */
/* shift code */
workl - 0x1

;

/* shift bit to correct position */
workl - workl « intplevel;
/* get current contents */
work2 - inpt(0x21);
/* complement mask bit */
workl- -(workl)

;

/* clear appropriate mask bit */
workl &- work2

;

/* set interrupt flag */
outpt(0x21, workl);
/* return, no error */
return(O)

;

/*** uninstall interrupt */
) else (

/** change the interrupt vector table back */
if (intp_source < 4) {

/* reset control register */
outpt(base_add+3 , 0x0)

;

)

/** disable interrupt level */
work2 - 0x1;

/* shift a 1 to position to mask out int */
work2 - work2 « (unsigned char)intp_level;
/* read current state */
workl - inpt(0x21);
/* register to disable level */
work2 |- workl;
/* disable interrupt level */
outpt(0x21, work2);

if (intp_source < 4) (

/* install old interrupt */
*ptr - prev_intl;

} else {

/* install old interrupt */
*ptr - prev_int2;

)

170

return(O)

;

)

)

171

ASSEMBLY SUPPORT SUBROUTINE S

A variety of short assembly subroutines were used to improve

execution speed. Two versions of each program are given, large and

small model format. The reference frame passed by the C program

different for the two formats.

auxloff - turns Aux 1 line off
auxlon - turns Aux 1 line on
aux2off - turns Aux 2 line off
aux2on - turns Aux 2 line on
inpt - get a byte from a port
outpt - output a byte to a port
eoi_int - send an end-of -interrupt code to the controller
send - switch DMA mode 1 to a memory-to-port

configuration
receiv - switch DMA mode 1 to a port-to-memory

configuration
keypush - checks if there is something in the keyboard

buffer

172

*

AUX10FF -- clear auxl to a LO state

auxloff () small model

auxloff () will clear auxl on the PDMA board to a LO
state ()

.

AUTHOR:
DATE:

Donald A. Smith
6/18/88

* external functions calle
* none
*

_TEXT segment byte public 'CODE' ;define as a code
; segment

r ;near procedure
;save current stack

;save state

; address auxl reg
;get current value
; clear auxl bit
; output new state
; restore state

; restore stack

assume CS : _TEXT
public auxloff

auxloff proc
push bp
mov bp.sp
push ax
push dx
mov dx,302h
in al,dx
and al.Oefh
out dx.al
pop dx
pop ax
mov sp.bp
pop bp
ret

auxloff endp

TEXT ends

end

173

*

AUX10FF clear auxl to a LO state

auxloff() -- large model

auxloff will clear auxl on the PDMA board to a LO
state ()

.

AUTHOR

:

DATE:
Donald A. Smith
6/18/88

* external functions called
* none

pl_TEXT segment byte public 'CODE'
assume CS:pl_TEXT
public _auxloff

far_auxloff proc
push bp
mov bp.sp
push ax
push dx
mov dx,302h
in al.dx
and al.Oefh
out dx.al
pop dx
pop ax
mov sp,bp
pop bp
ret

auxloff endp

pi TEXT ends

; define as a code
; segment pl_text

; far procedure
;save current stack

;save state

; address of auxl reg.
;get current value
; clear auxl bit
; output new reg.
; restore state

; restore stack

end

174

*

AUX10N -- set auxl to a HIGH state

auxlotiQ -- small model

auxlon will set auxl on the PDMA board to a HIGH
state (1)

.

AUTHOR:
DATE:

Donald A. Smith
6/18/88

***ilicici!icitititiriiit^
* external functions called
* none
*

TEXT segment byte public 'CODE'
assume CS:_TEXT
public _auxlon

auxlon proc near
bp
bp.sp
ax
dx
dx,302h
al.dx
al , lOh
dx.al
dx
ax
sp,bp
bp

push
mov
push
push
mov
in

or

out
pop
pop
mov
pop
ret

_auxlon endp

TEXT ends

; define as a code
; segment

;far procedure
;save current stack

;save current state

; address of auxl reg
;get current value
;set auxl bit
; output new reg.
; restore state

; restore stack

end

175

*

* AUX10N -- set auxl to HIGH state

auxlon() -- large model

auxlon will set auxl on the PDMA board to a HIGH
state (1).

AUTHOR:
DATE:

Donald A. Smith
6/18/88

* external functions called
* none

p2_TEXT segment byte public 'CODE'
assume CS:p2_TEXT
public _auxlon

_auxlon proc far
push
mov
push
push
mov
in
or

out
pop
pop
mov
pop
ret

_auxlon endp

p2_TEXT ends

end

bp
bp, sp

ax
dx
dx,302h
al,dx
al , lOh
dx.al
dx
ax
sp.bp
bp

; define as code
; segment p2_text

; far procedure
;save current stack

;save state

; address of auxl reg
;get current value
;set auxl bit
; output new reg.
; restore state

; restore stack

176

AUX20FF -- clear aux2 to a LO state

aux2off() -- small model

aux2off will clear aux2 on the PDMA board to a LO
state ()

.

AUTHOR:
DATE:

Donald A. Smith
6/18/88

* external functions called
* none
*

TEXT segment byte public 'CODE'
assume CS:_TEXT

aux2off
near

public
aux2off proc

push bp
mov bp, sp

push ax
push dx
mov dx,302h
in al,dx
and al.Odfh
out: dx.al
pop dx
pop ax
mov sp.bp
pop bp
ret

aux2off endp

TEXT ends

; define as a code
; segment

;near procedure
;save current stack

; save current state

; address of aux2 reg.

;
get current value

; clear aux2 bit
;ouput new reg.

; restore state

; restore stack

end

177

M***

AUX20FF -- set aux2 to a LO state

aux2off() -- large model

aux2off will clear aux2 on the PDMA board to a LO
state ()

.

AUTHOR:
DATE:

Donald A.

6/18/88
Smith

* external functions called
* none
*

p3_TEXT segment byte public 'CODE'
assume CS:p3_TEXT
public _aux2off

_aux2off proc
push bp
mov bp, sp
push ax
push dx
mov dx,302h
in al.dx
and al.Odfh
out dx,al
pop dx
pop ax
mov sp.bp
pop bp
ret

_aux2off endp

p3_TEXT ends

end

far

; define as a code
; segment p3_text

; far procedure
;save current stack

;save current state

; address of aux2 reg.
;get current value
; clear aux2 bit
; output new reg.
; restore state

; restore stack

178

*

* AUX20N -- set aux2 to a HIGH state
*

* aux2on() -- small model
*

* aux2on will set aux2 on the PDMA board to a HIGH
* state (1).

AUTHOR:
DATE:

Donald A. Smith
6/18/88

* external functions called
* none

TEXT segment byte public 'CODE' ; define as a code
assume CS TEXT ; segment
publ .c aux2on

aux2on proc near ;near procedure
push bp ;save current stack
mov bp ,sp

push ax ; save current state
push dx
mov dx,302h ; address of aux2 reg
in al ,dx ;get current value
or al , 20h ;set aux2 bit
out dx.al ; output new reg.

pop dx ; restore state
pop ax
mov sp,bp ; restore stack
pop bP
ret

aux2on endp

TEXT ends

end

179

*

* AUX20N set aux2 to a HIGH state

aux2on() -- large model

aux2on will set aux2 on the PDMA board to a HIGH
state (1)

.

AUTHOR:
DATE:

Donald A. Smith
6/18/88

* extenal functions called
* none

)4_TEXT segment byte public 'CODE' ; define as a code
assume CS:p4 _TEXT ; segment p4_text
publ ic _aux2on

_aux2on proc far ; far procedure
push bp

; save current stack
mov bp.sp
push ax ;save current state
push dx
mov dx,302h

; address of aux2 reg.
in al.dx ;get current value
or al , 20h ;set aux2 bit
out dx.al ; output new reg.
pop dx

; restore state
pop ax
mov sp.bp ; restore stack
pop bp
ret

aux2on endp

p4_TEXT ends

end

180

*

INPT -- get a value from a port

int inpt(port#) -- small model

inpt gets a value from a port.
port* - integer value of port number

returns the value as an Integer

AUTHOR:
DATE:

Donald A. Smith
6/18/88

*

* external functions called
* none
*

(replaces c version 'inp(port#) ')

TEXT segment byte public 'CODE' ; define as code
assume CS:_TEXT ; segment
public _inpt

inpt proc near ; far procedure
push bp ;save current stack
mov bp, sp
push dx ;save state
mov ax,0 ;clear ax reg.
mov dx, [bp+4] ;get port#
in al.dx ; inport the value
pop dx ; return in ax reg.
mov sp.bp ; restore state
pop bp ; restore stack
ret

inpt endp

TEXT ends

end

181

*

INPT - - get a value from a port

int inpt(port#) -- large model

Inpt gets a value from a port.
port# - integer value of port number

returns the value as an integer

*

*

*

*

*

*

*

*

*

*

*

* external functions called
* none (replaces c version 'inp(port#)')

AUTHOR:
DATE:

Donald A.

6/18/88
Smith

p8_TEXT segment byte public
assume CS:p8_TEXT
public

_inpt proc
push
mov
push
mov
mov
in

pop
mov
pop
ret

inpt endp

p8_TEXT ends

inpt
far
bp
bp.sp
dx
ax,0
dx, [bp+6]
al.dx

dx
sp.bp
bp

CODE' ; define as code
; segment p8_text

;far procedure
;save current stack

;save state
; clear ax reg.
;get port*
; inport the value
; return in ax reg.
; restore state
; restore stack

end

182

*

OUTPT output a value to a port

outpt(port#, value) -- small model

outpt -- out puts a value to a port
port* - unsigned Integer port number
value - integer value to output (only the

lower byte will be output)

AUTHOR:
DATE:

Donald A.

6/18/88
Smith

!(**

* external functions called
* none (replaces c version of outp(port#, value))

_TEXT segment byte public
assume CS:_TEXT
public outpt

outpt proc near

CODE'

push bp
mov bp.sp
push ax
push dx
mov dx,[bp+4]
mov ax, [bp+6]
out dx,al
pop dx
pop ax
mov sp.bp
pop bp
ret

outpt endp

TEXT ends

; define as
; segment

a code

;far procedure
;save current stack

;save state

;get port number
;get output value
[output value
; restore state

; restore stack

end

183

*

OUTPT - - output a value to a port

outpt(port#, value) -- large model

outpt - - out puts a value to a port
port# - unsigned integer port number
value - integer value to output (only the

lower byte will be output)

AUTHOR:
DATE:

Donald A. Smith
6/18/88

i**********************************^.^.^.^.^^^^^^^^^.^^.^^

* external functions called
* none (replaces c version

3lO_TEXT segment byte
assume CS:plO_TEXT
public outpt

outpt proc far
push bp
mov bp.sp
push ax
push dx
mov dx, [bp+6]
mov ax, [bp+8]
out dx.al
pop dx
pop ax
mov sp.bp
pop bp
ret

outpt endp

of outp(port#, value))

public 'CODE' ;define as a code
; segment plO_text

; far procedure
;save current stack

;save state

;get port number
;get output value
; output value
; restore state

; restore stack

plOJTEXT ends

end

184

*

* EOI_INT -- send an end-of -interrupt (EOI)
*
* eoi_int() -- small model

eoi_int will send an end- of- interrupt to the 8259
interrupt controller chip indicating a service to
an interrupt.

AUTHOR

:

DATE:
Donald A. Smith
6/16/88

* external functions called
* none

TEXT segment byte public 'CODE' ; define as a code
assume CS:_TEXT ; segment p7_text
public _eoi_int

eoi_int proc near ; far procedure
push bp ;save current stack
mov bp.sp
push ax ;save current state
mov al , 20h ;EOI signal
out 20h,al ;send EOI to 8259
pop ax ; restore state
mov sp.bp ; restore stack
pop bp
ret

eoiint endp

TEXT ends

end

185

*

EOI_INT -- send an end-of -interrupt (EOI)

eoi_int() -- large model

eoiint will send an end-of -interrupt to the 8259
interrupt controller chip indicating a service to
an interrupt.

AUTHOR:
DATE:

Donald A. Smith
6/16/88

* external functions called
* none

p7_TEXT segment byte public 'CODE'
assume CS:p7_TEXT
public _eoi_int

_eoi_int proc far
bp
bp, sp
ax
al,20h
20h,al

push
mov
push
mov
out
pop
mov
pop
ret

_eoi_int

p7_TEXT ends

end

ax
sp.bp
bp

endp

; define as a code
; segment p7_text

; far procedure
;save current stack

;save current state
;EOI signal
;send EOI to 8259
; restore state
; restore stack

186

*

* SEND - - switch DMA mode 1 to memory-to-port

send() -- small model

send changes the registers on the PDMA board
and the DMA controller chip to a memory- to-port
status. Warning -- even though is disables DMA
first, this should be used with caution.

AUTHOR:
DATA:

Donald A.

6/21/88
Smith

* external functions called
* none
*

TEXT

send

segment byte public 'CODE'
assume CS:_TEXT
public _send
proc near
push bp
mov bp , sp
push ax
push dx
mov al,05h
out Oah , al
mov al,59h
out Obh.al
mov dx,302h
in al.dx
and al , 30h
or al,87h
out dx.al
mov al.Olh
out Oah , al
pop dx
pop ax
mov sp.bp
pop bp
ret

send endp

TEXT ends

; define as code
jsegement

; far procedure
; save current stack

;save current state

;mask DMA level 1

; output mask to reg.
;code for mode reg. to
; change directions
; address of PDMA reg.
;get current value
;set direction

; output new value
; enable DMA, level 1

; restore state

; restore stack

end

187

*

* SEND -- switch DMA mode 1 to memory-to-port
*

* send() -- large model

send changes the registers on the PDMA board
and the DMA controller chip to a memory- to-port
status. Warning -- even though is disables DMA
first, this should be used with caution.

AUTHOR:
DATA:

Donald A.

6/21/88
Smith

* external functions called

12_TEXT segment byte public
assume CS:pl2_TEXT
public send

send proc far
push bp
mov bp, sp

push ax
push dx
mov al,05h
out Oah , al
mov al,59h
out Obh , al
mov dx,302h
in al.dx
and al , 30h
or al,87h
out dx.al
mov al.Olh
out Oah , al
pop dx
pop ax
mov sp.bp
pop bp
ret

send endp

12JTEXT ends

'CODE' ; define as code
;segement pl2_TEXT

;far procedure
;save current stack

;save current state

;mask DMA level 1

; output mask to reg.

;code for mode reg. to
; change directions
; address of PDMA reg.

;
get current value

; set direction

; output new value
; enable DMA, level 1

; restore state

; restore stack

end

188

*

* RECEIV -- switch active DMA to port-to-memory

receiv() small model

receiv() changes the registers on the PDMA board
and the DMA controller chip to a port-to-memory
status. Warning -- even though it disables DMA
first this should be used with caution.
ASSUMPTIONS:

DMA level 1 is being used

AUTHOR:
DATE:

Donald A.

6/21/88
Smith

* external functions called
* none

TEXT segment byte public 'CODE' ; define as code
assume CS:_TEXT ; segment
public receiv

receiv proc near
; far procedure

push bP ;save current stack
mov bp.sp
push ax ;save state
push dx
mov al,05h ;mask DMA level 1
out Oah.al ; output mask to reg.
mov al,55h ;code for mode reg.
out Obh.al ; change directions
mov dx,302h ; address of PDMA reg
in al,dx ;get current value
and al,30h ; clear direction
or al , 84h
out dx.al ; output new value
mov al.Olh ; enable DMA, level 1
out Oah.al
pop dx

; restore state
pop ax
mov sp.bp

; restore stack
pop bp
ret

receiv endp

TEXT ends

189

end

190

RECEIV switch DMA mode 1 to port-to-memory

receiv() -- large model

recelvQ changes the registers on the PDMA board
and the DMA controller chip to a port-to-memory
status. Warning -- even though it disables DMA
first this should be used with caution.

AUTHOR:
DATE:

Donald A.

6/21/88
Smith

* external functions called
* none

pllJTEXT segment byte public 'CODE' ; define as code
assume CS: pllJTEXT ; segment pllJTEXT
public receiv

_receiv proc far ; far procedure
push bp ;save current stack
mov bp ,sp

push ax ; save state
push dx
mov al,05h ;mask DMA level 1

out Oah.al ; output mask to reg.
mov al,55h ;code for mode reg. to
out Obh , al ; change directions
mov dx,302h ; address of PDMA reg.
in al,dx ;get current value
and al , 30h ; clear direction
or al , 84h
out dx.al ; output new value
mov al.Olh ; enable DMA, level 1
out Oah , al
pop dx ; restore state
pop ax
mov sp.bp ; restore stack
pop bp
ret

_receiv endp

pllJTEXT ends

end

191

A**
*

* KEY_PUSH -- check if there is something in the
* keyboard buffer

int key_push() -- small model

key_push checks the keyboard buffer for a keystroke,
returns a nonzero value if a key has been pressed

AUTHOR

:

DATA:
Donald A. Smith
6/18/88

* external functions called
* none

JTEXT segment byte public 'CODE
assume CS: JTEXT
public key push

key push proc near
push bp
mov bp,sp
push es
mov ax, Oh
mov es ,ax
mov al,es

:
[41ah]

mov ah,es: [41ch]
cmp ah,al
jne SOMETHING
mov ax, Oh
jmp WE_DONE

SOMETHING

:

mov ax.Olh
WE_DONE:

pop es
mov sp.bp
pop bp
ret

key push endp

TEXT ends

; define as code
".segment _text

;near procedure

; save used register
;zero out ax reg.
;zero out es reg.
;get head pointer
;get tail pointer
; compare head & tail
; if not equal jump
; return a
;exit

; return a 1

; restore state
; restore stack

end

192

*

* KEY_PUSH -- check if there is something in the
keyboard buffer*

*
*

*

*

*

*

*
*

int key_push() -- large model

key_push checks the keyboard buffer for a keystroke,
returns a nonzero value if a key has been pressed

AUTHOR:
DATA:

Donald A. Smith
6/18/88

* external functions called
* none

p9_TEXT segment byte public 'CODE' ; define as a code
assume CS:p9_TEXT ; segment p9 text
public _key_push

_key_push proc far ;far procedure
push bp ;save current stack
mov bp.sp
push es ;save current state
mov ax, Oh ;zero out ax reg.

mov es,ax ;zero out es reg.

mov al.es: [41ah] ;get head pointer
mov ah.es: [41ch] ;get tail pointer
cmp ah.al ; compare head & tail
jne SOMETHING ;if not equal jump
mov ax, Oh ; return a
jmp WE_DONE ;exit

SOMETHING

:

mov ax.Olh ; return a 1

WE_DONE:
pop es ; restore state
mov sp.bp ; restore stack
pop bp
ret

_key_push endp

p9_TEXT ends

end

193

REFERENCES

1. Bushaw, A.E., "Optimal Discontinuous Forcing Terms,"
IN: Contributions to the Theory of Nonlinear Oscillations .

Vol. IV, pp. 29-52, Princeton University Press, 1958.

2. Bellman, R. , Glicksberg, I., and Gross , 0., "On the 'Bang-Bang'
Control Problem," Quarterly of Applied Mathematics, Vol. 14,

pp. 11-18, 1956.

3. Pontryagin, L.S., Boltyanski, V.G., Gamrelidze, R.V., and
Mischenko, E.F., The Mathematical Theory of Optimal Processes .

New York: Interscience, 1962.

4. LaSalle, J. P., "The Time Optimal Control Problem,"
IN: Contributions to the Theory of Nonlinear Oscillations .

Vol. V, pp. 1-24, Princeton University Press, 1960.

5. Oldenburger, R. , and Thompson, G., "Introduction to Time Optimal
Control of Stationary Linear Systems," Automatica, Vol. 1,

pp. 177-205, 1963.

6. Shetty, A., "A Solution Technique for the Minimum-Time Control
Problem of an R-Theta Manipulator," M.S. Thesis in Mechanical
Engineering, Kansas State University, 1987.

7. Subrahmanyam, M.B., "A Computational Method of the Solution of
Time-Optimal Control Problems by Newton's Method," International
Journal of Control, Vol. 44, No. 5, pp. 1233-1243, 1986.

8. Knudsen, H.K., "An Iterative Procedure for Computing
Time-Optimal Controls," IEEE Transactions on Automatic Control,
Vol. AC-9, No. 1, pp. 23-30, January, 1964.

9. Lastman, G.L., "A Shooting Method for Solving Two-Point
Boundary-Value Problems Arising from Non-Singular Bang-Bang
Optimal Control Problems," International Journal of Control,
Vol. 27, No. 4, pp. 513-524, 1978.

10. Lasdon, L.S., Mltter, S.K., and Warren, A.D., "The Conjugate
Gradient Method for Optimal Control Problems," IEEE Transactions
on Automatic Control, Vol. AC-15, No. 2, pp. 132-138, 1967.

194

11. Lewine, R.N. , and Thorp, J.S., "Computation of Time-Optimal
Controls, Using a Second-Variation Descent Search," IEEE
Transactions on Automatic Control, Vol. AC-15, No. 3,

pp. 358-362, June, 1970.

12. Kahn, M.E., and Roth, B. , "The Near -Minimum -Time Control of
Open-Loop Articulated Kinematic Chains," Transactions of ASME,
Journal of Dynamic Systems, Measurement, and Control,
pp. 164-172, September, 1971.

13. Larson, V.H., "Minimum Time Control by Time Interval
Optimization," International Journal of Control, Vol. 7, No. 4,

pp. 381-394, 1968.

14. Smith, F.B. Jr., "Time Optimal Control of High Order Systems,"
IRE Transactions on Automatic Control, Vol. AC-6, pp. 16-21,
February, 1961.

15. Yastreboff, M., "Synthesis of Time-Optimal Control by Time
Interval Adjustment," IEEE Transactions on Automatic Control,
Vol. AC-14, No. 6, pp. 707-710, December, 1969.

16. Davison, E.J., and Monro, D.M. , "A Computational Technique for
Finding Time Optimal Controls of Nonlinear Time-Varying Systems,"
Proceedings of the Joint Automatic Controls Conference,
pp. 270-280, 1969.

17. Wen, J.T., and Desrochers, A. A. , "An Algorithm for Obtaining
Bang-Bang Control Laws," Transactions of ASME, Journal of Dynamic
Systems, Measurement, and Control, Vol. 109, No. 2, pp. 171-175,
June, 1987.

18. Niemann, D.D., "Determination of Bang-Bang Controls for Large
Nonlinear Systems," M.S. Thesis in Mechanical Engineering, Kansas
State University, 1988.

19. Lee, E.B., andMarkus, L. , Foundations of Optimal Control Theory .

NY: John Wiley, 1967.

20. Athans, M. , and Falb, P.L., Optimal Control . McGraw-Hill Inc.,
1966.

21. Ryan, E.P., "Time-Optimal Control of Certain Plants with Positive
Real Eigenvalues," International Journal of Control, Vol. 23,
No. 6, pp. 775-783, 1976.

22. Ryan, E.P., "Minimum Time Isochronal Surfaces for Certain
Third-Order Systems", International Journal of Control, Vol. 26,
No. 3, pp. 421-433, 1977.

195

23. Rajendran, K. , "A Continuum Approach to Minimum Time Control,"
M.S. Thesis in Mechanical Engineering, Kansas State University,
1988.

24. Luh, J.Y., and Shafran, J.S., "An Approximate Minimal Time
Closed-Loop Controller for Processes with Bounded Control
Amplitudes and Rates," Proceedings of the Joint Automatic Control
Conference, Boulder, Colorado, pp. 623-632, 1969.

25 Smith, F.B. Jr., "Design of Quasi-Optimal Minimum-Time
Controllers," IEEE Transactions on Automatic Control, Vol. AC-11,
No. 1, January, 1966.

26. Bryson, A.E. Jr., and Ho, Y.C., Applied Optimal Control . John
Wiley and Sons, 1975.

27. White, W.N. Jr., and Rajendran, K. , "A Continuum Approach to
Mimimum Time" , Proceedings of the 1988 American Control
Conference, Atlanta, Georgia, pp. 2050-2054.

28. Huebren, K.H. , and Thorton, E.A., The Finite Element Method for
Engineers, John Wiley and Sons, 1982.

29. PDMA-16 Manual, MetraByte Corporation, 440 Standish Boulevard,
Taunton, Mass. 02780.

30. Hunt, W.J., The C Tool Box . Addison-Wesely Publishing Company
Inc. , 5th ed., 1987.

31. Horowitz, P., and Hill, W.O. , The Art of Electronics . Cambridge
University Press, 1986.

32. Kerningham, B.W. , and Ritchie, D.M., The C Programming Language .

Prentice-Hall, Inc., Englewood Cliffs, NJ , 1978.

33. Chesely, H.R. , and Waite , M. , Supercharging C with Assembly
Language . Addision-Wesely Publishing Company Inc , 1987.

34. The TTL Data Book . Texas Instruments Inc., Vol. 2, 1985.

35. INTEL Microsystems Components Handbook . INTEL Inc., Vol. 1, 1986.

196

A FEASIBILITY ASSESSMENT OF A FINITE ELEMENT
REAL TIME, TIME OPTIMAL CONTROLLER

by

DONALD ALLAN SMITH

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

MECHANICAL ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

ABSTRACT

This paper is an investigation into using minimum time isochrones

in a phase plane to control a double integrator system. The desired

control is the time optimal bang-bang control. The isochrones provide

an approximate means to determine the control as a function of the

state variables

.

The isochrones are approximated by a discrete final time grid.

The final time solution is determined using finite element techniques.

The finite elements modeled the system's phase plane.

Two grids are used to determine the isochrones, one Cartisian,

the other polar in shape. To test the two grids, a plant-controller

system is used based upon two personal computers. One computer works

as the controller while the other simulates the double integrator

system.

The control can be calculated from the finite element grid in

0.02 seconds. The finite element grids were solved off-line and used

by the controller during the real-time simulation. The control

generated using the square grid chattered in the region close to the

origin. The polar grid provided a good control throughout the phase

plane. The simulations conducted using this grid produced elapsed time

values close to optimal values

.

