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CHAPTER 1

INTRODUCTION

1.1 IDEA OF DECISION MAKING IN MANAGEMENT

The administration of a modern business enterprise has become an

enormously complex undertaking. During the past few years there has been

an increasing tendency to turn to quantitative techniques and models as a

potential means for solving the problems that arise in such an enterprise.

Engineering has been defined as concerned with the design, improve-

ment and installation of integrated systems of men, machines and materials

for the service of society. Every working day, the typical executive of

a modern industrial organization makes a number of complex decisions in

order to optimize his company's performance. This emphasizes the impor-

tance of quantitative techniques as a useful means for decision making in

industrial management systems.

In any problem solving situation, there are variables or factors

which influence the outcome of whatever decision is made. These variables

can be classified as those which the decision maker controls, called the

control variables, and a class of those which he cannot control, called

the state variables. After identifying the control and state variables,

they should be combined in some logical manner so that they form a model

of the problem. The object of the decision maker is not to construct a

model as close as possible to the reality of the. problem, but rather a

simplest model that predicts the outcomes reasonably well. Next step is

to develop a measure of effectiveness, called the objective function, to

predict the behavior of the model. A model is then solved for different



values of the control variables. These will be called feasible solutions.

In general, decision making can be described as a process whereby

management when confronted with a problem, selects a specific course of

action, called the optimal policy, from a set of feasible solutions.

Many of the mathematical models in engineering, physical sciences and

other disciplines involve non-linear differential equations of the two

point boundary value type. Unfortunately, no general analytical method

exists for solving them. Several kinds of non-linear differential

equations have been solved analytically, but the solution of each has

required a method unique to that type. Various methods have been used

to solve non-linear differential equations numerically. Among them are

graphical methods, methods based upon successive approximations and methods

based upon iterative procedures.

1.2 PURPOSE OF THIS STUDY

Industrial Engineers work with a wide variety of optimization problems.

For this reason they should be familiar with the most efficient techniques

for solving the decision-making problems. Because of the relatively recent

origin of operations research, more efficient techniques are not needed in

most cases.

The purpose of this research is to study the effectiveness of a recently

developed method, quasilinearization, in solving industrial management

problems which involve non-linear differential equations.

More specifically, the object of this work is to investigate the compu-

tational features of this technique with respect to different problems.

The second object is to provide the systems analysts a new tool for



optimization.

Other computational techniques, such as the gradient technique, the

second variation method, and invariant imbedding can also be used for

solving the problems with non-linear differential equations, but consid-

ering the object of this study, they will not be discussed here.



CHAPTER 2

SOLUTION OF TWO POINT BOUNDARY VALUE PROBLEMS

2.1 INTRODUCTION

The mathematical formulation of many problems in science and engin-

eering leads to differential equations. Problems in which the conditions

to be satisfied by the solution of a differential equation of order two

or greater may be specified at both ends of an interval are known as two

point boundary value problems. If the conditions are specified at more

than two points in the interval, the problems are known as multi-point

boundary value problems. The latter type of problems do not appear very

often in engineering models.

Initial value problems are those in which all conditions are imposed

at one point. This may be the initial or final point of that interval.

Consider a system of differential equations

dx

(i)

ar = 8(x,y)

If the conditions for both x and y aie given at the same point v
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the problem is called two point boundary value problem.

A higher order differential equation can always be replaced by a set

of first order differential equations by introducing auxiliary variables [9].

For this reason, only first order differential equations will be discussed

throughout this work.

2.2 NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS

Since all of this work will be based on numerical methods of obtaining

solutions of ordinary differential equations, a best known and most fre-

quently used scheme for solving initial value problems, Runge-Kutta method,

is discussed here. '

In this method, the increments of the functions are calculated once



for all by means of a definite set of formulas , and the calculations for

the first increment are exactly same as for any other increment. These

processes are self-starting. Advantage of this method is the independent

choice of the size of the step, which may be increased to speed up the

progression or decreased to lower truncation errors without recalculation

of previous data.

The fourth-order formulas for the Runge-Kutta method, [9], for

Equations (1) are
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Knowing the initial values of x^t ) , x,(t.), and step size At,

values of x (t. + At) and x (t . + At) can be calculated using the above

formulas. Similarly ^(t. + 2At) and x
2
(t

±
+ 2At) can be calculated

using x (t. + At) and x (t. + At). Hence incrementing t everytime by

At, the final values, x (t ) and x
2
(t

f
) can be calculated.

The truncation error in this method is 0(At ). A simplified compu-

tational scheme is shown in Figure 1.

2.3 DIFFICULTIES IN TWO POINT BOUNDARY VALUE PROBLEMS

The numerical solution of any ordinary differential equation requires

the knowledge of initial values of all the variables. Starting with the

initial values, the solutions are constructed step by step in small

intervals of the variables. Because of this nature, they are also called

the marching techniques.

In an initial value problem, all the initial (or final) values are

known. Hence the solution is relatively easy. In a two point boundary

value problem, some of the initial (or final) values are unknown. Hence,

the numerical techniques, like Runge-Kutta method, cannot be applied

directly. For this reason, this type of problems are very difficult to

solve.

In general, the procedure for solving this type of problems is to

assume the missing initial (or final) conditions and solve for all the

grid points and then compare the values of the calculated and given final

(or initial) conditions. If they are not the same within allowable error,

a new set of missing initial (or final) values is assumed and the same



procedure is repeated. By this trial and error procedure, a suitable set

of initial (or final) conditions can be determined.

This procedure becomes very tedious if the problem has many differen-

tial equations and is very complex in nature. The relatively slow conver-

gence during the process of numerical solution can make the generally used

trial and error procedure impractical.

Unfortunately, most of the mathematical models in quantitative analysis

are very complex having many variables. Problems of this type are most

subtle and difficult and are not well suited for modern digital computers.

There is no general proof of existence and uniqueness of solutions to

problems of this type.

2.4 SUPERPOSITION PRINCIPLE

A two point boundary value problem is not too difficult if the per-

formance equations are linear. This is because of the fact that super-

position principle is applicable to linear differential equations.

Consider the following two simultaneous first order linear differential

equations

dt
= a^t) + b

1
(t) X;L + c

x
(t) x

2
(6)

dx
-7— - a (t) + b (t) x. + c (t) x„ (7)

*1^!
= x

l
and X2^P = x

2 ^
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t. X.. , x are known constants at the initial and final values of t

respectively.

x_ (t.) = 1 and x- (t.) = 0, Equations (6) and (7) can be solved numerically

to obtain a set of particular solutions, x
1 (t) and x„ (t) , t, < t < t_.
Ip 2p i - — t

Two sets of non-trivial homogeneous solutions, x.. ., (t) , x_ 1u (t) and
l,±n 2, in

x. _, (t) , x (t), can be obtained with any two different sets of arbitrarily

assumed initial conditions, say x, n_(t.) 1, x. ., (t.) = and x. ^,(t.) = 0,l,ln i 2, In a. l,2n i

x« _, (t.) = 1, from the homogeneous equations of Equations (6) and (7).

The homogeneous equations are obtained by setting the constant terms

equal to zero.

dx

3g± = b
1
(t) Xj + c^t) x

2
(9)

dx
-£* = b

2
(t) Xj + c

2
(t) x

2
(10)

It is important to note that the particular and homogeneous solutions

can be obtained numerically using a step by step integration method, like

the Runge-Kutta method. The reader is referred to Ince [7] and Lee [9]

for detailed discussion.

The superposition principle states that because of the additive

property of the solution of a linear system, the general solution of

Equations (6) and (7) is,



x
x
(t) = x (t) + A^

lh
(t) + A

2
x
1 2h

(t) (11)

x
2
(t) = x

2
(t) + A

x
x
2 lh

(t) + A
2
x
2 2h

(t) (12)

where A. and A. are integration constants.

A., and A_ can be obtained by substitv

Equation (8), into Equations (11) and (12) with the results of the partic-

ular and homogeneous solutions. Once the values of A_ and A. are known,

the right hand sides of Equations (11) and (12) are completely known.

This gives the solution for x. (t) and x-(t) at all the grid points.

This approach can be generalized to a set of n simultaneous first

order linear differential equations

dx

j+ = g..(Xl , x
2

, . . ., x
n

, t) i - 1, 2, ... a (13)

x (t
f

) = x* J - X, 2, ... a (14)

x^(t ) = x
]<^

k = m + 1, m + 2, . . . n (15)

The general solution by the superposition principle is

*i
(t) = x

ip
(t) + Z Vi kn

(t) 1 - 1, 2, ... a (16)
k=l '

In this general case, we have to assume n initial conditions,

x. (t.) " x. , for the particular solution, and n sets of initial conditions
ip i ip



x (t ) = x. , , for n sets of homogeneous solutions. Integration

constants A, are determined from the n known boundary conditions and the

assumed and computed boundary conditions for the particular and homo-

geneous solutions

.

Usually n sets of homogeneous solutions are required to obtain the

general solution. However, if the assumed initial values for the partic-

ular solution are properly selected, only m sets of homogeneous solutions

need be obtained.

Consider the Equations (6) and (7), their general solution is given

by Equations (11) and (12). Suppose the initial values for the particular

solution are chosen as

x
lp

(t.) = x° x
2p

(ti ) =

and the initial values for the homogeneous solutions are given as before,

then Equations (11) and (12) at the initial time t , reduce to

«l
(t

i>
= VV + Vl.ll/V + A

2
x
l,2h

(t
i
)

x° = x° + Aj 1 + A
2

(17)

A. x - x
1

= 0.

This shows how to select the appropriate initial conditions so as to

reduce the set of homogeneous solutions needed from n to m. For further
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discussion, the reader is referred to Lee [9].

The procedure can be divided into essentially two steps. First, the

problem is converted into initial value problems and these problems are

solved numerically. Then, the integration constants are obtained by

solving a set of algebraic equations. Combination of these results is the

general solution of the original problem.
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CHAPTER 3

QUASILINEARIZATION

3.1 INTRODUCTION

The advantages of superposition principle in solving two point bound-

ary value problem lead to the idea of linearizing the non-linear differen-

tial equations so that the superposition principle can be applied. This

is the basic concept of quasilinearization.

Quasilinearization technique was developed by Bellman [ 1 ] and

Kalaba [ 8 ] and applied extensively to chemical engineering problems by

Lee [q , 10,11] in obtaining numerical solutions of certain classes of

non-linear ordinary differential equations of the boundary value type

encountered in chemical engineering, optimization, the boundary layer

theory and in control problems.

This technique essentially linearizes the set of non-linear differ-

ential equations. Conceptually, this method is very close to Newton

Raphson method of finding roots of an equation; however, since the

unknowns to be determined in this method are functions and not fixed

valued roots as in Newton Raphson method, both the computational and

theoritical aspects are much more complicated.

In addition to linearizing the non-linear equations, the quasilinear-

ization technique provides a sequence of functions which in general con-

verges rather rapidly to the solution of the original non-linear equations.

Usually, the latter is more important. A rough initial approximation for

the unknown function can lead to the solution of the origina] equation

through a sequence of functions. In general, for most practical problems,

this rough initial approximation can be obtained from engineering
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experiences and intuitions.

3.2 COMPUTATIONAL PROCEDURE

In many operations research techniques, the verbal description of the

algorithm is far more difficult than the algorithm itself. Hence the

logic will be developed and explained with an illustration.

Consider a set of nonlinear differential equations

fc-ffe.y)

(18)

dt
= g(x,y)

with boundary values

x(t.) = x° and y(t
f
) = y

1
(19)

Using the Taylor series expansion f (x,y) and g(x,y) can be linearized

around x = a and y b as follows:

f (x,y) = f(a,b) + (x - a) f
a
(a,t) + (y - b) ^(b.t)

g(x,y) = g(a,b) + (x - a) ga
(a,t) + (y - b) gb

(b,t) (20)

which is the Taylor series with second and higher terms omitted. Symbol

f (a,t) represents the partial derivative of f with respect to x at x a.
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From Equations (18) and (20) , we obtain

j£ = f (a,b) + (x - a) f
a
(a,t) + (y - b) ^(b.t)

|2- = g(a ,b) + (x - a) 8a
(a,t) + (y - b) gb

(b,t) (21)

Since a and b are known functions of t, Equations (21) are linear

differential equations with variable coefficients. The boundary conditions

for Equations (21) are given by Equations (19)

.

A recurrence relation can now be established. Choose an initial

approximation for a and b, say a = x- and b = y_. Substituting these

approximations into Equations (21) , it is possible to solve these first

order linear differential equations for x and y using a step by step

integration method and the boundary conditions given by Equation (19).

Call this new solution of x and y as x.. and y- . Now using x.. and y_ , it

is possible to find improved values of x and y. Call these improved

functions x- and y . Next using x and y„, x, and y can be determined.

This iterative procedure is continued until the desired accuracy is

obtained.

The recurrence relation can be written as

dx— = f (x
o>

y
Q
) + Uj - x

q
) f

x
(x

o , y
Q
) + (7l

- yQ
) f (x y ) (22)

o 'o

*1
dT" g(x

o' V + (X
1 ' X

o
} 8x

(x
o' V + (y

l
- yo

} gy
(V y

o
)
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'
2 = f(xr yi

) + (x
2

- «
x
) f^, y

x
) + (y

2
- yx

) f^, y^ (23)
dt

J^ = g(Xl , 7
X
) + U

2
" x

x
) g

Xi
(xr 7l

) + (y
2

- yx
)

8yi
(xr y^

dx
N+l

-dt~"
= f (V V + (X

N+1 " X
N ) f

x
H
(x
N' V + (yN+l " V f

yN
(W (2A)

dy

"IT"
= 8(V V + (X

N+1 " V «^V V + (yN+l " V«JBW
The boundary conditions given in Equation (19) are used in solving Equations

(22) through (24).

For a number of problems Equations (22) through (24) have been proved

to converge monotomically to the solution of Equation (18) . The convergence

rate is quadratic in the sense that each iteration approximately doubles

the number of digits of accuracy.

3 . 3 SUMMARY

The procedure can be summarized in the following steps.

1. The nth order non-linear ordinary differential equations are first

converted into a system of simultaneous first order ordinary differ-

ential equations.
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2. This set of equations is then linearized using Equation (21).

3. The recurrence relation for the set of linearized first order differ-

ential equations is constructed using Equations (22) through (24)

.

4. The appropriate initial approximation, x (t) , is assumed for each

unknown dependent variable as a function of independent variable t.

5. The results of the first iteration, x. ..(t), can be obtained by substi-

tuting x (t) into the recurrence relation and using the superposition

principle.

6. A further improved solution is obtained by repeating Step 5. The

procedure is continued until the solution converges to the desired

accuracy.

3.4 DISCUSSION

The main advantage of this technique is that if the procedure conver-

ges, it converges quadratically to the solution of the original equation.

Quadratic convergence means that the error in the (n+l)st iteration tends

to be proportional to the square of the error in the nth iteration. All

the computational features of Newton-Raphson technique are retained in

this technique.

In spite of all the advantages, this technique also has its difficulties.

There are two main difficulties. The first difficulty arises from the fact

that in using the superposition principle, a set of algebraic equations must

be solved. Thus the ill-conditioning phenomenon in solving a set of linear

algebraic equations can make the superposition principle useless. Another

difficulty is the convergence problem. If the initial approximation is not



within the interval of convergence a solution cannot be obtained. For a

detailed mathematical treatment of this topic, the reader is referred to

Lee [9].



CHAPTER 4

APPLICATION TO AN ADVERTISEMENT PROBLEM

In this chapter, the computational aspects of this technique will be

discussed with respect to its application to an inventory and advertisement

model having two state variables and one control variable.

-

4.1 DEVELOPMENT OF THE MODEL

The diffusion model for advertisement was originally developed by

Teichroew [14]. Consider a group of people in which only certain members

possess a particular piece of information, say, about a manufacturing

company's product. Suppose that the total number of persons in this group

remain constant and that the diffusion of information occurs only through

personal contact. The number of contacts made by an average informed person

in an arbitrary unit of time is given by a contact coefficient. This co-

efficient is same for all members of the group. In a contact, the contactee

receives information if he does not already have it; if he already has it,

the contact is wasted in the sense that it did not increase the number of

informed people.

Let Q(0) = Q number of informed people at time t.

.

N = total number of persons

c = contact coefficient: the number of contacts made by
c

one informed person per unit time.

Q(t) = number of informed persons at time t.

Q(t)/N = proportion of informed persons at time t.

1 - Q(t)/N • proportion of uninformed persons at time t.

c Q(t) dt = contacts made during a time interval dt.



The increase in the total number of informed people during a short interval

of time At is obtained by multiplying the number of contacts by the propor-

tion of uninformed persons , because an increase in informed members is

caused only by contacts with uninformed group. Hence,

dQCt) - c Q(t) dt (1 - Q(t)/N)

49M«c
c

QCt) Cl-SM) (25)

Suppose now that the manufacturing company can influence the number of

contacts by spending money for advertising. Specifically, it can increase

the number of contacts made by the informed people by an additional number

A per unit of time. Thus,

4SM-QU) Cc
c
+ aco) n- 5!^-] (26)

If each informed person buys c units of the company's product and

if SCt) represents the sale at time t, then

SCt) - c
q

QCt) (27)

Let c = 1, and substitute for Q(t) in Equation; (26)

,

^f^
1 = S(t) (c

c
+ A(t)) [1 - $&k (28)
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The rate of change of the company's inventory, I CO, is given by

*$* = P(t) - S(0 (29)

where P(t) = production rate at time t. The production rate is assumed

to be a linear function given by

P(t) = a + bt

where a, b are constants and t is time.

This is a typical industrial management problem where the management

wishes to maximize the profit given by Equation (30)

.

J-
f

[c SCO - c
T

(I - I(t))
2

- c
A
S(t)A

2
(t)]dt (30)

J I m A
i

where J is the net total profit, c is the revenue from sale of one unit of

The role of the management in this particular case is to select the

optimal policy from among all feasible solutions which gives the maximum

profit.

4.2 DEFINITION OF THE PROBLEM

Maximize

t
f

J -| [c SCt) - Cl (I
m

- ICO)
2

- c
A

S(t) A
2
(t)]dt (30)
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subject to

F(t) = a + bt (31)

^r^- P(t) - S(t) (32)
at

^|~£i = S(t) (c
c
+ A(t)) [1 -^~-] (33)

with boundary conditions

I(t.) - 1° and S(t ) = S° (34)

4.3 FORMULATION OF THE PROBLEM

The above optimization problem can be solved by calculus of variations

with the help of the quasilinearization technique. For detailed treatment

of the calculus of variations, the reader is referred to Bliss [3] and

Elsgolc [5].

Equations (31) through (34) can be rewritten as

£^£ - (a + bt) + s(t) - (35)

^ir
1 - s(t) (c

c
+ a^i 1 - ip-i - ° <36 >

We have two state variables, I and S, and one control variable A. Intro-
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duce Lagrange multipliers X., X and constant multipliers 8 , 6„ and define

the following functions.

Sc
c SA

F = [X {1 - (a + bt) + S) + A
2
(S - S(c

c
+ A - — -))

+ cS - c T (I - I)
2

- c. S A
2

] (38)
1 m A

and

G » [e
1
(i(0) - 1°) + 8

2
(S(0) - S°)] (39)

where the notation I represents the first differential -j— . The Euler-

Lagrange equations [11]

.1 <4Z) _ _1Z . (40)
dt

v
3y.

;
3y

.

and

3A

can now be applied to Equation (38) to obtain relations for the. Lagrange

-^2(I(I
m -D (42)

dA 2c SX 2ASX

^|=X1+ c-c
A

A -c
c

X
2
-X

2
A +-^ + -F^ (43)
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We need boundary conditions for the Lagrange multipliers X , X«. They

were obtained by applying the transversality condition [11].

3_G_ 3E_
= or

ac it
3y,

= o

Applying this condition to Equations (38) and (39) , we obtain

(44)

Now we have four differential equations with two initial and two final

conditions, which make the problem, a two point boundary value type. Applying

condition (41) to Equation (38) , we obtain

A
(43)

Since it is possible to express the control variable explicity in terms

of the state variables, let us eliminate A from all the performance equations.

dt
a + bt - S

2 2 3„ c S* S% SX, S%M . s _ s + 2 I ?-
dt c N c.N 2c. , ..2

A A 2c .N

(46)

(47)

-£• 2c
T
(I - I)

at 1 m
(48)
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dX
2 . , +

3S2X
2 +

X
2 . +

2C
C
SX

2
(49)

The boundary conditions are given by Equations (34) and (44).

4.4 QUASILINEARIZATION

Observe that Equations (47) and (49) are non-linear. They should be

linearized. The linearization procedure is the same as described in

Chapter 3. Referring to Equation (21), we need the expressions for f , f, ,

3g
2

3g
2

This matrix can be obtained from Equations (47) and (49)

.

2c S 2SX„ *
2

3S
2
X
2

2c, N A
A

c.N 2c. , „2A A 2c, N
A

4
,

2c
c
A
2

c.N 2c. , v2A A 2c,

N

A

3S
2
X. \. 2SX. 2c S

- c + T + o »t
— + ~S

—

C 2c/ 2c
A

C
A
N N

A

The linearized equations and the recurrance relations can be developed in

accordance with Equations (21) through (24)

.



27

*ga - . + bt - s
n+1

(so)

as c s s A„ s^\ s X.
n+1 _ , c n n 2,n n 2,n n 2,n ,

~ l C o E„
_

H +
r. H 9^. 97~ia2" J

dt l c n N c
A
N 2c

A
2c
A
Nz

2
2c s 2s A_ A„ 3s A„

, / Nr c n , n 2,n 2,n n 2,n ,
+ (s

n+l " S
n
} [c

c
" ~T~ + ~TJ- ' 2ct~ " ?TW ]AAA
s
2

s s
3

+
^2,n+1^2 ;

n>tc7N-2-c7-rcV] <51 >

A A A

-^ - 2Vm " 2cxVi (52)

dA
,

3s A A s X, 2c s A.
2,n+l r , , . n 2,n , 2,n n 2,n , c n 2,n ,j-— - [A, + c - c A„ + —j—=3— + -:—" *- 4 —*—

]dt l,n+l c 2,n 4c,

N

z 4c, c.N NAAA
2 2

3s A. A. 2c A.
, / u D 2 ,n 2,ri c 2,n ,
+ (s

n+l " 8
n)["2^i- " ^H~ +

~~
T"^ ]

2
A 3s A 2s A. 2c s

+ (>
2,n+l " X

2,n)[ 2ct"
" C

c
+
2cTn^ O- + T" ] (53)

A A A

The boundary conditions are given by equations (34) and (44).

Equations (50) through (53) are ordinary linear differential equa-

tions and with the boundary conditions given by equations (34) and (44)

,

they form a two point boundary value problem. This problem can now be

solved by superposition principle. Selecting the initial conditions,
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for the particular and homogeneous solutions such that they satisfy the

given initial conditions, the general solution can be written as

I(t) = I (t) + Ajl^t) + A
2
I
2h

(t)

S(t) = S (t) + AjSjjjCt) + A
2
S
2h

(t)

Xj(t) = ^x^Ct) + *!*! jjjW + A
2
x
i 2h

(t)

X
2
(t) = A

2) p
(t) + A

l
A
2,lh

(t) + A
2
A
2,2h

(t) (54)

These equations are derived in accordance with Equations (11) and (12)

.

After obtaining the final solution with the superposition principle,

Equations (30) and (45) can be solved for the profit and advertisement,

respectively. This completes one iteration. Further iteration was allowed

until desired accuracy was obtained.

4.5 NUMERICAL ASPECTS

In order to solve this problem, the constants were assumed to have

the following values

.

a = 70 c
A

= 1.5 1(0) = 1° = 20

b = 100 Cj = 0.15 S(0) = S° = 20

c
c

= 2 N - 150 t. - t = 1.0

c = 10 1-50 At - 0.01m

As discussed before, we need initial approximations to start the

solution. Since only two Equations, (51) and (53), were non-linear, we
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obtained from intuition and knowledge about the system. Various sets of

initial approximations used in this problem are listed in Table 1.

Solution of this problem by the superposition principle requires a

set of particular solutions and four sets of homogeneous solutions. How-

ever, as discussed previously, if the initial values for the particular

and homogeneous solutions are chosen such that they satisfy the given

initial conditions, only two sets of homogeneous solutions are needed.

The following set of values at the initial time satisfy this condition

and hence they were used as the initial values for the particular solution.

I (0) = 20 X, (0) = 0.0
P 1>P

S (0) = 20 X, (0) = 0.0 (56)
P 2,p

The initial values for the two sets of homogeneous solutions were

ssumed as

I
ih

(0 > V0)

Set 1

Set 2

x
l,ih<°>

1

1 (57)

4.6 COMPUTATIONAL ASPECTS

Using the initial values given by Equation (56) , the set of linear

differential Equations (50) through (53) were solved using the Runge-Kutta

method to obtain the particular solution.

For homogeneous solutions, the known terms in Equations (50) through

(53) were set to zero and the modified equations were solved by Runge-
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Table 1. List of initial approximations.

Set No. S
Q
(t) A

2 Q
(t)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

450.0 20.0

350.0 15.0

300.0 12.5

300.0 10.0

275.0 10.0

250.0 10.0

200.0 7.0

150.0 2.0

100.0 1.5

50.0 - 1.0

28.0 - 0.25

25.0 - 0.50

22.0 0.125

20.0 0.0

5.0 - 3.0
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[READ a, b, c, c , c, , H.C,, I
. _e . A^ ' I m

T
Read S.(e), X

2 Q
(t)

Eta

PARTICULAR SOLUTTON

k^ = 2° W0) " 20

X
l,n+1

(0) " ° X
2,n+1

(0) * °

P - 1 I * -i
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SOLVE EQNS. (51-54) BiT

SUBROUTINE RKT

W (t) WtJ

X
lp,n+l

(t) =W
Vn+l

(t) - X
2,n+l

(t)

S
2h,n+l

(t) * W°
X
12h,n+l

(t) " *l.«rU
(t)

X
22K,n+l

(t) " X
2,n+l

(t)

HOMOGENEOUS SOLUTION

X
l,n+l(°>
P =

1 V^M
INTEGRATION CONSTANTS

55 using Cramer's Rule

*—I >

J
lh,n-

X
llh,n+l

(t
> " X

l,,+1^>
X
21h,n+l

(t) * X
2,n+l

(C)

HOMOGENEOUS SOLUTION "1

x
i.=u<°>
? -

W0) " .°

I_s_o I

FINAL SOLUTION USING
EQUATIONS 55

3—|n = n + l {~

Fig. 2. Computer Logic Diagram for an Advertisement Problem.
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Kutta method using the initial conditions given by Equation (57). These

were the first and the second set of homogeneous solutions. Last two

Equations in (54) at final time t 1 were used to solve for the two

integration constants, A. and A . The solution was obtained by Cramer's

rule. Next, the general solutions for the two state variables and two

Lagrange multipliers were obtained by using the superposition principle,

Equation (54)

.

The control variable A and objective function, J, were obtained next

using Equations (45) and (30) respectively. For simplicity the following

approximation was used to calculate the total profit.

f
2 ,

J =
I tcS(t) - c

T
(I - I(O) - cS(t)A

/
(t)]At

t. I m A

In general, 9 iterations were allowed.

The IBM 360/50 computer system was used for all these computations.

Computer logic diagram is shown in Fig. 2. The computer program is given

in Appendix 2.

4 . 7 RESULTS

The optimal profit in this program was J 587.80 and the optimal

initial and final values are

1(0) = 20 s(0) = 20 A(0) = 3.98

1(1) = 66.15 s(l) = 115.69 A(l) =
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Out of the 15 different sets of initial approximations listed in Table 1,

the first five sets did not produce convergence.

In set 1, the particular and homogeneous solutions of all the four

40
variables at the final time, t , involve terms of the order 10 . As a

result, the calculation of integration constants by Cramer's rule involves

80
terms of the order 10 , which cannot be handled by IBM 360 computer and

exponential overflow was resulted.

Set 2 encountered a similar problem. The lowest term in the partic-

13
ular and homogeneous solutions at final time t,, was of the order 10

This did not cause any difficulty in the calculation of integration con-

stants, but resulted in exponential overflow in the computation of final

solution of first iteration.

Sets 3, 4, and 5 encountered basically the same problem. For

explanation, results of set 4 are used here. In the final solution of

first iteration, the following results were obtained.

A(l) = -0.187 x 10
14

1(1) = 0.706 x 10
7

s(l) = -0.141 x 10
9

as a result of such large numbers , the computer experienced exponential

overflow and stopped computation while calculating the particular solution

of the second iteration.

Sets 6 through 15 converged to the same optimal solution in about

4-5 iterations. The convergence rates of sales, inventory, and advertisement

are shown in Figs. 3 through 11. The initial approximations used are sets
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10, 12, and 14 in Table 1. Fig. 12 shows the convergence rate of the

profit function with set 14 of Table 1 as the initial approximation. The

convergence rates of the initial and final values of the variables are

tabularized in Tables 2 through 5. The IBM 360/50 computer took about

3.72 minutes to complete 9 iterations for this problem with WATFOR compiler.

4.8 DISCUSSION

The results show that this problem converged with ten different

and far from optimal initial approximations. The optimal curves show that

the profiles of the state and control variables were either monotonically

decreasing or monotonically increasing. This made qussilinearization

method more effective.

It was observed from Tables 2-5 that convergence was obtained in 4-5

iterations for all sets of initial approximations that converged. It was

concluded that

1. The quasilinearization method converges quadratically,

whenever it converges,

and 2. The convergence rate is almost independent of the choice

of initial approximation, if the latter values are

within the convergence interval or range.

A note on the choice of initial approximation is in order. In this

problem, the optimal solution of sales is between 20.0 and 115.69. But

any initial approximation of sales between 5.0 and 250.0 would converge

to the optimal solution. Hence, choosing this value should not be a

problem. The author feels that, in general, the basic knowledge of physical
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Fig. 6. Convergence Rate of Inventory in an Advertisement Problem.
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Fig. 8. Convergence Rate of Inventory in an Advertisement Problem.
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Fig. 11. Convergence Rate of Advertisement in an Advertisement
Problem.
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behavior of the system is enough to make correct choice. Furthermore, many

numerical schemes have been devised to overcome the convergence problem.

One such scheme is the data perturbation technique [4].

In order to further investigate the convergence and other computational

aspects of this problem, the following constants were used.

a .= 0.7 c
A

= 1.0 1(0) = 1° = 0.2

b - 1.0 c, 0.15 S(0) - S° = 0.2

c - 2.0 S - 1.5
c

c = 10.0 I 1.0 it = 0.01 (58)
m

The initial approximations used were

The initial values for the one particular and two homogeneous solutions

were

K0) 8(0) X
x
(0) x

2
(o:

Particular soln. 0.2 0.2 0.0 0.0

Homo. soln. set 1 0.0 0.0 1.0 0.0

Homo. soln. set 2 0.0 0.0 0.0 1.0

The convergence rates are shown in Table 6. The problem converged In 4

iterations. The optimal profiles of I, S, and A are shown in Fig. 13.
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Table 6. Convergence rates for the modified problem, Equation (58)

Iteration Time
} (t) (t) A(t) j

Number t • 1 ' 2

0.0 0.20 0.0

0.25 0.20 0.0

0.50 0.20 0.0

0.75 0.20 0.0

1.00 0.20 0.0

0.0 0.200 0.200 -0.225 -0.225 9.763
0.25 0.292 0.714 -0.169 -13.563 3.553

0.50 0.313 1.284 -0.118 -7.337 0.529

0.75 0.240 1.985 -0.064 -3.010 -0.487

1.00 0.027 2.915 -0.0 0.0 0.0

0.0 0.200 0.200 -0.187 -13.903 6.025

0.25 0.308 0.592 -0.131 -6.851 2.072
0.50 0.383 0.945 -0.082 -3.526 0.653
0.75 0.448 1.146 -0.038 -1.985 0.234
1.00 0.532 1.433 0.0 0.0 0.0

0.0 0.200 0.200 -0.180 -12.369 5.360
0.25 0.313 0.552 -0.124 -6.308 1.994
0.50 0.403 0.861 -0.076 -3.994 0.851
0.75 0.490 1.078 -0.034 -2.173 0.306
1.00 0.595 1.223 0.0 0.0 0.0

0.0 0.200 0.200 -0.180 -12.411 5.378
0.25 0.313 0.552 -0.124 -6.333 2.001
0.50 0.403 0.860 -0.076 -4.015 0.856
0.75 0.490 1.077 -0.034 -2.175 0.307
1.00 0.596 1.219 0.0 0.0 0.0

0.0 0.200 0.200 -0.180 -12.410 5.378
0.25 0.313 0.552 -0.124 -6.332 2.001
0.50 0.403 0.860 -0.076 -4.015 0.856
0.75 0.490 1.077 -0.034 -2.175 0.307
1.00 0.596 1.219 0.0 0.0 0.0

8.631

6.682

6.669

6.669
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Fig. 13. Optimal Profiles of I(t), S(t) and A(t) for modified
Problem, Eqn. (59).
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Most important advantage of this technique is that the control

variable can be eliminated from the performance equations. Hence, initial

guess for the control variable is not required in solving for the state

variables. For this reason, this technique is superior to the gradient

technique because any error in guessing the initial control can result

in failure to obtain the solution.

It may be interesting to note that the results of this problem,

using the initial values listed in Equation (55), compare favorably with

the results obtained by the first variational gradient technique [15].

The modified problem with numerical values given by Equation (58) has

also been solved by the second variation technique [13] . The present

results again compare favorably with this result.

It will be observed in the next chapter, that even if the control

variable cannot be canceled from the performance equations, quasilineari-

zation method still works well.
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CHAPTER 5

APPLICATION TO AN ADVERTISEMENT AND PRODUCTION PROBLEM

We now wish to apply the quasilinearization technique to a more com-

plex problem, namely an advertisement and production problem. This problem

has six state variables and three control variables. In addition, the

profiles are fairly unstable due to the rapid change of the variables

with time.

5.1 DEVELOPMENT OF THE MODEL

Consider the manufacturing process shown in Fig. 14. There are two

chemical reactors in which the following consecutive reactions take place

A > B > C

Both these reactions are first order. The component B is the desired

product and C is the waste product. Suppose B is a new product which needs

advertisement to boost the sales. Furthermore, to protect against fluct-

uations in demand, an inventory will be assumed for B. A and C are

assumed to have unlimited market at fixed price and they are sold as soon

as manufactured.

Let x and

respectively. Under steady state conditions, from material balance, we have

amount of _ amount of amount of A
A in A out transformed to B ^ '

amount of _ amount of amount of B _ amount of B
B in B out transformed to C " produced from A ^

60 ^
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v. " volume of chemical reactor i, i = 1, 2.

q = flow rate

k .
= reaction rate constant of the first reaction in reactor i

ai

Vl . = reaction rate constant of the second reaction in reactor i

G , G, = frequency constants of the first and second reactions, respectively
a b

E , E, activation energies of the first and second reactions, respectively
a d

R = gas constant

The kinetics of the reactions can now be written as

q(X(3 - Xj) - V^^ =

at steady state. Under unsteady state conditions we have

dx.

v
l dT

= q(x ' x
l

) " V
l
k
al

X
l

C61)

similarly, eqn. (60) can be rewritten as

q(y - y
x

) - v^^ + v
1
k
al
x
1

= o
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at steady state. Under steady state conditions, we have

dy
l

v
l IT

= q(y - yl
} " v

l
k
bly l

+ v
l
k
al

x
l

(62)

With similar arguments, the kinetics of the reactions in the second

reactor can be written as

dx
2

V
2 dt~

= q(x
l " X

2
}

_ V
2
k
a2

X
2

(63)

and

V
2 IT = q(y

l
- y2

) - V
2
k
b2y 2

+ V
2
k
a2

X
2

(6A)

The reaction rate constants are defined as

al a

E
a *b

\i
m G

a
ex? (

- 1& ' \2'% exp <- SrJ <«>

As indicated before B is the desired product and it needs inventory

and advertisement. The performance equation for the inventory is

rate of change _ production sales
of inventory rate rate

£•<&>- (66)
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where I is the inventory and S is sales.

The performance equation for advertisement is the same as Equation

(26) in the last chapter. Again, let c » 1. According to Equation (27),

we have

Thus,

S(t) = c Q(t) = Q(t)

af=S(cc
+ A)[l-f] <67 >

where c is the contact coefficient. A is the advertisement and N repre-

sents the total number of people in the group.

Equations (61), (62), (63), (64), (66), and (67) describe the system

letely. We have six state variables

three control variables, T , T„, and A.

The management in this particular industrial system is confronted with

the problem of selecting three control variables such that the following

profit function, J, is maximized.

profit = [revenue of B + revenue of A + revenue of C
Jt

i

inventory advertisement manufacturing,
cost cost cost

Mathematically,



-J t

[c
l
C
q
S+C2",q*2

+ c
3
q(l - x

2
- y2

) - Cl (I
m

- I)
2

i

.2 2

5.2 DEFINITION OF THE PROBLEM

Maximize the functional

J "
J

I c
l
c
q
S + c2^2 + c

3
q(1 - x

2
" V - c

I
(I
m " T)

i
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C
A
A
"
S " " C

T
{(T

ln.
" V + (T

1 " V }]dt (68)

" ^^ " C
T
{(T

lm " T
l
)2 + (X

1 " T
2
)
2
}] dt (69)

subject to the constraints of

a*
VldT = q(x - V - v

i
k
al

x
i W)

dy
2

V
lW " *% - 7j) - v

1
k
tly1

+ VlkalXl (71)

dx
2 .

V
2 di~

= qK7
-l

' V * V
2
k
a2

X
2 <72>

dy
2

V
2 dT

= q(y
I

" y
2
} ' v

2
k
iay 2

+ V
2
k
a2

x
2 <73 >

dl

dt
= qy

2
" S (?*)

||=S(c
c
+ A)[l-|] (75)

with boundary conditions
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X
1

(V = X
l W = y2

y/t.) = y° I(t.) - 1° I(t
f
) = I

1

x
2
(t.) - x° Stt±>

= S
°

(76)

5.3 FORMULATION OP THE PROBLEM

It was required to find the optimal value of the state variables and

control variables so that the objective function is maximized. This

problem can be solved by calculus of variations. The procedure for

obtaining the solution remains essentially the same.

Equations (70) through (76) can be rewritten as

J. - a~ (xA - x,) + G e RT," x = (77)
1 v. 1 a 1 1

h - v
x

(y - y l>
+ G

b
e RT

1 yl ~ G
a

e RT
1

X
l " ° (78)

X
2

- v^
(X

1
- X

2
) + G

a
e" RT

2
X
2

= ° (7S)

E
b

E
a

y2 " v^
(y

l
" y2> + % e

' W
2

y
2

" G
a

e"^ x
2 " ° (80)

(81)

S - (c
c
S + AS)[1 - |] = (82)

dx.

The symbol x represents -r—
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Introduce lagrange multipliers, ^
.

, i " 1, . . . , 6, and constant

multipliers 9
, j = 1, . . ., 7, and define the following functions.

E

F - [A
l(il

- 4- (x - x
x

) + G
a

e" ly X
X
)

E E

* V*i - *- (y - yj) + S e"^ yi
" G

a
e"^ V

+ S (i
2

- ^ (X
1

- V + G
a

e" RT
2

X
2

E
b

E

+ \(y2
- ^ <y

1
- y2 > + % ." ht^ y2

- c
a
r ^ ^

+ X,(j - qy, + S)

+ A
6
(S _ cS - AS +

^f-
+ A|_>

+ C
L
C
q
S+ C

2
qX

2
+ C

3
q(1 " X

2 " V " C
!
(I
m " I)2

- c
A
A
2
S
2

- ^{(T^ - T^ 2
+ IJ

1
- T

2
)

2
}] (83)

g - [ejfejfcj) - x°) + e
2
(
yi

(t
±
) - y°) + e

3
(X2 (t.) - x°)

+VW - y°) + 9
5
<i(t

t
) - i°)

+ e
6
(i(t

f
) - i

1
) + e

7
(s(t.) - s )] (84)

The Euler - Lagrange equations [ 11 ]

,
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d ,3F . 3F _ ,„ %

and

3F

3Z
"°

-x
<86 >

can now be applied to Equations (83) to obtain the relationships for the

six lagrange multiplier equations.

dX A A _ _b

F-^tJ*^' rt
i .

(88)

<U- X„q a

dX X q %
IT m

T~ +
Y'b e" RT

2
-«««3 + V (90)

dX

^- = 2c T I - 2c T I (91)
dt I m I

dX
fi

2cSX 2ASX, -

3T C
l
+ A

5
" CA

6
- W

6
+ -IT

1 + -T1 - 2C
A
A S <92 >

Application of Equations (86) to (83) yields
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A =— f — - — ) (93)A
2c, N S

* ** '

A

(X. - AjG E x \ l.GE, \__1 2 a a 1
e + ^ b ° X

e RT - 2c (2T -T -T ) = (94)

RT RT
1

!

(X„ - X.)G E x, \_ WKy, _ ^b_
—3

Y^-
5-^ e~ RT

2
+ * b

°
2

e RT
2

+ 2c
T
(T
1
-T

2
) = (95)

Equation (93) gives explicit expression of the control variable A.

Hence A can be eliminated in all the performance equations. However, the

control variables, T
1

cannot be eliminated.

Substituting the expressions for A into Equations (82) and (92), we

obtain

.2 SA, X. S
2
\,

|| - CS - Sf + -| - T
6- 6

-j (96)
dt N C

A
N 2C

A 2c N
2

A

dX. ll 2cSX, sx,

A 2c. N
r' A

Notice that these two equations are non-linear.

Equations (77) through (81), (87) through (91), (96) and (97) represent

the system. For these 12 differential equations we have only 7 boundary

conditions given by Equation (76). The additional 5 boundary conditions

can be obtained by applying the transversality condition [11]

.
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3G

3y, tf<
=

i It,

3G

¥y.

3F
=

to Equations (83) and (84)

\(t
£

) -

W -

»,<V -

W = o

w "
° (98)

The boundary conditions given by Equations (76) and (98) make this

system, a two point boundary value problem.

Let us consider the case that the final condition on the inventory

was not given. Equations (69) through (75) remain unchanged. Equation

(76) can be modified as

w *i

K
2
(t.)

y2
(t

t
) y 2

s(t
t

) = s
u

(99)

Definition of the function F, Equation (83), remains the same, but the

function G is modified as
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g = [e
1
(x

1
(t.) - x°) + e

2
(y

1
(t.) - y°) + s^C*^ "

"a
5

+ e
4
(y

2
(t.) - y°) + e

5
(i( tl ) - i°)

(100)

Since E remains unchanged, Equations (87) through (97) are valid in

this case.

Applying the transversality condition [11] to Equation (100), we have

X
1
(t

f
) =

- A
4
(t

f
) -

- x
5
(t

f
) =

(103)

5.4 QUASILINEARIZATION

Only Equations (96) and (97) are non-linear. The linearization

procedure is the same as described in Chapter 3. Referring to Equation

(21), we need the expressions for f , f, , g , g, . In other words, we need

»g, 3g,

3g
2

38
2

3S~ SU
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This matrix can b ; obtained from Equations (96) and (97).

2cS .

X
6

SA
6 SI S

2

c
A
N ^N? • c

A
N 2c

A
" 2c^P

J =

2cA,
2

X
6 2cS

X
6

X
6

_
(102)!c,N2 ' N

C
c.N c.N^

A A A

Linearization and recurrence relations were developed in accordance with

equations (21) through (24)

.

l,n+l q

E
a

(x " Xl,^ - G
a

e" RT
1

X
l,n+1

(103)dt v

dy
l,n+l q_
dt v.

(y " yi.n+l 5 " G
b

6 RT
1 yl,n+l

+ G
a

E

*~A x
l,n+ l

W)

2,n+l q

dt v
2

E
a

(x
l,n+l " *2,a«> " G

a
e_ RT

2
X
2,n+1

(105)

dy
2,n+l q

E
b

(yl,n+l " *2,n«> " G
b

e RT
2

y2,n+l
+

E

G
a

e" R^ X
2,n+1

(106 >dt v
2

dI
n+l

~1T = qy2,n+l
_ S

n+1 (107)

-dT = tcS
n

2 2
cS S X, X, SI,
n n o,n 6,n n 6,n -,

N c.N 2c. "
, „2

J

A A 2c,

N

A

+ (S
n+l

„ ,, r 2cSn ,
6,n n' 6,nV lC

N c A
N " c„N2
A A
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S s
2

+ & fi -.1 - ^ J^ - ^Tr S"J <108 >
o , nrl o , n c.N ^c. „ vtzA 'A 2c. N

A

E
l,n+l , l.n+1 3,n+l* , ,, , > _ - ==-

5
>
n+1

= 2c I - 2c I
dt I I n+1

dX, ., \\ 2cS X, S A?
6, n+1 r . , , 6,n . n 6,n n 6,n ,

dt 1 5,n+l 6,n 2cJ N 2

2cA, X,

(109)

^ '^ - ^f> A
2>n+1

G
b

." B" (110)

E

_3jEtl . _ABil + (X3>n+i
.
X4)n+i)Ga e

-
RT2 + q(c2 _ ^ (11 1)

4,n+1 4,n+1 . , _ :r=—
, /ins

—dt
- = —^- + X

4,n+l
G
b

e EI
2 "

c
3
q " «X5,*U (112)

n+1 n'
1

N , ..2
2c.

N

A

2cS X, S X,

+ ft. - -X, )[-5-i " «--V + -J^l*S ] (I")
6,n+1 6,n N c.N c.N-'

A A

The boundary conditions are given by Equations (76) and (98) or (76) and

(101).

Equations (103) through (113) are ordinary linear differential equa-
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tions and with the boundary conditions given by equations (76) and (98)

or (76) and (101), they form a two point boundary value problem. This

problem can now be solved by the superposition principle. If the initial

values for the particular and homogeneous solutions are selected such that

they satisfy the initial conditions, the general solution can be given

as

(114)Xl (t) = x (t) + IVl,kh (t)
r k=l

yi
(t) - y (t) + I Vl,kh<° U15)

r k=l

(116)x
2
(t) = x

2p
(t) +

k
^V2 ,kh

(t)

y2
(t) - , (t) + I V2,kh

(t) (117)
r k=l

I(t) - I (t) + I Vkh (t)
r k=l

6

S(t) - S (t) + I Vkh (t)
r k=l

6

(118)

(119)

X.(t) - X
ip

(t) + ^Vi.fcfcW t - 1. .... 6. (120)-(125)

These equations are derived in accordance with Equations (11) and (12)

.

After obtaining the solution for the 6 state variables and 6 Lagrange

multipliers by the superposition principle, Equations (69), (93), (94), and

(95) can be solved for the profit and the three control variables, A, T.,

T. , respectively.
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All these calculations complete one iteration. Further iterations

were allowed until desired accuracy was achieved.

5.5 NUMERICAL ASPECTS

Depending upon the value of the constants and the boundary conditions,

this problem was divided into classes A, B, C, D, and E. The object

was to investigate the convergence and other computational aspects of this

technique from different angles.

Problem A

The following values were assumed for the various parameters

G
a

= 0.535 x 10 per minute N « 100

18
G^ = 0.461 x 10 per minute c = 1

E = 18000 cal/mole

E. = 30000 cal/mole

R 2 cal/mole °K

q = 60 gal/min

10 gallons x.(t) = 0.53 t 0.0
U l

it - 0.01 y
Q
(t) = 0.43 t

f
= 1.0 (126)

The boundary conditions were

x
1
(0) = 0.53

yi
(0) - 0.43 x

2
(0) = 0.53 y

2
(0) - 0.43 1(0) = 1.0

S(0) = 0.1 1(1) = 10.0

It should be emphasized that class A was the only problem which had
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final condition on the inventory.

There were only two non-linear differential equations, hence only

two initial approximations, S
Q
(t) and X, n^ ' were required. The

equations for the control variables, T and T„, are implicit and cannot be

solved directly. Hence, the initial approximations for T and T„ were

also required. The various sets of initial approximations used for problem

A are listed in Table 7.

Problem B

The same parameters used in problem A were used here, except that the

final condition on the inventory was removed. As a result of this change,

according to Equation (101), X-d) « 0. The boundary conditions are

x (0) - 0.53 y,(0) 0.43 x
2
(0) = 0.53 y,,(0) = 0.43 1(0) > 1.0 S(0) = 0.1

As in the last case, only S
Q
(t), X

fi Q
(t), T

± Q
(t), and T

2 Q
(t) were required

as the initial approximations. They are listed in Table 8.

Problem C

Some of the parameters were changed. For clear understanding all of

them are rewritten in the following

G 0.535 x 10
11

per minute N = 100
a

18
G, = 0.461 x 10 per minute c = 1

E = 18000 cal/mole (^ = 0.0005 $/°k

BL = 30000 cal/mole c
A

= 0.0002 $
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R = 2 cal/mole °k c = 5.0 $

q = 60 gal./min. c_ = c-

v = v. - 12 gallons c =1.0

I = 20 gallons x_(t) = 0.53 t. = 0.0

The boundary conditions were

Xl (0) = 0.53
yi

(0) = 0.43 x
2
(0) = 0.53 y 2

(0) = 0.43 1(0) = 8.0 S(0) = 0.1

A list of initial approximations is shown in Table 9.

Problem D

c, = 0.01 S(0) = 1.0
A

All other parameters were the same as in problem C. Three different

initial approximations were used for this problem. They are tabulated in

Table 10.

Problem E

The only difference between problems E and C is in the initial condition

of the sales. In the present problem, the initial condition for sales is

S(0) =0.1

All others values are the same as in problem C. The values of the initial

approximation used are given in Table 11.

The initial values used for the particular and homogeneous solutions are

given in Table 12.
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Table 7. Initial approximations for problem A.

Set No. T
i,o

(t > T
2,0

(t) S
Q
(t) Vo (t >

1A 345 345 1

2A 345 345 50 -0.5

3A 345 345 30 -1.0

4A 330 330 1

Table 8. Initial approximations for problem B.

Set No. T
l,0

(t > T
2,0

(t) yo X
6,0

(t)

IB 330 330 i

2B 340 340 i

3B 345 345 i

Table 9. Initial approximations for problem C.

Set No. T
l,0

(t > T
2,0

(t) S
Q
(t) X

6,0
(t >

1C 330 330 1

2C 345 345 1

Table 10. Initial approximations for problem D.

Set No. T
l,0

(t > T
2,0

(t) s (t) Vo (t >

ID 355 355 20 -0.5

2D 345 345 50

3D 350 350 25 -0.25

Table 11. Initial approximations for problem E.

Set No. T
i,o

(t) T
2,0

(t)
.

yo X
6,0

(t)

IE 345 345 50
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Table 12. Initial conditions used for obtaining particular

and homogeneous solutions.

P.I.

for

A, B

P.I.

for

C, E

P.I.

for
D

Homogeneous Solutions

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Xl (0) 0.53 0.53 0.53

7l
(0) 0.43 0.43 0.43

x
2
(0) 0.53 0.53 0.53

y
2
(0) 0.43 0.43 0.43

KO) 1.0 8.0 8.0

S(0) 0.1 0.1 1.0

1<« 1

2
(0) 1

3
(0) 1

4
(0) 1

5
(o) 1

««» 1
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5.6 COMPUTATIONAL ASPECTS

Basically the same procedure was followed for all the five problems.

This procedure was essentially the same as that used in Chapter 4. With

the initial values given in Table 12, a set of particular solutions and

six sets of homogeneous solutions were obtained by numerical integration

using the Runge-Kutta method.

In order to solve for six integration constants, six equations for

which the final conditions were known, were selected from Equations (114)

through (125). To solve this 6x6 matrix on computer, matrix inversion

subroutine SIMQ supplied by IBM was used. A printout of this subroutine

is shown in Appendix 3. Using these integration constants with the newly

obtained particular and homogeneous solutions, the final solutions for

all twelve variables were obtained. Next, using Equation (93), values of

advertisement at all grid points were obtained.

For simplicity the following approximation was used to calculate the

total profit.

J = I [CjC S + c
2
qx

2
+ c

3
q(l " x

2
- y2

) - (^(1, - I)
q

"i

c
A
A
2
S
2

- c
T
{(T

lm
- T

x
)

2
+ dj - T

2
)

2
}]At (128)

Computation of T. and T„ were rather difficult because Equations (94)

and (95) are implicit in T and T„. To overcome this difficulty, c was

assumed to be zero and the last term in both the equations dropped out.

As a result, explicit expressions were derived as
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(E - E, )/R

T, =
a b

1 G x. E (X - A.)

ln[-
a 1 a 2 M

(E - E, )/R

T - *
b

2 G x, E (X, - X,)

^i 2 v « \ ] (l29)
G
b y2

E
b

X
4

These equations can be solved easily, but examining these equations care

tf , the denominator would involve lnbrfully, at final time t t
f , the denominator would involve lnbd which is

indeterminate.

Another approach to this difficulty was to apply the Newton-Raphson

method of root finding. This method is described in Appendix 1. As

indicated earlier, it is fundamentally the same as quasilinearization.

To start the Newton-Raphson method, initial approximations for both T and

T, were assumed to be 350.0. With these values, T and 1 at the first

grid points of the first iteration were solved. At other grid points,

solutions of T and T. at previous grid points of same iteration were used

as the initial approximations. Same procedure was repeated for the next

iteration.

This scheme encountered convergence problem in problems 3A, 3B, ID

and IE. The logic was slightly modified to overcome this trouble. The

procedure remained the same for the first iteration. For other iterations,

solutions of T. and T at the same grid point of previous iteration were

used as the initial approximation. With this change the convergence

difficulty was overcome in problems 3B and IE. The accuracy to check
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Newton-Raphson convergence was 0.1.

All these computations completed one iteration. Further iterations

were allowed until convergence was obtained.

5.7 RESULTS

Problem A

The four sets of initial approximations tried in this case are listed

in Table 7. Out of these four, three sets resulted in convergence to the

solution of the problem.

The convergence rates of the three control variables and the six state

variables for problem 1A are shown in Figs. 15 through 23. Fig. 24. shows

the optimal profile of the profit function. The optimal profiles of

Lagrange multipliers are shown in Figs. 25 and 26. The. total profit was

$79.75.

In order to visualize the convergence rates of the control variables

in more detail, they are tabulated in Tables 13 through 15. '
.

Problem 3A did not converge to the optimal solution. It encountered

Newton-Raphson convergence problem in the first iteration.

Some modifications were made to study the convergence problem.

In problem 4A, T was changed to 300, with other values remaining

the same. This problem experienced the Newton-Raphson convergence problem

in iteration 2.

Again in pr

values remaining the same, the advertisement curve became nearly discon-

tinuous, but it did converge in the sense that there was little difference
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Fig. 15. Convergence Rate of Temperature T , Problen 1A.
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400

1.0

Fig. 17. Convergence Rate of Advertisement A, Problem 1A.
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0.60

0.55

0.50

0.45

1st ITERATION
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6th, optimal

^^K.

^
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°- 4°l _-L_
0.C 0.2

J J,
0.4 0.6

TIME, t
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Fig. 18. Convergence Rate of Concentration >: , Problsm LA
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—
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Fig. 19. Convergence Rate of Concentration y , Problem 1A.
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0.55

0.50

£ 0.A5

0.40

0.35
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Fig. 20. Convergence Rate of Concentration x , Problem 1A.
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Fig. 22. Convergence Rate of Inventory I, Problem 1A.
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Fig. 23. Convergence Rate of Sales S in Problem 1A.
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Fig. 24. Optimal Total Profit Curve, Problem 1A.
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Fig. 25. Optimal Profiles of *,, ^., and X,, Problem 1A.
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Fig. 26. Optimal Profiles of A., X„, and ).,, Problem 1A.
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Table 13. Convergence rate of T (t) in problem A.

ite E
1 2 3 4 5 6 7 8

time

0.0 345.0 366.3 360.1 363.4 361.9 362.6 362.3 362.5 362,4

0.2 345.0 364.8 355.8 360.8 358.5 359.6 359.1 359.3 359.2

0.4 345.0 364.4 355.3 360.4 357.9 359.2 358.6 358.9 358.7

0.6 345.0 364.4 356.2 360.5 358.5 359.5 359.0 359.2 359.1

0.8 345.0 363.7 356.7 359.9 358.4 359.1 358.8 358.9 358.9

1.0 345.0 340.0 340.1 339.9 340.2 340.2 340.0 340.0 340.0

Table 14. Convergence rate of T,(t) in problem A.

iter
Q 1 2 3 4 5 6 7 8

time

0.0 345.0 367.8 364.8 366.0 365.6 365.7 365.7 365.7 365.7

0.2 345.0 365.8 358.6 361.7 360.4 361.0 360.7 360.8 360.8

0.4 345.0 364.7 356.2 360.3 358.4 359.3 358.9 359.1 359.0

0.6 345.0 364.3 355.9 360.1 358.0 359.0 358,6 358.8 358.7

0.8 345.0 364.3 356.7 360.3 358.5 359.4 359.0 359.2 359.1

1.0 345.0 340.0 340.0 339.9 340.2 340.2 340.0 340.0 340.0

Table 15 Convergence rate of A(t) :Ln problem A.

iter
Q 1 2 3 4 5 6 7 8

time

0,0 260.40 358.80 366.40 370.60 369.90 370.50 370.30 370.40

0.2 4.47 4.65 4.68 4.67 4.67 4.67 4.67 4.67

0.4 1.38 1.70 1.72 1.72 1.72 1.72 1.72 1.72

0.6 0.43 0.67 0.69 0.69 0.69 0.69 0.69 0.69

0.8 0.09 0.22 0.23 0.22 0.22 0.22 0.22 0.22

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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in the results of iterations 8 and 9.

Problem B

All the three initial approximations listed in Table 8 converged to

the optimal solution.

Problem 3B encountered Newton-Raphson convergence difficulty initially,

but using the same grid point of the previous iteration as the starting

value in the Newton-Raphson solution, the optimal solution was obtained

in about 6 iterations. The optimal profiles of the six state variables

and the three control variables are shown in Figs. 27, 28 and 28A. The

total profit in this case was $95.79.

Problem C

Unfortunately, for both the initial approximations given in Table 9,

the problem did not converge.

In problem 1C, the computer experienced exponential overflow while

calculating the control variables in the first iteration. The following

values of the state variables were obtained in the first iteration

1(1) = -12.62 S(l) = 238.76

All other values were reasonable.

There are two reasons for this convergence problem: the Newton-

Raphson convergence difficulty or the quasilinearization difficulty. In

this particular case, the author feels that it was the Newton-Raphson

convergence difficulty.



90

0.55 _

,0.50 J

0.45

O.A0



91

800

S 400

200

5

1

!

<u
\

\

M
\

\

o

0.0 0.2

\\

t t

0.4 0.5

TIMS, t

L.
0.3

375

365

355

345

335

Fig. 28. Optical Profiles of A, T. , Tn , problem



92

0.0 0.2 0.4 0.6

TIME, t

0.8 1.0

Fig. 28A. Optimal Profile of S, Problem



93

In problem 2C, computation was not possible in the fifth iteration

because of the Newton-Raphson convergence problem. Results of the fourth

iteration indicate that the sales goes to negative in the initial time

and then rises up to 82.61 at the final time. Another peculiarity of

this problem was the near discontinuity of the advertisement curve. A(0)

is -5639.0 and A(0.01) is +90.54. Such a sharp change of the variable

with time can make both the Newton-Raphson method and the quasilinearizatlon

method useless.

Examining the linearized performance Equations (108) and (113) , we

c. can make the problem unstable. In this case c. 0.0002. The
A " A

author feels that this is a fairly low value and considering that Equations

not obtaining a solution to this problem.

In spite of this difficulty, with all other values remaining the same,

S(0) was changed in hope of obtaining a solution. Initially S(0) was 0.1,

and the following values of S(0) were tried.

a. S(0) = 15.0. The value of the advertisement was negative,

A(0) = -145.6. This case encountered the Newton-Raphson convergence

difficulty in the first iteration.

b. S(0) = 8.0. The value of the advertisement was negative and

decreasing very rapidly. A solution was not possible because of the Newton-

Raphson convergence problem in the second iteration.

c. S(0) = 4.0. The value of the advertisement was negative and

decreasing rapidly. The same convergence difficulty was encountered but
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this time in the fourth iteration.

It can be seen in all these cases that

1. The value of the advertisement curve was nearly discontinuous, and

2. The Newton-Raphson method caused convergence difficulty.

This leads to the idea of increasing c .

Problem D

c = 0.01 and S(0) « 1.0
a

These two changes were made in the parameters of problem C. Table 10

shows the three initial approximations used in this problem. Sets 2D and

3D proved to be good guesses and convergence for these sets was obtained

in about 5 iterations.

This problem had no final condition on the inventory. This is where

it differs from problem A. For the purpose of comparison, the detailed

results of this problem are given. Figs. 29 through 37 show the conver-

gence rates of the three control variables and the six state variables

for problem 2D. The convergence rate of the profit function is given in

Fig. 38. The total profit was $66.26. The advertisement curve as can

be seen in Fig. 31 is not as sharp as the previous ones. It is a mono-

tomically decreasing curve.

Set ID did not converge. Examining the initial approximations, only

^ n(t) = -0.5 could be a wrong guess, but the final solution of X,(t) in
b ,U o

the first iterations look reasonable. It encountered convergence problem
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As a slight modification, S(0) 5.0 was tried. All other parameters

remain unchanged. This problem encountered the Newton-Raphson convergence

difficulty in the fourth iteration. Observing the optimal profiles of

all the variables, the author feels that this was the most stable problem

out of the five problems tried.

Problem E

Only change in the parameters was S(0) 0.1, the other parameters

remain unchanged. The values of the initial approximation used is given

in Table 11.

Set IE converged to the optimal solution. The optimal profiles of the

six state variables and the three control variables are shown in Figs. 40,

and 41. The total profit was $65.98. The advertisement profile was

very sharp again. Obviously, this is because of the change in the initial

sales. There is not much difference from the other profiles.

In order to get an overall view, A(0) and J for all the problems solved

are compared in Tables 16 and 17.

On the average, this problem converged in 6 iterations with 3 digits

accuracy. For 9 iterations, IBM 360/50 computer took about 16 minutes

with FORTRAN IV H LEVEL compiler. The computer program is given in

Appendix 3.

5.8 DISCUSSION

The results for all the problems indicate that the optimal profiles
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either increasing or decreasing slowly. The. optimal profile of the adver-

tisement A decreases very rapidly making it almost discontinuous. Surpris-

ingly, quasilinearization did not encounter any trouble with this type of

curve. The gradient technique [15] and the second variation technique

[13] seemed to have failed because of this curve.

In general, convergence was obtained in 5 to 6 iterations. Tables

16 and 17 give the comparison of the convergence rates for A(0) and J for

all the problems solved.

Comparing the optimal curves of all the problems, it was observed that

there was no significant difference in the production and temperature

profiles. It: may be concluded that a change in certain parameters have

little effect on these profiles. However, a significant change in the

advertisement: curve was noted. This can be explained as follows.

With certain starting values of production and inventory, there is

a definite range of initial sales the market can absorb with reasonable

advertisement. If the initial sales is too low, the market needs a very

high advertisement to bring up the sales to the market capacity. On the

other hand, if the initial sales is too high, the market needs negative

advertisement to bring down the sales. For this reason initial sales was

a critical value.

Another criti

cost of advertisement is very little. From the cost point of view, heavy

fluctuations in A would not affect the optimal solution seriously. Hence

this profile was observed to be either negative or discontinuous or unstable

in cases where c. = 0.0002. Stable curves were obtained with c. = 0.01.
A A
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There were two main difficulties in solving this prohlem. Convergence

difficulties in 1. the Newton-Raphson method, and 2. the Quasilinearization

method. It was because of the former difficulty that some of the problems

did not give any solution. No problem failed because of the latter diffi-

culty. If a better method for solving T and 1^ could be used the author

is optimistic that all the problems discussed here would converge to the

solution.



CHAPTER 6

CONCLUSION

The numerical examples presented in this work suggest that the quasi-

linearization technique may be a useful tool for obtaining the solutions

of nonlinear mixed boundary value problems. Because of the intimate

association between the boundary value problems and optimization and

control, this technique is also a useful tool for solving optimization

problems and systems analysis.

The object of this work has been to illustrate the effectiveness of

this method in overcoming the non-linearity difficutly in two point

boundary value problems encountered in optimization. The advantage of

this approach lies in its rapid rate of convergence, provided that the

initial approximations are within the interval of convergence of the

problem. This interval is fairly large for a number of problems. Further-

more, this interval can be enlarged by using devices such as data pertur-

bation.

Convergence rate was found very rapid in the problems solved. This

implies computational efficiency in terms of computer time for a prescribed

accuracy. This is an important advantage of this method over other optimi-

zation techniques such as the gradient techniques where the convergence

rate is slow particularly near the optimal solution.

The convergence of this method is contingent on the choice of starting

functions. In this work choosing correct initial approximation was not

difficult. In general the basic physical knowledge of the system is

enough to make a correct guess.
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In the formulation of the problem the control variables can generally

be eliminated. For this reason, this method is found superior to other

optimization techniques such as dynamic programming and the gradient

techniques. In the second problem, two control variables could not be

eliminated from the performance equations, but still quasilinearization

method worked well. It has always been the difficulty in solving these

control variables, that some of the problems did not give a solution.

This method was observed to be more accurate than either the first

variational or the second variational techniques. In the latter methods,

the average control variable is used throughout the calculation of one

step size. For a fast increasing or fast decreasing curve, this is not

likely to give accurate results. Quasilinearization, on the other hand,

uses the control variable for the calculation at the same point. For

this reason the accuracy is higher in this method.

For illustrative purposes, only two problems have been considered.

Obviously, this method can be applied to a variety of other complex problems

arising in industrial management systems. In addition, it can be combined

with other optimization techniques such as dynamic programming and non-

linear programming to optimize various topologically complex processes

encountered in the industry. Recently, this method has been proved to

be an efficient tool for reducing the dimensionality difficulty in dynamic

programming

.
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NEWTON-RAPHSON METHOD OF ROOT FINDING

Basically, this method is the Taylor series expansion with second

and higher order terms neglected. Expanding f(u
, , ) around u

f<W - f(u ) + (u .. - U„) f'(u ) +
n n+1 n n

f(u ) + (u - uj f'(u )
-

f(u )
,1 n
n+1 " n f ' (u )

n

This is the Netton-Raphson equation of root find:ing.

Since it is essential to solve two equations (for T.. ;md T ) simul-

taneously in chajiter 5, we derive Newton-Raphson equations for such case.

f<\ TfVfd^, T^) + (Tf
1 -^)

+ (if
1 - T") M . o

3T
2

lit

IT,

SOf
1

,
, if

1
) = BdJ, 1$ + (if

1
- T?

+ (if
1

- A 2* = o
L
3T

2

3T

Rearranging the terms,
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T
n+1 Jf +

n+1 Jf . T
n jf

+
n Jf _ £ (T

n ^
1

at
2

3t
2

hr
1

3i
2

Since t" and t" are known (initial approximation needed for first

iteration) , only unknowns in these equations are T , and T^ . This

iterative procedure is carried out until desired accuracy

if
1

- T* < E

if
1

- T^< e

is obtained.

A correct choice of initial approximation should be emphasized. Any

error in this selection can make the procedure diverge.
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APPENDIX 2



JJOB SHAH,RUN = CHECK,TIME = 9,PAGES=100,LINES=5'j 119

C

C THIS PROGRAM SOLVES A SET CF FOUR DIFFERENTIAL

C EQUATIONS TWO POINT SPLIT BOUNDARY VALUE TYPE USING

C SUPERPOSITION PRINCIPLE AND RUNGE KUTTA TECHNIQUE

C

C

c

C MAIM PROGRAM
C

COMMCN SX2,SX4,P,DT,A,B,CC,CA,AN,CI,AIM,C,J,Xl,X2,X3,X<i
DIMENSION X1(105),X2< 105),X3(105),XM105),SX1(1<3,102),
lSX2(]-3,i02),SX3(l9,l02),SXM19,102),PXl!102),PX2(102),
2PX3(102),PXM 102),H1X1(102),H1X2( 102 ),H1X3 1102 ),H 1X4 (102),
3H2X1(102),H2X2(102),H2X3(102),H2X4!]02),PR1(105),PR2(105),
4PR3C105)iPRFTU05)iA0VT1105)

C

C READING IN DATA
C

100 F0RMAT(8F9.'t)
READ 100,A,B,C,CC,CA,AN,CI,AIM

101 F0RMAT(3F9.'O
READ 101,DT,Wl,W2

110 FORMAT! • 1VALUE OF THE CONSTANTS')
PRINT 110

120 FORMAT!' A= • , F8 . 3
,

'
8=

' , F8 .3 , 'C= ' , F8. 3, 'CC= ' , F8.3, • CA= '

,

lF7.3i , AN= , *F8.3,«CI='»F7.4,«AIM=«,F9.4,«Sf0CT)»«tF9.4i
2«L6,Cm = '.F9.4. 'DT=' ,F6.3)
PRINT 120,A,B,C,CC,CA,AN,CItAIH,Wl,W2.DT
DO 130 1-1,101
SX2«1,I)«W1
SXM1.I )=W2

130 CONTINUE
140 FORMAT! • XI ! )

-
' , F10. A ,

' X2 (0 ) = ' , F 10. 4, » X3 ( 0) =« , F10.4,
1« X'. (0) = * , F10.4)

HI FORMATdH ,I4,2X,4E20.7)
C

C QUASILINEARIZATION ITERATIONS START

C

DO 3C0 J=2,19,l
C

C PARTICULAR SOLUTION
C

150 F0RMA1 UF10.41
160 FORMAT! '-PARTICULAR SOLUTION')

PRINT 160
P=l.
RE AD 1 50, XI ( 1 ) , X2 ( 1 > , X3 ( 1 ) , X', ! i I

PRINT 140,X1!1),X2! l),X3( 1) ,X4 ! 1)

CALL RKT
DC 170 1=1,101
PXK I) = X1 ! I )

PX2I1 ) = X2! I)

PX3! I ) = X3! I)

PXM I)=X4I I)



K 170 CONTINUE
120

31

C

C

C

PRINT 141, ( [,X1I I),X2(l),X3(I),X4(I),I=l,101, 20)

HOMOGENEOUS SOLUTION FIRST SET

32 P=0.C
3 1 180 FCr'.f'ATl '-HOMOGENEOUS SOLUTION FIRST SET')

34 PRINT 180
35 READ 150,Xl(l),X2ll),X3(l),X4( 1)

36 PRINT 140,X1(1),X2(1),X3(1),X4(1)
37 CALL P.KT

3£ [10 ISO 1 = 1,101
3<= H1XK I ) = X1( I )

4C H1X2(1)=X2( 11

41 H1X3U )=X3(I )

42 H1X41 1 !=X4 ( 1 )

42 190 CONTINUE
44

C

C

C

PRINT 141, (I, XII I1.X2I I ),X3t I ) , X4 1 I ) , I = 1 , 101 ,20)

HOMOGENEOUS SOLUTION SECOND SET

45 P = O.C
4 6 200 FORMAT ( '-HOMOGENEOUS SOLUTION SECOND SET 1

)

47 PRINT 200
4f_ READ 150, X 1 < 1 ) , X2 ( 1 ) , X3 ( 1 ) , X4 ( 1

)

4S PRINT 140, Xltll,X2ll),X3(l),X4(l )

5C CALL RKT

51 DO 210 1=1,101
52 H2X1II I«X1(I)
52 H2X2( I)*X2(I

)

54 H2X3I I1=X3(I )

55 H2X4I I )-X4( I )

5« 210 CONTINUE
57

c

c

c

PRINT 141, (I.XHI ),X2(1 ),X3(I) ,X4(I1, 1=1,101 ,20)

SOLUTION OF INTEGRATION CONSTANTS

5E 220 F0RPATI2F9.4)
5S READ 220.BBl.PB2
6C B1=H61-PX3(101 )

61 B2=EB2-PX4( 101

)

62 CET = HX3(101)*H2X4( 101)-H1X4( 101)*H2X3! 101)

62 Al=tei*H2X4(101)-B2*H2X31101))/UET
64 A2=tP.2*HlX3(101)-Bl*lilX4(101) 1/DET

65 230 FORKATUH , « Al= ' , F 9.4 , ' A2= '.F9.4)

66

c

c

c

PRINT 230.Al.A2

RECOVERY OF SOLUTION SUPERPOSITION PRINCIPLE

67 DO 250 1=1,101
It SX1 ! J, I )=PX1 (I H A1*H1XHI )+A2*H2Xl< I )

6S SX2(J,T)=PX2(1 I+A1*H1X2«1 >+A2*H2X2( I

)

7C SX3 i J,l )=PX3( I HA1*H1X3!I )+A2*H2X3(Il
71 SX4IJ.I ! = PX4U) + A1*H1X4(1)+A2*H2X4U)
72 250 CONTINUE



26C FORMAT!' FINAL SOLUTION ITERATION NO ' ( Hi//l
121

JJ=J-1
PRIM 260, J J

270 FORKATUH ,I4,2X,'iE19.7,6X,E15.5,6X,E15.5)
C

C CALCULATION OF CONTROL VARIABLE AND PROFIT
C

P1R=C0
P2R=C0
P3R=C.O
UO 2S0 1 = 1, 101
ADVTI I )=(SXMJ, I )/(2.*CA) )* ( SX2 (J , I ) /AN- 1 .

)

PRK I )=P1R+0T*(C*SX2< J, I )

)

PIR=PR1U)
PR2 I I )=P2R*DT*(CI*l lAIM-SXl(Jtl))**2))
P2R=PR2II)
PR3I I )-P3R:DT< (CA*SX2(J,I >*( ADVTI I )**2)

)

B3ft=PR3l I

)

PRFT<I)=PR1(I)-PR2U I-PR3I I

)

*-iW-T-H-l = 3 .0
260 CONTINUE

PAINT 2 70, ( t.SXK J.I ) ,SX2( J, I ) ,SX3( J, I ),SX<.< J, I) , ADVTI I),

1PRF-1 (I 1,1= 1,101)
290 FORMAT ('-TOTAL PROFIT ' , F15.3, 15X, 3F10. 3)

PRINT 290,l>RFT<101),PRl(10l>,PR2(101>,PR3(101)
C

C END Cf ONE ITERATION
C

300 CONTINUE
C

C END CF DO LOOP FOR OUAS IL INEAR 1 1 AT ION

C

STOP
END



5C0

SUBROUTINE KKT

THIS SUBROUTINE I

EQUATIONS SIKULTA

COMNCN SX2,SX4,P,
DIMENSION XK105)

1A2 ( 1 C5) ,A3(105) ,A

28M1C5),C1 (105) ,C
3D2(lC5),rj3ll05),D
DO 5C0 1^1, 100
«=SX2(J-1 ,1

)

N«SX4(J-1, I

)

TAM--1
T«TA*DT
AH I >»DT*(P*A+P*B
B1A*CC*V+W*IV**2>
lH»lV**3l/t2.*CA*<
B2A=CC+2.*V*W/(CA
1/(2. *CA< IAN**2)

)

B3A*V**2/(CA*AN)-
B1U >«DT*(P*B1A-P
CL! ! »=DT*(P*2.*C1
DlA=C-W*CC+3* *(W*
1-IW**2)*V7 ICA*AN1
D2A=3.*V*(W**2)/(
03A-V,/(2.*CA)-CCi
UCA*AN)
1«>2.*CC*V/AN
01 ( I )=DT*tX3( I M

1D3A)
A2( I >«DT*tP*A+P*B
B2(r I=0T*(P*B1A-P

UX'.l I ! + D 1(11/2. )*

C2(I»*0T*(P*2.*CI
D2( I )^ET*( !X3( ID

1 + B1! I 1/2. )*D2A+(X
A3(I >=DT*(P»A-*P*B
B3U)«DT*(P*BIA~P
UX41IDD2U 1/2. )*

C3( 1 »eOT*{P*2.*Cl
D3(H=BT*I (X31D +

1*B2( D/2.DD2AHX
A4( I )-DT*(P*A+?*E
BMI ) = DT*ir>*BlA-P
1UM ID03U ) !*33A
CI I )=DT*(P*2.*CI
DMl l*DT*< tX3UD
IB3!I i >*D2A + (X4U

)

Xl( I tl)=Xl tIMIAl
X2( r»l)>x2( [)+(Bl
X3!I + 1) =X3(D + (C1
X'.l I-H) = X4 I I ) + (Dl
CONTINUE
RETURN

122

S USED TO INTEGRATE THE FOUR LINEARIZED
NEOUSLY BY RUNGE KUTTA METHOD

DT,A,,f.,CC,CA,AN,CI,AIM,C, J,X1,X2,X3,X4
,X2il05),X3il05),X<.(105),Al(105),
M1051.B1 (105) ,B2( 105 1,63 D05),
2(105), C3(105),C4 (105), 01(1 05),
M105DSX2I 19,102) ,SXM 19, 102)

*T-X2( ID
/<CA*AN)-W*V/(2.*CA)-CC*(V**2)/AN-
AN**21 )

*AN)-W/(2.*CA)-2.*CC*V/AN-3.*W*(V**2)

V/(2.*CA)-V**3/ (2.*CA* (AN**2) )

*V*B2A-P*W*B3A+X2( (DB2A +XM

I

)*B3A)
*AIH-2.*CI*X1< I )

)

*2)*(V**2I/i4.*CA*(AN**2>)+W**2/(4.*Cit)
Z.*CC*V*h/AN
2.*CA*(AN**21 )-W**2/(CA*AN)+2.*CC*U/AN
}.*W*(V**2 ) / (2.*CA* ( AN**2 ) l-2.*W*V/

P*V*D2A-P*W*D3A*X2tt>*D2A+X4(I>*

ID
V*E
3A)
A I <;

Ml
(!)

it*
\r*B

3A)
tin
21 i

in
(D
\t*B

DT/2.)-(X2(I DBK I)/2.) )

?.A-P*W*P.3A+(X2( I)+B1(I)/2.)*B2A<

-2.*CI*(X1 U DAltl)/?.))
1/2. )+P?DLA-P*V*D2A-P*l-;'iD3A+(X2( I )

i01 (I)/2.)*03A)
Dl/2. !~!,VtIDB2(U/2.D
2A-P*W*B3*+lX2( I )+B2(I 1/2.DB2A +

-2.*CI*!XMIDA2( l)/2. D
1/2. l*P*DlA-P*V*D2A-f»«H*D3A+tX2lIJ
+ D2! I )/2. !*D3A)
DT)-CX2< I)+B3( ID)
2 A-P*H.*B3A+IX2( I )+83( I) )*B2A +

IK-2.*CI*(X1(I 1+A3ID )

)

:3( I! D-P*D1A-P*V*02A-P*W*D3A* !X2(I 1 +

»D3( II DD3A1
! I }*2.*A2(I)«2.*A3(X)-»A4(I) )/6.
! I l+2.*B2(I)+2.*B3(1>+B4(I) 1/6.
(I)+2.*C2U)+2.*C3(I>+C4U>)/6.
! I D2.*D2( I l+2.*D3l I) »04( I 1 1/6.



123

APPENDIX 3



$Jt
c

c

c

c

c

c

c

SHAH,RUN=CHECK,TIME=9,PAGES=100,LINES=55
124

THIS PROGRAM SOLVES A SET OF TWELVE DIFF. EQUATIONS TWO POINT

SPLIT TYPE USING THE SUPERPOSITION PRINCIPLE AND RUNGA_KU1 TA

TECHNIQUE.

MAIN PROGRAM

COMMCN Xl,YltX2,Y2,AI t Q,Zl,Z2,Z3,Z4,Z5
lGA,Ce,FA,R,AQ,Vl,V2,Y0,EB,ANtCA,CItAIM
2CT,P,W1,W2,K3,W4,TEM1,TEM2, J,SAQ,SZ6
DIMENSION X1(105),Y1(105),X2(105),Y2(1
1Q(105),Z1(105),Z2(105),Z3(105),Z4(105)
2Z6(1C5),SX1( 10,102),SY1UO,102),SX2(10
3SAI(10,102),SAQ(10,102),SZ1(10, 1021.SZ
4SZ3(10,102),SZ4< 10,102),SZ5I10,102),SZ
5PX1(102),PYK102),PX2(102),PY2(102) ,PI

6PZ1(102),PZ2(102),PZ3I102),PZ4(102),PZ
7X0(1C5),Y0(105),TEM1(10,102),TEM2(10,

1

DIMENSION H1XK 102) ,111 Yl( 102), HI X2( 102
1H1AI(102),H1Q(102),H1ZK102),H1Z2( 102)
2H1Z4(102),H1Z5(102),H1Z6(102),H2X1( 102
3H2X2(102),H2Y2(102),H2AI(102),H2Q(102)
4H2Z2U02),H2Z3(102),H2Z4(102),H2Z5(102
5H3X1(102),H3Y1(102),H3X2( 1 02 ) , H3Y2 ( 102
6H3Q(102),H3Z1(102),H3Z2(102),H3Z3(102)
7H3Z5I 102),H3Z6( 102) ,H4X1 ( 102 > ,H4 Yl ( 102
8H4Y2(102),H4AI ( 102 ) , H4Q ( 102 ) , H4Z 1 1 102)

9H4Z3U02) , H4Z4U02) ,H4Z5 ( 102 ) , H4 Z6 ( 102
1H5YK102),H5X2(102) ,H5Y2 ( 102 ) ,H5AI ( 102
2H5Z1(102),H5Z2( 102 ) ,H5Z3 ( 102) ,H5Z4 ( 102

3H5Z6I102) ,H6X 1(102) , H6Y1 ( 102 ) , H6X2 ( 102
4H6AII102),H6Q(102),H6Z1(102),H6Z2(102)
5H6Z4I 102),H6Z5( 102) ,H6Z6( 102)
DIMENSION ADV(105),PR1(105),PR2( 105I.P
1PR5U05),PR6(105),PRFT(105)

READING IN DATA

,Z6,TP,TQ,DT,X0,
,CB,CC,CO,C,AC,

05), All
,Z5(105
,102) ,S

2( 10, 10
61 10,10
(102) ,P

51 102),
02)
) ,H1Y2(
,H1Z3(1
),H2Y1(
,H2Z1(1
) ,H2Z6(
),H3AI(
,H3Z4(1
) ,H4X2(
,H4Z2(

1

),H5X1 (

),H5QI1
) ,H5Z5(
1.H6Y2I
,H6Z3(1

105),
),

Y2(10,102),
2),
2),
0(102)

,

PZ6( 102) ,

102),
02) ,

102),
02),
102),
102) ,

02),
102),
02) ,

102),
02) ,

102),
102),
02),

R3( 105), PR4! 105),

401 FORMAT(2E10.3,2F7.1,2F5.1,5F4.1,F5.1,F3.1

)

READ 401,GA,CB,EA,EB,TP,T0,R,AQ,V1,V2,AIM,AN,C
402 F0RMAT(F7.5,F4.2,F7.5,5F5.3,4F6.3,F5.1)

READ 402,CT,DT,CA,AC,CR,CC,C0,CI , Wl , W2 ,W3 , W4 ,T IM

406 F0RKAT11H1, 'VALUE OF THE CONSTANTS'!
PRINT 406

403 F0SMAT(4H-GA=,E10.3,' GB=',E10.3,' EA=«,F7.l,'
1F7.1,' R=',F': .l,' FLOW RATE= ' , F5. 1 , ' V1 = ',F4.1
2' V2=',F4.1,' MEAN INV.= ' , F4. 1

,
• MEAN TEMP= • , F6. 2

)

PRINT 403,GA,GB,EA,EB,R,AQ,V1,V2,AIM,TIM
404 FORMAT! 1H-, »N=', F5.lt' C-NF3.lt' CT=',F7.5,<

1F4.2,' CA=',F7.5,' C1=',F5.3,' C2=',F5.3,' C2

2F5.3,' CQ=',F5.3,' CI=',F5.3,' XO ( T ) = , F6. 3

,

3' YO(T)=' ,F6.3)
PRINT 404, AN,C,CT,DT,CA,AC,CB,CC,C0,CI,K1,W2

405 FORMATUH-, 'T1=',E12.4, T2=',E12.4,' 00 ( T ) = • , E 10. 2 ,

1
i

DT=' ,

:3=>,



1' L6(T)=' ,E10.2) 12 5

PRINT 405, TP,TQ,W3,W4
129 FORMATI1H , 14, 2X, 12E10.2 )

110 F0Rt:AT(lH-,'Xl(0) = ',F4.2,'Yl<0) = ',F4.2, , X2(0> = '
f F4.2,

l'Y2(0)=',F4.2,'I (0) = '
, F4. 2 , CM ) = • , F4.2 ,

' LI ( ) = ' ,F4.2,

2'L2(0)=',F4.2,'L3(0)= , ,F4.2,'L4(0)=',F4.2,'L5(0)=',F4.2,
3'L6(0)=',F4.2>

725 F0RMATI4E15.5)
726 FORMAT UH , 'Tl = ' , El 5. 5, 'T2= • ,E15.5, '0= .E15.5, 'L6=' ,E15. 5)

DO 162 1=1,101
TEMU1,I) = TP
TFM2I 1,T)=TQ
SAC! 1 ,! >=U3
SZ6I1.I )»W*

162 CONTINUE
C

C QUASH I NEAR RATION ITERATIONS START
C

00 3C0 J = 2, 10,

I

C

C PARTICULAR SOLUTION
C

601 FORMAT ( 12 (F5.2)

)

600 F0RMATI1H-, 'PARTICULAR SOLUTION')
PRINT 600
P=L.
READ 601,X1(1),Y1(1),X2(1),Y2(1),AI ( 1 ) ,Q ( 1 ) , Z 1 ( 1 )

,

lZ2(l),Z3(l),Z4(l),Z5(i),Z6(l)
PRINT 110,X1(1),Y1(1),X2(1),Y2( t ),AI(1),Q(1 ),Z1( 1),

2Z2(l).Z3(l ),Z4(1),Z5( 1),Z6( 1)

CALL RKT
DO 2C1 1=1,101
PXK I ) = X1( I )

PYK l) = Yl( I)

PX2( I)=X2(I

)

PY2I I ) = Y2( I

)

PI ( I ) = AI ( I )

PQ(I )=QII)
PZUI) = Z1(I)
PZ21 I)=Z2(I)
PZ3! I)=Z3( I)

PZ4( I)=Z4( I)

PZ5I I )=Z5(I

)

PZ6(I)=Z6(I)
201 CONTINUE

PRINT 129, I I, XII I ),Y1(I),X2( I),Y2( I ),AI( I),Q(I),Z1( I),

1Z2(I),Z3(I),Z4(II,Z5(I),Z6(1),I=1,101,20)
C
C HOMOGENEOUS SOLUTION FIRST SET
C

P=O.C
602 FORMATUM-'HOMOGENEOUS SOLUTION FIRST SET')

PRINT 602
READ 601,X1(1),Y1 (1),X2(1) ,Y2( 1) ,AI ( I) ,Q(1),Z1 (1)

,

1Z2(1),Z3(1),?4(1),Z5(1),Z6(1)



PRINT llO,Xlll),Yl(l),X2(l),Y2d),AI(l),Q(l),Zltl),
2Z2(1).Z3(1),Z'<(1),Z5(1),Z6(1)
CALL RKT
DO 2C2 1=1,101
H1X1(I)=X1(I

)

H1Y1(I)=Y1 (I)

H1X2(I)=X2(I

)

H1Y2(I)=Y2(I)
H1A1 (I)=AI !I)

H1Q1I)=C( I

)

HIZ1(I)=Z1(I)
H1Z2(I)=Z2(I)
HlZ3Ul=Z3tI)
HIZMI)=Z4(I)
H 1 7. C. ( I ) = Z 5 ( 1 )

H1Z61 I ) = Z6II )

202 CONTINUE
PRINT 129, (I,X1 (I).Yl (I),X2(I ),Y2U l.AIt ! ),Q( I ) , Z 1 ( I),

1Z2 ( I ), Z3( I ),ZM I ),Z5( I ),Z6( 11,1 = 1.101,20)

HOMOGENEOUS SOLUTION SECOND SET

P = 0-0
603 FORMATdH-, 'HOMOGENEOUS SOLUTION SCCOND SET<)

PRINT 603
READ 601,X1(1),Y1(1),X2(1),Y2(1),A1 (1) ,0(11,71(1),

172(1), Z3(1),7M1),Z5(1),76( I)

PRINT 110,Xl(l),Yl(l),X2(l),Y2d),AId),Qd),Zl(l),
2Z2( l),Z3<l),Z4(l),Z5( ll.ZMl)
CALL RKT
DO 2C3 1=1,101
H2XK I) = X1(I )

H2Y1(I) = Y1( I)

H2X2(I)=X2U)
H2Y2(I)=Y2(I)
H2AH I)=AI ( I

)

H2Q(I) = Q(I )

H2ZKI)=Z1(I)
H272(I)=Z2(I>
H2Z3(I)=Z3(I)
H2ZMI) = Z<i(I)

H2Z5tl)=Z5d)
H2Z6( U = 76( I )

203 CONTINUE
PRINT l?9,(I,XKI>,Yld),X2(I),Y2(l),AI(l),Q(I),Zl(T),
lZ2(I),Z3(I),Z4!I),Z5(I),Z6(t),I=l,101,20)

126

HOMOGENEOUS SOLUTION THIRD SET

P =CC
604 FORMATdH-, 'HOMOGENEOUS SOLUTION THIRD SET')

PRINT 604
READ 601,X1(1),Y1(1),X2(1),Y2( I) ,AI ( 1 ) ,Q ( 1 ) , Z 1 (1 )

,

1Z2(1),Z3I 1),Z'1 (1),Z5(1),Z6(1)
PRINT 110,Xld),Yl (1),X2(1),Y2(1),AI(1),C(1),Z1(1),



127
2Z2(l).Z3(l),Z4(l),Z5(l),Z6(l)
CALL RKT
00 2C4 1=1,101
H3XK I) = X1( I )

H3Y1 ( I)=Y1(I)
H3X21I)=X2(I

)

H3Y2I I)=Y2(I )

H3A11 I) = .M ( I)

H3QII)=Q(I )

H3Z1(I)=Z1(I)
H3Z2I I ) = Z2(I

)

H3Z3I [)=Z3(1

)

H3Z4(I)»Z4(tJ
H3Z5( n = z5(i

)

H3Z6I l)=Z6(I

)

204 CONTINUE
PRINT 129, (I, XI (I ),Y1(I),X2( I ) , Y2 ( I ) , AI ( I ) , Q ( I ),Z1(I),

1Z2(I),Z3(I),Z4(I),Z5(1),76(I),I=1,101,20)
C

C HOMOGENEOUS SOLUTION FOURTH SET

C

P=0.0
605 FORMATIIH-, 'HOMOGENEOUS SOLUTION FOURTH SET 1

)

PRINT 605
READ 601.XK 1 ) , Yl ( 1 ) , X2 ( 1 ) , Y2 ( 1 ) , Aid), 0(1) ,Z1(L) ,

1Z2(1),Z3(1),Z4(1),Z511 ),Z6(l>
PRINT 110, X1(1),Y1(1),X2(1) ,Y2(1),AI(1),Q(1),Z1(1 ),

2Z2(U,Z3(1),Z4(1),Z5( l),Z6( 1)

CALL RKT
DO 2C5 1=1,101
H4X11I ) = X1(I )

H4YK I) = Y1(I )

H4X2II)=X2(I

)

H4Y2U )=Y2(I

)

H4A I ( I ) = A I ( I

)

H4Q(1)=0(I)
H4Z1(I)=Z1(I)
H4Z2I I) = Z2(I)
H4Z3(I)=Z3(I

)

H4Z4(I)=Z4(I)
H4Z5(I)=Z5(I)
H4Z6I I)=Z6(I)

205 CONTINUE
PRINT 129, (I, XI (I) ,Y1(I),X2(I),Y2(I),AI(I),0(I),Z1(I),
1Z2(I),Z3(I),Z4(I),Z5( I ) ,Z6( I ) , 1=1 , 101 , 20)

C

C HONCCENEOUS SOLUTION FIFTH SET

C
P=O.C

606 FOR.vATdH-, 'HOMOGENEOUS SOLUTION FIFTH SET')

PRINT 606
READ 601,X1(1),Y1(1),X2(1),Y2(1),AI(1),Q(1),Z1(1),
1Z2(1),Z3(1),Z4(1),Z5(1),Z6(1 )

PRINT 110,X1(1),Y1(1),X2(1),Y2(1), A I ( 1 ) , ( 1 ) , Zl ( 1 )

,

2Z2(1),Z3(1),Z4(1),Z5(1),Z6(1)



CALL. RKT
00 2C6 1*1,101
H5XMI) = X1(I)
H5Y1(I)=Y1(I)
H5X21 I)=X2(I )

H5Y2( I)=Y2 1 I )

H5AU I ) = A I ( I )

H5QtI)=Q( I )

H5ZUI)=Z1(I)
H5Z2(I) = Z2( I )

H5Z3(I)=Z3(I)
H5ZM I) = ZMI)
H5Z51I J=Z5(I)
H5Z6I I)=Z6(I)

206 CONTINUE
PRINT 129, (I,X1(I),Y1(I),X2(I),Y2(I),AI(I ),Q(I),Z1(I)

c

c

c

U2 1 1 ),Z3( I ),Z4( I), Z5U),Z6( I 1,1 = 1,101,201

HOMOGENEOUS SOLUTION SIXTH SET

128

P=0.0
607 F0RFATI1H-, •HOMOGENEOUS SOLUTION SIXTH SET')

PRINT 607
READ 601,X1<1),Y1(1),X2(1).Y2(1),AH1),Q!1>,Z1(1 ),

172 I 1 ) , Z3 < 1 ) , Z4 ( 1 ) , Z5 I 1 ) , Z6 I I )

PRINT 110,X1(1),Y1(1),X2(1),Y2I1),AI(1),0(1),Z1(1) I

2Z2(1) I Z3(1),Z4(1),Z5(1),Z6(1)
CALL RKT
DO 2C7 I--1.101
H6X1! ! ) = X1 (I )

H6Y1!I)=Y1 ( I )

H6X2(I)=X2(1 )

H6Y2( I)=Y2(I

)

H6AI(I)=AI ( I)

H6Q( I) = 0( I

)

H6Z1(I)=Z1(I)
H6Z2(I)=Z2(I)
H6Z3U) = Z3(I)
H6ZMI) =ZMI )

H6Z5(I)=Z5(I

)

H6Z6I I )=Z6(I

)

2C7 CONTINUE
PRINT 129, (I.XK I),YHI),X2(I),Y2(I),AI(I),0(I),Z1(I),

1 Z2( I ),Z3(I),Z4 1 1 ),Z5( I), Z6< 11,1 = 1,101,20)

SOLUTION INTEGRATION CONSTANTS

DIMENSION E(6),A(36),BB(6)
N=6

150 F0RHAT(6fF5.21

)

READ 150, (BC( I ), 1=1,6)
800 FORMTIIH , 'FINAL CONDIT IONS • , 10X, 6F15.4

>

PRINT 800, (BB1I) , 1=1,6)
B(l)=BB!l)-PZ5(101)
B(2)=B8(2i-PZl(101)



B(3)=8B(3)-P7.2(101) 129

B(4)=BB(4)-PZ3(101)
B(5)=BB(5)~PZ4(101)
P(6}=BB(6)-PZ6(10l)
A( 1)=H1Z5(101)
A(2)=H1Z1(101)
A(3J=HIZ2( 101)
A(4)=H1Z3< 101)
A(5)=H1Z4( 101)
A(6)=H1Z6( 101)
Af7)=H2l5i 101)
A(8)=H2Z1(101)
A(9)=H2Z2( 101)
A(1C)=H2Z3(101)
A{ 11)=H2ZM101)
A(12)=H2Z6( 101)
A(13)=H3Z5(101)
Al 14)=H3Z1(101)
A( 15)=H3Z2I101)
A( 16)=H3Z3(101)
A(17)=H3Z4 ( 101)
A(18)=H3Z6(101)
A( 19)=H4Z5(101)
A(20)=H4Z1<101)
A(21) = H',Z2( 101)
A(22)=H4Z3(101 )

A(23)=H4Z4 (101)
A(2M-H<tZ6( 101)
A(25)=H5Z5( 101)
A(26)=H5Z1U01)
A(?7)=H5Z2(101>
A(28)=H5Z3(101)
A(29) =H5ZM101)
A(30)=H5Z6(101)
AC31)=H6Z5( 101)
A(32)=H6Z1 (101)
A(33)=H6Z2(101)
A(34)=I16Z3( 101)
A(35) = H6Z'.(101)
A(36)=H6Z6(101)
KS=0
CALL SIKQ( A,B,N,KS)

151 F0RPAT(1H-,'A1=',F15.5, , A2=',F15.5, , A3= , ,F15.5, • A4= • ,

1F15-5, , A5= , ,F15.5, •A6=',F15.5)
PRINT 151, (B(l 1,1=1,6)

C

C RECOVERY OF SOLUTION SUPERPOSITION PRINCIPLE
C

00 160 1=1,101
SXIU,I) = PXI(IMB(1)*H1X1(I)+B(2)*H2XI(I)+B(3)*H3X1( I) +

ie(4)*H4XH I )+B(5)*H5XK I )+B I6)*H6Xl ( I

)

S¥i( J,I)=PY1(I )+B( 1KH1YK I )+B(2!*H2Yl(I )+B(3)*H3Yl( I )•»

18(4)*H<m( I )+B(5)*H5Yl (I )+B(6)*H6Yl ( I 1

SX2( J,I)=PX2(1 )+B(l)*HlX2(I )+B(2)*H2X2( I ) +B ( 3 ) +H3X2 ( I )+

1B(4)*H4X2U ) + B(5)*H!>X2(I) + B(6)*H6X2(I )



SY2(J,I)=PY2(I)+B(1)*HIY2<I ) +B ( 2 ) *l !2Y? ( I ) + B ( 3) *H3Y2 < I )
I

1BI4)*H4Y? ( I )+B(5)*H5Y2(l )+B(6)*H6Y2II)
SAI(J,I) = PI<I) + B(l)*lilAI (I)+B<2)*H2AI ( I ) +BI 3 )*H3AI ( I

H

1B(4)*H<.AI I I )+B(5)*H5Al ( I 1+B(6)*H6AI (I )

$AQ(J,n---PQ(I> + H(l)*HlQ(IHB12)*H2Q(I)+Bl3)*H3Q<I) +

1B(4)*H4 0(I )4B15)*H5Q(I)+Btt)*H60( I )

SZ1(J,T) = PZ1U HB( 11*11171(1 )+B<2)*H2ZKI)+B(3)*H3ZlU) +

IB(4)*H421 ( I )+BI5T*H5Zl(l )+B(6)*H671( I )

SZ2< J, I l*.pZ2m+BU)*HXZ2U ) + B 12 )*II2Z2 ( I ) +B ( 3 )*H3Z2 < I »
1B(4)*H4Z2I I )+B<5)*H5Z2( I ) +B(6)*H6Z21 1 )

SZ3(J.1)=PZ3(I)+B(1)*H1Z3(I ) +B ( 2 ) *H2Z3 (l) +B ( 3 )*H3Z3 I I )

i

1B(4 )*H4Z3(I ) + B(5)*H5Z3( I ) +B < 6 ) *H6Z3 ( I )

SZ4U,I)=PZ4(1)+B(1)*H1Z4(I)+B(2)*H2Z4(I ) +B ( 3 ) *H3Z4 (I )

+

ie!4)*H4Z4I I )+Bl5)*H5Z4( I )+B(6)*H6Z4(l )

S/.5< J,I) = PZ5(I )+B(l)*HlZMI > +B < 2 ) *H2 Z5 ( I HB(3)*H3Z5( 1) +

1B(4)*H4Z5( I )+B(5)*H5Z5( I ) + B ( 6 ) *H6Z r
j (I )

SZ6(J,I)=PZ6<I)+B(1)*H1Z6(I)+B(2)*H2Z6(I)+B[3)*H3Z6U)+
1B(4J*H4Z6( I )+B15)*H5Z6(I ) +B (6 )*H6Z6( I )

160 CONTINUE

130

PRINTING THE FINAL SOLUTION

161 ITERATION NO • ,13)

131

F0RMTI1H1, 'FINAL SOLUTION
JJ=J-1
PRINT 161, JJ
FORMATUH , I'.,3X,6C18.5)
PP. I NT 131, ! I.SX1I J, D.SYIIJ, I) t SX2l J,I ),SY2(J, I),

1SAIIJ, Il.SAQU, I), 1=1,101

)

132 F0RMATUH-|« ADDITIONAL STATE VARIABLES*,//)
PRINT 132
PRINT 131, (I,SZ1IJ,I),SZ2(J, D.SZil J t I)tSZ4 ! J, I),

1S75(J,I),S76(J,1 ), 1 = 1, 101)

CALCULATION OF CONTROL VARIABLES AND TOTAL PROFIT

4,17X,«Tl<= , ,E14,6t 3X,«T2»«,
5)

164 FGRMATIIH , 14 , 5X , ' ADVT= • , E 12

1E14.6.12X, 'TOTAL PROFIT', F10
P1R=G.0
P2R=0.0
P3R=C.O
P4R=C.O
P5R=C.O
P6R=C.O
DO 5C0 1=1,101
AOV( l)=(SZ6(J,I)/(2.*CA) )*( ( l./AN)-Il./SAQ(J,l>)

)

PR1(1)=P1R+AC*CQ*SAQ< J, I l*DT
PlR=PRli I

)

PR2C1 )=P2R+CB*AQ*SX2( J,I)*DT
P2R=PR2 I I

)

PR3I I)=P3R+CC*AQ*(1.-SX2( J, D-SY2I J,l ) )*DT

P3R=PR3( I!

PR4( I) = P'iR +CI*( (AIH-SAK J, I) )**2)*DT
P4R=PR4( I)

PR5(I)=P5R+CA*(ADV(I)**2)*(SAQ(J,I)**2)*DT
P5R=PRS! I

)



131
PR6I !)=P6R+CT*( (1 IK-TEK2 1 J- 1,1 ) )**2+(TEMl IJ-1,1)
1-TEM2U-1. r ! 1**2)*DT
P6R=:pR6( I

)

PRFTI I) = PR1( I1+PR2I IHI'K.M 1 )-PR4( I )-PR5( I I-PR6I I )

500 CONTINUE
502 FORMAT (1H-, 'TOTAL PROFIT'' ,F15.7, 10X,6F15.5)

PRINT 502, PRFTI 101 ) , PR1 ( 101 ) , PR2 I 101 ) , PR3 ( 101) ,PR1(10l)
I,PR5( 101),PR6(101I

163 FORKATUH1, 'VALUES OF THE CONTROL VARIABLES')
PRINT 163

501 FORMATUH ,' ADVT FOR PREVIOUS ITERATION TEMP
1 FOR CURRENT ITERATION' i 12X, ' PROFIT FOR CURRENT ITERATION')
PRINT 501

C
C CALCULATION OF TEMP 1 AND TEMP 2 BY NEWTON RAPHSON METHOD
C

DIMENSION TMK202) ,TM2(202)
IF (J.GE.3) CO TO 905
TKK1I--350.0
TM2( 11=350.0
GO TC 906

903 IH1I1 )=TEM1( J-l, 1

)

TM2(1)=TEM?(J-1, 1)

906 CONTINUE
DO 165 1=1,101
DO 166 N=1.201
D1T1A=USZ1(J,IJ-SZ2{J,1))*6A*SX1IJ,I)*EA)/(R*(TMHNI**4)I
D1T1D=(EA/R-2.*TM1(N) )*EXP (-EA/ I R*TM1 I N ) !

)

DlTlf>tSZ2(J,I )*Gt>*SYlt J, I I*E81/(R*(TM1 IN)**'. ) )

DltlC=(EB/R-2.*TMl(NI )*EXPt-EB/(R*TMl IN) ! )

D1T1=01TIA*01T16+01T1C*D1T10-4.*CT
D1T2=2.*CT
D2T1=2.*CT
D2T2A=( ISZ3IJ, I 1-SZ4 1 J, I ) )*GA*SX21J ( I ) *EA ) / I R* 1 1 M2 IN) v< 4 ) )

D2T2P=(EA/R-2.*TM2(N) )*EXP (-EA/ t R*TM2 ( N ) )

)

D2T2C= ( SZA (J , I ) *GB*SY2 ( J, I J*EB)/ (R* t TM2IN ) **4 )

)

D2I2C=(EB/R-2.*TM2(N) ) *EXP <- EB/ I R* TM? ( N) )

)

D2T2--D2T2A*D2T2B + D2T?C*D2T2D~?.*CT
FUNIA=( (SZKJ.I 1-SZ2I J, I ) )*GA*SX1 (J, I ) *E A ) / ( R* < TM I (N ) **2 ) )

FUNIB»EXP(-EA/(R*TM1CN) )

)

FUN1C-ISZ2I J, I )*GB*SY1( J, I >*EB ) / ( R*( TM1 IN)**2)1
FUN1C*EXPI-EB/IR*TMI(N) )

)

FUM1E=2.*CT*I2.*TM1 <N)-TM2(N)-T1M)
FUN1»FUN1A*FUNIB+FUN1C*FUNID-F0N1E
FUN2A=( (SZ3( J,I)-SZA( J, I ) )*GA*SX2(J, I ) *E A )/ I R*(TM2 ( N ! **2 )

)

FUM2a=EXPI-EA/(R*TM2{N) )

)

FUN2C= I S Z>, (J , I ) *SB* SY2 IJ . I) *EB ) / I R* ( TM? ( N ! * *2 ) )

FUN2C=EXP(-E6/(R*TN2!N) !

)

FUN2E = 2.*C"I*(TM1 (N1-TM2IN) )

FUN2=FUN2A*FUN2B+FUN2C*FUN?D+FUN2E
RHS1=TM1(N>*D1T1+TM2(N>*D1T?-FUN1
RHS2»TM1(NJ*D2T1+TM2(N)*02T2-FUN2
DErR=DlTlS02T2-DlT2*02Tl
TMHN+1)* (RHS1*D2T2-RHS2*D1T2!/0ETR
TW2(N+1)=(RHS2*DIT1-RHS1*D2T1)/DETR



18 DELI=TK1(N+1)-TM1(N>
19 DEL2=TM2(NU)-TM2<N)
2C TMNW1=TM1(N+1)
21 TMNH2«TM2(N+11
22 IF (ABS(DELl).GT.O.l) GO TO 166

23 IF (ABS(OEL2).LF.0.1) GO TO 170

24 166 COMTINUE
25 168 FORf'AT(70X, 'TEMP DID NOT CONVERGE ', 2X , 1 3 , • OEl 1 =

• , F9.3,

l< DEL2=',F9.3)
26 PRINI 168,N,DELltDEL2
27 170 TEHKJ, I1=TMNW1
2E TEM2(J,l)=TMNW2
25 IF U.GE.3) GO TO 900
3C TMK 1) = TEM1 ( J, I )

31 TM2(ll=TEM2U.I)
32 GO TC 901
33 9C0 TMlil )---TEKlU-l,Hl>
34 TM2(l)=TEM21J-li 1+1)

35 901 CONTINUE
36 PRINT 1C,, I.ADVU J.TEMKJ, I),TEM2(J,I 1.PRF1 ( I )

3? 165 CONTINUE
C

C END CE ONE ITERATION
C

38 300 CONTINUE
C

C QUASILINPARI7.ATION 00 LOOP ENDS HERE
C

35 STOP
4C END



41 SUBROUTINE RKT 133

C

C 1HIS SUBROUTINE IS USEO TO INTEGRATE 12 LINEARIZED
C EQUATIONS S I MULT ANEOSLY BY RUNGE KUTTA METHOD
C

42 COMMCN X1,Y1,X2,Y2,AI,0,Z1,Z2,Z3,Z4,Z5,Z6,TP,TQ,DT,X0,
1GA,GE,EA,R,AQ,V1,V2,Y0,EB,AN,CA,CI,AIM,CB,CC,CQ,C,AC,
2CT,P,Wl,W2,W3,W4,TEr.l,TEM2,J,SAQ,SZ6

43 DIMENSION X 1 I 105 ) , Yl ( 105 ) , X2 ( 105 ) , Y2 ( 105 ) i A I ( 1 05 )

,

1Q( 105 ),Z1( 105 ),Z2 1105 ),Z3( 105), Z4( 105), Z5I105) ,Z6(105),
2AK1C5),A2(105),A3(105),A4(105),B1(105),B2( 105 ) , B3 ( 105)

,

3B4dC5),CldC5),C2(105),C3(105),C4d05),Dld05),D2<105),
4D3(lC5),D4d05),El(105),E2d05),E3(105),E4d05),Fl(105),
5F2<1C5),F3(105),F4(105),C1(105),G2(105),G3(105),G4(105),
6HKIC5) ,H2(105),H3d05),H41105),RK105),R2(105),R3(105),
7R4(105),Sl(105),S2(l05),S3d05),S4(105),Tl(105),T2(105),
8T3(1C5),T4I105),U1(105),U2(105),U3(105),U4(105),XO(105),
9Y0UC0),TE(Ud0,102),TEM2d0,102J tSAQ(10,102) ,SZ6I10,1U2)
SP=AC/V1
SQ=AC/V2
DO 130 1=1,100
TT1-R*TEM1 ( J-1,1

)

TT2=R*TEM2 (
J - 1 , I

)

X0d)=Kl
Y0(1 )=W2
V=SAC(J-1,1>
W=SZC(J-l, I

]

Ald)=DT*(P*SP*XO(I)-SP*Xldl-GA*EXP(-EA/dl)*Xld))
Bld) =DT*(P*SP*YO(I)-SP*Yld)~GB*EXP(-EB/TTl)<Yld) +

1GA*EXP(-EA/TT1 ) *X 1 ( I ) )

Cld) = DT*(SO*(Xl( I )-X2(I) )-GA*EXP(-EA/TT2)*X2( I)

)

Did ) = DT*(SQ*(Y1( I)-Y2(I))-GB*EXP(-EB/Tr2)*Y21 I)+

1GA*EXP(-EA/TT2S*X2(I) )

Eld ) = DT*(AQ*Y2d )-CQ*Qd) )

FlA=tC*V-C*(V**2)/AN+V*K/(CA*AN)-W/(2.*CA)-W*(V**2)/
1(2.*CA*(AN**2) )

)

F2A=(C-2.*C*V/\N+W/(CA*AN)-W*V/(CA*(AN**2) )

)

F3A=(V/(CA*AN)-1./(2.*CA)-V**2/(2.*CA*(AN**2) )

)

rid )=DT*(P*F1A-P*V*F2A-P*W*F3A+Q! I)*F2A+Z6d)*F3A)
Gld) =DT*(SP*ZU I)-SQ*Z3( I) + (ZH()-Z2(I) ) *GA*EXP (-EA/TT 1 ) )

Hl(I)=DT*(SP*Z2d )-SQ*Z4(I) + Z2(I ) *EXP (-EB/TT 1 ) *GB )

Rid )=DT*1S0*Z3(IH (Z3d)-Z4d ) > *GA*EXP (-EA/TT2 ) +P*AQ* ( CB-CC )

)

Sld) = DT*(SQ*Z4( I ) + Z4d)*GB*EXP(-EB/TT2)-Z5d ) *AQ-P*CC*AQ 1

Tl(I)=DT*(P*2.*CI*AIM-2.*CI*AI (I )

)

U1A={AC*CQ-C*W+2.*C*V*W/AN+(W**2)*V/I2.*CA*(AN**2)

)

1-W**2/(2.*CA*AN) )

U2A=(2.*C*W/AN+W**2/(2-*CA*(AN**2) )

)

U3A=(2.*C*V/AN-C+W*V/(CA*(AN**2) J-W/CCA*AN1

)

Uld )=DT*(CQ*Z5(I)+P*U1A-P*V*U2A-P*W*U3A+Q(I )*U2A+Z6! I)

1*U3A)
A2(I)=DT*(P*SP*X0( I )-SP*(Xl (IJ+A1 d )/2 . )-GA*EXP (-EA/TT1 !

1*1X11 I)+Al(I)/2.) )

B2( I )=Dr*(P*SP*Y0( I )-SP*(YK I1+3U I )/2. )-GB*EXP ( -EB/TT 1

)

1* CY1 CI ) +B1 d)/2. )+GA*EXP(-EA/TTl)*(Xld)+All I)/2. I)

C2d)=0T*(SQ*< (Xld)+AKI)/2.)-(X2d)+Cld)/2.) !-



1GA*EXP(-EA/TT2)*(X2( l)+ClU>/2. ) )

D2<I)=DT*<SQ*(<Yl(I)+Bl(I)/2.)-<Y2(I)+Dl(I)/2.))-GB*EX(>
1I-EB/TT2)*(Y2(I ) + Bl < I ) /2. ) +GA*EXP (-EA/U2 J * i X2 ( I ) +

2CKD/2.))
E2(I)=DT*IAQ*(Y2(I)+Dl(I)/2.)-CQ*(Q(I)+Flt I)/2.)

)

F2I I )=DT*(P*FlA-P*V*F2A-Pn.'*F3A*(C( IJ+F1 (I )/2. )*F2A+
1(Z6< I)+U1( I)/2.)*F3A)
G2(I)=DT*(SP*tZl( I )+GHI)/2. )-SQ*(Z3( Il+Rlll )/2.)+((
1ZH I )+Gl( I )/2. )-(Z2( I )+Hl (I )/2. ) ) *GA*EXP (-EA/T1 1 ) )

H2(I)=DT*(SP*(Z2(I >+Him/2.1-SQ*(Z4(I) + SllI)/2. H
1(Z2U)+H1( I)/2.)*EXP(-EB/TT1)*GB)
R2(I >=DT*(SQ*(Z3U >+Rl < I )/2. ) + ( ( Z3 ( l) +R1 I I )/2. )- ( Z'i < I )

l+Sl(I)/2.) )*GA*EXP(-EA/TT2)+P*AQ*(CB-CC)

)

S2(I )=DT*(SQ*(Z4( I)+Sl(I)/2.)+(Z4(I)+Sl( I)/2.)*GB*
1EXP(-EB/TT2)-(Z5!I)4T1(I)/2.)*AQ-P*CC*AQ)
T2(I )=DT*(P*2.*CI*AII-!-2.*CI*IAI ( I ) +E1 ( I ) /2. ) )

U2( I)=DT*(C0*(Z5( I )+TKI)/2.)+P*UlA-P*V*U2A-P*W*U3A+
1(Q( I l+FKI )/2. )*U2A+[Z6< I ) +U1 ( I ) 12. )*U3A )

A3(I)=DT*(P*SP*X0(I J-SP*(X1(I)+A2( I ) /2 . )-GA*EXP I -EA/TT1

)

1*(X1( I)+A2(I)/2. J J

B3(I )=DT*(P*SP*YO( I )-SP*(Yl< I)+B2( I )/2. )-GB*EXP (-EB/TT I

)

1*(Y1(I)+B2(I )/2. )+GA*EXP(-EA/TTl)*(Xl ( I ) * A2 ( I ) /2 . )

)

C3(1)=DT*(SQ*((X1(I )+A2(I)/2.)-(X2( I ) +C2 ( I ) /2. )
)-

1GA*EXP(-EA/TT2)*U2U)+C2I I)/2.)}
D3(I)=DT*(SQ*((Y1(I )+B2U)/2.)-(Y2U ) +02 U)/2. ))-GB*EXP
1(-EB/TT2)*(Y2( I )+B2U 1/2. > +GA*EXP (-EA/TT2 ) * < X2 ( I )+
2C2ID/2.))
E3(I)=DT*(AQ*(Y2(I ) 4D2 ( I )/2. )-CQ*( Q( I ) +F2 ( I )/2. )

)

F3 ( I )=DT* ( P*F1A-P*V*F2A-P*W*F3A+ ( Q( I ) +F2 ( I ) /2. )*F2A+
1(Z6( I)+U2(I)/2.)*F3A)
G3(I)=DT*(SP*(Z1(I )+G2(I)/2. J-SQ*«Z3U)+R2(l)/2. )+(

(

1Z1II )+G2(I )/2.)-(Z2(I)+H2(I)/2.) ) *GA*EXP t-EA/TTl ) )

H3( J ) = DT*(SP*(Z2(I>+!l2(I)/2. )-SQ*(Z4C I ) + S2l I) /2. T+
1!Z2( I1+H2I I )/2.)*EXP(-EB/TU)*GB)
R3(I )=t)T*(S0*(Z3(I)+!!2(I)/2.) + ( ( Z3 ( I ) + R2 < [ 1/2 . )- ( Z<. ( I )

1 + S2( H/2. ) )*GA*EXP(-EA/TT2)+P*AQ*(CB-CC) )

S3 (I ) = DT*(SQ*(ZMl )+S2( I)/2.)+(Z4( I )+S2( I)/2. )*GB*
lEXP(-EB/rT2)-(Z5(I)+T2( I )/2. )*AQ-P*CC*AQ

)

T3(I) = [)T*(P*2-*CI*AIM-2.*CI*(AI(I) + E2(I)/2.))
U3(I )=DT*(CQ*!Z5( I ) f2 ( I )/2. ) +P*U 1 A-P*V*U2A-P*W*U3A+
HQ(I)+F?H)/2.)*U2A+tZ6tI)+U2(I)/2.)*U3A)
A'.(I) = DT*(P*SP*X0II)-S('*(X1(I)+A3(I))-GA*EXP(-EA/TT1)*
HX1(I) + A3(I) ))

B'itI) = DT*(P*SP*YO(I 1-SP*1Y1(I)+B3(I ) )-G8*EXP (-EB/TT 1 ) *

KYK I )+B3(I ) )+GA*EXP(-EA/TTl)*(XKI 1+A31 I ) ) )

C4(I)=DT*(SQ*I(X1(I)+A3(I) )- I X2 (I >+C3 ( I ) ) >-GA*EXP (-EA/
1TT2)*(X2(I )+C3(I ) ) )

D'.(I)=DT*(SQ*( (Y1II) + B3(I) )-( Y2 ( I ) +D3 ( I) ) )-GB*EXP ( -EB/
1TT2)*(Y2( I )+B3(I ) ) +GA -*EXP ( -EA/TT2 ) * ( X2 ( I 1+C3U ) ) )

E4U)=DT*(AQ*(Y2i 11+03 1 [11-CQMQU )+F3(I) 1

1

F4(I1=DT*(P*F1A-P*V*F2A-P*W*F3A+(Q(I)+F3 II ) )*F2A+(Z6( I)
1+U3I I) )*F3A)
G4U) = DT*(SP*(Z1(I)+G3(1 ) )-S0*(Z3(I)+R3! I) )+( (Zl( IH
lG3(I))-tZ2(I )+H3(I )>>*GA*EXP(-EA/TT1)

)

H4(I)=DT*(SP*(Z2(I)+H3U) 1-SQ* ( Z4 ( I 1 + S3 ( I > 1 + ( Z2 ( I 1 +

134
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END
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C

C THIS SUBROUTINE IS USED TO INVERT A SIX BY SIX

C MATRIX ENCOUNTERED IN THE CALCULATION OF SIX
C INTEGRATION CONSTANTS. THIS IS SUPPLIED BY IBM.
C

DIMENSION A(1),B(1!
C

C FORWARD SOLUTION
C

TOL=C.O
KS=0
JJ=-N
DO 65 J=1,N
JY=Jtl
JJ = JJ + IJ+1

BIGAsO
IT=JJ-J
DO 30 I=J,N

C

C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
C

IJ= IT +

I

IFtACS(BICA)-ABS(A( IJ) ) ) 20,30,30
20 BIGA=A(IJ)

IMAX=I
30 CONTINUE

C

C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
C

IF(APS(BIGA)-TOL) 35,35,'i0
3b KS=1

RETURN
C

C INTERCHANGE ROWS IF NECESSARY
C

40 Ii=J*N*!J-2)
IT=I^AX-J
DO 5C K=J,N
1 1=1 UN
12=1 HIT
SAVE=A( II)

A( I1)=A(I2)
A(I2)=SAVE

C

C DIVIDE EQUATION BY LEADING COEFFICIENT
C

50 A(II)=A(I1)'BIGA
SAVE=BI (MAX)
B(IMAX)=B(J)
Bl J)=SAVF/BIGA

C

C ELIMINATE NEXT VARIABLE
C

IFIJ-N) 55,70,55



55 IQS=N*(J-1)
DO 65 IX=JY,N
IXJ=IQS+IX
IT=J-IX
DO 6C JX=JY,N
IXJX=N*UX-1) + IX
JJX=IXJX+IT

60 A(IXJX)=M IXJX)-(A(IXJ)*A(JJX) )

65 B(1X) = B( IX)-(B(J)*AUXJ) >

C

C BACK SOLUTION
C

70 NY=N-1
IT=N*N
DO 8C J=1,NY
ia=ii-j
1B=N-J
IC=N
DO 8C K=1,J
BUB)=B(IB)-A(IA)*BIIC)
IA«IA-N

80 IC=IC-1
RETURN
END
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The importance of quantitative techniques in decision making empha-

sizes the need of efficient techniques as a tool for solving management

problems. However, fairly powerful algorithms are not yet available in

solving dynamic management problems involving differential equations.

The two point boundary value problem with non-linear differential

equations provides such an example. The nonlinearity in the performance

equations does not allow the application of superposition principle.

Quasilinearization helps overcome this difficulty. It linearizes

the non-linear equations and provides an algorithm which would give the

solution by an iterative procedure.

The purpose of this work is to investigate the effectiveness of this

recently developed tool in solving various industrial management problems.

First a brief introduction and computational procedure of quasilinear-

ization is given. Then its application to an advertisement problem with

two state variables and one control variable is discussed in detail.

Next is discussed the application of quasilinearization to an adver-

tisement and production problem. This model has six state variables and

three control variables. In addition, the profiles are fairly unstable

due to the rapid change of variables with time.

It was concluded:

1. Choosing the initial approximations to start the solution is not

difficult in most cases.

2. The convergence rate is almost independent of the choice of the

initial approximations.

3. This algorithm converges quadratically , if it does converge.



4. For rapidly increasing or rapidly decreasing profiles, first

variational and second variational techniques seemed to have

failed. On the other hand, this method encountered no problem

in converging to the optimal solution.

5. Because of the intimate association between the boundary value

problems and the optimization and control problems, this technique

may provide a useful tool for the systems analysts.


