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SYMBOLS

a, b, c - Parameters defining a system

9 - D-c voltage

E - Error signal

J - Inertia of motor rotor, gears, pots, and

reflected load

K^, Kg, K3 - Gain constants

p - Operator d/dt

R - Coefficient of resistance of motor and

reflected load

t - Time in seconds

W - Undamped natural angular frequency in radians

per second

X - Input to servo in the time domain

J - Output of servo in the time domain

X - Input to servo in the Laplace domain

Y - Output of servo in the Laplace domain

y - First derivative with respect to time

y - Second derivative with respect to time

- Damping factor



INTRODUCTION

The design of a linear servomechanism (hereinafter fore-

shortened to servo) for a given performance is constrained by

the physical characteristics of its components. Often this dif-

ficulty is overcome by selecting higher performance components.

Most of the time, however, the desired specifications are beyond

the linear systems capability.

If nonlinearities are introduced, the system's performance

can sometimes be improved without an improvement in the charac-

teristics of the components. The use of nonlinear elements or

operations results in nonlinear differential equations which are

extremely difficult to solve. It is worth while to investigate

the nonlinear servos because of their better performance as con-

trasted to linear servos. It is a major task to choose a non-

linear element or operation suitable to achieve the performance

desired. One possible solution is to simply have a catalog of

nonlinear systems available and investigate the various ones for

application to the problem at hand.

The usual procedure in designing a nonlinear servo is to

begin with a linear servo and improve its performance by the

introduction of nonlinearities.

A method of introducing nonlinearities of a multiplicative

type into a given linear servo is presented in this paper. The

gain of the system is multiplied by a function of the magnitude,

not the sense, of the output velocity. The resulting response

is compared to the response of an equivalent linear second order
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servo for evaluation. The resulting nonlinear servo has superior

performance as compared to an equivalent linear servo.

OTHER NONLINEAR SERVOS

It is worth while to Investigate other nonlinear servos so

that some aspects of the proposed servo can be compared to other

nonlinear servos.

An outstanding contribution to nonlinear control systems

was made by Flugge Lotz, Taylor, and Lindberg in 1958 (1). The

technique employs precise variation of proportional and deriva-

tive feedback parameters. It is achieved by a logic circuit

which switches in combinations of proportional and velocity feed-

back to give the desired optimal performance.

A simple nonlinear second-order servo presented by Zaborszky

(4), in 1958, emphasized simplicity. This is accomplished with

a minimum of equipment and circuitry.

This servo .utilizes the fact that the peak time and over-

shoot associated with a step fiinction response of a second-order
«

position servo are independent of the input height, and depends

only on the system itself. A timer-actuated potentiometer ahead

of a linear second-order servomechanism reduces the input to a

level which allows the height of the first overshoot to be equal

to the height of the original step input. At that time, the

timer switches in the complete step input. Because the system

Is now at zero error, this switching does not affect the servo's

output

.



C. L. Smith and C. T. Leondes (3) investigated the practical

problems encountered in the design of relay servos with attend-

ant nonlinearities. The performance and suitability of various

types were compared. The goal of the paper was to provide the

designer with a means of confidently selecting servo parameters

to account for the physical limitation of this equipment.

One system discussed was the "optimum" relay servo. The

fundamental idea in relay servos is to utilize the full torque

output of the motor at all times in order to provide the maximum

possible acceleration of the load. This is in contrast with the

linear servo which operates at a fraction of its torque poten-

tial. The relay servo will give the fastest response obtainable

using a given servo motor.

A servo described by Lewis (2) in 1952, uses nonlinear

damping to improve the step response of a linear position servo.

The feedback is so arranged that the servo has small damping

during the early portion of the transient response, resulting

in high initial velocity. As the output approaches the input,

the damping becomes large, and thus the overshoot is minimized.

The resulting step response is improved over that of the linear

servo.

EVALUATION OP THESE NONLINEAR SERVOS

The above examples illustrate some of the existing non-

linear servos. Each has its advantages along with its limita-

tions and disadvantages.



Zaborszky (4) was concerned with only a step response to a

servo with fixed parameters. With these limitations he obtained

a very fast response with the addition of only a timer-actuated

potentiometer to the original linear servo.

The discontinuous feedback technique by Flugge-Lotz, Taylor,

and Lindberg (1) results in a system that can follow random in-

puts with great accuracy. This requires the use of logic cir-

cuit and switching circuits and the servo is characterized by

the expected equipment complexity. A coimnon drawback of most

relay servos is the rather complex switching and monitoring

equipment required to switch at the right time to obtain the

desired response. A relay servo never achieves zero steady-

state conditions. If these drawbacks are tolerable, the relay

control system will give the fastest response obtainable using

a given servo motor.

The purpose of the ensuing investigation is to study non-

linear methods of a special sort which are applicable to low-

power continuous servos and which improve their initial state

performance without excessive equipment complexity.

THE SECCaJD-ORDER LINEAR SERVO

The characteristics of a linear servo can be described by a

linear differential equation with constant coefficients. Linear

control system analysis simply sets up a criterion to yield

optimum values for the coefficients. Consider a linear second-

order position servo with unity feedback. The closed-loop
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differential equation is:

Jy + Ry = K^E (

D

E s= X - y

Therefore J/K^^ y + R/%y + y = x (2)

where J, R, K^ are constants, x is the input, and y is the

output

.

Equation (2) is a linear second-order differential equa-

tion with constant coefficients of the form:

ay + by + cy = X (3)

The three constants (a, b, c) completely characterize the

linear system.

For a given linear system, the inertia, J, is usually fixed.

The parameters left to be varied are the gain, K, and coefficient

of resistance, R.

Subtractive velocity feedback is commonly used to increase

the servo's damping. With this velocity feedback, the error

signal is

E = X - y - Kgy

Therefore the differential equation is:

J/K^y + (R/K-L + K2)y + y = X 14)

The coefficient of resistance is now (R/Kj + Kg) rather than

Applying the Laplace transformation to equation (4), with

initial conditions equal to zero, yields

[jp2 + (R + K^Kg)? + K^ y = K-^x (5)

The transfer function y/x is:
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J 1
_ = Kn/j . (6)

p2 + ( L±)^ + Ki/j
J

- = Ki/J • _ (7)
X p2 + 2J'Wp + W2

Where W = (Ki/J)"^/'^, / = --^7^

The three possibilities for damping factor , J' , are:

1. Critically damped, / = 1.

2. Overdamped,
J;'J>

1.

3. Underdamped, jT *C !•

The limited performance due to the physical characteristics

of the components of a linear second-order servo is now illus-

trated. Assume it is desired to achieve the fastest step re-

sponse possible without overshoot. The solution is that of

critical damping, where J^
= 1. An increase in gain gives a

faster response but results in overshoot. If the rise time re-

quired was less than that of critical damping, the given servo

could not meet the specifications.

The next question is how could the given linear servo be

used to obtain a step response faster than that of critical

damping without overshoot? Nonlinear! zation of the given servo

is a solution to the above problem. The servo being investi-

gated has a step-function response which is superior to the re-

sponse of the equivalent linear servo.



NONLINEARITY BY MULTIPLICATIVE OPERATION

The featxire that enables the proposed nonlinear servo to

achieve a faster time response is that its gain is variable.

The gain is a fimction of the output velocity. To make it in-

sensitive to the sign of the velocity, the absolute value of the

output velocity is used. If the linear servo is overdamped or

critically damped, the gain needs to increase if the servo is

to reach zero error faster.

A block diagram of the proposed servo is shown in Fig. 1.

Note the only additional components required are a multiplier

and an absolute value device.

The closed-loop differential equation of the servo is:

Ksy )E (8)Jy + Ry = Ki(e +

E = X - y - K2y

Reassembling equation (8) yields

Jy' + \e + KiK2{e + |K3y| )] y

+ Ki(e + |K3y|)y « K-^{e + iKgyj )x (9)

The nonlinearlty of this servo is the result of a multi-

plicative operation. I'Yom the block diagram in B'ig. 1, it can

be seen that the error (x - y - Kgpy) Is multiplied by

(e + K3py|). e is a constant equal to one for simplicity. The

Inherent possibilities are next investigated by analog computer

simulation.



8

1 + K2P

(x - y - K2py)

(e + |K3py|)-

JW-- TT

Ki

p(p + 3)

Multiplier

FWR Ksp

FWR = full-wave rectifier

Pig. 1. Block diagram of a nonlinear servo
with the gain modulated by the output
velocity. Referred to as Servo (3).



ANALOG COMPUTER SIMULATION

Because of difficulty in obtaining an analytical solution

of nonlinear servos, this investigation leaned heavily on an

analog computer simulation. The evaluation of the nonlinear

servo is made by comparing its responses to the responses of

two equivalent linear servos. By equivalent is meant that they

are identical except for the nonlinearities and a velocity

feedback loop in one case.

The three servos simulated are referred to hereinafter as

servos (1), (2), and (3), and are identified as:

Servo (1) - A linear second-order position servo with pro-

portional feedback, as in Pig. 2.

Servo (2) - A linear second-order position servo with pro-

portional and velocity feedback, as in Pig. 3.

Servo (3) - A nonlinear second-order position servo with

velocity feedback and gain modulated by a fvmction of the out-

put velocity magnitude. Figure 1 Is a block diagram of this

nonlinear servo.

The analog computer simulation is shown in Fig. 5. By ad-

justing values of K]^, Kg, and K3, all three servos were simu-

lated using the same diagram. By doing this, the comparison of

the three servos was more accurate because the characteristics

of the multiplier were included in each simulation.

The portion of the analog computer diagram shown In Pig. 4
1

gives the transfer fvmction, , representing the motor,
p(p + 3)

gears, load, and pot. To obtain a variation in the R/J term.
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1

y7)
Kl

y p(p + 3)

Fig. 2. Block diagram of a second-order
position servo with proportional feed-

back. Referred to as Servo (1).

1 + Kgp

7)
Kl

y
,y p(p + 3)

Pig. 3. Block diagram of a second-order position
servo with proportional and velocity feed-

back. Referred to as Servo (2).

1

AAAAr

uww
p(p + 3)

Pig. 4. Portion of analog computer diagram that
represents motor, gears, load, and pots.
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it is only a matter of varying the sizes of the resistors and/

or capacitors.

COMPARING THE LINEAR AND NONLINEAR SERVOS

The first comparison of the three servos was made by com-

paring step-responses of the three servos. The step-responses

were compared at four different values of K^^. K^^ was adjusted

so that servo (1) had a damping factor of critical damping, over-

damping, and Tinderdamping. For the critically damped and over-

damped cases, the step-responses for servos (1) and (3) are

compared. For underdamping the three servos are compared.

With Ki adjusted so that servo (1) was overdamped, K2 and

K3 of servo (3) were adjusted to yield the fastest rise time

with little or no overshoot. At this low value of K-^, equal to

one, servo (3) has a much faster rise time as compared to servo

(1). Measuring rise time from 0.1 to 0.9 of the step-function,

the rise time of servo (3) is 84.4 per cent faster than servo

(1). This is achieved without the usual overshoot associated

with increasing the rise time of a linear servo. The step-

responses obtained from the simulation with K^ equal to one are

shown in Fig. 6.

The fastest rise time without overshoot is obtained for

servo (1) when K^^ is adjusted to yield critical damping. With

Ki of servo (3) adjusted to the same value and K2 and K3 ad-

justed to yield the fastest rise time without overshoot, servo

(3) has a 68.6 per cent faster rise time than servo (1). This
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is possible because of the nonlinearities present in servo (3).

The step-response comparisons are shown in Pig. 7.

K]^ was adjusted to two different values that make servo (1)

underdamped. For each value of K^^ the step-responses of the

three servos were compared. Servo (2) was included for compari-

son with the nonlinear servo, which also uses velocity feedback

as a means of increasing damping. For each, values of K^, K2 of

servo (2), and K2 and K3 of servo (3) were adjusted to yield

the fastest rise time with little or no overshoot.

For both cases of underdamping, servo (1) has a considerable

amount of overshoot and transient oscillations. By using veloc-

ity feedback to increase damping, servo (2) eliminates the over-

shoot but with a 36 per cent slower rise time. Servo (3)

achieves a 28 per cent faster rise time than servo (1) and a 54

per cent faster rise time than servo (2). With K^ equal to 30

on all three servos, servo (3) has a rise time 16.6 per cent

faster than servo (2). Again this increase in step-function

performance is due to the modulation of the gain by the output

velocity which introduces nonlinearities into the servo.

Figiires 8 and 9 show the comparison of the step-responses

obtained from the analog simulation of the three servos. K^^ was

equal to 10 and 30 which yields underdamping for servo (1).

Another very desirable feature of servo (3) is its rela-

tively consistent step-response for a given range of variation

of the R/J term of the transfer fxinction. To illustrate this,

a step-function response was obtained on servo (2) and servo (3)

for three different values of the R/J term. The three values
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Pig. 8. Step-function responses of
servos (1), (2), and (3).

Rise time
V

Kl ^ Ks in seconds

Servo (1) 10 '0.5

Servo (2) 10 .2 0.78

Servo (3) 10 .2 1.5 0.36



17

/

11)

\,
n / ..<?^ __^^„,^^

—

^

'

PH
O
>

'W
/fz)

•H
///

•P

ap / >

•

.4 .8 1.2

Time in seconds

1.6 2.0

Pig. 9. Step-fiinction responses of
servos (1), (2), and (3).

Kl Kg K3
in

se time
seconds

Servo (1) 30 0.3

Servo (2) 30 .2 0.49

Servo (3) 30 .2 1.5 0.42



18

chosen were R/J equal to 3, 7, and 12.

The step-responses of servo (2) for the three values of the

R/J term have considerable more variation than does the step-

responses of servo (3). In contrast to servo (2), the step-

responses of servo (3) are virtually independent of the R/J term

within a given range. This additional feature is important in

many applications and could be called an adaptive feature. The

adaptive feature allows the servo to operate under varying par-

ameters but with consistent responses. The allowable variations

have limitations and would require further investigation if this

featxire were to be utilized fully.

Insertion of an automatic gain control circuit could further

enhance the adaptive behavior of this servo v/ith respect to

changes in R.

The step-responses of servo (2) with the three values of

the R/J term are shown in Fig. 10. The corresponding responses

of servo (3) are shown in Fig. 11.

To compare the three servos to other types of inputs, they

were subjected to sinusoidal and triangular inputs of .2 and .8

cycle per second. The output and error signals were recorded

for comparison and are shown in Pigs. 12 through 15. In all

cases the error signal of servo (3) is smaller than that of

servos (1) and (2).

The frequency responses of the three servos were taken for

three different values of K^^. In all three cases servo (3) has

a wider band width than does servos (1) and (2). The frequency

responses are shown in Figs. 16, 17, and 18.

: \ .4
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Fig. 10. Step-function responses of servo (2)
with the R/J term, representing the motor,

gears, pots, and load in the transfer
function, being varied.
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(b). TP =
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Servo (2) - Ki = 10, Kg = .2, K3 =



20

a
PH
O
>

4->

ft
•P

(aK^ '" (c)

"

12 3 4 5

Time in seconds

Pig. 11. Step-function responses of servo (3)
with the R/J term, representing the motor,

gears, pots, and load in the transfer
function, being varied.
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(b). TP =

( c ) . TP =

p(p + 3)

1

p(p + 7)

1

p(p + 12)

Servo (3) - K]^ = 10, K2 = .2, K3 = 1.5
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Pig. 12. Sinusoidal and triangular responses
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Fig. 13. Sinusoidal and triangular responses
of .8 cycle per second.
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(a) (b) (o) (d) (e)

Pig. 15. Sinusoidal and triangular responses
of ,8 cycle per second.
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ANALOG COMPUTER SIMULATION OP THE
PHYSICAL PROTOTYPE

The foregoing analog computer investigation is exploratory

in nature with the intention of investigating introduction of

nonlinearities of a special sort. Utilization of this proposal

in a prototype servo can result in circuitry simplification if

appropriate changes in the control equation are made.

In the analog computer simulation of servo (3), the velocity

component was subtracted from the error, (x - y), and then mul-

tiplied by (e + py I
) • The resulting control equation is:

y = A(p) (e + |py|)(x - y - py) (10)

If the error, x - y, is multiplied by (e + |py|) and then

the velocity component subtracted, the prototype servo is phys-

ically simplified. With this alteration the control equation

becomes:

y = A(p) []e + |py|)(x - y) - py] (11)

Behavior of the prototype servo is discussed in the fol-

lowing section.

Because the control equation of the prototype servo has the

same form as equation (11), additional analog computer results

were obtained to compare with the results of the prototype. In

this simulation, equation (11) was used for the control equa-

tion. Comparison with the initial simulation is also made to

observe the effects of subtracting the velocity feedback from

the error after the multiplication rather than before.

The simulation of equation (11) will be referred to as
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servo (4). Servo (4) is identical to servo (3) except the

velocity feedback is subtracted from the error, (x - y), after

the multiplication operation. The same analog computer diagram

in Pig. 5 was used with the appropriate change in the velocity

feedback loop.

Servo (4) has a faster rise time than does servo (3) but

requires more damping to give a response without overshoot.

This is probably due to the velocity feedback component not be-

ing increased by the multiplication operation as much as the

error is increased.

With K, equal to 3, servo (4) has a time rise 22 per cent

faster than servo (3) but requires K2 equal to 2.3 compared to

0.25 for servo (3). With K^ equal to 10, servo (4) has a 38.5

per cent faster rise time than servo (3). In this case, K2 was

equal to 13 compared to .2 for servo (3). The step-responses of

servos (1), (3), and (4) with K-j^ adjusted to 3, are shown in Pig.

19. The responses with Ki equal to 10, are shown in Pig. 20.

If K2 is reduced sufficiently to allow servo (3) or (4) to

overshoot, the resulting overshoot is not the ordinary form.

It Is unlike the damped oscillatory overshoot associated with

linear servos, but it is a single overshoot and then decaying

to the steady-state value. This particular shape of the over-

shoot might be a clue in applying the proposed method of intro-

ducing nonlinearities to achieve a zero velocity-error servo.

Pigvire 21 shows a step-response of servo (4) with this type of

overshoot being illustrated.

'*,
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Pig. 20. Step-function responses of
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TIffi PROTOTYPE NONLINEAR SERVO

Because of favorable results obtained on the analog com-

puter, it was desirable to construct a prototype of the nonlinear

servo. By doing this, the analog computer results are verified

and the simplicity of the servo is demonstrated.

One of the outstanding featxires of the proposed servo is

its adaptability to existing position servos. In constructing

the prototype nonlinear servo, the only additional component

required is a full-wave rectifier which is used as an absolute

value device. The original servo is a linear position servo

with proportional and velocity feedback.

The prototype diagram is shown in Pig. 22. The components

consist of the following: a two-phase, 400-cycle, low-torque

servo motor; three potentiometers; a differentiating circuit; a

full-wave rectifier; a modulator; and an amplifier. The list

does not include a multiplier and the proposed servo is non-

linear due to the multiplicative operation. A novel feature of

the proposed servo is that it utilizes multiplication already

present in the servo.

The purpose of the multiplier is to increase the gain of

the servo during the transient time. This is accomplished by

multiplying the error signal by a function of the output velocity

magnitude. The voltage applied to the input and output potenti-

ometer is (e + |py|), where e is a constant. The input voltage

is x(e + |py|)- The output voltage is y(e + |py|). The modu-

lator input is the difference between the input and the output
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voltage: (e + |py|)(x - y).

The third input to the modulator is the velocity feedback

component used to increase the damping factor- Because of the

low-torque servo motor, a differentiator circuit was used with

a second output potentiometer to obtain the output velocity.

A constant voltage was applied to this output potentiometer and

the differentiator measiires the rate which the output changes.

This auxiliary potentiometer was also used with a visicorder to

record the output position.

It is desirable to vary the gain by a function of the mag-

nitude of the output velocity and not the sense. A full-wave

rectifier yields an output which is always of the same sign and

it functions as an absolute value device. The output of the

differentiator is applied to a full-wave rectifier whose output,

added to a constant voltage, e, is the voltage applied to the

input and output potentiometers.

The resulting input to the modulator is:

(e + |py|)(x - y) - py (12)

This is operated on by the amplifier, motor, gears, and

potentiometers which results in the following control equation:

y = A(p)[{e + |py|)(x - y) - py] (13)

Again, this is unlike the control equation of servo (3) but

identical to servo (4). The prototype servo, as used, cannot

achieve the same control equation as servo (3) because of the

manner in which the prototype servo multiplies.

Step-responses were taken for the prototype servo for three

values of gain. The gain is adjusted to yield overdamplng.
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critical damping, and underdamping for the prototype servo when

connected as a linear position servo with proportional feedback.

Step-responses of the nonlinear servo are compared to the linear

servo with proportional feedback for the overdamped and the

critically damped cases. For the underdamped case the step-

responses of the above linear and nonlinear servo plus a linear

servo with proportional and velocity feedback, similar to

servo (2), are compared.

When the gain is adjusted to yield overdamping and critical

damping, the nonlinear servo has a faster rise time than does

the linear servo with proportional feedback. This faster rise

time is achieved without overshoot. Step-responses of the two

servos are shown in Pigs. 23 and 24 for the underdamped and

critically damped cases.

For the vtnderdamped case, the nonlinear servo obtains a

rise time equal to the linear servo with proportional feedback

and with little overshoot. It has a faster rise time than does

the linear servo with proportional and velocity feedback com-

parison of the step-response is shown in Fig. 25.

To illustrate the feature of one overshoot and decaying

to steady-state value, the velocity feedback was reduced to

allow the servo to overshoot. The overshoot response is shown

in Fig. 26. Note its similarity with the overshoot response

obtained from servo (4), shown in Fig. 21.
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23. Step-responses of the linear and nonlinear prototype
servos with the gain adjusted to yield overdamping.

(1). Linear position servo with proportional feedback.

(2). Position servo with the gain modulated by the out-

put velocity.
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Pig. 24. Step-responses of the linear and nonlinear prototype
servos with the gain adjusted to yield critical damping.

(1). Linear position servo with proportional feedback.
(2). Position servo with the gain modulated by the out-

put velocity.
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Fig. 26. Step-response of the prototype
nonlinear servo with overshoot.
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CONCLUSION

The effects of nonlinearization of a second-order position

servo by a continuous multiplicative operation has been demon-

strated. Its output is characterized by a small time delay and

with no transient overshoot. Because the servo utilizes the

existing multiplication featxire of a position servo, it can be

readily applied to existing servos to improve their performance.

The investigation also indicates other inherent features

of Importance. The adaptive properties are Illustrated by its

Independence of the R/J term in a limited range. Also mentioned

is the zero velocity-err or response capability.

The experimental results indicate that nonlinear 1 ties in-

troduced by multiplying the error by a function of the output

velocity magnitude yields a nonlinear servo with superior per-

formance compared to an equivalent linear servo. Performance

was investigated by comparing step-f\inctlon, sinusoidal, and

triangular responses. Because superposition does not hold for

nonlinear systems, the servo's response to an arbitrary input

is not known. Hence no attempt has been made to extend the

investigation beyond the range conducted.
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Intentional Introduction of nonlinearitiea is a necessity

to meet more demanding servo performance specifications than

can be realized with linear servos. This investigation was made

to study the effects of introducing nonlinearitiea into a posi-

tion servo by a continuous multiplicative operation. The gain

of a second-order position servo is increased during transient

time by multiplying the error by a function of the output velocity

magnitude. Velocity feedback is used to increase the damping

so the transient overshoot is eliminated or minimized.

By contrast, other investigators have employed discontin-

uous switching and nonlinear time constant changes to effect

changes in servo performance. There are a few investigators

who have manipulated the gain factor of a servo to achieve the

same ends.

To avoid solving the nonlinear differential equation which

represents the proposed servo, an analog computer simulation was

made. The simulation provided a simple means of exploration and

evaluation of the servo. The control equation used in the

initial simulation is:

y = A(p)[(e + |py| j]
[^x - y - py]

Note that the error, (x - y - py), is multiplied by e, a con-

stant, plus the absolute value of the output velocity. The

absolute value is used to enable the servo to function without

limitation to the sign of the input.

The performance is evaluated by comparison of step-function,

sinusoidal, and triangular responses of the nonlinear servo to

two linear servos. The two linear servos consist of a linear



second-order position servo with proportional feedback and one

with proportional and velocity feedback. The responses were

obtained for values of gain that yield overdamping, critical

damping, and underdamping for the linear servo with proportional

feedback.

Experimental results from the simulation show that the non-

linear servo has a step-response of less time delay with no

transient overshoot than either of the linear servos. Also the

bandwidth of the nonlinear servo is considerably wider than the

linear servos. Further, the nonlinear performance is virtually

independent of a given variation in the damping factor.

To verify the analog computer results and to illustrate the

simplicity of the nonlinear servo, a prototype servo was con-

structed. The multiplicative operation is achieved by utiliz-

ing the multiplication feature already present in a position

servo. This results in a slight change in the control equation

representing the prototype servos. The control equation with

the appropriate change is:

y = A{p)[{e + |py|) (x - y) - py]

Additional analog computer simulation was made using the pro-

totype's control equation. Using this control equation, similar

results were found but a considerable increase in the damping

factor was required to obtain a response with no overshoot.

This was probably due to the velocity feedback component not

being increased with the gain during transient time.



Experimental results obtained from the simulation and the

prototype indicate that nonlinearities introduced by multiply-

ing the error by a function of the output velocity magnitude

renders a nonlinear servo with superior performance compared

to an equivalent linear servo.


