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ABSTRACT 

 

Group decision-making is an essential activity is many domains such as financial, 

engineering, and medical fields.  Group decision-making basically solicits opinions from 

experts and combines these judgments into a coherent group decision.  Experts typically 

express their opinion in many different formats belonging to two categories: quantitative 

evaluations and qualitative ones.  Many times experts cannot express judgment in 

accurate numerical terms and use linguistic labels or fuzzy preferences.  The use of 

linguistic labels makes expert judgment more reliable and informative for decision-

making.   

In this research, a new linguistic label fusion operator has been developed. The operator 

helps mapping one set of linguistic labels into another. This gives decision makers more 

freedom to choose their own linguistic preference labels with different granularities 

and/or associated membership functions.  

Three new consensus measure methods have been developed for group decision making 

problem in this research. One is a Markov chain based consensus measure method, the 

other is order based, and the last one is a similarity based consensus measure approach.  

Also, in this research, the author extended the concept of Ordered Weighted Average 

(OWA) into a fuzzy linguistic OWA (FLOWA). This aggregation operator is more 

detailed and includes more information about the aggregate than existing direct methods.   

After measuring the current consensus, we provide a method for experts to modify their 

evaluations to improve the consensus level. A cost based analysis gives the least cost 

suggestion for this modification, and generates a least cost of group consensus.  



In addition, in this research I developed an optimization method to maximize two types 

of consensus under a budget constraint.  

Finally considering utilization of the consensus provides a practical recommendation to 

the desired level of consensus, considering its cost benefits.  
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CHAPTER 1    

INTRODUCTION 

Fuzzy sets theory, even though still very young, has already been applied to quite a 

number of problems in the area of operations research. Compared to other fields of 

application of fuzzy sets theory, mathematical programming can be considered as already 

advanced. Particularly, multiple experts decision making (Group decision making) in a 

fuzzy environment upon the framework of mathematical programming, is an area of high 

research potential. 

In this study, we concentrate on group decision making in the linguistic assessment. 

An introduction to the problem, objective of the study, and the organization of the 

dissertation will be first outlined in this chapter.  

1.1  Problem Description 

Decision making, as a specialized field of Operations Research (OR), is the process 

of specifying a problem or opportunity, identifying alternatives and criteria, evaluating 

alternatives, and selecting a preferred alternative from among the possible ones. A 

definition of Decision theory from SJDM (Society for Judgment and Decision Making) is 

given as: 

The process of specifying a problem or opportunity, identifying alternatives & 

criteria, evaluating alternatives, and selecting from among the alternatives 
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There are three decision objectives: 

1. Optimize, find the best possible decision 

2. Maximize, find decision that meets maximum number of criteria 

3. Satisfize, find the first satisfactory solution 

Group decision making is necessary to solve problems, especially for complicated 

problems, some benefits we can take advantage of come from group decision making are: 

1. A group has more information (Knowledge) than any one member.  

2. It provides learning. Groups are better than individuals at understanding 

problems. 

3. Groups are better than individuals at catching errors. 

4. It may produce synergy during problem solving. 

5. Working in a group may stimulate the creativeness of the participants and the 

process. 

6. Group members have their egos embedded in the decision, and so they will be 

committed to the solution. 

7. Risk propensity is balanced. Groups moderate high-risk takers and encourage 

conservatives. 

Group decision making is very time consuming. Common wisdom claims that 

experts in a given field should agree with each other. However, in practice, a consensus 
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among experts implies that the expert community has largely solved the problems of the 

domain which does not happen.  (Weiss and Shanteua, in press). A fable from Ivan 

Krylov (Russia) explains the importance of consensus.  

Once a Swan, a Pike, and a Crab  

Tried to pull a loaded cab, ...  

They pulled hard, did not flinch, 

 But they gained not an inch ...  

The Swan pulled hard toward the sky  

The Crab to crawl backward did try,  

The Pike made for the river nearby 

The reason that the cab keeps unmoved is that the three animals could not get the 

consensus on which direction they should go. Consensus is very important in group 

decision making. This research is on how to measure and improve the consensus in group 

decision making under linguistic assessment.  

1.2 Research Objectives and Contributions 

1.2.1 Research Objectives 

As discussed in the previous sections, group decision making is a common and hard 

problem. In this research, we study the group decision making under uncertainty. We use 

linguistic variables to handle the uncertainties, i.e. a group of decision makers or experts 

use linguistic labels to represent their preference over alternatives. The purpose of this 

study is: 



 4

1. Develop a simple but precise group decision making procedure that aims at a 

desired consensus. 

2. Develop new approaches to aggregate individual evaluation represented by 

linguistic labels into a group opinion.   

3. Use consensus to measure how good the group solution is, that is consensus to 

test if a solution represents the groups’ opinions.  

4. Develop new approaches to measure consensus for group decision making 

problem in linguistic environment.  

5. Develop a measure of utility for the consensus that gives the optimal consensus 

with least cost. 

6. Develop methods that can be used to choose the consensus level to seek for the 

best money value.   

1.2.2 Research Contributions 

In this research, three new consensus measure methods have been developed for 

group decision making problem in this research. One is a Markov chain based consensus 

measure method, the other is order based, and the last one is a similarity based consensus 

measure approach. The Markov chain based method takes the advantage of the steady-

state property of the Markov chain to generate the ideal consensus matrix. By measuring 

the similarity between the current peer evaluation matrix and the ideal one, we have the 

consensus value. The order based method is to measure the group preference order rank 

of alternatives and the individual preference order. The difference indicates the consensus 

level. After measuring the current consensus, experts could modify their evaluations to 
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improve the consensus level. The cost analysis gives the least cost suggestion for this 

modification, as well as the least cost of the final consensus and the group decision 

making.  

Also, in this research, the author extended the concept of Ordered Weighted 

Average (OWA) into a fuzzy linguistic OWA (FLOWA). This aggregation operator is 

more detailed and includes more information about the aggregate than existing direct 

methods.   

In addition, a new linguistic label fusion operator has been developed in this 

research. The operator helps mapping one set of linguistic labels into another. This gives 

decision makers more freedom to choose their own linguistic preference labels with 

different granularities and/or associated membership functions.  

After measuring the current consensus, we provide a method for experts to modify 

their evaluations to improve the consensus level. A cost based analysis gives the least 

cost suggestion for this modification, and generates a least cost of group consensus.  

In addition, in this research I developed an optimization method to maximize two 

types of consensus under a budget constraint.  

Finally considering utilization of the consensus provides a practical 

recommendation to the desired level of consensus, considering its cost benefits.  
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Other contributions include collecting and comparing current existing decision 

making tools, collecting and comparing current existing fuzzy similarity measure 

methods, collecting and comparing current existing fuzzy outranking approaches.  

1.3 Dissertation Overview 

First, an introduction to fuzzy set theory will be given in chapter 2, which includes 

Fuzzy Set Operations, Fuzzy Similarity Measure and outranking, and Linguistic 

Variables and their Aggregation. These concepts and techniques are related to the fuzzy 

group decision making and will be needed in later chapters. Then, the fuzzy group 

decision making and the four-step procedure are explored. That are expressing fuzzy 

preference of alternatives, aggregating individual preferences into a group decision, 

comparison and selection (fuzzy outranking), and consensus and contribution measure. 

We performed the state-of-the-art literature review on current approaches that applied to 

group decision making.  

A new linguistic label sets fusion operator is introduced in chapter 3. In chapter 4, a 

new linguistic labels aggregation method is proposed. An exhaustive and through 

literature survey has been carried out on consensus in Chapter 5. All consensus measure 

approaches are classified into two major categories: hard consensus measure and soft 

consensus measure. Three new consensus measure methods are developed. A cost based 

consensus improvement approach is introduced in chapter 6, where utility theory is 

applied to choose the best consensus.  

Finally, a conclusion and future research are presented in chapter 7.  
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CHAPTER 2    

Background Preliminaries  

And Literature Review 

2.1 Decision Theory 

Decision theory, as a specialized field of Operations Research (OR), is the process 

of specifying a problem or opportunity, identifying alternatives and criteria, evaluating 

alternatives, and selecting a preferred alternative from among the possible ones. A 

definition of Decision theory from SJDM (Society for Judgment and Decision Making) is 

given as: 

“Decision theory is a body of knowledge and related analytical techniques of 

different degrees of formality designed to help a decision maker choose among a set of 

alternatives in light of their possible consequences.”  

Decision theory offers a rich collection of techniques and procedures to reveal 

preferences and to introduce them into models of decision. Decision theory is not 

concerned with defining objectives, designing the alternatives or assessing the 

consequences; it usually assumes them known. Given a set of alternatives, a set of 

consequences, and a correspondence between those sets, decision theory offers 

conceptually simple procedures for choice.   
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2.1.1 Categories of Decision Making 

There are several ways to categorize decision making problems.  

2.1.1.1 By the information available 

By the information available, we have decision under certainty, decision under risk, 

and decision under uncertainty.  

Decision under certainty means that each alternative leads to one and only one 

consequence, and a choice among alternatives is equivalent to a choice among 

consequences. In a decision situation under certainty the decision maker's preferences are 

simulated by a single-attribute or multiattribute value function that introduces ordering on 

the set of consequences and thus also ranks the alternatives.  

For Decision under risk, each alternative will have one of several possible 

consequences, and the probability of occurrence for each consequence is known. 

Therefore, each alternative is associated with a probability distribution, and a choice 

among probability distributions. Decision theory for risk conditions is based on the 

concept of utility theory. 

When the probability distributions are unknown, one speaks about decision under 

uncertainty. 

2.1.1.2 By the properties of the problem 
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By the properties of the problem, there are Multiple Criteria Decision Making 

(MADM), Multiple Objective Decision Making (MODM), and Multiple Experts 

Decision Making (MEDM). Figure 2.1 shows the relationships between these three 

categories.  

 

Figure 2.1 Category of decision making problems 

2.1.1.3 Other category methods 

By the importance roles of decision makers, there are heterogeneous and 

homogenous group decision making. Heterogeneous group decision making environment 

allows the opinions of individuals to have different weights, while homogenous not. 

Dubios and Prade (1979) pointed out that each individual is viewed as a subgroup, where 

the weight of an individual reflects the relative size of the subgroup, and reflect the 

relevance of the individual in the group. 

By the number of decision makers, these are usually classified into single person, 

two-person and n-person (n>2) systems.  

OR 

MCDM MODM

MEDM

Decision 
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By the number of stages, we may usually examine one-stage and multi-stage 

decision making. One-stage systems are stationary in nature and only one-step decisions 

are considered. Multi-stage systems are dynamic systems, and decisions are performed in 

several steps. 

By the preference information, we have hard decision systems and soft decision 

systems. Hard decision systems use precise and crisp numeric data and conventional 

mathematical models, more generally, quantitative methods. Soft decision systems apply 

qualitative methods which in practice mean the use of imprecise and linguistic entities 

and linguistic reasoning. Soft computing (SC) comprises fuzzy systems, neural networks, 

probabilistic reasoning and evolutionary computing, inter alias. In the computer milieu, 

these constituents can cope with imprecision, learning, uncertainty and optimization. The 

main goal of SC is to mimic human linguistic reasoning with a computer. By virtue of SC, 

we can apply quantitative and qualitative methods in combination within decision making. 

Hence, soft decision making can also mean decision making applying SC. 

2.1.2 Multiple Criteria Decision Making 

Multiple Criteria Decision Making (MCDM) is one of the most widely used 

methods in the decision-making area (Hwang and Yoon, 1981). The objective of MCDM 

is to select the best alternative from several mutually exclusive alternatives based on their 

general performance regarding various criteria (or attributes) decided by the decision 

maker.  Depending on the type and the characteristic of the problem a number of MCDM 

methods have been developed such as simple additive weighting method, Analytic 

Hierarchical Process (AHP) method, outranking methods, maximin methods, and 
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lexicographic methods.  Introduced by Thomas Saaty in early 1970’s, AHP has gained 

wide popularity and acceptance in decision-making.  AHP is a procedure that supports a 

hierarchical structure of the problem, and uses pair-wise comparison of all objects and 

alternative solutions.  Lexicographic method is appropriate for solving the problems in 

which the weight relationship among criteria is dominant and non-compensatory (Liu and 

Chi, 1995). 

2.1.3 Multiple Objective Decision Making 

In Multiple Objective Decision-Making the decision maker wants to attain more 

than one objective or goal in electing the course of action while satisfying the constraints 

dictated by environment, processes, and resources.  This problem is often referred to as a 

vector maximum problem (VMP). There are two approaches for solving the VMP 

(Hwang and Masud, 1979).  The first approach is to optimize one of the objectives while 

appending the other objectives to a constraint set so that the optimal solution would 

satisfy these objectives at least up to a predetermined level.  This method requires the 

decision-maker to rank the objectives in order of importance. The preferred solution 

obtained by this method is one that maximizes the objectives starting with the most 

important and proceeding according to the order of importance of the objectives. 

The second approach is to optimize a super-objective function created by 

multiplying each objective function with a suitable weight and then by adding them 

together.  One well-known approach in this category is Goal Programming which 

requires the decision maker to set goals for each desired objective.  A preferred solution 

is than defined as the one which minimizes the deviations from the set goals. 
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2.1.4 Group Decision Making (MEDM) 

Group Decision Making has gained prominence due to the complexity of modern 

day decisions, which involve complex social, economical, technological, political and 

many other critical domains.  Many times a group of experts needs to make a decision 

that represents the individual opinions and yet is mutually agreeable. 

Such group decisions usually involve multiple criteria accompanied by multiple 

attributes.  Clearly, the complexity of Multi Criteria Decision Making (MCDM) 

encourages group decision as a way to combine interdisciplinary skills and improve 

management of the decision process.  The theory and practice of multiple objectives and 

multiple attribute decision making for a single decision maker has been studied 

extensively in the past 30 years.  However, extending this methodology to group 

decision-making is not simple.  This is due to the complexity introduced by the 

conflicting views of the decision makers, and their varying significance or weight in the 

decision process. 

Moreover, the problem of group decision-making is complicated due to several 

additional factors.  Usually, one expects such a decision model to follow a precise 

mathematical model.  Such a model can enforce consistency and precision to the decision 

generated.  Human decision makers, however, are quite reluctant to follow a decision 

generated by a formal model, unless they are confident in the model assumptions and 

methods.  Many times, the input to such a decision model cannot be quantified precisely, 

conflicting with the perceived accuracy of the model.  Intuitively, the act of optimization 
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of the group decision – as a mathematical model would perform, is contradictory to the 

concept of consensus and a group agreement. 

The benefits from Group decision-making however, are quire numerous justifying 

the additional effort required.  Some of the benefits are: 

1. Better learning.  Groups are better than individuals at understanding problems. 

2. Accountability.  People are held accountable for decision in which they 

participate. 

3. Fact screening.  Groups are better than individuals at catching errors. 

4. More knowledge.  A group has more information (knowledge) than any one 

member. Groups can combine this knowledge to create new knowledge. More 

and more creative alternatives for problem solving can be generated, and better 

solutions can be derived (by group stimulation for example). 

5. Synergy.  The problem solving process may generate better synergy and 

communication among the parties involved. 

6. Creativity.  Working in a group may stimulate the creativity of the participants. 

7. Commitment.  Many times, group members have their egos embedded in the 

decision, and so they will be more committed to the solution. 

8. Risk propensity is balanced. Groups moderate high-risk takers and encourage 

conservatives. 

Generally there are three basic approaches towards group decision-making (Hwang 

and Lin, 1987):   
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1. Game theory.  This approach implies a conflict or competition between the 

decision makers. 

2. Social Choice theory.  This approach represents voting mechanisms that allows 

the majority to express a choice.   

3. Group decision using expert judgment.  This approach deals with integrating the 

preferences of several experts into a coherent and just group position.   

2.1.4.1 Game Theory 

Game theory can be defined as the study of mathematical models of conflict and 

cooperation between intelligent and rational decision makers (Myerson, 1991).  Modern 

game theory gained prominence after the work of Von Neumann in 1928 and later (Von 

Neumann and Morgenstern, 1944).  Game theory became an important field during 

World War II and the Cold War that follows, culminating with the famous Nash 

Equilibrium.  The objective of the games as a decision tool is to maximize some utility 

function for all decision makers under uncertainty.  Since this technique does not 

explicitly accommodate multiple criteria for selection of alternatives, we will not 

consider it in this review. 

2.1.4.2 Social Choice theory  

Social Choice theory deals with multiple criteria decision making since this 

methodology considers votes of many individuals as the instrument for choosing a 

preferred candidate or alternative.  The candidates can exhibit many characteristics such 

as honesty, wisdom, and experience as the criteria evaluated.  The complexity of this 

seemingly simple problem of voting can be illustrated by the following example: a 
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committee of 9 people need to select an office holder from three candidates, a, b, and c.  

The votes that rank the candidates are as follows: 

3 votes have the order a, b, c. 

3 votes agree on the order b, c, a. 

2 votes have the preference of c, b, a 

1 votes prefers the order c, a, b.   

Quickly observing the results, one can realize that each candidate received three 

votes as the preferred option, resulting in an inconclusive choice.   

The Theory of Social Choice was studies extensively with notable theories such as 

Arrow’s Impossibility Theorem. (Arrow, 1963, Arrow and Raynaud, 1986).  This type of 

decision-making is based on the ranking of choices by the individual voters, while the 

scores that each decision maker gives to each criterion of each alternative are not 

considered explicitly.  Therefore, this methodology is less suitable for multi-criteria 

decision-making in which each criterion in each alternative is carefully weighed by the 

decision makers. 

2.1.4.3 Expert Judgment Approach 

Within the Expert Judgment approach, there are two minor styles denoted as Team 

Decision and Group Decision (terminology based on Zimmermann, 1987).  Both styles 

differ in the degree of disagreement that the experts are allowed to have while 

constructing the common decision.   
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Generally, Expert Judgment methods can be divided into the following categories: 

• Methods of generating ideas.  These methods include brainstorming in verbal or 

written forms. 

• Methods of polling ideas.  These methods produce quick estimates of the 

preferences of the experts.  Surveys, the Delphi method and conferencing are 

implementations of pooling ideas.  

• Simulation models.  These models include Cognitive Maps, and the SPAN 

method (Successive Proportional Additive Network also known as Social 

Participatory Allocative Network).   

There is a vast amount of literature available on this topic, and this paper provides 

the most basic review in order to provide the background for the more detailed discussion 

on Fuzzy Group Decision Making.  A good review of the general MCDM field can be 

found in Triantaphyllou (2000).   

The essence of the group decision making can be summarized as follows: there is a 

set of options and a set of individuals (termed experts) who provide their preferences over 

the set of options.  The problem is to find an option (or a set of options) that is best 

acceptable to the group of experts.  Such a solution entertains the concept of majority that 

is further explored below.  

A group decision-making problem is composed by the following elements: First, 

there exists a finite set of alternatives. A= {A1, A2… An} as well as a finite set of experts 

E= {E1, E2 … Eq} and each expert ek∈E presents his/her preference relation on Ai as 

xik∈S. Where S is a finite but totally ordered term set of linguistic labels S= {s0, s1 …sT}, 
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with si>sj, if i>j. The experts may evaluate the alternatives on m criteria C= {C1, C2… 

Cm}. 

2.1.5 Decision Making Tools 
 

Table 2.1 summarizes some decision making tools categorized into three groups: 

information control, choosing preferred alternatives, and decision making process.   

Table 2.1 Summary of decision making tools 

 
Category Method References 

Brainstorming mindtools.com Information 
Control Six Thinking Hats mindtools.com 

Analytic Hierarchy Process (AHP) Chang, 1996 
Compromise programming Prodanovic and Simonovic, 2003 

Dialectical inquiry Modelling and Decision Support 
Tools 

Small Group Modelling and Decision Support 
Tools 

Caucusing Modelling and Decision Support 
Tools 

Grid Analysis Modelling and Decision Support 
Tools 

Force field analysis Modelling and Decision Support 
Tools 

Paired Comparison Analysis Modelling and Decision Support 
Tools 

Choosing 

Preferred 

Alternatives 

Criteria Rating Technique Modelling and Decision Support 
Tools 

Delphi method Ishikawa, 1993 

Nominal Group Technique Team Tools Objectives Decision 
Making 

Nemawashi Group Decision Support and 
Groupware Technologies 

Devil’s advocate technique Team Tools Objectives Decision 
Making 

Decision Making 
Process 

Arbitration Group Decision Support and 
Groupware Technologies 
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2.1.5.1 Information Control  

In this section, the following tools could be used to obtain information, especially to 

generate new alternatives.  

 Brainstorming (mindtools.com) 

This is a very useful technique when ideas need to be solicited from the whole 

group. The normal rule of waiting to speak until the facilitator recognizes you is 

suspended and everyone is encouraged to call out ideas to be written by the scribe for all 

to see. It is helpful if the atmosphere created is one in which all ideas, no matter how 

unusual or incomplete, are appropriate and welcomed. This is a situation in which 

suggestions can be used as catalysts, with ideas building one upon the next, generating 

very creative possibilities. Avoid evaluating each other's ideas during this time.  

 Six Thinking Hats (mindtools.com) 

'Six Thinking Hats' is used to look at decisions from a number of important 

perspectives. Each 'Thinking Hat' is a different style of thinking. White Hat focus on the 

data available, Red Hat looks at problems using intuition, gut reaction, and emotion. 

Using black hat thinking, decision maker will look at all the bad points of the decision. 

Black Hat thinking helps to make the decision 'tougher' and more resilient. The yellow 

hat helps to think positively. The Green Hat stands for creativity. And, the Blue Hat 

means for process control. If you look at a decision making problem with the 'Six 

Thinking Hats' technique, then you will solve it using all approaches. Your decisions and 

plans will mix ambition, skill in execution, public sensitivity, creativity and good 

contingency planning. 
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Choosing Preferred Alternatives 

 Analytic Hierarchy Process (AHP) (Chang, 1996) 

It is often difficult to conceptualize all the different elements of a problem, or there 

is not enough cognitive energy to prioritize those elements. The AHP was formulated to 

counter those situations, and is a mathematically-based theory. It employs two key 

aspects: data from the various variables that make up the decision and judgments about 

those variables.  

 Compromise programming (Prodanovic and Simonovic, 2003) 

Compromise programming attempts to preserve some level of transparency to 

problems. However, compromise programming only makes use of a limited amount of 

information. Extensive sensitivity analysis is necessary to recommend any kind of 

recommendation with confidence. The marriage of a transparent technique such as 

compromise programming with fuzzy sets is an example of a hybrid decision making tool 

available to future planners. 

 Dialectical inquiry (from Modeling and Decision Support Tools) 

In the dialectical inquiry approach, the team uses the same set of data to make two 

separate and opposing recommendations and then formally debates these 

recommendations based on the assumptions that were used to derive them. The 

philosophy behind this method is that a clearer understanding of the situation and an 

effective solution result when the assumptions underlying each recommendation are 

subjected to intense scrutiny and evaluation.  
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 Small Group (from Modeling and Decision Support Tools) 

Breaking into smaller groups can be very useful. These small groups can be diads 

or triads or even larger. They can be selected randomly or self-selected. If used well, in a 

relatively short amount of time all participants have the opportunity to share their own 

point of view. Be sure to set clear time limits and select a note taker for each group. 

When the larger group reconvenes, the note takers relate the major points and concerns of 

their group. Sometimes, note takers can be requested to add only new ideas or concerns 

and not repeat something already covered in another report. It is also helpful for the 

scribe to write these reports so all can see the cumulative result and be sure every idea 

and concern gets on the list.  

 Caucusing (from Modeling and Decision Support Tools) 

A caucus might be useful to help a multifaceted conflict become clearer by unifying 

similar perspectives or defining specific points of departure without the focus of the 

whole group. It might be that only some people attend a caucus, or it might be that all are 

expected to participate in a caucus. The difference between caucuses and small groups is 

that caucuses are composed of people with similar viewpoints, whereas small group 

discussions are more useful if they are made up of people with diverse viewpoints or 

even a random selection of people. 

 Grid Analysis (from Modeling and Decision Support Tools) 

Grid Analysis is a useful technique to use for making a decision. It is most effective 

where the problem has a number of good alternatives and many factors to be taken into 

account. The first step is to list all alternatives and then the factors that are important for 
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making the decision. Lay these out in a table, with options as the row labels, and factors 

as the column headings. Next, work out the relative importance of the factors in the 

decision. Show these as numbers. Use these to weight the preferences by the importance 

of the factor. These values may be obvious. If they are not, then use a technique such as 

Paired Comparison Analysis to estimate them. The next step is to work a way across the 

table, scoring each option for each of the important factors. Score each option from 0 

(poor) to 3 (very good). Now multiply each of the scores by the values for the relative 

importance. This will give them the correct overall weight in final decision. Finally add 

up these weighted scores for the alternatives. The option that scores the highest wins! 

 Force field analysis (from Modeling and Decision Support Tools) 

Force Field Analysis is a useful technique for looking at all the forces for and 

against a decision. In effect, it is a specialized method of weighing pros and cons. 

By carrying out the analysis decision makers can plan to strengthen the forces supporting 

a decision, and reduce the impact of opposition to it. To carry out a force field analysis, 

follow these steps: first, list all forces for change in one column, and all forces against 

change in another column. Second, assign a score to each force, from 1 (weak) to 5 

(strong).  Then, draw a diagram showing the forces for and against change. Show the size 

of each force as a number next to it.  

 Paired Comparison Analysis (from Modeling and Decision Support Tools) 

Paired Comparison Analysis is also known as Paired Choice Analysis. Similar 

items are compared one against the next and the results are tallied to find an overall 
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winner. This makes it easy to choose the most important problem to solve, or select the 

solution that will give the greatest advantage.  

 Criteria Rating Technique (from Modeling and Decision Support Tools) 

The procedure of using the criteria rating technique is as the followings: 

1) List the alternatives available 

2) Brainstorm decision criteria. Decision makers will be judging all alternatives 

against what they feel are the most important qualities each one should have. 

These qualities are called decision criteria. Brainstorming may be a useful way 

for a group to agree appropriate criteria. 

3) Determine the relative importance of each criterion. Rank the criteria and assign 

a relative importance (weight) to each. The total of the assigned weights should 

equal 100. 

4) Establish a rating scale; rate the alternatives. A suitable rating scale might be, 

for instance: 1= low, 10=high. Each alternative should be weighed against each 

criterion, using the same scale for each. 

5) Calculate the final score. Multiply the weight for each alternative by the score 

and write this in brackets. Add up the numbers in brackets for each alternative 

and write the sums in the appropriate total boxes. Add any summary comments 

in the appropriate summary box. 

6) Select the best alternative. Select the alternative with the highest score. this 

alternative may not be the one ultimately chosen - if the group disagrees with 

the choice, they should review the weighting of the criteria and make the 

necessary changes. If necessary, repeat the process. 
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2.1.5.3 Decision Making Processes 

 Delphi method (Ishikawa, 1993) 

The Delphi Technique gathers and evaluates information from a group without 

physically assembling its members. Ensure anonymity of each member’s input in the 

decision. Minimizing face-to-face interaction, such as when the issue is sensitive or 

required confidentiality. Communicate to each member the collective input of the rest of 

the team, so they can factor the team’s position into their decision. 

One of the weaknesses of Delphi method is that it requires repetitive surveys of the 

experts to allow the forecast value to converge. The more we repeat surveys, the more 

costly they become, especially for large (or complicated) problem. 

 Nominal Group Technique (from Team Tools Objectives Decision Making) 

Generate a large number of creative potential solutions to a problem or opportunity, 

evaluate these solutions, and rank them from most to least promising. Best for small 

group meetings, larger groups should be divided in subgroups. 

 Nemawashi (from Group Decision Support and Groupware Technologies) 

Nemawashi is a critical aspect of consensus-building in Japanese organizations, and 

the definition of it can be loosely translated several ways. Tomlinson (1996) offers this 

definition: a tactic implemented by the Japanese to bring about consensus through various 

pre-meeting consultations, where a strong foundation is being built so that the result will 

create a general agreement amongst those involved in the decision.  
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 Devil’s advocate technique (from Team Tools Objectives Decision Making) 

This is a technique that is also very useful during brainstorming and in consensus 

building processes as well. One member plays the devils advocate to the potential 

decision by stating all the opposite possibilities. This technique is useful in majority 

support because it prevents the board from falling into "groupthink". Groupthink occurs 

when members suppress their dissenting view because they believe no one will agree 

with them. By allowing someone to "play" the devils advocate it encourages members to 

discuss the merits of an action or potential decision without worrying about blocking the 

group's momentum.  

 Arbitration (from Group Decision Support and Groupware Technologies) 

Arbitration is a dispute resolution process in which the disputing parties present 

their case to a third party intermediary (or a panel of arbitrators) who examine all the 

evidence and then make a decision for the parties. This decision is usually binding. Like 

court-based adjudication, arbitration is adversarial. The presentations are made to prove 

one side right, the other wrong. Thus the parties assume they are working against each 

other, not cooperatively. Arbitration is generally not as formal as court adjudication, 

however, and the rules can be altered to some extent to meet the parties’ needs. 

2.2 Fuzzy Sets Theory 

The term “fuzzy” was proposed by Zadeh in 1962. In 1965, Zadeh formally 

published the famous paper “Fuzzy Sets”. The fuzzy set theory was intended to improve 

the oversimplified model, thereby developing a more robust and flexible model in order 

to solve real-world complex systems involving human aspects. Fuzzy set theory has been 
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applied in almost every field, including control systems, optimization theory, artificial 

intelligence, human behavior, etc.  According to Berkeley Initiative in Soft Computing 

(BISC), by 2004, the number of fuzzy-related patents issued in Japan is 4,801, and the 

number of fuzzy- related patents issued in the US is around 1,700. The Table 2.2 

summaries the research publications of papers containing the word “fuzzy” in title cited 

in INSPEC and MATH.SCI.NET databases.  

Table 2.2 Number of papers in INSPEC and MathSciNet which have "fuzzy" in their titles, (Data for 
2002 are not complete) 

 
 INSPEC MathSciNet 
1970-1979 569 443
1980-1989 2,404 2,465
1990-1999 23,207 5,479
2000-present 9,945 2,865
Total 36,125 11,252

 
*Compiled by Camille Wanat, Nov 20, 2003 

 

In this study we will concentrate fuzzy group decision making. To do so, we will 

first introduce the required knowledge such as fuzzy sets, fuzzy set theory, linguistic 

variable, membership functions, fuzzy relations, fuzzy operations, and fuzzy mathematics 

etc.  

2.2.1 Definition 

Traditional mathematics and logic assigns a membership of 1 to items which are 

members of a set, and 0 to those which are not. This is the dichotomy principle. Such a 

strong principle inevitably ran into philosophical problems. Fuzzy set theory offers a 

logic which more closely imitates the human thought process by allowing for possibilistic 
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reasoning and vagueness. It allows a proposition to be neither fully true, nor fully false, 

but partly true and partly false to a given degree. It is common to restrict these degrees of 

membership to the real inclusive interval [0, 1].  

A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of 

X the degree of membership of x in A (e.g. X is a group of people, A the fuzzy set of old 

people in X).  

}|)(,{( XxxxA F ∈= µ   (2.1)     

where, )(xFµ  is the degree of membership or membership function (MF) of x in F. 

The closer the membership )(xFµ  is to 1, the more x belongs to F. The MF maps each 

elements of X to a continuous membership value between 0 and 1. Such representation is 

very flexible and allows arbitrary MF shape in real applications. That means the MF 

)()( xfxF =µ can be any function.  

Now if X is a set of propositions then its elements may be assigned their degree of 

truth, which may be “absolutely true,” “absolutely false” or some intermediate truth 

degree: a proposition may be more true than another proposition. This is obvious in the 

case of vague (imprecise) propositions like “this person is old” (beautiful, rich, etc.). In 

the analogy to various definitions of operations on fuzzy sets (intersection, union, 

complement, …) one may ask how propositions can be combined by connectives 

(conjunction, disjunction, negation, …) and if the truth degree of a composed proposition 

is determined by the truth degrees of its components, i.e. if the connectives have their 
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corresponding truth functions (like truth tables of classical logic). Saying “yes” (which is 

the mainstream of fuzzy logic) one accepts the truth-functional approach; this makes 

fuzzy logic to something distinctly different from probability theory since the latter is not 

truth-functional (the probability of conjunction of two propositions is not determined by 

the probabilities of those propositions). 

It is clear that the membership function is the key to designing meaningful fuzzy 

sets for image features.  

2.2.1.1 Membership functions  

The membership functions for fuzzy sets can have many different shapes, 

depending on definition. The popularly used fuzzy membership functions in the 

applications are triangular membership functions, trapezoidal membership function, 

Gaussian (Bell-shaped) membership function and Sigmoidal membership function. The 

general membership functions are described as: 

1) Triangular membership function: 
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where, mx , ,0>Le  ,0>Re  represent  the mode, the left-hand spread, the right-

hand spread of the membership function, respectively; LmL exx −= , RmR exx += .  
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In particular, if 0>== eee RL , then F becomes a symmetric triangular fuzzy 

membership function, which can be denoted as:  

),( exF m=  (2.3) 

2) Trapezoidal membership function 

A 4-tuple trapezoidal membership function is formed like (Figure 2.2): 

)w,a,a ,a ,a (A~ A~4321=  (2.4) 

Where a2 and a3 indicate the interval in which the membership function value 

is 1, while a1 and a4 are the left and right limits of the definition domain of 

trapezoidal membership function. wA denotes the maximum membership value of 

the fuzzy number. 

 

 
 

Figure 2.2 Trapezoidal membership function 
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3) Gaussian (Bell-shaped) membership function: 

⎟
⎠
⎞

⎜
⎝
⎛ −
−= 2

2 )(exp)(
σ

µ vxxF  (2.5) 

where, ν  and σ specify the center and spread of a Gaussian membership 

function, respectively. 

4) Generalized Bell membership function.  

A generalized bell MF is defined by three parameters (a, b, c): 

bF

a
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−

+

=µ   (2.6) 

where the parameter b is usually positive. This membership function is a 

direct generalization of the Cauchy distribution used in probability theory.  

5) Sigmoidal membership function 

A sigmoidal MF is defined by: 

))(exp(1
1),,(

cxa
caxF −−+

=µ   (2.7) 

where the parameter a controls the slope at the crossover point x = c. This 

membership function is usually applied in the activation function in neural network.  
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In addition, there is one special fuzzy membership function – singleton MF, 

which is also most commonly used fuzzifier. It maps Xx ∈  into fuzzy set F  in X  

with 1)( =bFµ  and 0)'( =bFµ  for all Xb ∈'  with bb ≠' . A singleton MF can be 

represented as: 

 
⎩
⎨
⎧

=
0
1

)(xFµ   
bx
bx

≠
=

  
and

 
Xx ∈∀

  (2.8) 

These five types of most commonly used membership functions are shown in 

Figure 2.3 using examples.  In practice, compared with Gaussian MFs, triangular or 

trapezoidal functions needs low computatational cost. However, Gaussian MFs have 

some important advantages, for example, they can produce smooth mappings; universal 

approximation property can be easily proven; and normal distribution can be 

approximated well by Gaussian-type basis function. It is worthwhile noting that these 

five popularly used MFs are by no means exhaustive; one can create any specialized 

membership function for any special application if necessary. In particular, any types of 

continuous probability distribution functions can be used as a membership function, 

provided that a set of parameters are given to specify the appropriate meanings of the 

MFs. 
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Figure 2.3 Five types of most commonly used membership functions 

2.2.1.2 α -cut 

It is the crisp domain in which we perform all computations with today’s 

computers.  The conversion from fuzzy to crisp sets can be done by two means, one of 

which is α -cut. Given a fuzzy set 
~
A , the α -cut set of 

~
A  is defined by: 



 32

⎭⎬
⎫

⎩⎨
⎧ ≥= αµα )(

~
xxA A  (2.9) 

where ]1,0[∈α . Note that by virtue of the condition on )(
~

xAµ in above equation, 

i.e., a common property, the set Aα is now a crisp set.  In fact, any fuzzy set can be 

converted to an infinite number of cut sets. 

2.2.1.3 Convex fuzzy set 

A set A is a convex fuzzy set, if and only if for all   x,x 21 in X, 

)) x( ),x(()  x)-(1x( 2121 AAA Min µµλλµ ≥+  (2.10) 

where ]1,0[∈λ  

2.2.1.4 Normal Fuzzy Set 

A set A is a normal fuzzy set, if 1)x(,x ii =∈∃ AX µ  

2.2.1.5 Fuzzy Number 

Fuzzy Number is a fuzzy subset in the universe of discourse X that is both convex 

and normal. 

In addition, if n~ is a fuzzy number and 0>α
ln  for ]1,0[∈α , then n~  is called a 

positive fuzzy number. 
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Fuzzy number is a very important definition in fuzzy set theory. Since it is normal, 

convex, it simplifies the calculation. Here are some characteristic values of fuzzy 

numbers: 

a). The value of fuzzy number: A central value that represents the value of the 

magnitude that the fuzzy number represents. 

)dr(r)R(r)s(r)(L)G(s
1

0
yyi isis∫ +=  (2.11) 

b). Maximum value 

}(v)|max{}v(v),{)height(s
isis yyi µµ vSup =∀=  (2.12) 

c). Minimum Value 

}(v)|min{)height(s
isyi µv=  (2.13) 

d). Center of gravity 

∫
∫=

v

v

(v)dv

(v)dvv
)G(s

is

is

y

y

i
µ

µ
 (2.14) 

2.2.2 Fuzzy Set Operations   
 

As in the traditional crisp sets, logical operations, e.g., union, intersection, and 

complement, can be applied to fuzzy sets.  

1) Union  
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The union operation (and the intersection operation as well) can be defined in 

many different ways. The union of two fuzzy sets 
~
A and 

~
B with the membership 

functions )(
~

xAµ  and )(
~

xBµ  is a fuzzy set 
~
C , written as 

~~~
BAC U= , whose 

membership function is related to those of 
~
A  and 

~
B  as follows: 

[ ])(),(max:
~~~

xxUx BAC µµµ =∈∀  (2.15) 

2) Intersection  

According to the min-operator, the intersection of two fuzzy sets 
~
A and 

~
B  

with the membership functions )(
~

xAµ and )(
~

xBµ , respectively, is a fuzzy set 
~
C , 

written as 
~~~
BAC I= , whose membership function is related to those of 

~
A  and 

~
B as follows: 

⎥⎦
⎤

⎢⎣
⎡=∈∀ )(),(min:

~~~
xxUx BAC µµµ  (2.16) 

3) Complement  

The complement of a set 
~
A , denoted

~
A , is defined as the collection of all 

elements in the universe which do not reside in the set 
~
A . 

)(1:
~~

xUx AA µµ −=∈∀  (2.17) 
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Note that even though the equations of the union, intersection, and complement 

appear to be the same for classical and fuzzy sets, they differ in the fact that )(
~

xAµ and 

)(
~

xBµ  can take only a value of zero or one in the case of classical set, while in fuzzy sets 

they include the whole interval from zero to one.   

Although (and only) min and max operations satisfy the law of distributivity, min 

and max do incur some difficulty in analyzing fuzzy systems. But they are not the only 

ways that can be chosen to model the intersection and union of a fuzzy set.  Two popular 

alternatives to them are algrbraic product and algrbraic sum, which were first defined by 

Zadeh in 1965 (Zadeh, 1965) as: 

)()()( xxx BABA µµµ ⋅=∧  (2.18) 

)()()()()( xxxxx BABABA µµµµµ ⋅−+=∨  (2.19) 

Typically, the first algrbraic product logical operator gives much smoother 

approximations than MIN operator for fuzzy intersection operation. And it is interesting 

that a sum of fuzzy sets (obviously not a s-norm) is far more common choice than 

algrbraic sum, Max or other fuzzy union operators (s-norm) for fuzzy union operation, 

which may in a supernormal fuzzy set with height greater than one. 
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2.2.2.1 T-norms 

In addition to the above two kinds of operators available, the more general forms of 

the operators for fuzzy intersections and fuzzy unions are called T-norms (triangular 

norm) and T-conorms or S-norms in fuzzy logic, which can be defined as 

)](),([)( xxTx BABA µµµ =∧  (2.20) 

)](),([)( xxSx BABA µµµ =∨  (2.21) 

The T-norm operators should satisfy the following basic requirements (Smolíková 

and Wachowiak, 2002):  

• Boundary: 0)0,0( =T , aaTaT == ),1()1,(  

• Monotonicity: ),(),( dcTbaT ≤ , if ca ≤  and db ≤  

• Commutativity: ),(),( abTbaT =  

• Associativity: )),,(()),(,( cbaTTcbTaT = .  

The first requirement ensures the correct generalization of crisp sets. The second 

requirement implies that a decrease in the membership values in A and B can not produce 

an increase in the membership value of the intersection of sets A and B. The third 

requirement specifies that the operation is insensitive to the order in which fuzzy sets are 

combined, and the fourth requirement enables us to take the intersection of any number 

of fuzzy sets and any order of pairwise grouping (Kulkarni, 2001).  
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Four of the most frequently used T-norm operators are (Jang, Sun and Mizutani, 

1997): 

• Minimum T-norm: bababaT ∧== ),min(),(min  

• Algebraic product T-norm: abbaTap =),(  

• Bounded product (or Lukasiewicz) T-norm: )1(0),( −+∨= babaTbp  

• Drastic product (or Degenerate): 
1,

1
1

,0
,
,

),(
<

=
=

⎪
⎩

⎪
⎨

⎧
=

ba
a
b

if
if
if

b
a

baTdp  

And it can be proved that ),(),(),(),( min baTbaTbaTbaT apbpdp ≤≤≤  is satisfied.  

2.2.2.2 S-norms 

Similar to T-norm, S-norm operators should meet the following requirements 

(Kulkarni, 2001): 

• Boundary: 0)1,1( =S , aaSaS == ),0()0,(  

• Monotonicity:  ),(),( dcSbaS ≤ , if ca ≤  and db ≤  

• Commutativity: ),(),( abSbaS =   

• Associativity: )),,(()),(,( cbaSScbSaS = . 

Four of the most frequently used S-norm operators are (Jang, Sun and Mizutani, 

1997): 

• Maximum T-conorm: bababaS ∨== ),max(),(max  

• Algebraic sum T-conorm: abbabaS −+=),(  
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• Bounded sum (or Lukasiewicz) T-conorm: )(1),( babaS +∧=  

• Drastic sum (or Degenerate) T-conorm: 
0,

0
0

,1
,
,

),(
>

=
=

⎪
⎩

⎪
⎨

⎧
=

ba
a
b

if
if
if

b
a

baS . 

And it can be proved that ),(),(),(),(max baSbaSbaSbaS dsbsas ≤≤≤  is satisfied.  

The above described T-norms and S-norms are only part of the operators appeared 

in literatures. It is pretty hard to illustrate all of them. Some classes of T-norms and S-

norms are summarized in Table 2.3. 
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Table 2.3 Definitions of T-norms and S-norms 

 
 T-Norm T(a, b) S-Norm S(a, b) 

Zadeh Min (a, b) Max (a, b) 
Lukasiewicz }0 ,1max{ −+ ba  }1 ,min{ ba +  

Product/Probabilistic ab  abba −+  

 
ba

ab
⋅+1

 
ba

ba
⋅+

+
1

 

 )1(0 −+∨ ba  )(1 ba +∧  

Dubois and Prade )1,0( ,
},,max{

∈α
αba

ab
 )1,0( ,

}),1(),1max{(
)1)(1(1 ∈

−−
−−

− α
αba

ba
 

Yager 0},])1()1[(,1min{1 /1 >−+−− pba ppp  0},][,1min{ /1 >+ pba ppp  

 ),0[ ,
))(1(

∞∈
−+−+

γ
γγ abba

ab  ),0[ ,
)1)(1(
)1()(

∞∈
−−+
−−−+ γ

γγ
γ

ab
ababba  

 ),1[ ],)(1[1
1

∞∈+∧− −− γγλλ ba  ),1[ ,)(1
1

∞∈+∧ γγγλ ba  

 0 ,)1(
1

>−+
−

−− ρρρρ ba  
1,0 ,)1(1

1

≥+<−+− −−
−

−− ρρρρρ ρ baba

1,0 ,1 ≤+< −− ρρρ ba  
Drastic ),min( ba  if ),max( ba =1, 0 otherwise ),max( ba  if ),min( ba =0, 1 otherwise 
Einstein ))(2/( bababa ⋅−+−⋅  )1/()( abba ++  

Hamacher ))/( bababa ⋅−+⋅  )1/()2( ababba −−+  
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Relation of T-norms and S-norms 

• b) S(a,b) T(a, ≤  

• bab) T(a, then a,1) T(a, If ∧≤=  

• bab) S(a, then a,0) S(a, If ∨≥=  

• 00) T(a, a1) T(a, If =⇒=  

• 11) S(a, a0) S(a, If =⇒=  

• bab) T(a, aa) T(a, If ∨≤⇒≤  

• bab) S(a, aa) S(a, If ∧≥⇒≥  

Generation of T-norms and S-norms 

Given function g(s), where g(0)=0 and g(1)=1, then,  

g(b)))g(a)(G(1b) S(a, +∧=  is a S-norm and  

1))-g(b)g(a)(G(0b) T(a, +∨=  is a T-norm 

Example: 

2)( ssg =  satisfy g(0)=0 and g(1)=1, then, g=s  or ss =)(G . So, 

2
1

2222 ))ba((1))ba(G(1g(b))g(a)G(1b) S(a, +∧=+∧=+∧=  

If S(a, b) is a S-norm, then, g(b))) ,G(S(g(a)b) F(a, = is also a triangular norm (S-

norm). 
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If T(a, b) is a T-norm, then, g(b))) ,G(T(g(a)b) F(a, = is also T-norm. 

Example: 

ab-bab) S(a, += , and taking 2sg(s) = , then sG(s) =  

2
1

2222222222 )ba-b(a)ba-bG(a))b,G(S(ag(b)))G(S(g(a)b) F(a, +=+==+=  is 

a S-norm. 

Given function h(s), where 0)h( and 1h(1) ,h(0) =+∞=∞→ , and (s)hH(s) -1= , 

then, h(b)) ,H(h(a)b) T(a, = is a T-norm, 1)-h(b) H(h(a)b) T(a, +=  is a T-norm 

Example: 

ss
1H(s) ,1h(s) == , ab=

⋅
=⋅==

b
1

a
1

1)
b
1

a
1H(h(b)) ,H(h(a)b) T(a,  

abba
ab

−+
=

+
=+=+=

1-
b
1

a
1

11)-
b
1

a
1H(1)-h(b) H(h(a)b) T(a,  

 

2.3 Fuzzy Similarity Measure  

A similarity measure is a function that associates a numeric value with a pair of 

fuzzy sets, with the intention that a higher value indicates greater similarity.  Measuring 
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similarity is an important topic, common to many areas of applications.  The importance 

of this topic emerges from the fact that in real life many of the attributes describing 

objects are not quantitative, and using fuzzy logic provides an essential tool to utilize 

qualitative judgment in practice.  Fuzzy similarity methods are useful in applications of 

fuzzy expert systems, fuzzy pattern recognition, fuzzy database and information retrieval 

and many types of comparative studies using fuzzy set theory.  

A similarity measure function must conform to the following five axioms:  

1) Non-negativity, 0≥s  

2) Symmetry, ),(),( ABsBAs =  

3) Identity, 1),( =AAs  

4) Opposite, 0),( =AAs  

5) Definiteness, ⇔= 0),( BAs A∩B=Ø, ⇔=1),( BAs A=B 

These constraints are not counter-intuitive. The first and second constraints define a 

metric as a scalar and not a directional vector quantity. The third property reflects the 

axiomatic belief that the similarity between two objects must be zero when they are the 

identical. The fourth property strengthens the previous one by enforcing the constraint 

that the similarity metric must only be zero when two objects have no commons. The 

final constraint strengths the third and the fourth constraint.  

During the evolution of fuzzy set theory numerous approaches for comparison or 

ranking of fuzzy sets have been proposed.  However, the methods are not consistent, 
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difficult to compare, and usually result in different similarity values between the same 

sets.   

The methods presented in this research are classified into six categories (an 

extension of the classification provided by Chang and Lee, 1994): 

1) Methods using α-cut.  

2) Set-theoretic approaches. 

3) Fuzzy Max-Min integration (operations of union and intersection). 

4) Methods using distance functions. 

5) Vector based methods.  

6) Multi-dimensional methods. 

The Table 2.4 summarizes 26 fuzzy similarity measure methods and compared some 

of important properties.  

 

Table 2.4 Important properties of different fuzzy similarity measures 

 

No Method Symmetry Simplicity 
S=0 ⇔  
A∩B=Ø 

S=1 ⇔  
A=B 

Non-
convex 

Non-
normal 

1 2.22 N M Y N N N 
2 2.23 Y M N N Y Y 
3 2.24 Y H Y Y Y Y 
4 2.25 Y H N Y Y Y 
5 2.26 Y H Y Y Y Y 
6 2.27 Y H N Y Y Y 
7 2.28 Y H Y Y Y Y 
8 2.29 Y M N Y Y Y 
9 2.30 Y H N Y Y Y 
10 2.31 Y H N Y Y Y 
11 2.32 Y H N N Y Y 
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12 2.33 Y L N Y Y Y 
13 2.36 N M N Y Y Y 
14 2.37 Y M N Y Y Y 
15 2.38 Y M N Y Y Y 
16 2.39 N M N N Y Y 
17 2.40 Y L N N Y Y 
18 2.42 Y M Y Y Y Y 
19 2.43 Y L N N Y Y 
20 2.46 Y L Y Y Y Y 
21 2.47 Y M Y Y Y Y 
22 2.49 Y M Y Y Y Y 
23 2.51 Y M N N Y Y 
24 2.54 Y L N N Y Y 
25 2.57 Y L N N Y Y 
26 2.58 Y L N N Y Y 

 

Note: Y-Yes N-No H-High M-Medium L-Low  

Note: The method’s number is represented by the equation number. 

Note: The method’s number is represented by the equation number. 

2.3.1 Methods using α-cut  
 

This approach is demonstrated using the following similarity measure (Lee and 

Hyung 1994): 

α
α

αα

d
B

BA
BAS ∫

∩
=

1

0

),(  (2. 22)  

where })(|{ αµα ≥= xxA A and αA  is the interval length of αA  
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2.3.2 Set-theoretic measures  

Inspired by the equivalence ABBABA ⊆∧⊆⇔=  for classical sets, Wang et al. 

(1995) defined the similarity measure as: 

))))(),(((inf)),(),((infmin(),( xAxBxBxABAS
XxXx

℘℘=
∈∈

 (2. 23) 

Where ℘ is an implication operator such that ]1,0[]1,0[ 2 →℘  is a mapping 

satisfying 1)1,1()1,0()0,0( =℘=℘=℘  and 0)0,1( =℘ .  

Such a mapping can be for example the Lukasiewicz implication 

operator: )1 ,1min(),( yxyx +−=℘ . 

2.3.3 Logic-Based measures  

This family of methods is very popular among researchers and several similarity 

measures using this approach are proposed.  

Pappis and Karacapilidis (1993) propose three measures of similarity between fuzzy 

values as follows: 

|))()((|max1),( iBiAi
xxBAS µµ −−=  (2. 24) 

∑
∑

=

=

+

−
−= n

i iBiA

n

i iBiA

xx

xx
BAS

1

1

))()((

|)()(|
1),(

µµ

µµ
 (2. 25) 
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∑
∑

=

=

∨

∧
=

∪
∩

= n

i iBiA

n

i iBiA

xx

xx
BA
BABAS

1

1

))()((

|)()(|
||
||),(

µµ

µµ
 (2. 26) 

Other measures from this family are (Chen et al. 1995): 

n
xx

BAS
n

i iBiA∑ =
−

−= 1
|)()(|

1),(
µµ

 (2. 27) 

Two additional similarity measures from the same source are: 

)(sup),( xBAS BA
Ux

∩
∈

= µ  (2. 28) 

)))()((),)()((max(
))()((

),(
∑∑

∑
⋅⋅

⋅
=

iBiBiAiA

iBiA

xxxx
xx

BAS
µµµµ

µµ
 (2. 29) 

Two additional similarity measures were proposed by Wang (1997): 

n
xx
xx

BAS

n

i
iBiA

iBiA∑ =

=
1 ))(),(max(

))(),(min(

),(
µµ
µµ

 (2. 30) 

n
xx

BAS
n

i iBiA∑ =
−−

= 1
])()(1[

),(
µµ

 (2. 31) 

Other measures are as follows: 

Hyung, Song and Lee (1994): 



 47

)))(),((min(max),( xxBAS BAXx
µµ

∈
=  (2. 32) 

Gerstenkorn and Man’ko’s correlation method (1991): 

)]().([
),(),(
BTAT

BACBAS =  (2. 33) 

Where ∑
=

+=
n

i
iAiA xxAT

1

22 )]()([)( νµ  (2. 34) 

∑
=

⋅+⋅=
n

i
iBiAiBiA xxxxBAC

1

)]()()()([),( ννµµ  (2. 35) 

Where )(1)( iAiA xx µν −=  

Yeung and Tsang’s Equality and Cardinality (EC) Method (1997): 

∑
∑

∈

∈

−
−=

Xx
b

Xx
ba

x

xx
BAS

i

ii

)(

|)()(|
1),(

µ

µµ
 (2. 36) 

This is another asymmetric approach, ( ),(),( ABSBAS ≠ ).   

We propose to change the denominator into the bigger one of the two fuzzy sets: 

∑ ∑
∑

∈ ∈

∈

−
−==

Xx Xx
Bb

Xx
ba

xx

xx
ABSBAS

i

ii

))(),(max(

|)()(|
1),(),(

µµ

µµ
 (2. 37) 
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Chen’s Function T (FT) Method (1994): 

∑
∑=

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
n

i
n

k
k

i
iBiA

w

w
xxTWBAS

1

1

*))(),((),,( µµ  (2. 38) 

where |)()(|1))(),(( iBiAiBiA xxxxT µµµµ −−=  

Yeung and Tsang’s Inclusion and Cardinality (IC) Method (1997): 

∑

∑

∈

∈

+

=

−

Xx
X

Xx
b

x

xx
ia

BAS
i

)(

))()(,1min(

),(
µ

µµ

 (2. 39) 

where )(1)( xx
ia iaµµ −=− . 

2.3.4 Methods using distance functions  
 

Zwick et al. (1987) propose the following similarity definition: 

1)),(1(),( −+= BADBAS r  (2. 40) 

Using this method, one needs to calculate the distance first: 

1r        ,|)()(|),(
1

≥−= ∑ =
r n

i
r

iBiAr xxBAD µµ  (2. 41) 
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Turksen and Zhong’s (1990) Approximate Analogical Reasoning Schema (AARS) 

is another distance/similarity measure defined as: 

)(sup1),( xBAS BA
Xx

∩
∈

−= µ  (2. 42) 

Chang and Lee (1994) summarize several distance measure approaches.  For 

instance, after comparing the existence concepts from Yager (1978), Kaufmann (1986), 

Campos and Gonzalez (1980), Gonzalez (1990) and definitions of difference from 

Mabuchi (1988), Nakamura (1986) and Yuan (1991), they proposed their own definition 

as following, 

∫∫ −− −=−= hgthgt w
BB

w
AA dwwgdwwgBOMAOMBAD

*

0

1*

0

1 )})(({)})(({)()(),( µµ  (2. 43) 

Where, )]('')()(')()[()})(({ 21
1 wxwwxwwwg iiiAi χχωµ +=−  

)()(' 1 wwx LA
−= µ , )()('' 1 wwx RA

−= µ , * min [ ( ), ( )]hgtw v hgt A hgt B=  (2. 44) 

The weighting measures )(  )( ),( 21 wandww χχω  must be determined subjectively 

by the decision maker.  Here OM represents the individual measurement for each fuzzy 

set. 

This methods is different from the other methods mentioned, especially when non-

convex fuzzy sets are involved.  Chang and Lee used the following example in their 

paper: 
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5   for 5 6
( ) 7    for 6 7

0     elsewhere
A

x x
x x xµ

− ≤ ≤⎧
⎪= − ≤ ≤⎨
⎪
⎩        

     for 0 7
7

( ) 8    for 7 8
0     elsewhere

B

x x

x x xµ

⎧ ≤ ≤⎪
⎪

= − ≤ ≤⎨
⎪
⎪
⎩  (2. 45) 

Table 2.5 summarized the results for different kinds of weighting measures 

Table 2.5 Results using various weights from Chang and Lee's similarity method 

 Fixed type weighting Linear type weighting Nonlinear type 
weighting 

 )(1 wχ

 
 )(2 wχ

 
OM(A) OM(B) D(A,B) OM(A) OM(B) D(A,B) OM(A) OM(B) D(A,B) 

0.9 0.9 5.73 4.93 0.8 5.87 5.47 0.4 5.81 5.25 0.56 
0.7 0.3 5.87 5.47 0.4 5.93 5.73 0.2 5.91 5.63 0.28 
0.5 0.5 6.0 6.0 0.0       
0.3 0.7 6.13 6.53 -0.4 6.07 6.27 -0.2 6.09 6.37 -0.28 
0.1 0.9 6.27 7.07 -0.8 6.13 6.53 -0.4 6.19 6.75 -0.56 

 

The example shows that the similarity between the two fuzzy sets varies greatly 

(from -0.8 to 0.8) when using different weighting measures. This allows the decision 

maker to introduce subjective preferences into the similarity analyzes.  

2.3.5 Representing the Fuzzy Sets as Two Vectors 
 

This approach is demonstrated using Chen’s Matching Function (MF) (1988): 

|)||||,||max(|
cos||||),(

BBAA
BABAS θ

=  (2. 46) 

where θcos  is the cosine of the angle between the two vectors of A and B. 
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2.3.6 Multi-dimensional methods  
 

Di Nola et al. (1994) propose an equality index )( ba ≡  matching method.  This 

method defines the similarity between corresponding slots of a case and a prototype 

frame.  

The equality index )( ba ≡  determines the similarity of slots a and b: 

)  (  )  ( abbaba ϕϕ ∧=≡  (2. 47) 

The ≡  relation is defined as the t-norm (φ-operator). 

One example of the φ-operator is Lukasiewicz implication (Pedrycz, 1990a): 
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Thus, 
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By adding the s-norm, the similarity is defined as: 
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which can be also implemented using: 

)]1()1([
2
1)   (

2
1

1121 bababababa −≡−+≡=≡+≡=≡  (2. 50) 

Using Lukasiewicz implication, the example is calculates as: 

467.0)467.0467.0(
2
1

=+=≡ ba  

Another similarity measure in this category was proposed by Cho and Lehto (1992): 
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)},max{min(CERT BA µµ=+  (2. 52) 

)},1max{min(CERT BA µµ−=−  (2. 53) 

),...,( 21 nSSSfS =  is the overall similarity of all n slots.  

iS  is the degree of match between the ith slot and its reference slot, and the default 

function for f is minimum. 

Nompto et al.’s Auto-fuzzy thesauri method (1999): 



 53

This method defines a new similarity measure between a query and a case, in which 

the relations among the values are taken into account.  This derivative of the nearest 

neighbor algorithm measures the similarity by counting the number of the indices in 

which the values of the case are the same to those of the query and normalizing it by the 

number of the total indices K. 
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Where T
mkpikpkpkp kk
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kikpa ,, is the ith element of the pth   case appearance vector.  
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Like
kikpa ,, , }1,0{, ∈

kikb  is 1 when the ith value of the kth   index is given to the query 

and that is 0 otherwise.   
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An extension of this method considers the relations between all the values from slot 

A and slot B.  In this case: 
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As an extension, instead of using Max as the combination of relation between slot 

values, we suggest using the sum of all the slot relations and then divided by the number 

of the slots. 
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Different similarity measures usually have different properties. Thus, the selection 

of the right similarity measure is not obvious, at time depending on the application. 

2.3.7 Sensitivity Analysis 

The sensitivity of a similarity measure is an indication of the rate at which the 

similarity increases as the two fuzzy sets move closer to each other.  This property is 

measured by moving one of the sets relative to a stationary set.  Thus, the sensitivity is 

defined as the relation between the similarity S(A,B) and the distance D between the 

sets..  This sensitivity analysis can be used to examine the robustness of the similarity 

measure. 

2.3.7.1 Measuring Distance between Sets 

The approach developed in this research is to use the distance between the two 

centers of gravity as the distance measure.   

Generally, for a polygonal shape with n discrete nodes the location of the center of 

gravity Mi(xi, yi)  =is defined as: 
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Where im  is the mass of the ith node. 

For an arc s as shown in Figure 2.4, this location is defined by equation (2. 60). 

 

Figure 2.4 Center of Gravity of an arc 
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Where s is the length of the arc with ∫ +=
β

α

dttytxs  )(')(' 22 ,   given )(txx = , 

)(tyy =  and βα ≤≤ t , and ρ  is the density of the arc. 
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Thus, the location of the center of gravity of the arc is: 

∫

∫

+

+

=
A

A

A

A

X

X
A

X

X
A

A

dxx

dxxx

GX
)('1

)('1

)(
2

2

µ

µ

, 

∫

∫

+

+

=
B

B

B

B

X

X
B

X

X
B

B

dxx

dxxx

GX
)('1

)('1

)(
2

2

µ

µ

 (2. 61) 

where )(xAµ  and )(xBµ  are membership functions of two fuzzy numbers. 

2.3.7.2 Calculating the Sensitivity of the Distance Measures 

The procedure for calculating the sensitivity is as follows: 

1) Calculate similarity of two fuzzy sets A and B using a specific measure. 

2) Measure distance between two fuzzy sets A and B 

)()( BA GxGxD −=  (2. 62) 

3) Develop the relationship between similarity and distance: 

)(),( DfBAS =  (2. 63) 

2.3.7.3 Example using Triangular Fuzzy Sets 

The following example demonstrates the process of measuring the sensitivity 

between two triangular fuzzy sets using seven similarity measures including the proposed 

area-based similarity measure.  The two fuzzy sets are presents in Figure 2.5, and have 

the following membership function. 
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Figure 2.5 Membership Functions of two Fuzzy Numbers A and B 

For comparison purposes we choose 6 similarity measures from the six categories, 

(one from each category), to analyze the sensitivity.  Table 2.6 shows the computational 

results. 

 Table 2.6 Similarity values in several distance points 

Distance -2 -1.5 -1 -0.5 0 0.5 1.0 1.5 2 
Lee and Hyung. 
(1994) 

0 0.063 0.25 0.563 1 0.563 0.25 0.063 0 

Wang et al. (1995) 0 0 0 0.50 1 0.50 0 0 0 
Wang (1997) 0 0.055 0.129 0.269 1 0.269 0.129 0.055 0 
Zwick et al. (1987) 0.08 0.081 0.091 0.140 1 0.140 0.091 0.081 0.08 
Chen’s MF (1988) 0 0.031 0.250 0.719 1 0.719 0.250 0.031 0 
Di Nola et al. 
(1994) 

0.497 0.463 0.498 0.649 1 0.649 0.498 0.463 0.497 

New Area-based 
method 

0 0.004 0.0625 0.32 1 0.32 0.0625 0.004 0 

A continuous analysis of the sensitivity is depicted in Figure 2.6. 

1.0 

A B 

1 2 3 4 
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Figure 2.6 Sensitivity analyses of seven fuzzy similarity measure methods 
 

2.3.7.4 Analysis of sensitivity Results 

The example demonstrates the case in which the two fuzzy sets have identical 

shapes.  Therefore, the similarity curves should be symmetric (if the distance measure is 

such).  When the two fuzzy numbers do not have identical shape the curve is not 

symmetric.  In this case, the maximum similarity value could be smaller than 1.0. 

Also, the steeper the curve is, the more sensitive the similarity measure is. That 

means the measure has more acute discrimination ability. 

Figure 2.6 shows that some approaches, (for example Zwick et al.’s (1987)) never 

converge to 0, even for far apart sets.  The figure also reveals an undesired property of 
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convex sensitivity function (e.g. Di Nola et al.’s, 1994).  In such a case, there is a range in 

which the similarity increases as the distance increases. 

Usually it is hard to develop a close form representation of the sensitivity function 

(similarity vs. distance).  However, the new area-based similarity measure has a closed 

form representation of this relationship.  The value of the sensitivity function (similarity 

as a function of distance) for the example is as follows: 
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2.4 Linguistic variables 
 

2.4.1 Introduction 

There are decision situations in which the information cannot be assessed precisely 

in a quantitative form but may be in a qualitative one, and thus, the use of a linguistic 

approach is necessary. For example, when attempting to qualify phenomena related to 

human perception, we are often led to use words in natural language instead of numerical 

values, e.g., when evaluating the “comfort” or “design” of a car, terms like “good”, 

“medium”, “bad” can be used (Herrera and Herrera-Viedma, 2000). 

Precise quantitative information may not be stated because either it is unavailable or 

the cost of its computation is too high, so an “approximate value” may be tolerated (e.g., 
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when evaluating the speed of a car, linguistic terms like “fast”, “very fast”, “slow” may 

be used instead of numerical values). 

2.4.2 Linguistic variable  

Since the concept was introduced by Zadeh in 1975, linguistic variables have been 

widely used. Briefly speaking, linguistic variables mean that variables whose values are 

not numbers but words or sentences in a natural or artificial language; and these values of 

linguistic variables are called linguistic labels.  

Zadeh (1975) define the linguistic variable as: 

A linguistic variable is characterized by a quintuple (H, T (H), U, G, M) in which H 

is the name of the variable; T (H) denotes the term set of H, i.e., the set of names of 

linguistic values of H, which each value being a fuzzy variable denoted generically by X 

and ranging across a universe of discourse U which is associated with the base variable u; 

G is a syntactic rule (which usually takes the form of a grammar) for generating the 

names of values of H; and M is a semantic rule for associating its meaning with each H, 

M(X), which is a fuzzy subset of U. 

For example, the linguistic variable "temperature" might have the values "hot," 

"cold," "freezing," and so on. A membership function describes these linguistic values in 

terms of numerals. For example, to describe the word "cold", we can say, "Any 

temperature above 60 degrees is not cold at all; as the temperature lowers, the coldness 

gradually increases; below 40 degrees, we can say it's definitely cold." To describe the 

above as a function, we make the x-axis as temperature in degrees, and the y-axis as the 
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"membership" of a given temperature in the definition of "cold." At temperatures above 

60, the membership (or "degree of truth") is 0, meaning those temperatures above 60 

don't belong to the definition of "cold" at all; at temperatures below 40, membership is 1, 

meaning that they definitely belong to the definition of cold; we will probably have a line 

between 60 and 40 degrees, to show the gradual increase in membership of the 

temperature in the definition of "coldness." The linguistic variables and their membership 

functions are what allow fuzzy logic to perform the imprecise, non-numerical reasoning 

performed by humans.  

2.4.3 Linguistic label set 

Linguistic label set S is a finite but totally ordered term set of linguistic labels S= 

{s0, s1 …sT}, with si>sj, for i>j (Delgado et al., 1998, Herrera and Martinez, 2000).  A 

linguistic label set has the following properties: 

1) Ordered, si>sj, if i>j 

2) Negation operator, Neg(si)=sj, such that j=T-i 

3) T is an even number, the cardinality of the linguistic label set is odd (T+1),  

4) Maximization Operator, jiiji ss if ,s)s ,MAX(s >=  

5) Minimization operator, jijji ss if ,s)s ,MIN(s >=  

6) Symmetric, si and sT-i+2 have symmetrical meaning with regard to the middle 

label sT/2+1. 

7) Order reversal, for any )Neg()Neg( , jiji SSSS ≤>  
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8) Involution,  for any iallforSS ii   ,))Neg(Neg( =  

For example, Herrera et al. (1996a) defines the linguistic label set S = {s0= I, s1= 

SW, s2= WO, s3= SI, s4= EQ, s5= SB, s6= SU, s7= SS, s8= CS}.   The associated 

trapezoidal membership functions are showed in Figure 2.7 with the numeric membership 

functions listed in Table 2.7.  

s0=I  Incomparable 

s1=SW  Significantly Worse 

s2=WO  Worse 

s3=SI  Somewhat Inferior  

s4=EQ  Equivalent 

s5=SB  Somewhat Better  

s6=SU  Superior 

s7=SS  Significantly Superior 

s8=CS  Certainly Superior 

 

Figure 2.7 Membership functions of a linguistic label set 

The mapping of linguistic label into the corresponding TFN 
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Table 2.7 Membership functions of a linguistic label set 

 Linguistic Label TFN 
s0 I (0, 0, 0, 0) 
s1 SW (0.01, 0.02, 0.01, 0.05) 
s2 WO (0.1, 0.18, 0.06, 0.05) 
s3 SI (0.22, 0.36, 0.05, 0.06) 
s4 EQ (0.41, 0.58, 0.09, 0.07) 
s5 SB (0.63, 0.80, 0.05, 0.06) 
s6 SU (0.78, 0.92, 0.06, 0.05) 
s7 SS (0.98, 0.99, 0.05, 0.01) 
s8 CS (1, 1, 0, 0) 

 

Here, a 4-tuple ) x, x, x,(x 3210 trapezoidal membership functions are used, where x1 

and x2 indicate the interval in which the membership function value is 1, and x0 and x3 

are the left and right limits of the definition domain of trapezoidal membership function. 

A linear trapezoidal membership functions are good enough to capture the 

vagueness of those linguistic assessments, since it may be impossible or unnecessary to 

obtain more accurate assessments.  

 

2.5 Linguistic Quantifiers 

2.5.1 Introduction  

According to Zadeh (1983b), linguistic quantifiers, Q(r), can be viewed as linguistic 

probability, which determines the degree that the concept Q has been satisfied by r.  In 

exploring this concept, Zadeh also proposed the concepts of absolute and relative or 

proportional quantifiers. The absolute quantifier represents the linguistic terms which 

related to an absolute count such as “At least 5” and “More than 10”.  The relative or 
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proportional quantifier represents the term containing the proportion r where r belongs to 

the unit interval.  Examples of relative quantifiers are “at least 0.5” and “more than 0.3”, 

as well as “many” and “few”.  Yager (1991) categorized the relative quantifiers into 3 

categories; 

2.5.2 Categories of Linguistic Quantifiers 
Yager (1991) categorized the relative quantifiers into 3 categories; 

• Regular monotonically non-decreasing  

As mentioned, the quantifier Q(r) can be perceived as the degree that the concept Q 

has been satisfied by r.  In this type of quantifiers, as more criteria are satisfied, the 

higher the value of the quantifier.  Examples for this type of quantifier are “Most”, “All”, 

“More than α”, “There exists”, and “At least α”. This type of quantifier has the following 

properties  

• Q(0) = 0; 

• Q(1) = 1; 

• If r1 > r2 then Q(r1) ≥ Q(r2). 

• Regular monotonically non-increasing  

These quantifiers are used to express linguistic terms such as “Few”, “Less than α” 

“Not all” and “None” in which the quantifier prefers fewer criteria to be satisfied.  Such a 

quantifier has these properties: 

• Q(0) = 1; 
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• Q(1) = 0; 

• If r1 < r2 then Q(r1) ≥ Q(r2) 

• Regular unimodal 

These quantifiers are used to express linguistic terms such as “About α” or  “Close 

to α” which implies that the maximum satisfaction is achieved when exactly α is 

satisfied.   

2.5.2.1 Regular monotonically non-decreasing  

As mentioned, the quantifier Q(r) can be perceived as the degree that the concept Q 

has been satisfied by r.  In this type of quantifiers, as more criteria are satisfied, the 

higher the value of the quantifier.  Examples for this type of quantifier are “Most”, “All”, 

“More than α”, “There exists”, and “At least α”. This type of quantifier has the following 

properties  

1) Q(0) = 0; 

2) Q(1) = 1; 

3) If r1 > r2 then Q(r1) ≥ Q(r2). 

2.5.2.2 Regular monotonically non-increasing  

These quantifiers are used to express linguistic terms such as “Few”, “Less than α” 

“Not all” and “None” in which the quantifier prefers fewer criteria to be satisfied.  Such a 

quantifier has these properties: 

1) Q(0) = 1; 
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2) Q(1) = 0; 

3) If r1 < r2 then Q(r1) ≥ Q(r2) 

2.5.2.3 Regular unimodal 

These quantifiers are used to express linguistic terms such as “About α” or  “Close 

to α” which implies that the maximum satisfaction is achieved when exactly α is 

satisfied.   

Figure 2.8 below gives some ecamples of the common used linguistic quantifiers.  

 
 

 

 
 

“few”1 “most”
1

“all
1 

“there exists”=”not 

1
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Figure 2.8 Some examples of lingustic quantifiers 

Linguistically quantified statements belong to the category of soft statements 

defining the degree of agreement among the experts.  These statements, essential in 

everyday life, can be represented in general as  

Qy’s are F 

Where Q is a linguistic quantifier (such as “most”), y belongs to a set of objects 

(such as experts), and F is a verb property (such as convinced) (Kacprzyk et al., 1992b).  

In addition to this definition, it is possible to add more information regarding the 

importance of the experts in the quantified statement.  The importance B can be added, 

resulting in the statement:  

QBy’s are F. 

“about 
1 
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Such a statement can represent the understanding that “Most of the important 

experts are convinced”.  This statement can support the group decision “that alternative A 

is superior” or a similar decision outcome. 

The application and some operators of linguisitc quantifiers will be further 

discussed in chapter 5.   

2.5.3 Examples of Some Basic Quantifiers 
In this subsection, we will introduce three of them as samples.  

• “All”  

This quantifier is also defined as the logical “AND” quantifier and can be 

represented as (Kacprzyk and Yager, 1984; Yager, 1988, 1993a, 1996):  
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This representation shows that the satisfaction is a step function achieved only 

when all the criteria are included (as expected).   

• “There exists”  

This quantifier is equivalent to the term “At least one” and can be represented as: 
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The level of satisfaction Q(r) is presented in Figure 2.8. Thus this quantifier 

exhibits complete satisfaction when one criterion is included.   

• “More than α”  

The term “More than α” can be represented using the weights shown in Figure 2.9 

(for example, Wang and Lin, 2003). 

 

More than α 

Q 

1 r

1 

α 
 

Figure 2.9 Satisfaction level of the “More than α” linguistic quantifier 

All these weights are used in the OWA process to generate the overall score of each 

alternative.  This is done using the ordered scores the criteria of each alternative. 

2.5.4 Calculate weights using linguistic Quantifiers 
Since the OWA aggregation method requires a set of weights wi, these weight have 

a profound effect on the solution (the ranking of the alternatives in order of preference).  

One approach for generating the weights has been proposed in (Yager, 1993a, 1996) for 

the regular monotonically non-decreasing quantifiers.  Using this approach the weights 

are calculated using 
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Calculating the weights for the regular monotonically non-increasing quantifiers is 

base on the fact that these quantifiers are the antonyms to the regular monotonically non-

decreasing quantifiers.   

The generated weights have the following properties 

• ∑ = ;1iw  

• [ ]10,wi =  

There are some useful measures to evaluate the weighting vectors, for instance Liu 

(1992) uses entropy defined as: 

∑−=
i ii wwWEntr ln)(  (2.68) 

In this subsection, we assume the weighting vector W and the scores X are all crisp 

numbers, then the weighting vector W should have the following properties: 

]1,0[∈iw  (2.69) 

1=∑i iw  (2.70) 

 

2.6 Fuzzy Group Decision Making  

Fuzzy set theory was first applied in decision making by Bellman and Zadeh in 

1970. They noted that "Much of the decision making in the real world takes place in an 

environment in which the goals, the constraints and the consequences of possible actions 
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are not known precisely" and fuzzy set theory can be used to deal with imprecision in 

decision making. One of the current topics is to apply fuzzy set theory into group 

decision making methods for dealing with the imprecision, uncertainty and fuzziness in 

human decision making. 

Classic paper on fuzzy decision making is from Baas and Kwakernaak (1977). In 

this paper, they proposed a rating and ranking algorithms for ranking multiple aspect 

alternatives using fuzzy sets. In 1983, Zadeh published "The Role of Fuzzy Logic in the 

Management of Uncertainty in Expert Systems" where he states "...the conventional 

approaches to the management of uncertainty in expert systems are intrinsically 

inadequate because they fail to come to grips with the fact that much of the uncertainty in 

such systems is possibilistic rather than probabilistic in nature. As an alternative, it is 

suggested that a fuzzy-logic-based computational framework be employed to deal with 

both possibilistic and probabilistic uncertainty within a single conceptual System". 

During this period, we begin to see substantial works on "decision making and 

expert systems", e.g., Zimmermann (1987), Negoita (1981, 1983), good summaries in 

fuzzy group decision making such as Kickert (1978), Zimmermann (1987), Kacprzyk et 

al. (1993), Bezdek et al. (1978), Blin (1973), Montero and Tejada (1986), Nurmi (1981), 

Tanino (1984, 1988),  

Most of these researches were focused on how to apply fuzzy sets in group decision 

making and how to handle these fuzzy information. Then, researches continue on 

information aggregation and decision procedure development in fuzzy group decision 

making.  For instance, Delgado et al. (1994) proposed a model for linguistic partial 
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information in decision-making problems, the general procedure includes three steps: 

representation, aggregation, and comparison.  

Herrera and Herrera-Viedma (2000) use only two phases: the aggregation phase and 

the exploitation phase. The aggregation phase acquires of the performance values with 

respect to all the criteria for obtaining a collective performance value for the alternatives. 

Exploitation phase of the collective performance value for obtaining a rank ordering, 

sorting or choice among the alternatives. Aggregation phase of linguistic information 

consists of obtaining a collective linguistic performance value on the alternatives by 

aggregating the linguistic performance values provided according to all the criteria by 

means of the chosen aggregation operator - of linguistic information. The exploitation 

phase consists of establishing a rank ordering among the alternatives according to the 

collective linguistic performance value for choosing the best alternatives. 

Wang and Chuu (2004) proposes two algorithms, direct and indirect, for 

determining the degree of manufacturing flexibility in a fuzzy environment using a fuzzy 

linguistic approach based on LOWA aggregation method. All experts give the rating of 

performance and grade of importance for each criterion; both are linguistic labels from 

linguistic label set S. Direct approach: The final solution is based on the individual 

preference relations. Indirect approach: The final solution is based on an aggregated 

preference relation of the group. 

Geldermann et al. (2000) research the Fuzzy outranking in group decision making 

with the application to iron and steel making industry. 
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Bozdag et al. (2003) compares four group decision making methods using an 

example in selection among computer integrated manufacturing systems: Blin’s fuzzy 

relations, Fuzzy synthetic, Yager’s weighted goals, and Fuzzy analytic hierarchy process. 

Prodanovic and Simonovic (2003) combine fuzzy compromise programming with 

group decision making under fuzziness. Each decision maker is to specify his/her fuzzy 

weights, wz, deviation parameter, p, as well as positive and negative ideals concerning 

the criteria of the problem. Also, experts overall degree of risk is to be specified here as 

well (parameter 1χ ). It should be noted that these parameters are entirely subjective and 

are based on the preferences of the expert. For each expert, a set of fuzzy alternatives is 

generated via fuzzy compromise programming equation. This means that the fuzzy 

compromise programming equation takes in t (fuzzy) criteria (for each alternative, for 

each expert), and produces one (fuzzy) distance metric—one distance metric for every 

alternative of the problem, for each expert. (It should be mentioned that alternatives are 

the same for each expert.) After this, for each individual, a fuzzy preference relation 

matrix is generated. Finally, after everyone’s fuzzy preference relation matrix is obtained, 

Q-core, /Q-core and s/Q-core algorithms are performed, and a group decision is made. 

Shamsuzzaman et al. (2003) presents a computational framework that combines 

both fuzzy sets and analytical hierarchy process (AHP) for selecting the best-ranked 

flexible manufacturing system from a number of feasible alternatives. Here, a value of a 

criterion is measured not by the value itself, but by the linguistic measures. 
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Ishikawa (1993) develops a process of the fuzzy Delphi method to reduce the 

number of iterations. The author set up a particular item at the outset which is called “the 

extent of expertise” which is associated with a membership function. 

Cheng (1999) utilizes fuzzy Delphi method to adjust the fuzzy rating of every 

expert to achieve the consensus condition. The experts’ opinions are described by 

linguistic terms, which can be expressed in trapezoidal fuzzy numbers.  

Iggland (1991) also applies fuzzy Delphi method in coupling of customer 

preferences and production cost information. 

More work on how to aggregate fuzzy or linguistic information in group decision 

making includes Calvo and Mesiar (2003)’s weighted triangular norms-based aggregation 

operators, ordered weighted average (OWA) from Yager (1993a), Linguistic OWA 

Combinations (LOWA) from Delgado et al. (1993), Neat OWA Operator (Marimin et al., 

2002), Yager’s IOWA (1998a, 2003), quasi-arithmetic means and quasi-linear means 

aggregation (Bullen et al., 1988; Marichal et al., 1999), Yager’ s weighted median 

(1994), Sugeno integral, (Sugeno, 1974)  and the Leximin ordering from Dubois et al. 

(1996) etc. All these aggregation operators will be introduced in Chapter 5.  

In next subsections, we will summarize several fuzzy group decision making 

procedures including Fuzzy Delphi, Fuzzy Analytical Hierarchy Process (Fuzzy AHP), 

Fuzzy compromise programming etc. 
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2.6.1 Introduction  

Decision-making is an important subject in business, manufacturing, and service.  

Group decision-making (i.e. multi-expert) is a typical one where the inherent complexity 

and uncertainty necessitates the participation of many experts in the decision-making 

process.  The essence of the group decision making can be summarized as follows: there 

is a set of options and a set of individuals (termed experts) who provide their preferences 

over the set of options.  The problem is to find an option (or a set of options) that is best 

acceptable to the group of experts.  Such a solution entertains the concept of majority. 

In the real world, the uncertainty, constraints and even unclear knowledge of the 

experts imply that decision makers cannot give exact numbers to express their opinions.  

The use of linguistic labels makes expert judgment more reliable and consistent. The 

motivation behind using fuzzy sets in group decision-making comes from several 

sources:  

• The available information about the true state of nature lacks evidence and thus 

the representation of such piece of knowledge by a probability function is not 

possible. 

• The user preferences are assessed by means of linguistic terms instead of 

numerical values.  These terms in many cases are subjective and inconsistent. 

• Decision maker’s objectives, criteria, or preferences are vaguely established and 

cannot be induced a crisp relation. 
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2.6.1.1 Sources of Uncertainty 

Fuzzy decision making techniques have addressed some uncertainties, such as the 

vagueness and conflict of preferences common in group decision making (Blin, 1974; 

Siskos, 1982; Seo and Sakawa, 1985; Felix, 1994; and others), and at least one effort has 

been made to combine decision problems with both stochastic and fuzzy components 

(Munda, 1995). Application, however, demands some level of intuitiveness for the 

decision makers, and encourages interaction or experimentation such as that found in 

Nishizaki and Seo (1994). Authors such as Leung (1982) and many others have explored 

fuzzy decision making environments. This is not always so intuitive to many people 

involved in practical decisions because the decision space may be some abstract measure 

of fuzziness, instead of a tangible measure of alternative performance. The alternatives to 

be evaluated are rarely fuzzy. Their performance is fuzzy. In other words, a fuzzy 

decision making environment may not be as generically-relevant as a fuzzy evaluation of 

a decision making problem. 

Uncertainty is a source of complexity in decision making which can be found in 

many forms. Typical types of uncertainty include uncertainty in model assumptions, and 

uncertainty in data or parameter values. There may also be uncertainty in the 

interpretation of results. While some uncertainties can be modeled as stochastic variables 

in a simulation, other forms of uncertainty may simply be vague or imprecise. 

Traditional techniques for evaluating discrete alternatives such as ELECTRE 

(Benayoun et. at., 1966), AHP (Saaty, 1980), Compromise Programming (Zeleny, 1973, 
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1982), and others do not normally consider uncertainties involved in procuring criteria 

values.  

Sensitivity analysis can be used to express decision maker uncertainty (such as 

uncertain preferences and ignorance), but this form of sensitivity analysis can be 

inadequate at expressing decision complexity. There have been efforts to extend 

traditional techniques, such as PROTRADE (Goicocchea et al., 1982), which could be 

described as a stochastic compromise programming technique. A remaining problem is 

that not all uncertainties easily fit the probabilistic classification. 

2.6.1.2 Fuzzy method to handle Uncertainty 

A fuzzy membership function acknowledges that we may not be completely sure 

what values we are talking about. Statistical precision can be independent of our 

classification of an event. For example, we may predict 90% probability of the 

occurrence of a good value. What qualifies as a good value? Qualification of good can be 

subjective. Also, in many practical applications, there is not enough data to make 

probabilistic predictions with confidence. The dependence of stochastic applications on 

distribution functions can be restricting and misleading because of the intensity of data 

requirements. A fuzzy membership function may be used here in place of numeric data. 

In general, fuzzy sets provide an intuitive, and flexible framework for interactively 

exploring a problem that is either ill-defined or has limited available data. 

There are typically 3 main forms of imprecision identified in fuzzy decision making 

(Ribeiro et. al., 1995): 
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• Incompleteness, such as insufficient data 

• Fuzziness, where precise concepts are difficult to define 

• Illusion of validity, such as detection of erroneous outputs (Tversky and 

Kahneman, 1992) 

The use of fuzzy representation of systems must be considered for planning 

decisions involving uncertainties.  

• The available information about the true state of nature is some kind of 

evidence and thus the representation of such piece of knowledge by a 

probability id not possible. 

• The gains are assessed by means of linguistic terms instead of numerical 

values. 

• Decision maker’s objectives, criteria, or preferences are vaguely established 

and can not be induced a crisp relation. 

2.6.2 Fuzzy Delphi 

The Delphi approach uses expert opinion surveys with three special features: 

anonymous response, iteration and controlled feedback, and statistical group response.  

The number of iterations of Delphi questionnaires may vary from three to five, depending 

on the degree of agreement and the amount of additional information being sought or 

obtained. Generally, the first questionnaire asks individuals to response to a broad 

question. Each subsequent questionnaire is built upon responses to the preceding 

questionnaire. The process stops when consensus has been approached among 

participants, or when sufficient information exchange has been obtained.  Thus one of the 
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most attractive properties of this approach is the ability to gather and evaluate 

information from a group of experts without requiring a face-to-face meeting.   

The Delphi approach typically involves three different groups: decision makers, 

staff, and experts (Hwang and Lin, 1987).  Decision makers are responsible for the 

outcome of the Delphi study.  A work group of five to nine members, composed of both 

staff and decision makers, develops and analyzes all questionnaires, evaluates collected 

data, and revises the questionnaires if necessary.  The staff group is directed by a 

coordinator who should have experience in designing and conducting the Delphi method 

and is familiar with the problem area.  The staff coordinator’s duties also involve 

supervising a support staff in typing, mailing questionnaires, receiving and processing of 

results, and scheduling meetings. Experts who are also called respondents are recognized 

as experts on the problem and agree to answer the questionnaires.   

The Delphi method is suitable for decision domains with the following properties:  

 Subjective expertise and judgmental inputs.  

 Complex, large, multidisciplinary problems with considerable uncertainties.  

 Possibility of unexpected breakthroughs.  

 Causal models cannot be built or validated.  

 Particularly long time frames.  

 Opinions required from a large group. Anonymity is deemed beneficial. 
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One of the weaknesses of the Delphi method is that it requires repetitive surveys of 

the experts to allow the evaluations to converge.  The cost of this method rapidly 

increases with repetitive surveys especially in large and complicated problems (Ishikawa, 

1993). 

Fuzzy Delphi method is applied to alleviate this problem.  Using fuzzy numbers or 

linguistic labels for evaluating the experts’ opinions allows a faster convergence to an 

agreeable group decision.  An example presented in Cheng (1999) uses linguistic terms to 

express the experts’ response.  

2.6.3 Fuzzy Analytical Hierarchy Process (Fuzzy AHP) 

In some instances decision problems are hard to conceptualize or even clearly 

define.  The Analytical Hierarchy Process (AHP) was formulated to support the decision-

maker in these situations.   

The AHP is based on following two steps: structuring the decision as a hierarchical 

model; and, then, using pair-wise comparison of all criteria and alternative, finding the 

calculated weight of the criteria and the score of each alternative.  This approach allows 

decision makers to examine complex problem in a detailed rational manner.  The 

hierarchical representation helps in dealing with large systems, which are usually 

complex in nature.  The decisions are made one level at a time, from the bottom up, to 

more aggregate strategic levels. 
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The advantages of AHP include highly structured and more easily understood 

models, and consistent decision-making (or at least a measure of the level of consistency 

– the decision maker is always free to remain inconsistent in preferences and scores).   

The disadvantages of AHP focus mainly on the decision maker who has to make 

many pair-wise comparisons to reach a decision while possibly using subjective 

preferences.  

Fuzzy AHP methods are systematic approaches to the alternative selection and 

justification problem by using the concepts of fuzzy set theory and hierarchical structure 

analysis. The Fuzzy AHP approach uses the concepts of fuzzy set theory for evaluation of 

alternatives, and defining the weights of criteria.  Shamsuzzaman et al. (2003) integrated 

fuzzy sets and the Analytical Hierarchy Process for selecting the best-ranked flexible 

manufacturing system from a number of feasible alternatives.  Fuzzy sets are employed to 

recognize the selection criteria as linguistic variables rather than numerical ones.  The 

AHP is used to determine the weights of the selection criteria, in accordance with their 

relative importance. 

The earliest work in fuzzy AHP appeared in van Laarhoven and Pedrycz (1983), 

which compared fuzzy ratios described by triangular membership functions. Buckley 

(1985) determines fuzzy priorities of comparison ratios whose membership functions 

trapezoidal. Stam et al. (1996) explore how recently developed artificial intelligence 

techniques can be used to determine or approximate the preference ratings in AHP. 

Chang (1996) introduces a new approach for handling fuzzy AHP, with the use of the 

extent analysis method for the synthetic extent values of the pairwise comparisons. 
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Cheng (1997) proposes a new fuzzy analytical hierarchy process based on grade value of 

membership function. Weck et al. (1997) present a method by adding the mathematics of 

fuzzy logic to the classical AHP. Deng (1999) presents a fuzzy approach for tackling 

qualitative multi-criteria analysis problems in a simple and straightforward manner. Lee 

et al. (1999) introduce the concept of comparison interval and propose a methodology 

based on stochastic optimization to achieve global consistency. Cheng et al. (1999) 

propose a new method by analytical hierarchy process based on linguistic variable 

weight. Chan et al. (2000) present a technology selection algorithm to quantify both 

tangible and intangible benefits in fuzzy environment. 

Hierarchies are very important tools for dealing with large systems which are 

usually complex in nature. They involve identifying the elements of a problem, grouping 

the elements into homogeneous sets, and arranging these sets in different levels. Each set 

of elements occupies a level of the hierarchy.  

• The top level, i.e., the focus consists of only one element: the broad, overall 

objective.  

• The second level is a set of criteria. This level may be divided into sub-criteria 

levels depending on the problem size.  

• The last level is a set of alternatives, which are considered in the analysis. 

Fuzzy AHP methods are systematic approaches to the alternative selection and 

justification problem by using the concepts of fuzzy set theory and hierarchical structure 

analysis. 

 },...,,{ 21 nxxxX =  be an object set, and 
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 },...,,{ 21 muuuU =  be a goal set. 

• Obtain m extent analysis values for each object 

n2,..., 1,i ,...,, 21 =m
gigigi

MMM  (2.71) 

All are triangular fuzzy numbers. 

• The value of fuzzy synthetic extent with respect to the ith object 
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Chai and Wei (2001)'s Fuzzy Analytical Hierarchy Process or Fuzzy AHP is a multi 

criteria method which uses hierarchic structures to represent a decision problem and then 

develops priorities for the factors based on DM’s judgment.  

The arithmetic operations on these fuzzy numbers are based on interval, arithmetic. 

By using a α-cut on the performance matrix, an interval performance matrix can be 

derived as Z, where 1  0 ≤≤α . The value of α represents the DM’s degree of confidence in 

his/her fuzzy assessments regarding alternative ratings and criteria weights. A larger α 

value indicates a more confident DM. Incorporated with he DM’s attitude towards risk 

using an optimism index λ, an overall crap performance matrix is calculated by 
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0,5.0,1 === λλλ  are used to indicate that the DM involved has an optimistic, 

moderate, or pessimistic view respectively. An optimistic DM is apt to prefer higher 

values of his/her fuzzy assessments, while a pessimistic DM tends to favor lower values. 

After the facilitation of the vector matching process, a normalization process in regard to 

each criterion is applied to λ
αiz , resulting in a normalized performance matrix expressed 

as λ
αN . 

∑
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The values of λ
αN  indicate the degree of preference with respect to the alternatives 

for fixed α and λ respectively where ]1 ,0[ ],1 ,0[ ∈∈ λα . Indeed, this value is the 

Enhanced Compactness Index (ECI), which considers both of the compactness 

measurements or evaluation criteria earlier. Therefore, the larger the value, the more the 

preference of the alternative.  

2.6.4 Fuzzy compromise programming 

Classical compromise programming is a multi-criteria decision analysis technique 

used to identify the best compromise solution from a set of solutions by some measure of 

distance. As the Figure 2.10 indicates, solution should be the closeness of a particular 

solution to a generally infeasible (ideal) solution. 
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Figure 2.10 Compromise programming 

pt

z

p

zz

zzp
zj ff

ffwL

1

*

*

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= ∑ −  

 
Where 
z  1, 2, 3, …, t represents t criteria or objectives; 
j  1, 2, 3, …, n represents n alternatives; 
Lj  distance metric of alternative j; 
wz  corresponds to a weight of a particular criteria or objective; 
p  parameter (p=1, 2, …, ∞); 

−
zz fandf   *  best and the worst value for criteria z, respectively (also 

referred to as positive and negative ideals); 
fz  actual value of criterion . 

 
 

The parameter p is used to represent the importance of the maximal deviation from 

the ideal point. If p=1, all deviations are weighted equally; if p=2, the deviations are 

weighted in proportion to their magnitude. As p increases, so does the weighting of the 

Criterion C3 

Criterion C2 

Criterion C1

Ideal Point 

Alternatives
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deviations. Varying the parameter p from 1 to infinity, allows one to move from 

minimizing the sum of individual regrets to minimizing the maximum regret in the 

decision making process. The choice of a particular value of this compensation parameter 

p depends on the type of problem and desired solution. In general, the greater the conflict 

between players is, the smaller the possible compensation becomes. 

Fuzzy Compromise Programming merges of fuzzy with group decision making 

under fuzziness algorithms.  Fuzzy Compromise Programming considers all input 

parameters as fuzzy sets, not just criteria values (as fuzzy composite programming does). 

Fuzzy Compromise Programming uses of fuzzy sets in representation of these 

parameters insures that as much as possible of relevant information is used. The more 

certain the expert is (about a particular parameter value), the less fuzziness is assigned to 

the fuzzy number. But, the distance metrics are also fuzzy, it is a range of lengths.  

2.6.5 Blin’s fuzzy relations (1974) 
 

A fuzzy relation R~  is a mapping from the Cartesian space Y X ×  to the interval [0, 

1]. Blin’s fuzzy relations (1974) use a composition operator  

SRT ~~ ⋅=  (2.75) 

with Max-min composition 

)),(),((),( ~~~ zxzxzx SRYyT µµµ ∧∨=
∈

 (2.76) 
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or Max-product composition. 

)),(),((),( ~~~ zxzxzx SRYyT µµµ ⋅∨=
∈

 (2.77) 

Then a decision making procedure with Blin’s fuzzy relations can be defined as:  

 Each member of a group of n individual decision makers is assumed to have a 

reflexive, anti-symmetric, and transitive preference ordering nk  k ,P Ν∈  

 Define the social preference S as a fuzzy binary relation with membership grade 

function: 

]1,0[: →× XXSµ  (2.78) 

The membership grade ),( jiS xxµ  indicating the degree of group preference of 

alternative xi over alternative xj. 

Each value α essentially represents the level of agreement between the 

individuals concerning the particular crisp ordering Sα. 

 Intersect the classes of crisp total orderings that are compatible with the pairs in 

the a-cuts Sα for increasingly smaller values of α until a single crisp total 

ordering is achieved. In this process. Any pairs (xi, xj) that lead to an 

intransitivity are removed. 

 The largest value α for which the unique compatible ordering on XX × is found 

represents the maximized agreement level of the group (Consensus). 

2.6.6 Fuzzy synthetic (Chen et al., 2002, Chang et al., 2001) 
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The term synthetic is used to connote the process of evaluation whereby several 

individual elements and components of an evaluation are synthesized into an aggregate 

form; the whole is a synthesis of the parts. 

A decision making procedure using fuzzy synthetic is defined as: 

 Each member of a group of n individual decision makers is assumed to have a 

reflexive, anti-symmetric, and transitive preference ordering nk  k ,P Ν∈  

 Define the fuzzy social preference S as a fuzzy binary relation with membership 

grade function: 

]1,0[: →× XXSµ  (2.79) 

labels) linguistic s,evaluation of (# m ..., 2, 1,j and criteria) of (#n  ..., 2, 1,i ],[~ === whererR ij

 

 The matrix of relative weights of subjective estimates 

1    },...,,{~
21 == ∑

n
in wwherewwww  (2.80) 

Here, we can use Saaty’s Analytic Hierarchy Process to calculate fuzzy vector 

of scoring factors.  First, construct a questionnaire form, which might facilitate 

the answering of pairwise comparison questions.  The, compute a vector of 

priorities or weighting of elements in the matrix, this consists of calculating the 

principal vector (eigenvector) of the matrix, and then normalizing it to sum to 

1.0. 

 Calculated the composition e~  for each alternative 

Rwe ~~~ ⋅=  (2.81) 

 The alternative whose highest membership in higher category wins. 
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2.6.7 Yager’s weighted goals (Yager, 1978) 
 

In this method, the decision is defined as the intersection of all fuzzy goals. The 

optimal alternative is defined as that achieving the highest degree of membership in 

weighted goals (Yager, 1978).  

The weights are used as exponents to express the importance of a goal. The higher 

the importance of a goal the larger should be the exponent of its representing fuzzy set, at 

least for normalized fuzzy sets and when using the min-operator for the intersection of 

the fuzzy goals.  The solution procedure can be described as follows: 

 Establish by pairwise comparison the relative importance, αi, of the goals among 

themselves. Arrange the αi in a matrix M. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

nnn

n

n

M

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

...
............

...

...

21

2

2

2

1

2

1

2

1

1

1

 (2.82) 

 Determine consistent weights wj for each goal by employing Saaty’s eigenvector 

method. 

 Weight the degrees of goal attainment, )(~ iG x
j

µ exponentially by the respective 

wj. The resulting fuzzy sets are jw
ij xG ))(~( . 

 Determine the intersection of all jw
ij xG ))(~( : 

},...,2,1;,...,2,1|))((min,{(~
~ mjnixxD j

j

w
iGji === µ  (2.83) 



 90

 Select the xi with largest degree of membership in D~  as the optimal alternative. 

2.6.8 Fuzzy Relations Approach 

A fuzzy relation R~  is a mapping from the Cartesian space Y X ×  to the interval (0, 

1]. Blin (1974) proposed to represent a relative group preference as a fuzzy preference 

matrix from individual preferences. The decision-making procedure is defined as 

following: 

• Each member of a group of n individual decision makers is assumed to have a 

reflexive, anti-symmetric, and transitive preference ordering nk  k ,P Ν∈  

• Define the social preference S as a fuzzy binary relation with membership 

grade function: 

]1,0[: →× XXSµ  (2.84) 

• The membership grade ),( jiS xxµ  indicating the degree of group preference 

of alternative xi over alternative xj. 

• Each value α essentially represents the level of agreement between the 

individuals concerning the particular crisp ordering Sα. 

• Intersect the classes of crisp total orderings that are compatible with the pairs 

in the a-cuts Sα for increasingly smaller values of α until a single crisp total 

ordering is achieved. In this process. 

• Any pairs (xi, xj) that lead to an intransitivity are removed. 

• The largest value α for which the unique compatible ordering on XX × is 

found represents the maximized agreement level of the group (Consensus 

level). 
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2.6.9 Distance Aggregation Method 
Fan et al.’s (2002) method is to minimize the difference between the decision 

maker’s fuzzy preference information and the fuzzy preference information calculated 

from the decision matrix. By solving the optimization model, find the optimal weights to 

the criteria. Then we can rank the alternatives and make the decision. 

The approaches to solve MADM problem can be classified into three categories 

according to different forms of preference information given by a decision maker: 

the approaches without preference information 

the approaches with information on attributes 

the approaches with information on alternatives 

The decision maker’s preference relation matrix Pnxn. pik denotes the preference 

degree of alternative Ai over Ak.(Table 2.8) 

Table 2.8 Preference relation matrix from one decision maker 

 

 A1 … Ak … An 

A1 11p  … kp1  … np1  
… … … … … … 
Ai 1ip  … ikp  … inp  
… … … … … … 
An 1np   nkp   nnp  

 

The following procedure is developed for the weights calculation: 

• Calculate the degree of membership, get the new matrix B=[bij]nxm 
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For benefit criterion: 
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• Transform the overall values of alternatives into fuzzy preference relations. 
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• Construct the optimization model 
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• Solve the optimization model and get the weights to the criteria 

eQeeQw T 11 /* −−=  (2.93) 

eQeT 1/1* −−=λ  (2.94) 

Where Q is positive definite and invertible 

• Substituted by the weights w* to  
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We can obtain the overall values of every alternative. 

2.6.10 Similarity Aggregation Method (SAM) 
Basic idea of Hsu’s SAM method (1996) is that weight of an expert’s opinion 

should be larger if his opinion is closer to other opinions. 

Assume Xj = (aj, bj, cj, dj) is a positive trapezoidal fuzzy number representing jth 

expert’s subjective estimate of the rating to an alternative under a given criterion. And X 

= F (X1, X2… Xq) is the consensus of opinions. The main problem of aggregation is to 
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determine appropriate weights for each opinion. Hsu defines the average similarity 

between expert Ei and other experts as: 

∑
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Where S(Xi, Xj) is a similarity measure function defined by Zwick et al. (1987) as: 
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Based on the similarity values from (2.97), we can calculate the aggregation weight 

for expert Ei 
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Then the combined opinion of group opinions is computed by: 
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Lee (2002) improves Hsu’s similarity aggregation method (SAM).  The new 

optimal consensus model can deal with the situation where the supports do not intersect 

and tell whether the aggregation weights of individual opinions derived from SAM are 

optimal or not. 

Lee chooses Tong’s distance metric (1980): 
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And the similarity between Xi and Xj is defined as: 

p
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Where U is the universe of discourse and u=max(U)-min(U). Also, the dissimilarity 

between A and B is defined as: 

),(S-c 2 ji XX  (2.102) 

Where c is a constant and c>1 

An optimal aggregated opinion is to minimize the sum of weighted dissimilarity 

between aggregated opinion and each individual opinion. So, the optimization model is 

constructed like: 

∑
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Subject to: 
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Where m is an integer and m>1. 

Notice that this analytical problem is quite similar to fuzzy c-means problem. It is 

easy to construct but not easy to solve the optimization model.  
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Lee proposes an algorithm OAM to solve the optimization model with the degree of 

importance of experts. 

• Each expert Ej (j=1, 2… q) constructs a positive trapezoidal fuzzy number Xj 

= (aj, bj, cj, dj) to represent the subjective estimate of the rating to the 

alternative under a given criterion. 

• Set initial aggregation weights such that 10 )0( ≤≤ jw  (j=1,2,…q) and 

∑
=

=
q

j
jw

1

)0( 1. Each iteration in the algorithm will be labeled l, where l=0, 1, 2, 

… 

• Calculate  
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• Let W (l) = (w1
(l), w2

(l),…, wq
(l)). Calculate W (l+1) as follows: 

∑
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• If ε>+  W -W (l)1)(l , set l=l+1 and go to (2.104). 

• Let W (l+1) = (w1
(l), w2

(l),…, wq
(l)). Calculate aggregation coefficient ACj (j=1, 

2… q) by: 
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 (2.106) 

• Aggregate opinions of experts by: 
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2.6.11 Marimin et al.’s Semi-numeric Method 
Marimin et al.’s semi-numeric Method (2002) is defined as: 

Linguistic label representation with fuzzy sets computation for pairwise fuzzy 

group decision making. 

In a single-level analysis of pairwise fuzzy group decision making, each decision 

maker expresses his or her evaluation on each pair of alternatives based on whole criteria 

or based on each criterion when the criteria are considered explicitly. In the explicit 

criteria consideration, solutions based on each criterion are then aggregated into the final 

solution. The criteria may have the same or different weights. The weight for each 

criterion is determined separately based on the decision makers’ consensus or by 

adjusting a decision parameter for the aggregation operator used. 

The difference of the single-level analysis from the numeric single-point 

computation models: 

• The core concept is extended into a fuzzy core concept which allows fuzzy 

membership of alternatives in a solution set. 

• The thresholds are eliminated from the computation models. 

• Neat OWA aggregation operators are used both for aggregating the individual 

preferences into a group preference and for representing the aggregation 

guided by a linguistic quantifier such as most. 
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• A set of criteria which may have the same or different weights are considered 

explicitly. The weights may be assigned by the decision makers in label form 

or they will be automatically determined based on the preference data and the 

adjusted decision parameter α of the neat OWA operator. A higher α means 

that a value is more highly weighted. 

2.6.12 Niskanen (2002) 
Niskanen (2002) compares four different decision models with the ZZ data sets. ZZ 

data comprises 24 data vectors, these being the degrees of membership of 24 objects with 

respect to three fuzzy sets. The objects are tiles. The components of these vectors are the 

two inputs and the output. The first input variable is solidity, and it will be assessed on 

the basis of the tile’s color. The second input variable is dovetailing, which means that 

the tiles should cling to each other as tightly as possible. The output variable is an ideal 

tile, and this feature is assessed on the basis of the input variables.  

The four models he used are: 

• The conventional linear approach (Linear Regression) 

• Semi-conventional non-linear approach (non-linear regression analysis, neural 

network approach) 

• Fuzzy associative memory approach (Fuzzy Control) 

• Neuro-fuzzy associative memory approach (Fuzzy Associate Rule) 

2.6.13 Comparing Fuzzy and Crisp group decision making 

From a few sections’ introduction, we can conclude that fuzzy and crisp group 

decision making have the following properties: 
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Crisp group decision making methods  

 All decision data are assumed to be known and must be represented by crisp 

numbers 

 The methods are to effectively aggregate performance scores.  

Fuzzy group decision making methods  

 Have difficulty in judging the preferred alternatives because all aggregated 

scores are fuzzy data 

 Should do fuzzy outranking 

Other approaches can be applied on group decision making under linguistic 

assessments include Fuzzy Analytical Hierarchy Process (Mikhailov, 2004; 

Shamsuzzaman et al., 2003), Fuzzy Delphi (Cheng, 1999; Iggland, 1991; Ishikawa, 

1993), Fuzzy Compromising (Prodanovic and Simonovic, 2003), etc. Blin (1974) 

proposed to represent a relative group preference as a fuzzy preference matrix from 

individual preferences. Fan et al.’s (2002) weighting construction method tries to 

minimize the difference between the decision maker’s fuzzy preference information and 

the fuzzy preference information calculated from the decision matrix. By solving the 

optimization model, the optimal weights to the criteria are calculated. Then the 

alternatives are ranked based on the aggregation results. Hsu and Chen (1996) proposed a 

similarity aggregation method. The basic idea of the method is that weight of an expert’s 

opinion should be larger if his opinion is closer to other opinions.  
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2.7 Fuzzy Group Decision Making Process  

In a fuzzy environment, the group decision-making problem can be solved in four 

steps (Herrera et al., 1996a).  As shown in Figure 2.11, first, one should unify the 

evaluations from each expert. The second step is to aggregate the opinions of all group 

members to a final score for each alternative.  This score is usually a fuzzy set or a 

linguistic label, which is used to order the alternatives.  The third step is to rank the 

linguistic labels or fuzzy sets and select the preferred alternatives based on this order.  

Finally, the decision manager assesses the consensus level and the individual contribution 

to the group decision.  

 

Figure 2.11 Fuzzy group decision making process 
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2.7.1 Expressing Fuzzy Preference of Alternatives 

Several ways can be used to express group members’ preference of alternatives.  

Herrera-Viedma et al. (Herrera-Viedma et al., 2002) present four ways for group 

members to express their opinions: preference ordering, utility values, fuzzy preference 

relations and multiplicative preference relations.  These opinions can be converted into 

the various representations using different transformations (Chiclana et al., 1998, 2001).  

For instance in (Herrera-Viedma et al., 2002), the function of transforming the 

multiplicative preference relations k
ija into the fuzzy preference relations k

ijp is given 

as
)log1(

2
1

9
k
ij

k
ij ap +=

.  As mentioned before, group members can also produce linguistic 

opinions, especially when the problem could not be evaluated by exact numbers. In this 

way, expert Ek can choose js  from the linguistic label set S as the score ikx  to alternative 

Ai. So, before we resume to the next step, we should uniform experts’ evaluations. 

2.7.2 Aggregating Individual Preferences into a Group Decision  
 

In this stage, all experts’ opinions are combined to get a final rating for each 

alternative.  The selection of aggregation function plays an important role in the accuracy 

of the final solution.  Many methods for aggregation can be found in Baas and 

Kwakernaak (1977), Chen and Hwang (1992), Cheng (1999), Delgado et al. (1998), 

Herrera and Herrera-Viedma (1997), Herrera et al. (1995, 1996a), Hwang and Lin (1987), 

Smolikova and Wachowiak (2002), Wang et al. (2000), and Yager (1993b).  Regardless 

whether the weights and scores are linguistic or numeric, the general form of the 

aggregation function is: 
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where fi is the final score for alternative i.  The weights of experts uk could have 

quantitative or qualitative values.  The qualitative weights can be rationalized using some 

algorithms introduced in Bordogna et al. (1997), Herrera and Herrera-Viedma (1997), 

Herrera et al. (1996b), and Yager (1993b, 1994, 1998b). 

The use of linguistic variables makes decision makers’ evaluations more flexible 

and reliable, but makes the aggregation of linguistic labels complicate, especially when 

applies the weighting associated with the evaluations.  

Generally, there are two main approaches to aggregate linguistic labels in group 

decision making. Most methods use the associated membership functions. Among them, 

Baas and Kwakernaak’s rating algorithm (1977) aggregates fuzzy scores and weights at 

differentα-cut levels with their associated membership functions. Chen and Hwang 

(1989) present a conversion scales approach to transform the linguistic expression into 

fuzzy numbers attribute by attribute. They give eight conversion scales and find a scale 

from the pool contains all linguistic terms with the principle that the scale should be as 

simple as possible. By assigning crisp scores to fuzzy numbers, they then apply classical 

MCDM method or TOPSIS method. After Yager introduced the OWA operator in 

(1988), a lot of aggregation researches have been done by applying OWA and linguistic 

quantifiers, such as  Yager (1993a, 1994, 1995),  and Kacprzyk et al. (1992b). 

The other category is to calculate linguistic labels directly. Defined in Herrera and 

Herrera-Viedma (1997) and Herrera et al. (1996b), Linguistic OWA (LOWA) is based on 
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the OWA (Yager, 1983) and the convex combination of linguistic labels (Delgado et al., 

1998).  The idea is that the combination resulting from two linguistic labels should be 

itself an element in the set S.  So, given si, sj∈S and i, j ∈[0, T], the LOWA method finds 

an index k in the set S representing a single resulting label. Another FLOWA method also 

based on OWA is from Ben-Arieh and Chen (2004). This model assigns membership 

functions to all linguistic labels in S by linearly spread the weights from the labels to be 

aggregated. The aggregating result is not a single label in S, but a fuzzy set with degrees 

to each label in S. A 2-tuple Fuzzy linguistic representation model based on the symbolic 

translation is introduced by Herrera and Martinez (2000). A linguistic 2-tuple (s, α ) is 

used where s is a linguistic term and α is a numeric value representing the symbolic 

translation. A new approach to extend different classical aggregation operators with the 

2-tuple linguistic model is developed. When both scores and weights are not crisp 

numbers, Yager (1998a) uses the fuzzy modeling technology to develop a model for the 

inclusion of importance in OWA aggregations. The so-called IOWA method suggested 

involves a transformation of the scores to be aggregated by their respective importance.  

 

2.7.3 Comparison and Selection  
 

The objective of the group decision making is to find one or several best 

alternatives, which is accomplished by ranking all the alternatives based on the 

aggregated result from the group members.  A fuzzy outranking method may be 
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necessary in ranking both fuzzy sets and groups of linguistic labels. Based on the ranking 

result, the alternatives can be selected.  

Many methods for ranking fuzzy sets have been developed so far.  Good summaries 

of fuzzy sets ranking methods can be found in books (Chen and Hwang, 1992; Hwang 

and Lin, 1987) and papers (Chang and Lee, 1994; Lee and Li, 1998, Lee-Kwang and Lee, 

1999).  After summarizing nearly 40 fuzzy sets ranking method, Chang and Lee proposed 

the following classification in (Chang and Lee, 1994):  

1) α-cut methods.  Usually a method developed by this approach is easy and fast to 

calculate. 

2) Methods based on possibility concept.  

3) Method by integration. Measure a fuzzy set by its mean value. 

4) Multiple indices approach. Rank fuzzy sets using the results of multiple ranking 

or comparison functions.  

5) Linguistic approach. This method is developed mainly due to the desire to 

maintain the fuzzy characteristics of the problem. 
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2.7.4 Consensus and Contribution Measure  
 

After the group decision is created, we evaluate how good it is by checking whether 

it represents the majority of the group members’ opinions. It is very rare when all 

individuals in a group share the same opinion about the alternatives, since a diversity of 

opinions commonly exists.  It could happen that when the group members have 

conflicting opinions, the solution could be a medium one that no expert in the group 

likes.  

Consensus is traditionally meant as a strict and unanimous agreement of all the 

experts regarding all possible alternatives. Consensus makes it possible for a group to 

reach a final decision that all group members can support among these differing opinions. 

Any group decision-making process is basically aimed at reaching a “consensus”. 

Consensus has become a major area of research in group decision making (Baas and 

Kwakernaak, 1977; Herrera et al., 1997; Herrera-Viedma et al., 2002; Kacprzyk et al., 

1997).  Generally, the approaches towards consensus in the literature can be divided into 

two groups.  The first treats consensus as a “mathematical aggregated consensus” (Ng 

and Abramson, 1992).  This type of consensus requires some kind of a binding arbitration 

so the contributing experts do not need to converge in their opinions.  In most cases, the 

consensus is achieved by changing the weights of the experts (e.g. Lee, 2002).  In the 

other type, the experts are encouraged to modify their opinion to reach a closer agreement 

in opinions (e.g. Hsu and Chen, 1996).  
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This is a general procedure for group decision-making in fuzzy environment. Most 

researches focus on the aggregation and selection steps. Good reviews on group decision 

making can be found in Zimmermann (1987), Hwang and Lin (1987), Hwang and Yoon 

(1981), Kacprzyk and Fedrizzi (1990) etc. 

 

2.8 Summary  

In this chapter, we summarized current research on fuzzy group decision making, 

introduced some fuzzy group decision making approaches such as fuzzy Delphi, fuzzy 

AHP, and fuzzy compromise programming. We introduced a general four-step procedure 

for group decision-making in fuzzy environment: unify the evaluations from each expert, 

aggregate the opinions of all group members to a final score for each alternative, rank the 

linguistic labels or fuzzy sets and select the preferred alternatives based on this order,  

measure consensus level and the individual contribution to the group decision. We gave a 

brief literature review on each step, detailed will be in the following four chapters. 

In this chapter, a quick review of fuzzy sets, fuzzy sets operations, fuzzy 

arithmatics, and linguistic variables were given.  Main similarities and differences 

between classical and fuzzy sets were introduced.   In general, set operations are the same 

for classical and fuzzy sets.  The exceptions were excluded middle laws.  Alpha-cut sets 

and extension principle were presented followed by a brief summry of fuzzy similarities.  

This section presented issues that are important in understanding fuzzy sets and their 

advantages over classical sets.  Most of the tools needed to form an idea about fuzzy 
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logic and its operation have been introduced.  These tools are essential in understanding 

fuzzy group decision making and linguistic group decision making approaches in the text. 

Fuzzy group decision making are very desirable in situations where precise mathematical 

models are not available and the human involvement is necessary.  In that case linguistic 

variables could be used to mimic human behavior and actions.   
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CHAPTER 3    

Unifying Fuzzy Preference of Alternatives 

In a fuzzy environment, a group decision-making problem is composed by the 

following elements: a finite set of alternatives A= {A1, A2… An}, a finite set of experts 

E= {E1, E2 … Eq} with each expert ek∈E presents his/her preference relation on Ai as 

xik∈S. Where S is a finite but totally ordered term set of linguistic labels S= {s0, s1 …sT}, 

with si>sj, if i>j. Usually each label has a membership function. The set S has odd 

number of elements. Also, we have the importance uk, k= [1, 2 …q] assigned to each 

expert k.  Yager introduces the weights bi, i= [1, 2 …q] to experts.  These weights 

represent the importance or trust that each expert carries (they can also be calculated from 

a required degree of orness) (Yager, 1988).  

In this chapter, we give a literature review on current research in expressing 

experts’ preference, introduce five ways for evaluation: preference ordering of the 

alternatives, fuzzy preference relation, multiplicative preference relation, utility function, 

and linguistic variable with functions to convert into each other.  We then propose a new 

fusion approach of multi-granularity linguistic information for managing information 

assessed in different linguistic term sets. 
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3.1 Introduction 

As each expert has their own ideas, attitudes, motivations, and personality, it is 

quite natural to consider that different experts will give their preferences in a different 

way.     

Because the decision makers or experts often have limited knowledge of the domain 

and therefore limited background understanding, communication between the knowledge 

representation and the expert is impeded as is the process of transferring the expertise 

into a their evaluation preference.  Therefore, the experts’ abilities to understand what is 

being conveyed is a constraining factor. 

The ability of an expert to convey knowledge is constrained by the experts 

communication abilities (i.e. their ability to express the knowledge that they posses).  

Experts often have trouble expressing or formalizing their knowledge, or communicating 

it in a form understandable to a novice.  Experts also have a problem describing their 

knowledge in terms that are precise, complete, and consistent enough for use in a 

computer program (Sestito and Dillon, 1994).  Experts sometimes give explanations for 

their decisions that sometimes do not correspond with the actual reasons for making their 

decisions.  Often their explanations are approximate, incomplete, or inconsistent. 

There is a difference in the way that a human expert's knowledge is structured as 

compared to the way that knowledge is represented in a different preference formats.   
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Current technology to adequately represent knowledge is limited.  For example, the 

expressive capability of the representation used to encode knowledge limits the ability to 

capture knowledge.  

There is a problem of verifying and validating knowledge after it has been input 

into the system.  Isolating a reasoning fault may require a trace through dozens of 

inferences and hundreds of facts, and correcting such a fault may cause other reasoning 

faults through a domino / knock-on effect.  Due to the complexity of interrelations 

between knowledge, it is often difficult to ascertain the implications of changes in the 

knowledge base, and changes in the knowledge base could therefore cause 

inconsistencies or performance degradation.  

  Knowledge discovery involves sifting through data in order to discover implicit 

(i.e. non-obvious), potentially useful, previously unknown, and non-trivial knowledge.  

(Usually there is a large volume of data to sift through.)  Knowledge discovery is a multi-

disciplinary field incorporating machine learning, statistics, database technology, expert 

systems, and data visualisation.  The knowledge discovery process involves three main 

phases:  

Pre-processing same data requires some domain knowledge and involves different 

expertise.  Different expert may convert the data into a different form and represent the 

final results.  This involves the presentation of the knowledge in a user friendly, 

understandable, and useful fashion.  During this phase testing of the relevance, accuracy, 

comprehensibility, quality, validity, novelty, and generalisability of the results also 

occurs.  
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3.2 Methods 

Currently, there are five common used ways that the experts can use to express their 

preferences over the set of alternatives: preference ordering of the alternatives, fuzzy 

preference relation, multiplicative preference relation, utility function, and linguistic 

variable.   

3.2.1 Preference Ordering of the Alternatives 

An expert here gives his/her preferences on alternatives as an individual preference 

ordering,  

(n)}o , (1),{oO kkk …=  (3.1) 

where )(iok is a permutation function over the index set n} , {1,…  showing the 

place of alternative i in the sequence  (Chiclana et al., 1998; Seo and Sakawa, 1985).   

Therefore, according to this point of view, an ordered vector of alternatives, from 

best to worst, is given.  For example, an expert may give a four alternatives evaluation as 

O={1, 3, 4, 2} which means alternative A1 is the best, A4 is in the second place, A2 is in 

third place, and alternative A3 is the last, i.e. A1 >A4 >A2 >A3. So, the orders of the four 

alternatives are: O(A1)=1, O(A2)=3, O(A3)=4, and O(A4)=2. 

3.2.2 Fuzzy Preference Relation 

In this case, the expert’s preferences on alternatives are described by a fuzzy 

preference relation kP , with membership function: 
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k
ijjiP

PAAk =),(µ  (3.2) 

This membership function denotes the preference degree or intensity of alternative 

Ai over Aj.  Here 2/1=k
ijP indicates indifference between Ai and Aj , 1=k

ijP indicates that 

Ai is unanimously preferred to Aj, and 2/1>k
ijP indicates that Ai is preferred to Aj. It is 

usual to assume that 1=+ k
ji

k
ij PP and 2/1=k

iiP  (Orlovsky, 1978; Tanino, 1990).   

For instance, the fuzzy preference relation to four alternatives can be: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5.005.08.075.0
95.05.04.00
2.06.05.045.0
25.00.155.05.0

P  

Where 2/155.012 >=P  means that A1 is slightly preferred to A2 while 0.113 =P  

indicates that A1 is unanimously preferred to A3. 

3.2.3 Multiplicative Preference Relation 

In this case, the preferences of alternatives of expert Ek are described by a positive 

preference relation 

)( k
ij

k aA =  (3.3) 

 where k
ija indicates a ratio of the preference intensity of alternative Ai to that of Aj, 

i.e., it is interpreted as Ai is k
ija times as good as Aj.  Saaty suggests in (Saaty, 1980) to 

use a scale of 1 to 9 where 1=k
ija  indicates indifference between Ai and Aj and 
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9=k
ija indicates that Ai is unanimously preferred to Aj.  An example of multiplicative 

preference relation can be expressed as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

18/175
814/19/1
7/1412/1
5/1921

A  

One can observe that the preference matrix has the property of multiplicative 

reciprocity relationship (i.e. 1=⋅ k
ji

k
ij aa ).  

3.2.4 Utility Function 

In this case the expert provides the preferences as a set of n utility values,  

},...,1,{ niuU k
i

k ==  (3.4) 

where ]1,0[∈k
iu  represents the utility evaluation given by expert Ek to alternative 

Ai  (Luce and Suppes, 1965; Tanino, 1990).  For example, the utility function of four 

alternatives can be: U={0.7, 0.4, 0.2, 0.6}. So, the preference order of the four 

alternatives is: A1 >A4 >A2 >A3. 

3.2.5 Linguistic Variable 
 

As we introduced in chapter 2, the linguistic variables can be used as the evaluation 

scores by experts. Usually, a linguistic label set S is a finite but totally ordered term set of 

linguistic labels S= {s0, s1 …sT}, with si>sj, for i>j (Delgado et al., 1998, Herrera and 
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Martinez, 2001).  For example, Herrera et al. (1996a) defines the linguistic label set S = 

{s0= I, s1= SW, s2= WO, s3= SI, s4= EQ, s5= SB, s6= SU, s7= SS, s8= CS}.   The 

associated trapezoidal membership functions are showed in Figure 2.7 with the numeric 

membership functions listed in Table 2.7.  

3.3 Transformation functions 

Experts have the freedom to use different preference formats for their evaluation, 

either preference order, fuzzy preference relation, multiplicative preference relation, 

utility function, or linguistic variable. But, for calculation, especially before aggregation, 

we should make all information uniform, thus all evaluations are comparable.  

Since the experts may provide their preferences in different ways, there is a need to 

convert the various representations to a unified form.  A common transformation between 

the various preferences is as follows (Chiclana et al., 1998):  
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These transformations allow all the experts’ judgments to be converted into Fuzzy 

Preference Relations. Here is an example from Herrera-Viedma et al. (2002), we have 

three experts give their evaluations as O={2, 1, 3, 6, 4, 5}, U={0.3, 0.2, 0.8, 0.6, 0.4, 

0.5},  
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⎝
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=

14/13/19/16/16/1
4126/14/13/1
32/117/144/1
967133
644/13/112
5343/12/11

A  

Applying the formulas (3.5)~(3.7), we get the following fuzzy preference relation 

matrix: 
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5.04.06.03.01.02.0
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5.006.003.002.02.01.0
94.05.031.02.08.064.0
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5.018.025.0009.013.0
82.05.066.009.018.025.0
75.034.05.0065.082.018.0
191.094.05.075.075.0
91.082.018.025.05.066.0
87.075.082.025.034.05.0

PA  
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3.4 Linguistic fusion functions 

As we mentioned before, generally, there are two main approaches to aggregate 

linguistic labels in group decision making. Most methods use the associated membership 

functions. The other category is to calculate linguistic labels directly.  

Those approaches work well for homogeneous data type, but will have problems 

when compositive data, for example different linguistic definitions are used. An 

information fusion operator is necessary before aggregation. A fusion operation in group 

decision making is needed. As we discussed before, this is the first step of group 

decision-making and should be done before aggregating all experts’ evaluations to make 

opinions uniform (Herrer et al., 2000). 

3.4.1 Introduction 

Data fusion is a technology of combining various forms of data such as sound, 

image, numerical, and linguistic, and acquires knowledge by combining these data. 

Usually, we cannot use only one form of data. For group decision-making problems, we 

just use numerical, and/or linguistic data.  Currently, most researches on data fusion are 

in the fields of sensing and communicating (Chen and Luo, 1999, Goodridge et al., 1994, 

Hussien et al., 1994a, Hussien et al., 1994b, Singh and Bailey, 1997, Valet et al., 2003). 

Figure 3.1 demonstrates the transformation directions between and within the numeric 

and linguistic data in group decision making. 
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Figure 3.1 Transformation directions between numerical and linguistic values 

When there are both linguistic and numeric data in group decision making 

problems, we need a fusion algorithm to transform either from linguistic to numeric or 

reverse before we could aggregate experts’ opinions. There are a lot of fuzzificaion and 

defuzzificaion approaches such as Maximum Defuzzifier, Centroid Defuzzifier etc, in 

fuzzy logic domain (Mendel, 1995). In the following subsection, we review the current 

researches on fusion models applied in group decision making.  

3.4.2 Fusion between Linguistic and Numeric data 

Akiyama (2000) presents an object-oriented fusion and diffusion algorithms. The 

fusion algorithm glues a set of linguistically defined object types to create the new object 

type that transforms crisp information to the linguistic and original format. As the 

opposite operation of the fusion operation, the object diffusion is to un-glue a linguistic 

object type, it transforms a linguistic format of input and results into constitute crisp and 

primitive formats. Chen and Chen (2002) present a new information fusion algorithm 

based on a similarity measure. The algorithm can handle heterogeneous fuzzy group 

decision-making problems in a more flexible and intelligent manner. Delgado et al. 

(1998) introduces two transformation functions, from linguistic to numerical and from 
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numerical to linguistic based on the fuzzy number characteristic values. They also 

propose a group decision-making process based on the fusion operator. Grabisch and 

Saveant (1998) propose a framework for handling uncertainty in data fusion based on 

possibility theory and also present a linguistic interface to translate possibility 

distributions into a natural language form. Torrez et al. (2002) combine “Boolean related 

event algebra” and “one point random set coverage representations of fuzzy sets” 

together to integrate fuzzy input into probability input. Hathaucey et al. (1996) presents a 

model to integrate numbers, intervals and linguistic assessments from three types of 

sensors. Moses et al. (1999) developed a linguistic coordinate transformation algorithm 

for complex fuzzy sets. This makes the adaptive control may be implemented in one 

linguistic coordinate system and the linguistic outputs may then be transformed to 

another for further operations.  

3.4.3 Fusion between Linguistic data 

In linguistic approach, an important parameter to determine is the “granularity of 

uncertainty” (Herrera et al., 2000), i.e., the cardinality of the linguistic term set being 

used to express the information. According to the uncertainty degree that an expert 

qualifying a phenomenon has on it, the linguistic term set chosen to provide his/her 

knowledge will have more or less terms. When different experts have different 

uncertainty degrees on the phenomenon, then several linguistic term sets with a different 

granularity of uncertainty are necessary. 

The use of more linguistic label sets gives decision makers more flexibility. Just 

like the use of crisp numbers, one expert likes to choose from 1 to 5 as his evaluation, 
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while another expert prefers from 1 to 10 to make his opinion in more detail. The use of 

linguistic labels has the same problem. Some experts like to use five linguistic labels set 

such as S1= {none, low, medium, high, perfect} and others may prefer more linguistic 

labels like S2= {none, very low, low, medium, high, very high, perfect}. We can see here, 

S2 specifies “low” to “very low” and ”low”, “high” to “high” and “very high”. Using less 

linguistic labels makes the problem simple. Although the use of more linguistic labels 

may make computation a little complicated, it will benefit the accuracy of the decision.  

A fusion algorithm is necessary to transform one set of linguistic labels to another. 

Suppose two experts use the two linguistic labels sets S1 and S2 respectively.  Even both 

of them choose “low” as their score to an alternative, the same linguistic label “low” may 

have different definitions, i.e., the same label “low” may have different membership 

functions from different experts. Actually, the “low” from S1 in the above example 

covers the “low” from S2. The “low” in S2 is a subset of the “low” in S1. So, we cannot 

use this two “lows” equivalently in the process of the decision-making.   

A fusion algorithm is used to convert multi-granularity linguistic term sets into a 

specific linguistic domain, which is a basic linguistic term set. The basic linguistic term 

set is chosen so as not to impose useless precision to the original evaluations and in order 

to allow an appropriate discrimination of the initial performance values. Herrera et al. 

(2000) propose an algorithm on transformation between linguistic sets. 
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3.4.3.1 The fusion method from Herrera et al. (2000) 

The approach from Herrera et al. (2000) allows experts to use different sets of 

linguistic labels as their score sources. Then the author proposed a transformation 

function to unify the information. After aggregating all experts’ opinions, the ranking 

methods are applied to choose the best alternative(s). Figure 3.2 taken from Herrera et al. 

(2000) shows the layer of the linguistic labels. The set can have 5, 7, 9, 11 or even more 

linguistic labels. But no matter how many linguistic labels a set has, it covers the real 

numbers interval [0, 1]. The more linguistic labels used, the less range one linguistic label 

covers. For instance, for S1= {none, low, medium, high, perfect}, there are two linguistic 

labels “none” and “low” cover the range [0, 0.5).  But if we use S2= {none, almost none, 

very low, low, almost medium, medium, almost high, high, very high, almost perfect, 

perfect}, the same range [0, 0.5) is covered by five linguistic labels. 

For different purposes, different experts can choose different linguistic sets as 

his/her evaluation pool. Here the linguistic label set Sj is defined by the expert Ej, he/she 

chooses from Mj+1 linguistic labels to evaluate the alternatives. Problem now is to 

transform all sets Sj into a standard linguistic set ST for later aggregation. The idea of the 

fusion method from Herrera et al. (2000) is to assign a membership to every linguistic 

label in the target set for each linguistic label being transformed.  The membership is 

computed by finding the interaction of two linguistic labels, target and source. The multi-

granularity transformation function
TSτ  is defined as, 

)(: TMS SFS
T

→τ  (3.8) 
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i
j µµα =  (3.10) 

where },...,,{ 10 MM lllS = and },...,,{ 10 TT sssS = are source and target linguistic 

label sets, respectively, such that MT ≥ .  

 
 

Figure 3.2 Layers of the linguistic labels (Herrera et al., 2000) 

 

One question in this approach is how to choose the target set ST (BLTS in Herera et 
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the maximum granularity as ST, where )M , ,M ,(Mmax T q21 …= . If we have two or 

more linguistic label sets with maximum granularity, then ST is chosen depending on the 

semantics of these linguistic label sets, finding two possible situations to establish ST: 

1) If all the linguistic label sets have the same semantics, then ST is any of them. 

2) There are some linguistic label sets with different semantics. Then, ST is a 

basic linguistic label set with a larger number of labels than the number of 

labels that a person is able to discriminate. (Normally 11 or 13). 

Example 3.1 

This example shows how this fusion approach works. Here, we have M=4 and T=6, 

},...,,{ 4104 lllS = and },...,,{ 6106 sssS =  with the following membership functions: 

)25.0 ,0 ,0( :0l ,  )16.0 ,0 ,0( :0s ,  
)5.0 ,25.0 ,0( :1l ,  )34.0 ,16.0 ,0( :1s ,  

)75.0 ,5.0 ,25.0( :2l ,  )5.0 ,34.0 ,16.0( :2s ,  
).01 ,75.0 ,5.0( :3l ,  )66.0 ,5.0 ,034( :3s ,  
)01. ,01. ,75.0( :4l  )84.0 ,66.0 ,5.0( :4s ,  

 )0.1 ,84.0 ,66.0( :5s ,  
 )0.1 ,0.1 ,84.0( :6s  

Applying 
TSτ , for l0 and l1 are:  

)}0,(),0,(),0,(),0,(),18.0,(),58.0,(),1,{()( 65432100 sssssssl
TS =τ  

)}0,(),0,(),0,(),39.0,(),85.0,(),85.0,(),39.0,{()( 65432101 sssssssl
TS =τ   

Figure 3.3 demonstrates the calculation of )( 1lTSτ . 
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Figure 3.3 The transformation of l1 by Herrera’s method 

3.5 A new fusion method 

Herrera et al.’s (2000) fusion method enables us to unify the different linguistic 

labels sets. One of the problems of the method is that we need to assign a membership 

function to each linguistic label. Different membership function will result in different 

transformation results. Another problem is that we can only transfer a small linguistic 

label set into a larger one, but cannot do the inverse operation, i.e. we can use this method 

to transform a five linguistic labels set S4 to another linguistic set with cardinality of 7, 

but we can not apply this method to map seven labels to five. 

In this section we propose a new fusion method which computes the linguistic 

labels directly and with more attractive properties. 

3.5.1 A new fusion approach to make the information uniform 

The new fusion process assigns membership functions to all linguistic labels in the 

target set directly. Note that no matter how many linguistic labels a set has, it covers the 

real numbers interval [0, 1]. Figure 3.4 shows the basic idea of the new approach with 

s3 s4 s5 s6 s0 s2 s1 l1 
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T=2, 4, 6, 8, 10, 12, 14. Then the interval a linguistic level covers overlaps to another 

from other sets. The ratio of the common interval they cover indicates the membership 

function should be assigned. Since usually membership functions of linguistic labels are 

symmetric, the transformation result only depends on how much the membership 

functions overlap with each other.  

 
 

Figure 3.4 The tiers of the linguistic label sets 

As we defined before, two linguistic label sets  }s , ,s ,{sS T10T …= and 

 }l , ,l ,{lS M10M …=  are the target set and the source set respectively. So we transform 

SM to ST. In Figure 3.4, the linguistic label li in SM covers the same range from part of Sj-

1, the whole Sj, and part of Sj+1. The corresponding memberships
1, −jiSµ , 

jiS ,
µ , 

1, +jiSµ  to the 

three linguistic labels Sj-1, Sj and Sj+1 in ST overlapped with li are greater than 0. The 

membership function wa /
1ji,S =

−
µ is defined by the ratio of the length covered by both 

linguistic labels Sj-1 and li (the length a in the shaped area in Figure 3.5) to w, the width 

of the labels in ST. Other labels in ST get membership 0s since they have no common 

interval with the label li in SM. Then the linguistic label li can be expressed by: 

{ }T] 0,[j|))(,( ∈= xsl
ijSji µ  (3.11) 
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Since all linguistic sets cover the range [0, 1], there are relations between the two 

sets ST and SM. We can use the following formulas to compute the membership 

functions )(x
ijSµ .  

 
 

Figure 3.5 The idea of tier method on the linguistic label sets fusion 
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where,   and maxmin jj are the indexes of the first and the last linguistic labels with 

nonzero membership functions in the target set ST. In Figure 3.5, jmin=j-1 and jmax=j+1. 

For each i, the corresponding jmin and jmax are defined by: 

M   ..., 1, 0,i     ,
1
1

11
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+
+
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+
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+ T

j
M

i
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j  (3.15) 
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Remark 1 

The new fusion approach assumes that all linguistic labels in a set evenly cover the 

interval of [0, 1]. There are no overlaps between two adjacent linguistic labels. No matter 

how many linguistic labels there are in a set, they should cover the same interval of [0, 1]. 

Remark 2 

The new fusion approach requires M<2T+1. This means the number of linguistic 

labels to be transformed (M) should not be larger than 2 times of the number of the 

linguistic labels will be presented (T). This can be easily proved by: 

1
12

1
1

+
×<

+ MT
 (3.17) 

This inequality comes from that no two source linguistic labels can be covered by 

the same linguistic label from the target set. If not, we have 12TM +≥ , from the Formula 

3.14 at least 

⎭
⎬
⎫

⎩
⎨
⎧

+
+

== )0,(),...,0,(),0,(),
1
1,()()( 21010 TSS sss

M
Tsll

TT
ττ  (3.18) 

In this way, we cannot distinguish the two linguistic labels l0 and l1 after the fusion 

operation. For instance, 

T=4, M=12, 9142M =+×> doesn’t satisfy the restriction, then l0 and l1 have the 

same number as:  
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{ })0,(),0,(),0,(),0,(),38.0,()0,(),0,(),0,(),0,(),
112
14,()()( 432104321010 44

ssssssssssll SS =
⎭
⎬
⎫

⎩
⎨
⎧

+
+

== ττ  

So, this rule guarantees we have different linguistic label sets after the fusion 

operation.  

Example 3.2 

This example (Figure 3.6) shows how to apply the new fusion algorithm to 

transform a larger linguistic labels set with cardinality M+1=11 to a small linguistic 

labels set with T=8.  

 
 

Figure 3.6 The transformation of large linguistic label set (M=10) to a small set (T=8) 
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09.0)18()
18

4
110

5()(
44

=+×
+

−
+

=xSµ ,  

4 ,3  8,...,1 ,0   ,0)(
4

≠== jandjallforx
jSµ  

Then we have the transformation result as: 

{ })0,(),0,(),0,(),0,(),09.0,(),73.0,(),0,(),0,(),0,()( 87654321048
ssssssssslS =τ  

Example 3.3 

This example (Figure 3.7) shows how to apply the new fusion algorithm to 

transform a small linguistic labels set with cardinality M+1=9 to a larger linguistic labels 

set with T+1=11.  

 
 

Figure 3.7 The transformation of small linguistic label set (M=8) to a large set (T=10) 
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So, 11.0)110()
18

4
110

5()(
44

=+×
+

−
+

=xSµ , 1)(
45

=xSµ ,  

11.0)110()
110

6
18

5()(
46

=+×
+

−
+

=xSµ ,  

6 ,5 ,4  10,...,1 ,0   ,0)(
4

≠== jandjallforx
jSµ  

Then we have the transformation result as: 

{ })0,(),0,(),0,(),0,(),11.0,(),1,(),11.0,(),0,(),0,(),0,(),0,()( 10987654321048
ssssssssssslS =τ

 

3.5.2 Extension of the new fusion approach (Overlap allowed) 

As we discussed earlier, we assume there are no overlaps between the intervals 

represented by two linguistic labels. This is not always true. One of the arts of fuzzy set 

theory is that there are no sharp differences in the boundaries of fuzzy sets. The former 

assumption is not always reasonable. There should be overlaps between membership 

functions of two linguistic labels as shown in Figure 3.8. 

 
 

Figure 3.8 The tier method on the linguistic label sets fusion 
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Here we introduce a new parameter α to measure the degree of overlapping. α is 

defined as the increasing rate of the width of the interval the linguistic label represents 

without overlapping to the width of the interval the linguistic label covers with overlap. 

That means, if the width of the linguistic labels is w0 without overlapping, the new width 

is 01 w )(1w ⋅+= α .For instance, the width without overlap (α=0) of 5 linguistic label set 

is w0=1.0/5=0.2. If α=0.5, the new width a linguistic label covers is 0.3, so the interval of 

one of the linguistic in this set will change from [0.2, 0.4] to [0.15, 0.45]. Here the 

increased width is expended to both directions. For the first and the last linguistic labels 

in linguistic sets, we just expend to one direction, i.e. the first linguistic label covers the 

interval of [0, 0.25] instead of [0, 0.2] with α=0.5. 

Again, we assume the membership functions are symmetric. This is a reasonable 

assumption, since when we say a linguistic variable, most people will intuitionally have 

no bias on its two boundaries.  

Given the desired parameter α and the original width of the interval the linguistic 

label covers, we can compute the new width we need for the linguistic label. Table 3.1 

shows an example of a 5-linguistic label set: 

Table 3.1 Comparison of the two linguistic sets with different α level for M=4 
 

α Original 
Width 

New 
Width s0 s1 s2 s3 s4 

0 0.20 0.20 [0, 0.20] [0.20, 0.40] [0.40, 0.60] [0.60, 0.80] [0.80, 1] 
0.4 0.20 0.28 [0, 0.24] [0.16, 0.44] [0.36, 0.64] [0.56, 0.84] [0.76, 1] 
0.5 0.20 0.30 [0, 0.25] [0.15, 0.45] [0.35, 0.65] [0.55, 0.85] [0.75, 1] 

 

With the new parameter α, we should justify our Formula 3.12~3.14.  
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The new width of the linguistic label are 
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Then the new function to compute :by defined are  and maxmin jj  
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Where α and β are the width increasing rates of the source set and target set 

respectively. 

It could happen that the left side of li lies between the overlapping area of two 

linguistic labels sj-1 and sj (Figure 3.9). Actually, there are three cases for the location of 

the left sides of li. as well as the right side. Case one is the left side of li, )1(2
2

+
−

M
i α  lies 

between the left side of Sj-1 1
1

)1(2
2

+
−

+
−

TT
j β and the left side of Sj. Another case is that the 

left side of li )1(2
2

+
−

M
i α  lies between the right side of Sj-1 )1(2

2
+
+

T
j β and the right side of Sj, 

1
1

)1(2
2

+
+

+
+

TT
j β . The third case is it locates between the left side of Sj )1(2

2
+
−

T
j β and the 

right side of Sj-1, )1(2
2

+
+

T
j β . We can still use the Formula 3.21 and 3.22 to define 

maxmin  and jj , but now the maxmin  and jj are not single numbers, but sets of indexes of the 

linguistic labels. And they are the indexes of the linguistic labels with the membership 

functions greater than 0 and less than 1. 

 

 
 
 
 
 
 

 
 

Figure 3.9 The jmin and jmax on the linguistic label sets fusion 
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Then there are more linguistic labels whose membership functions lie in the interval 

(0, 1).  For example, in Figure 3.9, the membership functions assigned to sj-1 and sj as well 

as sk-1 and sk should be less than 1 and greater than 0. The membership function should be 

rewrite as: 
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Example 3.4 

This example (Figure 3.10) shows how to apply the new fusion algorithm with the 

parameter α=0.5 and β=0.5 to transform a smaller linguistic labels set with cardinality 

M+1=7 to a large linguistic labels set with T=8.  

 
Figure 3.10 The transformation of small linguistic label set (M=6) to a large set (T=8) with extension 
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For j=8, }{ maxmin jjj ∩∉ then 359.0)
1

1)(()( ,,,,58
=

+
+

−=
β

γγµ βα
Tx L

Tj
R
MiS , given i=5, 

j=8, M=6, T=8 and 50.0== βα . 

Similarly, we have the transformation result as: 

{ })359.0,(),856.0,(),760.0,(),090.0,(),0,(),0,(),0,(),0,(),0,()( 87654321058
ssssssssslS =τ

 

Example 3.5 

This example (Figure 3.11) shows the case when φ≠∩ maxmin jj  . 

 
 

Figure 3.11 The transformation of two linguistic label sets with same cardinality (M=T=8) 

For i=5, 50.0=α ,  30.0== βα , by Formula 3.21 and 3.22, we can define 

}5 ,4{min =j  and }6 ,5{max =j with }5{maxmin =∩ jj . When j=5, }{ maxmin jjj ∩∈ , 

then 862.0
3.01

18
18
5.01

1
1

1
1)(

55
=

+
+

⋅
+

+
=

+
+

⋅
+

+
=

β
αµ T

M
xS . And the transformation result is: 

{ })0,(),0,(),263.0,(),862.0,(),263.0,(),0,(),0,(),0,(),0,()( 87654321058
ssssssssslS =τ  

Remark 1 

α=0.5 

β=0.3 

M=8 

T=8 

0.417 

l0 l1 l2 l3 l5 l4 l6 l7 l8 

S4S0 S1 S2 S5 S6 S7 S8 S3

0.539 0.683 

0.583 0.691 0.806 0.528 
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The overlapping degree α and β reflect the “semantics” of the linguistic labels. It is 

similar to the different definitions of membership functions from different experts. 

Remark 2 

With extension, the restriction of M<2T+1 should be changed too.  By the same 

philosophy: ”no two source linguistic labels can be covered by the same linguistic label 

from the target set”, we have, 

1
12

1
1

+
+

×<
+

+
MT

αβ , we obtain the new restriction: 1
)(1

)1)(12(TM −
+

++
<

β
α . 

3.5.3 Properties of the new fusion approach 

The transformation result from Herrera et al.’s method (2000) depends on linguistic 

membership functions. Different membership function will result in different 

transformation result which will affect the choice of alternative(s). Also the approach can 

only transform smaller linguistic set to a larger one. The new approach works in both 

directions, thus suitable to different applications. We can transform a small set of 

linguistic labels into a large set of linguistic labels or transform a large set into a small 

one. The transformation direction depends on different applications. Both directions have 

advantages and disadvantages. The transformation from a large set into a small one will 

avoid useless precision, and then save the process time that will reduce the total decision 

cost. The transformation from a small set into a large one will keep more information 

from group members that have higher accuracy. For those do not need high accuracy 
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applications, we can choose to transform form large linguistic sets to small set to save 

time and costs.  

The new approach is easy to calculate. Since we do not compute the membership 

functions, it simplifies the calculations. And new fusion approach has the following 

interesting properties: 

Property 1. The linguistic label set after transformation is ordered. 

We have ji  with , << ji ll  

Proof. 

Since both linguistic sets ST and LM are ordered and cover the same increasing crisp 

number range [0, 1], the transformation function will not change the order of linguistic 

labels. 

Property 2.  Summation.  

For each linguistic label li after transformation, its membership function satisfies, 

∆+
+

+
+
+

⋅
+
+

=∑
=

p
M
Tx

T

j
Sij

0 11
1

1
1)(

β
β

β
αµ  

where }max{}min{ minmax jjp −= , 
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22,0max()

)1(2
2

)1(2
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Property 3. 

If we substitute 0=α  and 0=β into the Formula 3.23, we can get exactly Formula 

3.14. 

Property 4. 

When M=T and βα ≠ , the two linguistic sets have the same cardinality, but 

different overlapping degree (semantics). This could happen when two experts use the 

same set of linguistic labels, but have different definitions of membership functions. With 

M=T, the Formula 3.23 will be, 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
+

−+++

=
+

+−++
<<

=

          others                   0         

                
1

)1(2)(

                
1

)1(2)(
jj                    1                 

)(
max

min

maxmin

jjforji

jjforji
jfor

x
ijS

β
βα

β
βα

µ  (3.24) 

 

Property 5. 

When M=T and βα = , the two linguistic sets have the same cardinality, and the 

same overlapping degree (semantics). Or we can say these two linguistic sets are 

identical. Formula 3.23 and 3.24 will give us the same value as jmin=jmax and it is not hard 

to test that 1)( =x
ijSµ for j= jmin. 

In this context, a decision procedure is proposed with a view to obtaining the 

solution set of alternatives.  
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1) Each decision maker gives his/her opinions to all alternatives. They choose 

from their own linguistic set and give the cardinality of the set as well as the 

parameter α. 

2) The fusion of the multi-granularity linguistic performance values is carried out 

in order to obtain collective performance evaluations. In this step, the multi-

granularity linguistic information is made uniform using a linguistic term set 

as the uniform representation base, the basic linguistic term set.  

3) An OWA based aggregation is applied.  

4) Finally, the choice of the best alternative(s) from the collective performance 

evaluations is performed. To do that, a fuzzy preference relation is computed 

from the collective performance evaluations using a ranking method of pairs 

of fuzzy sets in the setting of Possibility Theory, applied to fuzzy sets on the 

basic linguistic term set.  

5) Then, a consensus level may be set on the preference relation in order to rank 

the alternatives. 

3.6 Summary  

This chapter summarized five ways that can be used by experts to express their 

opinions. We then introduced several transformation functions that are used to transfer 

between these formats. Then a new fusion operator for linguistic labels was proposed. 

Comparing to the current existing methods, the new fusion approach is easy for 

computation and does not have to define the membership functions of all linguistic 

variables that are hard in reality. 
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CHAPTER 4 

Aggregating Individual Preferences into a 

Group Decision  

Aggregation is the third and the most important step in the group decision making 

process as shown in Figure 2.11. Generally, we aggregate all group members’ opinions 

together in this step and get a group decision.  In this chapter, we will summarize some 

aggregation operators suitable for fuzzy group decision-making, and categorize them into 

two groups: aggregation using associated membership functions and direct computing 

with linguistic labels. Then, we will introduce a new fuzzy linguistic OWA (FLOWA) 

operator, which has some interesting properties for linguistic labels aggregation.  

4.1 Introduction  
Multi-Criteria Decision Making (MCDM) and Multi-Expert Multi-Criteria Decision 

Making (ME-MCDM) are two rich and well-studied problem solving approaches usually 

aimed at ranking of alternatives (see for example, Triantaphyllou, 2000).  Both 

approaches aggregate scores given by an expert to each alternative in correspondence 

with selected criteria into one score, which represents the overall performance of that 

alternative.  This solution approach allows ranking of the alternatives, with the most 

preferred one ranked at the top.   
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4.1.1 Definitions 
An aggregation operator F is a mapping of Xn =(x1,…,xn) with dimension n to one 

dimension of X, that is: 

 XX n →  (4.1) 

The input vector Xn and the output result X here could be linguistic labels and/or 

crisp numbers. Usually, we also have a weighting vector W=(w1,…wn) associated with 

Xn. Also W could be either linguistic or numeric values. 

4.1.2 Crisp aggregation approaches 
This section gives a short review of some common used crisp aggregation 

approaches.  

4.1.2.1 Average Aggregations 

For crisp aggregation, the most used approach is average. Even just average, there 

are a lot of approaches. Bullen et al. (1988) summarized it in a general format as: 

n
n

i
i Ixx

n
∈⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

  ,1 (x)F
/1

1

α
α

α  (4.2) 

We can see that with 1=α , it is the most popular Arithmetic mean 

∑ =
=

n

i ix
n 11
1 (x)F  (4.3) 

Also given 0→α  or 1−→α , we can get the Geometric mean and Harmonic 

mean 
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n
n

i
ix∏

=

=
1

0  (x)F  (4.4) 

∑ =

− = n

i ix
n

1

1
/1

 (x)F  (4.5) 

Klir (1995), Yuan (1991) and Zimmermann and Sebastian (1996) prove that the 

three averages have the following relation: 

 (x)F(x)F (x)F 101 ≤≤−  (4.6) 

More general, Bullen et al., (1988) gives another aggregation formula 

n
n

i
i Ixxh

n
h ∈⎥

⎦

⎤
⎢
⎣

⎡
= ∑

=

−   ,)(1 (x)F
1

1
α  (4.7) 

from which we can get (4.2) by substituted 0 ,  ,)( ≠∈= ααα Rxxh . By adding 

weights, the formula can be: 

n
n

i
ii Ixxhwh ∈⎥

⎦

⎤
⎢
⎣

⎡
= ∑

=

−   ,)( (x)Fw
1

1
α  (4.8) 

Then, the Arithmetic mean, Geometric mean and Harmonic mean changed to: 

∑ =
=

n

i ii xw
11  (x)F  (4.9) 

∏
=

=
n

i

w
i

ix
1

0  (x)Fw  (4.10) 

∑ =

− = n

i ii xw
1

1
/

1 (x)Fw  (4.11) 
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Quasi-linear cannot adequately model interaction (positive or negative) between 

criteria. To represent such interactions, weights are substituted with a non-additive set 

function that permits weights on each subset of criteria.  

4.1.2.2 OWA Operator 

Yager developed ordered weighted average (OWA) operator in 1983. The OWA 

operator is defined as: 

nnn bwbwbwxxxF +++= ...),...,,( 221121  (4.12) 

Where bi is the ith largest element in the collection of x1, x2,…,xn.  

By choosing different weighting vectors, OWA gets different aggregated result. The 

range the OWA covers varies from Min to Max (Figure 4.1). For example, the following 

three particular weight vectors generate Min, Arithmetic average, and Max operators 

respectively. 

W*=(0, 0, …, 0, 1)T 

)(),...,,( 21* jjn xMinxxxF =  (4.13) 

W*=(1/n, 1/n, …, 1/n, 1/n)T 

∑=
n jn x

n
xxxF 1),...,,( 21

'  (4.14) 

W*=(1, 0, …, 0, 0)T 

)(),...,,( 21
*

jjn xMaxxxxF =  (4.15) 

Yager introduced another orness measure for OWA operator:  
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[ ]∑
=

×−
−

=
n

i
iwin

n
Worness

1
)(

1
1)(  (4.16) 

The orness value reflects the degree of optimism of decision makers. The larger the 

orness, the more optimistic the decision makers are. OWA operators allow us through an 

appropriate selection of parameters, the so-called OWA weights, to model any degree of 

orness between 0 (corresponding to a pure and) and 1 (corresponding to a pure or). Since 

min and max evaluate the quantifiers ∀  (for all) and ∃  (at least one), respectively, the 

OWA operators essentially extend the space of quantifiers from the pair {∀ , ∃ } to the 

interval [∀ , ∃ ]. For example,  

0])1 ... 0 0([ =orness  

5.0])/1 ... /1  /1([ =nnnorness  

1])0 ... 0 1([ =orness  

Also, for symmetric OWA operators with property of jjn ww =+− 1 : α=0.5. 

The OWA operator has four important properties, which makes it considered as a 

mean operator (Yager, 1988, 1996). These properties are: Commutativity, Monotonicity, 

Idempotency and Boundedness.  
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Figure 4.1 The OWA aggregation operators 

A key step of this aggregation is the re-ordering of the arguments ai in descending 

order so that the weight wj is associated with the ordered position of the argument.  The 

weight itself can represent the importance of the criteria or the effect of a linguistic 

quantifier as described next. 

There are numerous aggregation operators based on OWA, Neat OWA (Marimin et 

al., 1998) is one of them. The main idea of the Neat OWA operator is that the weights are 

directly deduced from the values to be aggregated, such that: 
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and then 
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Thus, by using this kind of weight function, the weights are directly deduced from 

the values to be aggregated. When α = 0.0 we get a simple average operator. When α 

approach infinity, we get a maximum operator. This is an orlike operator, which can also 

be used to aggregate the preference values. 

4.1.2.3 T-norm, S-norm based Aggregation 

As we summarized in chapter 2, T-norm and S-norm can be used as the aggregation 

operators. For instance, Calvo and Mesiar (2003) propose several weighted triangular 

norms-based aggregation operators. 

1) Weighted T-conorm (S-norm) Sw aggregation operator: 

),...,(),...,( 111 nnnw xwxwSxxS ⋅⋅=  (4.19) 

),...,(y  ),...,(such that  [0,1] u and w ,ji,  | ]1,0[sup(
876876 timesitimesj

uuSandxuuS
j
iyxw

−−

=<∈<Ν∈∃∈=⋅  (4.20) 

2) Weighted T-norm Tw aggregation operator (Dual operator to T-connorm): 

)1,...,1(1),...,( 11 nwnw xxSxxT −−−=  (4.21) 

3) Weighted triangular norms-based aggregation operators 

)),...,(),,...,((),...,( 111 nwnwnw xxSxxTHxxA =  (4.22) 

Where, T is a continuous t-norm, S is continuous (not necessarily dual of T) and H: 

[0, 1]2→ [0, 1] is a binary aggregation operator. 

4) Weighted Uninorms 
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Uninorms are associative, symmetric aggregation operators with neutral element e 

∈  [0, 1]. No Uninorm is continuous. Each Uninorm U can be related to a t-norm T and a 

t-conorm S such that e is an idempotent element of both T and S. 

))),max(),...,,(max()),,min(),...,,(min((),...,( 111 exexSexexTUxxU nwnwnw =  (4.23) 

5) Weighted Nullnorms and some other t-norms-based aggregation operators 

Nullnorms were associative symmetric aggregation operators with annihilator a 

∈[0, 1] such that 0 is neutral element for inputs from [0, a] and 1 is neutral element for 

inputs from [a, 1]. An aggregation operator V is a Nullnorm with annihilator a if and only 

if there is a t-norm T and a t-conorm S. 

)),...,(),,...,((),...,( 111 nwnwanw xxSxxTmedxxV =  (4.24) 

))0|max(),0|min(,(),...,(),...,( 11 >>== iiiimkmnw wxwxamedxxVxxV  (4.25) 

4.1.2.4 Weighted Median Aggregation 

Weighted median aggregation was proposed by Yager in 1994. Assuming that 

nx ]1 ,0[ ∈  is sorted in some manner, the elements with a low importance are removed 

from the middle positions. Each term xi is replaced by two elements +
ix and −

ix . 

iiii xwwx ⋅+−=+ )1(  (4.26) 

iii xwx ⋅=−  (4.27) 

Where ]1 ,0[ i ∈w are weights associated with n,1,i ,x i …= Hence, iii wxx −=− −+ 1  

and if the importance wi is low then (1-wi) is higher and −+
ii xandx    are more separated. 
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Hence, they are alternately on the top and bottom of the ordering, in order not to affect 

median selection. 

The following general transformation can be also used:  

),1( iii xwSx −=+  (4.28) 

),( iii xwTx =−  (4.29) 

Where S and T are t-conorm and t-norm, respectively. The weighted median is then 

computed as: 

],,...,,,,[med 2211w
−+−+−+= nn xxxxxxMedian  (4.30) 

4.1.2.5 Leximin Ordering Aggregation 

Leximin ordering proposed by Dubois et al. (1996) provides a method to sort n-

tuples of rankings. Leximin ordering, it can be expressed as follows: 

kkiiLeximin y xand y xk,i such that  1k  iffy   x >=>∀≥∃>  (4.31) 

1,...ni  y xify   x iiLeximin =∀==  (4.32) 

This method is a comparison between two alternatives with respect to their lowest 

scores on any criteria. The alternative with the highest “lowest” score is preferred. If the 

lowest scores are equal, the second lowest are compared, and so forth, until either one 

alternative is found to be superior, or until the criteria are exhausted. In this case, a “tie” 

is declared. 
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Yager (1997) proposed an analytic representation of Leximin ordering based on 

OWA weights. Let ∆  denote a distinction threshold between the values being 

aggregated. That is, ∆<  |b- a|  is perceived as a = b. Then, 

1)-(n

1)-(n

1 )1(
 w

∆+
∆

=  (4.33) 

2,...njfor    
)1(

 w j)-1(n

j)-(n

j =
∆+

∆
= +  (4.34) 

Thus, 

n

1
leximin    x,(x)F Ibw

n

i
ii ∈= ∑

=
 (4.35) 

Where b is a sorted n-tuple of scores. 

The aggregation in fuzzy domain is more complicated than that in crisp. Generally, 

there are two main approaches to aggregate linguistic labels in group decision making. 

Most methods use the associated membership functions. Among them, Baas and 

Kwakernaak’s rating algorithm (1977) aggregates fuzzy scores and weights at differentα-

cut levels with their associated membership functions. Chen and Hwang (1989) present a 

conversion scales approach to transform the linguistic expression into fuzzy numbers 

attribute by attribute. They give eight conversion scales and find a scale from the pool 

contains all linguistic terms with the principle that the scale should be as simple as 

possible. By assigning crisp scores to fuzzy numbers, they then apply classical MCDM 

method or TOPSIS method. After Yager introduced the OWA operator in (1988), a lot of 
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aggregation researches have been done by applying OWA and linguistic quantifiers, such 

as  (Yager, 1993a, 1994, 1995), Kacprzyk et al. (1992b). 

The other category is to calculate linguistic labels directly. Defined in Herrera and 

Herrera-Viedma (1997) and Herrera et al. (1996a), Linguistic OWA (LOWA) is based on 

the OWA (Yager, 1983) and the convex combination of linguistic labels (Delgado et al., 

1993).  The idea is that the combination resulting from two linguistic labels should be 

itself an element in the set S.  So, given si, sj∈S and i, j ∈[0, T], the LOWA method finds 

an index k in the set S representing a single resulting label. Another FLOWA method also 

based on OWA is from Ben-Arieh and Chen (2004). This model assigns membership 

functions to all linguistic labels in S by linearly spread the weights from the labels to be 

aggregated. The aggregating result is not a single label in S, but a fuzzy set with degrees 

to each label in S. A 2-tuple Fuzzy linguistic representation model based on the symbolic 

translation is introduced by Herrera and Martinez (2000). A linguistic 2-tuple (s, α ) is 

used where s is a linguistic term and α is a numeric value representing the symbolic 

translation. A new approach to extend different classical aggregation operators with the 

2-tuple linguistic model is developed. When both scores and weights are not crisp 

numbers, Yager (1998a) uses the fuzzy modeling technology to develop a model for the 

inclusion of importance in OWA aggregations. The so-called IOWA method suggested 

involves a transformation of the scores to be aggregated by their respective importance.  

In the following two sections, we will introduce these aggregation approaches in 

detail.  
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4.2 Using associated membership functions 
Most methods use the associated membership functions to aggregate linguistic 

labels. Such methods include Baas and Kwakernaak’s Rating and ranking algorithm 

(1977), and the Fuzzy Compromise Programming (Prodanovic and Simonovic, 2003) 

among others. The vagueness of results increases step by step and the shape of 

membership functions do not keep when the linguistic labels are interactive. 

4.2.1 Rating and Ranking Aggregation Method  
Baas and Kwakernaak’s rating algorithm (1977) assumed that all the alternatives in 

the choice set can be characterized by a number of properties (criteria), and that 

information is available to assign weights to these properties.  The method basically 

consists of computing fuzzy weighted ratings for each alternative and comparing these 

ratings.  This method aggregates fuzzy scores and fuzzy weights at different α-cut levels 

with their associated membership functions.  For each α-cut, we determine the maximum 

and the minimum of the weighted scores.  By gathering all α-cuts, one can get the final 

membership function of the aggregated result.  More specifically the steps that are 

performed for each expert are: 

1) For each pair of alternatives get the opinions xij and weights wj  

2) For α-cut from 0 to 1, calculate U as follows: 

           

1

1

∑

∑

=

== n

j
j

n

j
jj

w

xw
U  (4.36) 

3) For each α-cut, determine the maximum and the minimum values of U 
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4) For each alternative, gathering all α-cuts, we get the final membership function. 

Example: 

For an alternative, two experts have evaluations using linguistic labels (Table 4.1) 

Table 4.1 : Evaluations from two experts using linguistic labels 

Expert Weighting of expert ( jw~ ) Rating of alternative ( jx~ ) 

E1 Medium Very Good 

E2 Very Important Good 

 

The membership functions associated with the four linguistic labels are defined as 

shown in Figures 4.2, and 4.3. 

 

Figure 4.2 Membership values of weights 

6.0

Medium 
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Important 

Lw1  
Rw1

Lw2
Rw2



 152

 

Figure 4.3 Membership values of opinions 

Since there are two pairs of ) ,( 11 xw  and ) ,( 22 xw , we have ) ,,,( 1111
RLRL xxww  and 

) ,,,( 2222
RLRL xxww .so there are 16 U values from: 

)/()( 2122111
LLLLLL wwxwxwU ++=  

)/()( 2122112
RLLRLL wwxwxwU ++= … 

)/()( 21221116
RRRRRR wwxwxwU ++=  

The last step is to choose the minimum and the maximum from these values for 

each α-cut level. 

The aggregated score of both experts considering their importance is depicted in 

Figure 4.4.  The figure highlights the point of α =0.6.  
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Figure 4.4 The aggregation result is a triangular fuzzy number 

4.2.2 Fuzzy Compromise Programming 
Using Fuzzy Compromise Programming, the decision maker evaluates each 

alternative according to its distance from an ideal value (Prodanovic and Simonovic, 

2003).  Thus, for each alternative, the decision maker sums the distances of each criterion 

from the ideal value, as shown in Figure 4.5.  This sum represents the value of the 

alternative – and is used to compare the alternatives.  The distance calculation can be 

Euclidean or more generally presented as: 
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 (4.37) 

The equation represents the distance for alternative j using t criteria z=1,..,t.  The 

value f* and f- represent the positive and negative ideal values while fz is the actual value 

of criterion z.  The weight of each criterion is represented by wz. while p is a parameter.   

),...,,( 1621 UUUMax  ),...,,( 1621 UUUMin
6.0=α
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Figure 4.5 An illustration of compromise programming 

Fuzzy Compromise Programming considers all input parameters as fuzzy sets, not 

just criteria values.  This approach benefits from using fuzzy sets in representation of the 

various parameters which ensures that the model uses as much of the relevant 

information as possible.  The more certain the expert is in a particular parameter value, 

the less fuzziness is assigned to the fuzzy number resulting in a more focused solution.  

The downside of this approach is that the distance measures are also fuzzy, also requiring 

a heavy computational load, again based on α-cut values.  

4.2.3 Conversion Scales Approach 
Chen and Hwang (1992) present a conversion scales approach to transform the 

linguistic expression into fuzzy numbers attribute by attribute. They give eight 

conversion scales and find a scale from the pool contains all linguistic terms with the 

principle that the scale should be as simple as possible. 
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First, the approach assigns crisp scores to fuzzy numbers. 
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Figure 4.6 Conversion Scales Approach 

Then apply classical MADA method or TOPSIS (Chen, 2000; Chu, 2002; Chu and 

Lin, 2003; Shih et al., 2001) method. The collective performance values are computed 

by: 
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where f is an “aggregation function”, then 

),...,,( 10
i
T

ii
ir ααα=  (4.44) 

therefore, the scores for all alternatives are now: 

),...,,{ 21 nrrr  (4.45) 

4.3 Direct computations on labels  
Aggregation using associated membership functions sometimes could be very 

complicated. For instance, even with triangular membership functions, aggregating two 

linguistic labels with one α-cut level, there are 16 combinations. In this section, we are 

going to introduce approaches aggregating linguistic labels directly, without considering 

their membership functions.  

4.3.1 Linguistic OWA (LOWA) Operator 
Defined in Herrera and Herrera-Viedma (1997) and Herrera et al. (1996a), this 

method is based on the OWA (Yager, 1988) and the convex combination of linguistic 

labels (Delgado et. al., 1993).  The idea is that the combination resulting from two 

linguistic labels should be itself an element in the set S.  So, given si, sj∈S and i, j ∈[0, 

T], the LOWA method finds an index k in the set S representing a single resulting label. 
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Where ] ,...,[ 1 mwwW = , is a weighting vector, such that,  

• ]1,0[∈iw  
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• 1=∑i iw
 

mhww m
khh ,...,2,/

2
== ∑β  and } ,...,{ 1 mbbB =  is a vector associated to X, such 

that,  

} ,...,{)( )()1( maaXB σσσ ==  (4.47) 

Where, 

jiaa ij ≤∀≤    )()( σσ  (4.48) 

with σ being a permutation over the set of labels X.  Cm is the convex combination 

operator of m labels and if m=2, then it is defined as: 

i)(jS,s,s    )1(        
}1,2 ,,{
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=

kij

ii

sswsw
ibwC

 (4.49) 

i))}-(j(w roundi min{T,k 1 ⋅+=  (4.50) 

Where round is the usual round operation, and b1=sj, b2=si.  

As an example of this approach three experts E1, E2 and E3 are evaluating an 

alternative A.  Each chooses a linguistic label from the set S to express his/her opinion.  

Let us use the same nine linguistic labels set defined above S= {I, EU, VLC, SC, IM, 

MC, ML, EL, C}.  Suppose the labels that the experts choose are X= {s1, s5, s7}.  The 

aggregate value of these three linguistic labels is the score of the alternative under 

considerations.  Also, the experts have weights of 5.05 =w , 125.01 =w , and 375.07 =w .  

Using the LOWA algorithm the aggregated opinion of the three experts is simply s4.   
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The LOWA operator does not consider membership functions associated with the 

linguistic labels and the combination result is a single element in the linguistic label set S.  

Thus, it is easy to order the result.  The LOWA has another obvious problem by using the 

round w1*(j-i).  When this value is around 0.5, varying the experts’ weights even slightly 

can result in a totally different linguistic label thus a different solution.  For example, 

assume that there are nine linguistic labels },...,,,{ 8210 ssssS =  where T=8, and we need to 

combine two linguistic labels s1 and s5 with the weights given as 0.6252 and 0.3748 

respectively.  Applying the LOWA method, with i=1, j=5, wi=0.6252 and wj=0.3748 

produces:  2(1.499)} round1 min{8,1))}-(5(0.3748 round1 min{8,k =+=×+= .  So the result is s2.  

Now if we change the weights of wj from 0.3748 to 0.3753. The result is: 

3(1.501)} round1 min{8,1))}-(5(0.3753 round1 min{8,k =+=×+= . Thus, the aggregation 

result is s3.  The example shows that the LOWA method loses a great amount of useful 

information in the aggregation process.  

4.3.2 2-tuple OWA 
Problem of the LOWA method is the loss of information caused by the need to 

express the results in the initial expression domain that is discrete via an approximate 

process. This loss of information implies a lack of precision in the final results from the 

fusion of linguistic information. 

A 2-tuple Fuzzy linguistic representation model based on the symbolic translation is 

introduced by Herrera and Martinez (2000). A linguistic 2-tuple (s, α ) is used where s is 

a linguistic term and α is a numeric value representing the symbolic translation. 
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Let }s,...,s,{sS T10= be a linguistic term set, and β be the result of an aggregation of 

the indexes of a set of labels assessed in a linguistic term set S, i.e., the result of a 

symbolic aggregation operation ],0[ T∈β , being T+1 the cardinality of S. Let 

i=round( β ) and i−= βα be two values such that ],0[ Ti ∈ and ]5.0,5.0[−∈α then α is 

called a symbolic translation. 

The symbolic translation of a linguistic term, si , is a numerical value assessed in [-

0.5, 0.5) that supports the “difference of information” between a counting of information 

],0[ T∈β  obtained after a symbolic aggregation operation and the closest value in {0, 1, 

…,T} that indicates the index of the closest linguistic term in S.  

From this concept, a linguistic representation model which represents the linguistic 

information by means of 2-tuples (si, iα ), and )5.0,5.0[−∈iα : si represents the linguistic 

label center of the information; iα is a numerical value expressing the value of the 

translation from the original result β  to the closest index label, i, in the linguistic term 

set (si,), i.e., the symbolic translation. 

The linguistic information will be expressed by means of 2-tuples, which are 

composed by a linguistic term and a numeric value assessed in [0.5, 0.5). Using the same 

example in LOWA, which three experts E1, E2 and E3 evaluate an alternative A.  The 

linguistic labels set is defined as S= {I, EU, VLC, SC, IM, MC, ML, EL, C}. The experts 

choose X= {s1, s5, s7} as their evaluations. Experts have weights 125.01 =w , 5.05 =w , and 

375.07 =w .  Then similar to LOWA β=5.125, i=5, and α=0.125. So the aggregation result 

is (s5, 0.125).  



 160

This model allows a continuous representation of the linguistic information on its 

domain, therefore, it can represent any counting of information obtained in a aggregation 

process.  

Together with the 2-tuple representation model, the authors introduce several 2-

tuple aggregation operators that are based on classical aggregation operators without any 

loss of information.  

4.3.2.1 Arithmetic Mean 

Let  )} ,(s),..., ,{(sx nn11 αα= be a set of 2-tuples, the 2-tuple arithmetic mean ex  is 

computed as: 
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Where 1−∆∆ and are defined as: 

)5.0,5.0[],0[: −×→∆ sg  (4.52) 
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 ],0[)5.0,5.0[: gs →−×∆  (4.54) 

βαα =+=∆− isi ),(1  (4.55) 

The arithmetic mean for 2-tuples allows us to compute the mean of a set of 

linguistic values without any loss of information. 
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4.3.2.2 Weighted Average Operator 

The weighted average allows different values xi have a different importance in the 

nature of the variable x. To do so, each value  ) ,(sx iii α= has a weight associated wi 

indicating its importance in the nature of the variable. The equivalent operator for 

linguistic 2-tuples is defined as: 
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 (4.56) 

4.3.2.3 Ordered Weighted Aggregation (OWA) Operator 

Combined with Yager’s OWA operator (1988), the 2-tuple OWA operator for 

linguistic 2-tuples is computed as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∆= ∑

=

n

j
jj w

1

*eF β  (4.57) 

Where *
jβ  is the jth largest of the jβ  values. We can see that the result of the 

aggregation of a set of 2-tuples is also a 2-tuple. And aggregation operators to deal with 

the 2-tuple linguistic models are extended. 

Example: 

Three experts E1, E2 and E3 evaluate an alternative A.  The linguistic labels set is 

defined as S= {I, EU, VLC, SC, IM, MC, ML, EL, C}. The experts evaluations are X= 

{(s1, 0.12), (s5, -0.1), (s7, 0.2)}. Experts have weights 125.01 =w , 5.05 =w ,and 375.07 =w .  

Then the α values are 0.12, -0.1, and 0.2. β values are 1.12, 4.9, and 7.2 respectively. 

Substitute the β values into (4.51), we get the 2-tuple with arithmetic mean: 
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Similarly, 2-tuple with weighted average, and 2-tuple with OWA can be calculated 

as the followings. We summarize the three 2-tuple aggregation results in Table 4.2.  
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Table 4.2  Aggregation results with different 2-tuple functions 

Method 2-tuple with 
Arithmetic Mean 

2-tuple with 
Weighted Average 2-tuple with OWA 

Aggregation
Result (s4, 0.03) (s5, 0.29) (s4, -0.23) 

4.3.3 IOWA  
When both scores and weights are not crisp numbers, Yager (1998a, 2003) uses the 

fuzzy modeling technology to develop a model for the inclusion of importance in OWA 

aggregations. The so-called IOWA method suggested involves a transformation of the 

scores to be aggregated by their respective importance. This is another approach to the 

inclusion of importance in the OWA operator aggregation technique. The IOWA is 

defined as: 

) ... , ,(* 21 mbbbFa =  (4.58) 
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Where 

),(* jj bwFa =   (4.59) 

),( jjj xuGb =  (4.60) 

)()()(
),()(),()(),()(),( minmaxmax

ααα
ααα

lowmediumhigh
xuGlowxuGmediumxuGhighxuG

++
++

=  (4.61) 

Where xi is the scores and ui is the importance of the ith objective. 

In this case, aj is the scores and uj is the importance of the jth criteria. α is the orness 

used to measure the degree of optimism of a decision maker (Yager, 1988).  G(u, a) is a 

transformation function that depends on the following rules defined by the decision 

maker or analyst.   

If the degree of orness is high, G(u, a) is Gmax(u, a),  

If the degree of orness is medium, G(u, a) is Gavg(u, a),  

If the degree of orness is low, G(u, a) is Gmin(u, a),  

Example (Yager, 1998a) 

Given the high, medium and low as the functions of orness α, and assume High(α 

)+Medium(α )+Low(α )=1,we have  
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By defining  
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the final transformation function is: 

          
5.0                ))(22()12(

5.0         )(2)1)(12(- 
 a) G(u,

⎪
⎩

⎪
⎨

⎧

≥−+−

≤++−+
=

ααα

ααα

ua
T
nua

ua
T
nuau

 

Given four criteria with the following score and importance:  

(u,a)= (0.7, 0.8), (1, 0.7), (0.5, 1.0), (0.3, 0.9). The weights required for linguistic 

quantification are: W=(0.4, 0.3, 0.2, 0.1).  We can calculate the orness to be α=0.67>0.5, 

then, the final aggregated result is: 

a*=F(0.78, 0.98, 0.7, 0.38)=FW(0.98, 0.78, 0.7, 0.38)   

=0.98*0.4+0.78*0.3+0.7*0.2+0.38*0.1=0.8 

The steps to apply IOWA are: 

1) Given weights wi find Orness α 

2) By Orness, Choose G (u, α) 

3) By b=G (u, α) and w, find a* 

For instance, if we know the definitions of High, Low and Medium, 

          
5.0          0    
5.0      12

 )High(
⎩
⎨
⎧

≤
≥−

=
α
αα

α  



 165

          
5.0           0      
5.0      12

 )Low(
⎩
⎨
⎧

≥
≤+−

=
α
αα

α  

          
5.0       2-2    
5.0         2      

 )Meidum(
⎩
⎨
⎧

≥
≤

=
αα
αα

α  

as well as the function of G, 
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For example, the vector of (u, a) is given as: (0.7, 0.8), (1, 0.7), (0.5, 1.0), (0.3, 0.9). 

And W=(0.4, 0.3, 0.2, 0.1), then, we calculate the orness level α=0.67>0.4. Then 

substitute u and α into the formula above, we get G (u, α)=(0.78, 0.98, 0.7, 0.38). So, 

finally, the aggregation result a*=F(0.78, 0.98, 0.7, 0.38)=FW(0.98, 0.78, 0.7, 

0.38)=0.98*0.4+0.78*0.3+0.7*0.2+0.38*0.1=0.8. 

The IOWA method allows aggregation of the scores considering their respective 

importance.  Using this approach and the OWA terminology, the aggregated value of 

each alternative is defined as the OWA value using modified weights as presented below. 

4.3.4 Yager’s all/and/min Aggregation 
Yager’s ME-MCDM evaluation process (1993b) is a two-stage process:  

In the first stage, individual experts are asked to provide an evaluation of the 

alternatives. The evaluation consists of a rating for each alternative on each of the 

criteria. Each of the criteria may have a different level of importance. The values to be 

used for the evaluation of the ratings and importance will be drawn from a linguistic scale 
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which makes it easier for the evaluator to provide the information. Second stage, to 

aggregate the individual expert’s evaluations to obtain an overall linguistic value for each 

object. This overall evaluation can then be used by the decision maker as an aid in the 

selection process.  

Example: 

1) Each expert chooses a linguistic term from the following scale S as an evaluation 

to alternative Ai on the criteria Cj.  

Perfect (P)     S7 

Very High (VH)   S6 

High (H)      S5 

Medium (M)     S4 

Low (L)      S3 

Very Low (VL)     S2 

None (N)     S1 

The use of such a scale provides a natural ordering, Si>Sj if i>j. Of primary 

significance is that the use of such a scale doesn’t impose undue burden on the evaluator 

in that it doesn’t impose the meaningless precision of numbers. The scale is essentially a 

linear ordering and just implies that one score is better than another. The use of linguistic 

terms associated with these scales makes it easier for the evaluator to manipulate.  

2) Aggregation operator 

The unit score of each alternative by each expert is defined as: 

)]())(([ jikjjik qAqINEGMinA ∨=  (4.62) 

Where ∨  indicates the max operation.  
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Example: 

Given the data in the Table 4.3 as the evaluation from expert Ek to alternative Ai on six 
criteria. 
 

 Table 4.3 Example 1 for Yager’s all/and/min Aggregation 

Criteria C1 C2 C3 C4 C5 C6 
Importance P VH VH M L L 

Score H M L P VH P 
 

The aggregation result is as followings: 

L
PVHPLMHMin

PHVHHPMLVLMVLHNMin
PLNEGLVHNEGMVHNEGHPNEGMinAik

=
=

∨∨∨∨∨∨=
∨∨∨∨=

      
],,,,,[      

],,,,,[      
])(,...,)(,)(,)([

 

This method has a problem that the least score plays the central role in determining 

the combination score. Any number of good scores can not make up for a bad score. For 

example, given the following evaluation in Table 4.4: 

  

Table 4.4 Example 2 for Yager’s all/and/min Aggregation 

Criteria C1 C2 C3 C4 C5 C6 
Importance P P H P P P 

Score P P L P P P 

Although all evaluations to five of six criteria are “P”, the aggregate result is still 

determined by the lowest score which is “L” here. 
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L
PPPLPPMin

PNPNPNLLPNPNMin
PPNEGLHNEGPPNEGPPNEGMinAik

=
=

∨∨∨∨∨∨=
∨∨∨∨=

      
],,,,,[      

],,,,,[      
])(,...,)(,)(,)([

 

Combining experts’ opinions 

We have q experts and the collection of evaluations iqii AAA ,...,, 21  where ikA  is the 

unit evaluation of the ith alternative by the kth expert.  

The first step for the decision maker is to provide an aggregation function which 

Yager denotes as Q. This function can be seen as a generalization of the idea of how 

many experts he or she feels need to agree on a project for it to e acceptable. Then 

)(iQ indicates how satisfied he/she would be in selecting a proposal with which I of the 

experts were satisfied.  

Characteristics of the function Q: 

 As more experts agree, the decision maker’s satisfaction or confidence should 

increase. jijQiQ >≥   ),()(  

If all the experts are satisfied, then his/her satisfaction should be the highest 

possible. perfectqQ =)(  

If no experts are satisfied then the satisfaction to Q should be lowest. noneQ =)0(  

One way to calculate the Q is defined as,  

)()( kSkQ bA =  (4.63) 
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Where )]1*(1[)( q
lkIntb k

−
+= , q is the number of experts, l is the number of 

linguistic labels.  

The overall evaluation for the ith alternative is calculated by: 

])([,...1 jqji BjQMaxA ∧= =  (4.64) 

Where  jB is the jth highest score among the experts’ unit scores for the alternative 

and ∧  indicates the max operation.  

Yager’s Group MCDM evaluation process (1993b) is a two-stage process: In the 

first stage, individual experts are asked to provide an evaluation of the alternatives. The 

evaluation consists of a rating for each alternative on each of the criteria. Each of the 

criteria may have a different level of importance. The values to be used for the evaluation 

of the ratings and importance will be drawn from a linguistic scale, which makes it easier 

for the evaluator to provide the information. The second stage performs the aggregation 

of the individual evaluations to obtain an overall linguistic value for each alternative.  

Implicit in this linguistic scale are two operators, the maximum and minimum of any two 

scores as discussed earlier. 

The aggregated score of each alternative with j criteria is simply defined as: 

)]())(([ jikjjik qAqINEGMinA ∨=  (4.65) 

Where I(qj) is the importance of criteria j, Aik is the opinion of expert k, ∨  indicates 

the max operation. Negation of a linguistic term is calculated as: 
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items l of scale a have e if   )( 1 wSSNeg ili +−=  (4.66) 

4.3.5 Xu’s Linguistic Average 
Xu (2004) introduced another way to present linguistic set:  

},...,|{ ttsS −== αα  (4.67) 

1) α  is an even number, thus the linguistic set has a odd cardinality. 

βαβα << iffss ,  

2) The negation operator: neg αα −= ss )( , with neg 00 )( ss = , the following 

aggregation rules are proposed: 

βααββα +=⊕=⊕ sssss  (4.68) 

]1,0[, ∈= λλ λαα ss  (4.69) 

( ) ]1,0[, ∈⊕=⊕ λλλλ βαβα ssss  (4.70) 

Other direct linguistic aggregation methods include Cheng’s Adjusted fuzzy rating 

method(1999), Herrera and Herrera-Viedma’s linguistic weighted disjunction (LWD) 

operator, linguistic weighted conjunction (LWC) operator, and linguistic weighted 

averaging (LWA) operator (1997). Also, there are some derivative OWA aggregation 

processes that utilize linguistic quantifiers to generate linguistic rules for aggregation. 

Such methods include Yager’s Weighted Goals (1994), Sugeno’s Ordered weighted 

maximum (OWMAX) and Ordered weighted minimum operators (OWMIN) (1974), and 

Herrera et al.’s direct approach (1996a) etc.  
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4.4 Fuzzy Linguistic OWA (FLOWA) Operator 
Based on the LOWA method, Ben-Arieh and Chen (2004) present a new 

aggregation operator denoted as Fuzzy Linguistic OWA (FLOWA).   

4.4.1 FLOWA Definition  
Figure 4.7 shows the basic concept of the FLOWA.  Assume that there are m 

linguistic labels to be aggregated, X= {si…sl…sj} (i<l<j), where si is the smallest label in 

X and sj is the largest one and SX ⊆ .  Also a weighting vector W= [wi…wl… wj] (i<l<j) 

is associated with the linguistic labels representing the experts’ weight.  Thus wl 

represents the weight of the expert who chooses label l as the linguistic representation of 

his/her preference.  And:  ]1,0[∈lw , and 1=∑l lw  

In the FLOWA approach the final result should lie between si and sj (including si 

and sj).  Instead of only choosing the sk in the set of linguistic labels S, we assign 

membership functions to all the linguistic labels between si and sj.  We decreasingly 

spread the original weight wi on si to the linguistic labels from si to sj.  Similarly, we 

increasingly spread the original weight on sj to the linguistic labels from si to sj..  The 

weight of label l which lies between labels i and j is spread decreasingly to the both 

directions.   
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 Figure 4.7 The concept of FLOWA 

The membership function of the kth label between si and sj in the FLOWA operator 

F is define as: 

∑
=

=
T
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l
ss kk

F
0

: µµ  (4.71) 

Where, 
ksµ is the fuzzy membership assigned to the kth linguistic label sk after 

aggregating the weights on label set X= {si… sj} and l
sk

µ is the membership function of 

the kth linguistic label sk, Ssk ∈  generated from the weighted linguistic label ls , Xsl ∈ .  

The l
sk

µ  is defined by:   
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4) l<i or l>j 

0=l
sk

µ  (4.75) 

Notice that if wi, wj>0 and wl=0, for all l ≠ i, j, then equation (4.66) has only two 

parts for i
sk

µ and j
sk

µ from (4.67) and (4.68) respectively.   

Example: 

Assume three experts E1, E2 and E3 evaluating an alternative A.  Each chooses a 

linguistic label from the set S to express his/her opinion.  Let us use the same nine 

linguistic labels set defined in (Herrera et al., 1996a) as S= {I, EV, VLC, SC, IM, MC, 

ML, EL, C}, where si<sj, given i<j and si, sj ∈S.  Suppose the labels that the experts 

choose are X= {s1, s5, s7}.  The aggregate value of these three linguistic labels is the score 

of the alternative under considerations.  Also, the experts have the weights of 

5.0=lw , 125.0=iw , and 375.0=jw . 

As an example, for k=1: 

0357.0375.0
)117()17(

)11(25.0
)15()17(

)11(2125.0
)117()17(

)17(2751
1111
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The final result shown in Figure 4.8 is a fuzzy set {0/s0, 0.0357/s1, 0.0893/s2, 

0.1429/s3, 0.1964/s4, 0.25/s5, 0.1706/s6, 0.1071/s7, 0/s8}. We can see that after the 

aggregation, the linguistic label s5=MC has the highest possibility as the aggregation 

result.  In contrast, the aggregation result of the LOWA algorithm is simply s4.   
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Figure 4.8 Example of aggregating three linguistic labels 

4.4.2 Properties of the FLOWA operator 
The FLOWA algorithm has several interesting properties: 

1) Property 1. The aggregation result is normalized.  (Meaning that the membership 

functions of all the labels in the aggregate sum to one.) 

1
0

=∑
=

T

k
sk

µ  

Proof. 

We have l

j

il

l
s

T

l

l
s w

kk
== ∑∑

==

µµ
0

, then 



 175

1
000 00 00

∑∑∑∑∑∑∑∑
== == == ==

=====
T

l
l

T

l

j

ik

l
s

T

l

T

k

l
s

T

k

T

l

l
s

T

k
s w

kkkk
µµµµ  

Since all the weights  X)s T,l(0 ,w ll ∈≤≤  are distributed among all the 

linguistic labels that participate in the solution, and  X)s 1,w l

T

0l
l ∈=∑

=

, so all the 

fuzzy memberships should sum to 1. 

2) Property 2: Linearity. The aggregation result is a linearly distributed weight 

between any two linguistic labels to be aggregated, either increasing, decreasing 

or constant. 

Proof.  

Without lose of generality, suppose we are going to aggregate three linguistic 

labels X= {si, sl, sj} with i<l<j. Then, when k<l, the kth linguistic label in S 

gets the weight by, 
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Whereas when k>l, 
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In both cases after aggregation the membership function 
ksµ  of the kth 

linguistic label in S is a linear function of k.  
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3) Property 3:  The maximum membership after aggregation could only happen in a 

linguistic label sk, where sk∈ X 

Proof.  

From property 2, it is obvious that the maximum membership never happens 

between si, sl and sj. If X= {si, sl, sj}, the maximum membership could only 

happen in si, sj or sl with the corresponding value of: 
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4) Property 4.  The FLOWA operator is commutative in a limited sense. 

)),(),,(()...,...( lkjijlki ssssFFssssF π=  

Where π is any permutation over the set of arguments.  This property implies 

that the aggregation process has to start with the two extreme labels.  Once 

this is accomplished, the order of integrating the other labels is immaterial.   

Proof:  
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From equations (4.66), (4.67), and (4.68) it is easy to see that once labels i and 

j (the two extremes) are aggregated the contribution of any label l and k is 

independent of the order of aggregation. 

An example is provided in Figure 4.9 and Table 4.5.  This example shows that 

the FLOWA operator is order dependent in this limited sense.  When labels 

are aggregated without the two extreme labels the results are erroneous as 

shown.  Thus, when we aggregate linguistic labels, the min and max labels 

need to be aggregated first. 

 

Figure 4.9 An example of FLOWA property 4 

Table 4.5 An example of FLOWA property 4 

 s0 s1 s2 s3 s4 s5 s6 s7 s8 
F(s2, F(s3, s5, s6)) 0 0 0.12 0.14 0.26 0.38 0.1 0 0 
F(s6, F(s2, s3, s5)) 0 0 0.15 0.25 0.26 0.26 0.08 0 0 

5) Property 5: The result of aggregating two adjacent labels is the same two labels. 

Proof:  

s0 s1 s2 s4 s7 s8 s6 s5 s3 

0.3 

0.1

0.4

0.2 
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As presented in Figure 4.10 , if j=i+1, by formula (5) ~ (6), i
i
s w

i
=µ , j

j
s w

j
=µ .  

 

Figure 4.10 The result of aggregating two adjacent labels 

4.4.3 Comparison of LOWA and FLOWA  
After aggregating m linguistic labels X= {si… sj}, any linguistic label between i and 

j gets a weight as the aggregated result, while the linguistic labels in S with k<i and k>j 

get weights of 0.  This shows that the aggregated result is not another linguistic label, but 

a set of labels between si and sj each with a membership functions.  This membership 

value represents the degree of confidence in the label.  
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4.5 Summary  
This chapter summarizes the current use of linguistic labels in decision-making and 

groups them into two categories: computing with associated membership functions and 

directly with linguistic labels. Then we present a new direct linguistic labels aggregation 

operator FLOWA for the fuzzy group decision-making problem.  The FLOWA method is 

more detailed and includes more information about the aggregate than existing direct 

methods.  
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CHAPTER 5 

Consensus and Contribution Measure 

There is no one widely accepted definition on consensus. Even dictionary 

definitions of consensus vary. But all definitions agree that consensus has two common 

meanings (Web: wikipedia.org): 

“One is a general agreement among the members of a given group or community. 

The other is as a theory and practice of getting such agreements. “ 

Many discussions focus on whether agreement needs to be unanimous; These 

discussions miss the point of consensus, which is not a voting system but a taking 

seriously of everyone's input, and a trust in each person's discretion in follow up action. 

In consensus, people who wish to take up some action want to hear those who oppose it, 

because they do not wish to impose, and they trust that the ensuing conversation will 

benefit everyone. Action despite opposition will be rare, and done with attention to 

minimize damage to relationships. In a sense, consensus simply refers to how any group 

of people who value liberty might work together.  

In this chapter, we will explain the meaning of consensus and introduce state-of-

the-art literature review on current existing consensus measure methods which are 

categorized into two groups, hard and soft consensus. We also present two new 

consensus measure methods based on the preference order of alternatives and Markov 

chain theory. We will discuss the method of optimizing the group consensus in this 

chapter followed by the general guide on how to improve consensus level. 

5.1 Introduction 
Consensus is traditionally meant as a strict and unanimous agreement of all the 

experts regarding all possible alternatives. Ness and Hoffman define consensus in (1998) 

as “Consensus is a decision that has been reached when most members of the team agree 
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on a clear option and the few who oppose it think they have had a reasonable opportunity 

to influence that choice. All team members agree to support the decision.” 

The expression of concerns and conflicting ideas is considered desirable and 

important. When a group creates an atmosphere which nurtures and supports 

disagreement without hostility and fear, it builds a foundation for stronger, more creative 

decisions.  Consensus is viewed as a pathway to a true group decision.  Sharing opinions 

prior to reaching a decision, as is done in jury setting, clearly reduces the effective 

number of independent voices. In some situations, discussion is disallowed.  For 

example, during figure skating competitions, judges are expressly forbidden from 

interacting. 

It is very rare when all individuals in a group share the same opinion about the 

alternatives, since a diversity of opinions commonly exists.  Consensus makes it possible 

for a group to reach a final decision that all group members can support among these 

differing opinions. 

5.1.1 Understanding Consensus 
Consensus is a process of nonviolent conflict resolution. The expression of 

concerns and conflicting ideas is considered desirable and important. When a group 

creates an atmosphere which nurtures and supports disagreement without hostility and 

fear, it builds a foundation for stronger, more creative decisions. 

It would be illustrative here to quote Lower and Laddaga (1985): “…It can 

correctly be said that there is a consensus among biologists that Darwinian natural 

selection is an important cause of evolution though there is currently no consensus 

concerning Gould’s hypothesis of specification. This means that there is a widespread 

agreement among biologists concerning the first matter but disagreement concerning the 

second…”. 

An immediate consequence is therefore that from a pragmatic point of view it 

makes sense to speak about a degree of consensus, or a distance from (ideal) consensus. 
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Consensus is not a simple matter. It is both a methodology and an aim (Web: 

innatenonviolence.org). It has to be seen as a creative process and not a deadener of 

initiative, something which stifles projects. It does not have to be the death of initiative, 

and indeed if it is then something is woefully wrong. Where there is respect then birds of 

a feather within a larger flock can go ahead with a project without everyone agreeing, or, 

if need be, under a different hat. How this process happens has to be seen as creative and 

organic - part of developing the best in humanity and not a power struggle for the heart 

and soul of an organization. Because if it comes to the latter then the heart is already lost 

and the soul will likely follow.  

Once a decision has been adopted by consensus, it cannot be changed without 

reaching a new consensus. If a new consensus cannot be reached, the old decision stands.  

Each individual is responsible for expressing one's own concerns. It is best if each 

concern is expressed as if it will be resolved. The group then responds by trying to 

resolve the concern through group discussion. If the concern remains unresolved after a 

full and open discussion, then the facilitator asks how the concern is based upon the 

foundation of the group. If it is, then the group accepts that the proposal is blocked.  

From this perspective, it is not decided by the individual alone if a particular 

concern is blocking consensus; it is determined in cooperation with the whole group. The 

group determines a concern's legitimacy. A concern is legitimate if it is based upon the 

principles of the group and therefore relevant to the group as a whole. If the concern is 

determined to be unprincipled or not of consequence, the group can decide the concern is 

inappropriate and drop it from discussion. If a reasonable solution offered is not accepted 

by the individual, the group may decide the concern has been resolved and the individual 

is out of order for failure to recognize it. 

Herein lies a subtle pitfall. For consensus to work well, it is helpful for individuals 

to recognize the group's involvement in determining which concerns are able to be 

resolved, which need more attention, and, ultimately, which are blocking consensus. The 

pitfall is failure to accept the limit on an individual's power to determine which concerns 

are principled or based upon the foundation of the group and which ones are resolved. 
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After discussion, if the concern is valid and unresolved, it again falls up on the individual 

to choose whether to stand aside or block consensus.  

The individual is responsible for expressing concerns; the group is responsible for 

resolving them. The group decides whether a concern is legitimate; the individual decides 

whether to block or stand aside. 

All concerns are important and need to be resolved. It is not appropriate for a 

person to come to a meeting planning to block a proposal or, during discussion, to 

express their concerns as major objections or blocking concerns. Often, during 

discussion, the person learns additional information which resolves the concern. 

Sometimes, after expressing the concern, someone is able to creatively resolve it by 

thinking of something new. It often happens that a concern which seems to be extremely 

problematic when it is first mentioned turns out to be easily resolved. Sometimes the 

reverse happens and a seemingly minor concern brings forth much larger concerns. Here 

are three consensus sufficient conditions: (Web: NIH Consensus Statements) 

• I have had the opportunity to voice my opinions  

• I believe the group has heard me  

• I can actively support the group's decision as the best possible at this 

time, even if it is not my first choice" and 

The following is a description of different types of concerns and how they affect 

individuals and the group.  

Concerns which can be addressed and resolved by making small changes in the 

proposal can be called minor concerns. The person supports the proposal, but has an idea 

for improvement. 

When a person disagrees with the proposal in part, but consents to the overall idea, 

the person has a reservation. The person is not completely satisfied with the proposal, but 

is generally supportive. This kind of concern can usually be resolved through discussion. 
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Sometimes, it is enough for the person to express the concern and feel that it was heard, 

without any actual resolution.  

When a person does not agree with the proposal, the group allows that person to try 

and persuade it to see the wisdom of the disagreement. If the group is not persuaded or 

the disagreement cannot be resolved, the person might choose to stand aside and allow 

the group to go forward. The person and the group are agreeing to disagree, regarding 

each point of view with mutual respect. Occasionally, it is a concern which has no 

resolution; the person does not feel the need to block the decision, but wants to express 

the concern and lack of support for the proposal. 

So, we can summarize that consensus means that every member can say...... (Web: 

Consensus Decision Making) 

• “I believe that you understand my point of view and that I understand 

yours.”  

• “Whether or not I prefer the group decision, I support them because they 

were reached fairly and openly, and they are the best decisions at this 

time."  

• "We all share in the final decision."  

Consensus decision making requires:  

• Sufficient time to explore all the information and opinions  

• Strong facilitative leadership  

• Members willing to contribute their views and discuss their reasons  

• Commitment and effort to develop an atmosphere of honesty and 

openness in the group  

• Willingness to confront and resolve controversy and conflict"  
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There are some common misunderstandings with consensus. 

5.1.1.1 Time in Consensus 

It is often said that consensus is time-consuming and difficult (Web: A Guide to 

Formal Consensus). Making complex, difficult decisions is time-consuming, no matter 

what the process. Many different methods can be efficient, if every participant shares a 

common understanding of the rules of the game. Like any process, Consensus can be 

inefficient if a group does not first assent to follow a particular structure.  

But, consensus is not inherently time-consuming. Decisions are not an end in 

themselves. Decision making is a process which starts with an idea and ends with the 

actual implementation of the decision. While it may be true in an autocratic process that 

decisions can be made quickly, the actual implementation will take time. When one 

person or as mall group of people makes a decision for a larger group, the decision not 

only has to be communicated to the others, but it also has to be acceptable to them or its 

implementation will need to be forced upon them. This will certainly take time, perhaps a 

considerable amount of time. On the other hand, if everyone participates in the decision 

making, the decision does not need to be communicated and its implementation does not 

need to be forced upon the participants. The decision may take longer to make, but once 

it is made, implementation can happen in a timely manner. The amount of time a decision 

takes to make from start to finish is not a factor of the process used; rather, it is a factor 

of the complexity of the proposal itself. An easy decision takes less time than a difficult, 

complex decision, regardless of the process used or the number of people involved. Of 

course, Consensus works better if one practices patience, but any process is improved 

with a generous amount of patience.  

5.1.1.2 Group Size 

Consensus works better when more people participate (Web: Consensus Consulting 

Group (CCG)). Consensus is more than the sum total of ideas of the individuals in the 

group. During discussion, ideas build one upon the next, generating new ideas, until the 

best decision emerges. This dynamic is called the creative interplay of ideas. Creativity 

plays a major part as everyone strives to discover what is best for the group. The more 
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people involved in this cooperative process, the more ideas and possibilities are 

generated. Consensus works best with everyone participating.  

If the structure is vague, decisions can be difficult to achieve. They will become 

increasingly more difficult in larger groups. Consensus is designed for large groups. It is 

a highly structured model. It has guidelines and formats for managing meetings, 

facilitating discussions, resolving conflict, and reaching decisions. Smaller groups may 

need less structure, so they may choose from the many techniques and roles. 

5.1.1.3 Consensus and Voting 

While voting enables a group to determine who is in favor or opposed to a proposal, 

voting does not always indicate what people can or will support (Arrow, 

1986).  Generally speaking, when a group votes using majority rule, a competitive 

dynamic is created within the group because it is being asked to choose between two (or 

more) possibilities. It is just as acceptable to attack and diminish another's point of view 

as it is top remote and endorse your own ideas. Often, voting occurs before one side 

reveals anything about itself, but spends time solely attacking the opponent! In this 

adversarial environment, one's ideas are owned and often defended in the face of 

improvements.  

5.1.1.4 Consensus and Group Thinking 

A group, by definition, is a number of individuals having some unifying 

relationship. Consensus strives to take into account everyone's concerns and resolve them 

before any decision is made. Most importantly, this process encourages an environment 

in which everyone is respected and all contributions are valued. 

Groups which desire to involve as many people as possible need to use an inclusive 

process. To attract and involve large numbers, it is important that the process encourages 

participation, allows equal access to power, develops cooperation, promotes 

empowerment, and creates a sense of individual responsibility for the group's actions. All 

of these are cornerstones of Consensus. The goal of consensus is not the selection of 

several options, but the development of one decision which is the best for the whole 

group. It is synthesis and evolution, not competition and attrition.  



 187

If a group drives for consensus so strong that dissent is (intentionally and 

unintentionally) suppressed, it is group thinking (Web: Group Think). Group thinking 

produces lack of judgement. People are not voluntarily but pressured to agree. But the 

group members have the belief that the group is impervious to threats and false 

perceptions of unanimity.  

5.1.2 Difficulties in generating consensus 
Hypothetically, agreement with other experts is a necessary characteristic of an 

expert.  Common wisdom claims that experts in a given field should agree with each 

other. If opinions do not match, then some of the members of this set of experts must not 

be functioning at the appropriate level.  However, in practice, a consensus among experts 

implies that the expert community has largely solved the problems of the domain.  In that 

case, each individual expert is getting the correct answer, usually with the aid of well-

developed technology, therefore their answers agree. (Weiss and Shanteua, in press). 

In reality, however, disagreement among experts is inevitable and even useful.  

Moreover, one might argue that too much inter-individual agreement is a signal that the 

problem is trivial, and scarcely worthy of an expert.   

Consensus makes it possible for a group to reach a final decision that all group 

members can support among these differing opinions.  True expertise is characterized by 

the following properties:  

• The domains where experts work is very complex. Single optimal solution does 

not exist. 

• A distinction can be made between the different levels of decisions made by 

experts. Experts might disagree at one level, but agree at another. 

• Despite the assumption made by many researchers, experts are seldom asked to 

make single-outcome decisions.  The job of the expert is to clarify alternatives 

and describe possible outcomes for clients. 
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• Experts generally work in dynamic situations with frequent updating. Thus, the 

problems faced by experts are unpredictable, with evolving constraints. 

• Experts work in realms where the basic science is still evolving. 

5.2 Consensus Measure Methods 
The ultimate goal of a procedure in group decision making, in the context 

considered here, is to obtain an agreement between the experts as to the choice of a 

proper decision, i. e. to reach consensus (Kacprzyk et al., 1992a).  Initially, the group 

may be far from consensus. However, it can be expected that during the decision-making 

process, opinions of its members will converge.  Consensus is not to be enforced nor 

obtained through some negotiations or bargaining-like process but is expected to emerge 

after some exchange of opinions among the experts.  

Any group decision-making process is basically aimed at reaching a “consensus”. 

Consensus has become a major area of research in group decision making (Bordogna et 

al., 1997; Herrera et al., 1997; Herrera-Viedma et al., 2002; Kacprzyk et al., 1997).  

Generally, the approaches towards consensus in the literature can be divided into two 

groups.  The first treats consensus as a “mathematical aggregated consensus” (Ng and 

Abramson, 1992).  This type of consensus requires some kind of a binding arbitration so 

the contributing experts do not need to converge in their opinions.  In most cases, the 

consensus is achieved by changing the weights of the experts (e.g. Lee, 2002).  In the 

other type, the experts are encouraged to modify their opinion to reach a closer agreement 

in opinions (e.g. Hsu and Chen, 1996).  

Generally, we have two ways to represent consensus (Bordogna et. al., 1997): Hard 

consensus measure and soft consensus measure.  

5.2.1 Hard Consensus Measure 
In this category, consensus is measured in the interval [0, 1]. In more detail, we can 

still divided these methods into the following groups based on the ways to calculate the 

consensus level: 
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1. Count number of experts 

The simplest consensus measure method is to count the number of experts with the 

group. Usually, the ratio of the number counted to the total group is taken as the 

consensus.  

2. Distance 

The method measures the distances between experts and even expert and the group 

opinion. The consensus is a function of the distance.  

3. Similarity/Dissimilarity 

Similar to the distance measure, similarities or dissimilarities between experts can 

be measured. Some methods measure the similarity or dissimilarity between experts and 

the aggregated group opinion. Thus consensus is a function of the similarity/dissimilarity. 

Of course, consensus is the increasing function of similarity and decreasing function of 

dissimilarity.  

4. Order-Based  

Based on the evaluations from experts, the preference orders of all alternatives from 

each expert can be calculated. By comparing the order difference from expert and the 

aggregated group, the consensus is then measured.   

5.2.1.1 Count Number of Experts  

Fairhurst and Rahman (2000) believe a consensus occurs when at least k of the 

experts agrees, where k can be defined as, 
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As we defined before, q is the total number of experts in the decision making group.  
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Bryson and Mobolurin (1997) recognize the group members into learning mode for 

those who are still uncertain about their own scores and interested in having discourse 

with other members. Those members who are fairly certain about their evaluations are in 

strategic mode. Decision makers use the AHP to reach a consensus decision with regard 

to a set of alternatives. The consensus decision is represented by a normalized numeric 

preference vector where the ratio of elements in the vector reflects the group’s belief in 

the relative importance of alternatives.  

Tan et al. (1995) used a modified version of the fuzzy model of consensus to 

produce a consensus level for the group for each alternative. The acceptance of and 

commitment to the decision are dependent upon the consensus level achieved. If group 

remembers do not agree with each other and with the decision, it is unlikely that they will 

accept and be committed to the decision. A group decision reached as a result of 

conformance pressure or domination by a minority is likely to be no better than an 

individual decision. 

The overall decision combination algorithm therefore reflects a hybridization of the 

concepts of both ‘decision consensus’ and ‘best expert, best decision’ scenarios. 

5.2.1.2 Distance  

Kuncheva (1994) proposes five measures for degree of consensus based on the 

distance metric. 
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where q is the number of decision makers, xi is the distance metric for decision 

maker i, wi provides parametric control and possible weighting of decision makers, and c 

is in [0, 1] is the degree of consensus measure for an alternative. 

Also, Bezdek et al. (1978) compute a distance as consensus from a difference 

between an average preference matrix and preference matrices from each expert.  

5.2.1.3 Similarity/Dissimilarity 

A dissimilarity based consensus is from Fedrizzi (1990). First, experts give pairwise 

comparison of alternative Ai to alternative Aj from expert Ek on criterion Ch: 
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The dissimilarity measure is defined as: 
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A consensus measure based on dissimilarity follows the procedure: 

1. The degree of agreement between expert Ek and the group between alternative Ai and 

Aj 
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2. The degree of agreement between expert Ek and the group to all the relevant pairs of 

alternatives 
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3. The degree of agreement between expert Ek and the group to their preferences 

between Q1 relevant pairs of alternatives 
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4. The degree of agreement of all experts with the group as to their preferences between 

Q1 relevant pairs of alternatives 
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5. The degree of agreement of Q2 experts with the group as to their preferences between 

Q1 relevant pairs of alternatives 
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5.1.2.4 Order-Based  

Herrera-Viedma, et. al.’s consensus model (Herrera-Viedma et al. 2002) compares 

the positions of the alternatives based on the individual solutions and the group solution.  

Based on the consensus level and the offset of individual solutions, the model gives 

feedback suggesting the direction in which the individual experts should change their 

opinion.   
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Where, CG is the group consensus of the final solution. 

Ci is the consensus level of the ith alternative achieved by the group.  

G
Ai

O is the index of the ith alternative in the group’s selection order.  

k

i

E
AO is the order of the ith alternative based on the kth expert  

q is the number of experts and n is the number of alternatives. 
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]1,0[∈β  is a parameter to control the OR-LIKE behaviour of the aggregation 

operator.  

γ  is the cardinal of the set Xsol, the means the number of alternatives selected in the 

solution set. ν  is the cardinal of the set X- Xsol. 

The parameter b controls the rigorousness of the consensus process, in such a way, 

that values of close to one decrease the rigorousness and thus the number of rounds to 

develop in the group discussion process, and values of close to zero increase the 

rigorousness and thus, the number of rounds. Appropriate values for are: 0.5, 0.7, 0.9, 1. 

Fedrizzi et al. (1995) uses a so called Opinion Changing Aversion (OCA) function 

estimated for each expert to represent expert’s resistance to opinion changing. Based on 

this, the author gives an alternatives ranking from each expert and consensus ranking 

from the group.  

This “hard” interpretation of consensus is sometimes counterintuitive, since one 

may be fully satisfied (consensus = 1) even in case of agreement only among most of the 

experts, but not all (Bordogna et. al., 1997). In the next subsection, we will introduce 

approaches use linguistic labels instead of just a numeric number to represent the 

consensus level. 

5.2.2 Soft Consensus Measure 
In this category, the consensus is not measured by a crisp number but a linguistic 

label, like “most”. This soft consensus is actually a linguistic quantifier used helping to 

aggregate the evaluations from experts. Fedrizzi (1990) propose a consensus measure 

based on dissimilarity between the preference relations. The procedure computes a ‘soft” 

degree of consensus, which is a numeric value assessing the truth of a statement like 

“most pairs of experts agree on almost all the alternatives”.   
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5.2.2.1 Bordogna et al.’s Method 

Bordogna et al. (1997) uses the statement “Most of the experts agree on alternative 

Ax” which is interpreted as “Most of the experts agree with most of the other experts on 

alternative Ax”. 

For example, in Table 5.1, q experts express their overall evaluations to n 

alternatives as: 

Table 5.1 q experts express their evaluations to n alternatives using linguistic labels 

Overall performance values E1 E2 … Eq 

A1 high … … … 

… … … ixO  perfect 

An … low … … 

A linguistic degree of consensus among the experts’ overall performances is 

computed for each alternative.  A procedure to evaluate the consensus degree among Q 

experts for each alternative: (Q is a quantifier identifying a fuzzy majority) is as follows: 

For each alternative, pair-wise comparisons of experts’ overall performance labels 

produce the degree of agreement between pairs of experts.   

A matrix of qxq is then constructed for each alternative. An element )E ,Ag(E ji  is 

the linguistic label, which express the closeness between the overall performance labels 

of expert Ei and Ej.  

))O,(d(O)E ,Ag(E jxixji Neg=  (5.21) 

Where ixO  denotes the linguistic overall performance label of expert Ei on 

alternative Ax. And the d function is a difference operator of linguistic labels in the same 

scale S.  

j-ir  with s)s,d(s rji ==  (5.22) 
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i-Ti s)(s =¬  (5.23) 

This process is depicted in Table 5.2. 

Table 5.2 Using linguistic quantifier Q to aggregate q experts’ evaluations 

Ai E1 E2 … Eq 
)Ag(Ei fro

m OWAQ 

E1 high … … … - 

E2 … … … medium - 

… … … )E ,Ag(E ji  … - 

Eq … low … … - 

Q2 Ei agree on alternative Ax Final  

 

For each expert Ei (a row of the matrix qxq), ji ),E ,Ag(E ji ≠  are pooled to obtain 

an indication of the agreement )Ag(Ei of expert Ei with respect to Q1 other experts.  The 

degree of consensus among Q1 experts is shown in the last column pf Table 5.2. 

row) (iOWA th
Q1  (5.24) 

The values )Ag(Ei are finally aggregated to compute the truth of the sentence “Q2 

experts agree on alternative Ax”.  This value is stored in the bottom-right cell. Consensus 

among Q2 experts 

column)(last OWA
2Q  (5.25) 

5.2.2.2 Herrera et al. ’s Method 

Herrera et al. ’s rational consensus model (1997) is a two phases consensus seeking 

process: counting process and coincidence process.  
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1. Counting Process 

In this process, the method counts the number of experts using the same linguistic 

label.  

First, ][ tij sV  represents the set of expert numbers, who use linguistic ts  as the 

preference on the alternative pair ),( ji xx  

{ }qksPksV t
k

ijtij ,...1,|][ ===  (5.26) 

And use ][ t
C

ij sV  as the cardinal of the set ][ tij sV . Then the aggregated experts’ 

importance degree 

( )
⎩
⎨
⎧ >Φ

=
Otherwises

sVifzuzuzu
sV t

G
ijmGGGQ

t
G

ij
0

21 1][)(),...(),(
][ 1   (5.27) 

where ][ tijk sVz ∈ , ][ t
C

ij sVm =  

Example 5.1: 

Given four alternatives, four experts give their pairwise comparison evaluations as 

the following: 
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The, apply formula 5.26, }4{][13 =SCV , since only MCP =4
13 , and }4,3{][24 =SCV  

because SCPP == 4
24

3
24 . But, }{][23 Φ=CV , since nobody uses linguistic label "C"  to 

compare alternative A2 to A3.  

So, 1][13 =MCV C , 0][23 =CV C , 2][24 =SCV C .  

For IMCV G =][13 , because 1][13 =MCV C ,  ISMCV G == 013 ][  

For ICV G =][23 , because 0][23 =CV C ,  ISCV G == 023 ][  

Using )5.0,0.0("" withhalfLeastAtQ = , we get the membership function of the 

linguistic quantifier Q.  
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As described in Chapter 2, we apply the formula ⎟
⎠
⎞

⎜
⎝
⎛ −
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⎝
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n
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1ω to compute 

the weighing vector, so,  

1
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1 =⎟
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⎞
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⎛−= QQω  

( ) ( )EUSCuuSCV
QGGQ

G ,)4(),3(][ 1124 Φ=Φ=  
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{ } 3))13(1(1,8min =−×+= roundk  SCSSk ==⇒ 3  

so, SCSCV G =][24 ,  similarly, SCCV G =][41  

2. Coincidence Process 

 In this process, we first find the linguistic label with the highest frequency 

measure, ijLCR . 

If the two labels have the same frequency, we choose the one with the highest 

expert importance. 

Then we use { }][ t
C

ijSsij sVMAXn
t ∈=  to represent max number of experts, who 

choose ts , and linguistic label { }SsnsVsM yijy
C

ijyij ∈== ,][|  whose cardinal ][ t
C

ij sV  

equal to ijn . 

The proportional number of expert can be calculated by: 

⎪⎩

⎪
⎨
⎧

>=
otherwise

sVifm
sV

ICR ij
C

ij
ij

C
ij

ij

0

1][][
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And the respective average importance degree: 
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Example 5.1 (Continue): 

Continuing the Example 5.1, we have 
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The ICR1 and ICR1 can be calculated as: 
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For example,  



 201

{ }

( ){ }
( ){ }

ELS

EUELMAX

uuMAX

SCVMAXSV

Q

GGQ

G
SCS

G
y

==

Φ=

Φ=

= ∈

7

12}{1212

,

)4(),1(

)(][

1

1

 

3. Consensus Degree  

The consensus degree is the distance between current consensus and ideal 

consensus of Ts . 

• Level of preference 

)()( 12
ijIijij xUICRQPCR ∧=   (5.30) 

where  2)( ijijI ICRxU =  

• Level of alternative 

njPCRPCR ijQi ....,1,)(1 =Φ=  (5.31) 

• Level of relation  

njiPCRRC ijQi ....,1,,)(1 =Φ=  (5.32) 

From the same example: 
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Given the linguistic quantifier ""2 halfleastAtQ =  

CCELCIELPCR
QQ

=Φ=Φ= ),(),,( 111  

Similarity,  CPCR =2 , CPCR =3 , CPCR =4 .  

Then, CRC =  

• Linguistic Distance 

The linguistic distance is the distance between experts’ opinions and the current 

consensus: 
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Then the for alternative Ai 
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with relation 
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For instance,  
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with 5
1
1 ),(),,( 11 SMCCIICID

QQ
==Φ=Φ=  

Similarity, SCDR =1 , VLCDR =2 , SCDR =3 , SCDR =4 . 

5.2.2.3 Kacprzyk and Zadrozny’s Method 

Kacprzyk and Zadrozny (1997) also introduce importance on experts in evaluating 

consensus. And for the first time they propose the evaluations of experts by measuring 

the contribution to consensus (CTC) and contribution to consensus for alternatives 

(Option), CTCO.  

The contribution to consensus of a given expert Ek, CTC(Ek) ∈ [-1, 1], is 

determined as a difference between the consensus degree calculated for the whole group 

and the consensus degree for the group without the export Ek. 

The contribution to Consensus of Option Ai, CTCO(Ai)∈[-1, 1], is determined as a 

difference between the consensus degree for the whole set of options and that for the set 

without option Ai. 

5.2.2.4 Kacprzyk et al.’s Fuzzy majority Method 

A fuzzy majority forms a natural generalization of majority. It may be directly 

related to and expressed by a linguistic quantifier, exemplified by ‘most”, ‘almost all’ etc. 

There are a couple of approaches dealing with the formalization of linguistic quantifiers 

including classical Zadeh’s linguistic quantifiers and Yager’s OWA operators. 

Based on Zadeh’s linguistic quantifiers (1983b, 1996), Kacprzyk et al. (1992a) use 

the statement “Most of the individuals agree on almost all (of the relevant) issues 

(options)” with the following procedure: 

For each pair of individuals we derive a degree of agreement as to their preferences 

k
ijr between all the pair of options. For instance, 



 204

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.00.30.3
0.70.00.9
0.70.10.0
AAA

A
A
A

 R   :

321

3

2

1
2

2E

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.00.30.4
0.70.00.9
0.60.10.0
AAA

A
A
A

 R   :

321

3

2

1
1

1E  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.00.30.4
0.70.00.8
0.60.20.0
AAA

A
A
A

 R   :

321

3

2

1
3

3E  

Aggregate these degrees to obtain a degree of agreement of each pair of 

individuals as to their preferences between Q1 pairs of relevant options. 
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Then, for the same example
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Aggregate these degrees to obtain a degree of agreement of Q2 pairs of important 

individuals to their preferences between Q1 pairs of relevant options. 

Define the relevance of a pair of options 

))()((
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Given
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The degree of agreement between individuals k1 and k2 as to their preference 

between all the relevant pairs of options is: 
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In this example,
3
2
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9
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9
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And then the degree of agreement between individuals k1 and k2 as to their 

preference between Q1 relevant pairs of options is: 

)),((),( 211211 kkvkkv BQ
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If Q1=’most’, then by
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While the degree of agreement of all the pairs of individuals as to their preferences 

between Q1 relevant pairs of options is: 
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Finally, the degree of agreement of Q2 pairs of individuals as to their preferences 

between Q1 relevant pairs of options is: 

)(),,,( ,
121
BI

QB vBIQQcon µ=  (5.42) 

So, )19.0(),,,( 21 BBIQQcon µ=  

5.2.2.5 Dimitrov ’s Method 

Dimitrov’s (1994) Fuzzy Symplectic System (FSS) is a Multi-Stakeholder 

Decision-Making System (MSDMS) with fuzzy motion that satisfies the fundamental 

condition for consensus seeking. A fuzzy motion of a Multi-Stakeholder Decision-

Making System (MSDMS) is described as: 

),~(/~ txFdtxd =  (5.43) 
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p and q specifying the fuzzy state of the system: p is its momentum and q is its 

position. When changing in time, the pair (p(t), q(t)) depicts the trajectory of MSDMS in 

the phase space defining by p and q. 

In any instant of time each expert must have his (her) own decision space available 

for making choices about the values of pi and qj. This means that the freedom for making 

decisions of experts to move and make choice must be guaranteed in MSDMS 

independently of time during a consensus seeking process. This requirement is referred as 
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a fundamental condition for seeking consensus in MSDMS. Its fulfillment endows the 

system with a unique structural property characterizing it as a symplectic. 

For each individual expert, the area to move is described by the integral: 

∫
Γ

iidqp  (5.44) 

taken around a closed path Γ projected on (pi, qi) coordinate plane. The group areas 

build a fuzzy symplectic space to move and make choice about p and q: 

∫∑∫
Γ= Γ

= pdqdqp
q

i
ii

1
 (5.45) 

where ∫
Γ

pdq  is Poincare's integral invariant taken around a close path Γ  in (p, q) 

space.  

Consensus happens when Poincare's integral invariant round the path 1Γ  has the 

same value for any other closed path 2Γ , that is: 

∫∫
ΓΓ

=
21

pdqpdq  (5.46) 

Poincare’s integral invariant guarantees that the freedom of expert is preserved 

independently of time during consensus seeking process. The freedom for making 

decisions of experts is something like the variance or STD. 
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Table 5.3 Summaries current existing consensus measuring approaches 

Method Expert Input Experts with weights Aggregation Method Consensus 

Ben-Arieh and Chen (2004) Linguistic labels Yes OWA [0,1] 

Bezdek et al. (1978)  preference matrix No 
Distance from a difference between an 
average preference matrix and 
preference matrices from each expert.   

[0, 1] 

Bordogna et al., (1997) 
Pairwise comparison 
using linguistic 
labels. 

No OWA with Linguistic quantifier “Most of the experts agree 
on alternative Ax” 

Bryson and Mobolurin (1997)  - No 
Derivate the group mean and the 
deviation of each individual score from 
this mean. 

Normalized numeric 
preference vector 

Cheng et al. (2000) Pairwise comparisons 
[0, 1] No Linguistic Quantifiers Linguistic 

Dimitrov (1994) linguistic labels No 
Choose the evaluation with ratio of the 
consensus degree to its value is near 
from the golden mean value  

[0, 1] numeric 

Fedrizzi (1990) Pairwise comparison 
using 1 to 9 scale No Geometric mean 

most pairs of experts agree 
on almost all the 
alternatives.  
(Linguistic quantifier based 
on dissimilarity between the 
preference relations) 
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Method Expert Input   Experts with weights Aggregation Method Consensus 

Fedrizzi (1995) 
Linguistic values 
with trapezoidal 
membership function 

No Tong and Bonissone (1980) Numeric 

Herrera et al. (1997) 
Pairwise comparison 
using linguistic 
labels. 

Yes OWA with Linguistic quantifier Linguistic label 

Herrera-Viedma et al. (2002) 

Preference Ordering, 
Fuzzy preference 
relation, Multiple 
preference relation 
and/or Utility 
function 

No OWA with Linguistic quantifier [0, 1] numeric 

Kacprzyk (1996) Fuzzy preference 
relation No OWA with Linguistic quantifier Linguistic label 

Kacprzyk et al. (1992) 
Fuzzy preference 
relation with values 
[0, 1] 

Yes OWA with Linguistic quantifier Linguistic label 

Kacprzyk and Fedrizzi (1988) 

Fuzzy preference 
relation with values 
[0, 1] 
 
 
 

Yes OWA with Linguistic quantifier Linguistic label 



 210

Method Expert Input Experts with weights Aggregation Method Consensus 

Kacprzyk and Zadrozny 
(1997) 

Fuzzy preference 
relation Yes Linguistic quantifier 

Most pairs of the important 
individuals agree as to most 
pairs of important options 

Lee (2002) Trapezoidal fuzzy 
number Yes Similarity measure, Weighted average Get weights to experts, then 

aggregate fuzzy numbers 

Mak and Bui (1996) 1 or 2 with linguistic 
meaning  No t-statistics Probability distribution 

Ng and Abramson (1992) Probability 
distribution Yes 

1. Weighted average 
2. Logarithmic Opinion Pool (French, 

1985) 
3. Conjugate Method (Winkler, 1968) 
4. Bordley’s approach (1982) 

Numeric probability 

Spillman et al. (1980)  Fuzzy preference 
matrices No α-cuts on the respective individual 

fuzzy preference matrices. [0, 1] 

Tan et al. (1995)  Fuzzy preference 
relation No SAGE software [0, 1] numeric 

Zahedi (1986) Confidence Intervals Yes Weighted average of mean from each 
confidence interval Number 
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5.2.3 Choosing Consensus Model 
There is no one right way to make decisions. The best style of decision making is 

determined by the situation. When and how to make decisions based on an understanding 

of the environment, the people and the priorities.  

So does the consensus measure. Effective decision making is not a mysterious 

process. Decisions can be made by a variety of methods which take into consideration 

such issues as time constraints and information availability. Another consideration is the 

question of who is expected to execute the decision. 

Kacprzyk et al.(1997) give one criterion to evaluate consensus, that is "The 

willingness of working together again". This means group members were satisfied with 

the decision making process and think their opinions were heard.  

5.3 Process of Improving Consensus  
Consensus is not to be enforced nor obtained through some negotiations or 

bargaining-like process but is expected to emerge after some exchange of opinions 

among the experts. What is needed is a tool which would make it easier to reach 

consensus.  

Here is a general procedure helping to reach consensus among experts. 

1. Identify Areas of Agreement. 

2. Clearly State Differences. 

• State positions and perspectives as neutrally as possible. 

• Do not associate positions with people. The differences are between alternative 

valid solutions or ideas, not between people. 

• Summarize concerns and list them. 

3. Fully Explore Differences. 
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• Explore each perspective and clarify.  

• Involve everyone in the discussion - avoid a one-on-one debate.  

• Look for the "third way": make suggestions or modifications, or create a new 

solution.  

4. Reach Closure. 

5. Articulate the Decision. 

• Ask people if they feel they have had the opportunity to fully express their 

opinions.  

• Obtain a sense of the group. (Possible approaches include "go rounds" and 

"straw polls," or the Consensus Indicator tool. When using the Consensus 

Indicator, if people respond with two or less, then repeat steps one through three 

until you can take another poll.)  

• At this point, poll each person, asking, "Do you agree with and will you support 

this decision?"  

5.3.1 Some guidelines for reaching consensus: (Web: Crow, NPD Solution) 

Make sure everyone is heard and feels listened to. Avoid arguing for ones own 

position. Present each expert’s position as clearly as possible. Listen to other team 

members’ reactions and comments to assess their understanding of each other’s position. 

Consider their reactions and comments carefully before pressing ones own point of view 

further. 

Do not assume that someone must win and someone must lose when a discussion 

reaches a stalemate. Instead, look for the next most acceptable alternatives for all parties. 

Try to think creatively. Explore what possibilities exist if certain constraints were 

removed.  
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Do not change mind simply to avoid conflict, to reach agreement, or maintain 

harmony. When agreement seems to come too quickly or easily, be suspicious. Explore 

the reasons and be sure that everyone accepts the solution for basically similar or 

complementary reasons. Yield only to positions that have objective or logically sound 

foundations or merits. 

Differences of opinion are natural and expected. Seek them out, value them, and try 

to involve everyone in the decision process. Disagreements can improve the group's 

decision. With a wider range of information and opinions, there is a greater chance of that 

the group will hit upon a more feasible or satisfactory solution. 

5.4 Three New Consensus Measure Methods  
In this section, we will present three new consensus measure methods. One is order-

based method, in which we consider the weights of experts' opinion and the alternatives 

in the solution set. The second method is to measure the similarity between the opinion 

from individual expert and the group. The difference from other similarity based method 

is that the data is from the FLOWA method. The other method is based on the Markov 

theory, which takes advantage of the steady state of the Markov chain. 

5.4.1 Order-Based  
Ben-Arieh and Chen (2004) assume that experts do not have to change their 

opinions in order to reach a consensus.  This assumption is well grounded in research and 

an excellent review of this phenomenon of expert disagreement in different domains can 

be found in (Shanteau, 2001).  An additional example for such an expert decision is, 

again, judging figure skating.  In this case, the judges, who are carefully trained experts, 

evaluate the performance using very well defined performance guidelines using uniform 

criteria.  In such judging there is no expectations that all experts will eventually converge 

to an agreement.  On the contrary – the experts are expected to produce diversified 
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opinion and the usual procedure is to eliminate the high and low extreme opinions (assign 

a weight of zero) and average the rest (assign a weight of n-2). 

In the model presented by Ben-Arieh and Chen (2004), the degree of importance of 

each expert is being considered in calculating the consensus.  Moreover, once the 

consensus is calculated the experts with a more extreme opinion will lose some of their 

weight (credibility, influence, etc.).  The experts however need not modify their opinions 

to achieve consensus. 
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Where, CG is the group consensus of the final solution, Ci is the consensus level of 

the ith alternative achieved by the group. G
Ai

O is the index of the ith alternative in the 

group’s selection order. k

i

E
AO is the order of the ith alternative based on the kth expert. uk is 

the importance of the kth expert’s opinion.  q is the number of experts and n is the number 

of alternatives. 

This definition compares each individual solution presented by an expert with the 

group solution generated separately.  

Based on this, we propose a consensus seeking process as shown in Figure 5.1. In 

this process we measure the contribution of the individual members to the group decision.  

Experts who contribute more to the group decision improve their importance while 

individual that are contrary to the group lose some of their weight.  The process continues 

and calculates a new group decision with a new consensus level.  The process continues 

until the desired consensus level is reached.  
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Figure 5.1 Flowchart of the group decision process 

 

Description of the Group Decision Process 

• Calculate the current consensus level CG and compare it with the desired 

consensus level δ. If CG>δ, we accept the group’s solution.  

• If not, we measure the contributions of group members Dj. Dj is calculated by 

the following formulas. 

Opinions from 
individual Expert k

i

E
AO

Initial weights to 
Experts ku  

Group solution 
Order G

Ai
O  

Alternative consensus 
Level iC and group 
consensus level GC  

Update weights ku  

Contribution of 
Experts 

jji DC ,  

Is δ≥GC ? 

Y

End

N
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Here, j iC is the group consensus level on alternative i without expert j. Dij is the 

contribution of the jth expert on the ith alternative, which is the difference between the 

group consensus on alternative i with and without expert j.  Dj is the cumulative 

contribution of the jth expert to all alternatives. The higher Dj it is, the higher contribution 

the jth expert makes to the group.  

• Update the weights of the experts.  If the current consensus level is lower than a 

specified threshold, which means that there is enough discrepancy between the 

experts’ opinions, we need to update the weights of the experts and recalculate 

the group decision solution.  The following equations show how to update the 

weights.  

β)1(1
k

r
k

r
k Dut +⋅=+  (5.52) 
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Here r
ku  is the importance of expert k in the rth iteration.  Parameter β represents the 

influence of the contribution of the expert on his/her weight.  The higher the value of the 

parameter β, the faster the process converges to the desired consensus level.  

• After updating the weights, we recalculate the group solution and consensus 

level.  The process continues until the desired consensus level is reached.  

 



 217

Example 5.2: 

In this example, we demonstrate the entire process of generating a group decision 

and converging towards consensus.  The example is adopted from Herrera-Viedma et al. 

(2002) with the purpose of showing how to apply the FLOWA aggregation method and 

the procedure of reaching the desired consensus level.  Let the nine linguistic labels set S 

be S = {I, SW, WO, SI, EQ, SB, SU, SS, CS}, where,  

s8=CS  Certainly Superior 

s7=SS  Significantly Superior 

s6=SU  Superior 

s5=SB  Somewhat Better  

s4=EQ  Equivalent 

s3=SI  Somewhat Inferior  

s2=WO  Worse 

s1=SW  Significantly Worse 

s0=I  Incomparable 

A set of four alternatives A= {A1, A2, A3, A4} as well as a set of four experts E= 

{E1, E2, E3, E4} whose opinions are expressed by the following four linguistic preference 

relation matrices.  Here k
ijP  is the degree of the preference of ith alternative Ai over jth 

alternative Aj derived from expert k.  For example, expert E1 thinks that alternative A1 

has a small chance to be better than alternative A2.  Thus he/she chooses s3 as his 

preference, therefore, the element 1
12P  is s3.  To keep the matrices consistent they satisfy 

T
k
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k
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Step 1. Aggregate each expert’s opinion 

We apply a FLOWA operator guided by a linguistic quantifier 

"possible as  "1 manyAsQ = to aggregate each expert’s evaluation. The associated weights 

are calculated as ]/32 ,/31 ,0[=W .  For alternative A1 from expert E1, we aggregate {s3, s5, 

s1} or ordered linguistic labels {s5, s3, s1} with associated weights [0, 1/3, 2/3].  Then we 

apply formulae (4.66) to (4.69) to calculate the membership of the linguistic labels.  The 

aggregating result matrix for expert E1 is shown in Table 5.4.  

Table 5.4 The aggregation result for expert E1 

E1 s0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

A1 0 0.444 0.333 0.222 0 0 0 0 0 
A2 0 0 0 0.444 0.333 0.222 0 0 0 
A3 0.667 0.333 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0.444 0.333 0.222 0 

 

Step 2. Aggregate all experts’ opinions 

In this step, we aggregate the four experts’ opinions to find the final score for each 

alternative.  We assume that all experts have the same importance meaning that 

]25.0 ,25.0 ,25.0 ,25.0[=u .  Applying the classic aggregation method ∑
=

=
q

k

E
ijk

G
ij

ku
1

µµ , 

where kE
ijµ is the membership of the jth linguistic label on alternative Ai from expert Ek 

and G
ijµ is the aggregated membership from all experts.  Table 5.5 shows the calculation 

result in this example. 

Table 5.5 The aggregated result from the group  

G s0 s1 s2 s3 s4 s5 s6 s7 s8 

A1 0 0.222 0.167 0.222 0.083 0.222 0.083 0 0 
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A2 0 0 0.334 0.278 0.083 0.222 0.083 0 0 
A3 0 0.250 0.167 0.083 0 0 0 0 0 
A4 0 0 0 0.222 0.167 0.389 0.167 0.056 0 

 

Step 3. Ranking 

At this point the decision of each expert and the group are represented as fuzzy sets, 

thus, we can apply Lee and Li’s (1988) mean and standard deviation based fuzzy sets 

outranking approach equations to rank these fuzzy sets by their fuzzy means and standard 

deviations.  Tables 5.6 and 5.7 present the ranking results from expert E1 and the whole 

group, respectively.  By comparing the fuzzy means and the standard deviations, we 

derive the order of the alternatives from each expert and the group. The orders are shown 

in Table 5.8.  Thus Table 5.8 shows that the group preferred alternative A4, followed by 

A1. 

Table 5.6 Ranking result from expert E1 

E1 A1 A2 A3 A4 
)( iAx  1.7778 3.7778 0.3333 5.7778 

)( iAσ  0.7857 0.7857 0.4714 0.7857 

   
 

Table 5.7 Ranking result from the whole group 

G A1 A2 A3 A4 

)( iAx  3.6296 3.3333 1.0000 4.2963 

)( iAσ  1.6136 1.4907 1.0541 1.0116 

 
 

Table 5.8 Alternative Orders from individual experts and the whole group 

Expert Order OA1 OA2 OA3 OA4 
E1 A4, A2, A1, A3 3 2 4 1 
E2 A2, A4, A3, A1 4 1 3 2 
E3 A4, A1, A2, A3 2 3 4 1 
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E4 A1, A4, A2, A3 1 3 4 2 
Group A4, A1, A2, A3 2 3 4 1 

 

Step 4. Consensus Measure 

Based on the order of the alternatives from each expert and the group, we can apply 

equations (5.47) and (5.48) to measure the consensus levels.  Table 5.9 shows the group 

consensus level for a single alternative solution i.e. p=1 and for p=2 (the decision maker 

needs to choose two best alternatives).  

Table 5.9 Consensus level to alternatives (r=0) 

 C1 C2 C3 C4 
Alternative Consensus 0.667 0.750 0.917 0.833 

Group Consensus 
(p=1) CG=C4=0.833 

Group Consensus 
(p=2) CG=(C4+C1)/2=0.750 

 

To measure the contribution of individual group members, we aggregate the new 

group without one individual expert.  By equations (5.49), (5.50), and (5.51), we can find 

the new consensus level for the alternatives without a particular expert.  Tables 5.10, 

5.11, and 5.12 show the new group orders excluding each expert, the various partial 

consensus levels and the contributions of the four experts towards the group decision.  

Table 5.10 New group orders without particular expert 

Without Expert New Group Order 
E1 A1, A4, A2, A3 
E2 A4, A1, A2, A3 
E3 A4, A2, A1, A3 
E4 A4, A2, A1, A3 

 

Table 5.11 New alternative consensus level without one particular expert 

Group A1 A2 A3 A4 
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1iC  0.6667 0.7778 0.8889 0.7778 

2iC  0.7778 0.8889 1.0000 0.8889 

3iC  0.6667 0.7778 0.8889 0.7778 

4iC  0.7778 0.7778 0.8889 0.8889 

 

Table 5.12 Contribution of the experts 

i E1 E2 E3 E4 
Dj 0.0556 -0.3889 0.0556 -0.1667 

 

Step 5. Update weights to experts  

We assign the original weighting vector of the experts (r=0) to be u= [0.25, 0.25, 

0.25, 0.25].  After calculating the contribution of individual expert Di, we apply equations 

(5.52) and (5.53) to update the weights.  Table 5.13 shows the change of weights to 

experts during the first two iterations.  It indicates that in this case, the weights to experts 

E1 and E3 increase while the weights to experts E2 and E4 decrease.  This is the result of 

experts E1 and E3 contributing more to the final group decision.   

Table 5.13 Weights of experts 

i E1 E2 E3 E4 
Original Weights (u0), r=0 0.2500 0.2500 0.2500 0.2500 

New Weights (u1), r=1 0.2969 0.1719 0.2969 0.2344 
New Weights (u2), r=2 0.3189 0.1308 0.3383 0.2120 

 

With the change of the weights to experts, the consensus level increases.  When the 

process continues gradually the weights of the experts change while the consensus level 

increases.  The process is depicted in Figure 5.2.  The figure shows the change of the 

weights of the four experts as the consensus changes from 0.833 to 0.99.  The figure 

shows that to increase consensus initially the importance of experts E1 and E3 increase.  
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Ultimately, to reach a perfect consensus with experts having differing opinions, 

eventually all experts but one are completely discounted. 

One important thing in this procedure is that the alternative order from the four-

member group is always A4, A1, A2, A3 regardless of the weights to experts changed in 

this case. 

0.0
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0.4

0.6

0.8

1.0

0.833 0.886 0.908 0.920 0.944 0.970 0.987 0.995 0.998

u1
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Figure 5.2 Group consensus levels with the changing of weights to experts 

5.4.2 Similarity-Based 
The new similarity based consensus measure works with the FLOWA aggregation 

operator. After we aggregate group members' opinions, we have a distribution along the 

linguistic labels for each expert. Also, we have a distribution for the group. The approach 

is to measure the distance between individual expert and the group, and then similarity as 

well as the consensus.  

Step 1. Aggregation results from FLOWA 
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 As we introduced in Chapter 4, the FLOWA aggregation operator results in a 

possibility distribution along the linguistic label set.   That is, after distribution of the 

evaluation from each expert, the possibility of the jth linguistic label from kth expert to ith 

alternative is: F
ijkµ . Then the group opinion to alternative Ai on the jth linguistic label 

represented by a possibility distribution is: 

∑
=

=
q

k

F
ijkij

1
µµ  (5.54) 

Step 2. Distance from the group 

Assume each expert uses one linguistic label as his/her evaluation to each 

alternative, we define the original membership function to linguistic label sj from expert 

Ek on alternative Ai as following: 

iikik xxD −=
 (5.55) 

Where xik is the initial evaluation to alternative Ai from expert Ek, ix is the mean 

value calculated from aggregated group opinion by FLOWA. 

Step 3. Similarity/Dissimilarity Measure 

The similarity is a function of the distance. Currently, there are many similarity 

measures as we summarized in Chapter 2. One possible similarity measure is to compare 

the ratio of the total distance. 

T
Ds ik

ik −=1
 (5.56) 
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Where Sik is the similarity between expert Ek and the group on alternative Ai, sk is 

the average similarity between expert Ek and the group. 

Step 4. Group Consensus 

Thus, the consensus is the average of the similarities from all experts.  

              1
1
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k
ks

q
C

 (5.58) 

Again, q is the number of expert in the group.  

Example 5.3: 

A group with four experts and three alternatives, the Table 5.14 gives the 

evaluations from the group. Experts choose their evaluations form a linguistic set with 

nine labels S={s0, s1, s2, s3, s4, s5, s6, s7, s8}. 

Table 5.14 Experts' evaluations 

 A1 A2 A3 Weight 
E1 s1 s2 s0 0.0625 
E2 s4 s1 s3 0.1875 
E3 s0 s3 s4 0.3125 
E4 s2 s2 s3 0.4375 

 

For alternative A1, we have the following membership functions (Table 5.15), in 

which the group opinion is calculated from FLOWA.  

Table 5.15 FLOWA aggregation result 

A1 s0 s1 s2 s3 s4 s5 s6 s7 s8 
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E1 0 1 0 0 0 0 0 0 0 
E2 0 0 0 0 1 0 0 0 0 
E3 1 0 0 0 0 0 0 0 0 
E4 0 0 1 0 0 0 0 0 0 

Group 0.125 0.253 0.340 0.207 0.075 0.000 0.000 0.000 0.000 
 

Apply the distance and the similarity formula (5.55)~(5.58): 

Table 5.16 Similarity based consensus 

Expert Similarity 
E1 0.8585 
E2 0.8429 
E3 0.8203 
E4 0.9679 

Consensus 0.8724 
 

5.4.3 Markov Chain Based Consensus Measure 
Based on Degoot and Morris (1974), experts give peer evaluation by giving weights 

to other members' opinions. Consensus happens when the Markov process reaches the 

steady state. Our method to measure the current consensus level is to compare the current 

peer-evaluation matrix to the steady state matrix. The similarity between these two matrix 

can be used as the consensus level. This is exactly the same idea with TOPSIS, 

Technique for Order Preference by Similarity to Ideal Solution. Several similarity 

measure approaches from the multi-dimensional category can handle the problem like 

this. One of them is from Di Nola et al. (1994) as we introduced in Chapter 2.  We will 

use the following example to demonstrate the procedure of the consensus measure 

method.    

Example 5.4: 

1. Experts evaluate alternatives by giving pairwise comparison matrix, totally 4 

alternatives 
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2. Apply FLOWA to get evaluation of each alternative from each expert. Totally, 

we have 4 similar tables from 4 experts in this case. 

Table 5.17 The evaluation from expert E1 

E1 s0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

A1 0 0.44 0.33 0.22 0 0 0 0 0 
A2 0 0 0 0.44 0.33 0.22 0 0 0 
A3 0.67 0.33 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0.44 0.33 0.22 0 

 
 

3. Experts evaluate peer group member’s opinion by giving weighting vectors 
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We have now 4 weighting vectors (each row) indicating 4 experts’ opinions to other 

members’ opinions. From the 4 weighting vectors, we generate one weighting vector as 

the group’s weighting vector. Use OWA to aggregate the weighting vectors from all 

group members, column by column. For example, use “most” experts’ opinions.  
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)( , with (a, b)=(0.3, 0.8), we generate aggregating vector 

(0, 0.4, 0.5, 0.1).  
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For the weights to E1, using (0.6, 0.05, 0.40, 0.20)T, applying OWA method,       

F(0.6, 0.05, 0.40, 0.20)=0*0.6+0.4*0.40+0.5*0.20+0.1*0.05=0.265. For E2, F(0.10, 0.90, 

0.20, 0.10)=0*0.9+0.4*0.20+0.5*0.10+0.1*0.10=0.140. Similarly,  For E3, F(0.10, 0.05, 

0.30, 0)=0*0.30+0.4*0.10+0.5*0.05+0.1*0=0.065, and for E4, F(0.20, 0, 0.10, 

0.70)=0*0.7+0.4*0.20+0.5*0.10+0.1*0 =0.130.  

Now, normalize the weights (0.265, 0.140, 0.065, 0.130), we get, w=(0.442, 0.233, 

0.108, 0.217). 

4. Aggregate all experts’ opinions together get a group opinions 

∑
=

⋅=
q

k
ijkk

G
ij w

1
µµ  (5.60) 

Where kw is the normalized weight to expert Ek, ijkµ  is the membership value to jth 

linguistic label with alternative Ai from the FLOWA aggregation, q is the number of 

experts. Table 5.18 shows the group evaluation aggregated using weighted average from 

four experts’ FLOWA outputs.  

Table 5.18 Group evaluation aggregated by group’s weighting vector 

G s0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 

A1 0 0.10 0.20 0.30 0.25 0.15 0 0 0 
A2 0 0 0 0.45 0.27 0.15 0.13 0 0 
A3 0.27 0.18 0.16 0.14 0.10 0.10 0.05 0 0 
A4 0 0 0.30 0.25 0.20 0.15 0.10 0 0 

 

5. Measure consensus 

Similar to Degoot and Morris’s method (1974), find steady-state weights using 

Markov chain approach (5.60). The steady-state weights indicate the ideal weighting 

vector the group can get, that means, using this weighting vector, the group gets the best 

consensus.  
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Pππ =  (5.61) 

1=∑π  (5.62) 

Where π is called the stationary distribution. In the example, the steady state 

matrix is calculated as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

397.0047.0458.0098.0
397.0047.0458.0098.0
397.0047.0458.0098.0
397.0047.0458.0098.0

4
3
2
1

E
E
E
E

 

Measure similarity between the steady-state matrix and the matrix from experts in 

step 3. 

(0.442, 0.233, 0.108, 0.217) and (0.098, 0.458, 0.047, 0.397) 

s= 795.0205.01)(1
1

2 =−=−− ∑
=

q

k

G
k

S
k uu  

5.5 Changing Opinions Based on Consensus 
Consensus is a tool used to measure the quality of the group decision making. The 

goal of the group decision making is to get an acceptable group solution with all group 

members' support. Based on the consensus level and the contribution of each group 

member, we should be able to give suggestions on which direction the group should 

move for a better consensus, and thus better group solution.  

In this section, we shall present a solution to give the best moving direction for the 

group in using consensus.  

5.5.1 A Feedback Mechanism from Herrera-Viedma et al. (2002)  
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When the consensus measure has not reached the consensus level required, then the 

experts’ opinions must be modified. Herrera-Viedma et al. (2002) use the proximity 

measures to build a feedback mechanism so that experts can change their opinions in 

order to get closer opinions between them. This feedback mechanism will be applied 

when the consensus level is not satisfactory, and will be ceased when a satisfactory 

consensus level is reached. 

The rules of this feedback mechanism will be easy to understand and to apply, and 

will be expressed in the following form: "If the expert’s position in the ranking is high 

(first, second, etc.) then that expert does not change his opinion much, but if it is low 

(last) then that expert has to change his opinion substantially. In other words, the first 

experts to change their opinions are those whose individual solutions are furthest from 

the collective temporary solution." Herrera-Viedma et al. (2002) use a threshold to 

calculate how many experts have to change their opinions. 

The opinions will be changed using the following three rules: 

• If 0<− k

ii

E
A

G
A OO , then increase evaluations associated with alternative Ai. 

• If 0=− k

ii

E
A

G
A OO , do not change evaluations associated with alternative Ai. 

• If 0>− k

ii

E
A

G
A OO , then decrease evaluations associated with alternative Ai. 

G
Ai

O is the index of the ith alternative in the group’s selection order.  

k

i

E
AO is the order of the ith alternative based on the kth expert  
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The consensus reaching process will depend on the size of the group of experts as 

well as on the size of the set of alternatives, so that when these sizes are small and when 

opinions are homogeneous, the consensus level required is easier to obtain. On the other 

hand, the change of opinion can produce a change in the temporary collective solution, 

especially when the experts opinions are quite different, i.e., in the early stages of the 

consensus process. In fact, when experts opinions are close, i.e., when the consensus 

measure approaches the consensus level required, changes in experts’ opinions will not 

affect the temporary collective solution; it will only affect the consensus measure. This is 

a convergent process to the collective solution, once the consensus measure is high 

“enough”.  This will be illustrated with a practical example in the next section. 

5.5.2 A New Changing Direction Approach 
Since the final solution is one or several alternatives, we do not need to spend time 

on some alternatives that are obviously "bad solutions".  The idea here is that we divided 

all alternatives into four areas: green zone, red zone, and two gray zones. We use two 

thresholds: the threshold δr  is for the ranking order of alternatives, while the threshold 

δc  is for the consensus. Then the following rules can be applied to deicide which zone an 

alternative belongs: 

• If δrOG
Ai

≥  and δcci ≥ , then alternative Ai should be assigned into the green 

zone.  

• If δrOG
Ai

<  and δcci < , then alternative Ai should be assigned into the red 

zone.  

• If δrOG
Ai

≥  and δcci < , or δrOG
Ai

<  and δcci ≥ , then alternative Ai should be 

assigned into the gray zone.  
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Figure 5.3 All alternatives are assigned into four zones for further consideration 

We then apply the following rules to make choices: 

• If the number of alternatives in green zone is greater or equal to p (number of 

alternatives need for the solution), we stop here and give the alternatives in 

green zone as solution.  

• If the number of alternatives in green zone is smaller to p, we should try to 

increase the consensus and/or ranking of alternatives in the gray areas as 

candidates.  

• For the alternatives in the red area, both consensus and the ranking are not 

promising, they should not be evaluated anymore. 

5.6 Summary  
In this chapter, we explained the meaning of consensus and introduced the state-of-

the-art literature review on current existing consensus measure methods which are 

categorized into two groups, hard and soft consensus. We also presented three new 

consensus measure methods based on similarity measure, the preference order of 

alternatives, and Markov chain theory. In a consensus-based approach for achieving 

sustainability, the decision process becomes iterative, using feedback to evaluate progress 

in discussions among decision makers. Degree of consensus indicates the level of 

agreement with the ordinal ranking of each alternative.  

Group Rank 
Order of 

Alternative 

cδ 1.0 Consensus

rδ 

Green Zone

Red Zone

Gray Zone

Gray Zone
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CHAPTER 6 

Cost and Utility of Consensus Analysis 

Ephrati and Rosenschein (1992) proposed the Clarke Tax mechanism as a plausible 

group decision procedure where experts choose their own utility functions for the 

evaluations of alternatives. The basic idea is to make sure that each expert has only one 

dominant strategy. This guarantees that the group as a whole will choose an outcome that 

maximize the sum of the members’ individual utilities.  

In this chapter, we analyze the cost in group decision making and generates a least 

cost of group consensus. We develop optimization models to maximize two types of 

consensus under a budget constraint. Finally considering utilization of the consensus 

provides a practical recommendation to the desired level of consensus, considering its 

cost benefits. 

6.1 Introduction 
Time is a major factor of risk. Risk event will always occur within a time interval. 

Hansson (2002) writes this about the meaning of the word "risk". The most common ones 

are the following: 

• Risk = an unwanted event which may or may not occur. 

• Risk = the cause of an unwanted event which may or may not occur. 

• Risk = the probability of an unwanted event which may or may not occur. 
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• Risk = the statistical expectation value of unwanted events which may or may 

not occur. 

• Risk = the fact that a decision is made under conditions of known probabilities 

6.2 Utility Theory Review 
Traditionally, the desires or wants that can be ordered on a single scale are called 

utility. There are a number of axioms of rational choice, e.g. completeness, which says 

any two bundles can always be compared and ranked; transitivity states that when A is 

preferred to B, and B is preferred to C, then A should be preferred to C.  

Utility is replaced with `value' in prospect theory (Kahneman and Tversky, 1979). 

'Utility' usually thought of in terms of net wealth - total assets; 'Value' is considered in 

terms of gains and losses from some reference point.  Also the value function for gains 

and losses is different.  The value function for losses (the curve lying below the 

horizontal axis) is convex and relatively steep, whereas that for gains is concave and less 

steep.   

People seem to differ in their tolerance for uncertainty and their willingness to take 

risks.  People tend to be interested in the potential that uncertainty offers, seeking to 

maximise the possible gains available (Lopes, 1987).  These she labels risk-seekers.  

Others are more concerned with security and motivated to avoid extreme losses by 

seeking safe choices.  These are labelled risk averse.  Kahneman and Tversky (1979) 

have conducted lots of experiments to show that risk-seeking in losses is a robust effect, 

particularly when the probabilities of loss are substantial.  e.g., if forced to choose 

between an 85% chance to lose $1000 (with a 15% chance to lose nothing) and a sure 

loss of $800, a large majority of people will choose the gamble over the sure loss.  This is 
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a risk-seeking choice because the expectation of the gamble (-$850) is inferior to the 

expectation of the sure loss (-$800).  This type of behaviour has also been observed in 

non-monetary situations such as hours of pain, loss of lives.  

So, in summary, you have to look at the rationality of choices under uncertainty or 

risk in terms of the context within which the choice is made, and it may also be necessary 

to take individual differences in risk preference also into account.  The context is one 

factor that enters into the perception stage and becomes part of the calculation in the 

decision process. 

The standard decision theoretical solution to the utilitarian causal dilution problem 

is the maximization of expected utility. One way to maximize expected utility is to 

choose among a set of alternatives one of those that have the highest expected, i.e. 

probability-weighted utility. This decision rule is based on a precise method for dealing 

with probabilistic mixtures. 

6.2.1 The Attitude Towards Risk 
Every day we face risks; when we take a shower, walk across the street or make an 

investment. The effort that the decision makers make for example buying insurance, 

depends on their preferences. An individual might be very conservative and choose to 

purchase a lot of insurance, or she might like to take risks and not purchase any insurance 

at all. A question that many people ask is: how much effort is the good worth? So, how 

much is the individual willing to risk in order to receive the good or award? The answer 

is: it depends on the individual's attitude towards risk. The decisions are made upon the 

amount of risk that she is willing to face. 
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An individual’s attitude towards risk makes it possible to categorize her into one of 

the three following groups (Varian, 1999).  

6.2.1.1 Risk aversion 

If the individual is risk-averse, she prefers to have the expected value of wealth 

rather than to face the gamble. For a risk-averse customer the utility of the expected value 

of wealth is greater than the expected utility of wealth.   That is, for any prospect (x, f(x)), 

u(E(x)) > E(u(x)).  

6.2.1.2 Risk Prone 

A risk-loving individual makes her decisions by preferring to face a gamble (i.e. 

take the risk), rather than to obtain the so-called expected value of wealth. For a risk-

loving customer the expected utility of wealth is greater than the utility of the expected 

value wealth.  

The certainty income is the income received for certain that has the same utility as a 

risky prospect. u(CE) = E(u(x)). A comparison of the certainty equivalent and the 

expected income gives a measure of risk called the risk premium, defined in this context 

as RP = E(x) – CE or implicitly by the relationships u(CE) = u(E(x)-RP) = E(u(x)). 
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6.2.1.3 Risk Neutral 

A risk-neutral person does not care about the risking of wealth at all- only about its 

expected value. 

6.2.1.4 Concavity, convexity and the attitude to risk 

Strict concavity of the utility function implies u(p1x1 + p2x2) > p1u(x1)+p2u(x2) and 

therefore implies strict risk aversion. Strict convexity implies risk loving. If the utility 

function is linear, the individual is risk neutral. Figure 6.1 shows the three types of risk 

attitudes.  

 

 Figure 6.1 Three types of risk attitudes 

Risk -averse   
kljdjj

Risk lover 

Risk neutral 
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6.2.2 Risk Measures in Linguistic Group Decision Making 

We introduce a parameter α  in FLOWA to represent the risk attitude from expert. 

kα , is the power for the kth expert’s aggregation function. For expert Ek’s evaluation, 

instead of using a linear distribution (y=x) in FLOWA, we use two parameter functions. 

αxy =  and α
1

xy =  to control pessimism and optimism as explained in Table 6.1.  

Table 6.1 Expert's risk attitude 

 α  

Pessimism 10 ≤< α  
Optimism 1≥α  

 

 Figure 6.2 FLOWA with experts' preference parameter α  

As we stated in Chapter 4, we define )(xminja ikmin k
== , )(xmaxjb ikmax k

== , 

then the left-hand side function as shown in Figure 6.2 is 
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… … 
i
Sk

µ

j
Sk

µ

l
Sk

µ

iw

lw

jw

s0 s1 si si+1 sk sk+1 sl sl+1 
… … 

sj sj+1 
…

sT 

α)(1 axmy −=

Left-hand side function
α
1

2 )( xbmy −=  

Right-hand side function



 238

The right-hand side function is:  

bxxxbm ik ,...,,)(y
1

2 =−= α  (6.2) 

To solve for m1 and m2, we add two constraints: 
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The constraint 6.3 is used to make all the weights the linguistic labels between sa 

and sb sum to the original weight wk on the linguistic label sk. The constrain 6.4 

guarantees the weight to the linguistic label sk calculated from left-hand side function and 

right-hand side function is the same. Then,  

∑∑
+==

−
−

−
+−

=
b

xj
ik

ik
x

aj

k

ik

ik

jb
xb

ax
aj

w
m

1

1

1

1

)(
)(

)(
)( α

α

α
α

 (6.5) 

∑∑
+==

−+−
−

−
=

b

xj

x

ajik

ik

k

ik

ik

jbaj
ax

xb

w
m

1

1
12

)()(
)(
)( αα

α

α

 (6.6) 

Thus, 
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The aggregated group opinion is: 

∑
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µµ  (6.8) 

The parameter α represents the risk attitude of expert (Table 6.1). For instance, in 

Figure 6.2 an optimistic expert uses 1≥α , the higher index of linguistic labels get more 

weights than the lower ones. In this way, we combine experts’ risk attitudes in the 

FLOWA aggregation process. 

6.3 Consensus Analysis with Cost Optimization 

6.3.1 Literature Review 
Subramanian and Venkataraman (1998) develop a cost-based algorithm that takes a 

decision support processing query plan as input and generates an optimal "covering 

plan", by minimizing redundancies such as repeated access of same data source and 

multiple execution of similar processing sequences in the original plan. Minimizing these 

redundancies would significantly reduce the query processing cost. 

Pednault et al. (2002) propose a novel approach to sequential decision making 

based on the reinforcement learning framework. The approach attempts to learn decision 
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rules that optimize a sequence of cost-sensitive decisions so as to maximize the total 

benefits accrued over time. 

Trull (1966) investigates 100 case examples to understand the mechanics involved 

in heuristic decisions, or decisions where the lack of a measure or index of effectiveness. 

Examination of the cases showed that although the decision process was not explicit, a 

certain clustering of key variables appeared as a common feature of the decision-reaching 

process. One cluster of variables was found to surround the quality of the decision itself. 

These included Compatibility with Existing Operating Constraints, Nearness to Optimum 

Time for Decision related to Proximity to Optimum Amount of Information, and the 

Problem Solver's Influence on the Decision. The second major factor, implementation of 

the decision, was affected by Avoidance of Conflict of Interests, Reward-Risk Factors, 

and the Degree of Understanding Achieved.  

Lee’s (2002) similarity based optimal consensus model is an improvement of Hsu’s 

(1996) similarity aggregation method (SAM).  The new method can deal with the 

situation where the supports do not intersect and tell whether the aggregation weights of 

individual opinions derived from SAM are optimal or not.  Lee chooses Tong’s distance 

metric(1980): 
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And the similarity between A and B is defined as: 
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Where U is the universe of discourse and u=max (U)-min (U) 

Also, the dissimilarity between A and B is defined as: 

B)(A,S-c 2  (6.11) 

Where c is a constant and c>1 

Then an optimization model is constructed to minimize the sum of weighted 

dissimilarity between aggregated opinion and each individual opinion. So, the 

optimization model is as followings. (Note: this analytical problem is quite similar to 

fuzzy c-means problem.) 
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Subject to: 
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10 ≤≤ jw  (6.14) 

m is an integer and m>1. 

Lee (2002) proposes an OAM algorithm to solve the optimization model with the 

degree of importance of experts. The consensus is a fuzzy set. 
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6.3.2 Cost Analysis 
As we discussed before, it is very rare when all individuals in a group share the 

same opinion about the alternatives, since a diversity of opinions commonly exists.  

There are several explanations that allow for experts not to converge to a uniform 

opinion.  It is well accepted that experts are not necessarily the decision makers but 

provide an advice (Shanteau et al., 2002).  Weiss and Shanteau (in press) also describe 

five structural and five functional factors that explain this necessary lack of agreement. 

Consensus makes it possible for a group to reach a final decision that all group members 

can support among these differing opinions. But consensus could be very time 

consuming. Cost analysis can be applied to improve decision making. A cost analysis can 

be the critical process needed to solve group decision making problems. In an expanding-

resource environment, cost analysis can be used to encourage efficiency by associating 

inputs (costs) with outputs (group solution with desired consensus). 

Cost analysis is a management process which can be used to provide information 

useful to effective decision-making (Dopuch et al., 1982). Knowledge about costs is an 

essential ingredient in effective decision-making and contributes to improved planning, 

implementation, and analysis of every aspect of endeavor. Cost analysis provides a tool 

for understanding what services are being provided; what they cost; why they cost what 

they do; and what can, and should, be changed. 

There are two kinds of costs: direct cost and indirect cost. Direct costs are usually 

subdivided into personnel costs consisting of wages and benefits, and other direct costs 

consisting of equipment used and supplies consumed in the delivery of a service. Usually, 

there are two types of indirect costs: indirect service costs and indirect administrative 
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costs. Indirect service costs are those that might be performed by a service unit by and for 

itself, but which are centrally controlled. Indirect administrative costs are associated with 

activities that must be incurred by the organization, but which do not directly benefit any 

service delivery function. 

In group decision making, the main cost is associated with time, which connects to 

direct costs such as the experts' resources utilization and indirect costs as administration. 

Here, we simply assume the cost is a function of the time for improving consensus. We 

use a resistance coefficient ε  associated with each expert to measure efforts needed to 

persuade the expert to make change. This resistance coefficient represents the time, thus 

cost for consensus.  We also assume that the resistance coefficient ε  to each expert is 

known. In practice, this value can be learned from history data, or estimated based on 

expertise or personality. A further assumption is that the resistance coefficient ε  is a 

fixed value. Future research can give it a function of the changing opinion. We do not 

consider the budget constraint, since we are trying to get the cost of consensus. In this 

way we should be able to find which consensus gives us the best value of investment.  

6.3.3 Optimization Model 
In this section, we shall build an optimization model for the following procedure 

describes the original data format from experts, how to add aggregation constraint, order 

calculation, and consensus measure.  

6.3.3.1 Step 1. Expert evaluation 

Expert Ek choose one linguistic label sj as the evaluation xki to alternative Ai (Table 

6.2). 
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Table 6.2 Experts' evaluations represented by linguistic labels 

 A1 A2 …… An 
E1 11x  12x  …… nx1  

E2 21x  12x  …… nx2  

…… …… …… kix  …… 

Eq 1qx  12x  …… qnx  
 

Where }...,,,{,, 10 Tjki sssSSswherjx =∈=  

6.3.3.2 Step 2. FLOWA to aggregate all experts’ opinions 

Define kε , ( 0≥kε , k=1, 2,…,q) as a resistance coefficient to Ek. It stands for the 

willingness of the expert Ek to be persuaded on changing his opinion. kε =0 means the 

expert is very easy to be persuade to change his evaluation with no additional cost. 

∑
=

=
q

k

E
ijij

k

1
µµ  (6.15)  

ijµ is the aggregated membership from all experts to the linguistic label sj on 

alternative Ai, this is calculated from FLOWA (Table 6.3).  

kE
ijµ is the weight distributed from the weight uk of expert Ek to the jth linguistic 

label on alternative Ai. The weight uk of expert Ek can be either by assignment or 

calculating form OWA.  
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Table 6.1 FLOWA aggregation results 

 A1 …… An Resistance  
Coefficient 

E1 11x  …… nx1  1ε  

E2 21x  …… nx2  2ε  

…… …… kix  …… kε  

Eq 1qx  …… qnx  qε  

G ( 10µ , 11µ ,..., T1µ ) ( 0iµ , 1iµ ,..., iTµ ) ( 0nµ , 1nµ ,..., nTµ )  

 
 

The aggregated group opinion is: 

∑
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F
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µµ  (6.16) 

6.3.3.3 Step 3. Ranking the alternatives 

Based on the aggregated group opinion, we calculate the mean (6.17) and the 

standard deviation (6.18) of the aggregated group opinion to each alternative (Ben-Arieh 

and Chen, in press). The mean )(Gxi is as the group opinion of the ith alternative.  
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Compute the order of the alternatives from each expert and the whole group. k

i

E
AO  

represents the order of the ith alternative from kth expert. The order is from the original 

expert evaluation ikx .  

)|( iki
E
A xAOrderO k

i
=  (6.19) 

The order of the ith alternative from the group  G
Ai

O  is based on the calculated mean 

and the standard deviation. The larger mean value an alternative has, the smaller ranking 

order it gets. If two alternatives have the same mean value, the one with smaller standard 

deviation will get the smaller ranking order.  

)),(|( iii
G
A xAOrderO

i
σ=  (6.20) 

6.3.3.4 Step 4. Consensus Measure 

As we presented in chapter 5, there are several consensus measure methods. Here, 

we use two approaches: one is order based, the other is mean based.  

Method 1: Order based 

The consensus of the ith alternative from the group  iC  is based on the order 

difference cumulated from each group member and the group. (Ben-Arieh and Chen, in 

press). The total group consensus C is the averaging value of the alternative consensus.  

 

 

 



 247

∑
= ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
×⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−=

q

k
k

E
A

G
A

i w
n

OO
C

k

ii

1 1
1  (6.21) 

∑
=

=
n

i
iC

n
C

1

1  (6.22) 

Method 2: Mean based 

The mean based consensus measure is based on the distance between the opinion 

from individual expert and from the group, then measure the similarity with the formula: 
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Where iks is a linguistic label as the evaluation from expert Ek to alternative Ai.  ix  

is the group opinion from formula (6.17). T+1 is the cardinality of the linguistic label set, 

and n is the number of alternatives.  

Thus, the consensus is the average of the similarities from all experts.  
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6.3.3.5 Step 5. Changing Direction 

Based on the consensus level, we could give suggestions on how to change opinions 

for better consensus. We give three similar rules from Herrara et al. (1996b).  

Method 1: Order based 
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For order based consensus, k

j

k

i

E
A

E
A OO >  means expert Ek thinks that alternative Aj is 

more important than alternative Ai. The opinions will be changed using the following 

three rules: 

• If 0<− k

ii

E
A

G
A OO , then increase evaluations associated with alternative Ai. 

• If 0=− k

ii

E
A

G
A OO , do not change evaluations associated with alternative Ai. 

• If 0>− k

ii

E
A

G
A OO , then decrease evaluations associated with alternative Ai. 

G
Ai

O is the index of the ith alternative in the group’s selection order.  

k

i

E
AO is the order of the ith alternative based on the kth expert  

Method 2: Mean based 

The opinions will be changed using the following three rules: 

• If 0>− iki xx , then increase evaluations associated with alternative Ai. 

• If 0=− iki xx , do not change evaluations associated with alternative Ai. 

• If 0<− iki xx , then decrease evaluations associated with alternative Ai. 

ix  is the mean value of the ith alternative from the group opinion  

ikx is the evaluation to the ith alternative from the kth expert  
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6.3.3.6 Step 6. Opinion Change Costs 

Define kε , ( 0≥kε , k=1, 2,…,q) as a resistance coefficient to Ek (Table 6.3). It 

stands for the willingness of the expert Ek to be persuaded on changing his opinion. 

kε =0 means the expert is very easy to be persuade to change his evaluation with no 

additional cost. The total cost of changing opinions can be calculated by: 

∑∑
= =

−⋅=
q

k

n

i
ikikk xxCost

1 1
|'|ε  (6.26) 

Where 'ikx is the initial evaluation from expert Ek to alternative Ai, while ikx is the 

final evaluation to be solved, q is the number of experts, and n is the number of 

alternatives.  

6.3.3.7 Step 7. Optimization model with budget constraint δ. 

Given the cost constraint δ , the total optimization model is summarized in the 

followings.  

Order-based consensus model 
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1

∑
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Tj ≤≤0  (6.38) 
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Mean-based consensus model 

Objective: max               1
1
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qkniT ≤≤≤≤∈ 1;1},,...,1,0{x ik  (6.47) 

Tj ≤≤0  (6.48) 

6.3.4 Solution Methodology 
It is clear that the models are nonlinear problems (NLP). For a small problem with 

small number of group number and alternatives, we can enumerate the solution space and 

find the optimal solution quickly. But, for a larger problem, the solution space increases 

exponentially as:  

nqT )1( +  (6.49) 

For instance, as shown in Table 6.4, even for a small 5 linguistic labels set with 

T=4, three alternatives and 3 experts, the solution space is (4+1)3x3=59=1,953,125. For a 

PC computer with 1.0 GHz CPU power, the computation time of one feasible solution is 

about 1/15 second. So searching the total solution space will take about 36 hours. 

Table 6.4 Calculation time comparison 

T+1 n q Solution Space Seconds Hours Days 
5 3 3 1,953,125 130,208 36.17 1.5
7 3 3 40,353,607 2,690,240 747.29 31.1
5 4 4 1.52588E+11 10,172,526,042 2,825,701.68 117,737.6
7 4 4 3.32329E+13 2.21553E+12 615,424,640.18 25,642,693.3

For a large problem, it is not efficient to use enumeration. The response time is 

critical for the consensus optimization problem. It is meaningless if it takes too long to 

solve the problem. Since the decision cost is a function of time. It is necessary to develop 

a more efficient solution methodology. 
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In this section, a heuristic-based search algorithm is developed for the consensus 

optimization problem (Figure 6.3). A "generate-and-test" approach is adopted, in which 

one or a few possible solutions are generated, and the status of the problem is tested. 

Based on the result, the nest step is decided. The breadth-first search procedure is used as 

the search engine. A natural question is how efficient the algorithm will be, since the 

search space may be large. That is where heuristics come in. The key here is to compare 

the current node in the searching tree. If the next node will give positive effect on higher 

consensus with cost not exceed the budget, we continue searching to the next node, 

otherwise, return to the last node.  

6.3.4.1 Branch and Bound 

Figure 6.3 shows the breadth-first branch-and-bound search algorithm for the 

consensus optimization problem. At each node, the problem is represented by set of 

evaluations from the group members with the calculated consensus and the cost to move 

to the current values.  

The Breadth First Search (BFS) algorithm starts at a specific node (Initial experts' 

evaluation), which becomes current node. Then algorithm traverses by any edge incident 

to the current node. If the edge leads to an already visited node, then we backtrack to 

current node. If, on other hand, edge leads to an unvisited node, then we go to this node 

and it becomes our new current node. We proceed in this manner until we can fathom a 

node by comparing the cost and the budget constraint. The process terminates when all 

nodes are fathomed.   
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The best solution is saved during the search process and is updated whenever a new 

and better solution is found. There are three important components that deserve separate 

discussions. The first is the preprocessing. Pre-processing defines the order of the 

branching nodes. By comparing the cost of changing opinions, the expert with the least 

cost should be branched first. Another criterion for the order of branching is to do the 

outlier analysis. The expert farthest from the group should be considered first, since 

changing his/her evaluation will benefit the consensus most.   

 

Figure 6.3 Schematic flow of the search algorithm for the consensus optimization 

To improve the efficiency of the algorithm, a pruning scheme is necessary to avoid 

searching for branches that will not lead to better solutions than those already found. 

There are some criteria that can be used to evaluate the quality of the solutions generated. 

One of the most important criteria is of course the current cost value. Since we are using 
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the BFS to search for the solution, the first node with cost to the budget threshold is the 

one with better consensus. Branching deeper may get better consensus, but will increase 

the cost. Another criterion is to compare the consensus. If the current node gives the same 

cost value, but worse consensus, it may not be the feasible solution even for the children 

of the node. These criteria are used to prune branches of the breadth-first search tree that 

are lead to inferior solutions in the algorithm.   

So, at each node, we check the current solution on the three criteria: (Figure 6.4) 

• Choose which value (changing expert) to change 

• Choose which direction (increase/decrease) to move 

• Calculate and compare with current consensus and cost value 

6.3.4.2 Fathom 

Fathoming is to determine that it is not necessary to explore the descendants of a 

particular node in the search tree. In the consensus optimization problem, a live node k is 

fathomed if the following condition is observed. 

 Costk > δ (by cost bound) 

With respect to the fathoming by bounds, the efficiency of implicit enumeration 

depends on several things, including 

1. The quality of the upper bound (for the consensus maximization problem, the 

smaller the bound the better); 

2. The computational difficulty in obtaining the upper bound (the easier the better); 

3. The quality of the lower bound (the larger the better); 
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4. The computational difficulty in obtaining the lower bound; 

5. The sensitivity of the objective function value to the decision variables in x (the 

more sensitive the better; many “near-optimal” solutions can cause difficulties). 

Then, if at some node k, -zk =(Consensus, Cost)k satisfies this inequality, the node is 

fathomed. 

 

Figure 6.4 Branching examples in BFS for the consensus optimization problem 

6.3.4.3 Pseudo Code 

Algorithm consensus optimization 

Begin 
OPEN: Queue; 

Cost Threshold: int; 

Preprocessing and get the start node; 

Put start node on OPEN; 

Fathomed by 
cost 
13>δ=10 

Fathomed by 
cost 
13>δ=10 

… 

(s0, s3, s1, s2) 
(0.56, $4) 

(s2, s3, s1, s2)
(0.60, $0) 

(s4, s0, s1, s2) 
(0.67, $13) 

(s3, s3, s1, s2) 
(0.62, $2) 

(s0, s0, s1, s2) 
(0.64, $13) 

(s2, s4, s1, s2) 
(0.61, $3) 

(s2, s0, s1, s2)
(0.58, $9) 

(s1, s3, s1, s2)
(0.57, $2) 

(s2, s3, s1, s2)
(0.60, $0) 

(s4, s3, s1, s2)
(0.65, $4) 

(s4, s4, s1, s2)
(0.75, $7) … 

(s0, s4, s1, s2)
(0.54, $7) 

… 
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While OPEN is not empty 

Begin 
Remove the bottom most node from OPEN and label it Current; 

Calculate the Cost and Consensus of the Current node s; 

If node s is a solution node (Consensus>δ, Cost improved) 

Fathom node s; 

Update solution list with s; 

Else 

Begin 
Select a new expert with the least cost to change opinions; 

Expand node s, generating all its successors; 

Push these successors in the top of OPEN, in the order in 

which they are to be explored; 

End If 

End While 

End Algorithm 

6.3.4.4 Computation Time Comparison 

For a large problem, it is not efficient to use enumeration. The response time is 

critical for the computation on finding an optimal solution. The efficiency of the rule-

based search algorithm depends on the problem, especially the initial experts' evaluations, 

since this is used for the cost calculation. For instance, the problem with 5 linguistic 

labels, 3 alternatives, and 3 experts, the solution space is 1,953,125. As we stated earlier, 

it takes 130,208 seconds or 2,170 minutes to enumerate all the solution space. But using 

the branch and bound search algorithm, it takes only 44 minutes for worst case, which is 

given the budget as the smallest cost for a consensus to 1.  
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6.4 Utility of Consensus 
By solving the optimization model, we could plot the relationship between cost and 

consensus. That is, given a budget constraint, the best consensus we could get. It is 

common sense that the more money we spend, the better consensus we could get. Now 

the question is how much money we should spend on a problem to get an acceptable 

consensus?   

At this point, we utilize the utility theory for selecting the desired consensus level 

with best money value. To do this, we make two assumptions.  

• We assume the decision making group gives their utility functions of the cost  

• We assume the utility function of the desired consensus is also given.  

6.4.1 Utility of Cost (Monetary Outcome) 
The utility of the cost represents the money value of the budget, i.e., the expected 

return the decision makers are expecting. The utility function can be formulated as: 

xeu 11 α−−=  (6.50) 

Where x is the given budget level, and the parameter α1 represent the risk attitude 

the decision makers have (Figure 6.5).  

6.4.2 Utility of Consensus 
The utility of the consensus represents the benefit of the consensus the decision 

makers are expecting. Similarly, the utility function can be formulated as: 
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 Figure 6.5 Utility of Cost 
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 Figure 6.6 Utility of consensus 
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2αyu =  (6.51) 

Where y is the consensus level, and the parameter α2 represent the risk attitude the 

decision makers have (Figure 6.6).  

6.4.3 Cost vs. Consensus 
Given two utility functions of cost and consensus, we are able to generate the 

desired consensus level with given budget constraint. From formula (6.50) and (6.51), we 

get,  

[ ] 21
/1

1
αα xey −−=  (6.52) 

This shows the ideal relationship between cost and the consensus. That is, given a 

budget constraint, the desired consensus level is also available. The curves with different 

α1 and α2 values are given in Figure 6.7. By comparing the desired consensus and the best 

consensus we could get for a given problem, we should be able to choose which cost 

gives the best money value that is the best budget constraint we should use.  

As shown in Figure 6.8, two curves represent the theoretical desired consensus for 

given budget constraint and practical best consensus we can get by solving the 

optimization model respectively.  For any budget between 0 and x2, we can always get a 

consensus from the optimization model better than the desired level. That means any 

budget between 0 and x2 gives us good money value. On the other hand, any budget 

greater than x2 gives us worse money value, since the best consensus we can get by 

solving the optimization model is smaller than the desired consensus.  
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Consensus-cost Analysis 
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 Figure 6.7 Consensus-Cost analysis with different risk attitudes 

 

 Figure 6.8 Choosing the best cost constraint 
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6.5 A Numeric Example 
In this section, we demonstrate the entire process of generating a group decision 

and converging towards consensus.  The example is designed with the purpose of 

showing how to apply the FLOWA aggregation method and the procedure of reaching 

the desired consensus level.   

6.5.1 Problem Description 
Let the five linguistic labels set S be S = {W, BD, IM, GD, EX}, where,  

s4=EX  Excellent 

s3=GD  Good 

s2=IM  Impartial 

s1=BD  Bad 

s0=W  Worse 

 

A set of three alternatives A= {A1, A2, A3} as well as a set of three experts E= {E1, 

E2, E3} whose opinions are expressed by the following linguistic preference relation 

matrices. Experts have an associated weighting vector W=(0.2627, 0.3875, 0.3498) 

representing their importance or expertise in solving the problem. Expert uses a linguistic 

label ikx  as the evaluation to the ith alternative Ai derived from expert k, Sjjxik ∈= ,  is 

the jth linguistic label in the set S.  For example, expert E2 choose s3 as his/her evaluation 

to the alternative A1, then 312 =x .  The resistance coefficients reflect the costs for experts 

to change their opinions (Table 6.5).  
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Table 6.5 Experts' evaluations and their resistance for changing 

 A1 A2 A3 
Resistance Coefficient 

(Pseudocost) 
E1 s1 s2 s3 $2 
E2 s3 s1 s2 $3 
E3 s2 s3 s1 $4 

 

6.5.2 Mathematic Models 
The objective function to the order-based consensus optimization is to maximize 

∑
=

=
n

i
iC

n
C

1

1  (6.53) 

The objective function to the mean-based consensus model is to maximize 

)(
3
1

321 sssC ++=  (6.54) 

Where sk is the similarity between kth expert and the group.  

For both cases, the cost constraint can be written as:   

|1|4|3|4|2|4
|2|3|1|3|3|3
|3|2|2|2|1|2

111111

322212

312111
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xxx
xxx
xxxCost

 (6.55) 

6.5.3 Consensus 
By solving the optimization model with the heuristic based branch and bound, we 

plot the mean-based and order-based consensus-cost analysis in Figure 6.9 and 6.10 

respectively. Figure 6.11 compares the methods in one figure.  
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Mean-based Consensus-cost Analysis
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 Figure 6.9 Mean-based consensus-cost analysis 

Order-based Consensus-cost Analysis
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 Figure 6.10 Order-based consensus-cost analysis 
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Consensus-cost Analysis
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 Figure 6.11 Comparing the two consensus-cost analysis methods 

6.5.4 Moving Directions Based on Consensus Feedback 

Method 1: Order based 

The opinions will be changed using the following three rules: 

• If 0<− k

ii

E
A

G
A OO , then increase evaluations associated with alternative Ai. 

• If 0=− k

ii

E
A

G
A OO , do not change evaluations associated with alternative Ai. 

• If 0>− k

ii

E
A

G
A OO , then decrease evaluations associated with alternative Ai. 

G
Ai

O is the index of the ith alternative in the group’s selection order.  

k

i

E
AO is the order of the ith alternative based on the kth expert  
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Table 6.6 Experts' evaluations and their resistance for changing 

 A1 A2 A3 
Resistance  
Coefficient 

Cost 

E1 s1 s2 s3 2 0 
E2 s3 s1 s2 3 0 
E3 s2 s3 s1 4 0 

Consensus     (0.5791, $0) 

 

From FLOWA, we get the orders of alternatives, from individual expert and the 

group: (Table 6.7). 

Table 6.7 Orders from individual expert and the group 

Order A1 A2 A3 
E1 3 2 1 
E2 1 3 2 
E3 2 1 3 

Group 1 2 3 
Mean from FLOWA 2.0832 1.9749 1.9419 

 

Expert's changing direction is based on the order difference from the group's. For 

instance, the order of alternative A1 from Expert E1 is 31

1
=E

AO , but the order form the 

group is 1
1

=G
AO , so we have the relation: 0311

11
<−=− E

A
G
A OO . This means, expert E1 

should increase his/her evaluation to alternative A1.  
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The new consensus is as the following Table 6.8: 
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Table 6.8 Expert E1 increases the evaluation to alternative A1 

 A1 A2 A3 
Resistance  
Coefficient 

Cost 

E1 s1 s1 s3 2 2 
E2 s3 s1 s2 3 0 
E3 s2 s3 s1 4 0 

Consensus     (0.6355, $2) 

Method 2: Mean based 

The opinions will be changed using the following three rules: 

• If 0>− iki xx , then increase evaluations associated with alternative Ai. 

• If 0>− iki xx , do not change evaluations associated with alternative Ai. 

• If 0>− iki xx , then decrease evaluations associated with alternative Ai. 

ix  is the mean value of the ith alternative from the group opinion  

ikx is the evaluation to the ith alternative from the kth expert  

Table 6.9 Experts' evaluations and their resistance for changing 

 A1 A2 A3 
Resistance  
Coefficient 

Cost 

E1 s1 s2 s3 2 0 
E2 s3 s1 s2 3 0 
E3 s2 s3 s1 4 0 

Consensus     (0.8287, $0) 

 

Table 6.10 shows the mean values to alternatives from individual expert and the 

group: 
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Table 6.10 Mean values from individual expert and the group 

Mean A1 A2 A3 
E1 1 2 3 
E2 3 1 2 
E3 2 3 1 

Group 2.0832 1.9749 1.9419 

Expert's changing direction is based on the mean difference from the group's. For 

instance, the mean of alternative A1 from Expert E1 is 331 =x , but the mean form the 

group is 9419.13 =x , so we have the relation: 039419.1313 <−=− xx . This means, 

expert E1 should decrease his/her evaluation to alternative A3.  
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The new consensus is as the following Table 6.11: 

Table 6.11 Expert E1 decreases the evaluation to alternative A3 

 A1 A2 A3 
Resistance  
Coefficient 

Cost 

E1 s1 s2 s2 2 2 
E2 s3 s1 s2 3 0 
E3 s2 s3 s1 4 0 

Consensus     (0.8484, $2) 

 

Table 6.12 and Table 6.13 list the optimal consensus values with the corresponding 

cost constraints from order-based and mean-based methods respectively.  
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Table 6.12 All maximum consensus for giving costs (order-based)  

E1 E2 E3 

A1 A2 A3 A1 A2 A3 A1 A2 A3 
Consensus Cost

S1 S2 S3 S3 S1 S2 S2 S3 S1 0.5791 $0 

S1 S1 S3 S3 S1 S2 S2 S3 S1 0.6355 $2 

1 S2 S3 S3 S1 S1 S2 S3 S1 0.6437 $3 
S1 S0 S3 S3 S1 S2 S2 S3 S1 0.6792 $4 

S2 S1 S3 S3 S1 S2 S2 S3 S1 0.6792 $4 

S1 S1 S3 S3 S1 S1 S2 S3 S1 0.6875 $5 
S1 S1 S3 S3 S2 S2 S2 S3 S1 0.6875 $5 

S2 S2 S3 S3 S1 S1 S2 S3 S1 0.6875 $5 

S2 S2 S3 S3 S2 S2 S2 S3 S1 0.6875 $5 
S1 S2 S3 S3 S3 S2 S2 S3 S1 0.7603 $6 

S1 S2 S1 S3 S2 S2 S2 S3 S1 0.7625 $7 
S1 S1 S3 S3 S3 S2 S2 S3 S1 0.8041 $8 

S1 S2 S2 S3 S3 S2 S2 S3 S1 0.8041 $8 

S2 S2 S3 S3 S3 S2 S2 S3 S1 0.8041 $8 
S1 S2 S3 S3 S4 S2 S2 S3 S1 0.8249 $9 
S1 S2 S1 S3 S3 S2 S2 S3 S1 0.8916 $10 

S1 S2 S0 S3 S3 S2 S2 S3 S1 0.9354 $12 
S1 S2 S1 S3 S4 S2 S2 S3 S1 0.9562 $13 

S1 S2 S1 S2 S3 S2 S2 S3 S2 1 $17 

S2 S2 S2 S2 S2 S2 S2 S2 S2 1 $18 

Table 6.13 All maximum consensus for giving costs (mean-based)  

E1 E2 E3 

A1 A2 A3 A1 A2 A3 A1 A2 A3 
Consensus Cost

S1 S2 S3 S3 S1 S2 S2 S3 S1 0.8287 $0 

S1 S2 S2 S3 S1 S2 S2 S3 S1 0.8484 $2 

S1 S2 S3 S2 S1 S2 S2 S3 S1 0.8515 $3 

S2 S2 S2 S3 S1 S2 S2 S3 S1 0.8677 $4 

S1 S2 S3 S2 S1 S2 S2 S3 S1 0.8866 $5 

S2 S2 S2 S3 S1 S2 S2 S3 S2 0.8859 $6 

S2 S2 S2 S2 S1 S2 S2 S3 S1 0.9063 $7 

S1 S2 S3 S2 S2 S2 S2 S3 S1 0.9053 $8 

S2 S2 S2 S2 S1 S2 S2 S3 S2 0.9087 $9 

S2 S2 S3 S2 S1 S2 S2 S3 S2 0.9087 $9 

S2 S2 S2 S2 S2 S2 S2 S3 S1 0.925 $10 

S2 S2 S2 S2 S1 S2 S2 S3 S2 0.9437 $11 

S2 S2 S1 S2 S1 S1 S2 S3 S1 0.9437 $12 



 270

S2 S3 S3 S2 S3 S2 S2 S3 S1 0.9428 $13 

S2 S2 S2 S2 S2 S2 S2 S2 S1 0.9625 $14 

S2 S2 S2 S2 S2 S2 S2 S3 S2 0.9625 $14 

S2 S2 S1 S2 S2 S1 S2 S3 S1 0.9625 $15 

S2 S3 S2 S2 S3 S2 S2 S3 S1 0.9625 $15 

S1 S2 S2 S2 S2 S2 S2 S2 S2 0.9649 $16 

S2 S2 S3 S2 S2 S2 S2 S2 S2 0.9649 $16 

S1 S2 S1 S2 S2 S1 S2 S2 S1 0.9649 $17 

S1 S3 S2 S2 S3 S2 S2 S3 S2 0.9649 $17 

S2 S2 S2 S2 S2 S1 S2 S2 S1 0.9649 $17 

S2 S2 S2 S2 S3 S2 S2 S3 S2 0.9649 $17 

S2 S3 S3 S2 S3 S2 S2 S3 S2 0.9649 $17 

S2 S2 S2 S2 S2 S2 S2 S2 S2 1 $18 

6.5.5 Choose Consensus Level Based on Utility 
We have a general pattern that with the increasing of budget available, the 

consensus we could get increases.  
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 Figure 6.12 Utility of consensus with different levels of α2 
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Utility of Cost
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 Figure 6.13 Utility of cost with different levels of α1 

Consensus-cost Analysis with alpha1=0.2, alpha2=0.5 
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Figure 6.14 Consensus-cost analysis with α1=0.2, α2=0.5 
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Consensus-cost Analysis with alpha1=0.3, alpha2=0.5 
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Figure 6.15 Consensus-cost analysis with α1=0.3, α2=0.5 

Consensus-cost Analysis with alpha1=0.4, alpha2=0.7 
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Figure 6.16 Consensus-cost analysis with α1=0.4, α2=0.7 
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Table 6.14 Choose the best budget and consensus with different risk attitudes 

α  value Order-based Mean-based 
α1 α2 Cost Consensus Cost Consensus 
0.2 0.4 - - - - 
0.2 0.5 - - - - 
0.2 0.6 - - - - 
0.2 0.7 - - - - 
0.3 0.4 $8 0.8041 $12 0.9460 
0.3 0.5 $7 0.7625 $12 0.9460 
0.3 0.6 $6 0.7603 $10 0.9250 
0.3 0.7 $5 0.6875 $9 0.9087 
0.4 0.4 $5 0.6875 $8 0.9063 
0.4 0.5 $4 0.6792 $7 0.9063 
0.4 0.6 $4 0.6792 $7 0.9063 
0.4 0.7 $3 0.6437 $6 0.8859 

6.6 Summary 
In this chapter, we analyzed the cost in group decision making, and generated a 

least cost of group consensus. We developed optimization models to maximize two types 

of consensus under a budget constraint. Finally considering utilization of the consensus 

provides a practical recommendation to the desired level of consensus, considering its 

cost benefits. 
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CHAPTER 7 

Conclusion and Future Research 

7.1 Conclusion of the Study  
 

In this study, we used linguistic variables to handle uncertainties in group decision 

making. We developed a 5-step group decision making procedure that aims at a desired 

consensus: heterogeneous information fusion, group evaluation aggregation, alternative 

ranking and selection consensus measure, and consensus and cost utility analysis. New 

approaches have been developed in this group decision making process, as shown in the 

following table: 

Heterogeneous 
Information Fusion 

Fusion operator for mapping linguistic label sets 

Group Evaluation 
Aggregation 

FLOWA aggregation operator 

Alternative Ranking and 
Selection 

Area based fuzzy similarity measure method 

Consensus Measure 

1. Position based consensus measure 

2. Similarity based consensus measure 

3. Markov chain based consensus measure 

Consensus and Cost 
Utility Analysis 

1. Extended FLOWA with expert's risk attitude 

2. Consensus optimization model for least cost analysis 
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3. Utility function for choosing best consensus goal 

7.2 Future Research 

In the last decade, fuzzy set theory has provided a new research direction on both 

concepts and methodologies to formulate and solve mathematical programming and 

group decision making problems. However, consensus in group decision making is a 

relatively new research area, and a number of problems still remain to be solved in future 

research. These problems are summarized in the followings: 

In this study, we assume that the resistant coefficients to experts (represents the cost 

of changing opinion) are reasonably given. However, in practice, we should generate and 

obtain these values from decision makers and/or historical resources. These values should 

be a function of experts' expertise, personality, decision making history etc. 

In defining cost for consensus, a further assumption was made in our model that the 

resistance coefficient ε  is a fixed value. Future research can give it a function of the 

changing opinion. Then the objective function will also be nonlinear.  

As indicated before, ranking approaches are very important to resolve 

fuzzy/linguistic constraints. However, most of the existing ranking approaches are not 

perfect. Searching for better ranking methods is urgent and momentous to resolve 

especially linguistic group decision making problems. 
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