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CHAPTER I

INTRODUCTION

Suppose X is a random variable representing the service life to failure

of a specified material, structure, or device. Such a variable represents

an attempt to describe statistically the length of life of the material.

On the basis of actual observations of times to failure, it is difficult

to distinguish among various probability distributions. In order to discri-

minate among probability functions that can not be easily distinguished from

each other, it is reasonable to appeal to a concept that permits differen-

tiation among distributions, namely the hazard function.

The hazard function is known by a variety of names in various applica-

tions. It is used by actuaries under the name of "force of mortality" to

compute mortality tables. Its reciprocal for the normal distribution is

known as "Mill's ratio". Papers in extreme value distribution theory call

it the intensity function, while in reliability theory the name hazard

function and instantaneous failure function are used.

The hazard rate is dependent on the number of failures in a given time

period and the number of components exposed to failure. In order to evaluate

the hazard rate, the number of failures per unit of time must be related to

the number of components that are exposed to failure, giving the following

definition of h(t).



number of failure per unit time
h(t)

number of components exposed to failure

The central focus in the present study was to determine the usefulness

of the hazard function in distinguishing between various failure models such

as the exponential, gamma and Weibull distributions. In order to achieve

this goal, sets of failure data were simulated from three assumed failure

rate distribution functions with known parameters.



CHAPTER II

DEVELOPEMENT OF THE HAZARD FUNCTION

Let F(x) be the distribution function of the random variable X, and let

f(x) be its probability density function. Then the hazard rate, h(x) is

defined as

f(x)
h(x) ^ (2.1)

l-F(x)

where l-F(x) is called the reliability at time x. The hazard rate as a

function of time has a probabilistic interpretation; namely, h(x)d(x)

represents the failure probability per unit time at time x, given that

failure has not yet occurred at time x. Differences in hazard rates are

significant elements in the comparison of densities. In this paper the

use of the empirical hazard function in distinguishing three distributions

(exponential, gamma and Weibull) was studied.

2 .1 The Negative Exponential Distribution

In reliability studies, the exponential distribution plays a role of

importance analogous to that of the normal distribution in other areas of

statistics. Although many life random variables can not be adequately

described by the exponential distribution, an understanding of the theory



in the exponential case facilitates the treatment of more general situations

The utility of the exponential distribution is due to its simplicity and

thus it is widely used as a model for the life of many products.

The probability density function (p.d.f.) of the exponential distribution

can be written as

f(x) = A exp(-Ax) (2.2)

where the parameter A is called the failure rate.

The cumulative distribution function (CDF) of the exponential distribu-

tion is given by

F(x) - l-exp(-Ax) (2.3)

By substituting equations (2.2) and (2.3) into (2.1), the hazard function

for the exponential distribution can be expressed as

h(x) = A (2.4)

This instantaneous failure rate is constant over time, a key characteristic

of ^he exponential distribution. A constant hazard rate means that the

probability of failure is independent of age, so an old equipment which is

still operating is just as good as a new one.



2 . 2 The Gamma Distribution

The gamma distribution is a natural extention of the exponential distri-

bution and has sometimes been considered as a model in life test problems.

The probability density function (p.d.f.) of the Gamma distribution can be

written as

f(x) exp"''/'' (2.5)

where r(fi) is the gamma function evaluated at p. The parameter, p, is called

the shape parameter while a is called the scale parameter. One of the main

reasons the gamma distribution was chosen as a distribution is because of

the large number of shapes the distribution can assume. By varying the value

of /3 the shape of the distribution is changed.

The cumulative distribution function (C.D.F.) of the gamma distribution

is defined as

F(x) =
[ ] / x^ exp(-x/a) dx

Jr(/9) a^

- r(x/a,y3) (2.6)

where

r(u,^) = [1 / r(^)] / u^"^exp(-u) du

is the incomplete gamma function. Therefore the hazard function of the gamma

distribution can be expressed as



[1 / r(^) J ] x^'^ exp(-x/a)
h(x) (2.7)

[1 - r(x/a, fi)]

Figure 2.1 shows gamma hazard functions. For /9 < 1 , h(x) decreases to a

constant value 1/a. For ;9 > 1, h(x) starts at zero and increases to a

constant value 1/a. For /3=1 (exponential distribution), h(x) has the

constant value 1/a.



c
o

u
B

-3 '^

^

B
O

y
c

CO

U

a::

=3
J



2.3 The Weibull Distribution

The Weibull distribution has similar properties to those of Gamma

distribution, that is, it is a two parameter distribution having a shape

parameter p and a scale parameter a, and by varying these parameters a

large number of shapes can be generated. This makes it extremely flexible

in fitting data, and it empirically fits many kinds of data.

The probability density function (p.d.f.) of the Weibull distribution

can be written as

f(x) = (yS/a^) x^'^exp[-(x/a)^] ' (2.8)

The cumulative distribution function (C.D.F.) of the Weibull distribution

is given by

F(x) = 1 - exp[-(x/a)'^] (2.9)

Therefore the hazard function of the Weibull distribution can be expressed

as

h(x) = (^/a)(x/a)^"^. (2.10)

Figure 2.2 shows Weibull hazard functions. A power function of time, h(x)

increases with time for /3>1 and decreases with time for y3<l . For ^=1 (the

exponential distribution), the failure rate is constant. The ability to

describe increasing or decreasing failure rates contributed to making the

Weibull distribution popular for life data analysis.



CHAPTER III

EMPIRICAL HAZARD FUNCTION

The hazard rate is in some sense a measure of the rate at which failures

occur. However, it is not simply the number of failures that occur in a

given period of time because it is dependent upon the size of the sample

being considered. For example, the number of failures in a 100-component

sample is less than that in a 1000 -component sample if the same time period

is considered and the components are identical, yet the hazard rate should

be the same. Similarly, if the number of failures in a given time period is

the same for 100-component sample and a 1000 -component sample, where the

operating conditions are different, the components of the first samples

would appear to be more failure prone than those of the second sample and

the hazard rate should be greater.

This discussion indicates that the hazard rate is dependent on the

number of failures in a given time period and the number of components

exposed to failure.

3. 1 Evaluation of the Hazard Rate

In a simple life testing experiment a number of items are subjected to

tests, and the data consist of the recorded lives of all or some of the

items. Since the items are likely to fail at any time, it is quite customery
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to assume that the life of the item is a random variable with a distribution

function which is the probability that the item fails before time t.

The following equations and mathematical relationships between the

various functions do not assume any specific form of the functions and are

equally applicable to all probability distributions used in the hazard

evaluation.

Consider the case in which a fixed number N of identical components is

tested. Let n(t) be the number of survivors (the number of items still alive

or functioning adequately) at time t. The failure count during the interval

At is given by:

n(t) - n(t+At)

It is of more interest to obtain the failure count per unit time, Which is

n(t) - n(t+At)

At

Now, to derive the empirical hazard function, the above expresion is

standardized by the initial count n(t) at the beginning of the interval

of interest:

h*(t) = n(t) - n(t+At)

At . n(t)

This is the empirical analogue of the theoretical hazard function h(t)

defined in expression 2.1 .
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Two cases of collecting data can be considered.

Case 1

This case can be called continuous monitoring, where the number of

units tested is small and the exact time of each failure is recorded.

Case 2

This case occurs where the system is observed from time to time, at

time points t. for each of which the number of survivors n(t.) is

noted.
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3 . 2 The Simulation Procedure

In order to simulate samples of different failure models, namely, the

exponential, gamma, and Weibull distributions, a Fortran language program

was written using an IMSL (International Mathematical and Statistical

Library) random variable generator. This program created and then sorted

the samples of the chosen size. The empirical hazard function was computed

using the expression given in section 3.2, as given below

h*(t) = n(t) - n(t+A)

At . n(t)

The Fortran data was then passed by appropriate job control language into

the SAS program which has a simple and inexpensive plotting routine.

In the evaluation of the hazard function two cases were considered. In

the Case 1, the size of grouped failure count are fixed, in other words

n(t)-n(t+A) was maintained at a constant value. In the Case 2, the interval

At was kept constant. This interval was determined by dividing the largest

value of the random variable by the desired number of groups.

Two typical programs that were used in this investigation are given in

Appendix A. The first program is for the exponential distribution of Case 1

with group size of five. The second program is for Case 2 of the Weibull

distribution with At of about 0.5, shape parameter of four and scale

parameter of one.
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CHAPTER IV

PRESENTATION OF RESULTS

The purpose of this chapter is to present the results of the simulated

failure data. Three different types of failure models were simulated

(exponential, gamma and Weibull) . These failure data that are presented

graphically in the following sections, indicate the use of the empirical

hazard function in distinguishing between the above failure models . For each

set of failure data two plots were depicted. Plot (a) described the failure

data set alone, as compared to plot (b) in which the SPLINE was constructed

over the simulated failure data (SPLINE is a curve fitting technique used in

the SAS program)

.

4. 1 The Exponential Distribution

As mentioned in section 2.1, the exponential distribution has a

constant hazard rate. Thus, on the plot of hazard function versus time to

failure, the hazard function must look like a straight curve with zero

slope.

In Figure 4.1 the empirical hazard function for Case 1 with sample size

of 150 and group size of five is shown. It is clear that the hazard rate is

not constant over time. Figures 4.2 and 4.3 show Case 2, the first plot

corresponds to sample size of 150 items, while the second plot has a sample

size of 300 items. Note that the sample in each case was subdivided into 30
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intervals (groups)

.

It is evident that in both plots the hazard function fails to look

anything like a straight line. Moreover, it is observed that by increasing

the size of grouped data, the curve becomes more smooth, but still not

recognizable as a straight line.
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4. 2 The Gamma Distribution

In the study of the hazard function for the gamma distribution, three

figures are constructed. These figures are similar to those of the previous

section. The gamma distribution which is considered here has shape parameter

of five and scale parameter of one.

In Figure 4.4 (Case 1), it is clear that the resulting graph is

inconsistent with the prediction from the theory (Figure 2.1). The similar

results are obtained by looking at Figures 4.5 and 4.6 (Case 2). The

resultant curves are also inconsistent with their theoretical curves.
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4.3 The Weibull Distribution

In order to show the hazard function for the Weibull distribution,

three similar figures to those which were used previously are depicted.

The Weibull distribution under study has shape parameter of four and scale

parameter of one.

In Figure 4.7 (Case 1), it is observed that the response curve is in

agreement with the prediction of the theory (Figure 2.2). Similarly, in

Figures 4.8 and 4.9 (Case 2), the hazard function plot appears to look like

its theoretical curve.
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V SUMMARY AND CONCLUSIONS

This report attempted to investigate the use of the hazard function in

distinguishing between various failure models, namely the exponential, gamma

and Weibull distributions. In order to achieve this goal, a Fortran language

program was written using an IMSL random variable generator. This program

computed the empirical hazard function for an assumed failure rate distribu-

tion function with known parameters (see Appendix A) . The computed hazard

function was then plotted for grouped failure times by using a SAS program.

In determining the hazard function, two cases of grouping were

considered. In the first case the size of grouped failure times were fixed,

as compared to the second case which the interval At was kept at constant.

The figures presented in chapter IV (empirical hazard function) and in

chapter II (theoretical hazard function) were compared. Only in the case of

the Weibull distribution, the empirical hazard function plot appeared to

closely follow its theoritical curve. Otherwise, it was concluded that the

resulting hazard function plots were relatively useless for deciding which

model to select. It was also observed that the increase in the size of

grouped failure times had little effect upon reproducing the hazard function

accurately.

The above results of this study show that the empirical hazard function

in general is not a useful technique to distinguish between various 'failure

models

.
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APPENDIX A

A Sample Program For The Exponential Distribution (Case 1)

//FORTRAN JOB ( SSN , ACOUNT# ), AMIR,TIME=(0 , 15)
/*REGION 500K

// EXEC FORTVCLG , PARM= ' NOMAP

'

INTEGER NR, NS , N
C NR is the sample size.

C NS is the number of samples (plots) to be generated.
C N is the group size.

REAL XM, R(300), H(300) , T(300)
C XM is the mean of the exponential distribution and is the
C reciprocal of the failure rate .

C R(
. ) is the output vector of random exponential values from

C the IMSL generator. After sorting, it is also the vector
C of ordered failure times.
C H(.) is the vector of Hazard function values corresponding
C to the times given by R(

.
)

.

DOUBLE PRECISION DSEED
DSEED = 123457. DO
XM = 100.

NR = 100
NS = 1

N = 5

DO 200 M =1, NS
CALL GGEXN (DSEED, XM, NR, R)

C This is the invocation of the random number generator.

CALL VSRTA (R,NR)
C This is the IMSL sort procedure which orders the failure C

times

.

H(l) = N / (R(N) * NR) C
Now the hazard function values are calculated.

C the value for H(l) must be done separately because
C Fortran does not like zero as an index. All the other
C H values are calculated inside the following DO-LOOP.

T(l) = R(N)
MM = N + 1

J =2
DO 100 1= MM, NR, N

H(J) = N / ((N(R)-I+1) * (R(I+N-1)-R(I-1)))
T(J) = R(I+N-1)
J = J + 1 <

100 CONTINUE
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NR2 - NR / N

DO 120 J= 1, NR2
C Now the data for a sample is written to disk (unit 10)

WRITE (10,99) J, T(J), H(J) , NR2
99 FORMAT (5X, 15, 5X, F10.3, 5X, F10.5, 5X, 15)
120 CONTINUE
200 CONTINUE

STOP
END

C THE NEXT FEW JCL CARDS ARE THE JCL NEEDED TO READ THE
C FORTRAN GENERATED DATA SETS OFF DISK AND ALLOW THEM TO
C BE USED AS DATA IN THE SAS PROGRAM WHICH FOLLOWS.

/*
//LKED.SYSLIB DD

// DD

// DD

// DD DSN-SYS1.IMSL.SPFLIB,DISP=SHR
//GO.FTIOFOOI DD DSAN=&&TEMP, DISP= (NEW, PASS)

,

// UNIT=SYSDA, SPACE=(100
,
(80, 10) ) ,

// DCB=(RECFM=FB , LRECL=80 ,BLKSIZE=6160)
//GO. SYS IN DD *

/*

// EXEC SAS
//DATASET DD DSN=&&TEMP, DISP=(OLD, DELETE)

DATA BIGLIST;
INFILE DATASET;
INPUT I 6-10 T 16-25 H 31-40 NR 46-50;
DATA SAMPLEl;
SET BIGLIST;
IF _N_ <= NR THEN OUTPUT SAMPLEl;
PROC PLOT DATA=SAMPLE1

;

TITLE HAZARD FUNCTION FOR EXPONENTIAL DISTRIBUTION.;
PLOT H*T= '

*
'

;

/*
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A Sample Program For The Weibull Distribution (Case 2)

INTEGER NR, NS , N
C NR is the sample size.

C NS is the number of samples (plots) to be generated.
C N is the group size.

REAL ALPHA, BETA, R(300) , H(300)
C ALPHA is the scale factor.
C BETA is the shape parameter.
C R(

.
) is the output vector of random exponential values from

C the IMSL generator. After sorting, it is also the vector
C of ordered failure times.
C H(.) is the vector of Hazard function values corresponding
C to the times given by R(

.
)

.

DOUBLE PRECISION DSEED
DSEED = 123457. DO

ALPHA =1.0
BETA - 4.0
NR - 300

NS = 1

N - NR
DO 200 M -1, NS

CALL GGWIB (DSEED, BETA, NR, R)

C This is the invocation of the random number generator.

CONST = -1.0/ BETA
COEF - ALPHA ** CONST
DO 3 1=1, NR

R(I) = COEF * R(I)
3 CONTINUE

CALL VSRTA (R,NR)

C This is the IMSL sort procedure which orders the failure
C times

.

DELTA = R(NR)/ 30.

T = DELTA
C = 0.0
J = 0.0
DO 300 I-l, NR

1000 IF (R(I) .LE. T) THEN
C = C+1
GO TO 300

ELSE
J = J+1
H(J) = C/ (DELTA * N)

R(J) - T
T - T + DELTA
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N = N-C
C - 0.0
GO TO 1000

ENDIF
300 CONTINUE

NR2 - J

DO 120 J= 1, NR2
C Now the data for a sample is written to disk (unit 10)

WRITE (10,99) J, R(J), H(J) , NR2
99 FORMAT (5X, 15, 5X, FIO . 3 , 5X, F10.5, 5X, 15)

120 CONTINUE
200 CONTINUE

STOP
END

C THE NEXT FEW JCL CARDS ARE THE JCL NEEDED TO READ THE
C FORTRAN GENERATED DATA SETS OFF DISK AND ALLOW THEM TO
C BE USED AS DATA IN THE SAS PROGRAM WHICH FOLLOWS.

/*
//LKED.SYSLIB DD

// DD

// DD

// DD DSN=SYS1.IMSL.SPFLIB,DISP-SHR
//GO.FTIOFOOI DD DSAN-&&TEMP ,DISP-(NEW, PASS)

,

// UNIT-SYSDA,SPACE=(100, (80,10)) ,

// DCB=(RECFM=FB , LRECL=80 , BLKSIZE=6160)
//GO. SYS IN DD *

/*

// EXEC SASGRAPH
//DATASET DD DSN=&&TEMP,DISP=(OLD, DELETE)

DATA BIGLIST;
INFILE DATASET;
INPUT I 6-10 T 16-25 H 31-40 NR 46-50;
DATA SAMPLEl;
SET BIGLIST;
IF _N_ <= NR THEN OUTPUT SAMPLEl;
GOPTIONS VSIZE=7 HSIZE=10;
C This statement gives SAS/GRAPH information about the graphics
C devise its using; what default colors, type fonts, and type
C sizes to use; and other details about the pictures you want
C to produce

.

PROC GPLOT DATA=SAMPLE1

;

C The GPLOT procedure is the SAS/GRAPH version of the PLOT
C procedure

.

LABEL T='TIME'

;

LABEL H=' HAZARD FUNCTION':
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TITLEl .F-TRIPLEX .H=3 HAZARD FUNCTION FOR;

TITLE2 .F=TRIPLEX .H=3 WEIBULL DISTRIBUTION;
TITLES .F=TRIPLEX .H=2 (FIXED TIME INTERVAL, NR=300)

FOOTNOTE .H=2 .F-TRIPLEX FIGURE 4.9 b;

PLOT H*T / HAXIS=0 TO 1.5 BY .1

VAXIS-0 TO 18 BY 1;

SYMBOLl V-STAR I=SPLINE;
/*
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ABSTRACT

This research project specifically addressed the usefulness of the

hazard function in distinguishing between various failure models such as

the exponential, gamma and Weibull distributions. In order to acheive this

goal, a Fortran language program was written to simulate sets of failure

data from three assumed failure rate distribution functions. The computed

hazard function from Fortran program was then plotted for grouped failure

times by using a S.A.S program. Two cases of grouping were considered. In

the first case the size of grouped failure times were fixed, as compare to

the second case which the interval At was kept at constant.

The failure data are presented graphically, indicate the use of the

empirical hazard function in distinguishing between the three failure

models

.


