

Cognitively Flexible Hypertext in an Object-Oriented Programming Course:
Effects of Case-Based Instructional Support on Student Learning

by

Cecil P. Schmidt

B.S., Kansas State University, 1984

M.S., The Wichita State University, 1993

AN ABSTRACT OF A DISSERTATION

Submitted in partial fulfillment of the

Requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Secondary Education

College of Education

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2005

Abstract

 The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases would improve a student’s understanding of

the more difficult concepts in an object-oriented programming course. Also investigated

were the relationships between the dependent variable student performance with

independent variables of motivation, background knowledge, and student attitudes

towards the semi-automated reasoning tool. Subjects for the study were randomly

assigned from two sections of an introductory object-oriented programming course at an

NCAA, Division II university in the Midwest region of the United States. Posttests were

used to measure the effects of the semi-automated reasoning tool on learner competency.

Background knowledge was collected through student transcripts. Motivation and

student attitudes data were collected from surveys. All data were collected during the

Spring 2005 semester. Data were analyzed at the p < .05 level of significance using a

Wilcoxon Signed Ranks test, mixed-design ANOVA, Mann-Whitney U test, Spearman

rho correlations, and thematic analysis as well as other statistical techniques.

 Results of the study indicated a significant difference between the group who used

the semi-automated reasoning tool on complex questions and the group who did not. No

significant difference was indicated between the groups on simple questions. A strong

positive correlation was indicated between background knowledge and the total test

scores for both content areas tested. Results of the correlational analysis between

motivation and learner competencies indicated that the type of motivation, be it intrinsic

or extrinsic, plays a minimal role in how students performed in this online course.

Finally, students overwhelmingly felt that the semi-automated reasoning tool was an

effective instructional-support tool.

 Results of this study suggested recommendations for practice as well as for

further research. Recommendations for practice include the need for effective use of

course management systems, supporting complex content through examples, using

performance on background coursework when considering an online course covering

complex topics, providing a case-based instructional aid for complex topics, and

minimizing the economic costs in using a case-based instructional aid.

Recommendations for future research include more research on relationships between

background coursework and online courses, effects of a case-based instructional aid on

face-to-face courses, development of overarching examples containing content from

multiple computer science courses, improvements to the CBJava framework, and

extending the framework to other disciplines.

Cognitively Flexible Hypertext in an Object-Oriented Programming Course:
Effects of Case-Based Instructional Support on Student Learning

by

Cecil P. Schmidt

B.S., Kansas State University, 1984

M.S., The Wichita State University, 1993

A DISSERTATION

Submitted in partial fulfillment of the

Requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Secondary Education

College of Education

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2005

Approved by:

Major Professor

Dr. Diane McGrath

COPYRIGHT

COGNITIVELY FLEXIBLE HYPERTEXT IN AN OBJECT-ORIENTED
PROGRAMMING COURSE: EFFECTS OF CASE-BASED INSTRUCTIONAL

SUPPORT ON STUDENT LEARNING

CECIL P. SCHMIDT

2005

Abstract

 The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases would improve a student’s understanding of

the more difficult concepts in an object-oriented programming course. Also investigated

were the relationships between the dependent variable student performance with

independent variables of motivation, background knowledge, and student attitudes

towards the semi-automated reasoning tool. Subjects for the study were randomly

assigned from two sections of an introductory object-oriented programming course at an

NCAA, Division II university in the Midwest region of the United States. Posttests were

used to measure the effects of the semi-automated reasoning tool on learner competency.

Background knowledge was collected through student transcripts. Motivation and

student attitudes data were collected from surveys. All data were collected during the

Spring 2005 semester. Data were analyzed at the p < .05 level of significance using a

Wilcoxon Signed Ranks test, mixed-design ANOVA, Mann-Whitney U test, Spearman

rho correlations, and thematic analysis as well as other statistical techniques.

 Results of the study indicated a significant difference between the group who used

the semi-automated reasoning tool on complex questions and the group who did not. No

significant difference was indicated between the groups on simple questions. A strong

positive correlation was indicated between background knowledge and the total test

scores for both content areas tested. Results of the correlational analysis between

motivation and learner competencies indicated that the type of motivation, be it intrinsic

or extrinsic, plays a minimal role in how students performed in this online course.

Finally, students overwhelmingly felt that the semi-automated reasoning tool was an

effective instructional-support tool.

 Results of this study suggested recommendations for practice as well as for

further research. Recommendations for practice include the need for effective use of

course management systems, supporting complex content through examples, using

performance on background coursework when considering an online course covering

complex topics, providing a case-based instructional aid for complex topics, and

minimizing the economic costs in using a case-based instructional aid.

Recommendations for future research include more research on relationships between

background coursework and online courses, effects of a case-based instructional aid on

face-to-face courses, development of overarching examples containing content from

multiple computer science courses, improvements to the CBJava framework, and

extending the framework to other disciplines.

 i

Table of Contents

List of Figures... v

List of Tables ... vi

Acknowledgements.. viii

Chapter I: Introduction... 1

Purpose ... 1

Background ... 2

Course Content and Interaction.. 2

Distance Education Studies .. 5

Pilot Study ... 7

Difficulties in Teaching Object-Oriented Programming .. 15

Scaffolding Student Understanding with CBR .. 19

Implications of Background Research .. 20

Significance... 21

Research Questions... 21

Limitations of the Study .. 22

Definition of Terms ... 24

Chapter II: Review of the Literature.. 27

Introduction... 27

Case-Based Reasoning.. 28

CBR in Context ... 29

Examples of CBR .. 30

Types of CBR... 31

 ii

Exemplar-Based Reasoning. ... 32

Memory-Based Reasoning. ... 32

Analogy-Based Reasoning. ... 33

Case-Based Reasoning.. 33

The CBR Learning Cycle and its Implementation .. 34

CBR and Cognitive Flexibility Theory.. 36

Instructional Design and Teaching Architectures .. 38

Natural Learning .. 41

Learning by Doing .. 42

Incidental Learning... 44

Learning by Reflection .. 45

Learning by Exploring .. 46

Integration of the Teaching Architectures .. 46

CFT Grounded Hypertext Videos ... 47

Videotape versus Digital Format.. 48

Digital Hypertext Format ... 49

CFT Grounded Implementations of Hypertext Systems.. 50

A CBR Hypertext Example without an Automated Reasoner 50

A CBR Hypermedia Example with an Automated Reasoner 51

A Web-based CBR Hypertext Example with an Automated Reasoner...................... 51

Implications and Concluding Remarks ... 54

Chapter III: Methods.. 55

Research Design ... 55

 iii

Sample... 58

Treatments... 60

Measures ... 62

CBJava .. 66

System Architecture .. 66

Data Architecture.. 67

User Interface Architecture .. 69

Knowledge Acquisition Architecture .. 70

Data Analysis .. 73

Human Subject Considerations... 74

Summary ... 75

Chapter IV: Results... 77

Sample Analysis .. 79

Effects of CBJava .. 80

Student Background Assessment Results .. 90

Results Related to Motivation Questionnaire ... 93

Results Related to Attitudes towards CBJava Questionnaire 100

Summary ... 107

Chapter V: Summary, Discussion, and Recommendations ... 112

Summary ... 112

Discussion of Research Questions .. 113

Effects of CBJava .. 113

Effects of CBJava on Simple Questions. ... 113

 iv

Effects of CBJava on Complex Questions... 114

Background, Motivation, and Attitudes .. 116

Performance and Student Background. .. 116

Performance and Motivation. ... 117

Performance and Attitudes towards CBJava. ... 119

Conclusions... 120

Application of Instructional Design Techniques for Complex Topics 120

CBJava as an Instructional Support Tool... 122

Background and Motivation Factors for Advising ... 125

Recommendations for Practice and Future Research .. 126

Recommendations for Practice ... 126

Recommendations for Future Research.. 128

References... 131

Appendix A: Kansas State University Consent Form .. 139

Appendix B: Object Design Quiz .. 142

Appendix C: Inheritance Quiz ... 148

Appendix D: Motivation Survey.. 154

Appendix E: Student Attitudes towards CBJava Survey... 156

Appendix F: Motivation Survey Open Ended Questions Feedback 159

Appendix G: Attitudes towards CBJava Survey Open Ended Questions Feedback 161

 v

List of Figures

Figure Page

Figure 1. Course Interaction Model (based on Hillman et al., 1994; Moore, 1989)........... 3

Figure 2. The CBR Learning Cycle (reprinted with permission from Aamodt & Plaza,

1994) ... 35

Figure 3. Learning by Doing Cycle (adapted from Kolb, 1984) 43

Figure 4. Responsive to Article Dimension for Writing Rubric....................................... 52

Figure 5 Experimental Design depicting Groups, Treatments, and Observations............ 56

Figure 6. CBJava’s Data Architecture .. 69

Figure 7. CBJava Content Areas Web Page ... 70

Figure 8. CBJava Object Design Web Page ... 71

 vi

List of Tables

Table Page

Table 1. Descriptive Pilot Study Statistics for Online (OL) and Face-to-Face (F2F)

Groups... 12

Table 2. ANOVA Pilot Study Statistics for Online (OL) vs. Face-to-Face (F2F) Groups13

Table 3. Descriptive Statistics for Test Scores for Question Type by Content Area by

Group .. 81

Table 4. Descriptive Statistics for Test Scores for Question Type by Treatment by Group

... 82

Table 5. Test Statistics for Wilcoxon Signed Ranks Test of LNO Treatment vs. CBA

Treatment .. 84

Table 6. Tests of Within-Subjects Contrasts on Complex Questions of Group and

Treatment .. 86

Table 7. Tests of Between-Subjects Effects on Complex Questions of Group 86

Table 8. Tests of Within-Subjects Contrasts on Simple Questions of Group and

Treatment .. 87

Table 9. Tests of Between-Subjects Effects on Simple Questions of Group and Treatment

... 88

Table 10. Mann-Whitney Test - Test Statisticsb of Group by Question Type for Object

Design Content Area... 89

Table 11. Descriptive Statistics of Background Coursework by Group.......................... 91

Table 12. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Group 1 ... 92

 vii

Table 13. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Group 2 ... 93

Table 14. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Groups 1 and 2 Combined .. 93

Table 15. Motivation Survey Closed-Ended Questions Categorized as Intrinsic or

Extrinsic .. 95

Table 16. Descriptive Statistics of Motivation Survey Questions by Group................... 96

Table 17. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Group 1 .. 97

Table 18. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Group 2 .. 98

Table 19. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Combined Groups .. 99

Table 20. Motivation Survey Summary of Responses to Open-Ended Question.......... 100

Table 21. Attitudes towards CBJava Closed-Ended Questions Categorized as Supportive

or Non-Supportive of CBJava... 101

Table 22. Descriptive Statistics of Student Attitudes towards CBJava by Group 103

Table 23. Bivariate Correlations between Student Attitudes towards CBJava and Test

Scores for Object Design Content Area for Group 1 .. 104

Table 24. Bivariate Correlations between Student Attitudes towards CBJava and Test

Scores for Inheritance Content Area for Group 2 ... 105

 viii

Acknowledgements

 I would like to express my sincerest appreciation to the people who have offered

their assistance and support throughout my program of study. Words cannot express the

gratitude for the professionalism, guidance, and support that my major professor, Dr.

Diane McGrath, gave me throughout my program. She is truly an educator. Additionally

I would like to thank the members of my committee, Dr. Chandima Cumaranatunge, Dr.

Tweed Ross, Dr. Donna Lalonde, and my final exam chairperson Dr. Briana Goff, for

their time and effort in reading and critiquing the manuscript. In particular I would like

to especially thank Dr. Lalonde for her efforts and support. I am in debt to all.

 Additionally, I would like to thank members of the Computer Information

Sciences department at Washburn University. Especially to Dr. Nancy Tate who

supported my entry into the graduate program at KSU and to Dr. Robert Boncella; I guess

it is my turn to “pay it forward”.

 There will always be a special place in my heart for the KDD group and

Dr. William Hsu of the Computer Sciences department at KSU. The two years that I

spent working with him and his research group aided me tremendously in focusing on the

line of research that I used in this dissertation. It was the study of machine learning

which turned my interest into human learning. With Dr. Diane McGrath’s help, I was

able to bridge the two together.

 Finally, I would like to thank my wife Eileen and my two children Miranda and

Jacob. It is difficult to put into words how deeply I appreciate their support,

encouragement, and love that they have given me through my studies. I am forever in

their debt.

 1

Chapter I: Introduction

Purpose

 How might a college level online course in object-oriented programming be

developed so that it will be at least as effective as a face-to-face course? Can we provide

a learner-centered environment that scaffolds a student’s understanding by providing

examples that are indexed and linked through hypertext in order to assist in his/her

learning? Are there differences in the level of understanding between a student who has

taken the online object-oriented programming course and a student who has taken the

face-to-face object-oriented programming course? What role does student motivation

and background knowledge play in his/her performance and understanding in the online

course versus the face-to-face course? This study and the supporting course and

instructional aid development address those questions.

 The primary purpose of this study was to determine if a student’s understanding

of the more difficult concepts in an object-oriented programming course would improve

by using a semi-automated reasoning tool that provides a set of searchable cases.

Specifically, this study tested the learning effects of a semi-automated reasoning tool as

an instructional aid in an online object-oriented programming course. The lecture

content included digital videos of the instructor’s lecture integrated with PowerPoint

slides and covered the identical lecture material as in a face-to-face introductory object-

oriented programming course. The course content included lecture slides, comments, and

code examples that would typically arise in face-to-face teacher-learner interaction. The

semi-automated reasoning tool provided integrated instructional content through the use

 2

of hypertext including exploratory capabilities with a database of examples. Additionally

the semi-automated reasoning tool allowed both the teacher and the learner to add,

update, and delete examples in the database. A secondary purpose of the study was to

examine the relationships between the dependent variable, student performance, with the

independent variables of motivation, background knowledge, and student attitudes

towards the case-based hypertext learning tool. Both quantitative and qualitative data

were collected and analyzed.

Background

Course Content and Interaction

 The cost of developing an online course in terms of a teacher’s time and technical

knowledge can be quite significant (Smulders, 2004). Therefore it is important to look

for methods, tools, and techniques that can minimize this cost. From a larger perspective

we acknowledge that developing the content is but one component of a successful

distance education course. Moore (1989) suggests that the learner-content interaction is

one of three interaction components that exist between the learner and the course; the

others are teacher-learner and learner-learner interactions. Hillman, Willis, and

Gunawardena (1994) identified a fourth interaction component as the learner-interface

interaction. A simple model of these interactions in a learner-centered context is

provided in Figure 1 below.

 3

Figure 1. Course Interaction Model (based on Hillman et al., 1994; Moore, 1989)

Assuming that we can manage the learner-interface, learner-learner, and teacher-

learner components through an effective course management system and a bit of faculty

development effort, we look to investigate how we can effectively create the content

material and make it readily available for the learner in an asynchronous environment.

The immediate objective is to provide for an online course that replicates as closely as

possible much of the face-to-face course while facilitating a learner-centered environment

that minimizes the need for interaction between teacher and individual learner.

One such way to minimize the development effort of creating an online course is

to simply record the lecture component of the face-to-face course. This can be

accomplished using several different methods including videotaping with a video

recorder or using a computer with a video camera to record the lecture and the content

either in the face-to-face class or outside of the class. Delivering the content to the

 4

distance learner can be accomplished by mailing the recorded media in the form of

videotapes or CD-ROM’s, or by providing the media online.

Videotapes allow the learner to stop the lecture at any point and backup or fast-

forward to review a key point in the lecture. This feature can be an important benefit in

the learner-interface interaction component over a traditional lecture in that it provides

the learner the independent ability to readdress lecture content that might have been

unclear. However, it does not allow the student to interact directly with the instructor, an

aspect of online courses that can be a significant disadvantage.

Lecture content that integrates digital video with PowerPoint slides provides

additional benefits in the learner-interface interaction component over that of videotape

only. These benefits include an improved user interface that allows for random access of

the video content, improved navigation through the video content, and automatic

synchronization between the PowerPoint slide and the related segment of video. There

are several alternative products that can provide the former capability including the

Tegrity™ WebLearner multimedia system (www.tegrity.com) and sofTV.Presenter

(www.softv.net). Both products claim the ability to capture and integrate the lecture

content consisting of voice, video, and PowerPoint slides simultaneously and allow for

the on-demand access of the integrated lecture content. The sofTV.Presenter product

provides an additional feature over that of the Tegrity™ WebLearner system in the user

interface that allows the learner to click on a link to access the synchronized voice, video,

and related Power Point slide. Providing this level of integrated lecture content is a

significant improvement in the learner-interface interaction component over that of

 5

videotapes, so it is a better alternative than the use of videotaped lectures to support

distance education.

Distance Education Studies

 Meyer (2002) and Meyer and ERIC Clearinghouse on Higher Education (2002)

provides reviews of some of the comparison studies that have been made between the

outcomes of an online course and a traditional face-to-face lecture-oriented course. In

particular these reviews identify several major studies which show that the use of

technology in and of itself will not improve learner outcomes. Of particular interest is the

research by Russell (1999).

Russell (1999) provides reviews of 355 studies on distance education from the

years between 1928 and 1998. The majority of the studies reviewed are various

educational applications of television and video but also include studies of multimedia,

audio, radio, print, and others. Comparisons were made on test scores, grades, or other

performance measure criteria of the distance education instruction with traditional face-

to-face instruction. These studies found “no significant difference” between the

performances of the comparison groups. This is a very promising and important finding

that supports distance education instruction. It is important to note, however, that only

40 of the 355 studies specifically addressed the use of computers in the instruction.

Additionally, if we consider the time frame, the majority of the studies were completed

before the advent of the World Wide Web as well as effective course content

management systems.

 6

 Russell (1999) contends that it is not the technology used in the course, but

instead it is the redesign of the course to adapt it to the technology that will facilitate

learning performance. Russell writes: “… let me reassure you that differences in

outcomes [between distance education and traditional face-to-face instruction] can be

made more positive by adapting the content to the technology” (p. xiii). Lynch (2002)

notes that he was able to successfully replace the traditional classroom with integrated

content and video recordings and that student achievement slightly improved. But most

educators would agree with Clark (1994) who has argued that we can use technology as a

course transmission mechanism, but it is the instructional methods that we use within any

media that will improve the learning outcomes. What Russell found so frustrating was

that even with all of the evidence that technology does not influence learning, people

continue to believe that it does. Kozma (1994) suggests that media can influence

learning if we integrate it with the appropriate teaching methods, grounding it in the

“cognitive and social processes by which knowledge is constructed” rather than using a

behaviorist theory.

Kozma’s (1994) argument is compelling, and we should take note of it when

developing a distance education course. That is, we can use technology as an aid and

supporting mechanism for our distance education courses. However, in order to provide

an effective distance education course, it is the effective teaching methods that we

integrate with the technology we have at hand that is most important. This integration

needs to also support the kinds of interactions that we typically have in the classroom.

An effective distance education course is one where the learning outcomes are (at least)

no worse than the face-to-face course.

 7

 What is important to understand in the context of the review by Russell (1999) is

that technology is simply a tool, and without redesigning the course content, the

technology tool will offer no benefit. The reliance on technology may prove to be a

detriment to the learning outcomes if it is not appropriately integrated into the course.

Placing lecture-oriented courses in a format that can be viewed electronically will provide

a mechanism to replicate the course sufficient to provide an online version. The online

version may provide the same outcomes as that of a face-to-face version assuming the

learner is technologically literate and is motivated to learn in this mode. However, not all

courses may be suitable for online transmission. Complexity of subject material may

require the teacher to reorganize the material in a manner that provides multiple threads

through the material supplemented by examples and explanations. Cognitive Flexibility

Theory (CFT), a learning theory developed by Spiro, Feltovich, Jacobson, and Coulson

(1992), suggests that learning complex subject material can be supported in this way.

Pilot Study

In the fall of 2003 I began the development of an online version of a course in

object-oriented programming. At that time the current version of the course was typically

taken by a second semester freshman student who was majoring in Computer Information

Systems or Computer Information Science at an NCAA, Division II university located in

the Midwest region of the United States. It was their first course in object-oriented

programming. The programming language used in this course was Java. All course

content materials were assembled within a course management system, WebCT. The

 8

content material included the course syllabus, presentation materials, homework, and

programming assignments. These items were collected from a historical archive of the

course material that had been developed and used over previous semesters in the face-to-

face course. The face-to-face lecture was the primary course-content component lacking

for the distance education student. It was also necessary to provide alternative support

for the learner-teacher interactions that are normally provided in face-to-face mode.

These included support of question and answers, office hours, and lab support. These

requirements were supported by WebCT through email, discussion lists, and chat.

In order to minimize the development effort, I created recordings of the lecture

material and made them available through WebCT. These lecture recordings were

developed in order to provide the lecture content to the distance education students. The

product I chose to create the lectures was sofTV (www.softv.net). This tool provided the

capability to digitally record a PowerPoint presentation along with audio and video of the

lecture. The resulting output from the sofTV product included the recorded video

integrated with the PowerPoint slides with a user interface that allowed the learner to

click on a slide and take them directly to that point in the lecture. I selected this tool

primarily because it was the only one available without purchasing additional software

and equipment, and also it pretty much did the job required. Each lecture was recorded at

approximately the same time as the lectures were given during the semester. Because the

material was fresh in my mind, the amount of preparation time for the recording was

reduced as well. This improved the quality of the recorded lecture because I was able to

better predict and address the questions that might normally be asked during the lecture.

 9

At the end of the semester the lecture recordings were placed within WebCT and

tested for functionality. In the testing process I asked several students to connect to

WebCT and attempt to view one of the lecture recordings. In doing this testing, the

students found that they were unable to view the recordings. Subsequently I removed the

recordings from WebCT and placed them on an unsecured web site linking them through

a web page. I then provided the web site to the students and asked them to retest the

videos for functionality. This time the testing was successful. However, I was

uncomfortable with providing the lectures on an unsecured web site. Therefore, I

decided to compress each of the lectures and place within WebCT. This required the

students to download the compressed lectures to their computer and uncompress them

before viewing. Once again I asked several students to test this, and they were

successful. Based upon these findings, my final decision was to use this compressed

lecture format, storing them within WebCT, and requiring the students to download and

uncompress the lectures for viewing. This completed the development effort of the

course content.

In the spring of 2004 I conducted a pilot study on the learning outcomes of

students in the online object-oriented programming course versus the face-to-face object-

oriented programming course. In total there were two sections of the course, one, a

daytime section, being the traditional face-to-face lecture version (F2F), and the other, an

evening section, having lectures available online for learners to view at anytime (OL).

Both sections were provided the same content material through the WebCT course

management system. In effect, both sections had significant online support through

WebCT, and I was the instructor for both sections. The primary difference was the

 10

lecture component. The pre-recorded lectures were provided online to all of the OL

students at the beginning of the semester. Students who had enrolled in the evening

section of the course were assigned to the OL section. These students did not know

ahead of time that they were going to be taking the class online. However, all students in

this group consented to piloting the online course. The OL section of the course was

provided with an open lab opportunity one night per week in a face-to-face setting.

During the open labs, students could ask questions about their homework projects or any

of the recorded lecture material. Additionally asynchronous interaction capability via

email and discussion threads was provided to both the OL and the F2F sections. OL

students were required to come to campus for the tests. The idea was to hold as many

variables as possible constant between the two sections with the key independent variable

being the presence of the instructor in video or in person.

Other variables did play a role in the differences between the two sections. These

included the variables typically related to the learner-teacher interactions that are external

to the classroom but were somewhat different for the OL group versus the F2F group.

The reason for the differences was due to the time and location differences between the

OL group and the instructor. Because the OL students did not have access to me during

my face-to-face office hours, general questions, office hours, and lab support for the OL

student was facilitated by WebCT through email and discussion lists. Both the OL and

F2F groups could participate in the discussion lists and could post direct questions to me

by email, however the F2F group had additional access to me during my face-to-face

office hours.

 11

Technical requirements for the OL group were different from those in the F2F

group. For the F2F group all technical requirements were supported in the classroom as

well as several other alternative lab locations. These facilities were also available to the

OL group as well. However, in order to function in the OL group without driving to

campus, the OL person needed to have the following basic technical platform

capabilities: a relatively fast computer (for example a 400 Megahertz processor) with a

minimum of 128MB of RAM, a high speed internet connection, and a Java compiler and

runtime environment which was freely available.

 The data analysis plan for this pilot study was to compare the test scores and the

combined homework and programming assignment scores between each of the sections

with the hope that there would be no significant difference between them. Three separate

planned pairwise comparisons were made using a one-way between-subjects ANOVA

design for each. There were no pretests given. Two course prerequisites were listed in

the course catalogue and syllabus which provided some assurance that the level of

students remained consistent between the two sections. Results revealed a significant

difference in achievement on the exams favoring the traditional course, but no significant

difference in overall homework scores (see Table 1 and Table 2).

Because there was a significant difference, further analysis was performed on the

completion of the prerequisites by the students in order to determine if there was an

initial difference between the two groups. This analysis showed that in fact there were

several students who had not completed the prerequisite courses in the OL section. Also,

because of the small sample sizes and the differences in background education between

the day students and the evening students the findings are limited. However, because

 12

there was a difference between the two groups, the decision was made to provide face-to-

face lectures to the distance education students for the remaining portion of the course.

Table 1. Descriptive Pilot Study Statistics for Online (OL) and Face-to-Face (F2F)

Groups

Source

Mean

N

SD
T1 F2F 81.69 13 10.1

T1 OL 70.33 6 3.27

T2 F2F 80.85 13 11.42

T2 OL 68.00 6 11.68

HW F2F 83.46 13 13.56

HW OL 78.00 6 14.81

Notes. T1, T2, and HW refer to test 1, test 2, and homework scores. OL refers to online group and F2F
refers to face-to-face group.

 13

Table 2. ANOVA Pilot Study Statistics for Online (OL) vs. Face-to-Face (F2F) Groups

Variable

Source

df

SS

MS

F

p

Between
Groups

1 529.69 529.69 7.05 0.017* T1

Within
Groups

17 1278.10 75.18

Between
Groups

1 677.47 677.47 5.12 0.037* T2

Within
Groups

17 2247.69 132.22

Between
Groups

1 122.45 122.45 0.63 0.438 HW

Within
Groups

17 3303.23 194.31

Note. T1, T2, and HW refer to test 1, test 2, and homework scores.

*p < .05

Throughout the pilot study group interviews were held with the OL section of the

students during the open lab. It was my intent in these discussions to gain an

understanding of some of the problems in the OL course. These discussions had no

structured format and typically only about three of the OL students were represented.

However some interesting issues were raised. These included the following:

• It was more difficult to learn the material without having the teacher available for

immediate interaction.

• Students did not always take advantage of viewing the video. However, the face-

to-face students did not always attend class either. These data were anecdotally

collected based upon my perceptions of the types of questions that the online

students asked as well as the number of unoccupied sets in the F2F section. No

empirical data on attendance for either of the sections were recorded.

 14

• More examples of working programs would have been a big benefit to the OL

students.

• The video lectures were easy enough to use and had adequate quality.

• Students really enjoyed having the flexibility to view the lectures at anytime.

• Only two or three students took advantage on a regular basis of the open lab

opportunities provided for OL section.

• Abstract concepts were difficult to grasp without having the direct feedback.

• Regular homework assignments along with the programming assignments helped

them to focus on the important issues.

• Students preferred to see programs demonstrated and discussed as part of the

demonstration. Although a walkthrough of some of the programs was presented

in the videos, an actual demonstration was not available to the OL group.

Working versions of the programs were available, however, to both the OL and

F2F groups to download and run on their computers. A detailed discussion of

these programs could be provided in the future as teaching cases through a web

interface as an instructional supplement for both groups.

• Some students preferred to learn by doing their programs in class. The students

liked the feedback that they received immediately from me while they worked on

their program. This was not available to the OL group unless they drove to

campus for the open labs or made a face-to-face meeting with me.

• Downloading the videos with a slow internet connection was a problem.

 15

Difficulties in Teaching Object-Oriented Programming

 Raab, Rasala, and Proulx (2000) suggest that the cross-platform capabilities of

Java and the robust graphical user interface (GUI) components provide a great argument

for using Java to teach programming. But the complexity of building a complicated GUI

in a CS1 course (first programming course in computer science) is problematic. Raab et

al. suggest using a toolkit of pre-developed classes that can be used as the framework for

beginners to build from. This allows them to solve more complicated problems that are

much more interesting and that illustrate the breadth of computer science.

 Yang & Wei (1999) used a project-based approach to teaching C++, an alternative

object-oriented language to Java. In their study they connected individual assignments

into a semester-long project. Using this strategy, they felt that the important topics such

as encapsulation, code reuse, and software design were repeatedly addressed throughout

the course. However, their findings were not very conclusive with regard to using a

semester-long project in a project-based approach to teaching C++. Interpretation of the

student responses suggested most students did not seem to mind working on the same

problem throughout the semester although the survey was open ended and did not ask this

question specifically. Some students also commented that the assignments were too

difficult. Tutors for the course, who were students who had completed the course the

previous semester when it was not project-based, also felt that the assignments were more

difficult than the previous semester. Most interesting, though, was the finding that the

mean course grade was down from an average of 3.4 on a 4.0 scale to 2.8, n = 57, and in

the following course was down from 3.2 to 2.8, n = 23. One of the reasons suggested for

 16

the drop in the mean course grade was the fact that there are an increasing number of

non-majors who were taking the course. This finding possibly suggested the need for a

change in the teaching methods to be more sensitive to the requirements of students who

bring a different technical background to the course. Because the research methods used

by Yang and Wei (1999) are somewhat confusing it is difficult to determine if using a

project-based approach to teaching an object-oriented language is a better method of

instruction than one that does not use a project-based approach.

 A major difficulty with teaching Java is that difficult concepts must be addressed

at an early stage (Biddle and Tempero, 1998). Although it has become a popular

language, it may be only a marginally better teaching language than C++. Even the

writing of a simple one-line program in Java requires the introduction of complex

concepts such as inheritance, static methods, or exceptions. Because these concepts are

not easily addressed for beginners, some universities continue to use a traditional

structured programming language such as C in their first programming course. This

choice, however, can be problematic as well. Students often report that because object-

oriented programming is so much different than structured programming, it is difficult to

unlearn some of the bad habits that are learned with a language such as C when making

the switch to Java.

Visual Basic is an object-based programming language in which difficult concepts

such as inheritance and polymorphism are not available to the programmer. In a study by

Madden and Chambers (2002) regarding student attitudes towards learning Java, over

50% of the students reported that learning Java was easier than learning C, and for C++

the findings were similar. One of the reported reasons in their study that learning Java

 17

was easier than learning C++ is that the Java syntax is simpler to learn and understand.

As would be expected, students reported that prior knowledge of C made the learning of

Java easier (8% disagreed), and students reported that knowledge of C++ made the

learning of Java easier (24% disagreed). However, only a minority of the students

reported that prior experience in Visual Basic made a difference in learning Java. It can

be inferred from this study that learning Java was really no different than learning Visual

Basic when using an object-based programming approach for Java. Related to this

finding is that object-based programming was not considered to be difficult whereas

object-oriented programming concepts were more difficult to learn. The primary

difference between object-oriented and object-based programming in Java is that object-

based programming utilizes a reduced set of capabilities or features of the programming

language. Object-oriented features of polymorphism and inheritance are not used when

doing object-based programming. Perhaps treating Java initially as an object-based

programming language may make it simpler to learn initially. However, even simple

programs in Java introduce complex object-oriented concepts (Biddle and Tempero,

1998), and it is very difficult to avoid discussion of these concepts.

Integrated Development Environments (IDEs) also play a significant role in

learning Java. Many of the early IDEs for Java were very difficult to use. Because of

this difficulty, quite often a command-line interface is used with no support for

interactive software debugging capabilities. In fact Kolling (1999) reported that

educators found the lack of an adequate IDE was the biggest problem in teaching Java.

Evolution of the requirements for a suitable IDE include ease of use, integrated tools such

as a source code editor, compiler, and debugger, support for code reuse, student learning

 18

support allowing for experimentation and interaction, support for group work for teams

of programmers, and availability which includes being reasonably priced and easy to

install (Kolling, 1999). The tool BlueJ was developed to address these needs (Kolling,

Quig, and Patterson, 2003). BlueJ is a software development environment that allows the

learner to interactively create objects in an environment that hides many of the

complexities of Java. It is an environment which encourages experimentation and

interaction to improve the learning of the necessary complexities of object-oriented

programming (Kolling, 2004) but without the unnecessary complexities.

The complexity and instability of teaching an introductory computer science

course is also documented by Roberts (2004). Roberts notes that the number of

programming details that a student must master has grown much faster than the

corresponding number of high-level concepts (complexity). For example some of the

programming details which Roberts is referring to include additional language constructs

as well as the number of supporting standard code libraries that are required to write a

program. High-level concepts such as writing functions that serve a single purpose have

remained relatively the same. He goes on to say that the languages, libraries, and tools

on which introductory computer science education depends upon are changing more

rapidly than in the past (instability). Roberts suggests that both economic and technical

forces encourage these factors however there is no a priori reason to conclude that it is

impossible to teach the essential object-oriented programming concepts in a simple and

stable environment. The essential complexities of Java include encapsulation,

inheritance, polymorphism, reuse, etc., whereas the unnecessary complexities include the

magnitude of the Java 2 class libraries (some 50,000 library functions) and the rapid

 19

obsolescence of libraries and tools that are available for Java. Libraries and tools become

obsolete because Java is still a relatively new language and is still evolving. Unnecessary

complexities are also illustrated by the differences in the size of the textbooks that are

now used to teach Java. One of the more popular books (Deitel and Deitel, 2003) has

1536 pages of text whereas the classic Pascal User Manual and Report (Jensen and

Wirth, 1991) that was used to teach Pascal had about 226 pages.

Scaffolding Student Understanding with CBR

At this point it should be clear that learning object-oriented programming, and in

particular, Java, is a difficult task. Java is complex, requiring the understanding of

abstract concepts, technical complexities, and a massive set of software libraries.

Threading important topics into a semester-long project might be a way to improve

students’ understanding. However, not all students have similar backgrounds and

because of their dissimilar backgrounds a single project might not work. Difficult

concepts are necessarily addressed at an early stage or they are confounded due to

previous background knowledge with a structured programming language. Treating Java

as an object-based programming language does limit some of these concepts and can

benefit understanding. Additionally, providing effective tools that allow the student to

simulate the creation and manipulation of objects in an interactive environment is also a

benefit. In the end, learners should be provided with the scaffolding to support their

understanding. One alternative is to provide this support through case-based reasoning.

 20

Case-based reasoning (CBR) is a learning model that incorporates problem

solving, understanding, and learning, integrating them with memory processes. CBR

supports access to prior cases for both reuse and adaptation. Both new and adapted cases

can be stored for future use, thus the learning occurs as a natural consequence of

reasoning (Kolodner, 1993). In more simple terms CBR is a learning model that suggests

that people learn from their past experiences, and they use remindings of these past

experiences to solve new problems. Providing the student with a tool for learning Java

that is based on the CBR model should provide the scaffolding to support the learning of

the difficult concepts encountered with the Java programming language. Examples can

be used to demonstrate cohesion between the concepts and features of the language and

real-life problems. Students will learn by example as well as adapt new examples. One

approach to providing this type of system is through a web-based hypertext environment.

Implications of Background Research

From the background research the researcher found that distance education

courses could be developed that are at least as effective as face-to-face courses.

Improvements to video technology suggest improved methods of lecture content

transmission that should be considered and tested. At the same time, some particular

courses may not be viable candidates for online courses. The pilot-study raised this as an

issue. Some courses, such as one in object-oriented programming, contain difficult

concepts that may require additional scaffolding for the learner to gain sufficient

understanding. Email and discussion lists may not be sufficient. Therefore we

considered in this study the effects of a case-based reasoning system as a support for the

complex concepts. These were the issues that this research attempted to address.

 21

Significance

 The primary benefit to the completed study is that it suggests the appropriate use

of a case-based reasoning tool to enhance our ability to teach introductory programming

classes whether or not they are online. The study also tested the applicability of the case-

based reasoning model to the learning of an object-oriented programming language.

Additionally, the study performed a correlational analysis of the relationships of

motivation, background knowledge, and student attitudes with learner competence.

Universities recognize the new audience that an online course might service however

they also recognize the importance of quality instruction. Thus, this study also suggests

new sets of courses that might be offered online with the support of a case-based

reasoning tool that have traditionally not been offered in the past because of differences

in quality.

 The study should be of particular interest to college level instructors who provide

instruction in a programming language. The instructional content and strategy developed

in support of this study is flexible enough to support transmission of any programming

language instruction.

Research Questions

Below is a list of the research questions that were addressed by this study.

Learner competencies were identified as knowledge, comprehension, application,

analysis, synthesis, and evaluation.

 22

1. Is there a statistically significant difference in the performance on simple

questions between the Case-Based Reasoning Assisted (CBA) group and the

Lecture Notes Only (LNO) group?

2. Is there a statistically significant difference in the performance on complex

questions between the CBA group and the LNO group?

3. How is student performance on the measures of learner competencies related to

motivation, background knowledge, and attitudes towards the case-based

hypertext learning tool?

Limitations of the Study

 It was the goal of this study to do a quantitative analysis with as much statistical

rigor as possible. The subjects used for this study were randomly assigned to one of two

groups. However, the pool of subjects was limited to those students who had enrolled in

Object-Oriented Programming 1 at an NCAA, Division II university located in the

Midwest region of the United States. Therefore, it is more difficult to generalize this

study to a much broader population, and that limits its external validity.

The number of subjects participating in the study was rather small; I could not

anticipate or affect the class sizes. For example, the number of students in the online

group of the pilot study was initially eight. In order to have sufficient power in the study,

it is important to have a large enough sample size (Keppel, Saufley, and Tokunaga, 2003

p. 209). A rough estimate of the sample size suggests that there should be at least 20

subjects in each group.

The ordering of the two types of instructional support is also a limitation of the

study. The case-based hypertext tool was not used as an instructional aid until midway

 23

through the course. It could be argued that by that time the students do not require any

additional support. They may have learned how to use the existing resources to support

their learning. Thus, there may be no significant difference between the performance of

the students with or without the case-based hypertext tool as an instructional aid.

However, it is only at about the midpoint of the course where the concepts become more

complex and ill-structured. So, introducing the case-based hypertext tool at that time was

appropriate. Other sequencing situations arise as well, but because of the number of

groups, the limitations of the sample sizes, and the ethical requirement to provide all

students the same aids, this was the best that could be done.

Other extraneous variables may have affected the outcome of the study. In

particular it was difficult to determine how much of the content within the case-based

hypertext tool was actually read by each subject. The only guarantee that a student

accessed the tool was that they submitted the example. However, there was incentive for

them to read the content in that it aided them in creating an example (which was

required), and it helped them prepare for the graded posttest, therefore the impact to the

results of the study were minimal. Finally, not all of the students submitted examples in a

timely basis. In order to ensure that all of the subjects submitted an example, several

directed emails were sent. No special coaching on creating the example occurred,

therefore impact to the results of the study were also minimal.

 Some of the limitations to the external validity were eliminated by limiting the

differences in the treatment groups to one particular variable which was the type of

instruction support. For the duration of the study the transmission of the course to all

subjects was the same, that is, the transmission was online. One can argue that the

 24

viewing of a digital video can be done anytime and as such is another variable in the

experiment. However, for the purposes of this study the time and space dependencies

were subsumed in the instructional mode.

Definition of Terms

Case-Based Reasoning. Abbreviated as CBR, a problem-solving paradigm that utilizes

the specific knowledge of previous experiences and concrete problems in order to solve

new or similar situations (Aamodt and Plaza, 1994).

Cognitive Flexibility Theory. Abbreviated as CFT, a constructivist theory of learning

that suggests advanced learning in ill-structured domains must be supported through

alternative cases and multiple paths through a set of knowledge content (Spiro et al.,

1992).

Command-line interface. A method of interacting with the computer in a text-based

mode. “The user sees the command line on the monitor and a prompt that is waiting to

accept instructions from the user. The user types in the command, the computer acts on

that command and then issues a new prompt for the next instruction from the user”

(Webopedia, 2004).

Distance education. Structured learning in which the student and the instructor are

separated by time and place (McIsaac and Gunawardena, 1996).

 25

Hypertext. “Non-sequential writing—text that branches and allows choices to the

reader, best read at an interactive screen. As popularly conceived, this is a series of text

chunks connected by links which offer the reader different pathways” (Nelson, 1990). A

database format in which information related to that on a display can be accessed directly

from the display (Merriam-Webster Inc., 2004).

Integrated Development Environment. Abbreviated as IDE, a programming

environment integrated into a software application that provides a graphical user interface

builder, a text or code editor, a compiler and/or interpreter and a debugger. Visual Studio,

Delphi, JBuilder, FrontPage and DreamWeaver are all examples of IDEs (Webopedia,

2004).

Object. A self-contained software module that includes both the data and the procedures

(the programming commands) which operate on that data (Williams and Cummings,

1993).

Object-based programming. “A method of programming in which programs are

organized as cooperative collections of objects, each of which represents an instance of

some type, and whose types are all members of a hierarchy of types united via other than

inheritance relationships” (Spencer, 1993).

Object-oriented programming. A method of programming in which programs are put

together from self-contained software modules called objects. Object-oriented

 26

programming makes it easier to generate new objects that automatically “inherit” the

capabilities of existing objects. The programmer can then extend the inherited

functionality in the new object (Williams and Cummings, 1993) .

Online. Connected to, served by, or available through a system and especially a

computer or telecommunications system (as the Internet) (Merriam-Webster Inc., 2004).

Online course. A course which uses Web-based or Internet-based technologies in order

to provide course content and interaction capabilities. In the context of this paper online

course is one form of a distance education as well.

Semi-automated reasoning tool. A software-based learning tool that is primarily

implemented through hypertext links that provide static content through a question and

answer interface. The automated component allows the student to add examples and

index them appropriately. Human review by an expert is required to ensure the

correctness of the example.

 27

Chapter II: Review of the Literature

Introduction

The purpose of this research was two-fold. The first purpose was to determine

whether a student can perform as well in an online course in object-oriented

programming as the student in a face-to-face object-oriented programming course. The

second purpose was to determine if a CBR tool will improve a student’s understanding of

the more difficult concepts in an object-oriented programming course. Related research

on the use of videos in distance education as well as applications of cognitive-flexibility

theory towards understanding existed. However, there was currently no public record of

research on the combination of these variables and in particular how they might be used

to support understanding in an object-oriented programming course in Java.

The purpose of this literature review is to address the instructional design

techniques and theory that could be incorporated into effective course content supporting

an object-oriented programming course in Java. Although Java has a well defined syntax

and structure, the concepts that it supports such as objects, inheritance, and

polymorphism are ill-structured and complex. Therefore, the literature review will be

developed as follows: The first section describes case-based reasoning and its close

relationship with a constructivist theory of learning, Cognitive Flexibility Theory (CFT)

(Spiro et al., 1992), which supports learning in ill-structured and complex domains. The

second section will present a set of teaching architectures and their impacts on

instructional design. The third section explores the use of hypertext videos to support

distance education. The fourth section reviews alternative case-based reasoning

 28

implementations supporting CFT and their viability in an online instructional setting.

Finally, a summary of the literature review is provided along with its implications for this

study.

Case-Based Reasoning

Case-based reasoning (CBR) is a problem-solving paradigm that utilizes the

specific knowledge of previous experiences and concrete problems in order to solve new

or similar situations (Aamodt and Plaza, 1994). CBR is a constructivist learning theory

which suggests that we build our knowledge from our previous experiences. Bruner’s

(1996) constructivist tenet in education shares similar features to that of knowledge

building. Bruner writes that “reality construction is the product of meaning making

shaped by a culture’s toolkit of ways of thought” (p. 19). Bruner goes on to say that

education should be “…helping people become better architects and better builders” (p.

20). Much of the early research in CBR was based upon how remindings are used in

human reasoning (Schank, 1982).

CBR is a constructivist learning theory that supports incremental learning.

Learning is incremental when new knowledge is stored for future use when it is learned.

In CBR both our failures and our successes in solving new problems are cataloged and

stored for future use, thus building knowledge incrementally. CBR can be used to guide

the design of a computerized learning environment. It is within this context that I will be

referring to CBR unless the context is otherwise explicitly stated.

A CBR-grounded learning environment provides the learner with concrete

examples, i.e. actual cases, rather than abstract rules. Experience is provided by means of

 29

a case library that has cause, effect, and lessons learned components. Learners may

access these cases through multiple indexes. Incorporating an appropriate set of indexes

over these experiences provides the learner with alternative views into the same sets of

cases.

Providing a learner with multiple ways to traverse the content will not necessarily

lead to improved learning. In fact it may even lead to a "confusing labyrinth of incidental

or ad hoc connections" (Spiro et al., 1992, p. 68). Instead the content should be

organized in way that a “learner sees a range of conceptual applications close together, so

that conceptual variability can be easily examined" (Spiro et al., 1992, p. 68).

CBR in Context

Leake (1996) identifies two tenets of nature which underlie the CBR paradigm:

1. Similar problems have similar solutions.

2. The types of problems encountered by a learner tend to recur.

Thus, the primary source of knowledge is a set of cases in memory which can

adapted to new situations. A learner, whether it is machine or human, builds upon

knowledge of both successes and failures. A CBR system is a machine system that

explicitly integrates memory, learning, and reasoning (Kolodner and Guzdial, 2000). As

the knowledge base grows, the CBR system’s ability to solve both new and similar

situations grows as well, much like what occurs in the human process of natural learning.

In computer science when machine learning occurs only when new problems are

encountered and solved, the learning is known as lazy learning (Mitchell, 1997).

Kolodner and Guzdial (2000) point out that a CBR system can (a) suggest resources

 30

through well indexed case libraries and lessons learned, (b) suggest activities through the

writing of new cases, (c) suggest ways of moving the learning forward through sharing of

the cases, and (d) suggest ways of creating useful case libraries by seeding the library

with an initial set of cases and then letting it grow and evolve. A case library grows

based upon the new situations that are solved and then stored in the case library.

Examples of CBR

From a cognitive context the CBR learning theory is often applied routinely in a

natural form of problem solving. Often we are reminded of similar situations and we use

them to solve a new situation at hand. The following examples illustrate where CBR

might be useful and how it might support problem solving.

1. A teacher is trying to determine if she is breaking any copyright laws when she

purchased a single copy of a workbook and wants to make copies of some of the

pages for her students. She looks for similar situations and how they were

approved or not approved by the authority at her school. Based upon these

remindings she makes the decision not to copy the pages.

A CBR system could support this problem by providing an index such as a

categorized list of similar situations related to making copies, copyright issues,

and how they were handled. Similar situations where copyright is involved might

suggest related school policies that aid the teacher’s decision making. Based

upon the information provided, the teacher can make an informed decision.

Additionally the teacher can log the situation and its resolution for future use.

 31

2. A speech pathologist is trying to evaluate a child's speech disorder that occurs

only in high stress situations. He is reminded of several other children who had a

similar disorder and reviews how they were treated and the success or the failure

of the treatment. Based upon these remindings the speech pathologist

recommends a treatment. The treatment, its success, or its failure is recorded for

future reference.

A CBR system could support this application by providing an index to a set of

related cases based upon the diagnosed disorder. It could suggest treatments as

well as provide narratives of what to expect and how well the treatment worked.

Alternatively the treatment could be indexed as well. Through this index the CBR

system could provide a list of all of the disorders that the treatment has been used

for in the past. This list of disorders might suggest an alternative diagnosis to the

speech pathologist.

Types of CBR

CBR is, in essence, a paradigm covering a set of alternative methods that are

based on accessing and using remindings. A reminding is nothing more than a past

experience whose memory is elicited when a similar situation arises. This experience

could be a previous conversation, cause-effect remembrance, or a situation in which the

learner found herself before. These remindings are stored in a database of cases which

can be accessed by the human learner as well as the computer in order to solve a new or

similar problem. The following is a list of the some of the primary types of CBR systems

from Aamodt and Plaza (1994) including a brief discussion of each.

 32

 Exemplar-Based Reasoning. Exemplar-based reasoning (EBR) employs nothing

more than classification of a new case based on how previous cases were classified. For

example suppose a human learner was trying to determine how to rate a movie G, PG,

PG-13, or R. Using the case library and an EBR system the learner could search for

similar movies with similar attributes and see how they were classified. Based upon how

these were classified, the human learner could then classify the new movie similarly.

Because not all of the similar movies were perhaps classified the same, i.e. some may

have been G and some PG, the human learner could look at how the majority of similar

movies were classified and use that as his or her classification scheme. The human

learner has the final say in the classification process and thus can override the suggested

classification that was made by the CBR system. The movie and its final classification

are stored in the case library.

A close relative of EBR is instance-based reasoning. Instance-based reasoning

systems operate much the same as exemplar-based reasoning systems except that the

computer system does not allow for the human learner to override the solution.

 Memory-Based Reasoning. In memory-based reasoning (MBR) decisions are

based upon memories of specific events versus making decisions based upon

relationships or rules built up from experience (Stanfill and Waltz, 1988). For example,

we remember a situation but we have no knowledge of how we got there or its

relationship to anything else. An MBR system looks for those cases that match on

indexes that are as close to the current situation as possible. The remindings are

represented by feature vectors (i.e., records) linking similar remindings through matching

 33

feature (i.e., field) values. An MBR system’s search function works directly on the data

looking for syntactic patterns in the database (Stanfill and Waltz, 1986). Thus,

computational processes that provide the human learner the most relevant cases based

upon a matching of the index attributes are the ones employed in this method. Providing

the cases in a relevance order like the output of a search engine allows the learner to

explore the related cases to determine if they fit. How best to organize the memory

separates MBR from other CBR methods.

 Analogy-Based Reasoning. In analogy-based reasoning (ABR) the human

learner solves the new situations with past experiences from a different domain whereas

in CBR the past experiences are from the same domain. For example, in solving new

computing applications we often look to biology and human cognition to help create the

new solutions. In education we often provide analogies between disciplines in order to

support learner understanding. Providing the human learner with these cross-domain

analogies in an ABR computer program is a quite complex task, but it offers a

tremendous area of growth in the field of the CBR paradigm.

 Case-Based Reasoning. Although the term CBR (as used to mean a process) is

often confused with the actual CBR paradigm (as used to mean a theory about human and

machine learning that involves using this process), it does have a specific meaning as

well. CBR distinguishes itself in that it employs more than a simple index structure to

the case-base. The cases are more complex than those processed using MBR or EBR.

Cases are linked through a rich network of indexes, relationships, and structures and the

cases are also supported by background knowledge. In a computer implementation this

 34

background knowledge could be a set of if-then rules or decision trees. Additionally, not

all cases in the case library are complete but may be sub-cases that can be rolled together

to solve the problem.

Mitchell (1997) summarizes the characteristics of the CBR process as an instance-

based method in which the cases may be rich relational descriptions, the retrieval and

recombination process relies on both the case library and general knowledge, and there

tends to be a tight coupling in the computer implementation among the retrieval, the

reasoning from the general knowledge, and the problem solving. Mitchell’s

summarization implies that the cases are often narrative in nature. The cases have the

ability to be accessed through various sets of indexes which are conceptually linked.

And, CBR is a process based upon the CBR paradigm which supports knowledge

building by using prior experience and generalized knowledge. Thus, the CBR process

as implemented in a computer application is both grounded in constructivist learning

theory and also it has the capability to support a human learner in constructivist learning.

The CBR Learning Cycle and its Implementation

The CBR Learning Cycle depicted in Figure 2 can be generalized to have the

following four steps (Aamodt and Plaza, 1994):

• Retrieve the most similar case or cases

• Reuse the information and knowledge in that case to solve the problem

• Revise the proposed solution

• Retain the parts of the experience likely to be useful for future problem

solving

 35

Although Aamodt and Plaza (1994) are speaking in computational terms, this process

is very analogous to a human's cognitive process for problem solving. Remindings are

retrieved to solve new problems. These remindings could cross domains and could be

used in an analogy process. These retrieved experiences are then reused to solve the new

problem. The solved problem may include a revision to an existing case or a

combination of solutions from more than one case. The solution is then tested by the

learner and some level of success or failure is recorded. Based upon this feedback, the

case and its solution are tagged appropriately for further reference. This process is

additionally supported by the learner’s general knowledge of the problem domain.

Figure 2. The CBR Learning Cycle (reprinted with permission from Aamodt & Plaza, 1994)

 36

Computer implementation of the CBR Learning Cycle requires that a knowledge

acquisition and engineering process take place first. This includes defining the cases

electronically and providing the proper index and search capability. It often requires that

experts be interviewed and their solutions to problems be recorded. Additionally,

background knowledge is implemented in some fashion such as if-then rules, decision

trees, or any number of mechanisms. An interface is developed that allows a learner to

query the case-base and retrieve cases that are similar to the one that needs to be solved.

If similar cases are not found, then others may be generated that are either derived or are

a combination of more than one case. This intelligent system may need to access the

knowledge base to assist in the derivation. The learner has the option to create whole

new cases if necessary. Finally, the computer implementation must provide the

mechanism to remember the new situation and how it was eventually solved. This may

include both success and failure information.

CBR and Cognitive Flexibility Theory

Spiro et al. (1992) describe a constructivist theory of learning, Cognitive

Flexibility Theory (CFT), which suggests that advanced learning in ill-structured

domains must be supported through alternative cases and multiple, criss-crossing paths

through a set of knowledge content. They suggest that the complexity of these types of

domains cannot simply be understood in a single pass. Learning environments

supporting complex and ill-structured domains should be formulated to address factors

contributing to the failure to learn complex knowledge at advanced instructional levels

(Spiro et al., 1992). The learning environment must have the ability to present multiple

cases or representations of the same concept in a variety of different ways in order to

 37

illustrate the concept’s complexity and ill-structuredness. Their argument is that simply

providing a set of situations and their solutions in order to illustrate a concept is not

sufficient to provide support for advanced learning. Instead, the learner must have the

ability to construct solutions to new situations from the knowledge content that includes a

case library supported by multiple indexes and generalized knowledge where appropriate.

This ability to adapt and form new knowledge content can be implemented using theory-

based hypertext systems which incorporate this flexibility. One of the theory-based

alternatives is a hypertext system with a built-in case-based reasoner grounded by CFT.

CFT is actually a theory of case-based learning. A case-based learning

environment should incorporate features that support the five principles of CFT as

identified by Spiro and Jacobson (1995). These include:

• Use multiple conceptual representations of knowledge

• Link and tailor abstract concepts to different case examples

• Introduce domain complexity early

• Stress interrelated and web-like nature of knowledge

• Encourage knowledge assembly

By the very nature of a system built around case-based reasoning, these principles are

upheld. For example, use of analogies to identify similar cases is an example of using

multiple conceptual representations of knowledge. These analogies can be set up to

counteract the specific negative effects of each other in order to demonstrate a concept’s

complexity and ill-structuredness (Spiro, Coulson, Feltovich, & Anderson, 1988). An

alternative to this might be to use alternate points of view, for example student,

instructor, or administrator, as indexes into a case library. Again this supports the

 38

multiple conceptual representation of knowledge. CBR systems provide real-life case

examples as opposed to abstract concepts. This technique supports the second principle

of linking and tailoring abstract concepts to different case examples. CBR systems

provide cases that entail relationships that are not learned in isolation, but rather

packaged together. This feature supports the third principle that domain complexity

should be introduced early. With multiple indexes into its case library, a CBR system

provides a web-like representation of knowledge stressing interrelationships between the

cases. This mechanism supports the fourth principle. Finally, a CBR system provides

multiple alternative cases to solve the same problem. In the event that no good solution

exists, a CBR system can provide components that might be used to solve the problem

with suggestions about how these components could be combined. Thus knowledge

assembly is encouraged which is the fifth principle.

Instructional Design and Teaching Architectures

A typical classroom approach in education is to stand at the front of the class and

spoon-feed facts to students in various ways. In this approach we assess the knowledge

of the student through testing against these facts. We, as educators, are encouraged to get

all of the students to the same place at the same time. As suggested by Schank and Cleary

(1995), there is very little that is natural about this process. In Schank and Cleary’s

learning theory they suggest that people learn by doing. They build knowledge through

reasoning based upon what they remember or their past experiences. More specifically,

they use case-based reasoning to solve new problems. Case-based reasoning in a nutshell

implies that learners solve problems when being reminded of previous experiences that

 39

they have been faced with. These previous experiences may be simply in the form of

stories with no particular structure (Schank, 1990). Case-based reasoning engages the

learner in active problem solving encouraging and supporting both an active and creative

learner to construct his or her knowledge from the content (Perkins, 1999). This

approach is based on constructivist theory and is significantly different from a response

to a stimulus approach based on a behaviorist theory of learning (Wilson and Myers,

2000).

Using past experiences is a thoughtful and reflective process. It follows the

participation metaphor as described by Sfard (1998). By developing schematic

generalizations over time based upon these experiences, a learner has a much better

chance of retaining the newly acquired knowledge. Alternatively, rules or

generalizations that are memorized will often be quickly forgotten as they have not been

instantiated by a set of cases. From the tenet that people learn and gain knowledge

through their past experiences, Schank and Cleary (1995) laid out a set of what they call

“teaching architectures.” These teaching architectures include case-based teaching,

natural learning, learning by doing, incidental learning, learning by reflection, and

learning by exploring. Each architectural component is described and summarized below

as well as linked to foundational research. From these architectures we build the

foundation for the appropriateness of hypertext videos and the design and use of a case-

based reasoning system to support an object-oriented programming course in Java.

 40

Case-Based Teaching

People learn from their successes and their failures. We often reason from similar

cases and draw conclusions from how they were handled both in their success and their

failures. This is often how we learn. Experts reason with whole libraries of cases to

perform functions such as medical diagnosis (Bruno, 2000) or weather prediction.

Providing examples for learners to draw from and reason from is routinely used in

textbooks. For example, in learning math we are typically presented real world problems

with detailed solutions.

Students are natural case-based reasoners, and Schank and Cleary (1995) suggest

that teachers need to play three different roles in order to leverage this ability. These

include:

1. Providing students with the applicable cases at the time they are required.

2. Helping students explore and draw out useful generalizations from cases.

3. Placing students in situations in which they will face failure.

Of these three roles, learning from failure, requires a bit more explanation.

Failures can be catastrophic, but typically they are not. Schank and Cleary (1995) refer

to these types of non-catastrophic failures as “expectation failures.” An expectation

failure is failure that occurs where you get one outcome when you are expecting another.

These are the types of failures that we often learn from. For example suppose you

ordered seafood at a restaurant that specializes in steak and the seafood turned out to be

distasteful. You might generalize that in the future you should order an item from the

restaurant that the restaurant specializes it. This is an example of learning from an

expectation failure.

 41

This whole concept of case-based teaching and reasoning is the focus of a vast

amount of literature and research which demonstrates its applicability to teaching and

learning. A prime example of the current endeavors in case-based teaching is the

collection of research, conferences, workshops, list of practitioners, case ideas, and more

that can be found at the National Center for Case Study Teaching in Science

http://ublib.buffalo.edu/libraries/projects/cases/case.html.

Natural Learning

People have natural mechanisms for learning that allow them to understand a

large variety of material over time. In natural learning, a person draws conclusions from

their experiences and the wonderment about them. The natural learning process consists

of three steps (R. C. Schank and Cleary, 1995):

1. Adopt a goal.

2. Generate a question.

3. Develop an answer.

For example some people love politics and therefore learn much about politics on

their own. Others may enjoy golf as a past-time and have the goal to become a

competitive golfer. They generate questions about how to improve their game. They learn

through practice and consultation on how to improve their swing, thus improving their

game. This provides them with an answer and makes them a better golfer.

Course interactions should be developed in such a way that they support the

natural learning mechanisms that learners have. An instructional design that has a rigid

framework will not support this learning mechanism. Course interactions should be

 42

structured in a manner that allows learners to develop their own goals within the course

context. Based upon these goals the course interactions should allow the learners to

generate questions and develop related answers. If structured correctly, the course-

content can provide much of the expert knowledge that is typically available through the

teacher-learner interaction. For example, by providing a guided interface over an

exploratory hypermedia system (Nelson, 1994) with a large amount of alternative topics

expert knowledge is provided as well as allowing the learner the capability to

independently choose the topics that are important him or her.

Learning by Doing

The only way to really learn something is to actually do it. Can you really learn

how to drive a car unless you actually drive the car? Can you learn how to play basketball

without actually playing basketball? People learn best by doing. Sometimes people are

left to learn things on their own, by themselves. Other times, they may need support from

an expert such as a flight instructor. David Kolb (1984) describes learning by doing

(experiential learning) as a four-stage process (see Figure 3).

 43

Figure 3. Learning by Doing Cycle (adapted from Kolb, 1984)

The four stages are further defined as follows:

1. Concrete experience (sensing/feeling)

2. Reflective observation (watching)

3. Abstract conceptualism (thinking)

4. Active experimentation (doing)

Schank and Cleary (1995) suggest educators and schools should make use of

learning by doing in their educational processes and providing built-in mentor support for

the experiential learning as required. However, individualized mentor support is

typically not available because of cost considerations and lack of access to an expert.

Additionally, some real-life situations cannot be created. They must be simulated for

safety and cost reasons and software can help in that regard.

 Implementing experiential learning in an object-oriented programming course is

accomplished quite easily through the use of programming assignments. These

 44

assignments need to engage the learner in both object-oriented design and

implementation of the design in order to be effective. Examples of similar

implementations including simulations can be provided within the course content.

Structuring these examples within a hypertext system that provides question and

answering capabilities and web-like interconnectedness should be an effective

instructional design approach through its ability to scaffold and articulate the content.

Scaffolding and articulating are ways in which a learning environment can be designed to

support cognitive apprenticeship, a constructivist model of instruction which makes

thinking visible (Collins, Brown, & Holum, 1991). The integration of these concepts into

the set of content-learner interactions should provide an improvement in learners’

understanding and also offset the requirement for the instructor-learner interaction.

Incidental Learning

Learning often takes place when we least expect it to. The physics we learn by

playing football or the geography we learn when we ride a bike are examples of

incidental learning. Schank and Cleary (1995) suggest that schools could exploit the use

of incidental learning in lieu of memorization of lists of facts. Facts should be

incidentally learned within the context of something the student naturally wants to learn.

Students should be allowed to adopt goals and be provided with materials that will cause

them to pick up the desired information in passing. Course designers should develop

content and transmission mechanisms which integrate factual knowledge that can be

learned in a natural way.

It has been demonstrated that electronic mailing lists can provide an effective

mechanism that supports incidental learning. In a study on the use of electronic mailing

 45

lists (Collins and Berge, 1996), when students were asked to identify how they learned,

29% of the respondents stated that their learning from the mailing list was unintentional

and 53% of the respondents stated that it was a combination of unintentional and

intentional learning. This model can easily be adapted to any type of course including

one in object-oriented programming.

Learning by Reflection

Dewey (1910) defined reflection as “an active persistent and careful consideration

of any belief or supposed form of knowledge in the light of the grounds that support it

and the further conclusion to which it tends.” Reflection is also one of the four stages in

Kolb’s (1984) learning model. Learners often learn when reflecting upon an assignment,

generating a hypothesis, and presenting it to others for discussion. The process of

reflecting enables one to learn from both their success and failures.

Schank and Cleary (1995) suggest that teachers can provide this mechanism by

asking insightful questions for refection and then helping the learner identify the

strengths and weaknesses in their arguments. The teacher can challenge the learner to

think more deeply about the topic. They can test the reasoning for an answer and not just

the answer. Guzdial (2001) uses reflective learning in a course where students use a

collaborative website. The reflection occurs through peer review in a shared web space.

Additionally a case library supporting an Objects and Design class in computer science is

being developed by Guzdial which houses assignments with commentary for use by

future students. This is an excellent example of how we can utilize technology to

support learning by reflection.

 46

Learning by Exploring

Learning-by-exploring means enabling the students to pursue their personal

interests. This implies that students have access to multiple opinions and multiple experts,

not just the teacher. Schank and Cleary (1995) suggest that the research-and-report

model is not sufficient for this mechanism. They suggest that the expert knowledge

should be easily obtainable and not embedded in a difficult-to-find paper at the library.

They suggest the creation of easily-explorable video or text databases to support this

mechanism.

 One well accepted model for learning by exploring is a WebQuest. A WebQuest

is a learning strategy developed by Professor Bernie Dodge in 1995 (March and

Ozline.com, 2004). A WebQuest utilizes technologies associated with the World Wide

Web and the Internet to support cooperative and active learning methods. A survey of

currently implemented WebQuests in computer science and computer technology is

provided in a review by Schmidt (2002).

Integration of the Teaching Architectures

Schank and Cleary (1995) suggest that these teaching architectures can be pulled

together by using a goal-directed learning strategy. As in life, students have goals, they

formulate plans that they believe will help them achieve these goals, and they decide

what actions to take in order to advance those plans. When learning is motivated by

personal goals, that is, is goal-directed, students are eager to respond because the learning

is natural to them. Both intentional and incidental learning will occur naturally during

goal-directed learning. For example, athletes often become very knowledgeable about

nutrition in their attempt to improve their performance. As teachers we need to allow for

 47

students to pursue personal goals in order to generate student interest and motivation.

This implies a redesign of the skill-centered courses to what Schank and Cleary refer to

as Goal-Based Scenarios (GBS) (Schank and Cleary, 1995; Schank, 1996). A well

designed GBS negotiates between the desires of students and those of the course

designers. It provides students with the ability to pursue a clearly stated, interesting goal.

A well designed GBS provides a transmission mechanism that effectively utilizes the

learning architectures listed above, keeps the student motivated towards their goals, and

enables the student to capture the necessary skills and outcomes required by the course.

In order to meet the requirements for a GBS, course interactions should avoid a

drill-and-practice orientation. These interactions should directly support the learning

architectures listed earlier such as learning-by-doing, natural learning, and learning by

exploring. Finally, from an economical perspective the instructional design should

minimize the instructor-student interaction. Providing students with the mechanisms to

ask and answer their own questions based upon their own goals within the context of the

course is a much preferable method.

CFT Grounded Hypertext Videos

 This section presents the research on the use of hypertext video lecture recordings

in order to enhance student learning. Hypertext videos are videos that are indexed

through hyperlinks. This capability provides the learner with the ability to crisscross the

video in an order which is controlled by the learner and not by the interface. Hypertext

 48

videos are an example of how we can reorganize instructional content to meet the goals

of the learner (Schank and Cleary, 1995).

Videotape versus Digital Format

One of the more difficult components to capture in a lecture-oriented face-to-face

course is the actual presentation of the lecture material by the teacher. The difficulty is

not necessarily capturing the lecture in and of itself, but it is the capturing of the teacher-

student interaction within the lecture. Assuming for the moment that the teacher-student

interaction is a separate component as in the course interaction model, a simple

videotaping of the lecture might be suitable (Russell, 1999). This taped lecture can be

distributed to the student via mail and returned in some cyclic basis. However there are

significant production and dissemination costs included in this model. Some of the

obvious advantages of this model include that the lecture can be reviewed multiple times,

and it is available at any time.

An alternative to the videotaped model is to record the lecture using computing

technology. Within this model there are several alternatives. The viability of these

alternatives is dependent upon the technical expertise of both the teacher and his or her

support staff, on copyright issues, on technology, and bandwidth available to both the

instructor and students. Recent qualitative and anecdotal studies show that effective

lecture material can be created and delivered digitally by the teacher with limited

development effort (Lindsey, 2003). Typically this material involves the use of

streaming video along with visual slides that track with the lecture. However, due to the

anecdotal nature of the studies, it is difficult to determine just how effective the lecture

material is. Other studies have noted that the use of video clips within a content

 49

management system aligned with academic content standards, a form of computer-

mediated instruction, has been shown to improve student achievement (Boster, Meyer,

Roberto, & Inge, 2002; Reed, 2003). Mulford (2001) provides a detailed description of

hardware and software requirements to do the recording yourself. Even if we are to

assume that this model is simple enough to learn and deploy, it does not capture the

teacher-learner interactions that may occur within a face-to-face lecture. It can be used,

though, to supplement the course content, and in that respect, it offers significant

benefits.

Digital videos offer the same advantages as those of videotapes. These

advantages include the capability to be paused and replayed, they are available at time,

and they are independent of the classroom. Additionally, because digital videos can be

transmitted over the internet, there are no postage costs or time delays involved with

getting the recorded video to the student.

Digital Hypertext Format

One of the more intriguing alternatives in lecture capturing is described briefly by

Lynch (2002). In this alternative, an integrated software and hardware solution is used to

record the lecture. These solutions have the ability to record a PowerPoint™ lecture

integrated with the voice and video of the presentation. This provides an additional

quality and advantage to the recorded media in that the learner has direct control over the

lecture content through a software interface. This additional flexibility provides for

repetition and review of the lecture with an improved interface over that of a videotape in

that it allows for random access to the lecture content which a taped solution does not. It

would seem that this additional flexibility would improve the learner-content interaction

 50

component of a course and have a positive impact on a student’s achievement. Lynch

reports that students were able to master material in self-paced study using this type of

technology. Lynch notes that grades were higher when students were provided the

digitally recorded video lectures as opposed to that of face-to-face lectures; however,

Lynch provides no statistical evidence.

CFT Grounded Implementations of Hypertext Systems

 This section describes three alternative implementations of hypertext systems

which are ground in CFT. Case-based hypertext systems support knowledge construction

by providing multiple perspectives with the ability to crisscross the landscape of the case-

base with guided support (Nelson, 1994). These alternatives illustrate how the concepts

of CFT can be implemented from an instructional design perspective in order to support

student learning.

A CBR Hypertext Example without an Automated Reasoner

An interesting example of how a hypertext environment can be implemented as a

case-base reasoning system without an automated reasoner is clearly illustrated by the

hyperbook Engines for Educations (Schank and Cleary, 1995). The hyperbook describes

a learning theory that suggests learners build knowledge through reasoning from what

they remember about their past experiences. What makes this hyperbook unique is the

ability to crisscross the material through multiple paths, a strategy that is a requirement of

Cognitive Flexibility Theory. By providing alternate indexes such as categorized lists,

content outlines, and content related to reader objectives into the same body of material,

 51

Schank and Cleary have cleverly incorporated the techniques described by Spiro et al.

(1992). Additionally, examples or cases have been provided as a support mechanism

throughout the text. They are provided as remindings for the learner to use in their

construction of new knowledge. This has all been accomplished with no automated

reasoner, which makes it all the more intriguing because of its simplicity to implement.

A CBR Hypermedia Example with an Automated Reasoner

Creanimate is a case-based teaching system that uses hypermedia and an

automated reasoner to teach children about biology (Edelson, 1998). It was designed to

help elementary school-aged children learn about how animals adapt with particular

emphasis on physical features and how the physical features enable them to survive. The

case-based reasoning system asks the students questions about creating new animals

based upon the remindings. These remindings might suggest why some animals have

wings and how wings help them adapt and survive in their environment. It is left up to the

learner to create a new animal with the appropriate features that will allow them to

survive. The learner can crisscross through the case-base creating new animals and learn

biology in the process. Although this is not a web-based implementation in hypertext, it

provides us with an alternative that illustrates how a case-based reasoning system can

help students learn.

A Web-based CBR Hypertext Example with an Automated Reasoner

A final CBR system example which uses a web-based hypertext interface but also

includes some built-in reasoning is an application that is currently in the "proof of

 52

concept" stage of development called CBRubric (Schmidt and Lalonde, 2004). This

application deals with the development and use of assessment rubrics. These rubrics are

instruments used to measure outcomes of student performance in relationship to goals

and objectives of a particular educational unit or course. Typically these rubrics can be

broken down and indexed by a skill, dimension of the skill, a ranking of the skill, and a

related textual description of the rank. Figure 4 depicts an example.

 UNSATISFACTORY BASIC PROFICIENT
Writing

Responsive
To Article

Presents a response to the
ideas presented in the
article that is surface
and/or lacks in-depth
engagement of the ideas
presented. Weak
presentation of the
relationship between the
ideas presented in the
article and an education
related issue.

Presents a logical
response to the ideas
presented in the
article, and an
exploration of the
impact of these ideas
on an education
related issue that is
fairly well supported.

Presents an insightful,
logical, and compelling
response to the ideas
presented in the article
and a well-supported
exploration of the
impact of these ideas
on an education related
issue.

Figure 4. Responsive to Article Dimension for Writing Rubric

In this example there is one skill listed, Writing, with one dimension called

Responsive to Article. It has three rankings including unsatisfactory, basic, and

proficient. The relationship between the ranks, skills, and dimensions are described in

the text. These are referred to as benchmarks.

Assessment of students and the use of the assessment knowledge are very

complex and are ill-structured. To get an idea of this, just ask a couple of different

people in education about their thoughts on it, and you will get many different answers.

 53

Thus, the building of a rubric and its use for assessment is a great opportunity for us to

use a case-based reasoning system to support this process.

To get an idea of how this system is currently being implemented so that it

conforms to the CFT principles set forth by Spiro and Jacobson (1995) we need to

consider the indexing mechanisms, accessing strategies, alternative points of view, and

the crisscrossing mechanisms for this application. Indexing structures have been

developed which includes indexes on the skill, dimension, rank, and benchmark.

Additionally since rubrics are tied to units or courses, these have been also been included

as indexes. Sample queries into the case-base provide lists such as give me a list of the

rubrics that test writing skills and are math based. Accessing and implementation are

through a hyperlinked document with an underlying relational database. The CBR

system also provides the ability to adapt and incorporate new knowledge. Thus, as new

rubrics are generated, the system allows for the storage and retrieval of the new

knowledge.

Future enhancements to CBRubric will provide indexes that support access based

upon the user interest, that is, student, teacher, or administrator interest. For example a

student might have a different interest in the assessment of writing in math versus that of

a teacher. The student may want to look for tips on how to meet a goal or objective

whereas a teacher may be interested in the how to evaluate an artifact based on the rubric.

Thus the system should provide for that. Additionally, improvements in searching the

case-base will be upgraded so that any combination of the indexes may be searched.

 54

Implications and Concluding Remarks

 CBR is a principle of constructivism that can be used to support advanced

learning in an ill-structured domain. Several alternative methods such as EBR, MBR,

ABR, and CBR are based on the CBR paradigm. CBR provides an environment that

allows for the crisscrossing of the knowledge content, and it underlies CFT. Hypertext

learning environments can be established that incorporate CBR in a variety of ways.

Examples can be provided in an automated way through an advanced search, reuse, and

revise mechanism, or they can be provided with clever hypertext indexing schemes. The

teaching architectures identified by Schank and Cleary (1995) provide us with the

theoretical foundation and support for using hypertext videos to supplement for course

content. Finally, CBRubric (Schmidt and Lalonde, 2004) is a CBR application which

exploits CFT by providing scaffolding for the development of assessment rubrics. It

provides us with a simple foundation to build alternative CBR systems that can support

learning in other educational domains and suggests further research in this area.

 Implications of this literature review suggested that the use of indexed hypertext

videos as part of an online course that has a theory-based design should work as well or

better than any other medium in the transmission of the course content. The literature

review also suggested that using hypertext videos in this way may not be good enough.

The pilot study referred to in chapter one illustrated some of the problems and issues.

However, by supplementing an online course with a CBR application grounded in CFT

that supports additional scaffolding for the complex and ill-structured topics, we may be

able to overcome some of the limitations of the hypertext video transmission model.

These were the driving issues for doing this study.

 55

Chapter III: Methods

 The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases would improve a student’s understanding of

the more difficult concepts in an object-oriented programming course. The second part of

this study examined the relationships between the dependent variable student

performance with independent variables of motivation, background knowledge, and

student attitudes towards the case-based hypertext learning tool. This chapter describes

the methods and procedures that were used in this study as well as details about the case-

based hypertext learning tool.

Research Design

 This study employed non-parametric and correlational analysis research designs.

The first part of the study involved characterizing the sample based on learner

competency assessment questions categorized according to Bloom’s taxonomy of

learning objectives (Bloom and Krathwohl, 1956). Factor A was defined as instructional

support (case-based hypertext learning tool versus lecture notes only) and factor B was

defined as the question type (simple assessment questions that measure the lower levels

of learner competency and complex assessment questions that measure the higher levels

of learner competency). The experimental design is shown in Figure 5. In the

experimental design depicted in Figure 5 Group 1 and Group 2 refer to the groups of

students randomly selected from two sections of Object-Oriented Programming 1. Object

Design and Inheritance are the two content areas that had instructional support. The

 56

treatments X(CBA) and X(LNO) refer to the case-based hypertext learning tool support

and the lecture notes only support (case-based reasoning assisted, i.e. CBA, is also used

in place of the term case-based hypertext learning environment. Essentially within the

context of this study, both terms have the same meaning). Posttest 1 and Posttest 2 refer

to the two posttests that will be given.

 Object Design Posttest 1 Inheritance Posttest 2

Group 1 X(CBA) O X(LNO) O

Group 2 X(LNO) O X(CBA) O

Figure 5 Experimental Design depicting Groups, Treatments, and Observations

The second part of the study involved performing a correlational analysis of the

dependent variable student performance with the independent variables of motivation,

background knowledge, and student attitudes towards the case-based hypertext learning

tool. Measurements on motivation and student attitude were self-reported ranked and

narrative data. Background knowledge was ranked data.

A quantitative research paradigm was chosen primarily based on the nature of the

research questions. In particular this research looked for relationships between multiple

variables as well as identifying treatment effects, and this is best handled through

quantitative analysis. Using correlational analysis as well as non-parametric designs

helped limit the risk of a small sample size. The instruments used to collect the data for

analysis were known up front and, for the most part, had been validated in prior research.

 57

What follows is a restatement of the research questions addressed by this study,

including the researcher’s hypotheses. Question three has no hypothesis because there

was no expectation on the findings; it is simply an issue of curiosity. A detailed

description of the sample, treatments, and measures is provided in following sections.

1. Is there a statistically significant difference in the performance on simple

questions between the Case-Based Reasoning Assisted (CBA) group and the

Lecture Notes Only (LNO) group?

Null Hypothesis: There will be no significant difference in the student

performance on the simple questions between the CBA group and the LNO group.

Alternative Hypothesis: There will be a significant difference in the student

performance on the simple questions between the CBA group and the LNO group.

2. Is there a statistically significant difference in the performance on complex

questions between the CBA group and the LNO group?

Null Hypothesis: There will be no significant difference in the student

performance on the complex questions between the CBA group and the LNO

group.

Alternative Hypothesis: There will be a significant difference in the student

performance on the complex questions between the CBA group and the LNO

group.

3. How is student performance on the measures of learner competencies related to

motivation, background knowledge, and attitudes towards the case-based

hypertext learning tool?

 58

Sample

 Two sections of the Object-Oriented Programming 1 (OOP-1) course in Spring

2005 were used to represent the sample. Only two sections were used because there were

only two sections of OOP-1 offered at the study site. OOP-1 was an introductory course

in Java which emphasized object-oriented programming and design. It was the second

required programming course in both the Bachelor of Science degree in Computer

Information Systems and the Bachelor of Arts degree in Computer Information Science at

an NCAA, Division II university located in the Midwest region of the United States.

Students typically take this course during the second semester of their freshman year. Of

the two sections, one was face-to-face and the other was an online distance-education

course. During the period of the quasi-experiment all students were attending the course

as if they were in the online section. The experiment began the seventh week of class

and ran for three weeks.

 Permission to use human subjects was obtained from the Kansas State

University’s Institutional Review Board as well as the Institutional Review Board of the

study site prior to the beginning of the study. Students were asked to complete an

informed consent form (Appendix A) prior to the start of the study. All subject data will

remain confidential. Subject names were used to match the post test scores across the

experiment, background coursework grades, and survey data. Following this matching

process, arbitrary numbers were used to identify and refer to subjects.

 Twenty-one students were initially enrolled in the two sections of Object-Oriented

Programming 1. Of these, 11 students were enrolled in the online section and 10 students

 59

were enrolled in the face-to-face section. Prior to the beginning of the study, five

students dropped the course. Of the remaining 16 students, all signed the consent form

agreeing to participate in the study. These 16 students were randomly assigned to one of

two treatment groups: Group 1 or Group 2. This random assignment process was

handled as follows: A listing of student names from both courses were loaded into a

Microsoft Excel spreadsheet. The students were then sorted by last name. Finally, the

randomization function built within Microsoft Excel was applied providing each student

with a randomly assigned unique integer number. The students were then sorted by that

uniquely assigned number in ascending order. The first eight of these students were

assigned to Group 1 and the second eight were assigned to Group 2. Before the

completion of the experiment one student from Group 1 was dropped from the study

because of the student failed to take both posttests.

The use of two types of instructional support, i.e. factor A, was varied over two

different complex topic areas during the experiment. These topic areas included object

design and inheritance. Object design and inheritance were chosen because of their

similarity in their levels of complexity.

Learner competency was assessed based on the questions from each of the two

posttests. The questions were divided into two groups, that is, factor B, simple questions

and complex questions. Complex questions were those questions which require higher-

order thinking whereas the simple questions were more related to facts, recall, and

straight forward application. All students in both groups were provided with the identical

assessment questions.

 60

Treatments

Lecture content to members of both treatment groups 1 and 2 was provided in the

form of hypertext videos that were administered through WebCT. The recordings were

developed using sofTV. Each of these recordings was placed into WebCT and integrated

through a hypertext document. Both groups also shared an online space in WebCT. All

lecture-notes, online discussions, and homework assignments were also provided and

administered through WebCT to both groups. Email was handled externally using the

study sites’ email system.

 Two complex and ill-structured content areas had additional instructional support

through a case-based reasoning tool called CBJava (Schmidt, 2004). These content areas

were object design and inheritance. During the coverage of object design, Group 1 was

required to use the CBJava tool, that is, the CBA treatment. Group 2 received no

assistance from CBJava during this period, that is, the LNO (lecture notes only)

treatment. After completing the coverage of object design, Posttest 1 was given to both

groups. Posttest 1 (Appendix B) contained both simple and complex assessment

questions related to object design. The duration for this part of the experiment was one

and one half weeks culminating with the Posttest 1.

 Inheritance was covered immediately following the unit on object design. During

the coverage of inheritance, Group 2 was required to use the CBJava tool, that is, the

CBA treatment. Group 1 received no assistance from CBJava during that period, that is,

the LNO treatment. After completing the coverage of inheritance, Posttest 2 was given to

both groups. Posttest 2 (Appendix C) contained both simple and complex assessment

 61

questions related to inheritance. The duration for this part of the experiment was one and

one half weeks culminating with the Posttest 2.

 In support of the correlational analysis portion of the study additional supporting

data were collected. Learning motivation data were collected using the Motivation

Survey (Appendix D). This survey was administered immediately following Posttest 1

and Posttest 2 to those students who received the LNO treatment during that period.

Student attitudes towards the CBJava tool were also collected through the Student

Attitudes towards CBJava Survey (Appendix E). This survey was administered

immediately following Posttest 1 and Posttest 2 to those students who received the CBA

treatment during that period. The survey data were used to assist in the interpretation of

the quantitative findings. Background knowledge measurements were obtained for all

students from their university transcripts.

 Both posttests and surveys were administered on the study sites’ campus.

Additionally these tests and surveys were proctored by a faculty member at the study site

who was not the researcher (myself). This faculty member coded both the tests and the

surveys in order to protect anonymity during the study. Both posttests were scored by the

researcher before they were matched back to the student in order to minimize bias.

Survey results were withheld from the researcher until after both posttests were scored.

This was done to minimize influences on the treatments.

 62

Measures

 Motivation: pertains to why a student wants or desires to learn. Motivation can be

either intrinsic: to undertake an activity "for its own sake, for the enjoyment it provides,

the learning it permits, or the feelings of accomplishment it evokes" or extrinsic: to

undertake an activity "in order to obtain some reward or avoid some punishment external

to the activity itself," such as grades, stickers, or teacher approval Lepper (1988, p. 292).

A motivation survey (Appendix D) was developed to measure motivation in an attempt to

classify the student as either intrinsically motivated or extrinsically motivated.

 For the purposes of this study intrinsic motivation is defined as the mean score on

items 1-4 of the motivation survey and, extrinsic motivation is defined as the mean score

on items 6-10 of the motivation survey. Question 5 was a social motivation question

(Jenkins, 2001) and was inadvertently included in the survey; it was not used in the

analysis. Question 11 was an open-ended question used to capture any additional

motivation related data that the student wished to provide. Similar questionnaires have

been developed (Jenkins, 2001; Mitchell, Sheard, and Markham, 2000; Wilson and

Braun, 1985) to measure motivation in computer science courses. In order to insure

validity and reliability of this measurement these were used to inform the development of

the motivation survey. Additionally, the survey was reviewed and critiqued by an expert

in survey development.

Learner Competency: Two posttests, Posttest 1 (Appendix B) and Posttest 2

(Appendix C), were given immediately following the treatment conditions. Each test

 63

contained a set of questions covering the content areas addressed during the respective

period in the study. These questions were categorized according to Bloom’s taxonomy of

learning objectives (Bloom and Krathwohl, 1956).

The categorization of the test questions went as follows. Two categories of

questions were created, simple questions and complex questions. Simple questions were

those questions which measured the learning objectives of knowledge, comprehension,

and application. The complex questions were those questions which measured the

learning objectives of analysis, synthesis, and evaluation. A set of candidate questions

for each of the two tests was generated by the researcher who pulled candidate questions

from the normal assessment tests given in previous semesters. These candidate questions

were then provided to two other faculty members who had previous experience in

teaching a Java programming course. Each of these faculty members as well as the

researcher classified the questions as either simple or complex according to Bloom’s

taxonomy of learning objectives (Bloom and Krathwohl, 1956). Questions were then

classified by majority vote as either simple or complex. Additionally, questions which

were unclear were either clarified or dropped as candidate questions. Below is a

description of the learning objectives according to Bloom’s taxonomy.

1. Knowledge: pertains to recall of specifics, memorization, recognizing,

enumerating, identifying, or defining.

2. Comprehension: pertains to the grasping of the meaning of informational

materials such as providing examples, explaining, classifying, or generalizing.

 64

3. Application: includes the ability to articulate, construct, make operational,

discover, and predict solutions to problems that have a best answer using

previously learned information.

4. Analysis: pertains to the ability to break down a problem into its constituent

parts so as to identify its motives or causes. It is the ability to analyze, dissect,

and discover relationships.

5. Synthesis: deals with the ability to construct a solution by taking individual

parts and combining them. It is the ability to build, construct, and invent new

solutions.

6. Evaluation: pertains to the ability to criticize, defend, and make judgments on

work based upon predefined criteria.

Both posttests had an identical format and ordering of questions. There were 12

true/false questions, seven multiple choice questions, and six short answer questions. Of

the 12 true/false questions, the first 11 questions were categorized as simple questions

and the twelfth one was categorized as complex. All of the multiple choice questions

were categorized as simple questions. Finally, all of the short answer questions were

categorized as complex.

 65

Each of the posttests was worth a total of 50 points. Of these 50 points, the

true/false questions were worth one point each, the multiple choice questions were worth

two points each, and the short answer were worth four points each. Thus, the simple

questions were worth 25 points and the complex questions were worth 25 points. A sub

score for each question type was generated based on the total points scored on the related

assessment questions.

Finally, although the short answer questions had a greater point value per

question, partial credit was given for partially correct answers. In order to ensure

consistency in grading, a list of reasons for the partial credit along with the amount of

partial credit awarded was maintained and used as a guide for awarding points.

Background: deals with the specified course prerequisites that have been

identified for entry into the course. The course perquisites included the successful

completion of CM111 - Introduction to Structured Programming and PH110 - Logic for

Computer Programming. Successful completion was defined as having scored a

minimum of a C in the course. The data collected for this measurement were obtained

from the student’s transcript. These data included the letter grade for each of the

prerequisite courses. Letter grades were recorded as ranked data using the following

scale A = 4, B = 3, C = 2, D = 1, and F = 0.

Student Attitudes towards CBJava: pertains to what the students liked and

disliked about the CBJava tool. A short Student Attitudes towards CBJava survey

(Appendix E) was developed to collect student attitudes in an attempt to determine if

there is a relationship between what the students thought about the tool and their

 66

performance on the related content areas. The survey included both closed ended

questions that contained ranked responses based upon a five-point Likert scale as well as

open ended questions. The survey questions were developed by the researcher and

validated by another faculty member who was an expert in survey development. The

survey was structured so that any bias towards negative or positive responses was

minimized.

CBJava

 CBJava is a case-based hypertext system that was developed to be used as an

instructional content aid for students who are learning Java (Schmidt, 2004). The design

of this system was similar to the hyperbook design used in the Engines for Education

web site authored by Schank and Cleary (1995). In addition to being a hyperbook, this

site provided students the ability to add their own examples. As these examples were

added, an expert (in this case the researcher) rated the examples based upon quality and

context. In this way a case-base of validated examples were made available to other

students for further learning and research.

System Architecture

 The foundational architecture of CBJava was the question and answer interface

that sits on top of a relational data model providing both knowledge acquisition and user

feedback. Details of the implementation are beyond the scope of this dissertation.

However, the foundational architecture of CBJava did play an important role in the

treatments. Therefore, a high level overview of the system’s data architecture, user

 67

interface architecture, and knowledge acquisition architecture is provided below.

Although the detailed research in the reliability and validity of using CBJava as a

learning aid has not been researched, its design was based upon well accepted learning

models including learning by example, learning by exploring, and Cognitive Flexibility

Theory. Some validation of these components was handled through expert review.

Modifications based upon feedback from the expert were incorporated into the design.

Data Architecture

CBJava’s data architecture consisted of seven related entities which are depicted

in Figure 6. In this model the data entities are represented by the boxes and their

relationships are illustrated by the connecting lines. The direction of the relationship

between two entities is illustrated by the dot. For example a TopicArea entity is related

to many TopicAreaExample entities. The primary implementation and storage of the

data content was within JSP (Java Server Pages) documents with the exception of the

Example entity. The Example entity and its links was stored in a relational database and

rendered for viewing by the CBJava application in HTML. Definitions of the entities are

provided as follows:

1. TopicArea: refers to an instructional topic area within a content area of Java. For

example within the content area of object design there are a set of supporting

topic areas such as cohesion, coupling, accessor and mutator methods, etc.

2. RealWorldProblem: refers to a real world software design problem that can be

solved using Java. An Automated Teller Machine is an example of a real world

problem.

 68

3. ProblemExample: provides the relational mechanism between an example and a

real world problem. An Example object can be used in support of solving many

different real world problems.

4. ContentArea: refers to an instructional subject area within Java. In particular

there were three content areas that were represented with the initial version of

CBJava. These content areas included decisions, object design and inheritance.

The decisions content area was very limited with its sole purpose being that of a

student training area.

5. ContentAreaTopic: provides the relationship between a content area and a topic

area. A topic area may support more that one content area. For example the topic

area of cohesion applies both to the content areas of inheritance and object design.

6. TopicAreaExample: provides the relationship between a topic area and its related

examples. Examples may illustrate multiple topic area questions.

 69

7. Example: refers to the description and implementation of a Java class which is

used to offer an example of a particular answer to a question.

Figure 6. CBJava’s Data Architecture

User Interface Architecture

 CBJava’s user interface was a hypertext interface implemented in JSP that is

accessible on the World Wide Web. It supported a question and answer model through

the clicking of links. For example: to pose a question about the content area of Object

Design the student could click on a link with the question “Tell me about designing a

class” (see Figure 7 below). The system responded with an answer by displaying the

web page on object design (see Figure 8 below). The response page provided a brief

discussion about Object Design with additional questions that could be posed. Examples

 70

could be accessed and additionally an interface was provided for the student to add their

own examples.

Figure 7. CBJava Content Areas Web Page

Knowledge Acquisition Architecture

The ability for the learner to add content to the site provided an additional feature

which is not available in the hypertext design used in the Engines for Education web site

(Schank and Cleary, 1995). Reasoning capabilities of CBJava were managed through the

initial indexing of the examples by the learner and the revision and classifications by the

expert. Examples were classified as either well defined, adequate, or needs work by the

expert (the researcher) as part of the repair and revision process.

 71

Figure 8. CBJava Object Design Web Page

CBJava’s primary knowledge acquisition process involved the submission of new

Java examples by the student and expert review and validation performed by the

instructor (the researcher). Indexing of the example was performed by the student

through a Web interface. During the study only one of the content areas within CBJava

was open at a time. Thus the indexing of the example was limited to that particular

content area. For example those students who were given the CBA treatment during the

first period of the study could only index their examples under object design. Those

students had no access to the inheritance content area. During the second period of the

study those students who were given the CBA treatment could only index their examples

under inheritance. Again, those students had no access to the object design content area.

 72

At the time the example was submitted the example had a note stating that it has

not been validated. On a daily basis the instructor reviewed the submissions and either

accepted the submission or revised it. In the revision cycle, the instructor identified the

improvements and classified the original example. Both the before (as submitted) and the

after (post review) will be retained.

The knowledge acquisition process implemented in CBJava was fairly simple

although it did demand feedback from a human expert. This is not unlike what happens

in a real life context. It is problematic for a computer program to determine the efficacy

of a Java class. Thus, this simple implementation of knowledge acquisition might be the

most effective as well. Most importantly it can be used as to test the viability of case-

based hypertext learning tool (factor B in this research design).

 73

Data Analysis

 Effects of CBJava: Two types of non-parametric tests were performed because of

the small sample size, and a parametric test was performed in order to identify carryover

effects. A Wilcoxon Signed Ranks test was performed at each level of instructional

support at p < .05 level of significance. The Wilcoxon Signed Ranks test is a non-

parametric test that was used because it can measure two groups of matched individuals

(Huck, 2004). This test was performed for each question type: complex, simple, and both.

Matched pairs were created by matching the performance measurements of the same

student across the two content areas: object design and inheritance.

 In order to determine if there were carryover effects between the two periods of

the study, a parametric test was conducted immediately following the Wilcoxon Signed

Ranks test. A 2 × 2 mixed-design analysis of variance (ANOVA) at p < .05 level of

significance was calculated to examine the carryover effects of the CBA treatment on

Group 1’s test scores.

 Following the test for carryover effects, A Mann-Whitney U test was performed

at each level of question type at p < .05 level of significance. The Mann-Whitney U test

is a non-parametric test that can be used to compare two independent samples (Huck,

2004). This test was performed for each content area (object design and inheritance)

pending the results of the test for carryover effects. It compared the performances of

students in Group 1 to students in Group 2.

 74

Correlational Analysis: A correlational analysis was performed in order to

determine if and how student performance on test questions is dependent upon the

variables of motivation, background knowledge, and student attitudes towards the

CBJava tool. Three separate sets of bivariate correlational tests were performed. Each

of these variables was composed of one or more measures that were either collected

through a survey or through the student’s university transcript. Using these

measurements, a Spearman rho correlation coefficient was calculated between the

student’s test scores in each of the content areas (object design and inheritance) broken

out by question type (simple, complex, and total) and the particular measurement. This

process was repeated for each of the three variables.

Additionally the open ended questions contained in the Motivation Survey and

Student Attitudes towards CBJava Survey were documented and synthesized. The open

ended questions were used primarily for gathering additional motivation data, feedback to

support additional research into the development of the CBJava tool, and additional

perspectives on the usefulness of CBJava.

Human Subject Considerations

 All students received credit for using the CBJava tool as an incentive however

this score was not factored into the study. To receive credit the student was required to

create a content area example and post it to CBJava. All postings were anonymous to the

other students but could be traced backed to the student by the researcher. Before

receiving the CBA (CBJava assisted) treatment, students were provided with a training

 75

area within CBJava that was not part of the study. The training area set up for the

students was composed of the decisions content area. Students were required to sign on

to the CBJava site and post an example to the training area. This training occurred two

weeks prior to the actual study. All students took part in this training.

 Although the data collected in this study was primarily in the context of normal

coursework, permission was requested (Appendix A) of the student for their participation

in the study. All raw data including surveys and test scores will be kept in full

confidence by the researcher.

Summary

 The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases (CBJava) would improve a student’s

understanding of the more difficult concepts in an object-oriented programming course.

The second part of this study examined the relationships between the dependent variable

student performance with independent variables of motivation, background knowledge,

and student attitudes towards CBJava. Subjects for the study were randomly assigned

from two sections of the Object-Oriented Programming 1 course. Posttests were used to

measure the affects of CBJava on learner competency. Background knowledge was

collected through student transcripts. Motivation and student attitudes towards CBJava

data were collected from surveys. Open ended survey questions were documented and

synthesized. The Wilcoxon Signed Ranks test, Mann-Whitney U test, mixed-design

 76

ANOVA, and Spearman rho correlations were used to analyze the quantitative data. All

data were collected during the Spring 2005 semester.

 77

Chapter IV: Results

The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases will improve a student’s understanding of the

more difficult concepts in an object-oriented programming course. The second part of the

study involved performing a correlational analysis of the dependent variable student

performance with the independent variables of motivation, background knowledge, and

student attitudes toward the case-based hypertext learning tool. As previously presented,

the research questions are:

1. Is there a statistically significant difference in the performance on simple

questions between the Case-Based Reasoning Assisted (CBA) group and the

Lecture Notes Only (LNO) group?

2. Is there a statistically significant difference in the performance on complex

questions between the CBA group and the LNO group?

3. How is student performance on the measures of learner competencies related to

motivation, background knowledge, and attitudes towards the case-based

hypertext learning tool?

 All data for this research were collected during the Spring 2005 semester at the

study site. Subjects were randomly assigned to one of two groups (Group 1 and Group 2)

from two sections of Object-Oriented Programming 1, that is, students assigned to each

Group for experimental purposes were from both classes. Subjects completed the object

design test (Posttest 1) at the end of time period one and the inheritance test (Posttest 2)

at the end of time period two. Period one ran for one and a half weeks beginning at the

 78

seventh week of class. During period 1 students assigned to Group 1 received the CBA

treatment, and students assigned to Group 2 received the LNO treatment. The CBA

treatment refers to providing the students’ access to CBJava for content area covered

during the period, and the LNO treatment refers to providing the students only with the

lecture notes for the content area covered during the period. Period two followed

immediately after period one and, it also ran for one and a half weeks.

 During period two students assigned to Group 1 received the LNO treatment and,

students assigned to Group 2 received the CBA treatment. Additionally, at the end of

period one, those subjects assigned to Group 1 completed the Student Attitudes towards

CBJava Survey (Appendix E) and those students assigned to Group 2 completed the

Motivation Survey (Appendix D). At the end of period two, the surveys were reversed,

that is, the students assigned to Group 1 completed the Motivation Survey and the

Students assigned to Group 2 completed the Student Attitudes towards CBJava Survey.

It made sense for the students to fill out the Student Attitudes towards CBJava Survey

immediately following their use of the tool while the use of the tool was fresh in their

minds. However, the timing of the Motivation Survey was strictly based upon student

availability and the desire to not overload them with more than one survey at a time.

 This chapter presents an analysis of the data. A Wilcoxon Signed Ranks test,

Mann-Whitney U test, and a mixed-design analysis of variance (ANOVA) were used to

test for significant differences between those subjects who received the CBA treatment

and those who received the LNO treatment. Spearman rho correlations, descriptive

statistics, and a thematic analysis were used to investigate the relationships between

background knowledge, motivation, and student attitudes towards the CBJava tool with

 79

respect to each of the posttests (Posttest 1 and Posttest 2) categorized by question type

(Simple and Complex).

Sample Analysis

 Of the 21 subjects who were initially enrolled in the only two sections of Object-

Oriented Programming 1 offered at the study site, five subjects dropped the course.

Sixteen subjects began the study. Of the 16, one subject was dropped after the first

period due to failure to complete the posttest. Subjects were randomly assigned to one of

the two groups (Group 1 and Group 2).

 80

Effects of CBJava

 In order to answer the first two research questions, two types of non-parametric

tests were performed on the sample as prescribed in the experimental design. A third

test, a parametric test, was performed on the sample in order to better understand the

results of the first two tests.

 Descriptive statistics including means and standard deviations for each content

area (Object Design and Inheritance) separated by question type (Simple and Complex)

for each group (Group 1 and Group 2) are provided in Table 3. Notice that the mean

scores on the posttests (Posttest 1 covered Object Design and Posttest 2 covered

Inheritance) for Group 1 are consistently higher than those in Group 2. A higher mean

score represents a better performance on the posttest. The mean scores are the average

number of total points for the group out of a maximum of 25 points for each part of the

posttest (i.e., each posttest contained complex questions and simple questions each worth

25 points). Neither group did as well on the posttest covering inheritance (Posttest 2) as

they did on Posttest 1.

 81

Table 3. Descriptive Statistics for Test Scores for Question Type by Content Area by

Group

Group 1 Group 2 Total
Question
Type ×
Content

Area

Mean N SD Mean N SD Mean N SD
Simple

 Obj. Des. 22.00 7 2.449 19.63 8 4.340 20.73 15 3.674

 Inheritance 20.71 7 2.289 18.00 8 2.976 19.27 15 2.939

Complex

 Obj. Des. 22.71 7 1.890 17.88 8 3.563 20.13 15 3.758

 Inheritance 20.57 7 3.505 15.63 8 3.852 17.93 15 4.383

Total

 Obj. Des. 44.71 7 3.450 37.50 8 5.682 40.87 15 5.927

 Inheritance 41.29 7 5.282 33.63 8 5.476 37.20 15 6.527

Notes. Group 1 received the CBA treatment in period 1 (content: Object Design) and the LNO treatment in
period 2. Group 2 received the CBA treatment in period 2 (content: Inheritance) and the LNO treatment in
period 1. CBA treatment refers to providing the students’ access to CBJava for the content area covered
during the period, and the LNO treatment refers to providing the students only with the lecture notes for the
content area covered during the period. The mean scores reported are average posttest scores broken out by
question type (posttest 1 covered object design and posttest 2 covered inheritance).

 Descriptive statistics including means and standard deviations for each level of

instructional support treatment (CBA and LNO) separated by question type (Simple and

Complex) for each group (Group 1 and Group 2) are provided in Table 4. Notice that the

mean scores for Group 1 were consistently higher than Group 2 regardless of

instructional support treatment.

 82

Table 4. Descriptive Statistics for Test Scores for Question Type by Treatment by Group

Group 1 Group 2 Total Question

Type ×
Treatment

Mean N SD Mean N SD Mean N SD

Simple

 CBA 22.00 7 2.449 18.00 8 2.976 19.87 15 3.357

 LNO 20.71 7 2.289 19.63 8 4.340 20.13 15 3.461

Complex

 CBA 22.71 7 1.890 15.63 8 3.852 18.93 15 4.728

 LNO 20.57 7 3.505 17.88 8 3.563 19.13 15 3.681

Total

 CBA 44.714 7 3.450 33.625 8 5.476 38.800 15 7.272

 LNO 41.286 7 5.283 37.500 8 5.682 39.267 15 5.650

The first non-parametric test performed was a Wilcoxon Signed Ranks test at each

level of instructional support (CBA and LNO) at p < .05 level of significance. The

Wilcoxon Signed Ranks test was used because of the small sample size to assess the

significance of change within groups. It also allows for measuring two related samples of

data generated by measuring the same people twice (Huck, 2004, p. 501). This test was

performed for each question type (Simple and Complex). Matched pairs were created by

matching the test scores of the same student across the two content areas (Object Design

and Inheritance). The change in score was calculated by subtracting the student’s score

obtained with CBA instructional support from the student’s score with LNO instructional

 83

support. A negative change meant that the student performed better with CBA support

versus LNO support.

The results reported in Table 5 indicate no significant differences in the student

test scores for either complex questions (Z = 0.000, p > .05), simple questions (Z =

-0.106, p > .05), or the total set of questions (Z = -0.378, p > .05). Specifically you

should note the Wilcoxon test result (Z = 0.000) for Complex LNO – Complex CBA

which indicates that on the complex questions there were just as many students who

performed better with lecture notes only (i.e., the LNO treatment) as those who

performed better with the CBJava as an instructional support tool (i.e., the CBA

treatment). This finding conflicts with the expectation that the CBA treatment should

enable a student to perform better on complex questions than with the LNO treatment.

One possibility for this finding was that that there may be a carryover effect for those

students who received the CBA treatment in period 1 (during the coverage of Object

Design) of the study. That is, the CBA treatment may have helped them sufficiently that

they performed better than expected on the second assignment for which they did not

have the tool available.

 84

Table 5. Test Statistics for Wilcoxon Signed Ranks Test of LNO Treatment vs. CBA

Treatment

Total LNO –
Total CBA

Complex LNO –
Complex CBA

Simple LNO –
Simple CBA

Z -.378a .000b -.106a

Significance (2-tailed) .706 1.000 .916

aBased on negative ranks.

bThe sum of negative ranks equals the sum of positive ranks.

 To answer the carryover effect question a 2 × 2 mixed-design ANOVA was

calculated to examine the effects of the group (Group 1 and Group 2) and the treatment

(CBA and LNO) on students as indicated by posttest scores. The carryover effect

question (i.e., was there a carryover effect of the treatment) was answered once for each

set of questions (i.e., Complex and Simple). The 2 × 2 mixed-design ANOVA was used

because there is not an alternative non-parametric design that can test for carryover

effects. A mixed design ANOVA tests effects of more than one independent variable

where at least one of the independent variables must be within-subjects (repeated-

measures) and at least one of the independent variables must be between-subjects (Cronk,

2004, p. 74). In the mixed design ANOVA used in this study, the repeated measures

variable was treatment (i.e., the ordering of treatments), and the independent variable was

posttests.

 85

 The effects of the group are essentially the same as a sequence effect because of

the ordering of the treatment. Recall that Group 1 was the group of subjects who

received the CBA treatment in period 1 (Object Design) and the LNO treatment in period

2 (Inheritance). Group 2 was the group of subjects who received the CBA treatment in

period 2 (Inheritance). There was no significant effect indicated by the posttest scores by

students on complex questions for the Group × Treatment interaction (F(1,13) = 4.452, p

> .05). The main effect for treatment on students’ posttest scores on complex questions

was also not significant (F(1,13) = 0.003, p > .05, see Table 6). The main effect for

treatment finding is a similar result to the findings of the Wilcoxon Signed Ranks test

(i.e., both the non-parametric test and the parametric test came to similar conclusion that

there were no treatment effects). However there was a significant effect (i.e., a

carryover effect) of treatment on Group for complex questions (F(1,13) = 12.718, p < .01,

see Table 7). These results indicate that there was a significant carryover effect of

Treatment on students as indicated by test scores on complex questions from posttest 1 to

posttest 2 for those students who received the CBA treatment in the first period. Students

in Group 1 had a similar drop in mean scores (2.14 points) between posttest 1 and

posttest 2 on complex questions as did Group 2 (2.25 points) even though it was Group 2

(not Group 1) who received the CBA treatment for the content area (object design)

covered by posttest 2 (see Table 3).

 86

Table 6. Tests of Within-Subjects Contrasts on Complex Questions of Group and

Treatment

Source Time

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial Eta
Squared

Treatment Linear .021 1 .021 .003 .960 .000

Group ×
Treatment

Linear 36.021 1 36.021 4.452 .055 .255

Error(Treatment) Linear 105.179 13 8.091

Table 7. Tests of Between-Subjects Effects on Complex Questions of Group

Source

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial Eta
Squared

Intercept 11005.952 1 11005.952 783.066 .000 .984

Group 178.752 1 178.752 12.718 .003** .495

Error 182.714 13 14.055

**p < .01

 There was no significant effect indicated by the posttest scores by students on

simple questions for the Group × Treatment interaction (F(1,13) = 3.28, p > .05). The

main effect for Treatment on simple questions was also not significant (F(1,13) = 0.045,

p > .05, see Table 8). The main effect for this treatment finding as indicated by posttest

scores on simple questions is a similar result to the findings of the Wilcoxon Signed

 87

Ranks test (i.e., both the non-parametric test and the parametric test came to similar

conclusion that there were no treatment effects on students as indicated by posttest scores

on simple questions). Finally there was no significant effect on simple questions for

Group (F(1,13) = 3.16, p > .05, see Table 9). These results indicate that there was no

significant carryover effect on simple questions for those students who received the CBA

treatment in the first period.

Table 8. Tests of Within-Subjects Contrasts on Simple Questions of Group and

Treatment

Source Time

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial Eta
Squared

Treatment Linear .215 1 .215 .045 .836 .003

Group ×
Treatment

Linear 15.815 1 15.815 3.282 .093 .202

Error(Treatment) Linear 62.652 13 4.819

 88

Table 9. Tests of Between-Subjects Effects on Simple Questions of Group and Treatment

Source

Type III
Sum of
Squares df Mean Square F Sig.

Partial Eta
Squared

Intercept 12048.215 1 12048.215 788.449 .000 .984

Group 48.348 1 48.348 3.164 .099 .196

Error 198.652 13 15.281

The third test performed was a Mann-Whitney U test. A Mann-Whitney U test

was used to compare two independent samples (Group 1 and Group 2) because of the

small sample size (Huck, 2004, p. 496). Because the results of the 2 × 2 mixed-design

ANOVA test indicated that there was a significant carryover effect of Treatment on

students as indicated by test scores on complex questions, this third test was performed

for period one only (during which the Object Design content area was covered). That is,

the carryover effects confound the Mann-Whitney U test for period two (during which

the Inheritance content area was covered), therefore it was not performed for period two.

The Mann-Whitney U test was calculated examining the treatment effects (CBA

versus LNO) on students as indicated by test scores on the various types of test question

(Complex and Simple) in period one (Object Design). Primarily this test was utilized to

further test the treatment effects on complex questions because this is where the

carryover effect occurred; however, for completeness, both simple and the combined set

(Simple and Complex) of questions were tested as well.

Students in Group 1 (those who received the CBA treatment first) performed

significantly better on the complex questions (m rank = 11.50; U = 3.500, p < .05, M =

 89

22.71 vs. M = 17.88) than those students in Group 2 (those who received the LNO

treatment first). These same students (Group 1) did no better than the students in Group

2 on simple questions (m rank = 9.21; U = 19.500, p > .05, M = 22.00 vs. M = 19.63).

However the students in Group 1 did perform significantly better on the total set of test

questions (m rank = 11.29; U = 5.000, p < .01, M = 44.71 vs. M = 37.50). See Table 10

for the summary of results for this test and Table 3 for the descriptive statistics. The

results of the Mann-Whitney U test indicate that the students who were provided with the

CBJava tool in the first period of the study (i.e., the CBA treatment) performed

significantly better than those students who were only provided with the lecture notes

(i.e., the LNO treatment).

Table 10. Mann-Whitney Test - Test Statisticsb of Group by Question Type for Object

Design Content Area

Complex

Simple

Total
Mann-Whitney U 3.500 19.500 5.000

Significance (2-tailed) .004** .320 .007**

bGrouping Variable: Group (i.e. Group 1 students versus Group 2 students).

**p < .01

Notes. Complex refers to student performance on complex questions on posttest 1. Simple refers to student
performance on simple questions on posttest 1. Total refers to student performance on all questions on
posttest 1.

 90

Student Background Assessment Results

 A one-tailed Spearman rho correlation coefficient was calculated for the

relationship between subjects’ grade in background coursework (CM111 and PH110) and

their test scores for each of the content areas (Object Design and Inheritance) broken out

by question type (Simple and Complex). A Spearman rho correlation was used because

grade is an ordinal measurement. Descriptive statistics for background coursework

including means and standard deviations for each group (Group 1 and Group 2) as well as

the combined groups are provided in Table 11. The mean scores reported are the average

letter grades of the students based on a scale of A = 4, B = 3, C = 2, D = 1, and F = 0.

 Although the mean scores for students in Group 1 appear to be better than Group

2, it is only by chance that this occurred. The differences in mean scores does raise a

question about the significant effect of the CBA treatment on Group 1 as indicated by

scores on posttest 1 found by the Mann-Whitney U test. However, the Mann-Whitney U

test is a ranked-based test, not a means-based test (Huck, 2004, p. 496). It is also a

distribution free test (i.e., a normalized distribution is not assumed). Thus, the question

about the results of the Mann-Whitney U test (i.e., the significant effect of the CBA

treatment on Group 1) is mitigated. Still, the differences in student background should be

considered when analyzing the total set of results of this study.

 91

Table 11. Descriptive Statistics of Background Coursework by Group

Group 1 Group 2 Total

Course

Mean N SD Mean N SD Mean N SD

CM111 3.67 6 .516 3.13 8 .835 3.36 14 .745

PH110 2.86 7 1.464 2.38 8 1.188 2.60 15 1.298

Notes. One subject did not take CM111 in Group 1. The mean scores reported are the average letter grades
of the students based on a scale of A = 4, B = 3, C = 2, D = 1, and F = 0.

 Relevant bivariate correlations for Group 1 are presented in Table 12 and for

Group 2 in Table 13. The set of relevant bivariate correlations for the combined groups

is provided in Table 14.

 Of particular interest was the strong positive correlation found between the

background knowledge and the total test scores for both content areas for the combined

groups (see Table 14). This finding suggests that students who did well on their

background coursework scored well on the posttests, and students who did poorly on

their background coursework scored poorly on the posttests. This finding, once again,

also raises the question about the significant effect of the CBA treatment on Group 1 as

indicated by scores on posttest 1 found by the Mann-Whitney U test. Since Group 1

students performed better in their background coursework and because there was a strong

positive correlation found between background knowledge and the total test scores, it

could be argued that Group 1 students would have most likely performed better on the

posttest 1 than Group 2 even without the CBA treatment. Again, this argument can be

answered. Notice that for the first period (the period tested by the Mann-Whitney U test)

 92

there was no significant correlation found for Group 1 between Complex questions and

either CM111 (p = .107) or PH110 (p = -.095). This was also the case for Group 2 (i.e.,

for CM111, p = -.057 and from PH110, p = .463). Recall that the Mann-Whitney U test

found that students in Group 1 (who received the CBA treatment) performed significantly

better than students in Group 2 (who received the LNO treatment) on complex questions

but there were no differences found on the simple questions. Thus, even if one argues

that Group 1 appears to have had better background knowledge than Group 2, this

difference does not appear to have influenced the findings of the Mann-Whitney U test.

Table 12. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Group 1

 Object Design

Inheritance

Course Simple Complex Total Simple Complex

Total
CM111 .853* .107 .735* .414 .335 .414

PH110 .667 -.095 .406 .378 .735* .655

*p < .05

Notes. Bivariate correlations were calculated using the variables posttest score and letter grade. Student
posttest scores for each content area broken out by scores on simple, complex, and the total set of
questions. The second variable, the students’ letter grade, was based on a scale of A = 4, B = 3, C = 2, D =
1, and F = 0.

 93

Table 13. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Group 2

 Object Design

Inheritance

Course Simple Complex Total Simple Complex Total
CM111 .139 -.057 .255 .513 -.026 .207

PH110 .199 .463 .281 .168 .444 .279

Table 14. Bivariate Correlations between Background Courses and the Test Scores for

each Content Area for Groups 1 and 2 Combined

 Object Design

Inheritance

Course Simple Complex Total Simple Complex

Total
CM111 .497* .335 .542* .549* .330 .519*

PH110 .480* .429 .477* .461* .592* .561*

*p < .05

Results Related to Motivation Questionnaire

 A two-tailed Spearman rho correlation coefficient was calculated for the

relationship between subjects’ answers to questions 1-4 and 6-10 of the Motivation

Survey (Appendix D) and their test scores for each of the content areas (Object Design

 94

and Inheritance) broken out by question type (Simple and Complex). A Spearman rho

correlation was used because motivation is an ordinal measurement.

 In order to address the consistency of the survey questions, the Motivation Survey

was developed from similar questions found in other motivation related research in

computer science courses (Jenkins, 2001; Mitchell, Sheard, and Markham, 2000; Wilson

and Braun, 1985). Additionally, the survey was reviewed and critiqued by an expert in

survey development at the study site. By using both the historical and expert sources,

consistency in the questions was maintained which attempted to address the reliability

and validity issues for the survey (Krathwohl, 1998, p. 435). However, no psychometric

analysis of the Motivation Survey was performed.

 Descriptive statistics for the Motivation Survey answers including means and

standard deviations for each group (Group 1 and Group 2) as well as the combined

groups are provided in Table 15. The mean scores reported are averages of the student

responses to each question. Responses to each question were based on a four point Likert

scale ranging from 1 (extremely important) to 4 (not important). Therefore, low mean

scores indicated that the group felt the item was extremely important.

 The results of the descriptive statistics show that the combined groups rated

questions 1 – 4 (i.e., those questions that were categorized as intrinsic, means ranging

from 1.40 – 1.60) more important than questions 6 – 10 (i.e., those questions that were

categorized as extrinsic, means ranging from 1.87 to 3.93). A categorized list of each

question in abbreviated form is provided in Table 15 for reference. See Appendix D for

the complete Motivation Survey.

 95

Table 15. Motivation Survey Closed-Ended Questions Categorized as Intrinsic or

Extrinsic

Question
Number Abbreviated Question

Motivation
Category

1 enjoy programming Intrinsic

2 computers are fascinating Intrinsic

3 subject is intellectually challenging Intrinsic

4 interested in subject Intrinsic

6 increase my job security Extrinsic

7 concerned about computerization of society Extrinsic

8 help with employment Extrinsic

9 employer requirement Extrinsic

10 help with other subjects Extrinsic

Notes. Question 5 was a social motivation question (Jenkins, 2001) and was inadvertently included in the
survey; it was not used in the analysis.

 96

Table 16. Descriptive Statistics of Motivation Survey Questions by Group

Group 1 Group 2 Total

Question

Mean N SD Mean N SD Mean N SD
1 1.14 7 .378 1.75 8 .886 1.47 15 .743

2 1.29 7 .756 1.63 8 1.061 1.47 15 .915

3 1.29 7 .488 1.88 8 1.126 1.60 15 .910

4 1.00 7 .000 1.75 8 .886 1.40 15 .737

6 1.86 7 1.215 2.00 8 1.069 1.93 15 1.100

7 2.43 7 1.134 2.88 8 .835 2.67 15 .976

8 1.86 7 1.464 1.88 8 1.126 1.87 15 1.246

9 4.00 7 .000 3.87 8 .354 3.93 15 .258

10 2.00 7 1.000 2.13 8 .991 2.07 15 .961

Notes. The means represent the average responses to each closed-ended question of the Motivation Survey.
Responses were based on a four point Likert scale: 1 – extremely important, 2 – moderately important, 3 –
slightly important and 4 – not important. Questions 1-5 measured intrinsic motivation, and questions 6-10
measured extrinsic motivation. Group 1 refers to those students who received the CBA treatment in period
one, Group 2 refers to those students who received the CBA treatment in period 2, and Total refers to both
groups combined.

 Relevant bivariate correlations for Group 1 and Group 2 are presented in

Table 17 and Table 18 respectively. The set of relevant bivariate correlations for the

combined groups is provided in Table 19 . A strong negative correlation on questions 1-4

indicates that students who were intrinsically motivated did well on the posttests. A

strong negative correlation on questions 6-10 indicates that students who were

extrinsically motivated did well on the posttests. Of the fifty-four bivariate correlations

calculated each for the Group 1, Group 2, and the combined groups, three were found to

 97

be significant for Group 1, none for Group 2, and none for the combined groups.

Because the percentage of significant correlations was very small, it could be argued that

they occurred by chance. Based on this finding, there were minimal relationships

between extrinsic and intrinsic motivation and student performance on posttests.

Table 17. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Group 1

Object Design Inheritance

Question

Simple Complex Total Simple Complex Total
1 -.520 -.624 -.618 -.618 -.535 -.612

2 .000 -.416 -.412 .309 .428 .408

3 .242 -.242 .000 .479 .828* .791*

4 0 0 0 0 0 0

6 -.030 -.291 -.268 -.169 -.175 -.177

7 -.715 -.476 -.887** -.330 -.255 -.299

8 -.161 -.242 -.399 .080 -.083 .000

9 0 0 0 0 0 0

10 -.467 -.010 -.171 -.643 -.511 -.558

*p < .05. **p < .01.

Notes. Bivariate correlations were calculated using variables posttest score and motivation. Student
posttest scores for each content area (Object Design and Inheritance) are broken out by scores on simple,
complex, and total set of questions. The second variable, motivation, was the average responses to each
closed-ended question of the Motivation Survey. Responses were based on a four point Likert scale
ranging: 1 – extremely important, 2 – moderately important, 3 – slightly important and 4 – not important.

 98

Table 18. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Group 2

Object Design Inheritance

Question

Simple Complex Total

Simple Complex Total
1 .608 .065 .612 .323 .325 .474

2 .097 .028 .223 .532 .049 .099

3 .572 .181 .523 .225 .614 .445

4 .504 .013 .416 .168 .560 .501

6 .415 .051 .519 .604 .203 .333

7 .152 -.351 .121 .215 .064 .039

8 .302 .181 .330 .418 .381 .366

9 .415 -.501 .167 .166 .167 .254

10 .488 -.065 .427 .424 .388 .602

 99

Table 19. Bivariate Correlations between Motivation Survey Questions and Test Scores

by Content Area for Combined Groups

Object Design Inheritance

Question

Simple Complex Total

Simple Complex Total
1 .114 -.483 -.221 -.191 -.145 -.203

2 .044 -.265 -.192 .281 .084 .078

3 .322 -.193 .007 .138 .397 .227

4 .166 -.472 -.220 -.162 .006 -.103

6 .240 -.137 .057 .191 .026 .116

7 -.217 -.438 -.354 -.101 -.113 -.136

8 .088 -.089 -.057 .207 .068 .147

9 .376 -.062 .280 .249 .280 .311

10 .104 -.107 .065 -.012 -.053 .068

*p < .05.

 100

 Feedback was also collected from one open-ended survey question included in the

Motivation Survey. The question was as follows: I am interested in this course for other

reasons not listed. I am listing these here. In total nine students responded to this

question. These responses are provided in Appendix F. Responses were evaluated and

assigned to an appropriate thematic category. The number of responses in each category

was summed. Finally, each theme was labeled as either intrinsic or extrinsic. Table 20

provides a summary of the results. These results showed that other motivating factors

were primarily extrinsic.

Table 20. Motivation Survey Summary of Responses to Open-Ended Question

Theme

Number of
Responses

Motivation
Category

The course is a requirement of or closely related to the
student’s degree program.

4 Extrinsic

The student is taking the course because they really enjoy
computing and see it as an exciting area to study.

2 Intrinsic

The student wants to have a better understanding of
computing for follow-on coursework.

3 Extrinsic

Results Related to Attitudes towards CBJava Questionnaire

 A two-tailed Spearman rho correlation coefficient was calculated for the

relationship between subjects’ answers to questions 1-6 of the Student Attitudes towards

CBJava Survey (Appendix E) and their test scores for the CBJava supported content area

(Object Design or Inheritance) broken out by question type (Simple and Complex). To

 101

address the consistency of the closed-ended survey questions (i.e., questions 1-6) two

techniques were used. The survey was structured so that any bias towards negative or

positive responses was minimized (i.e., questions 1, 2, 4, and 5 were supportive of the

tool; questions 3 and 6 were non-supportive, see Table 21). And, the survey questions

were developed by the researcher and critiqued by an expert in survey development.

However, no psychometric analysis of the survey was performed.

Table 21. Attitudes towards CBJava Closed-Ended Questions Categorized as Supportive

or Non-Supportive of CBJava

Question

Number Question Category

1 CBJava is an effective tool in learning object
design/inheritance.

Supportive

2 CBJava helped my understanding of how real world
problems can be conceptualized in Java classes.

Supportive

3 I had difficulty relating the examples to the instructional
content within CBJava.

Non-Supportive

4 I found that the ability to create concrete examples with
expert feedback supported my understanding of the
instructional content.

Supportive

5 CBJava supported my understanding of chapter topics by
linking the examples to the related topics.

Supportive

6 I found the CBJava tool difficult to use.

Non-Supportive

 102

 Recall that Group 1 was the set of students who were supported by the CBJava

tool for the Object Design content area (period 1). Group 2 was the set of students who

were supported by the CBJava tool for the Inheritance content area (period 2). It was not

appropriate to perform correlational tests on content areas for which the groups did not

have CBJava support. Correlations were not calculated for the combined groups because

of the differences in supported content area coverage. A Spearman rho correlation was

used because student attitude is an ordinal measurement.

 Descriptive statistics for Student Attitudes towards CBJava Survey answers

including means and standard deviations for each group (Group 1 and Group 2) as well as

the combined groups are provided in Table 22. The mean scores reported are averages of

the student responses to each question. Responses to each question were based on a five

point Likert scale ranging from 1 – strongly agree to 5 – strongly disagree. Therefore,

high mean scores indicated that the group strongly disagreed with the item. The

descriptive statistics showed that the combined groups answered more positively to

questions (1, 2, 4, and 5) supportive of the CBJava tool (means ranging from 2.07 to

2.33) and more negatively to those questions (3 and 6) that were not supportive of the

CBJava tool (means ranging from 3.60 to 3.80). Answering negatively to a non-

supportive question indicated that the student disagreed with the non-supportive question.

Answering positively to a supportive question indicated that the student agreed with the

supportive question. Thus, based upon average responses to questions 1-6 students liked

the CBJava tool.

 103

Table 22. Descriptive Statistics of Student Attitudes towards CBJava by Group

Group 1 Group 2 Total

Question

Mean N

SD Mean N SD Mean N SD
1 2.43 7 1.512 2.00 8 .756 2.20 15 1.146

2 2.14 7 1.676 2.38 8 1.061 2.27 15 1.335

3 4.14 7 .690 3.50 8 1.069 3.80 15 .941

4 2.14 7 1.464 2.00 8 .756 2.07 15 1.100

5 2.14 7 1.464 2.50 8 .926 2.33 15 1.175

6 3.71 7 1.380 3.50 8 1.414 3.60 15 1.352

Notes. The means represent the average responses to each closed-ended question of the Student Attitudes
towards CBJava Survey. Responses were based on a five point Likert scale: 1 – strongly agree, 2 – agree, 3
– no opinion, 4 – disagree, and 5 – strongly disagree. Group 1 refers to those students who received the
CBA treatment in period one, Group 2 refers to those students who received the CBA treatment in period 2,
and Total refers to both groups combined. Questions 1, 2, 4, and 5 were supportive of the CBJava tool.
Questions 3 and 6 were not supportive of the CBJava tool.

 Relevant bivariate correlations for Group 1 and Group 2 are presented in Table 23

and Table 24 respectively. A strong negative correlation for questions 1, 2, 4, and 5 and

a strong positive correlation for questions 3 and 6 indicate that students who performed

well on the posttests were supportive of the CBJava tool. A strong positive correlation

for questions 1, 2, 4, and 5 and a strong negative correlation for questions 3 and 6

indicate that students who performed well on the posttests were not supportive of the

CBJava tool. Of the 18 bivariate correlations calculated each for Group 1 and Group 2,

4 were found to be significant for Group 1 and none for Group 2.

 104

Table 23. Bivariate Correlations between Student Attitudes towards CBJava and Test

Scores for Object Design Content Area for Group 1

Object Design

Question

Simple Complex Total
1 -.619 -.600 -.831*

2 -.602 -.532 -.825*

3 .548 .385 .683

4 -.248 -.543 -.548

5 -.629 -.353 -.784*

6 .886** -.019 .661

*p < .05, **p < .01

Notes. Bivariate correlations were calculated using variables posttest score and student attitudes towards
CBJava. Student posttest scores for Object Design were broken out by scores on simple, complex, and
total set of questions. The second variable, student attitudes towards CBJava, was the average responses to
each closed-ended question of the Student attitudes towards CBJava Survey. Responses were based on a
five point Likert scale: 1 – strongly agree, 2 – agree, 3 – no opinion, 4 – disagree, and 5 – strongly disagree.
Questions 1, 2, 4, and 5 were supportive of the CBJava tool. Questions 3 and 6 were not supportive of the
CBJava tool.

 105

Table 24. Bivariate Correlations between Student Attitudes towards CBJava and Test

Scores for Inheritance Content Area for Group 2

Inheritance

Question

Simple Complex Total
1 -.155 .117 -.237

2 -.041 .494 .169

3 .398 -.394 .079

4 .543 -.117 .079

5 -.516 .431 -.051

6 -.006 -.311 -.025

 Feedback was also collected from five open-ended survey questions included in

the Student Attitudes towards CBJava Survey. To address the consistency of the open-

ended questions the survey questions were structured in a manner where both negative

and positive responses were solicited. And, as with the closed-ended questions, the

survey questions were developed by the researcher and critiqued by an expert in survey

development. However, no psychometric analysis of the survey was performed.

 Reponses to each question are provided in Appendix G. Responses were

evaluated and assigned to a thematic category. The number of responses in each category

was summed. Results of this test showed that the combined group responses were more

positive than negative. While the subjects primarily suggested changes to the user

interface, they also suggested that the content be adjusted as well, and the majority of the

 106

subjects felt that it could be used as an effective learning aid for CM111 – Introduction to

Structured Programming. Of most significance was the subjects’ positive evaluation of

the examples with expert commentary. Below is a list of each open-ended question with

a summary of the subjects’ responses along with the categorization.

1. Question 1: What did you like about the CBJava tool? Responses were

categorized as either positive or negative. Fourteen subjects responded positively

about CBJava and one subject responded negatively. Positive responses generally

liked the ability to see multiple examples including the expert feedback on the

examples submitted.

2. Question 2: What did you dislike about the CBJava tool? Responses were

categorized as either user interface improvements or content improvements. Six

subjects suggested that the user interface needed improvements, four subjects

suggested content improvements, and one subject suggested no changes. User

interface improvements generally focused on making the site more graphical.

Content improvements focused on providing material that was not already

covered in the textbook.

3. Question 3: Did CBJava help you in your understanding of the subject matter? If

so, tell us how it helped. If not tell us how it hindered your understanding.

Reponses were categorized as either helped, hindered, or neither helped nor

hindered in the subjects understanding. Ten subjects responded that CBJava

helped in their understanding of the subject matter. Four subjects responded that

CBJava neither helped nor hindered their understanding. There were no subjects

that responded that CBJava hindered their understanding. These responses

 107

reflected similar responses to the ones made in the open-ended question one of

this survey concerning likes of the CBJava tool.

4. Question 4: How do you think CBJava could be improved in the future?

Responses were categorized as either user interface improvements or content

improvements. Five subjects suggested that the user interface should be improved

and six subjects suggested that the content should be improved. These responses

were very similar to the ones made in the open-ended question two of this survey

concerning dislikes of the CBJava tool.

5. Question 5: Might a tool such as CBJava have helped your understanding in

CM111 - Introduction to Structured Programming? If so, tell us how it might

help. If not, tell us how it would hinder your understanding? Reponses were

categorized as either would have helped or would not have helped in CM111.

Nine subjects responded that CBJava would have helped them in CM111 and five

subjects responded that CBJava would not have helped them in CM111. Of those

subjects who responded favorably, they generally felt that having multiple

examples would be a benefit. Those subjects that responded unfavorably

generally felt that CM111 requires face-to-face interaction and an instructional aid

such as CBJava does not provide that.

Summary

 Three research questions were addressed by this study. Tests for the first two

research questions involved using two types of non-parametric tests and one parametric

test (for carryover effects) at the p < .05 level. The third research question was addressed

 108

through bivariate correlations, descriptive statistics, and thematic analysis of open-ended

questions. Non-parametric tests were used because of the small sample size. The

following is a restatement of each research question along with the findings.

1. Is there a statistically significant difference in the performance on simple

questions between the Case-Based Reasoning Assisted (CBA) group and the

Lecture Notes Only (LNO) group?

Null Hypothesis: There will be no significant difference in the student

performance on the simple questions between the CBA group and the LNO group.

Alternative Hypothesis: There will be a significant difference in the student

performance on the simple questions between the CBA group and the LNO group.

Findings: The results of the Wilcoxon Signed Ranks test showed no significant

difference between the two groups on simple questions. Because of these

findings a 2 × 2 mixed-design ANOVA test for carryover effects on simple

questions for the CBA treatment was performed. This test found no significant

carryover effect on simple questions for the CBA treatment. Based upon the

findings no further tests were necessary. However, for completeness a Mann-

Whitney U test was performed on period one (Object Design). The results of this

test also showed no significant difference on simple questions for the CBA

treatment in the first period of the study. Therefore, the null hypothesis cannot be

rejected.

2. Is there a statistically significant difference in the performance on complex

questions between the CBA group and the LNO group?

 109

Null Hypothesis: There will be no significant difference in the student

performance on the complex questions between the CBA group and the LNO

group.

Alternative Hypothesis: The CBA group will perform significantly better on

complex questions than the LNO group.

Findings: The results of the Wilcoxon Signed Ranks test showed no significant

difference between the two groups on complex questions. Because of these

findings a 2 × 2 mixed-design ANOVA test for carryover effects on complex

questions for the CBA treatment was performed. This test found a significant

carryover effect on complex questions for the CBA treatment. Based upon the

findings of a significant carryover effect a Mann-Whitney U test was performed

on period one (Object Design). The results of this test showed a significant

difference on complex questions for the CBA treatment in the first period of the

study, indicating that students who received the CBA treatment performed better

than students received the LNO treatment. Therefore, the null hypothesis was

rejected.

3. How is student performance on the measures of learner competencies dependent

upon motivation, background knowledge, and attitudes towards the case-based

hypertext learning tool?

Findings: Testing for relationships between background knowledge and learner

competencies was performed by calculating a one-tailed Spearman rho

coefficient. Although there were several significant results, the most interesting

result was that a strong positive correlation was found between the background

 110

knowledge and the total test scores for both content areas for the combined

groups, indicating that students who did well in their background coursework also

did well on the posttests.

 Testing for relationships between motivation and learner competencies

was performed using two methods. A two-tailed Spearman rho coefficient was

calculated for each of the close-ended questions in relationship to the test scores.

Of the 54 correlations calculated each for the Group 1, Group 2, and the combined

groups, three were found to be significant for Group 1, none for Group 2, and

none for the combined groups. Descriptive statistics show that the combined

groups answered more positively towards questions that were categorized as

extrinsic and more negatively towards those that were categorized as intrinsic.

A thematic analysis was used to analyze the open-ended question. Results of this

test showed that other motivating factors were primarily extrinsic.

 Testing for relationships between student attitudes towards CBJava and

learner competencies was also performed using two methods. A two-tailed

Spearman rho coefficient was calculated for each of the close-ended questions in

relationship to the test scores. Of the 18 correlations calculated each for the

Group 1 and Group 2 four were found to be significant for Group 1 and none for

the Group 2. Descriptive statistics showed that the combined groups answered

more positively towards questions (1, 2, 4, and 5) that were supportive of the

CBJava tool and more negatively towards those questions (3 and 6) that were not

supportive of the CBJava tool, indicating that students liked the CBJava tool.

 111

 A thematic analysis was used to analyze the open-ended questions.

Results of this test showed that the combined groups answered more positively

towards the use of the tool than negative. The subjects primarily suggested

changes to the user interface but also suggested that the content be adjusted as

well. Additionally the majority of the subjects felt that it could be used as a

effective learning aid for CM111. Of most significance was the subjects’ positive

evaluation of the examples with expert commentary.

 112

Chapter V: Summary, Discussion, and Recommendations

 In this chapter a summary of the study will be presented dealing with a

comparison of the results to the literature in the field. Topics in the discussion will

include the effects of CBJava and the relationships identified between student

performance on the measures of learner competency and motivation, background

knowledge, and attitudes towards CBJava. The chapter will conclude with the study’s

implications and suggestions for future research.

Summary

 The primary purpose of this study was to determine if a semi-automated reasoning

tool that provides a set of searchable cases (CBJava) would improve a student’s

understanding of the more difficult concepts in an object-oriented programming course.

Specifically, this study tested the learning effects of a semi-automated reasoning tool as

an instructional aid in an online object-oriented programming course. Also investigated

were the relationships between the dependent variable student performance with

independent variables of motivation, background knowledge, and student attitudes

towards CBJava. Addressing the use of CBJava as an instructional aid as well as

motivation, background knowledge, and attitudes towards CBJava provided direction on

how an online course covering a complex topic area might be delivered in the future.

 Subjects for the study were randomly assigned to two different orders for

receiving the CBJava treatment from two sections of the Object-Oriented Programming 1

course. Object-Oriented Programming 1 is the course offered at an NCAA, Division II

 113

university located in the Midwest region of the United States that introduces students to

object-oriented programming. Posttests were used to measure the effects of CBJava on

learner competency. Background knowledge was collected through student transcripts.

Motivation and student attitudes towards CBJava data were collected from surveys.

Wilcoxon Signed Ranks test, Mann-Whitney U test, mixed-design ANOVA, Spearman

rho correlations, and thematic analysis were used to analyze the data. All data were

collected during the Spring 2005 semester.

Discussion of Research Questions

Effects of CBJava

 Two research questions directly examined the effects of the use of CBJava as an

instructional support tool on student performance. The questions were similar but

investigated different levels of Bloom’s taxonomy of learning objectives (Bloom and

Krathwohl, 1956). A discussion of these research questions follows.

 Effects of CBJava on Simple Questions. The first research question dealt with

student performance on simple questions with and without the use of CBJava. The

results of three separate tests, a Wilcoxon Signed Ranks test, a 2 × 2 mixed-design

ANOVA test, and a Mann-Whitney U test, found that there was no significant difference

between the two groups on simple questions. These findings are consistent with the

research by Kozma (1994). His research suggests that effective use of technology is one

that is grounded in the “cognitive and social processes by which knowledge is

constructed”. The simple questions that were tested in this study were ones that fell on

 114

the lower end of Bloom’s taxonomy of learning objectives (Bloom and Krathwohl, 1956).

Simple questions are typically ones that do not require a lot of deep thought. Quite often

the content covered in a face-to-face lecture does not even address these types of

questions. Most instructors would make the assumption that a college student should be

able to gain the necessary understanding from assigned readings and homework with

minimal teacher-learner interaction in order to answer simple questions. Thus, providing

a learning aid such as CBJava that is designed to support advanced learning in complex

and ill-structured domains would not be expected to provide significant benefit in this

area. The findings of my study were consistent with the existing research such as that of

Spiro et al. (1992).

 Effects of CBJava on Complex Questions. The second research question dealt

with student performance on complex questions with and without the use of CBJava.

The first test conducted to address this question, the Wilcoxon Signed Ranks test, found

no significant difference on complex questions between the two groups. This finding

might reasonably be explained by the students’ reaction to carryover effects. The

possibility of carryover effects was considered because access to the CBJava tool in the

first period might have provided the subject with an improved understanding of the

content of the subject on the first topic, and thus an a better understanding may have

affected or ”carried over” this knowledge into the second period. Thus, a second test, a

2 × 2 mixed-design ANOVA test for carryover effects on complex questions for the CBA

treatment was performed.

 The 2 × 2 mixed-design ANOVA test for carryover effects did indeed find a

significant carryover effect on complex questions for those students who used the CBJava

 115

tool in the first period of the study. Thus, a third test was necessary in order to determine

why the first test, the Wilcoxon Signed Ranks test, failed to find a significant difference.

This third test was conducted on only the first period of the study because the second

period was corrupted by the carryover effects. The results of the Mann-Whitney U test

that compared the CBA group to the LNO group did find a significant difference on

complex questions between the two groups on the first period. Based upon the findings

of these three tests, the null hypothesis that there would be no significant difference

between the two groups on complex questions was rejected.

 The results of the Mann-Whitney U test showed that the students who, in the first

period of the study, were provided with the CBJava tool to support their learning,

performed significantly better than those students who were provided with only the

lecture notes. The results also showed when considering the entire set of questions

(Simple and Complex) the students who used the CBJava tool performed significantly

better than those who only had access to the lecture notes, although they did no better on

the simple questions. Interpreting these results a bit further, they show that the

improvement on the complex questions was of such significance that the improvement

drove the overall performance on the entire set of questions.

 The complex questions that were tested in this study were questions that fell on

the higher end of Bloom’s taxonomy of learning objectives (Bloom and Krathwohl,

1956). Complex questions are typically ones that require sustained deep thought. Quite

often the content covered in a face-to-face lecture primarily addresses these types of

questions either by providing an alternative view of the content or through teacher-learner

 116

interaction. Typically complex content does require a significant amount of teacher-

learner interaction.

 The findings of this study support the alternative hypothesis that providing

CBJava as an instructional support tool will improve student performance on complex

questions. The findings are also consistent with the Cognitive Flexibility Theory (CFT)

described by Spiro et al. (1992). The basic premise of this theory and the related research

is that complex subject matter can be learned best if it is provided with multiple views or

indexes. CBJava provides this capability.

Background, Motivation, and Attitudes

 The focus of the third research question was to understand some of the other

factors that might have a relationship with student performance in an online object-

oriented programming course. In particular, three relationships were tested by

calculating a bivariate Spearman rho correlation coefficient. These relationships were:

performance and background knowledge, performance and motivation, and performance

and student attitudes towards the CBJava tool. Each of these relationships was tested

only for the period of the study when all of the students were taking the Object-Oriented

Programming 1 course online.

 Performance and Student Background. With respect to the performance and

student background relationship the most interesting result was the strong positive

correlation found between the background knowledge and the total test scores for both

content areas for the combined groups. It is also interesting to see that these strong

 117

positive correlations were primarily driven by the strong positive correlations found

between background knowledge and the test scores on simple questions. That is, each of

the four bivariate correlations calculated for the combined groups on performance on

simple questions and background knowledge were found to have a strong positive

relationship. However, only one of the four bivariate correlations calculated for the

combined groups for performance on complex questions and background knowledge

were found to have a strong positive relationship (See Table 14).

 Background knowledge was measured by the grades received in two prerequisite

courses for Object-Oriented Programming 1: Introduction to Structured Programming

and Logic for Computer Programming. A strong positive correlation does not indicate

causality. It simply means that a relationship exists. However, this finding suggests that

students who do well in these prerequisite courses will also do well in an online Object-

Oriented Programming 1 course or a similar one. More importantly though it appears

that performance in the background coursework cannot be used as a predictor for how the

student will handle the complexities of an online object-oriented course. Even so,

performance in prerequisite coursework is a factor to be considered before a student takes

an online course in object-oriented programming and should be used in advising the

student.

 Performance and Motivation. The motivation factor was investigated in this

study in order to see how students’ motivation for taking an object-oriented programming

course might affect their performance in an online version of the course. With respect to

the performance and motivation relationship the most interesting result was the number

of significant correlations. Of the 54 bivariate correlations calculated each for the Group

 118

1, Group 2, and the combined groups, three were found to be significant for Group 1,

none for Group 2, and none for the combined groups. Thus, the percentage of significant

correlations was very small. It could be argued that just by chance these were found.

This finding suggests that the type of motivation be it intrinsic or extrinsic plays a

minimal role in how students performed in this online course. Additionally it suggests

that motivation type plays no role in determining how a student might perform in an

online course in object-oriented programming. It could also reflect something about the

questions within the Motivation Survey. Therefore, although the results of this study

suggest that motivation need not be a factor that should be considered before a student

takes an online object-oriented course, this result is counter intuitive and is an area for

further study.

 The descriptive statistics show that the combined groups were more intrinsically

motivated to take Object-Oriented Programming 1 than extrinsically. In general, the

students who took this course really liked computers, felt that the subject was

intellectually challenging, and were very interested in the topic. The extrinsically

motivating factors were that the course was a requirement for the student’s major and that

the course would help them get a job.

 It is interesting to see that the students who took this course are more intrinsically

motivated. This finding is consistent with an overall trend in computer science at the

study site. That is, fewer students are majoring in computer science because the

perceived job demand has greatly diminished since 2000. Those students who are

majoring in computer science are motivated not by money, but rather by interest.

 119

 Performance and Attitudes towards CBJava. Student attitudes towards CBJava

were investigated in order to see how they might influence the students’ performance in

an online version of Object-Oriented Programming 1. With respect to the performance

and student attitudes relationship the most interesting result was the set of significant

relationships that were found. Of the 18 correlations calculated each for the Group 1 and

Group 2, four were found to be significant for Group 1 and none for Group 2. Although

the number of correlations is small, Group 1 correlations were consistently significant

when comparing students’ overall performance with respect to their attitudes towards the

CBJava tool. The more positive the students in Group 1 felt about CBJava, the better

they performed on test questions. It is important to note that Group 1 performed

significantly better than Group 2 on performance tests with the aid of CBJava. Several

rival explanations exist for this finding.

 Since each group reviewed different content areas with the CBJava tool, it could

be that the content area accessed by Group 1 was organized better. However, the same

organizational structure was used for both content areas, so this explanation is not very

convincing. A second explanation could be that the makeup of Group 1 was different

that the makeup of Group 2. However, the random assignment mitigates this explanation.

 Descriptive statistics showed that the combined groups answered more positively

towards questions (1, 2, 4, and 5) that were supportive of the CBJava tool and more

negatively towards those questions (3 and 6) that were not supportive of the CBJava tool.

Overwhelmingly the students felt that CBJava was an effective instructional support tool.

 Results from the thematic analysis of the open-ended questions also support this

claim. For example when students were asked about what they liked about the CBJava

 120

tool, 14 out of the 15 responses were positive. And, when asked if CBJava helped or

hindered their understanding, 10 students responded that CBJava helped and four

students responded that in neither helped nor hindered. Of most interest was that subjects

really like the examples with expert commentary. Over and over again, the students

stated that the examples were really helpful. Students also noted that the expert

commentary on the posted examples made the concepts easier to understand through

variety.

 These results are consistent with the research by Schank and Cleary (1995).

Students learn through exploration and experimentation. By exploring both the posted

examples as well as reviewing the detailed examples provided by CBJava, the students

gained additional insight and understanding of the content. Submitting examples of their

own choosing enabled the students to pursue their personal interests as well as providing

more breadth in the examples for their peers.

Conclusions

 There are several overarching conclusions suggested by the results of this study.

Application of Instructional Design Techniques for Complex Topics

 Distance education courses can be developed that are at least as effective as face-

to-face courses provided that the proper instructional design techniques are utilized.

Improvements in video technology suggest improved methods of lecture content delivery

should be considered and tested. At the same time, some particular courses may not be

viable candidates for online courses. The pilot study referenced in Chapter 1 raised this

 121

as an issue. Some courses contain difficult concepts that may require additional

scaffolding for the learner to gain sufficient understanding.

 It is possible to design an online course that supports advanced learning of

complex and ill-structured content. This requires the proper use of current technology

grounded in the teaching architectures such as those listed by Schank and Cleary (1995).

 Current technologies such as sofTV provide a simple mechanism for creating

hypertext video content allowing the student the ability to navigate the content reviewing

the complex material as necessary. This offers a significant advantage over that of a

taped lecture. Providing the ability to review and reflect on content is a teaching

architecture that supports learning of complex content (Schank and Cleary, 1995). Also,

course content management systems such as WebCT relieve the instructor of much of the

burden of course management and development. Course artifacts such as lecture notes,

sample test questions, and slide presentations can be easily incorporated, managed, and

accessed through these systems. Providing a well organized interface to the student is

very important in an online course.

 Even though we can recreate our face-to-face lectures in a hypertext video format

and host our other course artifacts through a course management system, this is still not

sufficient for courses that contain complex content. Learning complex content requires

additional support over and above that of a lecture based course. This is where the

teaching architectures of Schank and Cleary (1995) can be applied. Learning through

examples in an online course can be supported simply through a hypertext document.

This document needs to provide an alternative set of indexes that allow the student to

explore the set of examples which illustrate a particular concept. It reduces the rigidity

 122

that lecture oriented courses often have whether they are face-to-face or online. In this

way the student can draw out the useful generalizations through their own natural

learning.

CBJava as an Instructional Support Tool

 This study found that CBJava is an instructional tool that can significantly

improve students’ understanding of complex subject matter. Through its theoretical

grounding in case-based reasoning and Cognitive Flexibility Theory, CBJava provides

the additional scaffolding required by students to learn complex and ill-structured

concepts. CBJava provides a question and answer interface that allows the student to

learn through exploring the content. It avoids the rigidity found in textbooks through its

hypertext implementation.

 Students found adding their own examples, reviewing examples provided by

others, and the expert feedback created an environment that aided them in their learning.

Of the positive comments made there appear to be two overarching themes (1) learning

through examples is very helpful and (2) CBJava can be generalized to other content

areas.

 Having examples with expert feedback was very helpful to the student and was a

consistent theme throughout the survey comments. As one student put it “I liked how the

examples were corrected and resubmitted. This allowed us to see errors and how they

were fixed”. Providing a mechanism that allows students to submit examples, receive

feedback, and see the examples of others supports learning through its constructivist

grounding. This study found that students do make significant gains in their

 123

understanding of the subject matter when given this type of instruction. These finings are

consistent with the learning theory of constructivism and its applications through CFT

(Spiro and Jacobson, 1995).

 Although expert feedback helps the student, there are costs involved that need to

be considered. Expert feedback requires an investment of an instructor’s time and

talents. In a classroom that contains a large number of students, it may not be feasible to

review examples from every student. However, these economic issues can be overcome.

 By providing expert feedback on one example and making the original example,

its repaired version, and the feedback available to the entire class, all students benefit. In

a large classroom, a random set of submitted examples can be reviewed and repaired

rather than the entire set. This would alleviate some of time burden on the instructor.

Additionally the classroom size could be limited. In fact at the study site, the online class

size limit is typically 24 students. Another method might be to have former students

provide the expert review.

 It is reasonable to require online instructors to provide feedback to students.

Traditionally this feedback comes in the form of emails, discussion threads, graded

assignments, and graded tests. Providing expert review of posted examples is another

alternative to this set of instructor-learner interactions from which the instructor can

choose from in order to support student learning.

 CBJava can be generalized to many different content areas, and it is not simply

limited to object-oriented programming. Its underlying relational architecture is easily

extendable to other domains with minimum technical support from a programmer.

Additionally, as part of this study students were surveyed about how a tool such as

 124

CBJava might have helped them in Introduction to Structured Programming, a

prerequisite course to Object-Oriented Programming 1. Generally the students felt that

having a similar tool would be beneficial. However what is most interesting in their

comments were the negative components. Some of the students felt that the content of

CM111 was too simple and that having a tool such as CBJava would offer no benefit to

these simple topics. This is quite a perceptive finding by the students. Consistent with

the findings of this study, CBJava would offer no significant advantage to learning simple

content. Thus, although CBJava offers a framework that may be generalized to other

courses, it is only the complex content that should be addressed by such a tool.

 Not all students found CBJava to be beneficial. Of the negative comments made

there also appear to be two overarching themes (1) the user interface was too plain and

(2) there was too much repetition. Of these themes, the first one is not significant.

Although more color and graphics could be added to the interface, it is doubtful that it

would have contributed to their learning.

 The second theme, too much repetition, is consistent with the literature. The

Cognitive Flexibility Theory requires that multiple indexes be provided into the same set

of content (Spiro, et al., 1988). CBJava provides examples with multiple links to

different components of the same example as well as links to multiple examples that

illustrate the same concept. Some learners may find this difficult to use and understand,

and this was found to be true in this study. However, this study found that although these

students may have perceived this to be a distraction, in fact this “distraction” improved

their learning.

 125

Background and Motivation Factors for Advising

 When advising a student to take an online course (1) the student’s performance in

prerequisite courses should be considered and (2) the student’s type of motivation, that is,

intrinsic or extrinsic, need not be considered although perhaps other aspects of motivation

might be considered such as social or achievement (Jenkins, 2001). Findings of this

study showed a significant relationship between the students’ performance on all types of

questions in the online object-oriented course and how they performed in the prerequisite

courses. Thus, this consideration should be made regardless of whether the content of the

online course is simple or complex. This finding also implies that if a student has done

poorly in the previous related coursework, they will probably do poorly in the online

course. Conversely, if a student has done well in the prerequisite coursework, they will

likely do well in the online coursework. Therefore, performance in background

coursework should be considered by both the advisor and the student before the student

takes the online course.

 Results of this study found no consistent relationship between the type of

motivation of students and how they performed in the online course. Students tended to

be more intrinsically motivated to take Object-Oriented Programming 1 which is

consistent with the trends in computer science at the study site, that there is an overall

decline in the enrollment numbers in computer science courses at the study site; the ones

that are enrolling are doing so because they generally like the discipline. However, an

intrinsic motivation has no relationship with how a student performs in an online course.

 126

Recommendations for Practice and Future Research

 The results of this study lead to the following recommendations for practice and

suggestions for future research.

Recommendations for Practice

 It is important that educators take advantage of course management systems when

implementing the learner-content course interaction in order to mitigate the economic

development costs. Developing online courses should not be an all-encompassing

endeavor. Online components can be easily created by using the existing instructional

artifacts that have been developed and proven effective over time by the instructor. Face-

to-face lectures can be recorded using software such as sofTV. SofTV is a technology

that creates hypertext videos which are a significant improvement over video tapes.

Other components such as lecture notes, sample test questions, and homework

assignments can be easily integrated into an online course using a course management

system such as WebCT.

 Supporting complex content through examples that illustrate both good and bad

alternatives is an important method of scaffolding students’ understanding. Learning

complex topics can be supported through examples where the learner can construct their

own knowledge. Complex topics covered in an object-oriented programming course

should be illustrated with both correct and incorrect examples. Both types of examples

should have expert commentary tied to them with reasons why they are incorrect or

correct.

 127

 Student advising should emphasize an assessment of student performance in

background coursework in order to guide the student in choosing an online object-

oriented course. Incorporating this type of assessment into a questionnaire for students

who are considering coursework that is online would be beneficial for both the student

and the advisor. Although there are many factors that should be considered before taking

an online course, poor performance in prerequisite courses is an indicator that the student

will have difficulties with the follow-on course. Because of the other course interaction

issues that arise in an online course, both the advisor and the student should strongly

consider performance in prerequisite coursework before enrolling in the online course.

 Complex content requires enhanced instructor-learner interactions. These types

of interactions are very difficult to replicate in an online course. Providing instructional

support for complex content is important regardless of whether or not the course is online

or face-to-face. However it is most problematic in the online course. An instructional

support tool such as CBJava is therefore a necessary component of an online course.

Alternatives such as threaded discussions may work as well, but do not allow for the

natural learning that case-based tool such as CBJava provides.

 Economic costs to setup a course supported with a case-based tool based upon

CBJava’s framework need to be considered. Currently CBJava’s framework is

extendable to other courses, but its extension currently requires technical support from a

programmer. Development of the web pages with multiple indexing schemes similar to

those in CBJava does require a significant amount of the instructors’ time and talents.

Therefore, it might be more feasible to employ an instructional designer to assist with the

initial setup of the tool rather than expecting the instructor to develop it themselves.

 128

Recommendations for Future Research

 Further research should be conducted to determine relationships between student

performance in an online course and the related prerequisite courses. This investigation

is a more generalized form of what this study found to be true for Object-Oriented

Programming 1. This data could be collected from existing student records.

 The effects of CBJava on student performance on both simple and complex

questions in a face-to-face object-oriented course should be investigated. This study

found that when students used CBJava as an instructional support tool for an online class

they performed significantly better on the complex assessment questions than those who

did not. It would be interesting to see if this effect would be similar for that of a face-to-

face course.

 CBJava’s functionality could be extended to incorporate other complex content

areas related to object-oriented programming in Java. Initially these areas should be

those that are necessary in the first course in object-oriented programming such as the

ones covered in Object-Oriented Programming 1 such as interfaces, polymorphism, user

interface design, recursion, event handling, and exception handling.

 Providing one or more overarching application examples within CBJava would be

helpful to the student. A complete example that is fully elaborated and includes

components from all object-oriented content areas could support the breadth of the course

much like a case study. This example could potentially cross multiple computer science

courses as well. Students often complain about not being able to see the big picture, and

this type of overarching example might mitigate this complaint. Although the

 129

architecture within CBJava supports this capability, an example like this has not been

fully integrated.

 Research on how the framework of CBJava can be applied to other object-

oriented programming courses in other languages is another viable area to explore. For

example the content area of inheritance is applicable to all object-oriented programming

languages. Examples can be illustrated in any object-oriented language. It would be

quite interesting to see the same example implemented in Java, C++, and C#.

Additionally, the CBJava framework could be used as a basis to create other case-based

assisted tools such as CBC++ (Case-based C++) and CBC# (Case-based C#).

 Enhancements to CBJava’s framework should be considered as well. How might

the framework be made more extendable? Could the framework be developed so that it

could be extended to any course without the support of a programmer? Significant

opportunities lie in providing an easily extendable framework that would allow any

instructor to setup their own case-based assisted content areas with minimal technical

assistance.

 Finally, research opportunities exist to determine how the framework of CBJava

can be applied to other computer science courses as well as other disciplines. CBJava

can easily be extended to support advanced programming courses as well as other

computer science courses. For example advanced programming topics such as data

structures, multithreading, and networking could be implemented as content areas within

CBJava.

 The CBJava framework could be extended to support other computer science

courses such as database design or software engineering. For example one of the more

 130

complex topics in database design is the development of the entity relationship model of

a problem domain. This task is complex because more than one entity relationship model

can represent the same problem domain, and each of these models has their own positive

and negative attributes. Therefore, having a tool similar to CBJava to provide multiple

models of the same problem domain would be very effective. It would help students

understand the complexities of this content area.

 Finally, the CBJava framework could be applied to other disciplines. For

example, the learning of algebra could be supported with this framework. Conceptually

difficult problems in mathematics such as word problems can be decomposed into

simpler components and reassembled in order to solve the problem. It is this

decomposition and reassembling through examples that makes CBJava an effective

instructional support tool for such a course. Other applications of the CBJava framework

are numerous and are limited only by one’s imagination.

 131

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AI Communications, 7(1), 39-59.

Biddle, R., & Tempero, E. (1998). Java pitfalls for beginners. SIGCSE Bulletin

(Association for Computing Machinery, Special Interest Group on Computer Science

Education), 30(2), 48-52.

Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives; the

classification of educational goals, by a committee of college and university

examiners (1st ed.). New York: Longmans, Green.

Boster, F. J., Meyer, G. S., Roberto, A. J., & Inge, C. C. (2002). A report on the effect of

the unitedstreaming™ application on educational performance. Farmville, VA:

Longwood University.

Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.

Bruno, M. S. (2000). The case of the older shoulder: A resource for case-based teaching.

Retrieved April 28, 2003 from http://carbon.hampshire.edu/~mbruno/ns121/

Clark, R. E. (1994). Media will never influence learning. Educational Technology

Research and Development, 42(2), 21-29.

Collins, A., Brown, J.S. & Holum, A. (1991). Cognitive apprenticeship: Making things

visible. American Education, 15(3), 38-46.

 132

Collins, M. P., & Berge, Z. L. (1996). Mailing lists as a venue for adult learning. Eastern

Adult, Continuing and Distance Education Research Conference, The Pennsylvania

State University, University Park, PA.

Cronk, B. C. (2004). How to use SPSS© (3rd ed.). Glendale, CA: Pyrczak Publishing.

Deitel, H. M., & Deitel, P. J. (2003). Java how to program (5th ed.). Upper Saddle River,

NJ: Prentice Hall.

Dewey, J. (1910). What is thought? How we think (pp. 1-13). Boston: D.C. Heath & Co.,

1-13

Edelson, D. (1998). In R. C. Schank (Ed.), Inside multi-media case based instruction

(pp. 103-174). Mahwah, NJ: Erlbaum.

Guzdial, M. (2001). Use of collaborative multimedia in computer science classes.

Proceedings of the 6th Annual Conference on Innovation and Technology in

Computer Science Education. Canterbury, United Kingdom, 17-20.

Hillman, D. C., Willis, D. J., & Gunawardena, C. N. (1994). Learner-interface interaction

in distance education: An extension of contemporary models and strategies for

practitioners. The American Journal of Distance Education, 8(2), 30-42.

Huck, S. W. (2004). Reading statistics and research (4th ed.). Boston: Pearson.

Jenkins, T. (2001). The motivation of students of programming. Proceedings of the 6th

Annual Conference on Innovation and Technology in Computer Science Education.

Canterbury, United Kingdom, 53-56.

 133

Jensen, K., & Wirth, N. (1991). Pascal user manual and report (3rd ed.). New York:

Springer Verlag.

Keppel, G., Saufley, William H. Jr., & Tokunaga, H. (2003). Introduction to design &

analysis: A student’s handbook (2nd ed.). New York: W.H. Freeman and Company.

Kolb, D. (1984). Experiential learning: Experience as the source of learning and

development. Englewood Cliffs, NJ: Prentice-Hall.

Kolling, M. (2004). BlueJ - the interactive java environment. Retrieved June 30, 2004

from http://www.bluej.org

Kolling, M. (1999). The problem of teaching object-oriented programming part II:

Environments. Journal of Object-Oriented Programming, 11(9), 6-12.

Kolling, M., Quig, B., & Patterson, A. (2003). The BlueJ system and its pedagogy.

Computer Science Education, 13(4), 249-268.

Kolodner, J. (1993). Case-based reasoning. San Francisco, CA: Morgan Kaufmann.

Kolodner, J. L., & Guzdial, M. (2000). Theory and practice of case-based learning aids.

In D. H. Jonassen, & S. M. Land (Eds.), Theoretical foundations of learning

environment (pp. 215-242). Mahwah, NJ: Lawrence Erlbaum Associates.

Kozma, R. B. (1994). Will media influence learning? Reframing the debate. Educational

Technology Research & Development 42(2), 7-19.

Krathwohl, D. R. (1998). Methods of educational and social science research: An

integrated approach (2nd ed.). New York: Longman.

 134

Leake, D. (1996). CBR in context: The present and future. In D. Leake (Ed.), Case-based

reasoning: Experiences, lessons and future directions (pp. 3-30). Menlo Park, CA:

AAAI Press/MIT Press.

Lepper, M. R. (1988). Motivational considerations in the study of instruction. Cognition

and Instruction, 5(4), 289-309.

Lindsey, S. D. (2003). On-demand lectures create an effective distributed education

experience. T.H.E. Journal, 31(4), 16ff.

Lynch, T. (2002). LSU expands distance learning program through online learning

solution. T.H.E. Journal, 29(6), 47-48.

Madden, M., & Chambers, D. (2002). Evaluation of student attitudes to learning the java

language. Proceedings of the Inaugural Conference on the Principles and Practice

of Programming, 2002 and Proceedings of the Second Workshop on Intermediate

Representation Engineering for Virtual Machines, 2002, Dublin, Ireland, 125-130.

March, T., & Ozline.com. Why WebQuests?, An introduction. Retrieved June 26, 2004

from http://www.ozline.com/webquests/intro.html

McIsaac, M. S., & Gunawardena, C. N. (1996). Distance education. In D. H. Jonassen

(Ed.), Handbook of research for educational communications and technology: A

project of the association for educational communications and technology (pp. 403-

437). New York: Simon & Schuster Macmillan.

 135

Merriam-Webster Inc. (2004). Merriam-Webster online dictionary. Retrieved June 24,

2004 from http://www.m-w.com/

Meyer, K. A. (2002). Quality in distance learning. ASHE-ERIC Higher Education

Reports, 29(4), 1-121.

Meyer, K. A., & ERIC Clearinghouse on Higher Education, Washington, DC. (2002).

Quality in distance education. (EDO-HE-2002-09 ed.). U.S.; DC:U.S. Govt.

Mitchell, M., Sheard, J., & Markham, S. (2000). Student motivation and positive

impressions of computing subjects. Proceedings of the Australasian Conference on

Computing Education, Melbourne, Australia, 189-194.

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

Moore, M. G. (1989). Editorial: Three types of interaction. The American Journal of

Distance Education, 3(2), 1-7.

Mulford, D. (2001). DIY (or do it yourself) streaming video: A constructive approach.

College & University Media Review, 8(1), 35-56.

Nelson, T. H. (1990). Literary machines (90.1st ed.). Sausalito, CA: Mindful Press.

Nelson, W. A. (1994). Efforts to improve computer-based instruction: The role of

knowledge representation and knowledge construction in hypermedia systems.

Computers in the Schools, 10(3/4), 371-400.

Perkins, D.N. (1999). The many faces of constructivism. Educatonal Leadership, 57(3),

6-11.

 136

Raab, J., Rasala, R., & Proulx, V. K. (2000). Pedagogical power tools for teaching java.

Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on Innovation

and Technology in Computer Science Education, Helsinki, Finland, 156-159.

Reed, R. (2003). Streaming technology improves student achievement. T.H.E.Journal,

30(7), 14ff.

Roberts, E. (2004). The dream of a common language: The search for simplicity and

stability in computer science education. Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education, Norfolk, Virginia, USA, 115-119.

Russell, T. L. (1999). The no significant difference phenomenon. Raleigh, NC: North

Carolina State University.

Schank, R. C. (1996). Goal-based scenarios: Case-based reasoning meets learning by

doing. In D. Leake (Ed.), Case-based reasoning: Experiences, lessons, and future

directions. (pp. 295-348) Menlo Park, CA: AAAI Press/MIT Press.

Schank, R. C. (1990). Tell me a story: A new look at real and artificial memory.

NewYork: Charles Schreibner's Sons.

Schank, R. (1982). Dynamic memory: A theory of learning in computers and people.

Cambridge, England: Cambridge University Press.

Schank, R. C., & Cleary, C. (1995). Engines for education. Retrieved June 10, 2004 from

http://www.engines4ed.org/hyperbook/

 137

Schmidt, C. P. (2004). CBJava. Retrieved July 17, 2004 from

http://192.104.1.46/cbr/cbrJava/index.jsp. Unpublished work.

Schmidt, C. P. (2002, Fall). A survey of currently implemented webquests in computer

science and computer technology. Journal of Educational Computing, Design, &

Online Learning, Vol. 3.

Schmidt, C. P., & Lalonde, D. (2004). CBRubric. Retrieved June 20, 2004 from

http://192.104.1.46/cbr/index.html. Unpublished work.

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one.

Educational Researcher, 27(2), 4-13.

Smulders, D. (2004). Course development costs. Retrieved Spring 2004, from

http://www.docntrain.com/libdnld/smulder.html.

Spencer, D. D. (1993). Computer dictionary (4th ed.). Ormond Beach, Fla.: Camelot Pub.

Co.

Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Anderson, D. K. (1988). Cognitive

flexibility theory: Advanced knowledge acquisition in ill-structured domains.

(Technical Report No. 441). Champaign, IL: University of Illinois at Urbana-

Champaign.

Spiro, R. J., Feltovich, R. P., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive

flexibility, constructivism, and hypertext: Random access instruction for advanced

knowledge acquisition in ill-structured domains. In T. M. Duffy, & D. H. Jonassen

 138

(Eds.), Constructivism and the technology of instruction: A conversation (pp. 57-76).

Hillsdale, NJ: Erlbaum.

Spiro, R. J., & Jacobson, M. J. (1995). Cognitive flexibility, and the transfer of complex

knowledge: An empirical investigation. Journal of Educational Computing

Research, 12(4), 301-333.

Stanfill, C., & Waltz, D. L. (1988). The memory-based reasoning paradigm. Proceedings

of the DARPA Case-Based Reasoning Workshop, Clearwater Beach, FL, 414-424.

Webopedia. (2004). Webopedia. Retrieved August, 2004, from

http://www.webopedia.com

Williams, R., & Cummings, S. (1993). Jargon :An informal dictionary of computer

terms. Berkeley, CA: Peachpit Press.

Wilson, B.G. & Myers, K. M. (2000). Situated cognition in theoretical and practical

context. In D.H. Jonnasen & S.M. Land (Eds.). Theoretical foundations of learning

environments, pp. 57-88. Mahweh, NJ: Erlbaum.

Wilson, J. D., & Braun, G. F. (1985). Psychological differences in university computer

student populations. Proceedings of the Sixteenth SIGCSE Technical Symposium on

Computer Science Education, New Orleans, Louisiana, United States, 166-177.

Yang, D., & Wei, S. (1999). A project-based approach to teaching introductory computer

science. Proceedings of the 29th ASEE/IEEE Frontiers in Education Conference,

San Juan, Puerto Rico, 11b3/19 – 11b3/21.

 139

Appendix A: Kansas State University Consent Form

 140

KANSAS STATE UNIVERSITY

INFORMED CONSENT TEMPLATE

PROJECT TITLE: Cognitively Flexible Hypertext in an Object Oriented Programming Course: Effects of

Case-Based Instructional Support on Student Learning

APPROVAL DATE OF PROJECT: EXPIRATION DATE OF PROJECT:
May/2005

PRINCIPAL INVESTIGATOR: CO-INVESTIGATOR(S): Dr. Diane McGrath, Cecil Schmidt

CONTACT AND PHONE FOR ANY PROBLEMS/QUESTIONS: 785-231-1010 ext. 1161

IRB CHAIR CONTACT/PHONE INFORMATION: Rich Scheidt, Chair, Committee on Research

Involving Human Subjects, 1 Fairchild Hall, Kansas
State University, Manhattan, KS 66506, (785) 532-
3224.
Jerry Jaax, Associate Vice Provost for Research
Compliance and University Veterninarian, 1
Fairchild Hall, Kansas State University, Manhattan,
KS 66506, (785) 532-3224

SPONSOR OF PROJECT: Kansas State University

PURPOSE OF THE RESEARCH: The purpose of this study is to determine if a case-based hypertext tool

can be used to learn complex content in an online object-oriented
programming course.

PROCEDURES OR METHODS TO BE USED: Students will be asked to use a hypertext learning tool to

support their learning of a complex topic in the Object
Oriented Programming 1 course. Assessment questions
covering the complex topics will be administered that are
similar to the types of assessment questions normally given
over the content. Additionally students will be asked to fill
out two surveys that will provide information related to
motivation as well as their attitudes towards the case-
based hypertext tool. Background knowledge will be
collected based upon the student's university transcript or
by a simple interview.

ALTERNATIVE PROCEDURES OR TREATMENTS, IF ANY, THAT MIGHT BE
ADVANTAGEOUS TO SUBJECT:

In the case that there is a significant difference between the groups who had access to the hypertext
learning tool and those that did not, safeguards have been built into this study. These procedures are
documented in the "RISKS ANTICIPATED" section below. It should also be noted that the course
will have the same content and delivery as normal in addition to having the new hypertext learning
tool.

LENGTH OF STUDY: 3 Weeks

RISKS ANTICIPATED: Because each student will be tested over two content areas, one with the new

hypertext learning tool and one without there is risk involved. In particular

 141

there is a risk that students who use the tool may perform better on the
assessment tests than students who did not use the tool. Therefore safeguards
have been put into place that will mitigate this potential for harm. In particular
if it is determined that there is a significant difference in student understanding
based on test scores between the two groups, then the group with the lower
scores will have their scores weighted appropriately. Additionally, at the end of
the study all students will be given access to the tool for both content areas.
And, finally a safeguard has been built into the course schedule that provides
additional time to cover these two content areas if necessary. Again, at that time
the tool will be provided to both groups for both content areas.

BENEFITS ANTICIPATED: improved learning of the content

EXTENT OF
CONFIDENTIALITY:

All quantitative data will be reported in aggregate form with no linking to any
particular individual's name. All survey and background data will be reported
anonymously as well. All data will be maintained in a secure location for the
period of three years which is the normal duration for this type of study.

IS COMPENSATION OR MEDICAL TREATMENT AVAILABLE IF
INJURY OCCURS:

n.a.

PARENTAL APPROVAL FOR MINORS: No minors will be allowed to participate in the study.

TERMS OF PARTICIPATION: I understand this project is research, and that my participation is
completely voluntary. I also understand that if I decide to participate in this study, I may withdraw
my consent at any time, and stop participating at any time without explanation, penalty, or loss of
benefits, or academic standing to which I may otherwise be entitled.

I verify that my signature below indicates that I have read and understand this consent form, and
willingly agree to participate in this study under the terms described, and that my signature
acknowledges that I have received a signed and dated copy of this consent form.

(Remember that it is a requirement for the P.I. to maintain a signed and dated copy of the same
consent form signed and kept by the participant

Participant Name:

Participant Signature:

Date:

Witness to Signature: (project staff)

Date:

 142

Appendix B: Object Design Quiz

 143

Name: _________________________ OOP-1 Quiz: Object Design Schmidt
True/False - Place a T for True or an F for false in the space provided next to the

question. (12 points)

1. _____ It is recommended that the return type of a mutator method be void.

2. _____ Static variables are also called instance variables.

3. _____ If you do not import a class, you can still access it by specifying its

package prefix.

4. _____ In Java, static constants are often declared public.

5. _____ Packages may contain more than one class.

6. _____ Using static variables is considered a good practice in a Java program.

7. _____ In Java, string objects are immutable.

8. _____ Local variables are accessible outside the block in which they are defined.

9. _____ All non-void methods must have at least one return statement in them.

10. _____ It is generally best to have a single method inquire about the state of an

object or change the state of the object but not both.

11. _____ It is good practice to maximize the coupling (i.e. dependency) between

classes.

12. _____ If an error occurs in a method of an object, the method should always print

out an error message.

 144

Multiple Choice – Circle the letter next to the most correct answer. (14 points)

1. We have a class Book that holds objects of type Page. We say that
A) Page depends on Book.
B) Book depends on Page.
C) there is no dependency between the two classes.

2. When a method changes anything other than the state of its implicit parameter it is

said to have a(n):
A) modifier
B) static method
C) accessor method
D) side effect

3. A method that does nothing other than return the value of an instance variable is

an example of:
A) a side effect.
B) good programming practice.
C) a mutator method.
D) an accessor method.

4. Preconditions should be specified:

A) in comments at the beginning of the method.
B) in the method header
C) in the return statement
D) in the class body

5. If a method is called in violation of a precondition, which of the following are

good choices for the action to be taken?
A) Reformat the hard drive.
B) Throw an exception.
C) Perform the calculation assuming precondition is true.
D) Print a warning message to System.out.
E) Both B and C

 145

6. in the code segment:

public void set(double unitCost, double area)
{
...
 price = unitCost * area;
}

the unqualified variable name price means

A) area.price
B) set.price
C) Class.price
D) this.price

7. Given the following method signature, what is/are its explicit parameter(s)?

public int myMethod (double val1, int val2)

A) this, double, int
B) val1, val2
C) this, val1, val2
D) parameter 0, parameter 1

Short Answer

1. How might you redesign the class below so that it would be more cohesive?
Answer this question by providing the new class definition or set of classes. Do
not include methods. (4 points)

public class Car {
 private String make;
 private String manufacturer;
 private String engineModelName;
 private String engineModelHorsePower;
 private String engineModelCost;

 //methods
 …
}

 146

2. Identify the dependencies between each of the follow sets of classes. (e.g.
Student depends on Advisor) (4 points):

a) Cup, CupHolder

b) Person, Address

c) Engine, Car

d) PC, HardDrive

3. Given the following class definition. Redesign the class so that it has methods that do

one and only one thing, i.e. they either access or mutate the object. (4 points)

public class Account{
 private double balance;
 public double deposit(double amount) {

balance = balance – amount;
return balance;

}
}

4. Consider the problem description below identify the classes that you would use to

implement the problem. (4 points)

Students declare a major in a degree. The degree is assigned and administered by
a department. Each student is assigned an advisor.

5. Provide the Java implementation for the following description of a stock tank. Do
not be concerned about documenting the pre or post conditions, but provide the
necessary checks to ensure that a tank is never overfilled or below empty.

A stock tank has a water level that is measured in integer increments. You can
add water to the tank or drain water from the tank. The tank has a maximum
water level of 36 inches and a minimum water level of 0. (4 points)

 147

6. What are the preconditions of the following methods? (4 points)

public void setName(String aName) {
 if (aName.length() > 30)
 throw new IllegalArgumentException(“Name is too long”);
 if (aName.length() = 0)
 throw new IllegalArgumentException(“Name is undefined.”);
 name = aName;
}

public void setDayOfWeek(int day)
 if (day > 5 || day < 1)

throw new IllegalArgumentException(“Invalid day”);
 dayOfWeek = day;
 }

 148

Appendix C: Inheritance Quiz

 149

Name: _________________________ OOP-1 Quiz: Inheritance Schmidt

True/False - Place a T for True or an F for false in the space provided next to the

question. (12 points)

1. _____ The superclass inherits behavior (methods) and state (attributes) from the

subclass.

2. _____ A superclass may only have methods, i.e. behavior.

3. _____ You should minimize the use of inheritance. Whenever possible you

should write your own classes rather than extend existing ones.

4. _____ When designing class hierarchies, the common features are placed in the

superclass.

5. _____ A subclass can access all public and private fields of its superclass.

6. _____ When used, the call to the super() must be placed as the first statement of

the subclass constructor.

7. _____ You should define the equals method to test whether two objects have

equal state.

8. _____ Object is the superclass of all classes.

9. _____ It is a good practice to shadow all instance variables of the superclass.

10. _____ Java supports multiple inheritance.

11. _____ An important reason for using inheritance is code reuse.

12. _____ Given that the Employee class extends Person class and this segment of

code:
Employee boss = new Employee();
Person terry;

The following assignment is valid: terry = boss;

 150

Multiple Choice (14 points) – Circle the letter next to the most correct answer.

1. Which of the following statements will make Student a subclass of the Person
class?
A) public class Student implements Person
B) public class Person implements Student
C) public class Student extends Person
D) public class Person extends Student
E) public class Student subclasses Person

2. Consider these class definitions:

public class FirstClass { ... }
public class SecondClass extends FirstClass{ ... }
public class ThirdClass extends SecondClass { ... }

Which of the following statements is true?

A) ThirdClass is invalid. It can not extend a class that itself extends a class.
B) These classes are valid but ThirdClass can not be extended.
C) These are all valid class definitions.

3. When defining methods of a subclass, which of the following are true?

A) You can inherit methods from the superclass.
B) You can define new methods in the subclass.
C) You can override methods of the superclass.
D) All of the Above

4. When defining instance fields for a subclass, which of the following are true?

A) You can override fields from the superclass.
B) You can inherit fields from the superclass
C) You can define new fields.
D) Both B and C

5. To call the constructor of a superclass, use:

A) super()
B) class()
C) superclass()
D) upper()

6. If you do not supply an access control modifier, then the default is

A) protected
B) package access
C) private
D) public

 151

7. Assume these two class definitions:

public class Adder
{
 public void addIt(double amount)
 {
 balance = balance+amount;
 }
 public double getBalance()
 {
 return balance;
 }
private double balance;
}

And:

public class NewAdder extends Adder
{
 public void addIt(double amount)
 {
 balance = balance + amount;
 count = count +1;
 }
private double balance;
private int count;
}

Now consider code segment:

NewAdder myAdd = new NewAdder();
myAdd.addIt(500);
System.out.println(myAdd.getBalance());

What will be printed:
A) 250.0
B) 500.0
C) nothing
D) 0.0

 152

Short Answer (24 points)

1. In the following pairs of classes, identify the top level superclass and the
subclasses by circling the top level superclass. (4 points)

• Employee, Manager, Person

• Square, Polygon, Triangle,

• Vehicle, Car, Truck

• BankAccount, CheckingAccount, Account

2. Draw an inheritance diagram that shows the inheritance relationships between the

classes: (4 points)

 Person, Employee, Student, Instructor, Classroom, Object, Lab, Room

3. How might you redesign the class below so that it would make better use of
inheritance (i.e. refactor Student into one or more classes)? Answer this question
by providing the new class definitions. Do not include methods (4 points).

public class Student {
 private String studentId;
 private String undergradAdvisor;
 private String studentName;
 private Date gradSchoolAcceptedDate;
 private String gradResearchDirector;
}

4. Write the following class definitions in Java using inheritance that implement the
problem description below. In your class definitions only show the attributes. Do
not be concerned with the methods. Note: the problem is in relationship to an
inventory tracking process. (4 points)

Each part has a part number and a description. Each part can be categorized as a
make part (built in house) or a buy part (purchased). Buy parts have a purchase
price. Make parts have an engineering drawing number assigned to them.

5. Given the implementation in Figure 1 below show the implementation of a

savings account for a preferred customer. A preferred customer savings account
always receives an additional 10 dollars in interest over and above the normal
interest. (4 points).

 153

6. Given the implementation in Figure 1. Write the Java implementation for the
toString() method in the BankAccount and SavingsAccount classes using
inheritance. Recall that this.getClass().getName() returns the class name of an
object. (4 points)

Provide the implementation for the toString() method of the BankAccount
class here:

Provide the implementation for the toString() method of the SavingsAccount
class here:

Figure 1

public class BankAccount
 {
 public BankAccount(){
 balance = 0;
 }

 public BankAccount(double initialBalance){
 balance = initialBalance;
 }

 public void deposit(double amount) {
 double newBalance = balance + amount;
 balance = newBalance;
 }

 public void withdraw(double amount) {
 double newBalance = balance - amount;
 balance = newBalance;
 }

 public double getBalance() {
 return balance;
 }

 private double balance;
 }

 public class SavingsAccount extends BankAccount
 {
 public SavingsAccount(double rate) {
 interestRate = rate;
 }

 public void addInterest() {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }

 private double interestRate;
 }

 154

Appendix D: Motivation Survey

 155

Motivation Questionnaire

How important is each of the following reasons in your decision to take Object-Oriented
Programming 1 course. In each case mark

A) if it is extremely important.
B) if it is moderately important.
C) if it is only slightly important.
D) if it is not important at all

1. I enjoy programming. _____

2. I find computers fascinating. _____

3. I find the subject intellectually challenging. _____

4. It is a subject that I am interested in. _____

5. It was recommended by other students or by my family. _____

6. I expect Computer Sciences coursework to increase my job security. _____

7. I am concerned about the computerization of society. _____

8. It will be useful in helping me get a job or stay employed. _____

9. It was a requirement of my employer. _____

10. It will help me with other subjects. _____

11. I am interested in this course for other reasons not listed. I am listing these reasons

here:

 156

Appendix E: Student Attitudes towards CBJava Survey

 157

Student Attitudes towards CBJava Survey Close Ended Questions

Answer each of the following questions by selecting one of the options provided writing
it in the space provided.

A) if you strongly agree
B) if you agree
C) if you have no opinion
D) if you disagree
E) if you strongly disagree

1. _____ CBJava is an effective tool in learning object design. (note. For the students

that are using the tool for inheritance the words “inheritance” will instead be “object

design”)

2. _____ CBJava helped my understanding of how real world problems can be

conceptualized in Java classes.

3. _____ I had difficulty relating the examples to the instructional content within

CBJava.

4. _____ I found that the ability to create concrete examples with expert feedback

supported my understanding of the instructional content.

5. _____ CBJava supported my understanding of chapter topics by linking the examples

to the related topics.

6. _____ I found the CBJava tool difficult to use.

Student Attitudes towards CBJava Survey Open Ended Questions

1. What did you like about the CBJava tool?

2. What did you dislike about the CBJava tool?

3. Did CBJava help you in your understanding of the subject matter? If so, tell us how it

helped. If not, tell us how it hindered your understanding.

 158

4. How do you think CBJava could be improved in the future?

5. Might a tool such as CBJava have helped your understanding in CM111 Introduction

to Structured Programming? If so, tell us how it might help. If not, tell us how it

would hinder your understanding.

 159

Appendix F: Motivation Survey Open Ended Questions Feedback

 160

Question #11: I am interested in this course for other reasons not listed. I am listing
these reasons here:

Response(s)

• It's also a requirement.
• To expand my knowledge base. To expand my competence of all aspects of

computing. To continue my understanding of program design.
• Major requirement.
• I am a chemistry and physics major interested in computational research.
• Required by major and will be needed and useful in grad school.
• Can apply my own practical uses to programming.
• It's part of the coursework.
• I love computers.
• Computers are the future and present of the global society. It is both exciting and

nerve racking to be in this growing field.

 161

Appendix G: Attitudes towards CBJava Survey Open Ended Questions Feedback

 162

Question #1: What did you like about the CBJava tool?

Response(s):

• Ease of use. Examples and repaired examples.
• I thought the concepts were well explained.
• I liked how the examples were corrected and resubmitted. This allowed us to see

errors and how they were fixed.
• Doing the examples helped a lot in understanding what was happening.
• Great concept.
• The posted examples could be good reference. The site was easy to use. It just

wasn't useful.
• Not much, I prefer the lecture style.
• It encourages discourse between students by allowing us to submit examples.
• I like the whole online teaching concept. Wish all classes would move online.
• Posted examples from other students made it easier to understand through variety.
• The CBJava tool was pretty straight forward and also gave good examples.
• Helped with explaining inheritance.
• Good for seeing complete examples.
• It’s nice to have things on screen categorized in more formal methods.
• I like the examples and the study tools on the site.

Question #2: What did you dislike about the CBJava tool?

Response(s)

• Having to be on the internet - just because I have a slow connection
• It was sometimes hard to read. Maybe a new more reader friendly graphical

interface. But the content was just fine.
• Nothing, I still used the book and combined with CBJava I think I learned the

subject well.
• Page is rather bleek and material could be reorganized.
• It was a waste of time and did no use it as a study tool. Doing assignments,

reading the text and going to class (when possible) are efficient ways to learn the
material. CBJava was just busy work.

• It feels more like an aid, rather than a full class.
• The only examples provided were exactly like the instructor’s with the exception

of one. Too difficult to find and work with. It should be integrated into WebCT
somehow.

• It would be nice to bring up subj matter and print off the entire contents at one
time (for latter referral), rather than each ind sect.

• Too narrow, many topics were repeated in different ways making it difficult to go
to one place to find a non-specific answer.

• it was another study tool that repeated everything the book and presentation
showed.

• Its role in the class seems undefined and it is hard to use.
• Navigation of site was awkward. A keyword search/topic search would help.

 163

Question #3: Did CBJava help you in your understanding of the subject matter? If so,
tell us how it helped. If not tell us how it hindered your understanding.

Response(s)

• It was rather neutral. Having the additional examples were nice, as was the extra
credit.

• Sure it helped but I don't know if I can be any more specific. Maybe it's harder on
a web page to skip ahead before you've finished reading the page you're on.

• Yes. It allowed me to further expand my knowledge on the subject as well as
recognize mistakes (as stated in question one).

• The biggest factor for me was creating the example. It wasn't much but Helps
provide a foothold of the subject matter.

• It helped, the feedback is great.
• It didn't help or hinder my understanding of the material. It might have been

more useful to give more programming assignments.
• No, but it didn't hinder. I could find most of what it did in my book.
• Seeing examples by others.
• It helped through the other student examples but it could have expanded on the

subject more. Reusing one example tends to get confusing and redundant.
• It helped a little. After viewing the presentation and reading the chapter, I just

briefly skimmed over CBJava because the information was the same.
• Yes, gets to the point quicker.
• Glad to see complete programs as examples which is much more helpful than any

book.
• While the examples on the site were informative I couldn't get a really good grasp

of it until I had some face 2 face discussion of my doubts and misconceptions.
• Yes. It helped to organize how inheritance works and it helps to see example

programs.

Question #4: How do you think CBJava could be improved in the future?

Response(s)

• Have smaller examples and more feedback. Have more examples in the text.
Have a link that lets me download example with test class so I can see how it
works.

• Other than maybe the interface, I liked the content how it was.
• Different example sections, chapters have a lot of small sections that could be

exampled to learn.
• Make it a little fancier and organize material better. Get more examples.

Highlight changes and repairs to clarify.
• The site could be used to discuss actual assignments rather than posting examples.

Assignments are the key to learning.
• I think the concept is flawed. It works out to be little different than the text book.
• Integrate it into WebCT so everything is in one spot.

 164

• More variety in teaching examples.
• It could be improved by making it the focus point of studying instead of the book

or presentations.
• Don't know.
• User interface needs to be improved.
• Keyword search/Topic search. Chat/post boards for discussion of related topic

Question #5: Might a tool such as CBJava have helped your understanding in CM111
Introduction to Structured Programming? If so, tell us how it might help. If not, tell us
how it would hinder your understanding?

Response(s)

• I would have received very little assistance from such a tool, but I am certain it
could have helped a number of classmates.

• I think it would help in learning a new language. CM111 content is pretty simple
- mainly learning about programming structures. I'm not sure how many
examples of a while loop a person really needs to see. I certainly don't think it
would hinder understanding. For me CM111 was about "getting my feet wet" and
actually writing code.

• Yes the CBJava allowed me to see many examples and forced me to make an
example. Seeing other people’s ideas and mistakes really improved my
knowledge on this subject.

• Much better examples on CBJava then can be provided in textbook.
• Yes, they should use it too.
• No, it would not have helped. A better text and more thorough programming

assignments would have been of greater utility in CM111.
• I think CM111 should not use a similar tool. Programming is as much about

mindset as it is about syntax and someone's first exposure to programming needs
to be done in a way as to help with learning the mindset as well. That can only be
done with real-life instruction.

• CM111 was way easy so I don't think students would use it.
• It would help with coding problems but as a replacement for an instructor it is too

narrow.
• It might help because it is easy to show and demonstrate examples and how they

work.
• Possibly - more interaction.
• I don't think it's appropriate for that class [cm111]. People taking this class have a

better understanding of programming concepts. I think "newbie" programmers in
cm111 would feel overwhelmed if given an example with no one to walk them
through it.

• Yes, examples and the information is sound however post boards and threads
would really have assisted in the Q & A.

• No. I took CM111 years ago and programming has changed a lot. I can't
compare it to the type of programs we deal with in Java.

