/Adapting a Portable SIMULA Compiler to ,
Perkin-Elmer Computers in a UNIX Environment/

by
Gregory L. Dietrich

B.S., Kansas State University, 1979

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by:

Vsiw VillTlos

Major Pﬁfor

L
aubd
R
\VABb
=Y
-3

Contents

Introduction

The Simula Language

S-port

KSU Implementation of S-port

The Environment Interface Package (EI)

Interpass Modifications

Future Work and Conclusions

References

pam——

! I All2

02 bb3UkS

14

21

35

47

51

L. Introduction

This paper describes the effort at Kansas State University to implement a com-
piler for the language SIMULA-67 [DAHS82]. The target machines are those in the
Perkin-Elmer 32-bit series, including the 8/32 and 3220 models [PER75, PER79,
PER80], resident in the Department of Computer Science. The operating system

environment for the SIMULA compiler is UNIXt Version 7 [THO79].

During the Spring 1983 and Spring 1984 semesters, an Implementation Projects
class was conducted under the supervision of Professor Rod Bates. Approximately ten
graduate students participated in one or both of the classes. S-PORT [JEN83, MIL83], a
portable SIMULA system designed by the Norwegian Computing Center (NCC) to

facilitate SIMULA compiler implementation, was the basis for the project.

This paper first describes briefly the language SIMULA itself, and some of its
interesting features. The features of the portable SIMULA compiler system developed
by NCC are then given. I discuss the design of the KSU implementation. My contribu-

tions to the compiler are described. and the current state of the project.

t UNIX is a trademark of Bell Laboratories.

II. The SIMULA Language

The language SIMULA was developed in the mid-1960's by the Norwegian Com-
puting Center (NCC). SIMULA is essentially an extension of the language ALGOL 60
[NAU63]. ALGOL is the predecessor of many modern languages such as Pascal
[WIR71] and C [RIT78a]. ALGOL's most prominent feature is its block structured
definitions, which it introduced. The scoping mechanism used in those 'modern’
languages mentioned above has changed little from that used by ALGOL. ALGOL also
provides a fairly complete set of control structures including various looping and deci-
sion structures similar in scope to Pascal. ALGOL also permits the use of several
parameter passing mechanisms, including a rare call-by-name implementation.
SIMULA borrows much of its syntax from ALGOL, to the extent that its definitive
document, Common Base Language [DAHS82], only describes the differences between
ALGOL 60 and SIMULA.

The intent of the developers of SIMULA was to create a general purpose language
suitable for constructing very large software systems. Simulation applications were
seen as one example of such programming efforts, and other features were incorporated

which cater to the needs of simulations.

The most important of these additions to the ALGOL language are concurrency
capability (coroutines) and constructs for simulation entities which may exist with
lifetimes independent of the control flow of a program. SIMULA also has defined
within the language character and text (string) types and operations, and input/output

facilities, which are missing in ALGOL.

Data Abstraction

SIMULA was a pioneer language in that it was the first to implement a type of

data abstraction, the class. SIMULA classes were designed to facilitate modular

programming, a necessity for creating large application programs. SIMULA classes
encapsulate the definition of a data structure and operations on it. The capability exists
in SIMULA to restrict the use of that data in the manner defined within the class. In
this respect, SIMULA is similar to Concurrent Pascal [HAN75], which has classes pat-
terned after SIMULA. SIMULA, unlike Concurrent Pascal, allows the programmer to
choose which names may not be referenced outside the class by specifying them as hid-
den or protected. Concurrent Pascal simply does not allow any access to the data of a

class directly, but only through entry routines.

[<prefixClassName>]
class <className> [(<parameters>)]

begin
< declarations>
< statements>

end <className> ;

Figure 2.1 Class syntax

class dataClass
begin

integer integerData:

integer procedure integerValue;
integerValue := integerData;

end dataClass;

ref(dataClass) dataPointer;

comment Create a new class instance;
dataPointer :- new(dataClass);

comment Direct reference to variable of the class;
dataPointer.integerData := 5;

comment Invoke class procedure;
if dataPointer.integerValue > 4
then

end:

Figure 2.2 Class operations

The class syntax and definition in Figures 2.1 and 2.2 illustrate the basic use of
SIMULA classes. Using the class definition as a template. a ‘client’ may create data
objects via the new operation. New takes a parameter which is the identifier of the
class type of the object. New allocates space for a new class instance from a heap and
execution passes to the statement part of the class object. These statements will usu-
ally be required to initialize the object's data structure into a consistent state. When
the statement part is exhausted. control returns to the statement following the new
statement. New also returns a pointer to the data object. Reference variables were
added to the language to hold these pointers. Only pointers to class instances are
allowed in SIMULA, not to any simple data type. Furthermore, reference variables
may only refer to a class instance of the proper type. Notice in Figure 2.2 that assign-
ment of reference values uses an operator distinct from normal assignment. (- for
references, and the familiar ":=" for non-references) Comparison of references and other

operations also use different notation from that normally used in expressions.

Unless they are hidden, the data definitions within the class may be referenced
directly in a manner similar to the fields of a record. In addition, procedures which are

defined may be invoked with the familiar dot notation as well.

The lifetime of an class object is normally limited by the lifetime of the object
which created it. That is, when the block which created objects terminates, the objects
it created are destroyed as well. The created objects are thus "attached’ to their creator.
The detach statement. when executed by a class object. removes that connection. and
the object’s lifetime is then indefinite. As long as there exists one or more accessible
references to the class object, it continues to exist in the system. Detach also causes

control to pass immediately from the class’s statement part back to its creator.

SIMULA has no mechanism to explicitly return the space used by classes to the

beap. Instead, part of the language definition requires a garbage collector to

automatically reclaim unused space. Periodically during the execution of a SIMULA
program, the garbage collector may run to determine which class objects are inaccessi-

ble, and make their storage available for later new calls.

Prefixing is a feature which increases the power of SIMULA classes as data
abstraction tools. When a prefix class name is specified as part of a class definition (see
Figure 2.1 above), the parameters, declarations and statements of the prefix class are
combined with those in the new class. This is useful. for instance. for creating "generic’
data structures. such as a stack, without defining the type of the elements in the struc-
ture. The class which defines the operations on the structure may be used as a prefix to
other classes which define the elements. allowing the same code to be used to manipu-
late data structures with different element types. SIMULA itself uses this technique to

maintain numerous types of lists in its simulation definitions.

Coroutines

Another SIMULA extension to ALGOL is the coroutine. In SIMULA. two or more
detached classes may interleave their execution in an arbitrary manner by using the
resume command. Resume takes one argument, a reference. Execution of the current
coroutine is suspended, and control is passed to the specified class. If, at a later time,
the first class is resumed, execution will continue with the statement after the resume

which was previously executed by that class.

The primitive features described above were utilized to define a set of simulation
functions which are essentially part of the SIMULA language definition. They are in
the form of ‘predefined’ classes which may be referenced by user programs. The possi-
bility exists. however, for the SIMULA user to define his own simulation system using

a different approach altogether using the primitive SIMULA operations.

SIMULA also incorporates in the language definition 2 method for separate compi-
lation of programs with strict type checking, as well as the possibility of linkage with
procedures written in other languages. This philosophy was also adopted in the design

of the more recent languages Modula [WIRS5] and Ada [ADA79].

III. S-PORT

To aid implementation of SIMULA compilers, the Norwegian Computing Center
(NCC) in 1980 introduced S-PORT, a portable system that reduces the effort necessary
to write a SIMULA compiler. This chapter describes the components of S-PORT that
NCC supplies, as well as the parts which must be supplied by any implementor.

Compared to most languages, SIMULA's run-time behavior is quite complex.
Storage management is one of the primary difficulties in implementation. Heap alloca-
tion strategies and garbage collection add much complexity to the task of defining the
environment of a running SIMULA program. The inherent multitasking that is pro-
vided also increases the difficulty of implementation. Furthermore, call-by-name
parameter conventions are complicated. The degree of complexity of SIMULA's imple-
mentation not only makes the generation of a compiler from scratch very expensive, it
also hinders portability of programs written in SIMULA. The more complex a language
is by definition, the more easily differing interpretations of its behavior may be incor-
porated into different compilers.

INCC has eased some of these problems by providing the S-PORT system. It insu-
lates many of the most obscure and complex details of SIMULA from the implemen-
tor. Compilers developed using the S-PORT system should be less expensive to produce
and will have a higher degree of consistency in their behavior.

The heart of the system is 5-Code, a relatively simple low-level language. With
only a code generator for S-Code and a package of system-dependent service routines, a
working SIMULA compiler may be generated.

NCC provides a front-end compiler, which translates input in the SIMULA
language to S-Code. Also provided is a library of run-time support which implements

the memory management and other standard SIMULA features. These also are in S-

Code. The implementor provides a code generator for the target machine which accepts
S-Code, and a package of system-dependent utility routines that provide support for

basic low-level operations involving memory management, input/output, etc.

S-Code

S-Code [JEN83] is a low-level intermediate language which drives the S-Compiler
code generation process. The language is not intended for interpretation. and is not
suited for that purpose.

It has a loose typing structure which provides several basic types, including the
normal INT, REAL, LONGREAL, CHAR. BOOLEAN and others. Types and data quan-
tities are identified by two-byte numbers called tags. The basic data types are
predefined tags.

Repetitions of a quantity may be defined, which are allocated essentially as
arrays, although no index checking is performed on access, and the group of elements is
not generally treated as a whole in S-Code. The basic types may also be combined into
structured data types (records), with possible variants. A record may also contain a
prefix tag, which specifies an existing record definition whose fields are to be included

in the definition of the new record type.

Constants of any type are allowed, including the structured types. To allow for
possible rearranging of fields in records, each field value is associated in a record con-
stant with its field tag, and all fields must have values.

Control flow constructs which are available include if then else constructs, condi-
tional and unconditional jumps, and multi-path conditional statements (switch).

Routines may be defined. All parameters are passed by value, except a possible
export parameter, which may be of arbitrary type. Routines also have the interesting

ability to alter their return address, if it is explicitly passed as an exit parameter to the

10

routine. Scope rules for S-Code are simple. Data is either local or global, and routines

may not be nested. No recursion is allowed.

Computations are carried out on an expression stack. Some checking is necessary
in 8-Code expressions. The S-Compiler must check that identical types participate in
assignments and parameter passing, for instance. Range checking must also be done on
assignment to SINT variables. which allow for space optimization of small INT values.
Smaller ranges, which are allowed, and INT values themselves are checked by the
Front-end Compiler. No index checking is done on array subscripting by the S-
Compiler itself; that also is the responsibility of the translator producing the S-Code.
The typing in the language is primarily for the description of data which has already

been deemed to be consistently used by the Front-end Compiler.

Separate compilation is allowed. with shared global data, constants and type
definitions. The module is the construct used for the unit which may be separately
compiled. The definitions within a module may be made visible to other modules. A

skeleton of the S-Code for a typical module insertion is given in Figure 3.1 below.

11

module x
< visible declarations>

taglist
tag t0 0

tag 205
tag 25 6
tagtnn
body ... endmodule
module y

insert x 50 50+n

body . . . endmodule

Figure 3.1

After the visible declarations of constants, global variables, routine profiles and labels,
the module specifies tag values for the data and types which may be utilized by other
modules. Each visible tag is associated with an integer in the range 0..n, where n+1 is
the number of visible tags in this module. An insert operator in another module
specifies a range of n+1 tags which are available for definition. Each of the visible tags’
meanings is associated with a tag in that range, corresponding to the visible tag’s index.
In the example above, within module y the tag 55 would refer to the quantity defined

in module x with the tag value 20.

Front End Compiler (FEC)

The translation of SIMULA into S-Code is performed by this large program, pro-
vided in S-Code. The process of translation is done in either two or three passes,
whichever the implementor wishes. To date. no one has used the three pass version in

an implementation, possibly because the main reason for using the three-pass compiler

i

would be to lower memory requirements for the system, and the three pass version is

not drastically smaller than the two-pass version.

Runtime System (RTS)

Support for some of the most difficult to implement aspects of SIMULA is pro-
vided by these S-Code modules. In Release 101 of the S-PORT system, this library is
made up of fifteen separately compiled modules. They implement memory manage-
ment, including garbage collection. much of the input/output, multitasking support for

coroutines, and other system-independent low-level functions.

S-Compiler
The implementor must provide a code generator which accepts S-Code and pro-
duces viable code for the target machine. This code generator is referred to as the S-

Compiler.

Environment Interface

The implementor must also provide 'hooks’ to allow the Run-time System and
Front-end Compiler to obtain system dependent services such as input/output and
memory management. The definition of the S-Code compatible interface routines that
the S-PORT system requires is called the Environment Interface [MIL83]. System
dependent details that this package must deal with include. among other things, an
extensive set of file system and input/output routines and providing the means for the
user to communicate his choice of certain compilation options to the front-end com-
piler.

Another important component of the run-time support is an exception handler
which receives control upon any trap or interrupt that a running program may cause.

This routine is defined in the Environment Interface document. At the present time,

13

its job is essentially to determine the cause of an exception when it receives control
and communicate that information to the Run-time System, which returns an indica-
tion of some action to take. Some arithmetic faults may be resolved by substituting a
default value (e.g. zero for floating-point underflow on machines which notice that
condition). Other conditions will require a graceful termination of the system, which
may involve closing open files and other system-dependent actions.

S-Code provides the capability in the future to have traps to support debugging
tools, and NCC is planning to provide a source-level debug utility as part of S-PORT
at some time in the future. The exception monitor will be heavily used in such a sys-
tem. For the present, the use of the exception monitor will be confined to arithmetic
and addressing faults.

Development of an S-PORT System.

The development process of a S-PORT system is described below.

1. Write an S-Compiler.

2. Write the S-Code callable Environment Interface routines.

3. Translate the RTS modules producing a library of object code.
4. Translate each FEC pass, producing object code files.

5. Link each translated FEC pass with the Environment Interface and RTS

libraries, producing executable FEC passes.

6. SIMULA source may now be translated into S-Code with the FEC passes, and

linked in a manner similar to the FEC to yield executable versions.

IV. Kansas State University Implementation of S-port

S-Compiler
The most significant design decision was the general strategy for the implementa-
tion of the S-Compiler. Two directions could have been taken in the KSU project: to

write the code generator from scratch, or utilize existing similar software.

While early phases of compilation have numerous tools to assist the compiler
writer, such as parser generators, code generation is the least automated phase of com-
pilation. Much of the work involved in generating code is tightly related to the partic-
ular architecture of the target machine, and performance requirements dictate that out-
put code should be relatively efficient on that machine. Therefore, the task of writing
a new code generator, especially for programmers inexperienced in compiler writing,
seems quite large. For that reason, another means was chosen to implement the S-
Compiler.

The Computer Science Department has a locally produced Pascal compiler, PAS32
[YOUB0]. which consists of nine passes. It was loosely adapted from a Pascal compiler
for the DEC PDP-11 [HAR77]. Passes one through five perform lexical analysis of the
Pascal program, checking types and scoping, yielding intermediate code roughly similar
in function, if not in form, to S-Code.

To utilize the backend passes of PAS32, a separate translator was needed to
transform S-Code into a language closer to that of the input language of pass six of the
PAS32 compiler. Also, passes six through nine of PAS32 needed to be modified to pro-
vide some functions needed to accommodate S-Code. This section describes the inter-

mediate translator, called Interpass, and some of the changes to PAS32.

14

15

Interpass

PAS32's intermediate code for its pass six is in general similar in function to that
of S-Code, so much of Interpass's work is relatively trivial. For instance, Figure 4.1
shows in symbolic form the translation of a conditional branch instruction in S-Code
to its pass six equivalent. The translation is straightforward, although the opposite

interpretation of the conditional expression forces the addition of the not operator.

i6

S-Code:

expr
fjumpif (conditionalTest destinationIndex)

flabal (destinationIndex)
Pass six:
expr’
compare (P6conditionalTest.P6Type)
not

falsejump (P6Label)
defl abel (P6Label)

Figure 4.1

Some S-Code constructs were somewhat more difficult to translate. For instance,
5-Code contains type and data definitions separate from executable code. The reason
for this is that the form that data types, particularly records, should take is highly
machine dependent. PAS32 was written with a particular architecture in mind, and in
pass six’s input language, records are treated simply as blocks of bytes at known
offsets in a data area and fields are considered byte offsets within those blocks. This
data is distributed through the code produced by the PAS32 front-end passes as
parameters to the operations on the data. This eliminates the need for a symbol table
in the later passes. Interpass, therefore, had to consume record definitions. choose the
layout in memory for their fields. and output this information with operations per-

formed on data.

S-Code also includes an if else endif construct, which pass six does not have. This
construct had to be translated into lower-level operations which accomplish the same

result, as shown in Figure 4.2.

17

S-Code:
expr
if(conditionalTest)

endif

PAS32:
expr’

not
falsejump(L1)
label(L1)
lahel('fz)

Figure 4.2
One significant difference between S-Code and pass six is the form of addresses

and the method of selecting fields within records. An S-Code ‘general address’
(GADDR) is a two-part quantity consisting of an object base address (OADDR) and an
offset into that object (AADDR). A GADDR is represented by two fullwords (32-bit
integers) on the pass six stack.

Pass six, however, treats all addresses as single fullword values. In fact, quanti-
ties which cannot be expressed by a single word (for example, double precision real
values) are not directly placed on the stack by pass six. but their addresses. This situa-
tion causes the output of Interpass to be rather convoluted in the cases where GADDR
values are manipulated on the pass six stack, since the components of a reference must

be added before they are used to fetch a value.

Furthermore. S-Code may use quantities on its expression stack more than once.
The update operator, for instance. stores a value located on the top of the stack into

the address described by the second expression on the stack. popping only the value.

18

PAS32 always removes its expressions from the stack when used. Its only construct
for assignment is the assign operator, which acts like the S-Code update, except both
its operators are popped after the assignment of the value takes place. Also, S-Code
includes a dup token which duplicates the top value on the stack. PAS32 has no

equivalent operation. Figure 4.3 illustrates several of the issues mentioned above.

S-Code:
exprl
expr2
update

Pass six:
exprl
dup(wordPairType)
add(wordType)
expr2’
(possible fetch code)
assign

Figure 4.3
Translation of this segment of code requires some backpatching, or insertion of

additional code into the stream of code which has already been output. The sequence of

events as this S-Code is consumed is described below.

Code is output for exprl, leaving a GADDR on the expression stack. Then expr2’s
code is output. It may yield either a reference or a value, as fetches are done automati-
cally as necessary in S-Code.

The update operator causes several actions to be taken by Interpass. If expr2
leaves a reference on the top of the stack, code must be emitted to fetch the value, as
PAS32 does not allow for reference parameters to its assignment operator. The address
expression, exprl, must survive the update. Interpass keeps track of the location in
the output stream of the start of all expressions on its stack, so it is possible to patch a
dup operator in the output just before the start of the code for expr2. Also, since

GADDR's are not useful to PAS32, an add operator is output to change the GADDR

19

copy into a single fullword pointer. leaving the original GADDR value intact.

This backpatching was accomplished not by actually modifying the code which
had already been output, but by creating a separate ‘map’ file which logically splits the
output into segments. This allowed Interpass to function using pure sequential output.
Therefore, pass six needs to process its input in a non-sequential manner according to

the map file.

Some of the most complicated activities of Interpass concerned the exporting of
information between separately compiled modules. Definitions which may be made
known to other modules are localized in the first section of a module definition, as was
seen in the section dealing with S-Code in the previous chapter. There must be some
description of that data which survives the compilation of a source file, so that it may
be referred to when compiling modules which insert the current module. The scheme
chosen was to essentially copy the S-Code of the module header only to two separate
files. Those files include the definitions and the list of tags which may be referred to
by inserting modules. To perform an insertion, Interpass must read the visible file
corresponding to the inserted module, process it to generate its type definitions, and

then use the list of tags to update the tag definition table for the inserting module.

PAS32 Backend

S-Code required several functions which the existing Pascal compiler did not pro-
vide. Examples cited above included the dup token and the associated register alloca-

tion and two-word address manipulation on the expression stack.

PAS32 lacks some other capabilities necessary for SIMULA as well. S-Code may
have global initialized variables, for instance. PAS32 collects constant values into a
contiguous area of memory, but has no initialized variable data. A new area was

defined to hold these values. The reason that the existing constant area was not used is

20

that pass 8 optimizes that area by eliminating duplicate constant values.

S-Code also requires a scheme for keeping track of all pointer values stored in
temporary storage (registers or other anonymous storage). This is done so that when-
ever the garbage collector is invoked while running a SIMULA program, if the objects
are relocated to which such pointers refer, the pointers may be adjusted by the Run-

time System automatically.

Environment Interface

The Environment Interface library was written in C, since access to UNIX system
functions is most easily accomplished from that language. Its design is described in a

later chapter.

Other Program Development

Several programs were written to assist the development of the S-Compiler.
Since the project was started before we had access to any programs in S-Code, an
assembler was written to translate S-Code mnemonics into their binary form, and a
dumper to perform the reverse. This allowed test programs to be written in S-Code to
debug Interpass. Dumpers were also written for the modified PAS32 intermediate
languages.

Recently a program was completed which allows SIMULA source to be automati-
cally formatted.

V. The Environment Interface Package (ED

In the Spring 1983 and Spring 1984 classes, I worked on the library of routines
which provide the support defined in the EI [MIL83]. Since these routines make use of
operating system facilities, they were most naturally written in C [KER78]. Except for
a small kernel which is written in assembly language, UNIX is written wholly in C,
and low-level system functions may be performed very conveniently from that
language.

The entire suite of routines that SIMULA requires is shown in Figure 5.1. The
bulk of the routines which are defined are input/output, numeric editing/deediting and

math functions.

21

Global variables: status, itemsize, encdrv. curdrv,

curins, bioref, tmpgnt
Global constants: maxlen
Type definitions: STRING

Option-setting routines:
getintIinfo getTextInfo getReallnfo#
getSizelnfo givelntinfo giveTextInfo

Memory management routines:
defWorkArea move

Numeric to/from STRING editing routines:
lowten getint getReal
getFrac putint putFix
putLFix putReal putLReal
putFrac putSize putOaddr
putAaadr putPaddr putRaddr

Debugging routines:
getOutermost getPaddr# getLineNo
breakpoint# stmtNote# dmpObj

Input/output routines:
lookUp# openDsp closeDsp
inlmage outlmage locate
getDsName getDsetSpec getLpp
newPage printQutimage inByte
in2Byte* outByte out2Byte*

Mathematical routines:
sqrt In exp
sinus arctan cos*
tan® arcsin* arccos®
rSqrt rLn rExp
rSinus rArctan rCos*
rTan* rArcsin®* rArccos*
Miscellaneous routines:

initialise terminate
basicDraw dateTime cpuTime

* - optionally provided by implementor
- unused in the current S-PORT system

Figure 5.1 Environment Interface Definitions

22

23

The global variable status is used by the EI package to communicate the success
of its functions to the SIMULA RTS. The other variables are not used by the EI, but
merely provided for the RTS. A few of the variables have been defined only in the

latest release of S-PORT and are intended to be used for future optimizations.

The memory management support SIMULA requires at the S-Code level is very
simple. A running SIMULA program may request the allocation or modification of
what is called a work area. which is a contiguous address space in memory. If it would
be advantageous to allow more than one work area per SIMULA program, the EI may
provide for that possibility and the RTS will use multiple areas; otherwise it uses only
one work area. The running program may request that a work area be increased in size,

decreased, or deleted entirely.

The move routine is intended to allow the implementor to take advantage of any
system-dependent facilities for efficient block memory transfers. Unfortunately, the
8/32 processor has no such instructions. although multiple register store/load opera-
tions are somewhat more efficient than word-by-word transfer. The 3220, on the other
band, is a more recent model of this architecture, and has extensions to its instruction
set which include block memory transfer. Due to the likelyhood of much activity of
this sort during garbage collection, it would be wise to provide different versions of

this routine which will take advantage of the newer CPUs’ block move instructions.

The information handling routines (eg. getIntInfo) are used for communicating
needed information between the environment and the FEC and RTS. For instance, the
compiler has a large number of options dealing with what type of listing to produce
for a compilation, what the file names for all the input. output and intermediate files,
and what type of debugging aids to include in its output code. These require a fairly
large data structure, and also a means of extracting the pertinent information from the

command line used to invoke the SIMULA program. Some coordination between the C

24

or shell command file driving the compilation process will be needed to present this

information to the EI package in a form it can use.

The numeric editing routines took some time to complete. Their function was
complicated by the fact that all strings passed to them needed to be parsed. This fact
seemed strange at first, since programs which were being compiled had already been
parsed. These routines, however, would be called to convert input text from files or
the user's terminal. Integer values were not difficult to convert, but floating point
values were more of a problem. The method I originally pursued was to calculate the
values as I parsed the string. But I decided it would be easier to convert the strings
into a form which the similar existing system mu@e. ecvt, could accept, letting it do
the work of conversion and avoiding floating exceptions. Two problems remain. First,
the C language in this implementation of UNIX does not suppoi't double precision
floating point operations. SIMULA does not require double precision arithmetic, but it
would be very advisable to provide the added precision, considering SIMULA's applica-
tions. Second, ecvt exhibits strange behavior as the values it is calculating near the lim-
its of the machine’s range. For instance, '4e74" is converted correctly, but "4.0e74’
causes a floating exception. These values are not especially close to the limits of floating
point representation, either. The best solution to these problems is to eventually recode
these routines in an available language which supports double-precision (eg - Pascal,
assembly language).

The file handling operations took most of the balance of the effort. The S-PORT
system was developed with a philosophy concerning file operations much different
from that of the developers of UNIX [RIT78a, RIT78b]. While the UNIX file system
itself generally treats all input/output as simply character-oriented, the EI tends to
favor a record-oriented approach. Several types of files are used, whose characteristics

are detailed in Figure 5.2.

25

infile record-oriented sequential
outfile record-oriented sequential
printfile record-oriented sequential
directfile record-oriented random access
inbytefile = byte-oriented sequential
cutbytefile byte-oriented sequential

Figure 5.2.
Inbytefiles and outbytefiles are similar to normal UNIX files, but are used only

by the FEC for binary intermediate files, and are not available from SIMULA itself.

Infiles and outfiles are sequential record-oriented files. S-PORT is flexible as to
whether these files may have variable-length records. For text files. the natural way to
handle these file types is with newline-terminated variable length records. This reduces
space requirements, and since access is sequential, there is no need to be able to find a
particular record by its offset within a file. Binary files could not have variable length
records, since any byte within a record could have the code for the newline character.

Directfiles are record-oriented random access files. The only way to simply imple-
ment this type of file is with fixed length records. Then the standard seek function,
which is byte oriented, may be used with a minimum of effort. For variable length
records. some complicated indexing scheme would have to be implemented on top of
the UNIX file structure, whose efficiency would be suspect.

Printfiles are essentially outfiles with some added routines to aid in printer-
oriented operations, such as overstriking lines and page ejects.

Files in S-PORT are referenced by keys, which are small integers assigned with
files when they are opened via openDsp. When opening or closing files, a string param-
eter is provided. which may specify actions to take. Some of the standard actions
allowed are tape-oriented., such as REWIND, NEXTFILE and PREVIOUS. File deletion

26

when closing accomplishes a sort of scratch file capability. Other system-dependent
actions may be included by an implementor as they are needed. For our purposes, the
only actions implemented were RELEASE, which deletes the file when closed, and
APPEND. which positions the file pointer at the end of existing data when the file is
opened.

The implementation was generally straightforward. The state of opened files is
kept in a table indexed from O to the maximum number of open files UNIX allows.

Figure 5.3 gives the C definition for the information in each file's entry.

typedef struct {
char name[73]: /* path name passed to openDsp */
int isOpen,
inode, /* inode of opened file */
type. /* S~code file type */
recl, /* Record length */
fixed, /* Is record length variable? */
leftover, /* Used for partial reads */
position, /* Current record number */
fileSize; /* Number of records in file */
} FENTRY:

Figure 5.3
Some fields in the file entry are obvious, such as name, isOpen. type and recl.

Fixed is an addition to allow the system to have fixed or variable length records for
infiles and outfiles. (Directfiles must have fixed record length). An additional ACTION
parameter to openDsp was defined. length. Otherwise, the recl given is considered a
maximum length for each line in the file.

SIMULA forbids the same file to be referred to by more than one key at a time.
UNIX does not restrict file operations in that manner, so my routines had to enforce
that policy. Originally, I checked that the names passed to openDsp were unique, but
the names ‘xyzzy' and '/usr/greg/xyzzy’ may in fact refer to the same file, which

would defeat that simple method. I instead saved each file's i-number, which uniquely

27

identifies the file on a UNIX filesystem. A problem may occur if two files on different
filesystems are opened which by chance have the same i-number. Modifying the file
table to include the device identification as well as the i-number would correct that

problem.

SIMULA allows a smaller buffer to be passed to the read function than the record
length of a file, if the implementor can read partial records. That is no problem with
the UNIX I/O functions. The leftover field is set to the number of bytes left before the
maximum record size is read. Both fixed and variable length records may be read in
this manner.

SIMULA places restrictions on seeks within directfiles which UNIX does not. The
seek may not place the file pointer beyond existing data. The UNIX system call fills the
intervening space in the file with null characters if a seek is beyond the end of the file.
Therefore, the number of records in the file is kept in the file's table entry, so that the

record number passed to the seek function may be tested.

Three SIMULA files are predefined: SYSIN, SYSOUT, and SYSTRACE. SYSIN and
SYSOUT are associated with UNIX stdin and stdout by default, which would allow
input and output using these files to be redirected or piped in the usual UNIX manner.
SYSTRACE is assumed to be connected with a UNIX file. The S-PORT documentation
suggests that it be implemented with a circular buffer to avoid collecting excessive
amounts of trace information. That is not implemented, but could be easily done in the

future.

28

Environment switching

PAS32 has no built-in capability to call external C routines. so a mechanism to
make use of the EI package had to be created. SIMULA's run-time stack as designed is
similar to the PAS32 stack, with minor modifications. PAS32 normally calls functions
and procedures with as many parameters in registers as possible, with the remaining
parameters passed on the stack. External procedures and functions have all their
parameters stored on the stack. Compiled SIMULA programs will always have parame-
ters stored on the stack. Figure 5.4 diagrams the state of the PAS32 stack when an

external routine is called.

Low memory !

Caller’s
mark stack

Mark stack

Parameters

q@

A B e el B PTG G T | FE A e A B e 14 i e e -'{-Ml|fm1. oA PTMELLIPNEAT S B RS, IF T, L ber,E

1

=

TR

High memory

Figure 5.4a PASCAL/32 Stack

29

30

Low memory

Func result

Dynamic link o {2

Return address

Static link

Unused

High memory

Figure 5.4b PASCAL/32 Activation Record

Low memory

?

31

Parameters
to called
functions

Local vars

Register
save area

Parameters

High memory

Figure 5.5 C Stack

e 2 s e

32

In Pascal, registers O through 2 contain the stack segment status information. The
calling routine sets up the stack for the execution of the subroutine, and on return, the
called function should have popped its environment off the stack (the dynamic link is
modified). If allocation from the PAS32 heap has not occurred, the heapLimit register
should be unchanged, and the static link is unchanged in any case. Return values for
external functions are left on the stack immediately before the activation record for
the called routine. The return address is originally in R14. Other registers may be
modified freely.

Copies of value parameters are passed, if the value will fit into a fullword, or if
the value is of type real. Arrays and records are always passed by reference. PAS32,
unlike standard Pascal. forbids assignment to value parameters altogether, so this

saves space and the time needed to make copies of large values.

Figure 5.5 shows the environment of a running C function. On entry, R7 points
to the top of the section of parameters to the function, and is adjusted to provide space
for the local variables and other workspace. Registers 7 and 14 are used to access
values on the stack, with R7 being the stack pointer and R14 a pointer to the current
function’s local data area. The C stack grows in the opposite direction from the PAS32
stack. but the parameters are stored in the same order in memory, fortunately. Param-
eters are passed similarly to PAS32 in most respects. Values that will fit into a full-
word are passed in fullwords. Real values are single precision only. so they are also
passed in one fullword. Arrays are always passed by reference. Structure (record)
values, however, are indeed passed by value, and a copy is made on the C stack. Small
return values are left in RO, while copies are made of structure values, and a pointer is

returned in RO. A summary of registers significant to the two languages follows.

33

PAS32 registers which need
to survive external function calls:

RO: Heap limit pointer
R1: Static link

R2: Dynamic link
R14: Return address

Significant C
registers on entry to a function:

RO: Return value
R7: Stack top pointer
R15: Return address
(Registers 8-15 are restored upon return.)

Figure 5.6 Register Usage

The differences in environments required that control be passed from
PAS32/SIMULA to C via an assembler language interface routine. It saves the Pascal
environment and sets up the C environment for the called functions. There was space
in the Pascal activation record to save R1 and R14, and two global variables were
added to the Pascal driver to save RO and R2. The original C stack pointer inherited on
execution of the Pascal program is accessible in a variable as well. After restoring its
value, the parameters are copied from the Pascal stack to the C stack, and a branch to
the function desired is made. Upon return from the C function. the Pascal environment
is restored as the caller expects. At this time, the EI routines are implemented as pro-

cedures, not functions. so the return value is not significant and is ignored.

Unfortunately, PAS32 does not currently include a facility to determine the
addresses of external data or functions. For that reason, the interface cannot be told by
the calling PAS32 program where to branch when invoking the C function. Therefore,
the easiest way for the interface to determine the address of the desired C routine was
to provide an entry point in the interface for each EI routine, which loads one register

with the address of the routine, and another with the size of the parameter list. The

34

modifications of the backend passes of PAS32 include automatically prepending two
parameters to external C calls: a linker-resolvable reference to the routine’s address,
and the size of the parameter area. This will allow the interface routine to function

with a single entry.

VL Interpass modifications

In the Spring of 1985, I attempted to integrate the parts of the SIMULA compiler.
Interpass was running and had successfully processed the entire RTS. One of the FEC
passes required too many tags for the available memory on the 3220, but it was hoped
that the 8/32, which had slightly more memory, could handle the entire system. Much
work had been completed on pass six of PAS32, and it appeared likely that much pro-
gress could be made on actually generating code in a short amount of time.

My tasks were to help with the testing of pass six, repair any deficiencies in IP

that emerged, maintain tools which had been developed, and work on the later passes.

Interpass changes

Unfortunately, IP was not as close to being finished as it seemed. NCC had been
doing a total revision of S-PORT, in the process changing its name to the SIMULA
Standards Group, and the new system arrived soon before I started. Included in the
rewrite of S-PORT were some changes to the S-Code language itself. My first job was
to revise IP to translate the modified input language.

Interpass was written in S/SL [HOLS2] a compiler-oriented language developed
from its authors’ experience with a type of chart used to express the semantics of
languages. S/SL is essentially a pure control-flow language without data. It consumes
a stream of tokens (numbers) and emits another token stream. Matching and decisions
may be based on the current input token, but all other data operations that may be
necessary must be implemented via semantic routines written in a host language, in
our case Pascal.

S/SL source is compiled into a table in the form of a Pascal constant definition.
PAS32 has been extended to allow constant arrays to be defined. This table is inserted

into a Pascal source file which contains the S/SL interpreter and whatever semantic

35

36

routines are part of the program. This Pascal file is then compiled to yield a runnable
S/SL program.

Interpass is quite large. The S/SL portion is more than 5000 lines, with approxi-
mately 100 rules, which are the S/SL equivalent to procedures. The Pascal portion is

also greater than 5000 lines, with about 300 semantic routines.

Semantic data structures which were needed in Interpass included an expression
stack, called the S-stack, which was used roughly in the manner of the expression
stack in S-Code. Descriptors of data were large Pascal records, dynamically allocated,
with much information about their S-Code meaning as well as details of how they
affected the PAS32 output. Record descriptors’ fields were kept in a linked list rooted
in the descriptor itself. and parameters to routines linked similarly to the profile
descriptor.

The current definition of all tags in the system was kept in a large table contain-
ing space in each entry for a pointer to the tag's descriptor, and a variable which
specifies the state of the tag (defined or not). Numerous stacks of different data are
used, including a string stack, tag stack, count stack to perform computations, and

stacks of labels, indexes, input file states, and others.

Though the changes to Interpass in the new S-Port system were mostly not
involved, I was unfamiliar with S/SL. IP, and S-Code itself. so the process of learning

the function of the system made the initial work progress pretty slowly.

The only change which directly caused a significant alteration to the code for IP
was the provision for local quantities in modules and the main program. This change
was made to reduce the amount of global data required by the S—f’ORT system,
thereby reducing the (large) number of tags used by the FEC and RTS. A new data

structure. an update stack, had to be added to IP. which would be used to facilitate

37

destroying the meaning of local tags at the end of the module which defined them. The
contents of each element of this data structure is a pointer to a descriptor containing
the meaning of the tag when the local declaration was encountered, and the tag
number affected. At the beginning of a module, a new section on this stack is started,
and when locals are defined, the previous meaning for the locals is added to the sec-
tion. The entire contents of the section are removed from the stack at the end of the

module, with the original meaning restored.

While studying the code for IP itself, I noticed some minor mistakes which I
corrected. One of these was partially responsible for the memory overconsumption. A
stack containing labels for output to Pass six was intended to be twenty entries deep.
but the wrong constant was inadvertently used in the declaration. and it was in fact
32,767 entries deep. Since the data in the stack was fullwords, this mistake added
about 128K bytes to the size of the running program. The amount of main memory on

the 3220 is only about 3/4 megabyte, so this is a significant difference.

In addition to the changes to the S-Code syntax itself, some other modifications
have been made to S-PORT which have not been officially reflected in S-Code’s
definition. Features are still defined which are not currently used, some of which are
not likely to be used in the future. In one instance, this is fortunate. For the recompi-
lation of one module to be done without requiring recompilation of other modules in a
system, there was provided the existing option in a module declaration, which replaced
the visible declarations before the module body. This was intended to inform the S-
Compiler that the implementation of the module had been changed, but the interface
between modules had not been modified, and the same visible information could be
reused for this module. IP had not implemented this feature, and the task appeared to
be quite difficult because of certain aspects of how the visible files were created. It

appears likely that that feature of S-Code will be dropped. as the NCC parties are

38

questioning its usefulness.

Another part of S-Code which is not used and will probably be discontinued
altogether is the use of a display to locate objects in the various scopes of a running
program. That feature took much effort to design, and much of the effort to date put
into pass six was concerned with it.

These and other currently unused S-Code constructs are now treated as errors by

IP.

Other IP modifications.

Initially, IP could not handle the new S-PORT system at all, since the insertion
operator’s parameters had been changed. When the changes outlined above had been
made, IP did somewhat better, translating several of the 15 RTS modules without
error. But numerous problems arose which did not occur with the old system. Almost
all of them concerned details of the insertion mechanism which the new system

revealed to be in error.

One problem, besides insertions, was the way that record and repetition constants
were verified. Record constants must be checked by the S-Compiler that all fields are
mentioned. and that fields in more than one variant are not mentioned in the same
constant. IP set a boolean flag in the descriptor of each attribute tag encountered in a
record, including those of prefix records. Then, after all the fields had been processed,
it scanned only the main record’s body to see that attributes had been initialized con-
sistently, clearing the flags. This left flags set in the fields of all prefix records that
were processed. When another record constant of the same type or containing the same
prefix record was encountered, the flags which had been left on would cause an error,
since IP thought that an attribute was being given two values. A more subtle problem

besides the erroneous multiple definition problem is that the proper initialization of

39

prefix attributes was not checked. The solution to these problems was to extend the
verification to include a recursive traversal of all the prefix records, checking that these
were properly initialized and clearing their flags.

Constant definitions also presented problems. Their definition is of the following

form:

const (tag. type) value(s)

The problem arose when a module in the RTS defined an array of character strings
which was shorter than the number of elements in the type part of the const
definition. The S-Compiler checked that the number of elements was identical to the
defined size of the repetition. That restriction had seemed natural, although it was not

explicitly stated in the definition. The check for strict size conformance was removed.

The bulk of the problems, however, were precipitated by deficiencies in the
method of including visible definitions from other modules. The documentation for the
actions taken for insertions is sketchy at best, possibly because the developers of S-
PORT considered the issue too system-dependent to be too explicit. I proceeded on the
assumption that the implementation was basically sound for some time, which caused
much of my time to be spent treating symptoms of the problem rather than the actual
illness.

In general. the modules of S-PORT form a hierarchy, with the COMN module and
some other modules defining global information which is used by all the other
modules, with other modules containing more specialized definitions which are used by
some modules and not others. As a consequence, among the fifteen RTS modules, the
modules COMN, SYSR, KNWN, BASE, UTIL and STRG are invariably included in that
order (with the S-Code for these modules including each of the previous ones). After

these five modules, the rest of the information the modules use is varied, with the

40

maximum number of modules inserted being ten. The FEC passes use declarations in
all RTS modules. A descriptive outline of the S-Code of a ‘typical’ RTS module fol-

lows.

module x (parms)
insert y; insert z; ...

visible definitions
tag list
body

code
endmodule

Although the syntax definition of S-Code allows insert statements to be located
almost anywhere in a program, there is invariably a list of module insertions as the
very first items in a module definition, and insertions occur nowhere else in the S-
PORT system. The S-Code definition admits that the syntax given is ‘descriptive,’ and
not strict.

In designing the original inclusion mechanism, it was believed that the original
chain of inclusions would not have to be reconstructed. That is, for module A to insert
module B, the insertions that B performed do not have to be known. If the insertions
that were performed in A up to the point of the insertion of B were equivalent to the
insertions required by B itself, this would indeed be the case. This approach increased
the complexity of IP, but made file handling easier, as will be seen later. The S-Code
for the visible part of a module definition was copied almost exactly to a file with the
module name suffixed by ".v’, and the list of visible tags in a separate file suffixed by
".t'. When inserting a visible file, each tag encountered in the file was immediately
translated according 1o its index in the taglist. The immediate translation was the rea-

son for keeping the separate taglist and visible files. If a tag in the visible file was not

41

visible the construct it defined was simply skipped. Insert statements were always
skipped in the visible files. Therefore, if a module being translated contained n insert

statements, exactly n visible files (and n taglist files) would be processed.

This method proceeded without problems for all modules with consistent inser-
tions, but various anomalous behavior emerged when the sequence of insertions began
to vary. Not until late in the Spring did I realize that the insertion process that had
been used was not workable.

One early problem occurred during the insertion of a routine profile. Profiles iden-
tify the type and sequence of parameters to a routine, and the tag of the body which
contains the executable code for the routine in a separate location. Each parameter has
a tag associated with it which is accessible only within the body. The particular profile
tag wa§ visible, and its parameters were not. By chance. the profile tag. when
translated as above, took on the same value as one of its parameter tags. The data
structure for the descriptor of a profile included a linked list of its parameters, and
when operating on the parameters, their tag values are manipulated on a stack of tag
values. The information describing the parameter is expected to be in a table of
descriptors indexed by tag value. The one tag value could not have two meanings
simultaneously. so the system failed. The method of implementing profile descriptors,
using tag values for the parameters, was suspect in any case, since the parameter tags
themselves are not supposed to be meaningful outside the body of the routine anyway.
To fix this required redefining the descriptor and code which dealt with parameters to
use the descriptors of the parameters rather than their tag values.

After I discovered and fixed several problems of this nature, IP finally could
translate the entire RTS. But it crashed when in the midst of inserting RTS modules
into the FEC passes. The error was one that could not be mistaken. When PASS1

inserts the module SML. the previous inserts of PASS1 leave tag number 6§97 with the

42

meaning of a routine body. The inserts within SML, however. give tag 697 the meaning
of a record, which it uses as a prefix for a new record defined in its visible part. Since
SML's insertions are assumed to be unnecessary, IP tries and fails to use the tag as

PASS1 has defined it.

So when inserting a file, its insertions’ effects have to be taken into account. A

total redesign of the way insertions are handled is needed to solve this problem.

Two possible directions to take were discussed. The first, and simplest. was to
actually perform insertions as they appeared in visible files, thus rebuilding the entire
tag table to the state that the inserted file expected. While simple in concept. this
method is impractical due to the great amount of file activity it requires. I wrote small
program to simulate the visible file processing using the dependencies in the actual S-
PORT modules. noting the total number of files read. To translate S-PORT (fifteen RTS
modules and the two FEC passes) required 5564 passes through the various visible
files. Obviously, this is a heavy performance penalty to pay.

The other option that was possible without changing the practice of keeping visi-
ble files in S-Code format was to develop a scheme to add the necessary information to
visible files to avoid having to look at the other modules’ files upon which they
depend. This plan is very complicated, as a method of adding that information to the
visible files is not obvious. It is not clear that the performance of such a system would
be acceptable, either. It may well be that many redundant file reads would be replaced
by much redundant information in fewer, but huge visible files.

As a compromise, I designed a method for performing the insertions that is an
optimization of the first method above. While 5564 file reads were needed for the
"brute force’ method above, the number of files involved for the entire S-PORT system

is only seventeen. If a way could be devised to remember the information in each visi-

43

ble file as it was processed so that it could be used when needed later by another insert
statement, the amount of [/0 activity could be mostly eliminated. And if the informa-
tion were stored in a form that could be easily used (ie - with little CPU time), the

performance of Interpass would be comparable to that of the present system.

My design is for a list of repositories of visible definitions, called Visible Save
Areas (VSA’s). Each time a visible file is processed for the first time in a compilation,
a new element in the VSA list is created which will allow the definitions of that
module to be later accessed without reference to that modules visible file, or any visi-
ble files it may insert. Each VSA is implemented as a list of pointers to the descriptors
of the quantities for each index in the tag list. To simulate the processing of a given
visible file, with all its associated dependencies, one has only to copy the descriptor

pointers in its VSA into the proper locations in the tag table and mark them as defined.

The update stack. which holds lists of tag table entries, is also used in this design.

The method of processing inserts is illustrated referring to the code segments below.

44

module A
<no insertions >

<definitions >

taglist
tag t0 0

tagtan

body
<code>
endmodule

module B
insert A i i+n+1

taglist
tagt0 O

;g tm m
body

module C
insert B j #+m+1

taglist
tag t0 0

tag tl 1
body

endmodule

These modules must be compiled in the order A, B, C so that the visible files will
be available for the insertions. Assuming that A and B have been compiled success-

fully, the translation of C proceeds as follows:

45

1. Insert(B, j, j+m+1) is encountered. This module is not represented in any VSA,
so its visible file must be read. A new VSA is created, with space for m descriptors.
(The size is known from the parameters to the insert operator.) Also the update stack

is marked to allow the tagtable to be restored after the insert processing.
The visible file for B is located and prepared for processing.

2. Within B's visible file, insert(A, i, i+n+1) is read. A has no VSA, so one must
be created. A new VSA is created like above, processing is suspended on B, the update

stack is marked, and A’s visible file is readied for reading.

3. A’s visible file is processed, and its definitions are placed in the tag table. The
old tag table entries are saved on the update stack as they are replaced. (In this case,
none of the tags have been defined yet.) When A's tag list is found, at the end of its
visible file, each listed tag's description is placed in the corresponding VSA location. At
the conclusion of A's tag list, the VSA is marked as complete, and the top section of
the update stack is removed with the tag table's meanings restored to the state before
this step.

4. Now we resume processing of B's visible file. Using A’s new VSA, the tag table
is updated to include the proper definitions for tags i to i+n+1. Since we are still pro-
cessing a visible file, the old meanings for these tags are saved on the update stack. The
rest of B.v may now be processed, as the tagtable now holds the definitions it expects.

5. The conclusion of B's visible file is handled in the same manner as that of A in
step 3 above. B's VSA is completed and the tag table definitions resulting from B's visi-
ble file processing are destroyed.

6. Processing of A’s S-code now resumes. B's VSA is used to update the tag table
in the range j to j+m+1. The update stack is not used for this since we are operating at

the outermost level and the definitions are permanent. Now processing of C may con-

tinue to completion.

In fact, more optimization is included in my design to eliminate even the use of
the VSA in the case where that operation would be redundant. A data structure con-
tains information about the insertions performed at each level, so that if an insertion is
indicated that is identical to one already reflected in the tag table, the tag table is used
without change. The insert statement in question is effectively skipped.

Coding for this design is mostly completed, but has not been added to Interpass
at this time. The table below summarizes the effects of the two optimizations on the

compilation of the complete S-PORT system.

brute VSA Eliminating
force optimization redundant VSA
Modules
translated 17 17 17
Visible
files read 5546 115 115
Update stack
contents(max) 4877tags 1437 tags 722 tags
Insertion
nesting 9 levels 2 levels 2 levels
VSA operations

performed XXXX 411 77

VII. Future work and conclusions

The first thing to accomplish in the future is to finish the revision of Interpass to
correctly deal with insertions. It is not clear whether the current translation of the
Run-time system is actually correct, or whether by chance no incompatible declara-
tions were encountered. Therefore any results of testing pass six with the current
Interpass may be misleading. A review of the design of Interpass itself might be desir-
able, due to the nature and scope of changes which have been made to it recently.

Changes have been made as well to the input language to pass six of PAS32. Some
of these changes are not trivial, and probably a careful review of these changes should
be made. The code for the display manipulation, which is not a part of S-PORT. should
be removed. In walking through some sample input, it was apparent that the optimiza-
tions that pass six performed were not applicable to many of the constructs it is given
by Interpass. In fact, some translated S-Code caused the optimizations to lose some
code. On the other hand, it was obvious that much other optimization was possible.
This would be a good area to explore. It also probably would be advisable to remove a
great deal of dead code from pass six. The original intent was to have a single source
document which, by conditional compilation, would produce a program which would
translate either SIMULA, PAS32, or Concurrent Pascal code. The output from Inter-
pass is dissimilar enough from PAS32 intermediate code that it would be easier to have

a separate source for the Pascal and SIMULA languages.

It would seem that the highest priority would be to produce some object code
from S-Code programs. It is unfortunate that the design requires so many separate
pieces of software to be completed to perform that task. This problem was com-

pounded by the revisions to the language made by the Norwegian Computing Center.

47

48

Conclusions

One of the most important design decisions was to use the PAS32 backend passes
for code generation rather than writing a new code generator. The major reason for
that decision was to enable the code generator for S-Code to be developed with less
effort and technical expertise than would be possible otherwise. In the negative sense,
though, it complicated the development process in other ways. To generate object code
requires that Interpass and the backend PAS32 passes to be written or modified and
debugged. This is not nearly the case at the present time. Furthermore. significant
changes to the design have been necessary at times due to changes in the input language
as well as due to misunderstandings of the semantics of S-Code. The parallel effort on
the various parts of the code generator was hindered by the filtering of design changes
through the various passes. ‘

The scope of the changes to PAS32's passes was underestimated as well. PASS 6,
with which I am most familiar, performs various optimizations to its input code, such
as constant folding. These optimizations in many cases do not succeed using the input
from Interpass. Not only is the output code from PASS 6 inefficient, it is incorrect.
PASS 6 simply throws away some code that Interpass produces. These aberrations are
due to the fact that the new input language is really significantly different from that
which is produced by the front-end passes of PAS32. A careful study of the output
language of Interpass and design of optimizations to be incorporated into PASS 6 will
be necessary. In essence, most of the new PASS 6 will be similar in form to the existing
Pascal version, but its optimizations will be quite different.

Another negative aspect of the use of PAS32 is performance. PAS32 was designed
to be useful on machines with very limited memory. This is a holdover from the
PDP-11 implementation of Hartmann, which had severe memory constraints. The

sacrifice made to save memory is in speed. Large quantities of disk I/O are performed

49

in the process of translating programs. In a potentially commercial product. this per-
formance penalty may be too troublesome.

Whether these drawbacks mean that writing a new code generator would have
been wiser is an interesting question. Clearly writing a code generator is not an easy
task. I tend to think that considering that the compiler was intended to be used in a
production environment, it would be advantageous to make it as efficient as possible. A
one or two-pass code generator would perform better than the five-pass design that
was used. The design would be more unified in such a case, lowering the trickle-down
impact of the changes that were made in the process of development. Another avenue
that might have been considered would be to make use of the code generator of the
portable C compiler [JOH79a), which would allow for greater portability of the S-Port

system across various UNIX implementations and machines.

Another important aspect of the design was the use of S/SL for the intermediate
translator. S/SL has shown some nice characteristics. It is a simple language, and
development of S/SL programs can be rapid. Parsers may be generated routinely from
a syntax description. for example. S/SL programs are translated into interpreted code
that is more compact than the tables produced by automatic LALR parser generators
such as the Lex and Yacc combination [LES79. JOH79b], which is available in the
UNIX environment. Interpass, however, required quite involved semantic information
to be manipulated underneath S/SL. The Pascal semantic routines numbered in the
hundreds. I think that a well-written and documented Pascal or C program would

have been easier to understand for a translator of the scope of Interpass.

The S-PORT system itself should be of great help to those who wish to write a
SIMULA compiler with the least effort possible. Some of the more useful utilities, such
as the Simob run-time debugging system and the SIMULA source formatter, are not

currently implemented, but when they are added to the system, it will be a useful

50

development package.

Some parts of S-PORT's documentation are needlessly obscure, which added to
the confusion of the meaning of certain aspects of S-Code (especially the insertion
question). Communication of the semantics of complicated features is made more of a
problem due to the slowness and expense of dealing with the system's designers over
such a long distance. The original design for the insertion mechanism was based on the
answers to specific questions about transitive insertions,” so either the semantics have
changed, or the question was misunderstood by the Norwegian Computing Center,

since the method was not in line with the usage of the insert token in S-PORT.

References

ADAY79. 1.D. Ichbiah, J.C. Heliard, O. Roubine, J.G.P. Barnes,
B. Krieg-Briickner, and B.A. Wichmann
"Rationale for the design of the Ada Programming Language.”
ACM SIGPLAN Notices,
14:6, June 1979

DAHS2. O. J. Dahl, B. Myhrhaug, and K. Nygaard,
SIMULA 67 comumon base language,
Oslo, Norway: Norwegian Computing Center, 1982

FRA77. W. R. Franta,
The Process View of Simulation,
New York, NY: North-Holland, 1977

HANT7S. Per Brinch Hansen,
*The Programming Language Concurrent Pascal.”
IEEE Transactions on Software Engineering,
1:2, June 1975, pp 199-207

HAR77. Alfred C. Hartmann,
"A Concurrent Pascal Compiler for Minicomputers,”
Lecture Notes in Computer Science,
New York, NY: Springer-Verlag, 1977

HOLS82. R. C. Holt. J. R. Cordy. and D. B. Wortman,
"An Introduction to S/SL Syntax/Semantic Language.”
ACM Transactions on Programming Languages and Systems,
4:2, Apr 1982, pp 149-178

JENS&3. P. Jensen, et al.
Definition of S-Code ver 3.1,
Oslo. Norway: Norwegian Computing Center, 1983

JOH79a. Stephen C. Johnson,
"A Tour Through the Portable C Compiler,"
UNIX Programmer's Manual, Seventh Edition,
Murray Hill, NJ: Bell Telephone Laboratories, Jan 1979

51

JOH79b. Stephen C. Johnson,
"Yacc: Yet Another Compiler-Compiler,”
UNIX Programmer’'s Manual, Seventh Edition,
Murray Hill, NJ: Bell Telephone Laboratories, Jan 1979

KER78. B. W. Kernighan and D. M. Ritchie,
The C Programming Language,
Englewood Cliffs, NJ: Prentice Hall, 1978

LES79. M. E. Lesk, and E. Schmidt,
"LEX - Lexical Analyzer Generator,"
UNIX Programmer’'s Manual, Seventh Edition,
Murray Hill, NJI: Bell Telephone Laboratories, Jan 1979

MIL83. G. Millard, O. Myhre, and G. Syrrist.
S-PORT The Environment Interface ver. 3.1,
Oslo, Norway: Norwegian Computing Center, 1983

NAUS63. P. Naur, ed
"Revised Report on the Algorithmic Language ALGOL 60"
Communications of the ACM
6:1, 1963, pp 1-17

PER75.
Model 8/32 Processor User's Manual,
Publication 29-428 RO1.
Perkin-Elmer Corporation, 1975

PER79.
Model 3220 Processor User's Manual,
Publication C29-693 RQO,
Perkin-Elmer Corporation 1979

PERS0.
Common Assembly Language (CAL) Programming Reference Manual,
Publication S29-640 RO4,
Perkin-Elmer Corporation 1980

52

RIT78a. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan,

"The C Programming Language,”
The Bell System Technical Journal,
57:6, Jul-Aug 1978, pp 1991-2019

RIT78b. D. M. Ritchie, and B. J. Thompson,
"The UNIX Time-Sharing System,”
The Bell System Technical Journal
575:6, Jul-Aug 1978. pp 1905-1929

THQ78. B. J. Thompson.
"UNIX Implementation”
The Bell System Technical Journal
57:6, Jul-Aug 1978, pp 1931-1946

WIR71. Nicholas Wirth.
"The Programming Language Pascal
ACTA INFORMATICA
1, pp 35-63 (1971)

WIRSS. Niklaus Wirth
FProgramming in MODULA-2, 3rd ed.
New York, New York: Springer-Verlag, 1985

YOUBSO. Robert Young and Virgil Wallentine,
"PASCAL/32 Language Definition"
Department of Computer Science
Manhattan, KS 1980

33

Adapting a Portable SIMULA Compiler to
Perkin Elmer Computers in 2a UNIX Environment

by

Gregory L. Dietrich

B.S., Kansas State University, Manhattan KS, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

The implementation of a compiler for the language SIMULA-67 is described. The
target machines are those in the Perkin-Elmer 32-bit series, with the operating sys-
tem environment Version 7. S-PORT, a portable SIMULA system designed by the
Norwegian Computing Center, was the basis for the project. The language SIMULA
itself is briefly described. and some of its interesting features. The portable SIMU-
LA compiler system, the design of the KSU implementation, and my contributions

to the compiler are then described, as well as the current state of the project.

