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CHAPTER 1 

INTRODUCTION 

Great Plains states are experiencing a rapidly increasing demand for 

agricultural water. In 1965, 2.35 million acre-feet (MAF), or 71% of the 

total Kansas water usage, was allocated to agricultural purposes. By the 

beginning of the Twenty-First century the gross agricultural water re- 

quirements are expected to increase to 10.9 MAF, 88% of the total Kansas 

water demand. Data collected in 1965 shows that 96% of the agricultural 

water allocation was for irrigation. That percentage is expected to in- 

crease in the future [14]. 

With the rapid growth of irrigation, the water table has dropped in 

many areas of Kansas. Lowered ground water tables require more energy to 

lift water from greater depths. Also, a declining water table renders 

wells unable to deliver at the desired rate. The consequence is a reduction 

in crop yields associated with higher production costs. Net farm incomes 

are much more sensitive to the effects on crop yield resulting from in- 

sufficient water than to the increased costs of maintaining well yields 

[24]. 

Also, excessive water usage leads to considerable leaching of soluble 

nutrients from the soil profile. Consequently demand for fertilizer in- 

creases to maintain equivalent grain yields [13]. 

Irrigation scheduling is a widely accepted procedure for preventing 

water shortages and conserving soil nutrients [10]. This procedure 

schedules the timely delivery of water to the crop root zone. 

1 
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Biere and Perng [3] presented a corn growth model which related soil 

moisture, evapotranspiration, and scheduled irrigation water. This model 

assumed that corn growth was a single stage process throughout the plant 

development. The relative growth rate was expressed by an empirical 

function. The soil moisture to crop response had many relations. 

Morgan [16] modified Biere's model and added more experimental data. 

He divided the single corn growth function into two: one for vegetative 

growth and another for ear development. Each function had its own growth 

rate. Furthermore, the crop response to soil moisture was functionalized. 

This study used a modification of the model developed by Thomas [16,17]. 

Changes which were incorporated included the ET model by Kanemasu et al. 

[12], and the use of two levels of irrigation water for each stage. The 

irrigation treatments were either no water or three inches of water. The 

irrigation schedule which optimized corn growth was developed through 

dynamic programming. 

Irrigation scheduling is a multi-stage decision problem. Many multi- 

stage decision processes can be treated as combinatorial problems. Con- 

sider an N-stage process in which k decisions can be made at each stage. 

For each possible decision made in stage N, there are k possible decisions 

in stage N-1. For each possible decision in stage N-1, there are k pos- 

sible decisions in stage N-2, and so on. A total of kN possible decision 

paths must be considered at the beginning of the process to find the 

optimal solution. This is possible in principle but it becomes a pro- 

hibitively expensive approach for even the fastest computer. Dynamic 

programing eliminates the need for examining k 
N 

paths at one time by 
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taking each stage as it comes and choosing the best decision out of the k 

available at each stage. In other words, dynamic programming reduces a 

combinatorial problem involving k 
N 

choices to a problem requiring only Nk 

choices, a significant reduction in problem size and difficulty. 



CHAPTER 2 

THE DEVELOPMENT OF A CORN CROP RESPONSE MODEL FOR 

AN ECONOMIC IRRIGATION SCHEDULING MODEL 

2.1 INTRODUCTION 

Irrigation scheduling is becoming a more important topic because of 

frequent irrigation water shortages and increasing costs. Many papers 

have been published in this field but few have considered the economic 

factors, or were related to the level of soil moisture depletion [10]. 

Because the ultimate purpose of irrigation scheduling is profit maxi- 

mization we need to know the marginal revenue of yield and the marginal 

cost of additional water. 

A fault common to most current crop models is their static character. 

A dynamic growth function is required to adequately describe plant growth 

processes in the real world. That is, the effects of water on plant 

growth vary in different stages. 

In this chapter we shall introduce the development of a dynamic 

corn crop response model for an irrigation scheduling use. 

2.2 SYSTEM ANALYSIS OF IRRIGATION CROP PRODUCTION 

Before analyzing the whole system of plant growth processes we shall 

explain the importance of water. 

Practically all the dry mater of higher plants originates from photo- 

synthesis. This is a process by which plants utilize solar radiation 

energy, water, carbon dioxide and a catalyst, chlorophyll, to produce 

4 
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carbohydrates. The chemical equation for photosynthesis is: 

CO2 H2O energy e. (CH20) 1- 02 - 112,000 calories (2.1) 

where H2O C is a remainder in the plant [5]. 

Evapotranspiration (ET) is the combined evaporation from all surfaces 

and the transpiration of plants. Since water is consumed by the plant 

through ET, water must be constantly resupplied to the root zone. Hot 

weather increases the demand for water. This increase is due to higher 

level of plant transpiration and surface evaporation. Plant transpiration 

increases to reduce the effects of excessively high temperature. Thus, 

water supply is time related. 

Figure 1 E3] indicates the plant growth process. The soil moisture 

is supplied from two sources: (l) natural precipitation and (2) irri- 

gation. The natural precipitation generally occurs in the form of rainfall. 

Most of precipitation runs off the land before incorporation. Actually 

only a small portion of available water can be absorbed by the plant root 

zone. Similarly, most irrigation water is lost through surface run off 

or is percolated below the root zone area. 

The quantity of moisture held in the root zone at a given time is 

determined by the net additions to soil moisture in the root zone along 

with existing soil moisture. A plant's ability to absorb this water is 

inversely related to the soil moisture tension. This concept, soil 

moisture tension, is the equivalent pressure required to bring soil water 

into hydraulic equilibrium through a permeable wall or membrane with a 

pool of water of the same composition. Hence the plant is less capable 

of absorbing water as the moisture level declines. 
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Figure 1. Flow chart for irrigated crop production. 
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ET is related to solar radiation, precipitation, leaf-area index, air 

temperature etc. While many methods have been published for estimation 

of ET, most require excessive measurements not supplied by the National 

Weather Station. 

Crop response models involve the interrelationship between water, 

plant growth and ET. The following sections will discuss this interrela- 

tionship in detail. 

2.3 ESTIMATION OF AVAILABLE SOIL MOISTURE 

Available soil moisture is the amount of water held in the soil which 

is available to the plant for absorption. Much work has been done in 

soil moisture measurements. These techniques can be categorized as: 

measurements of moisture tension and measurements of water content. 

Moisture tension techniques utilize tensionmeters and electric methods. 

Water content measurements include oven drying methods and neutron scattering 

methods. 

These methodologies can not be satisfactorily utilized by the farmer 

or the researcher because they are operationally expensive, time-consuming 

and require interpretation. Thus, it was necessary to develop a simple 

method amenable to routine field operations. The water balance technique 

has been successfully applied to estimation of soil moisture. The water 

balance equation can be stated as: 

Changes in soil moisture = Precipitation 4. Irrigation 

- Evapotranspiration - Percolation - Runoff (2.2) 

This approach has many advantages, including low equipment costs, simplicity 

of measurement and reasonable accuracy of the results [5]. 
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Using water balance technique, Biere and Perng [3] demonstrated 

a method of estimating soil moisture. 

Here we shall explain some terminologies. The Permanent Wilting 

Point, is the soil moisture tension at which the plant first undergoes 

complete wilting without recovery in a saturated atmosphere. The Permanent 

Wilting Point is a useful approximation of the lower limit of availability 

of soil moisture in the root zone of plants. Field capacity is the moisture 

content of a well drained soil 2 to 3 days after saturation. Field capacity 

is a useful approximation of maximum soil water retention capacity. 

Now we present Biere's method of estimating available soil moisture: 

W 
t-1 

-ET 
t-1 

-P 
t-1 

-RI 
t-1 

+R 
t-1 

+1 
t-1 

(2.3) 

where AMt is the ratio of maximum available soil moisture in period t. Zt is 

the maximum water capacity in the root zone in period t. Wt is the amount 

of available water actually held in period t. This quantity, Wt, equals 

that amount held in period t-1, minus the evapotranspiration, ETt_l, 

minus the percolation, Pt_l, minus the runoff, RIt_i, plus the rainfall, 

Rt_l, and plus the amount of irrigation water, It 
-1' 

We assume that the percolation and runoff do not happen. We also 

assume the probability of rainfall is rather low for those areas in which 

scheduled irrigation are most benefical. After dropping Pt_/, RIt_l and 

R 
t-1 

from equation (2.3) we obtain 

W 
t 

W 
t-1 

-ET 
t-1 

+I 
t-1 AM 

t 
- 

Z 
t 

Zt 
(2.4) 
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We shall use equation (2.4) to estimate the percent of available 

moisture in the 
soil profile. 

2.4 THE DEVELOPMENT OF EVAPOTRANSPIRATION MODEL 

Many empirical evapotranspiration (ET) models require meteorological 

measurements, such as vapor pressure gradients, which are not routinely 

measured by the National Weather Service. Therefore we need a model that 

requires minimum measurements, yet which will accurately estimate daily 

evapotranspiration rates. 

Kanemasu et al. [12] developed a model requiring these minimum 

measurements: net radiation (or solar radiation), temperature, and 

Leaf-area index. The data of net radiation and temperature can be ob- 

tained from nearby weather stations. We can measure or estimate Leaf- 

area index (LAI) from leaf growth models [1]. Finally, the model has 

estimated daily ET from soybeans and sorghum in Manhattan, Kansas. Com- 

parison of the results with lysimetric observations demonstrated that this 

model is simple, reliable and accurate. 

Rosenthal et al. [23] used the model developed by Kanemasu et al. 

[12] to estimate the parameters required for a corn-crop model. The study 

was done at the Scandia Irrigation Experiment Field and the Evapotranspir- 

ation Research Field at Manhattan. 

The model divides daily ET rates into transpiration (T) and evapor- 

ation (Es). 

By modifying the Priestly and Taylor [18] equation we estimate daily 

maximum evapotranspiration (ETmax) during predominantly nonadvective con- 

ditions. 



ET 
max 

= a[S/(S+y)] R 
n 

10 

(2.5) 

Where S is the slope of the saturation vapor pressure curve for a weighted 

+ T 
min 

average temperature (3 

T 
max 

4 
), ' is the psychrometric constant; R 

n 

is daily net radiation; and a is a coefficient, dependent on the climate 

and type of corn. We chose a = 1.35 from previous studies [12,25]. 

Since R 
n 
estimates are not usually available we employed daily solar 

radiation data to formulate an estimate, Rn. The equations are: 

R 
n 

= 0.861 R 
s 

- 103.92 for LAI < 3.0 

R 
n 

= 0.848 R - 144.49 for LAI > 3.0 

R 
n 

= 0.766 R 
s 

- 99.89 for LAI > 3.0 and after 

(2.6a) 

(2.6h) 

blister stage. (2.6c) 

Where R 
s 

is daily solar radiation. LAI was determined from leaf area and 

plant population. Leaf area was obtained by an optical area meter and 

correlated with the maximum length and width of each leaf, which resulted 

in the equation: 

LA = 0.73 7 (L. x W.) (2.7) 

where LA is the total plant leaf area and n is the number of leaves per 

plant. L. and W. are the maximum length and width of each leaf. The 

coefficient in equation (2.7), 0.73, is identical to the results by 

Mckee [15]. 



11 

Evaporation from the soil surface includes two stages: the constant 

(Esi) and falling rate (Es2) stages [17]. The equations are given by: 

Est T[S/(S+y)] R 
n 

E 
s2 

= ct 
1/2 

- c(t-1) 
1/2 

(2.8) 

(2.9) 

where T (1) is the ratio of net radiation reaching the ground (Rns : Rn) 

and (2) is a function of LAI; c is a constant whose value depends on 

soil hydraulic properties and in this study c equals 3.6 mm (day)-1/2; t 

is the number of days from the beginning of Es2. 

The amount of available soil water in the root zone determines the 

transpiration rates. The maximum amount of available water in the 150-cm 

profile (Z) for Manhattan and Scandia is 335 mm and 183 mm, respectively. 

Transpiration depends on LAI or the percentage of the ground shaded 

by the crop (cover percentage) when soil water is not limited. The fol- 

lowing equations can be used to estimate the cover percentage. 

I 
cover percent = ( 

L 
-A--) x 100% for LAI < 3.0 
30' 

cover percent = 100% 

(2.10a) 

for LAI > 3.0 (2.10b) 

cover percent = 40% for LAI > 1.8 and 

after silking stage. (2.10c) 

For less than 50% cover 

T = av(1-T)[S/(S+y)] Rn (2.11) 



For greater 
than 50% cover 

where 

T = (a-r)[S/(S+y)] Rn 

12 

(2.12) 

a 
v 

(a-0.5) / 0.5 

Tanner and Ritchie [26] determined the critical amount of available 

soil water affecting transpiration for a number of soils and crops to be 

0.3 Z. After the soil water content has been depleted to 0.3 Z, 

or 

T = 
0 3 Z 

a 
v 
(1-THS/(5+-y)] R 

n 

T = 
0.3 Z 

(a-T)[S/(S+y)] R 
n 

(2.13a) 

(2.13b) 

where W is the actual amount of available soil water. 

Actual ET is greater than ETmax under advective conditions [22]. 

An equation given by Kanemasu et al. [12] for sorghum was used to esti- 

mate the advective contribution (A): 

A = 0.1 T for T 
max 

> 33 
o 
c. 

Calculating A, T, and Es gives: 

ET = E 
s 

+ T + A. 

(2.14) 

(2.15) 

The results from Scandia and Manhattan demonstrated the high accuracy 

of this model. A detailed description of the model was given by Kanemasu 

et al. [12] and Rosenthal et al. [23]. 



2.5 THE DEVELOPMENT OF THE GROWTH FUNCTION 

Jensen [11] has proposed a growth function 

n 

Y = Yo II Jtxt 
t=1 

Qt = ln(AM 
t 

+ 1) / ln(101) 

13 

(2.16) 

(2.17) 

where Y is actual yield, Y 
o 

is yield under optimum water; a 
t' 

which 

equals one at field capacity and zero at permanent wilting point. This 

at indicates the plant's ability to uptake water when the soil moisture 

stress varies and at is the relative growth rate in period t. A multi- 

plicative growth function is used because the current stage of plant size 

is dependent on the previous stages. 

The drawback to the use of this model is the paucity of information 

available for estimation of the ys. 

Biere and Perng [3] introduced another growth function related to the 

crop coefficient. They assumed the crop coefficient could represent 

relative growth and proposed: 

and 

At 
B() 

Xt [B(t -l)] Xt-1 

t 

B(t) = I (v) dv 

0 

02.18) 

(2.19) 

where 3 is a crop coefficient which indicates the relationship between 

plant size and evapotranspiration; At is some function of AMt, and X 
t 

is the actual level of plant development in period t. 
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Equation (2.18), the growth function, was also questioned because 

the results 
of simulating the model had a yield of 108 bushels per acre 

even though available soil moisture was exhausted during the last six 

weeks. 

Morgan, Kanamasu and Biere [17] developed a corn crop model with water 

as the input and grain yield as the output. The relative growth rate and 

all other variables except water were estimated. A mid-season hybrid that 

silks at 66 days after emergence was used to test this model. All ordinary 

corn plants tend to follow the same general pattern of development. But 

the duration between stages and number of leaves developed may vary among 

different hybrids [8]. The plant growth process must be divided into 

two segments because the effect of water on plant growth varies in the dif- 

ferent stages. Figure 2 [8] illustrates the development of corn at the 

different segments. 

2.5.1 THE DEVELOPMENT OF THE VEGETATIVE FUNCTION 

The period for the vegetative development is the first 60 days after 

emergence. During this stage, the plant builds its photosynthetic factory 

which will produce the grain after silking. The corn plant develops 

slowly at first and increases gradually as more leaves are exposed to 

sunlight. The leaf development is complete between 42 days and 49 days 

after plant emergence and the rate of growth is rapid thereafter [8]. 

The exponential equation was used because of its compatible shape 

(Figure 3) [16]. The equation is: 

r+6t 
G 
t 

e (2.20) 
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Figure 2. Dry matter accumulation in the corn plant reproduced using data from Hanway 
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where G., is corn growth at day t (0 < t < 60), r and 6 are unknown con- 

stants and 
were estimated from Hanway's data (Figure 2) by taking the log 

transform of equation 
(2.20) and using a least-squares regression. The 

estimation for r and 6 is -1.7 and 0.094 respectively with the regression 

R2 = 0.947. 

We employed a recursive form for equation (2.20) since the plant 

growth in stage t is dependent on the previous stage, t-1. 

Gt = e 
r+6t 

= e 
6 
e 
r+6(t-1) = e G 

t-1 
(2.21a) 

In this function G 
0 

is a very small number less than one since there 

is very little dry matter accumulation at emergence. 

By substituting d into equation (2.21a) we obtain: 

0.094 
Gt e G 

t-1 
(2.21b) 

Using equation (2.21b) as the growth function, we develop the following 

as the growth relationship between water and vegetative for the first 60 

days after emergence: 

O94 
a(AM ) 

(e0.0,4) t 

t-1 
(2.22) 

where ,77(AM.) is defined as ot. The derivation of a(AMt) will be given 

following section 2.5.2. 

2.5.2 THE DEVELOPMENT OF EAR GROWTH FUNCTION 

Hanway [8] found the development of the cob, silks and grain is re- 

lated to the harvested yield. Therefore a combined dry matter accumulation 



18 

curve (Fi gure 4) [16] was used to estimate the ear development function. 

The function originates with the ear development (61 days after 

emergence) and spans to maturity (126 days after emergence). This re- 

lationship is dependent on the accumulated development throughout the 

vegetative stages and on the available water thereafter. Plant growth has 

the property of a reducing growth as the plant approaches some maturity. 

A modified logistics equation was used to estimate the ear development 

function. 

The differential equation for grain develpment, Ht, assuming a 

logistic curve is: 

dH K-H 
t . t 

dt 
d Htk--1-47) (2.23) 

K-H4. 

where 0 < t < 66. The term ( ') shows the growth rate when Ht (accu- 

mulated ear development at day t) approaches K (the maximum amount of ear 

development attainable). 

K-H 
t Substituting T for K and t for H into the term (-77-) in equation 

(2.23) we have: 

dH 
t T- 

dt 
- Ht(7t ) 

where T is the day of maturity and t is the time in ear development 

stage. 

Rewriting equation (2.24) we have: 

dH 

Ht 
= 

T- t 
H- - 6 dt = 6'dt - dt. 

(2.24) 

(2.25) 
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Integrate both sides to obtain: 

log Ht = d't - 
t 
2 

t 
2 

2T 
+ c = c + 61(t Fr) 

20 

(2.26) 

where c is the constant of integration, Ht is accumulated ear development 

at day t, 0 < t < 66, 0 < H < 1; c and 6' are constants. The regression 

estimation for c and 6' were -3.573 and 0.109 with R 
2 

= 0.994 from 

Hanway's data and equation (2.26). 

Taking the anti-log of both sides of equation (2.26) we have: 

c+6'(t-t2/2T) 
e 
-3.573+0.109(t-t2/2T) 

H 
t 

e (2.27) 

where 0 < t < 66 and T = 66. Figure 4 shows the plots of the ear develop- 

ment function from Hanway's data and equation (2.27). 

Developing equation (2.27) into recursive forms we obtain: 

c+61t-(61/2T)t 
2 

H 
t 

e 

= e c+6't-(6'/2T)((t-1)+1) 
2 

e 
c+6't-(61/2T)((t-1) 

2 
+2t-1) 

= e 
c+61t-(61/2T)(t-1)2-(61/2T)(2t)+61/2T 

= e 
c+6'(t-1)-(6'/2T)(t-1) 

2 

e 
6 -61t/T+61/2T 

Since ear development for the t-1 day is: 

H = e 
c+6'(t-1)-(6'/2T)(t-1) 

2 

t-1 

(2.28) 

(2.29) 



We can substitute equation (2.29) into equation (2.28) to get: 

H 
t 

= H 
t-1 

e 
(51-61t/T+61/2T 

= e 
V+61/2T e-Vt/T 

t-1 

21 

(2.30) 

Equation (2.30) is used for the ear development function in the growth re- 

lationship for 0 < t < 66, 

[eV+8V2T e-Vt/T]a(AMt) H 
t-1 

(2.31) 

When t = 1, Ho equals the total accumulated vegetative development. T, 

the date of maturity, is 66. 

By substituting V and T into equation (2.31) we have: 

Ht = [e 
0.1098 

e 
-0.00165t,a(AMO 

H 
t-1 

where 0 < t < 66 

We rewrite equation (2.32) to obtain: 

Ee0.1098 
e 
-0.00165(t-60), 

a(AM 
t 

) 

t 
H 
t-1 

where 60 < t < 126 

(2.32) 

(2.33) 

Substituting X for G and H into equation (2.22) and equation (2.33) 

we rewrite them as: 

0.094 
a(AM 

t 
) 

X 
t 

= (e ) X 
t-1 

0 < t < 60 (2.34) 
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X 
t 

= [e 
0.1098 e-0.00165(t-60)]G(AMt) 

X 
t-1 

60 < t < 126 

(2.35) 

2.6 THE ESTIMATION FUNCTION OF CROP'S RESPONSE TO SOIL MOISTURE 

Since we measure the harvestable grain yield XT instead of the inter- 

mediate grain yield X 
t 

(when t # T) we rewrite equation (2.30) in product 

form to obtain: 

a(AN4) 
X 
T 

[U+] X 
o 

t=1 

(2.36) 

where XT is the percent of maximum grain yield at maturity, X0 is plant 

development at the beginning of the ear development stage. The growth 

rate, Ut, is given by: 

U 
t 

= exp[V(1+1/2T - t/T)] 

Taking the log transformation of equation (2.36) we have: 

log XT = S a(AMt) log Ut + log X0 

t=1 

(2.37) 

(2.38) 

We shall use equation (2.38) to estimate cr(AMO. 

The daily available soil moisture during the vegetative development 

was close to field capacity for all test plots and had little effect on 

grain yield variability. a(AMt) was estimated only for the ear development 

stage. Estimation was restricted to this stage because the available soil 

moisture was varied only during ear development [16]. 

The functional form of 6(AN was decomposed into a piecewise linear 

function of available soil moisture consisting of three linear segments. 
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a 
1 

+ b 
1 

AM 
t 

for 0.000 < AM 
t 

< 0.333 - 

a(AMt) = a2 + b2AMt for 0.333 < AMt < 0.667 

a3 + b3AMt for 0.667 < AMt <1.000 

where the a's and b's are to be estimated. 

The crop data for estimating these coefficients were collected on 

test plots of the agronomy experiment fields at Manhattan, Kansas in 1974, 

1975 and 1976, and at Scandia, Kansas in 1974 and 1975. Temperature and 

solar radiation measurements were obtained from the closest weather station 

[17]. The daily available soil moisture was estimated from the collected 

data by using a model developed by Rosenthal et al. [23]. 

Using spline regression to estimate equation (2.38) we obtain the 

following results: 

2.464AMt for 0.000 < AMt <0.333 

a(AMt) = 0.755 + 0.199AMt for 0.333 < AMt < 0.667 (2.39) 

0.663 + 0.337 AMt for 0.667 <AMt < 1.000 

2.7 THE OBJECTIVE FUNCTION 

The ultimate purpose of irrigation scheduling is to maximize net 

returns from irrigation. This model is only a partial analysis. It 

assumes that decisions concerning such variable as seeding, fertilizer 

costs are constants. Therefore, the objective function is: 

Maximize V = p - h(It) (2.40) 

and 



XT = f(X 
T 

) = 140 x X 
T 
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(2.41) 

where pc is the price of corn received; XT is the percent of optimum 

yield at maturity T. The harvestable yield, Xi, is obtained by multiplying 

X 
T 

by the maximum possible yield. In this study we assume the maximum 

possible yield is 140 bushels/acre and the unit price, pc, is $2.00/bushel; 

h(It) is the irrigation cost in period t; It is the depth of irrigation 

water in the field. 

The equation which gives irrigation cost is: 

or 

h(It) = $1.00 

h(It) $0 

when I 
t 

3" 

when I 
t 

= 0 

(2.42a) 

(2.42b) 

where equation (2.42a) means once we make decision to irrigate, we pump three 

inches of water onto the field and the associated cost is one dollar. 

Equation (2.42b) indicates that no irrigation existed, thus no cost was 

incurred. 

2.8 SUMMARY 

Now we summarize the whole model 

T 

Maximize V = p,X2r - h(It) (2.40) 

t=1 

where 

h(It) $1.00 (irrigate) when It = 3" 

h(It) $0 (do not irrigate) when It = 0" 

and 

(2.42a) 

(2.42b) 
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subject to 

X' = f(X 
T 

) = 140 x X 
T 

T = 126 
T 

P 
c 

= unit price of per bushel of grain yield 

X 
T 

= percent of maximum yield at maturity T 

(_0.094) 
6(AM 

t 
) 

A 
X 
t 

t = 1,2,...,60 
t -1 

(e0.1098 
e 
-0.00165(t-60))a(AM t 

) 

X 
t-1 

t = 61,62,...,126 

- 

W 
t 

W 
t-1 

- ET 
t-1 

+ I 
t-1 

(2.41) 

(2.34) 

(2.35) 

(2.4) 

(2.15) 

(2.39) 

AM 
t Z 

t 

ET 
t 

= E 
St 

a(AMt) 

Zt 

+ Tt + At 

2.464AMt for 0.000 AMt < 0.333 

0.755 + 0.199AMt for 0.333 <AMt < 0.667 

0.663 + 0.337AMt for 0.667 <.AMt < 1.000 

2.9 DISCUSSION 

The current corn response model has several advantages. (1) It con- 

siders the dynamics of the continuous growth process, yielding a good 

approximation to corn growth in the real world. (2) It needs minimum 

meteorological measurements which can be easily obtained from nearby National 

Weather Station or field site. (3) It is simple, reliable and accurate. 



CHAPTER 3 

FORMULATING THE CORN RESPONSE MODEL FOR ECONOMIC IRRIGATION SCHEDULING BY 

DYNAMIC PROGRAMMING 

3.1 INTRODUCTION 

Dynamic Programming was developed by Bellman [2] and has been applied 

extensively to many fields, such as production and Inventory problems, con- 

trol problems in the field of chemical engineering etc. 

Dynamic Programming is concerned with the general area of multi-stage 

decision processes. There are many problems that can be efficiently treated 

as multi-stage problems in the real world. The decisions of how to spend 

one's monthly income to optimize life-style between paydays is a common 

multi-stage decision process. 

The ultimate purpose of a multi-stage decision process is to make 

a decision at each stage in order to obtain an optimal decision over the 

entire process. 

Bellman's Principle of Optimality is a cornerstone of dynamic pro- 

gramming. It states "An optimal policy has the property that whatever 

the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the 

first decision". Using the Principle of Optimality guarantees that the 

decision made at each stage is the best decision in light of the whole 

process. 
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3.2 DYNAMIC PROGRAMMING; FORMULATION OF THE IRRIGATION SCHEDULING PROBLEM 

Equation (2.40) of the objective function shows that irrigation sched- 

uling is a terminal problem. We divide the whole growth process into 

126 days, each a day long. The crop growth is used as the state variable. 

The amount of water applied in a field is the decision variable. Each 

stage has two decisions which can be made. 

The Principle of Optimality of dynamic programming allows us to de- 

compose our model into a series of recursive equations starting from the 

end of the process. We break the time interval (0,T) into N equal incre- 

ments of L'A duration so Nzl = T. Time is counted forward so that T = 0 

represents the initial time of plant development. The stages of the process 

are counted backward so that N = 1 refers to one stage remaining, and 

N = N refers to the beginning of the process, as given in Figure 5. 
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The initial condition is converted to: 

X 
N+1 

= c. 

Let us define: 

gN(c) = the maximum return function over the N remaining stages 

of the process, starting in state c, subject to equation 

(3.5) and using an optimal policy. 

The optimal policies are functionalized by: 

9N(C) = 1711aNx gN-1(XN) h(IN)1 

g1(C) = 
max fpcx140xX1-h(I1)1; 

(3.5) 

(3.6) 

(3.7) 

where N > 2; X1 is the precent of maximum grain yield at stage 1; 

h(X1) and h(XN) are the irrigation costs at the first stage and Nth 

stage. Return at each stage is obtained by calculating gross revenue from 

the previous stages and substracting the irrigation cost from the current 

stage. 

3.3 DISCUSSION 

Dynamic programming can bring about a tremendous reduction in compu- 

tational difficulty and problem size. If the state variables exceed three 

the basic dynamic programming will encounter dimensionality. Consequently, 

we must use another approach, such as state increment dynamic programming 

to find the solution. 
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Time 

0 1 2 T 

Beginning End 

N 2 1 0 

.--- Stages 

Figure 5. The backward process. 
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distinct from these grid points will be obtained by linear interpolation. 

The equation is: 

if 

we have 

ko < c < (k+1)A 

gN(c) = gN(k) (c-kA)[gN(k+1)A-gN(kA)]/A 
(4.2) 

The maximization of equation (3.6) and (3.7) is performed by a 

direct enumeration of cases, and a comparison of values without reliance 

upon calculus. 

Let us discuss the procedures in greater detail. Since this is a 

terminal problem the formulation of the objective function at the first 

stage is different from the subsequent stages. For the one-stage process, 

the optimal policy is determined for the single decision variable, II, 

by the solution of 

gi(c) = max (Pc x 140 x X1 - h(I1)1 (4.3) 

where c is the ratio of maximum grain yield is bounded by 0 and 1; pc 

equals $2 per bushel; h(I1) is the irrigation cost in stage 1 and its 

value can be obtained from equations (2.42a) and (2.42b). Applying 

equation (2.39) to the Raney and Kanemasu [19] data on soil moisture for 

the irrigation and no-irrigation conditions we were able to obtain the 

value of c(AM1). Substituting c(AM1) into equation (4.7) we obtain the 

value of Xi. A better return value is chosen from the comparison of the 

irrigation and no-irrigation cases and is stored in a computer for sub- 

sequent stage use. 



For the two-stage process, the optimal policy is obtained by: 

g2(c) = max igi(X2) - h(I2)} 
12 

where gi(X2) can be calculated from the first stage table previously in 

computer. The calculation for all other factors is the same as in 

Stage 1. 

For the j-stage process, the recursive functional equation is: 

g.(c) = max fg. (X.) - h(I.)1 
I . J-1 

Now, if the optimal policy including the stages, N-1, N-2, ..., 

and 1, is known, then stage N can be optimized by solving the maximum 

problem for the single decision variable IN. That is, 

gN(c) = max (9m_1(XN) - h(IN)1 
IN " 

It should be noted that there are two different growth periods in 

the entire process we must use a particular transformation equation for 

a specific period, i.e., 

a(AM 
n 

) 

x 

n L 

re0.1098 e-0.00165(67-n)] 

where 1 < n < 66 

and 
a(AMn) 

k 

'00.094) 
- 

where 67 < n < 126 

32 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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Now the optimal policy has been found. We use the direct enumeration 

from the beginning of growth development to the end associated with the 

optimal policy to obtain the final grain yield. The following transformation 

equations can be used in this calculation: 

a( 
Xn = (e 

0 
' 

094 
) 

"n) 
X 
n-1 

where 1 < n < 60 

and 

where 

61 < n < 126 

a(41) 
[e0.1098 

e 
-0.00165(n-60)1 " X 

n-1 

4.3 FLOW CHART ANALYSIS 

Figure 6 encompasses the whole computational procedure as a flow 

chart. The explanations are summarized as follows: 

Step 1. The index n will indicate the number of activities that 

are under consideration. Initially, only single activity problems are 

dealt with. As the calculation proceeds the index n will be increased. 

Step 2. A table of values representing the function gi(x) at grid 

points will be computed. X = 0 is the first argument for which gi(x) is 

derived. After computing g1(0), gi(A), and then g1(2A), and so on the 

values are stored until the table is completed. 

Step 3. The internal working locations sl and will contain the 

maximum returns of no irrigation and irrigation cases to the present time. 



n=1 

1 

X=0 

=0 

=0 

i 

X' = [e 

I 
n 
=0 

Compute 
a(AMn) 

0.1098 e-0.00165(67-n)] X 

gn(x) = pc x 140 x X' - h(In) 

al = gn(x) 

i 

I 
n 
=3 

Compute 

g'4(x) = pc x 140 x X' -h(In) 

a2 = gn(x) 

a =a 

34 



35 



0 

s1 =0 

a 
2 
=0 

Compute 
a(AMn) 

0.1098 -0.00165(67-n), 
X' = [e e 

.1 
x 

i 

I 
n 
=0 

Compute 

9n(X) = 9n_1(Xl) - h(In) 

al = gn(X) 
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n=67 

X=0 

131=0 

f3, 
2 

=0 

X 

Compute 

(e0.094) 
a(AMn) 

I 
n 
=3 

Compute 

gg(X) = gn_1(X1) - h(In) 

al= gg(X) 

I 
n 
=3 

Compute 

gg(X) = gn_1(X1) - h(In) 

a2 = gn(X) 
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9n(X) = 4(') 
U . 0 

(X) = 4(X) 

U = 3 
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Figure 6. Flow chart for finding an optimal irrigation policy. 
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Assigning these cells an initial value of zero new maximum returns for 

two cases will result from the comparison with 31 and 32. 

Step 4. We shall compute the gi(X) which is the no irrigation case, 

where P, is the price per bushel; X is the percent of optimum grain yield 

and 0 < X < 1; h(I1) is irrigation cost and equals zero in the no irri- 

gation case. The value of gi(X) is computed and stored in location al. 

Step 5. Same as step 4, except this is an irrigation case, and the 

irrigation cost equals one dollar per day. The g'I'(X) is computed and 

stored in location a 
2' 

Step 6. Compare the number in location al with the number in cell 

31. If al > 31, go to next step; if it is not, go to step 8. 

Step 7. Replace the contents of cell 31 by the greater return that 

has just been stored in cell al. 

Step 8. Compare the number in location a2 with the number in cell 

. If u2 > 32, go to step 9; otherwise, perform step 10. 

Step 9. Replace the contents of cell 32 by the greater return that 

has been stored in cell a2. 

Step 10. Test the X which is larger than the previous X by L'1. 

Step 11. If X exceeds its upperbound perform the next step; other- 

wise, go back to step 3 and proceed. 

Step 12. Compare the number in cell 31, the best return from the 

non-irrigation case for this stage, with the number in cell the the best 

return from the irrigation case for this stage. If 31 > 32, go to next 

step; otherwise, go to step 17. 

Step 13 to Step 16. This is a block transfer. We transfer the 

number in location gi(X) into location qi(X) and store the decision yielding 

this return, U. 
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Step 17 to step 20. We transfer the number in location gi'(X) into 

location gl(X) and store the decision yielding this return, U. 

From Step 21 to Step 44, the computation procedure from the 2nd 

stage to the 66th stage. This computation procedure is the same as the 

first stage, except that the return function is changed because of the 

character of terminal problem. 

Step 45 to the final step, these routines are the computation pro- 

cedure from the 67th stage to the 126th stage. It should be noted only the 

transformation equation differs from the previous computation procedure 

(Step 21 - Step 44). 

To this point, we have obtained the optimal policy from previous 

calculations. Now, we present another flow chart in Figure 7 to show 

how to find the final optimal grain yield through direct enumeration. 

Step 1. The procedure starts from stage 1. This is an actual 

beginning stage of growth development equaling the last stage in Figure 6. 

Step 2. The initial value is given here to produce X1, the percent 

of maximum grain yield at the first stage. 

Step 3. This step is a calculation for X1 through the transformation 

equation. 

Step 4. The computer performs the second stage calculations. 

Step 5. If n < 60 go back to step 3; otherwise, go to next step. 

Step 6 - Step 9. These steps result in the calculations of ear 

development from stage 61 to stage 126. The computational procedure is 

the same as for the vegetative development period except that a different 

transformation equation is employed. 
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0.094 
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Calculate 
a(AMn) 

X 
[e0.1098 

e 
-0.00165(n-60), X 

n-1 
n 

Yes 

n=n+1 

Figure 7. Flow chart for finding the percent of optimal grain 

yield at maturity. 
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4.4 NUMERICAL RESULTS 

The necessary data collection and calculations for the amount of soil 

moisture for the irrigation and no-irrigation cases were done by Raney 

and Kanemasu [19] by using equations (2.4) and (2.15). The entire growth 

process started May 10 and ended on September 12, 1978 in Scandia and 

Manhattan, Kansas. The value of dry matter production at emergence obtained 

from Thomas was X 
0 

9.17 x 10 
-24 

% of maximum grain yield. This initial 

value so small that the ratio at maturity approaches zero. Biere gave us 

another initial value, X 
0 

34.59% which is unrealistic because the final 

ratio of maximum grain yield greatly exceeded one. After using a trial- 

and-error method we chose X 
0 

= 0.01213%. By using equations (2.34), (2.35), 

(2.39) and (2.40) associated with the dynamic programming approach we ob- 

tained the optimal policy for the entire growth process as shown in Figure 8. 

Direct enumeration from the beginning to the end of growth development 

was employed by applying equations (2.34), (2.35), (2.39) and (2.40). 

The policy thus obtained was used to find the final ratio of maximum grain 

yield. The results indicated that if irrigation is scheduled on each of 

50 days, the percent of maximum grain yield at maturity equals 63.3, and 

the total revenue is: 

V = p h(It) 
c i=1 

= P 
c 

x 140 x X 
T 

- 7 h(I 
t 

) 

t.1 

$2/bushel x 140 bushels/acre x 63.3% - 50 days x $1/acre-day 

$127.24/acre 
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Figure 8. The optimal irrigation schedules. 
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4.5 DISCUSSION 

The policy of irrigation scheduling may vary among different irri- 

gation costs because the objective function equation (2.40) is composed 

of two parts: revenue and irrigation costs. No irrigation scheduling 

is needed if water is unlimited. For the sake of economy, when the ir- 

rigation cost exceeds the revenue of grain attributed to irrigation, we 

terminate the process. In addition to timely scheduling, improved irri- 

gation systems can reduce cost through greater efficiency. Generally, 

the efficiency of surface irrigation systems varies between 30% and 70%, 

with an average value of 60%. However, an efficiency of about 85% or 

higher can be obtained using a runoff reuse system. Sprinkler system ef- 

ficiencies vary between 60% and 90% with an average of 75%, although 

center-pivot systems have an efficiency of around 85%. The efficiency of 

trickier irrigation systems varies between 75% - 95% with an average of 

about 90% [7]. 

Many factors influence the selection of an irrigation system. Some 

of these factors include topography; the source, amount and quality of 

water supply; soil characteristics; the crop to be grown; and available 

labor and capital. The following criteria have been suggested for evalu- 

ation of an irrigation system: (1) Uniform distribution of water; (2) 

Minimum erosion or other damage to the land; (3) Maximum efficiency in 

the use of water; (4) Practical and economical performance from the stand- 

point of the crop, (5) labor and energy requirements, and (6) the costs 

of land proeparation [9]. 



CHAPTER 5 

CONCLUSION 

A dynamic corn response model is used for an irrigation scheduling 

problem. The model has several advantages. (1) It considers the dynamics 

of a continuous growth process enabling it to better represent corn growth 

in the real world. (2) It needs minimum meteorological measures all of which 

are easily obtained from any nearby National Weather Station or field site. 

(3) It is simple, reliable and accurate. 

The dynamic programming approach is used here because the irrigation 

scheduling problem involves the optimization of many interrelated stages. 

Using the Principle of Optimality of dynamic programming guarantees 

that the decision made at each stage is the best decision in light of the 

entire process. 

Another principal advantage of dynamic programming to this, or any 

study, is the reduction in calculations required. In this case dynamic 

programming reduced a combinatorial problem involving 2 
126 

choices to a 

problem requiring only 2 x 126 choices. 

Future research efforts might well consider rainfall factors, 

probabilities of rainfall and adopt a stochastic dynamic programming pro- 

cedure. An adequate irrigation system should also be considered. 

The basic problem associated with the dynamic programming approach is 

that of dimensionality if the state variables exceed three. A modified 

approach, such as state increment dynamic programming appears reasonable 

as a means of eliminating this difficulty. 
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Although dynamic programming has been extensively used in many fields, 

including production and inventory problems, transportation problems, and 

control problems in chemical engineering, irrigation scheduling is a new 

application. It seems likely that many other agricultural applications 

are possible. 
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.4t44c************Vz**4*************44:44*****c*Jx*****4*** 
C IRRIGATION SCHEDULING FCR A CORN CROP RESPCNSE o'!OJEL 

C EY DYNAMIC PROGRAMMING 
C 

NUT AT IUN 

GRID POINT 
C AMI AVAILABLE SOIL MOISTURE FOR NO-IRRIGATION CASE 
C AM2 AVAILABLE SCIL MUISTLWE FOR IRRIGATION CASE 
C U - IRRIGATION POLICY 
C YI------ Gki-A,JH DEVELOPMENT FROM NO-IRRIGATION-CASE 
C Y2------ GRUATH OEVELOPMENT FHCM IRRIGATION CASE 
C Gl------ RETURN FUNCTIUN FOR NC-IRRIGATIJN CASE 
C G2- - - - - -- RETURN FUNCTION FOR IRRIGATION CASE 
C C------- BLOCK TRANSFER FCR RETURN FONCTICN 

BLOCK TRANSFER FOR GROhTH DEVELOPMENT 
SMALL-- IRRIGATION COST 
P------- UNIT PRICE CF CORN 

C 

C THIS PROBLEM IS TO OBTAIN AN ECCNCAIC IRRIGATICK 
C SCHEDULES. 
L 

C THIS PROGRAM nAS iiRITTEN BY JAMES C. CHAU, DEPARTMENT 
C OF INDUSTRIAL ENGINEERING, KANSAS STATE UNIVEkSITY, 

MANHATTAA, KANSAS, MAY, lc,79. 

C 

L 

C 

.** ** **M** 
THE MAIN PROGRAM 

JIMENSICN C112),X(1L),H1.12),G1(i),,:L(i2),Y1112),Y2(12 
C),A11(126)pAM2(12,J) 
P=2. 
SAALL=1. 

=.1.1 

M=INN-1 
F(1)=J 
DO 6 J=I,NNM 
F(J+I)=F1JY+0.1 

6 CONTINUE 
115 FCRA,4T(7ApI317A,F7.4,4X,F7.415X,F7.4p0X0:7.3) 

L 

IN DATA 
C 

t<EAD 7,(AM1(L),L=1,16) 
kEAO 7,(AM2(L),L=1,10) 

7 FURMAT(12F6.3) 
C 

C PRINT OJT THE TITLES FjR EACci ..TAJE 

C 



C 

C 

C 

PAINT 1111 
/Ill FORMAT(11.1) 

PRINT 1 

1 FORMAT(5WL=1,10X, U=1,7X11F=1,3X,'Y=1p1.3,11G=.) 

STAGE 1 

L=1 

C CALCULATE THE RETURN FUNCTION OF NO-Ii RU.,;ATION CASE 
C AND IRRI6ATIUN CASE 

DO 14 J=IINN 
IFIAMI(L).LT. 
IFt(4MI(L).GE 
IFHAMI(L).GT 

0199*A.M1(L) 
iFt(AMI(L).GT 

CAM1(L) 
It'CAA1(L).GT. 
Y1(J)=((EXP(U 
'31(J1 =P*Y1(J) 
IFIAA2(L).LT. 
IFHAM2(L).GE 
IFitAA2(L).0 
C0.199*AA2(L) 
IFIGAM2(..)GT 

CAM2(L) 
IF(AA2(L).GT. 
Y214)=NEXPIO 
02(J)-=F'*Y(J) 

14 CONTINUE 

0) A=2.464*AMI(L) 
.0).AND.(AM1(L).LE.J.333)) A=2.4.6444:41(L) 
.0.333).AND.(AM1(L1.LE.).631)) A=C.755+0. 

.0.6671 .AND. (Aill (L. 1.LE .1 ) ) A;=U .663 +0.337* 

1) A=J.G63+0.3.37*AM1(L) 
.1096)*EXP1-(0.00165*(o7o))))**A)*1 (J) 

*140 
0) A=.72.404*AA(L) 
.0).AND.(AA2(L).LE.0.333)) A=2.464*AM2(1.) 
.3.333).ANO.(AA2(L).LE.0.E61)) A=0.755+ 

).667 ) .ANO.(AM2 (L ) .LE .1 )) A=c .662-1j4,33 

L) A=0.663 +0.237*AA2(L) 
.1096)*EXPl-(0.001.b5*(67-L))))**A)*F(J) 
*140-SMALL 

C CHOOSE THE MAXIMUA ONE IN NC-IAIGATION CASE 

AAX1=Gi(i) 
00 9.J=IINN 
IF(01(J).LE.AAXI) 06 TO 9 

MAXI=Ca(J) 
9 CONTINUE 

CHOOSE THE AAIMoM ONE IN IRRIGATION CASE 
C 

C 

MAX2=2(1) 
JO o u=1, 
IF(G2(J).LE.MAXZ) 
MAX2=G2(u) 

8 CONTINUE 

TO 3 

oHLOSE Inc MAXIMoM ONE FkOM NE-IRIGTIC. Af,) 

55 



fARIGATIJN CASES, Alit) STORE IT 

C 
Ii(MAXI-MAX2) 3,3,2 

2 DO 10 J=1, 
U=0. 
PRINT 115,L,U,H3),Y1(J),G1IJ, 
C(j)=G1(3) 
X(J) =Y1(3) 

10 CONTINUE 
GO TO 12 

3 00 11 J=1,NN 
U =3. 
PRINT 115,1_,U,F(Q),Y2(J),S2(,;) 
C(J) =G2(J) 
X(J)=Y2(J) 

11 CONTINUE 
C 

STAGE L 16 STAGE 66 

12 L=2 
34 PRINT 1 

C 

CALCULATE THa RETURN FUNCTI N OF NO-IRRUGATILN CASE 
C. o4ND IRRIGATION CASE 
C 

56 

DO 16 J =1, NN 
LF(AM1(L).LT.0) ii=2.464*AMI(L) 
IFI( AMI( L).GE.0).AN0.(AA1(L).LE.0.333)) A=2.464*AMI(L) 
IF(( AMI( L).GT.0.333).AND.(AMi(L).LE....).667)) A=0.755+ 

C0.199*AAL(L) 
IFitAMI(L).GT.J.667).AN0.(AMIIL)..1)) A=6.o63+J.337* 

LAA1(L) 
IF(AA1(L).GT.1) A=J.663+0.337*AM1(L) 
YI(J)=((EXP(0.105)*EXP(-(0.uGit5*(o7-L))))**A)*F(J) 
Ift(J.E.C.NNJ.ANO.IYIIJI.GT.A(J))) SO Li 15 

IF(YL(J).LT.A(J)) GU TO 113 
IF((Y1(J).E.X(J)).0R.IIVI(J).3T.X(J)).Ai\!D.CY1(J).Lf.X. 
C(J+i)))) GC.: TO 

C 

C LINEAR INTERPOLATION 

le GDIFI=c(J)+(C(J)-C( 41))*(Y1(J)-X(J))/iX(J)-X(j-1)) 
G1(J)=GDIF1 
GO TO 22 

1i8 G0IFI=C(J)+IY1(J)-X( J)1*(C(J)-C(J-1))/(X(J)-X(J-1)) 
G1 (J)=601FI 
GU TO 22 

1'; GOIFI=C(J)+011(J)-X(J))*(C(J+1) -C IJWIA(J+1)-X(J)) 
Sits1)=G0If:1 

22 IF(X12IL.J.LT.3) A=2.444--AM2(L) 
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Ift(AM2(L).G-E.J).ANJ.(A.42(L).LE.0.333)) A=2.464*AM2(L) 
IF(CAM2(L).GT.O.331.AND.(AM2(L).LE.0.6671) A=0.755+ 

CO.199*Am2(L) 
IFICAM2(L).GT.0.667J.ANO.(AM2(6).LE.1)) A=3.663+0.337* 

CA12(L) 
IFtAA2(L1.GT.1) A=0.6634-0.337*AP2(L) 
Y2(J)=HEXP( O.1098)*EXPI-t1.00165*(67-L))))**Ai*F(J) 
IFt(J.E.NN).AND.tY2(J).GT.X(J))) GO TO 24 
IF(Y2(J).LT.X(J)) CC TO 240 
IFItY2( 0).&.;.X(J)).0h.i( Y2(0).GT.XIJ)I.ANJ.(t2t0).LT.X 

C(J*1)))) GU TO 25 
C 

C LINEAR INTERPOLATION 
C 

240 GOIF2=CCJ)+( Y2( 6)-X(J))*(C(J)-C(0-1))/(X(.1)-XiJ-1)) 
G2(J) =GDIF2-SMALL 
GO TO 16 

24 GOIF2=C(0)+(C(0)-C(J-1))*tY2(0)-XiJ11 /IXIJI-A(J-11) 
G2(J)=GOIF2-SMALL 
GO TO 16 

2S GDIF2=C( J)+( Y240)-X(J))*iL(J+1)-C(J))/(XtJ+1)-x(J)) 
G2(J)=GDIF2-SMALL 

16 CONTINUE 
C 

C CHOOSE THE MAXIMUM ONE IN NO-IRRIGATION CASE 

MAX1=G1(1) 
00 20 J=1,NN 
IFIG1(J).LE.0iAXii CO TO 20 

C CHCOSE THE MAXIMUM Lr IN IRRILATIjN LASE 
C 

MAXI=GI(J) 
20 CONTINUE 

MAX2=2(1) 
0O 26 J=I,NN 
iF( Ci2(J).LE.AAX2) GO TC 26 
MAX2=G2(j) 

26 .CONTINUE 
C 

C ciico3a THE MAXIMUM. ONE FROM NC-IARIGATICA ANC 
C IRRIGATION CASES, A:'i3 STORE IT. 

C 

IF(MAxl-MAX2) 23,26429 
29 DO 30 J=1,NN 

0=0. 
PRINT 115tL,01F(J)01(JJ,G1(J) 
C(J) =G1(J) 
X(J)=Y1(j) 
CONTINUE 
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GO Tu 31 
2E JO 32 J=1,1),N 

J =3. 
PRINT 115,L,UfF(J),Y2(J),G2(J) 
C(J) =G2(J) 
X(J)=Y2(J) 

32 CONTINUE 
31 L=L+1 

IF(L.LE.66) GO TO 34 
C 

C STAGE 61 TO STAGE 93 
C 

L=67 
74 PAINr 

C 

CALCULATE THE RETURN FUNCTILN GF NO-IAROGATWN CASE 
C- AAJ IRRIGATION CASE 
C 

JO 5i J=i,NN 
IF(AM1(L).LT.0) A=2.464*AM1(c) 
IFHAm1(L).GE.0).ANG.(AMI(L).LLi.).333)) A=2.t64*l1(L) 
IF((AM1(L).GT.0.333).A.4C.(A1(L).(:.3.60/)) A=0.755+ 

CG.199*AM1(1.) 
IFHAMI(L).GT.0.667).AND.(AMI(L).L1.1)) A=0.1E3+0.337* 

CAM1(L) 
IF(AMI(L).GT.1) A=0.6t3+0.337*Ami(L) 
Y1(J)=(EXP(0.094)**A)*F(J) 
IH(J.E.'d.NN).ANO.01(J).GT.A(J))) GO lc 33 
IF(YL(J).LT.X(J)) Gc TO 533 
IFUYI(G).6c.X(J)).CR.i(Y1(J).GT.A(J)).AAJ.(Y1(J).LT.X 

C(J+1)))) GO TO 54 
C 
C LINEAR INTERPOLATICN 
C 

53 GOIF1=C(J)+1 (J)-C(0-1))*(Y1.(J)-X(G))/(A(J)-x(G-L)) 
GI(J)=GOIi1 
GO TO 57 

533 GJIr1=C(J)+(Y1(,0-X(J))4,(C(J)-C(J-1))/(A(J)-Alj--1)) 
GI(J1=GDIF1 
GO TG 57 

54 GDIF1=C(J)+Pe1(J)-X(J))*(C(J+1)-C(0))/(X(J+1)-A(J)) 
01(J)=GDIF1 

57 iF(AM2tL).LT.0) A=2.464=AM2(L) 
IFH4M2(L).GE.0).0.(AM2(L).c.0.333)) A= 2.464* '2(L) 

IF((AM2(L).GT.).333).AAJ.(AM2(L).LE.).Cc7)) A=:.753+ 
CO.I'J9*M2(L) 

. IH(AA2(L).GT.0.667).AND.(AmAL).LE.1)) A=0.663+0.337* 
CAM2(L) 
1i(A42(0.6T.11 A=0.663+0.337*A2(L) 
Y2(J)=(EXP(3.094)**A)*H(J) 
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IFt(J.E.Q.NN).A4D.tY2(J).GT.X(J))) GU TO 59 

IF(Y2(J)41.T.X(J)) GO TO 599 
IFI(Y2IJ).EQ.X(0)).Ok.I(Y2(0).GT.X(J)).ANJOY2t0).LT.X 

CI J +11))) GO TO 60 
C 

C LINEAR INTERPOLATION 
C 

59 GJIF2=C(J)+(C(J)-C(0-1))(Y2(J)-X(J))/(A(J)-A(J-1)) 
G2(J) =GUIF2- SMALL 
GO TO 51 

59S GDIF2=C( J)+LY2(0)-X(J)14'(OLJ)-C(J-1))/(X(J) -X(J-1)) 
G2(j)=GOIF2-SMALL 
GO TO 51 

60 GOIF2=C(J)+1Y2(J)-X( J))*( (04.1)-C(0))/(X(J+1)-X(J)) 
S240)=G31F2-SMALL 

51 CCNTINUE 
C 

CHOOSE THE MAXIMUM ONE IN NC-IRRIGATION CASE 
C 

MAXI=G1(1) 
Od 4t j=1,NN 
IF(G1(J).LE.MAA1) GO TO 46 
MAXI=G1(J) 

46 CCNTINCE 
C 

OHCOSE ThE MAXIMUM ONE IN IRIGATIJN C,4SE 

MAX2=O2(1) 
JO 47 J=1 ,NN 
IFIG2(j).LE.MAX2/ GO TO 47 
MAX2-=G2(J) 

47 CONTINUE 
C 

CHCOSE THE MAXIMUM ONE FROM NO-IRRIGATIC OASE ANJ 
IRAIGATION CASES, NO STORE IT 

C 

IFIMAX1-MAX2J 66,66,69 
6S DO 70 J=1,NN 

J =0. 
PRINT 115,01U,Fl.A,Y1(0),01(1) 
O(J)=0/(J) 
XiJ)=Y1(J) 

IC CONTINUE 
SO TO 71 

6a JO 72 J=1,NN 
0=3. 
PRINT 115,L,Oft:(0)02101,G2(J) 
C(J)=G2(0) 
X(J)=Y2(J) 

72 OONTINJE 



60 

71 L=L+1 
IiIL.LE.951 GO TO 74 

C 
STAGE 96 TO STAGE 125 

C 

L=96 
274 PRINT i 

C 
C CALCULATE THE RETURN FUNCTION uF NO-IRROGATIbN LASE 

AND IARIGATICN LASE 
C 

DO 251 J=1, NN 
IF(AM1(L).LT.J) A=2.464*AM1(L) 
IFHAM1(C).GE.3).ANJ.(AA1(L).LE.0.33)) A=2.464*AMI(L) 
IFILAA1(L1.GT.0.3331.AND.(AM1(L).LE.O.o61)) A=0.155+ 

CJ.199*AM1(L) 
IFHAA1(L).GT.0.667).AND.(AMI(L).LE.1)) A=0.63+0.337* 

CAM1(L) 
IFIAM1(L1.GT.1) A=0.063 +0.337*AM1(C) 
Y1(J)=tEXP(0.094)**A)*F(J) 
IF(Y1(J).E.X(J)) GO TG 254 

234 GOIF1=C(J) 
Gi(J)=GO/F1 
IF(AA2(L).LT.0) A=2.464*AM2(L) 

i2(L).LE.D.333)) A=2.4(i4*AM2(L) 
IFNAM2(L).GT.0.333).ANU.IAM2(L).LE.0.6()) A=0.354- 

C0.199*AM2(L) 
IFI(AM2(1.).U.0.667).AND.(AM2(L).Ld.1)4 A=J.363+0.337* 

CAM2(1.) 
IF(AM2(L).GT.1) A=).663+0.337*AM2(L) 
Y2(J)=CEXP(L).094-)Tx*A)*F(J) 
IF(Y2(J).E.X(J)) GC TC 260 

260 GOIF2=L(J) 
G2(j)=GO1F2-SMALL 

251 CGNTINbE 
MAX1=61(1) 
DC 24d J=1,NN 
IF(Gi(J).LE.MAX1) Gu TO 246 

CHCOSE THE MAXIMUM ONE IN NO-IRAIGATICN LASE 

MAXL=G1(j) 
248 CLNTINJE 

C 

C CHOOSE THE MAXIMUM ONE IN IA:IGATI6N CASE 
C 

MAX2=G2(1) 
)O 247 J=1,NN 
1F(G2(.1).LE.4AX2) GO T3 247 
lAX2=C2(j) 
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247 CONTINUE 

CHCOSE THE MAXIMUM ONE FRCM IC-IRRIGATION ANL) 

C IRRIGATION CASES, ANO STOkE IT 

C 

IF(MAX1-MmX2) 2661268,269 
265 00 270 J=ItNN 

U=0. 
PRINT 115,LtUtF(j),Y1(J)1G1IJJ 
CiJ)=GI(J) 
X(J) =Y1(J) 

27C CONTINUE 
GO TO 271 

26E JO 272 J=ItNN 
U=3.. 

PRINT 1150_,UtF(J),Y2(J),G2(J) 
C( j)=G2(J) 
X(J) =Y2(J) 

272 CONTINUE 
271 L=L+1 

IF(L.Lt.125) G TO 2t4 
C 

C STAGE 12 

L=126 
PRINT 1 

C 

CALCULATE THE RETURN FONCTIC NO-IkkJGATILN CASE 
C ANU IRRIGATILN CASE 
C 

J=4 
FIJ1=0.3469 
IF(AM1(L).LT.)) A=2.464*AMIIL) 
IFIIAM1(cl.G.E.0).ANU.(AAliL).L..)32:1) A=2.4644AAI(L) 
jiL'I(AMI(L).GT.J.333).AND.(,=+MIL).cE.0.667)) A=).755+ 
C0.1,4*AMI(L) 
Ifi(A11I(L).67.0.6o7).AAO.(AMI(c).LE.1)) A=04,063+11.J37* 

CAA1(L) 
IF(AMI(L).GT.I) A=0.663+0.337*AMI(L) 
Y1(j)=(ExP(0.094)**A)*FIJJ 
IFIrtIAJ).EQ.X1J/).JR.I(Y1IJ).UT.X(J)).ANO.tYi(J).LT.X 
(J+1)))1 GC TO 64 

C 

C LINEAR INTERPOLATICA 
C 

84 GCIFI=C(j)+01(j)-iJi)4IC(J+1)-C(J)1/(X(J+11-xiJJ) 
GI(J)=6CIF1 
li:(AM20c).LT.0) 4=2.464*AM2(L) 
IF(IAm2(L1.GE.0).A13.(A2(L).LE.)..333)) A=2.1.64*414.2(L) 

A=C.755+ 
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ABSTRACT 

Dynamic programming is a useful technique for solving multi-stage 

problems. The principal advantage of this approach is the computation re- 

duction. For a 126-stage example with 2 decisions at each stage, a sig- 

nificant reduction in problem size and difficulty can be obtained by 

reducing this combinatorial problem involving 2 
126 

choices to a problem 

requiring only 2 x 126 choices. 

The purpose of this work is to modify a dynamic corn crop response 

model for scheduling irrigation use and obtain the maximum profit from 

irrigated production by using dynamic programming. 

A dynamic corn response model has several advantages. (1) It con- 

siders the dynamics of a continuous growth process so that it represents 

a good approximation to corn growth in the real world. (2) It needs minimum 

meteorological measurements which can be obtained easily from nearby National 

Weather Station. (3) The model is simple, reliable and accurate. Most 

ordinary corn plants tend to have a pattern of development similar to this 

model, except that the duration of stages may vary among different hybrids. 

The irrigation scheduling problem involves the optimum of many inter- 

related stages, hence, it is a multi-stage problem. Since dynamic pro- 

gramming has been powerfully demonstrated in dealing with multi-stage 

problems we apply it to the irrigation scheduling problem. 

In this study we consider two decisions at each stage: irrigate 3-inch 

water per day or do not irrigate. The relevant irrigation costs are 1 

dollar per day or zero, respectively. The numerical results indicate a 

50-day-irrigation schedule for a mid-season hybrid corn which requires 

126 days to mature. Policies may vary among different irrigation costs 

because our irrigation scheduling model considers the economic factor. 



Although dynamic programming has been extensively used in many 

fields, this agriculture application is new. 


