APPLICATION OF QUASILINEARIZATION TO INDUSTRIAL MANAGEMENT SYSTEMS

$$
\text { by } 45
$$

PANKAJ DHIRAJLAL SHAH

B.E. (Mech.), University of Bombay

Bombay, India, 1967

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Industrial Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969

Approved by:

table of contents

CHAP'TER 1. INTRODUCTION 1
1.1 IDEA OF DECISION MAKING IN MANAGEMENT 1
1.2 PURPOSE OF THIS STUDY 2
CHAPTER 2. SOLUTION OF TWO POINT BOUNDARY VALUE PROBLEMS 4
2.1 INTRODUCTION 4
2.2 NUMERICAL SOLUTION OF INITIAl VALUE PROBLEMS 5
2.3 DIFFICULTIES IN TWO POINT BOUNDARY VALUE PROBLEMS 8
2.4 SUPERPOSITION PRINCIPLE 9
CHAPTER 3. QUASILINEARIZATION 14
3.1 INTRODUCTION 14
3.2 COMPUTATIONAL PROCEDURE 15
3.3 SUMMARY 17
3.4 DISCUSSION 18
CHAPTER 4. APPLICATION TO AN ADVERTISEMENT PROBLEM 20
4.1 DEVELOPMENT OF THE MODEL 20
4.2 DEFINITION OF THE PROBLEM 22
4.3 FORMULATION OF THE PROBLEM 23
4.4 QUASILINEARIZATION 26
4.5 NUMERICAL ASPECTS 28
4.6 COMPUTATIONAL ASPECTS 29
4.7 RESULTS 32
4.8 DISCUSSION 34
CHAPTER 5. APPLICATION TC AN ADVERTISEMENT AND PRODUCTION PROBLEM 53
5.1 DEVELOPMENT OF THE MODEL 53
5.2 DEFINITION OF THE PROBLEM 58
5.3 FORMULATION OF THE PROBLEM 59
5.4 QUASILINEARIZATION 64
5.5 NUMERICAL ASPECTS 68
5.6 COMPUTATIONAL ASPECTS 73
5.7 RESULTS 75
5.8 DISCUSSION 105
CHAPTER 6. CONCLUSION 113
APPENDIX 1. NEWTON RAPHSON METHOD OF ROOT FINDING 115
APPENDIX 2. COMPUTER PROGRAM FOR AN ADVERTISEMENT PROBLEM 118
APPENDIX 3. COMPUTER PROGRAM FOR AN ADVERTISEMENT AND PRODUCTION 123 PROBLEM
REFERENCES 138
ACKNOWLEDGEMENT 139

LIST OF FIGURES

FIGURE

1. Computer logic diagram for Runge-Kutta method 7
2. Computer logic diagram for an Advertisement problem 31
3. Convergence rate of sales; $S_{0}(t)=50, \lambda_{2,0}(t)=-1$ 35
4. Convergence rate of sales; $S_{0}(t)=25, \lambda_{2,0}(t)=-0.5$ 36
5. Convergence rate of sales; $S_{0}(t)=20, \lambda_{2,0}(t)=0$ 37
6. Convergence rate of inventory; $S_{0}(t)=50, \lambda_{2,0}(t)=-1$ 38
7. Convergence rate of inventory; $S_{0}(t)=25, \lambda_{2,0}(t)=-0.5 \quad 39$.
8. Convergence rate of inventory; $S_{0}(t)=20, \lambda_{2,0}(t)=0 \quad 40$
9. Convergence rate of advertisement; $S_{0}(t)=50, \lambda_{2,0}(t)=-1 \quad 41$
10. Convergence rate of advertisement; $S_{0}(t)=25, \lambda_{2,0}(t)=-0.5 \quad 42$
11. Convergence rate of advertisement; $S_{0}(t)=20, \lambda_{2,0}(t)=0 \quad 43$
12. Convergence rate of profit function; $S_{0}(t)=20, \lambda_{2,0}(t)=0 \quad 44$
13. Optimal profiles of I, S and A for modified problem 51
14. Advertisement and Production problem 54
15. Convergence rate of T_{1}, problem $1 \mathrm{~A} \quad 76$
16. Convergence rate of T_{2}, problem $1 \mathrm{~A} \quad 77$
17. Convergence rate of A, problem $1 \mathrm{~A} \quad 78$
18. Convergence rate of x_{1}, problem IA 79
19. Convergence rate of y_{1}, problem IA 80
20. Convergence rate of x_{2}, problem 1A 81
21. Convergence rate of y_{2}, problem $1 \mathrm{~A} \quad 82$
22. Convergence rate of I, problem $1 A \quad 83$
23. Convergence rate of S, problem 1A 84

Figure
24. Optimal profile of profit, problem A 85
25. Optimal profile of $\lambda_{1}, \lambda_{2}, \lambda_{4}$; problem \mathbb{A} 86
26. Optimal profile of $\lambda_{3}, \lambda_{5}, \lambda_{6}$; problem A 87
27. Optimal profile of $x_{1}, y_{1}, x_{2}, y_{2}$ and I; problem B 90
28. Optimal profile of A, T_{1} and T_{2}; problem B 91
28A. Optimal profile of S; problem B 92
29 Convergence rate of T_{1}; problem 2D 95
30. Convergence rate of T_{2}; problem 2D 96
31. Convergence rate of Advertisement A, problem 2D 97
32. Convergence rate of x_{1}; problem 2D 98
33. Convergence rate of y_{1}; problem 2D 99
34. Convergence rate of x_{2}; problem 2D 100
35. Convergence rate of y_{2}; problem 2D 101
36. Convergence rate of 1 ; problem 2D 102
37. Convergence rate of S; problem 2D 103
38. Convergence rate of profit function; problem 2D 104
39. Optimal profiles of $x_{1}, y_{1}, x_{2}, y_{2}$ and I; problem E 106
40. Optimal profiles of A, T_{1} and T_{2}, problem E 107
41. Optimal profile of S; problem E 108

LIST OF TABLES

Table

1. List of initial approximations 30
2. Convergence rate of $S\left(t_{f}\right)$ 45
3. Convergence rate of $I\left(t_{f}\right)$ 46
4. Convergence rate of $A\left(t_{i}\right)$ 47
5. Convergence rate of J 48
6. Convergence rates for modified problem 50
7. List of initial approximations, problem A 71
8. List of initial approximations, problem B 71
9. List of initial approximations, problem C 71
10. List of initial approximations, problem D 71
11. List of initial approximations, problem E 71
12. Initial conditions for particular and homogeneous solutions 72
13. Convergence rate of T_{1}, problem $1 A$ 88
14. Convergence rate of T_{2}, problem 1A 88
15. Convergence rate of A , problem 1A 88
16. Convergence rate of $\mathrm{A}(0)$ 109
17. Convergence rate of J 110

CHAPTER 1

INTRODUCTION

1.1 IDEA OF DECISION MAKING IN MANAGEMENT

The administration of a modern business enterprise has become an enormously complex undertaking. During the past few years there has been an increasing tendency to turn to quantitative techniques and models as a potential means for solving the problems that arise in such an enterprise.

Engineering has been defined as concerned with the design, improvement and installation of integrated systems of men, machines and materials for the service of society. Every working day, the typical executive of a modern industrial organization makes a number of complex decisions in order to optimize his company's performance. This emphasizes the importance of quantitative techniques as a useful means for decision making in inđustrial management systems.

In any problem solving situation, there are variables or factors which influence the outcone of whatever decision is made. These variables can be classified as those which the decision maker controls, called the control variables, and a class of those which he cannot control, called the state variables. After identifying the control and state variables, they should be combined in some logical manner so that they form a model of the problem. The object of the decision maker is not to construct a model as close as possible to the reality of the problem, but rather a simplest model that predicts the outcomes reasonably well. Next step is to develop a measure of effectiveness, called the objective function, to predict the behavior of the model. A model is then solved for different
values of the control variables. These will be called feasible solutions.
In general, decision making can be described as a process whereby management when confronted with a problem, selects a specific course of action, called the optimal policy, from a set of feasible solutions.

Many of the mathematical models in engineering, physical sciences and other disciplines involve non-linear differential equations of the two point boundary value type. Unfortunately, no general analytical method exists for solving them. Several kinds of non-Iinear differential equations have been solved analytically, but the solution of each has required a method unique to that type. Various methods have been used to solve non-1inear differential equations numerically. Among them are graphical methods, methods based upon successive approximations and methods based upon iterative procedures.

1.2 PURPOSE OF THIS STUDY

Industrial Engineers work with a wide variety of optimization problems. For this reason they should be familiar with the most efficient techniques for solving the decision-making problems. Because of the relatively recent origin of operations research, more efficient techniques are not needed in most cases.

The purpose of this research is to study the effectiveness of a recently developed method, quasilinearization, in solving industrial management problems which involve non-linear differential equations.

More specifically, the object of this work is to investigate the computational features of this technique with respect to different problems. The second object is to provide the systems analysts a new tool for
optimization.
Other computational techniques, such as the gradient technique, the second variation method, and invariant imbedding can also be used for solving the problems with non-1inear differential equations, but considering the object of this study, they will not be discussed here.

CHAPTER 2

SOLUTION OF TWO POINT BOUNDARY VALUE PROBLEMS

2.1 INTRODUCTION

The mathematical formulation of many problems in science and engineering leads to differential equations. Problems in which the conditions to be satisfied by the solution of a differential equation of order two or greater may be specified at both ends of an interval are known as two point boundary value problems. If the conditions are specified at more than two points in the interval, the problems are known as multi-point boundary value problems. The latter type of problems do not appear very often in engineering models.

Initial value problems are those in which all conditions are imposed at one point. This may be the initial or final point of that interval.

Consider a system of differential equations

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=f(x, y) \\
& \quad t_{i} \leq t \leq t_{f} \\
& \frac{d x_{2}}{d t}=g(x, y)
\end{aligned}
$$

If the conditions for both x and y are given at the same point,

$$
\begin{align*}
x_{1}\left(t_{i}\right)=x_{1}^{0} & x_{2}\left(t_{i}\right)=x_{2}^{0} \\
& \text { or } \\
x_{1}\left(t_{f}\right)=x_{1}^{1} & x_{2}\left(t_{f}\right)=x_{2}^{1} \tag{2}
\end{align*}
$$

the problem is called the initial value problem. However, if the conditions for both x and y are not at the same point,

$$
\begin{array}{cl}
x_{1}\left(t_{i}\right)=x_{1}^{0} & x_{2}\left(t_{f}\right)=x_{2}^{1} \\
& \text { or } \\
x_{1}\left(t_{f}\right)=x_{1}^{1} & x_{2}\left(t_{i}\right)=x_{2}^{0} \tag{3}
\end{array}
$$

the problem is called two point boundary value problem.
A higher order differential equation can always be replaced by a set of first order differential equations by introducing auxiliary variables [9]. For this reason, only first order differential equations will be discussed throughout this work.

2.2 NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS

Since all of this work will be based on numerical methods of obtaining solutions of ordinary differential equations, a best known and most frequently used scheme for solving initial value problems, Runge-Kutta method, is discussed here.

In this method, the increments of the functions are calculated once
for all by means of a definite set of formulas, and the calculations for the first increment are exactly same as for any other increment. These processes are self-starting. Advantage of this method is the independent choice of the size of the step, which may be increased to speed up the progression or decreased to lower truncation errors without recalculation of previous data.

The fourth-order formulas for the Runge-Kutta method, [9], for Equations (I) are

$$
\begin{align*}
& x_{1}\left(t_{k+1}\right)=x_{1}\left(t_{k}\right)+\frac{1}{6}\left(m_{1}+2 m_{2}+2 m_{3}+m_{4}\right) \\
& x_{2}\left(t_{k+1}\right)=x_{2}\left(t_{k}\right)+\frac{1}{6}\left(n_{1}+2 n_{2}+2 n_{3}+n_{4}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& m_{1}=f\left(x_{1}\left(t_{k}\right), x_{2}\left(t_{k}\right), t_{k}\right) \Delta t \\
& m_{2}=f\left(x_{1}\left(t_{k}\right)+\frac{m_{1}}{2}, x_{2}\left(t_{k}\right)+\frac{n_{1}}{2}, t_{k}+\frac{\Delta t}{2}\right) \Delta t \\
& m_{3}=f\left(x_{1}\left(t_{k}\right)+\frac{m_{2}}{2}, x_{2}\left(t_{k}\right)+\frac{n_{2}}{2}, t_{k}+\frac{\Delta t}{2}\right) \Delta t \\
& m_{4}=f\left(x_{1}\left(t_{k}\right)+m_{3}, x_{2}\left(t_{k}\right)+n_{3}, t_{k}+\Delta t\right) \Delta t \\
& n_{1}=g\left(x_{1}\left(t_{k}\right), x_{2}\left(t_{k}\right), t_{k}\right) \Delta t \\
& n_{2}=g\left(x_{1}\left(t_{k}\right)+\frac{m_{1}}{2}, x_{2}\left(t_{k}\right)+\frac{n_{1}}{2}, t_{k}+\frac{\Delta t}{2}\right) \Delta t \\
& n_{3}=g\left(x_{1}\left(t_{k}\right)+\frac{m_{2}}{2}, x_{2}\left(t_{k}\right)+\frac{n_{2}}{2}, t_{k}+\frac{\Delta t}{2}\right) \Delta t \\
& n_{4}=g\left(x_{1}\left(t_{k}\right)+m_{3}, x_{2}\left(t_{k}\right)+n_{3}, t_{k}+\Delta t\right) \Delta t . \tag{5}
\end{align*}
$$

Flg. 1. Computer Logic Diagram for Runge-Kutta Method

Knowing the initial values of $x_{1}\left(t_{1}\right), x_{2}\left(t_{i}\right)$, and step size Δt, values of $x_{1}\left(t_{i}+\Delta t\right)$ and $x_{2}\left(t_{i}+\Delta t\right)$ can be calculated using the above formulas. Similarly $x_{1}\left(t_{i}+2 \Delta t\right)$ and $x_{2}\left(t_{i}+2 \Delta t\right)$ can be calculated using $x_{1}\left(t_{i}+\Delta t\right)$ and $x_{2}\left(t_{i}+\Delta t\right)$. Hence incrementing t everytime by Δt, the final values, $x_{1}\left(t_{f}\right)$ and $x_{2}\left(t_{f}\right)$ can be calculated.

The truncation error in this method is $O\left(\Delta t^{5}\right)$. A simplified computational scheme is shown in Figure 1.

2.3 DIFFICULTIES IN TWO POINT BOUNDARY VALUE PROBLEMS

The numerical solution of any ordinary differential equation requires the knowledge of initial values of all the variables. Starting with the initial values, the solutions are constructed step by step in small intervals of the variables. Because of this nature, they are also called the marching techniques.

In an initial value problem, all the inttial (or final) values are known. Hence the solution is relatively easy. In a two point boundary value problem, some of the initial (or final) values are unknown. Hence, the numerical techniques, like Runge-Kutta method, cannot be applied directly. For this reason, this type of problems are very difficult to solve.

In general, the procedure for solving this type of problems is to assume the missing initial (or final) conditions and solve for all the grid points and then compare the values of the calculated and given final (or initial) conditions. If they are uot the same within allowable error, a new set of missing initial (or final) values is assumed and the same
procedure is repeated. By this trial and error procedure, a suitable set of initial (or final) conditions can be determined.

This procedure becomes very tedious if the problem has many differential equations and is very complex in nature. The relatively slow convergence during the process of numerical solution can make the generally used trial and error procedure impractical.

Unfortunately, most of the mathematical models in quantitative analysis are very complex having many variables. Problems of this type are most subtle and difficult and are not well suited for modern digital computers. There is no general proof of existence and uniqueness of solutions to problems of this type.

2.4 SUPERPOSITION PRINCIPLE

A two point boundary value problem is not too difficult if the performance equations are linear. This is because of the fact that superposition principle is applicable to linear differential equations.

Consider the following two simultaneous first order linear differential equations

$$
\begin{align*}
& \frac{d x_{1}}{d t}=a_{1}(t)+b_{1}(t) x_{1}+c_{1}(t) x_{2} \tag{6}\\
& \frac{d x_{2}}{d t}=a_{2}(t)+b_{2}(t) x_{1}+c_{2}(t) x_{2} \tag{7}\\
& x_{1}\left(t_{1}\right)=x_{1}^{0} \quad \text { and } \quad x_{2}\left(t_{f}\right)=x_{2}^{1} \tag{8}
\end{align*}
$$

where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$, and c_{2} are functions of the independent variable, t. x_{1}^{0}, x_{2}^{1} are known constants at the initial and final values of t respectively.

Using any arbitrarily assumed inftial conditions for x_{1} and x_{2}, say, $x_{1 p}\left(t_{i}\right)=1$ and $x_{2 p}\left(t_{i}\right)=0$, Equations (6) and (7) can be solved numerically to obtain a set of particular solutions, $x_{1 p}(t)$ and $x_{2 p}(t), t_{i} \leq t \leq t_{f}$.

Two sets of non-trivial homogeneous solutions, $x_{1,1 h}^{(t),} x_{2,1 h}(t)$ and $x_{1,2 h}(t), x_{2,2 h}^{(t), ~ c a n ~ b e ~ o b t a i n e d ~ w i t h ~ a n y ~ t w o ~ d i f f e r e n t ~ s e t s ~ o f ~ a r b i t r a r i l y ~}$ assumed initial conditions, say $x_{1,1 h}\left(t_{i}\right)=1, x_{2,1 h}\left(t_{1}\right)=0$ and $x_{1,2 h}\left(t_{1}\right)=0$, $x_{2,2 h}\left(t_{i}\right)=1$, from the homogeneous equations of Equations (6) and (7). The homogeneous equations are obtained by setting the constant terms equal to zero.

$$
\begin{align*}
& \frac{d x_{1}}{d t}=b_{1}(t) x_{1}+c_{1}(t) x_{2} \tag{9}\\
& \frac{d x_{2}}{d t^{\prime}}=b_{2}(t) x_{1}+c_{2}(t) x_{2} \tag{10}
\end{align*}
$$

It is imporiant to note that the particular and homogeneous solutions can be obtained numerically using a step by step integration method, like the Runge-Kutta method. The reader is referred to Ince [7] and Lee [9] for detailed discussion.

The superposition principle states that because of the additive property of the solution of a linear system, the general solution of Equations (6) and (7) is,

$$
\begin{align*}
& x_{1}(t)=x_{1 p}(t)+A_{1} x_{1,1 h}(t)+A_{2} x_{1,2 h}(t) \tag{11}\\
& x_{2}(t)=x_{2 p}(t)+A_{1} x_{2,1 h}(t)+A_{2} x_{2,2 h}(t) \tag{12}
\end{align*}
$$

where A_{1} and A_{2} are integration constants.
A_{1} and A_{2} can be obtained by substituting the boundary values, Equation (8), into Equations (11) and (12) with the results of the particular and-homogeneous solutions. Once the values of A_{1} and A_{2} are known, the right hand sides of Equations (11) and (12) are completely known. This gives the solution for $x_{1}(t)$ and $x_{2}(t)$ at all the grid points.

This approach can be generalized to a set of n simultaneous first order linear differential equations

$$
\begin{array}{lr}
\frac{d x_{i}}{d t}=g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) & 1=1,2, \ldots n \\
x_{j}\left(t_{f}\right)=x_{j}^{1} & j=1,2, \ldots m \\
x_{k}\left(t_{i}\right)=x_{k}^{0} & k=m+1, m+2, \ldots n \tag{15}
\end{array}
$$

The general solution by the superposition principle is

$$
\begin{equation*}
x_{i}(t)=x_{i p}(t)+\sum_{k=1}^{n} A_{k} x_{i, k n i}(t) \quad i=1,2, \ldots n \tag{16}
\end{equation*}
$$

In this general case, we have to assume n initial conditions, $x_{i p}\left(t_{i}\right)=x_{i p}^{0}$, for the particular solution, and n sets of initial conditions
$x_{i, k h}\left(t_{i}\right)=x_{i, k h}^{0}$, for n sets of homogeneous solutions. Integration constants A_{k} are determined from the n known boundary conditions and the assumed and computed boundary conditions for the particular and homogeneous solutions.

Usually n sets of homogeneous solutions are required to obtain the general solution. However, if the assumed initial values for the particular solution are properly selected, only m sets of homogeneous solutions need be obtained.

Consider the Equations (6) and (7), their general solution is givenby Equations (11) and (12). Suppose the initial values for the particular solution are chosen as

$$
x_{1 p}\left(t_{i}\right)=x_{1}^{0} \quad x_{2 p}\left(t_{i}\right)=0
$$

and the initial values for the homogeneous solutions are given as before, then Equations (11) and (12) at the initial time t_{i}, reduce to

$$
\begin{aligned}
x_{1}\left(t_{i}\right) & =x_{1 p}\left(t_{i}\right)+A_{1} x_{1,1 h}\left(t_{i}\right)+A_{2} x_{1,2 h}\left(t_{i}\right) \\
x_{1}^{0} & =x_{1}^{0}+A_{1} \quad 1 \quad+A_{2} \quad 0 \\
A_{1} & =x_{1}^{0}-x_{1}^{0}=0 .
\end{aligned}
$$

Since $A_{1}=0$, the first set of homogeneous solutions is not needed. This shows how to select the appropriate initial conditions so as to reduce the set of homogeneous solutions needed from n to m. For further
discussion, the reader is referred to lee [9].
The procedure can be divided into essentially two steps. First, the problem is converted into initial value problems and these problems are solved numerically. Then, the integration constants are obtained by solving a set of algebraic equations. Combination of these results is the general solution of the original problem.

CHAPTER 3

QUASILINEARIZATION

3.1 INTRODUCTION

The advantages of superposition principle in solving two point boundary value problem lead to the idea of linearizing the non-linear differential equations so that the superposition principle can be applied. This is the basic concept of quasilinearization.

Quasilinearization technique was developed by Bellman [1] and Kalaba [8] and applied extensively to chemical engineering problems by Lee $[9,10,11]$ in obtaining numerical solutions of certain classes of non-linear ordinary differential equations of the boundary value type encountered in chemical engineering, optimization, the boundary layer theory and in control problems.

This technique essentially linearizes the set of non-linear differential equations. Conceptually, this method is very close to Newton Raphson method of finding roots of an equation; however, since the unknowns to be determined in this method are functions and not fixed valued roots as in Newton Raphson method, both the computational and theoritical aspects are much more complicated.

In addition to linearizing the non-linear equations, the quasilinearization technique provides a sequence of functions which in general converges rather rapidly to the solution of the original non-linear equations. Usually, the latter is more important. A rough initial approximation for the unknown function can lead to the solution of the orlginal equation through a sequence of functions. In general, for most practical problems, this rough initial approximation can be obtained from engineering
experiences and intuitions.

3.2 COMPUTATIONAL PROCEDURE

In many operations research techniques, the verbal description of the algorithm is far more difficult than the algorithm itself. Hence the logic will be developed and explained with an illustration.

Consider a set of nonlinear differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{t_{i} \leq t \leq t_{f}}{d t}=g(x, y)
\end{aligned}
$$

with boundary values

$$
\begin{equation*}
x\left(t_{i}\right)=x^{0} \quad \text { ard } \quad y\left(t_{f}\right)=y^{1} \tag{19}
\end{equation*}
$$

Using the Taylor series expansion $f(x, y)$ and $g(x, y)$ can be Ifnearized around $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$ as follows:

$$
\begin{align*}
& f(x, y)=f(a, b)+(x-a) f_{a}(a, t)+(y-b) f_{b}(b, t) \\
& g(x, y)=g(a, b)+(x-a) g_{a}(a, t)+(y-b) g_{b}(b, t) \tag{20}
\end{align*}
$$

which is the Taylor series with second and higher terws omitted. Symbol $f_{a}(a, t)$ represents the partial derivative of f with respect to x at $x=a$.

From Equations (18) and (20), we obtain

$$
\begin{align*}
& \frac{d x}{d t}=f(a, b)+(x-a) f_{a}(a, t)+(y-b) f_{b}(b, t) \\
& \frac{d y}{d t}=g(a, b)+(x-a) g_{a}(a, t)+(y-b) g_{b}(b, t) \tag{21}
\end{align*}
$$

Since a and b are known functions of t, Equations (21) are linear differential equations with variable coefficients. The boundary conditions for Equations (21) are given by Equations (19).

A recurrence relation can now be established. Choose an initial approximation for a and b, say $a=x_{0}$ and $b=y_{0}$. Substituting these approximations into Equations (21), it is possible to solve these first order linear differential equations for x and y using a step by step integration method and the boundary conditions given by Equation (19). Call this new solution of x and y as x_{1} and y_{1}. Now using x_{1} and y_{1}, it is possible to find improved values of x and y. Call these improved functions x_{2} and y_{2}. Next using x_{2} and y_{2}, x_{3} and y_{3} can be determined. This iterative procedure is continued until the desired accuracy is obtained.

The recurrence relation can be written as

$$
\begin{align*}
& \frac{d x_{1}}{d t}=f\left(x_{0}, y_{0}\right)+\left(x_{1}-x_{0}\right) f_{x_{0}}\left(x_{0}, y_{0}\right)+\left(y_{1}-y_{0}\right) f_{y_{0}}\left(x_{0}, y_{0}\right) \tag{22}\\
& \frac{d y_{1}}{d t}=g\left(x_{0}, y_{0}\right)+\left(x_{1}-x_{0}\right) g_{x_{0}}\left(x_{0}, y_{0}\right)+\left(y_{1}-y_{0}\right) g_{y_{0}}\left(x_{0}, y_{0}\right)
\end{align*}
$$

$$
\begin{align*}
& \frac{d x_{2}}{d t}=f\left(x_{1}, y_{1}\right)+\left(x_{2}-x_{1}\right) f_{x_{1}}\left(x_{1}, y_{1}\right)+\left(y_{2}-y_{1}\right) f_{y_{1}}\left(x_{1}, y_{1}\right) \tag{23}\\
& \frac{d y_{2}}{d t}=g\left(x_{1}, y_{1}\right)+\left(x_{2}-x_{1}\right) g_{x_{1}}\left(x_{1}, y_{1}\right)+\left(y_{2}-y_{1}\right) g_{y_{1}}\left(x_{1}, y_{1}\right) \\
& \text {. } \\
& \text {. } \\
& \frac{d x_{N+1}}{d t}=f\left(x_{N}, y_{N}\right)+\left(x_{N+1}-x_{N}\right) f_{x_{N}}\left(x_{N}, y_{N}\right)+\left(y_{N+1}-y_{N}\right) f_{y_{N}}\left(x_{N}, y_{N}\right) \tag{24}\\
& \frac{d y_{N+1}}{d t}=g\left(x_{N}, y_{N}\right)+\left(x_{N+1}-x_{N}\right) g_{x_{N}}\left(x_{N}, y_{N}\right)+\left(y_{N+1}-y_{N}\right) g_{y_{N}}\left(x_{N}, y_{N}\right)
\end{align*}
$$

The boundary conditions given in Equation (19) are used in solving Equations (22) through (24).

For a number of problems Equations (22) through (24) have been proved to converge monotomically to the solution of Equation (18). The convergence rate is quadratic in the sense that each iteration approximately doubles the number of digits of accuracy.

3.3 SUMMARY

The procedure can be summarized in the following steps.

1. The nth order non-linear ordinary differential equations are first converted into a system of simultaneous first order ordinary differential equations.
2. This set of equations is then linearized using Equation (21).
3. The recurrence relation for the set of linearized first order differential equations is constructed using Equations (22) through (24).
4. The appropriate initial approximation, $x_{i, 0}(t)$, is assumed for each unknown dependent variable as a function of independent variable t.
5. The results of the first iteration, $x_{i, 1}(t)$, can be obtained by substituting $x_{i, 0}(t)$ into the recurrence relation and using the superposition principle.
6. A further improved solution is obtained by repeating Step 5. The procedure is continued until the solution converges to the desired accuracy.

3.4 DISCUSSION

The main advantage of this technique is that if the procedure converges, it converges quadratically to the solution of the original equation. Quadratic convergence means that the error in the ($n+1$) st iteration tends to be proportional to the square of the error in the nth iteration. All the computational features of Newton-Raphson technique are retained in this technique.

In spite of all the advantages, this technique also has its difficulties. There are two main difficulties. The first difficulty arises from the fact that in using the superposition principle, a set of algebraic equations must be solved. Thus the ill-conditioning phenomenon in solving a set of linear algebraic equations can make the superposition principle useless. Another difficulty is the convergence problem. If the initial approximation is not
within the interval of convergence a solution cannot be obtained. For a detailed mathematical treatment of this topic, the reader is referred to Lee [9].

CHAPTER 4

APPLICATION TO AN ADVERTISEMENT PROBLEM

In this chapter, the computational aspects of this technique will be discussed with respect to its application to an inventory and advertisement model having two state variables and one control variable.

4.1 DEVELOPMENT OF THE MODEL

The diffusion model for advertisement was originally developed by Teichroew [14]. Consider a group of people in which only certain members possess a particular piece of information, say, about a manufacturing company's product. Suppose that the total number of persons in this group remain constant and that the diffusion of information occurs only through personal contact. The number of contacts made by an average informed person in an arbitrary unft of time is given by a contact coefficient. This coefficient is same for all members of the group. In a contact, the contactee receives information if he does not already have it; if he already has it, the contact is wasted in the sense that it did not increase the number of informed people.

```
Let \(Q(0)=Q_{0}=\) number of informed people at time \(t_{i}\).
        \(\mathrm{N}=\) total number of persons
        \(c_{c}=\) contact coefficient; the number of contacts made by
                one informed person per unit time.
        \(Q(t)=\) number of informed persons at time \(t\).
        \(Q(t) / N=\) proportion of informed persons at time \(t\).
```



```
    \(c_{c} Q(t) d t=\) contacts made during a time interval \(d t\).
```

The increase in the total number of informed people during a short interval of time Δt is obtained by multiplying the number of contacts by the proportion of uninformed persons, because an increase in informed members is caused only by contacts with uninformed group. Hence,

$$
\begin{align*}
& d Q(t)=c_{c} \quad Q(t) \quad d t \quad(1-Q(t) / \mathbb{N}) \\
& \frac{d Q(t)}{d t}=c_{c} \quad Q(t) \quad\left(1-\frac{Q(t)}{N}\right) \tag{25}
\end{align*}
$$

Suppose now that the manufacturing company can influence the number of contacts by spending money for advertising. Specifically, it can increase the number of contacts made by the informed people by an additional number A per unft of time. Thus,

$$
\begin{equation*}
\frac{d Q(t)}{d t}=Q(t) \quad\left(c_{c}+A(t)\right) \quad\left[1-\frac{Q(t)}{N}\right] \tag{26}
\end{equation*}
$$

If each informed person buys c_{q} unfts of the company's product and if $S(t)$ represents the sale at time t, then

$$
\begin{equation*}
S(t)=c_{q} \quad Q(t) \tag{27}
\end{equation*}
$$

Let $c_{q}=1$, and substitute for $Q(t)$ In Equatión (26),

$$
\begin{equation*}
\frac{d S(t)}{d t}=S(t) \quad\left(c_{c}+A(t)\right) \quad\left[1-\frac{S(t)}{N}\right] \tag{28}
\end{equation*}
$$

The rate of change of the company's inventory, $I(t)$, is given by

$$
\begin{equation*}
\frac{\mathrm{dI}(\mathrm{t})}{\mathrm{dt}}=P(\mathrm{t})-\mathrm{S}(\mathrm{t}) \tag{29}
\end{equation*}
$$

where $P(t)=$ production rate at time t. The production rate is assumed to be a linear function given by

$$
P(t)=a+b t
$$

where a, b are constants and t is time.
This is a typical industrial management problem where the management wishes to maximize the profit given by Equation (30).

$$
\begin{equation*}
J=\int_{t_{i}}^{t_{f}}\left[c S(t)-c_{I}\left(I_{m}-I(t)\right)^{2}-c_{A} S(t) A^{2}(t)\right] d t \tag{30}
\end{equation*}
$$

where J is the net total profit, c is the revenue from sale of one unit of the product, c_{I} is the inventory carrying cost, I_{m} can be considered as the capacity for the storage of inventory, and c_{A} is the cost of advertising.

The role of the management in this particular case is to select the optimal policy from among all feasible solutions which gives the maximum profit.

4.2 DEFINITION OF THE PROBZEM

Maximize

$$
\begin{equation*}
J=\int_{t_{i}}^{t_{f}}\left[c S(t)-c_{I}\left(I_{m}-I(t)\right)^{2}-c_{A} S(t) A^{2}(t)\right] d t \tag{30}
\end{equation*}
$$

subject to

$$
\begin{align*}
& P(t)=a+b t \tag{31}\\
& \frac{d I(t)}{d t}=P(t)-S(t) \tag{32}\\
& \frac{d S(t)}{d t}=S(t)\left(c_{c}+A(t)\right)\left[1-\frac{S(t)}{N}\right] \tag{33}
\end{align*}
$$

with boundary conditions

$$
\begin{equation*}
I\left(t_{i}\right)=I^{0} \quad \text { and } \quad S\left(t_{i}\right)=s^{0} \tag{34}
\end{equation*}
$$

4.3 FORMULATION OF THE PROBLEM

The above optimization problem can be solved by calculus of variations with the help of the quasilinearization technique. For detailed treatment of the calculus of variations, the reader is referred to Bliss [3] and Elagolc [5].

Equations (31) through (34) can be rewritten as

$$
\begin{align*}
& \frac{d I(t)}{d t}-(a+b t)+s(t)=0 \tag{35}\\
& \frac{d S(t)}{d t}-S(t)\left(c_{c}+A(t)\right)\left[1-\frac{S(t)}{N}\right]=0 \tag{36}
\end{align*}
$$

We have two state variables, I and S, and one control variable A. Intro-
duce Lagrange mitipliers λ_{1}, λ_{2} and constant multipliers θ_{1}, θ_{2} and define the following functions.

$$
\begin{align*}
& F=\left[\lambda_{I}(\dot{I}-(a+b t)+S)+\lambda_{2}\left(\dot{S}-S\left(c_{c}+A-\frac{S c_{c}}{N}-\frac{S A}{N}\right)\right)\right. \\
&\left.+c S-c_{I}\left(I_{\text {mi }}-I\right)^{2}-c_{A} S A^{2}\right] \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
G=\left[\theta_{1}\left(I(0)-I^{0}\right)+\theta_{2}\left(S(0)-S^{0}\right)\right] \tag{39}
\end{equation*}
$$

where the notation \dot{I} represents the first differential $\frac{d I}{d t}$. The EulerLagrange equations [11]

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{y}_{1}}\right)-\frac{\partial F}{\partial y_{i}}=0 \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F}{\partial A}=0 \tag{41}
\end{equation*}
$$

can now be applied to Equation (38) to obtain relations for the Lagrange multipliers λ_{1}, λ_{2}.

$$
\begin{align*}
& \frac{d \lambda_{1}}{d t}=2\left(I\left(I_{m}-I\right)\right. \tag{42}\\
& \frac{d \lambda_{2}}{d t}=\lambda_{1}+c-c_{A} A^{2}-c_{c} \lambda_{2}-\lambda_{2} A+\frac{2 c_{c} S \lambda_{2}}{N}+\frac{2 A S \lambda_{2}}{N} \tag{43}
\end{align*}
$$

We need boundary conditions for the Lagrange multipliers λ_{1}, λ_{2}. They were obtained by applying the transversality condition [11].

$$
\left.\frac{\partial G}{\partial y_{i}}\right|_{t_{i}}-\left.\frac{\partial F}{\partial \dot{y}_{i}}\right|_{t_{i}}=0 \quad \text { or }\left.\quad \frac{\partial G}{\partial y_{i}}\right|_{t_{f}}-\left.\frac{\partial F}{\partial \dot{y}_{i}}\right|_{t_{f}}=0
$$

Applying this condition to Equations (38) and (39), we obtain

$$
\begin{array}{ll}
0-\lambda_{1}\left(t_{f}\right)=0 & \lambda_{1}\left(t_{f}\right)=0 \\
0-\lambda_{2}\left(t_{f}\right)=0 & \lambda_{2}\left(t_{f}\right)=0 \tag{44}
\end{array}
$$

Now we have four differential equations with two initial and two final conditions, which make the problem, a two point boundary value type. Applying condition (41) to Equation (38), we obtain

$$
\begin{equation*}
A=\frac{\lambda_{2}}{2 c_{A}}\left(\frac{S}{N}-1\right) \tag{45}
\end{equation*}
$$

Since it is possible to express the control variable explicity in terms of the state variables, let us eliminate A from all the performance equations.

$$
\begin{align*}
& \frac{d I}{d t}=a+b t-s \tag{46}\\
& \frac{d S}{d t}=c_{c} S-\frac{c_{c} S^{2}}{N}+\frac{s^{2} \lambda_{2}}{c_{A} A^{N}}-\frac{S \lambda_{2}}{2 c_{A}}-\frac{s^{3} \lambda_{2}}{2 c_{A} N^{2}} \tag{47}\\
& \frac{d \lambda_{I}}{d t}=2 c_{I}\left(I_{m}-I\right) \tag{48}
\end{align*}
$$

$$
\begin{equation*}
\frac{d \lambda_{2}}{d t}=\lambda_{1}+c+\frac{3 s^{2} \lambda_{2}^{2}}{4 c_{A} N^{2}}+\frac{\lambda_{2}^{2}}{4 c_{A}}-c_{c} \lambda_{2}+\frac{2 c_{c} s \lambda_{2}}{N} \tag{49}
\end{equation*}
$$

The boundary conditions are given by Equations (34) and (44).

4.4 QUASILINEARIZATION

Observe that Equations (47) and (49) are non-linear. They should be linearized. The linearization procedure is the same as described in Chapter 3. Referring to Equation (21), we need the expressions for f_{a}, f_{b}, g_{a}, g_{b}. In other words, we require

$$
J=\left[\begin{array}{cc}
\frac{\partial g_{1}}{\partial S} & \frac{\partial g_{1}}{\partial \lambda_{2}} \\
\frac{\partial g_{2}}{\partial S} & \frac{\partial g_{2}}{\partial \lambda_{2}}
\end{array}\right]
$$

This matrix can be obtained from Equations (47) and (49).

The linearized equations and the recurrance relations can be developed in accordance with Equations (21) through (24).

$$
\begin{align*}
& \frac{d I_{n+1}}{d t}=a+b t-s_{n+1} \\
& \frac{d s_{n+1}}{d t}=\left[c_{c} s_{n}-\frac{c_{c} s_{n}^{2}}{N}+\frac{s_{n}^{2} \lambda_{2, n}}{c_{A}{ }^{N}}-\frac{s_{n} \lambda_{2, n}}{2 c_{A}}-\frac{s_{n}^{3} \lambda_{2, n}}{2 c_{A} N^{2}}\right] \\
& +\left(s_{n+1}-s_{n}\right)\left[c_{c}-\frac{2 c_{c} s_{n}}{N}+\frac{2 s_{n} \lambda_{2}, n}{c_{A}^{N}}-\frac{\lambda_{2}, n}{2 c_{A}}-\frac{3 s_{n}^{2} \lambda_{2}, n}{2 c_{A} N^{2}}\right] \\
& +\left(\lambda_{2, n+1}-\lambda_{2, n}\right)\left[\frac{s_{n}^{2}}{c_{A}^{N}}-\frac{s_{n}}{2 c_{A}}-\frac{s_{n}^{3}}{2 c_{A}^{N^{2}}}\right] \\
& \frac{d \lambda_{1, n+1}}{d t}=2 c_{I} I_{m}-2 C_{I} I_{n+1} \tag{52}\\
& \frac{d \lambda_{2, n+1}}{d t}=\left[\lambda_{1, n+1}+c-c_{c} \lambda_{2, n}+\frac{3 s_{n}^{2} \lambda_{2, n}^{2}}{4 c_{A} N^{2}}+\frac{\lambda_{2, n}^{2}}{4 c_{A}}-\frac{s_{n} \lambda_{2, n}^{2}}{c_{A}^{N}}+\frac{2 c_{c} s_{n} \lambda_{2, n}}{N}\right] \\
& +\left(s_{n+1}-s_{n}\right)\left[-\frac{3 s_{n} \lambda_{2}^{2} n}{2 c_{A} N^{2}}-\frac{\lambda_{2}^{2}, n}{c_{A} N^{N}}+\frac{2 c_{c} \lambda_{2}, n}{N}\right] \\
& +\left(\lambda_{2, n+1}-\lambda_{2, n}\right)\left[\frac{\lambda_{2}, n}{2 c_{A}}-c_{c}+\frac{3 s_{n}^{2} \lambda_{2}, n}{2 c_{A^{N^{2}}}}-\frac{2 s_{n} \lambda_{2}, n}{c_{A}^{N}}+\frac{2 c_{c} s_{n}}{\mathbb{N}}\right] \tag{53}
\end{align*}
$$

The boundary conditions are given by equations (34) and (44).
Equations (50) through (53) are ordinary linear differential equations and with the boundary conditions given by equations (34) and (44), they form a two point boundary value problem. This problem can now be solved by superposition principle. Selecting the initial conditions,
for the particular and homogeneous solutions such that they satisfy the given initial conditions, the general solution can be written as

$$
\begin{align*}
& I(t)=I_{p}(t)+A_{1} I_{1 h}(t)+A_{2} I_{2 h}(t) \\
& S(t)=S_{p}(t)+A_{1} S_{1 h}(t)+A_{2} S_{2 h}(t) \\
& \lambda_{1}(t)=\lambda_{1, p}(t)+A_{1} \lambda_{1,1 h}(t)+A_{2} \lambda_{1,2 h}(t) \\
& \lambda_{2}(t)=\lambda_{2, p}(t)+A_{1} \lambda_{2,1 h}(t)+A_{2} \lambda_{2,2 h}(t) \tag{54}
\end{align*}
$$

These equations are derived in accordance with Equations (11) and (12).
After obtaining the final solution with the superposition principle, Equations (30) and (45) can he solved for the profit and advertisement, respectively. This completes one iteration. Further iteration was allowed until desired accuracy was obtained.

4.5 NUMERICAL ASPECTS

In order to solve this problem, the constants were assumed to have the following values.
$a=70$
$c_{A}=1.5$
$I(0)=I^{0}=20$
$b=100$
$C_{I}=0.15$
$s(0)=s^{0}=20$
$c_{c}=2$
$\mathrm{N}=150$
$t_{i}=0 \quad t_{f}=1.0$
$c=10$
$I_{\mathrm{m}}=50$
$\Delta t=0.01$

As discussed before, we need initial approximations to start the solution. Since only two Equations, (51) and (53), were non-1inear, we needed the faitial approximations for S and λ_{2} only. These values were
obtained from intuition and knowledge about the system. Various aets of initial approximations used in this problem are listed in Table 1.

Solution of this problem by the superposition principle requires a aet of particular solutions and four sets of homogeneous solutions. However, as discussed previously, if the initial values for the particular and homogeneous solutions are chosen such that they aatisfy the given initial conditions, only two sets of homogeneous solutions are needed. The following set of values at the initial time satisfy this condition and hence they were used as the inftial values for the particular solution.

$$
\begin{array}{ll}
I_{p}(0)=20 & \lambda_{1, p}(0)=0.0 \\
S_{p}(0)=20 & \lambda_{2, p}(0)=0.0 \tag{56}
\end{array}
$$

The initial values for the two sets of homogeneous solutions were assumed as

Set 1 Set 2 0

$$
s_{i h}^{(0)}
$$

0 0

$$
\lambda_{1, i h}(0)
$$

$\lambda_{2, i h}{ }^{(0)}$ 0 1

4.6 COMPUTATIONAL ASPECTS

Using the initial values given by Equation (56), the set of linear differential Equations (50) through (53) were solved using the Runge-Kutta method to obtain the particular solution.

For homogeneous solutions, the known terms in Equations (50) through (53) were set to zero and the modified equations were solved by Runge-

Table 1. List of initial approximations.

Set No.	$S_{0}(t)$	$\lambda_{2,0}(t)$
1	450.0	20.0
2	350.0	15.0
3	300.0	12.5
4	300.0	10.0
5	275.0	10.0
6	250.0	10.0
7	200.0	7.0
8	150.0	2.0
9	100.0	1.5
10	50.0	-1.0
11	28.0	-0.25
12	25.0	-0.50
13	22.0	0.125
14	20.0	0.0
15	5.0	-3.0

Fig. 2. Computer Logic Diagram for an Advertisement Problem.

Kutta method using the initial conditions given by Equation (57). These were the first and the second set of homogeneous solutions. Last two Equations in (54) at final time $t=1$ were used to solve for the two integration constants, A_{I} and A_{2}. The solution was obtained by Cramer's rule. Next, the general solutions for the two state variables and two Lagrange multipliers were obtained by using the superposition principle, Equation (54).

The control variable A and objective function, J, were obtained next using Equations (45) and (30) respectively. For simplicity the following approximation was used to calculate the total profit.

$$
J=\sum_{t_{i}}^{t_{f}}\left[c S(t)-c_{I}\left(I_{m}-I(t)\right)^{2}-c_{A} S(t) A^{2}(t)\right] \Delta t
$$

In general, 9 iterations were allowed.
The IBM $360 / 50$ computer system was used for all these computations. Computer logic diagram is shown in Fig. 2. The computer program is given in Appendix 2.

4.7 RESULTS

Tbe optimal profit in this program was $J=587.80$ and the optimal initial and final values are

$$
\begin{array}{lll}
I(0)=20 & s(0)=20 & A(0)=3.98 \\
I(1)=66.15 & s(1)=115.69 & A(1)=0
\end{array}
$$

Out of the 15 different sets of initial approximations listed in Table 1 , the first five sets did not produce convergence.

In set 1 , the particular and homogeneous solutions of all the four variables at the final time, t_{f}, involve terms of the order 10^{40}. As a result, the calculation of integration constants by Cramer's rule involves terms of the order 10^{80}, which cannot be handled by IBM 360 computer and exponential overflow was resulted.

Set 2 encountered a similar problem. The lowest term in the particular and homogeneous solutions at final time t_{f}, was of the order 10^{13}. This did not cause any difficulty in the calculation of integration constants, but resulted in exponential overflow in the computation of final solution of first iteration.

Sets 3, 4, and 5 encountered basically the same problem. For explanation, results of set 4 are used here. In the final solution of first iteration, the following results were obtained.

$$
\begin{array}{rlrl}
A(1) & =-0.187 \times 10^{14} & I(1) & =0.706 \times 10^{7} \\
J & =0.118 \times 10^{34} & s(1) & =-0.141 \times 10^{9}
\end{array}
$$

as a result of such large numbers, the computer experienced exponential overflow and stopped computation while calculating the particular solution of the second iteration.

Sets 6 through 15 converged to the same optimal solution in about 4-5 iterations. The convergence rates of sales, inventory, and advertisement are shown in Figs. 3 through 11. The initial approximations used are sets

10, 12, and 14 in Table 1. Fig. 12 shows the convergence rate of the profit function with set 14 of Table 1 as the initial approximation. The convergence rates of the initial and final values of the variables are tabularized in Tables 2 through 5. The IBM 360/50 computer took about 3.72 minutes to complete 9 iterations for this problem with WATFOR compiler.

4.8 DISCUSSION

The results show that this problem converged with ten different and far from optimal initial approximations. The optimal curves show that the profiles of the state and control variables were either monotonically decreasing or monotonically increasing. This made quasilinearization method more effective.

It was observed from Tables 2-5 that convergence was obtained in 4-5 iterations for all sets of initial approximations that converged. It was concluded that

1. The quasilinearization method converges quadratically, whenever it converges.
and 2. The convergence rate is almost independent of the choice of initial approximation, if the latter values are within the convergence interval or range.

A note on the choice of initial approximation is in order. In this problem, the optimal solution of sales is between 20.0 and 115.69. But any initial approximation of sales between 5.0 and 250.0 would converge to the optimal solution. Hence, choosing this value should not be a problem. The author feels that, in general, the basic knowledge of physical

Fig. 3. Convergence Rate of Sales in an Advertisement Problem

Fig. 4. Convergence Rate of Sales in an Advertisement Problem.

Fig. 5. Convergence Rate of Sales in an Advertisement Problem.

Fig. 6. Convergence Rate of Inventory in an Advertisement Probiem.

Fig. 7. Convergence Rate of Inventory in an Advertisement Problen.

Fig. 8. Convergence Rate of Inventory in an Advertisement Problem.

Fig. 9. Convergence Rate of Advertisement in an Advertisement Problem.

Fig. 10. Convergence Rate of Advertisement in an Advertisemert Problem.

Fig. 11. Convergence Rate of Advertisement in an Advertisement Problem.

Fig. 12. Convergence Rate of Profit Function in an Advertiserent Problem

$$
\begin{array}{ll}
0 \\
0 \\
\dot{N} & 0
\end{array}
$$

$$
\begin{aligned}
& \text { 8 } \\
& \stackrel{\circ}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 216.39 \\
& 129.04
\end{aligned}
$$

$$
\begin{array}{r}
5.0 \\
-3.0 \\
5.00 \\
209.27 \\
120.58 \\
115.68 \\
115.69 \\
115.69
\end{array}
$$

$$
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & \text { in } \\
\text { न- }
\end{array}
$$

$$
\begin{array}{ll}
& \stackrel{N}{7} \\
\stackrel{\sim}{\mathrm{~N}} & \dot{0}
\end{array}
$$

$$
\text { Convergence rate of } S\left(t_{f}\right)
$$

$$
\begin{array}{r}
25.0 \\
-0.5
\end{array}
$$

\[

\]

$$
88^{\circ} 57 \tau
$$

$$
\begin{aligned}
& 9 \\
& 0 \\
& \stackrel{1}{1} \\
& \underset{\sim}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { O } \\
& \underset{\sim}{\infty} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 50.0 \\
& -1.0
\end{aligned}
$$

$$
\begin{aligned}
& 28.0 \\
& -0.25
\end{aligned}
$$

$$
199.76
$$

$$
\begin{aligned}
& 125.93 \\
& 115.80 \\
& 115.69
\end{aligned}
$$

$$
\begin{aligned}
& \text { ar } \\
& \text {-1 } \\
& \text {-1 }
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 0 \\
\dot{0} & \dot{N} \\
\end{array}
$$

$$
\begin{aligned}
& 150.00 \\
& 132.40
\end{aligned}
$$

$$
\begin{aligned}
& 116.46 \\
& 115.70
\end{aligned}
$$

$$
\begin{array}{ll}
\stackrel{\circ}{\circ} & 0 \\
0 \\
\stackrel{0}{7} & \underset{\sim}{1}
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \underset{\sim}{1}
\end{aligned}
$$

$$
\begin{array}{r}
200.0 \\
7.0
\end{array}
$$

$$
\begin{aligned}
& 200.00 \\
& 174.49
\end{aligned}
$$

$$
0
$$$-1$

$S_{0}(t)$	250.0	200.0	150.0	$\begin{gathered} \text { Table } 3 . \\ 100.0 \end{gathered}$	Convergence rate of $I\left(t_{f}\right)$				20.0	5.0
					50.0	28.0	25.0	22.0		
$\lambda_{2,0}(\mathrm{t})$	10.0	7.0	2.0	1.5	-1.0	-0.25	-0.5	0.125	0.0	-3.0
Iteration										
1	-54.56	-49.72	46.20	66.04	55.61	40.34	41.29	36.26	36.86	65.68
2	12.54	60.68	66.67	66.21	65.85	63.85	64.32	62.77	63.05	70.04
3	67.84	66.63	66.14	66.15	66.15	66.14	66.15	66.12	66.13	66.29
4	64.83	66.15	66.15	66.15	66.15	66.15	66.15	66.15	66.15	66.15
5	66.15	66.15	66.15			66.15		66.15	66.15	66.15
6	66.15									

$$
\begin{aligned}
& \begin{array}{ll}
\circ \\
\hline 8 & i
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
0 & \text { n } \\
\dot{\circ} & \text {-i } & \circ & \infty & \infty \\
\dot{-} & \text { i } & \dot{\circ} & \dot{9} & \dot{m}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ザ }
\end{aligned}
$$

$$
\stackrel{0}{\circ}
$$

$$
\text { Table 5.. Convergence rate of } \mathrm{J} \text {. }
$$

100.0	50.0	28.0	25.0
1.5	-1.0	-0.25	-0.5

$$
711.31
$$

$$
613.53
$$

$$
588.14
$$

$$
\begin{aligned}
& 703.49 \\
& 612.26
\end{aligned}
$$

$$
\begin{aligned}
& 588.06 \\
& 587.80
\end{aligned}
$$

$$
587.80
$$

$$
\begin{gathered}
5.0 \\
-3.0 \\
538.95 \\
551.07 \\
590.66 \\
587.80 \\
587.80
\end{gathered}
$$

$$
\begin{aligned}
& \text { O } \\
& \text { io } \\
& \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& \infty \\
& \dot{\infty} \\
& \text { in }
\end{aligned}
$$

$\begin{array}{ll}0 & 0 \\ i & \text { i } \\ \end{array}$
79. IT9
L9.068
or
$\stackrel{y}{n}$
$\stackrel{\infty}{n}$

$\begin{array}{ll}\infty & \infty \\ \infty & \infty \\ \infty & \infty \\ i & i\end{array}$
$\stackrel{\circ}{\circ}$

578.17
588.00
587.80
587.80

$S_{0}(t)$
$\lambda_{2,0}(t)$
Iteration
behavior of the system is enough to make correct choice. Furthermore, many numerical schemes have been devised to overcome the convergence problem. One such scheme is the data perturbation technique [4].

In order to further investigate the convergence and other computational aspects of this problem, the following constants were used.

$$
\begin{array}{llr}
\mathrm{a}=0.7 & c_{\mathrm{A}}=1.0 & \mathrm{I}(0)=I^{0}=0.2 \\
\mathrm{~b}=1.0 & c_{\mathrm{I}}=0.15 & \mathrm{~S}(0)=\mathrm{s}^{0}=0.2 \\
c_{\mathrm{c}}=2.0 & \mathrm{~N}=1.5 & \mathrm{t}_{1}=0.0 \quad t_{\mathrm{f}}=1.0 \\
\mathrm{c}=10.0 & I_{\mathrm{mI}}=1.0 & \Delta t=0.01
\end{array}
$$

The initial approximations used were

$$
s_{0}(t)=0.2 \quad \lambda_{2,0}(t)=0.0
$$

The initial values for the one particular and two homogeneous solutions were
$I(0) \quad S(0) \quad \lambda_{1}(0) \quad \lambda_{2}(0)$

Particular soln.	0.2	0.2	0.0	0.0
Homo. soln. set 1	0.0	0.0	1.0	0.0
Homo. soln. set 2	0.0	0.0	0.0	1.0

The convergence rates are shown in Table 6. The problem converged in 4 iterations. The optimal profiles of I, S, and A are shown in Fig. 13.

Table 6. Convergence rates for the modified problem, Equation (58)

Iteration	Time	$I(t)$	$S(t)$	$\lambda_{1}(t)$	$\lambda_{2}(t)$	$A(t)$	J

 0

0.0	0.20	0.0
0.25	0.20	0.0
0.50	0.20	0.0
0.75	0.20	0.0
1.00	0.20	0.0

1
$0.0 \quad 0.200$
0.200
$0.25 \quad 0.292$
$-0.225-0.225$
$\begin{array}{llllll}0.50 & 0.313 & 1.284 & -0.118 & -7.337 & 0.529\end{array}$
$\begin{array}{llllll}0.75 & 0.240 & 1.985 & -0.064 & -3.010 & -0.487\end{array}$
$\begin{array}{llllll}1.00 & 0.027 & 2.915 & -0.0 & 0.0 & 0.0\end{array}$
8.631

2

3

4

5

Fig. 13. Optimal Profiles of $I(t), S(t)$ and $A(t)$ for modified Problem, Eqn. (59).

Most important advantage of this technique is that the control variable can be eliminated from the performance equations. Hence, initial guess for the control variable is not required in solving for the state variables. For this reason, this technique is superfor to the gradient technique because any error in guessing the initial control can result in failure to obtain the solution.

It may be interesting to note that the results of this problem, using the inftial values listed in Equation (55), compare favorably with the results obtained by the first variational gradient technique [15]. The modified problem with numerical values given by Equation (58) has also been solved by the second variation technique [13]. The present results again compare favorably with this result.

It will be observed in the next chapter, that even if the control variable cannot be canceled from the performance equations, quasilinearization method still works well.

CHAPTER 5

APPLICATION TO AN ADVERTISEMENT AND PRODUCTION PROBLEM

We now wish to apply the quasilinearization technique to a more complex problem, namely an advertisement and production problem. This problem has six state variables and three control variables. In addition, the profiles are fairly unstable due to the rapid change of the variables with time.
5.1 DEVELOPMENT OF THE MODEL

Consider the manufacturing process shown in Fig. 14. There are two chemical reactors in which the following consecutive reactions take place

$$
A \longrightarrow B \longrightarrow C
$$

Both these reactions are first order. The component B is the desired product and C is the waste product. Suppose B is a new product which needs advertisement to boost the sales. Furthermore, to protect against fluctuations in demand, an inventory will be assumed for B. A and C are assumed to have unlimited market at fixed price and they are sold as soon as manufactured.

Let x_{i} and $y_{i}, i=1,2$, represent the concentration of A and B respectively. Under steady state conditions, from material balance, we have

$$
\begin{gather*}
\text { arount of } \tag{59}\\
A \text { in }
\end{gathered}=\begin{gathered}
\text { amount of } \\
A \text { out }
\end{gather*}+\begin{aligned}
& \text { amount of } A \\
& \text { transformed to } B
\end{aligned}
$$

Fig. 14. Advertisement and Production Model

Let

$$
\begin{aligned}
v_{i} & =\text { volume of chemical reactor } i, i=1,2 \\
q & =\text { flow rate } \\
k_{a i} & =\text { reaction rate constant of the first reaction in reactor } i \\
k_{b i} & =\text { reaction rate constant of the second reaction in reactor } i
\end{aligned}
$$

$$
G_{a}, G_{b}=\text { frequency constants of the first and second reactions, respectively }
$$

$$
E_{a}, E_{b}=\text { activation energies of the first and second reactions, respectively }
$$

$$
R=\text { gas constant }
$$

$$
T_{1}=\text { temperature in reactor } i
$$

The kinetics of the reactions can now be written as

$$
q x_{0}=q x_{1}+v_{1} k_{a 1} x_{1}
$$

or

$$
q\left(x_{0}-x_{1}\right)-v_{1} k_{a 1} x_{1}=0
$$

at steady state. Under unsteady state condtions we have

$$
\begin{equation*}
v_{1} \frac{d x_{1}}{d t}=q\left(x_{0}-x_{1}\right)-v_{1} k_{a 1} x_{1} \tag{61}
\end{equation*}
$$

simflarly, eqn. (60) can be rewsitten as

$$
q y_{0}=q y_{1}+v_{1} k_{b 1} y_{1}-v_{1} k_{a 1} x_{1}
$$

or

$$
q\left(y_{0}-y_{1}\right)-v_{1} k_{b 1} y_{1}+v_{1} k_{a 1} x_{1}=0
$$

at steady state. Under steady state conditions, we have

$$
\begin{equation*}
v_{1} \frac{d y_{1}}{d t}=q\left(y_{0}-y_{1}\right)-v_{1} k_{11} y_{1}+v_{1} k_{a 1} x_{1} \tag{62}
\end{equation*}
$$

With similar arguments, the kinetics of the reactions in the second reactor can be written as

$$
\begin{equation*}
v_{2} \frac{d x_{2}}{d t}=q\left(x_{1}-x_{2}\right)-v_{2} k_{a 2} x_{2} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{v}_{2} \frac{\mathrm{dy}}{2} \mathrm{dt}=\mathrm{q}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)-\mathrm{v}_{2} \mathrm{k}_{\mathrm{b} 2} \mathrm{y}_{2}+\mathrm{v}_{2} \mathrm{k}_{\mathrm{a} 2} \mathrm{x}_{2} \tag{64}
\end{equation*}
$$

The reaction rate constants are defined as

$$
\begin{array}{ll}
k_{a 1}=G_{a} \exp \left(-\frac{E_{a}}{R T_{1}}\right), & k_{b 1}=G_{b} \exp \left(-\frac{E_{b}}{R T_{1}}\right) \\
k_{a 2}=G_{a} \exp \left(-\frac{E_{a}}{R T_{2}}\right), & k_{b 2}=G_{b} \exp \left(-\frac{E_{b}}{R T_{2}}\right) \tag{65}
\end{array}
$$

As indicated before B is the desired product and it needs inventory and advertisement. The performance equation for the inventory is

$$
\begin{align*}
& \begin{array}{c}
\text { rate of change } \\
\text { of inventory }
\end{array}=\begin{array}{c}
\text { production } \\
\text { rate }
\end{array}-\begin{array}{c}
\text { sales } \\
\text { rate }
\end{array} \\
& \frac{d I}{d t}=\mathrm{qy}_{2}-s
\end{align*}
$$

where I is the inventory and S is sales.
The performance equation for advertisement is the same as Equation (26) in the last chapter. Again, let $c_{q}=1$. According to Equation (27), we have

$$
S(t)=c_{q} Q(t)=Q(t)
$$

Thus,

$$
\begin{equation*}
\frac{d S}{d t}=S\left(c_{c}+A\right)\left[1-\frac{S}{N}\right] \tag{67}
\end{equation*}
$$

where c_{c} is the contact coefficient. A is the advertisement and N represents the total number of people in the group.

Equations (61), (62), (63), (64), (66), and (67) describe the system completely. We have six state variables, $x_{1}, y_{1}, x_{2}, y_{2}, I$, and S, and three control variables, T_{1}, T_{2}, and A.

The management in this particular industrial system is confronted with the problem of selecting three control variables such that the following profit function, J, is maximized.

$$
\begin{aligned}
& \text { profit }= \int_{t_{i}}^{t_{f}} \text { [revenue of } B+\text { revenue of } A+\text { revenue of } C \\
&\left.\quad-\begin{array}{c}
\text { inventory } \\
\text { cost }
\end{array} \quad \begin{array}{r}
\text { advertisement } \\
\text { cost }
\end{array} \quad \text { manufacturing }\right] d t \\
& \operatorname{cost}
\end{aligned}
$$

Mathematically,

$$
\begin{align*}
& J=\int_{t_{i}}^{t_{f}}\left[c_{1} c_{q} s+c_{2} q x_{2}+c_{3} q\left(1-x_{2}-y_{2}\right)-c_{I}\left(I_{m}-I\right)^{2}\right. \\
&\left.-c_{A} A^{2} s^{2}-c_{T}\left\{\left(T_{1 m}-T_{1}\right)^{2}+\left(T_{1}-T_{2}\right)^{2}\right\}\right] d t \tag{68}
\end{align*}
$$

5.2 DEFINITION OF THE FROBLEM

Maximize the functional

$$
\begin{align*}
J=\int_{t_{i}}^{t_{f}}\left[c_{1} c_{q} S\right. & +c_{2} q x_{2}+c_{3} q\left(1-x_{2}-y_{2}\right)-c_{I}\left(I_{\text {m }}-I\right)^{2} \\
& \left.-c_{A} A^{2} S^{2}-c_{r_{1}}\left\{\left(T_{1 m}-T_{1}\right)^{2}+\left(T_{1}-T_{2}\right)^{2}\right\}\right] d t \tag{69}
\end{align*}
$$

subject to the constraints of

$$
\begin{align*}
& v_{1} \frac{d x_{1}}{d t}=q\left(x_{0}-x_{1}\right)-v_{1} k_{a 1} x_{1} \tag{70}\\
& v_{1} \frac{d y_{1}}{d t}=q\left(y_{0}-y_{1}\right)-v_{1} k_{b 1} y_{1}+v_{1} k_{a 1} x_{1} \tag{71}\\
& v_{2} \frac{d x_{2}}{d t}=q\left(x_{1}-x_{2}\right)-v_{2} k_{a 2} x_{2} \tag{72}\\
& v_{2} \frac{d y_{2}}{d t}=q\left(y_{1}-y_{2}\right)-v_{2} k_{b 2} y_{2}+v_{2} k_{a 2} x_{2} \tag{73}\\
& \frac{d I}{d t}=q y_{2}-s \tag{74}\\
& \frac{d S}{d t}=S\left(c_{c}+A\right)\left[1-\frac{S}{N}\right] \tag{75}
\end{align*}
$$

with boundary conditions

$$
\begin{array}{lll}
x_{1}\left(t_{i}\right)=x_{1}^{0} & y_{2}\left(t_{i}\right)=y_{2}^{0} & \\
y_{1}\left(t_{i}\right)=y_{1}^{0} & I\left(t_{i}\right)=I^{0} & I\left(t_{f}\right)=I^{1} \\
x_{2}\left(t_{i}\right)=x_{2}^{0} & s\left(t_{i}\right)=s^{0} & \tag{76}
\end{array}
$$

5.3 FORMULATION OF THE PROBLEM

It was required to find the optimal valne of the state variables and control variables so that the objective function is maximized. This problem can be solved by calculus of variations. The procedure for obtaining the solution remains essentially the same.

Equations (70) through (76) can be rewritten as

$$
\begin{align*}
& \dot{x}_{1}-\frac{q}{v_{1}}\left(x_{0}-x_{1}\right)+G_{a} e^{-\frac{E}{R T_{1}}} x_{1}=0 \tag{77}\\
& \dot{y}_{1}-\frac{q}{v_{1}}\left(y_{0}-y_{1}\right)+G_{b} e^{-\frac{E_{b}}{R T_{1}}} y_{1}-G_{a} e^{-\frac{E}{R T_{1}}} x_{1}=0 \tag{78}\\
& \dot{x}_{2}-\frac{q}{v_{2}}\left(x_{1}-x_{2}\right)+G_{a} e^{-\frac{E_{a}}{R T_{2}}} x_{2}=0 \tag{7s}\\
& \dot{y}_{2}-\frac{q}{v_{2}}\left(y_{1}-y_{2}\right)+G_{b} e^{-\frac{E_{b}}{R T_{2}}} y_{2}-G_{a} e^{-\frac{E_{a}}{R T_{2}}} x_{2}=0 \tag{80}\\
& \dot{I}-q y_{2}+s=0 \tag{81}
\end{align*}
$$

$$
\dot{S}-\left(c_{c} S+A S\right)\left[1-\frac{S}{N}\right]=0
$$

The symbol \dot{x}_{1} represents $\frac{d x_{1}}{d t}$.

Introduce lagrange multipliers, $\lambda_{i}, i=1, \ldots, 6$, and constant multipliers $\theta_{j}, j=1, \ldots, 7$, and define the following functions.

$$
\begin{align*}
& F=\left[\lambda_{1}\left(\dot{x}_{1}-\frac{q}{v_{1}}\left(x_{0}-x_{1}\right)+G_{a} e^{-\frac{E_{a}}{R T_{1}}} x_{1}\right)\right. \\
&+\lambda_{2}\left(\dot{y}_{1}-\frac{q}{v_{1}}\left(y_{0}-y_{1}\right)+G_{b} e^{-\frac{E_{a}}{R T_{1}}} y_{1}-G_{a} e^{-\frac{E_{a}}{R T_{1}}} x_{1}\right) \\
&+\lambda_{3}\left(\dot{x}_{2}-\frac{q}{v_{2}}\left(x_{1}-x_{2}\right)+G_{a} e^{-\frac{E_{a}}{R T_{2}}} x_{2}\right. \\
&+\lambda_{4}\left(\dot{y}_{2}-\frac{q}{v_{2}}\left(y_{1}-y_{2}\right)+G_{b} e^{-\frac{E_{b}}{R T_{2}}} y_{2}-G_{a} e^{-\frac{E^{2}}{R T_{2}}} x_{2}\right) \\
&+\lambda_{5}\left(\dot{I}-q y_{2}+S\right) \\
&+\lambda_{6}\left(\dot{S}-c S-A S+\frac{c S^{2}}{N}+\frac{A S^{2}}{N}\right) \\
&+c_{1} c_{q} S+c_{2} q x_{2}+c_{3} q\left(1-x_{2}-y_{2}\right)-c_{1}\left(I_{m}-I\right)^{2} \\
&\left.-c_{A} A^{2} S^{2}-c_{T}\left\{\left(T_{I m}-T_{1}\right)^{2}+\left(T_{1}-T_{2}\right)^{2}\right\}\right] \tag{83}
\end{align*}
$$

and

$$
\begin{align*}
& G=\left[\theta_{1}\left(x_{1}\left(t_{1}\right)-x_{1}^{0}\right)+\theta_{2}\left(y_{1}\left(t_{1}\right)-y_{1}^{0}\right)+\theta_{3}\left(x_{2}\left(t_{1}\right)-x_{2}^{0}\right)\right. \\
&+\theta_{4}\left(y_{2}\left(t_{i}\right)-y_{2}^{0}\right)+\theta_{5}\left(I\left(t_{i}\right)-I^{0}\right) \\
&\left.+\theta_{6}\left(I\left(t_{f}\right)-I^{1}\right)+\theta_{7}\left(S\left(t_{i}\right)-s^{0}\right)\right] \tag{84}
\end{align*}
$$

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{y}_{i}}\right)-\frac{\partial F}{\partial y_{i}}=0 \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F}{\partial Z}=0 \tag{86}
\end{equation*}
$$

can now be applied to Equations (83) to obtain the relationships for the six lagrange multiplier equations.

$$
\begin{align*}
& \frac{d \lambda_{1}}{d t}=q\left(\frac{\lambda_{1}}{v_{1}}-\frac{\lambda_{3}}{v_{2}}\right)+\left(\lambda_{1}-\lambda_{2}\right) G_{a} e^{-\frac{E_{a}}{R T_{1}}} \tag{87}\\
& \frac{d \lambda_{2}}{d t}=q\left(\frac{\lambda_{2}}{v_{1}}-\frac{\lambda_{4}}{v_{2}}\right)+\lambda_{2} G_{b} e^{-\frac{E_{b}}{R T}}{ }_{1} \tag{88}
\end{align*}
$$

$$
\begin{equation*}
\frac{d \lambda_{3}}{d t}=\frac{\lambda_{3} q}{v_{2}}+\left(\lambda_{3}-\lambda_{4}\right) G_{a} e^{-\frac{E_{a}}{R T_{2}}}+q\left(c_{2}-c_{3}\right) \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \lambda_{4}}{d t}=\frac{\lambda_{4} q}{v_{2}}+\lambda_{4} G_{b} e^{-\frac{E_{b}}{R T_{2}}}-q\left(c_{3}+\lambda_{5}\right) \tag{90}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \lambda_{5}}{d t}=2 c_{I m}-2 c_{I} I \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \lambda_{6}}{d t}=c_{1}+\lambda_{5}-c \lambda_{6}-A \lambda_{6}+\frac{2 c S \lambda_{6}}{N}+\frac{2 A S \lambda_{6}}{N}-2 c A^{A^{2} S} \tag{92}
\end{equation*}
$$

Application of Equations (86) to (83) yields

$$
\begin{align*}
& A=\frac{\lambda_{6}}{2 C_{A}}\left(\frac{1}{N}-\frac{1}{S}\right) \tag{93}\\
& \frac{\left(\lambda_{1}-\lambda_{2}\right) G_{a} E_{a} x_{1}}{R T_{1}^{2}} e^{-\frac{E_{a}}{R T_{1}}}+\frac{\lambda_{2} G_{b} E_{b} y_{1}}{R T_{1}^{2}} e^{-\frac{E_{b}}{R T_{1}}}-2 c_{T}\left(2 T_{1}-T_{2}-T_{1 m}\right)=0 \tag{94}\\
& \frac{\left(\lambda_{3}-\lambda_{4}\right) G_{a} E x_{2}}{R T_{2}^{2}} e^{-\frac{E_{a}}{R T_{2}}}+\frac{\lambda_{4} G_{b} E_{b} y_{2}}{R T_{2}^{2}} e^{-\frac{E_{b}}{R T_{2}}}+2 c_{T}\left(T_{1}-T_{2}\right)=0 \tag{95}
\end{align*}
$$

Equation (93) gives explicit expression of the control variable A. Hence A can be eliminated in all the performance equations. However, the control variables, T_{1} and T_{2}, appear implicitly in the above equations and cannot be eliminated.

Substituting the expressions for A into Equations (82) and (92), we obtain

$$
\begin{align*}
& \frac{d S}{d t}=c S-\frac{c S^{2}}{N}+\frac{S \lambda_{6}}{c A^{N}}-\frac{\lambda_{6}}{2 c_{A}}-\frac{S^{2} \lambda_{6}}{2 c A_{A} N^{2}} \tag{96}\\
& \frac{d \lambda_{6}}{d t}=c c_{1}+\lambda_{6}-c \lambda_{6}-\frac{\lambda_{6}^{2}}{2 c c_{A}^{N}}+\frac{2 c S \lambda_{6}}{N}+\frac{S \lambda_{6}^{2}}{2 c A_{A} N^{2}} \tag{97}
\end{align*}
$$

Notice that these two equations are non-1inear.
Equations (77) through (81), (87) through (91), (96) and (97) represent the system. For these 12 differential equations we have only 7 boundary conditions given by Equation (76). The additional 5 boundary conditions can be obtained by applying the transversality condition [11].

$$
\left.\frac{\partial G}{\partial y_{i}}\right|_{t_{i}}-\left.\frac{\partial F}{\partial \dot{y}_{i}}\right|_{t_{i}}=0 \quad \text { or }\left.\quad \frac{\partial G}{\partial y_{i}}\right|_{t_{f}}-\left.\frac{\partial F}{\partial \dot{y}_{i}}\right|_{t_{f}}=0
$$

to Equations (83) and (84)

$$
\begin{array}{ll}
0-\lambda_{1}\left(t_{f}\right)=0 & \lambda_{1}\left(t_{f}\right)=0 \\
0-\lambda_{2}\left(t_{f}\right)=0 & \lambda_{2}\left(t_{f}\right)=0 \\
0-\lambda_{3}\left(t_{f}\right)=0 & \lambda_{3}\left(t_{f}\right)=0 \\
0-\lambda_{4}\left(t_{f}\right)=0 & \lambda_{4}\left(t_{f}\right)=0 \\
0-\lambda_{6}\left(t_{f}\right)=0 & \lambda_{6}\left(t_{f}\right)=0 \tag{98}
\end{array}
$$

The boundary conditions given by Equations (76) and (98) make this system, a two point boundary value problem.

Let us consider the case that the final condition on the inventory was not given. Equations (69) through (75) remain unchanged. Equation (76) can be modified as

$$
\begin{array}{ll}
x_{1}\left(t_{i}\right)=x_{1}^{0} & y_{2}\left(t_{i}\right)=y_{2}^{0} \\
y_{1}\left(t_{i}\right)=y_{1}^{0} & I\left(t_{i}\right)=I^{0} \\
x_{2}\left(t_{i}\right)=x_{2}^{0} & S\left(t_{i}\right)=s^{0}
\end{array}
$$

Definition of the function F, Equation (83), remains the same, but the function G is modified as

$$
\begin{align*}
G= & {\left[\theta_{1}\left(x_{1}\left(t_{i}\right)-x_{1}^{0}\right)+\theta_{2}\left(y_{1}\left(t_{i}\right)-y_{1}^{0}\right)+\theta_{3}\left(x_{2}\left(t_{i}\right)-x_{2}^{0}\right)\right.} \\
& +\theta_{4}\left(y_{2}\left(t_{i}\right)-y_{2}^{0}\right)+\theta_{5}\left(I\left(t_{i}\right)-I^{0}\right) \\
& \left.+\theta_{6}\left(S\left(t_{i}\right)-s^{0}\right)\right] \tag{100}
\end{align*}
$$

Since F remains unchanged, Equations (87) through (97) are valid in this case.

Applying the transversality condition [11] to Equation (100), we have

$$
\begin{array}{ll}
0-\lambda_{1}\left(t_{f}\right)=0 & \lambda_{1}\left(t_{f}\right)=0 \\
0-\lambda_{2}\left(t_{f}\right)=0 & \lambda_{2}\left(t_{f}\right)=0 \\
0-\lambda_{3}\left(t_{f}\right)=0 & \lambda_{3}\left(t_{f}\right)=0 \\
0-\lambda_{4}\left(t_{f}\right)=0 & \lambda_{4}\left(t_{f}\right)=0 \\
0-\lambda_{5}\left(t_{f}\right)=0 & \lambda_{5}\left(t_{f}\right)=0 \\
0-\lambda_{6}\left(t_{f}\right)=0 & \lambda_{6}\left(t_{f}\right)=0 \tag{101}
\end{array}
$$

5.4 QUASILINEARIZATION

Only Equations (96) and (97) are non-1inear. The linearization procedure is the same as described in Chapter 3. Referring to Equation (21), we need the expressions for $f_{a}, f_{b}, g_{a}, g_{b}$. In other words, we need

$$
J=\left[\begin{array}{ll}
\frac{\partial g_{1}}{\partial S} & \frac{\partial g_{1}}{\partial \lambda_{6}} \\
\frac{\partial g_{2}}{\partial S} & \frac{\partial g_{2}}{\partial \lambda_{6}}
\end{array}\right]
$$

This matrix can be obtained from Equations (96) and (97).

$$
J=\left[\begin{array}{ll}
c-\frac{2 c S}{N}+\frac{\lambda_{6}}{c_{A}^{N}}-\frac{s \lambda_{6}}{c_{A} N^{2}} ; & \frac{S}{c_{A} N^{N}}-\frac{1}{2 c_{A}}-\frac{s^{2}}{2 c_{A} N^{2}} \tag{102}\\
\frac{2 c \lambda_{6}}{N}+\frac{\lambda_{6}^{2}}{2 c_{A} N^{2}} & ; \\
\frac{2 c S}{N}-c-\frac{\lambda_{6}}{c_{A} N}+\frac{\lambda_{6}}{c_{A} N^{2}}
\end{array}\right]
$$

Linearization and recurrence relations were developed in accordance with equations (21) through (24).

$$
\begin{align*}
& \frac{d x_{1, n+1}}{d t}=\frac{q}{v_{1}}\left(x_{0}-x_{1, n+1}\right)-G_{a} e^{-\frac{E_{a}}{R T_{1}}} x_{1, n+1} \\
& \frac{d y_{1, n+1}}{d t}=\frac{q}{v_{1}}\left(y_{0}-y_{1, n+1}\right)-G_{b} e^{-\frac{E_{b}}{R T_{1}}} y_{1, n+1}+G_{a} e^{-\frac{E_{a}}{R T_{1}}} x_{1, n+1} \\
& \frac{d x_{2, n+1}}{d t}=\frac{q}{v_{2}}\left(x_{1, n+1}-x_{2, n+1}\right)-G_{a} e^{-\frac{E_{a}}{R T_{2}}} x_{2, n+1} \tag{105}\\
& \frac{d y_{2, n+1}}{d t}=\frac{q}{v_{2}}\left(y_{1, n+1}-y_{2, n+1}\right)-G_{b} e^{-\frac{E_{b}}{R T_{2}}} y_{2, n+1}+G_{a} e^{-\frac{E_{a}}{R T_{2}} x_{2, n+1}} \tag{105}\\
& \frac{d I_{n+1}}{d t}=q y_{2, n+1}-S_{n+1} \tag{107}\\
& \frac{d S_{n+1}}{d t}=\left[c S_{n}-\frac{c S_{n}^{2}}{N}+\frac{S_{n} \lambda_{6, n}}{c_{A}^{N}}-\frac{\lambda_{6, n}}{2 c_{A}}-\frac{s_{n}^{2} \lambda_{6, n}}{2 c_{A} N^{2}}\right] \\
& +\left(S_{n+1}-S_{n}\right)\left[c-\frac{2 c S_{n}}{N}+\frac{\lambda_{6, n}}{c_{A}^{N}}-\frac{S_{n} \lambda_{6, n}}{c_{A} N^{2}}\right.
\end{align*}
$$

$$
\begin{align*}
& +\left(\lambda_{6, n+1}-\lambda_{6, n}\right)\left[\frac{s_{n}}{c_{A}{ }^{N}}-\frac{1}{2 c_{A}}-\frac{s_{n}^{2}}{2 c_{A} N^{2}}\right] \\
& \frac{d \lambda_{1, n+1}}{d t}=q\left(\frac{\lambda_{1, n+1}}{v_{1}}-\frac{\lambda_{3, n+1}}{v_{2}}\right)+\left(\lambda_{1, n+1}-\lambda_{2, n+1}\right) G_{a} e^{-\frac{E_{a}}{R T_{1}}} \\
& \frac{d \lambda_{2, n+1}}{d t}=q\left(\frac{\lambda_{2, n+1}}{v_{1}}-\frac{\lambda_{4, n+1}}{v_{2}}\right)+\lambda_{2, n+1} G_{b} e^{-\frac{E_{b}}{R T}} \\
& \frac{d \lambda_{3, n+1}}{d t}=\frac{q \lambda_{3, n+1}}{v_{2}}+\left(\lambda_{3, n+1}-\lambda_{4, n+1}\right) G_{a} e^{-\frac{E_{a}}{R T_{2}}}+q\left(c_{2}-c_{3}\right) \\
& \frac{d \lambda_{4, n+1}}{d t}=\frac{q \lambda_{4}, n+1}{v_{2}}+\lambda_{4, n+1}{ }_{b} e^{-\frac{E_{b}}{R_{2}}}-c_{3} q-q \lambda_{5, n+1} \\
& \frac{d \lambda_{5, n+1}}{d t}=2 c_{I} I_{m}-2 c_{I} I_{n+1} \\
& \frac{d \lambda_{6, n+1}}{d t}=\left\{c_{1}+\lambda_{5, n+1}-c \lambda_{6, n}-\frac{\lambda_{6, n}^{2}}{2 c_{A} N}+\frac{2 c S_{n} \lambda_{6, n}}{N}+\frac{S_{n} \lambda^{2} 6_{2} n}{2 c_{A} N^{2}}\right] \\
& +\left(s_{n+1}-S_{n}\right)\left[\frac{2 c \lambda_{6, n}}{N}+\frac{\lambda_{6, n}^{2}}{2 c_{A} N^{2}}\right] \\
& +\left(\lambda_{6, n+1}-\lambda_{6, n}\right)\left[\frac{2 c S_{n}}{N}-c-\frac{\lambda_{6, n}}{c_{A} N^{N}}+\frac{S_{n} \lambda_{6, n}}{c_{A} N^{2}}\right] \tag{113}
\end{align*}
$$

The boundary conditions are given by Equations (76) and (98) or (76) and (101).

Equations (103) through (113) are ordinary linear differential equa-
tions and with the boundary conditions given by equations (76) and (98) or (76) and (101), they form a two point boundary value problem. This problem can now be solved by the superposition principle. If the initial values for the particular and homogeneous solutions are selected such that they satisfy the initial conditions, the general solution can be given as

$$
\begin{align*}
& x_{1}(t)=x_{1 p}(t)+\sum_{k=1}^{6} A_{k} x_{1, k h}(t) \tag{114}\\
& y_{1}(t)=y_{1 p}(t)+\sum_{k=1}^{6} A_{k} y_{1, k h}(t) \tag{115}\\
& x_{2}(t)=x_{2 p}(t)+\sum_{k=1}^{6} A_{k} x_{2, k h}(t) \tag{116}\\
& y_{2}(t)=y_{2 p}(t)+\sum_{k=1}^{6} A_{k} y_{2, k h}(t) \tag{117}\\
& I(t)=I_{p}(t)+\sum_{k=1}^{6} A_{k} I_{k h}(t) \tag{118}\\
& S(t)=S_{p}(t)+\sum_{k=1}^{6} A_{k} S_{k h}(t) \tag{119}\\
& \lambda_{i}(t)=\lambda_{i p}(t)+\sum_{k=1}^{6} A_{k} \lambda_{1, k h}(t) \tag{120}
\end{align*}
$$

These equations are derived in accordance with Equations (11) and (12).
After obtaining the solution for the 6 state variables and 6 Lagrange multipliers by the superposition principle, Equations (69), (93), (94), and (95) can be solved for the profit and the three control variables, A, T_{1}, T_{2}, respectively.

$$
\begin{aligned}
&\left.A \quad \begin{array}{l}
x_{1}, \\
x_{1},
\end{array}\right)+A_{2} x_{1} h_{2}(1)+A=x_{1 h_{3}(1)} \\
& x_{2} h_{2}
\end{aligned}
$$

All these calculations complete one iteration. Further iterations were allowed until desired accuracy was achieved.

5.5 NUMERICAL ASPECTS

Depending upon the value of the constants and the boundary conditions, this problem was divided into classes A, B, C, D, and E. The object was to investigate the convergence and other computational aspects of this technique from different angles.

Problem A

The following values were assumed for the various parameters

$$
\begin{align*}
& G_{a}=0.535 \times 10^{11} \text { per minute } \quad N=100 \\
& G_{b}=0.461 \times 10^{18} \text { per minute } \quad c=1 \\
& \mathrm{E}_{\mathrm{a}}=18000 \mathrm{cal} / \mathrm{mole} \quad \mathrm{c}_{\mathrm{T}}=0.001 \$ /{ }^{\circ} \mathrm{K} \\
& E_{b}=30000 \mathrm{ce} 1 / \mathrm{mole} \quad c_{\mathrm{A}}=0.01 \$ \\
& \mathrm{R}=2 \mathrm{cal} / \mathrm{mole}{ }^{\circ} \mathrm{K} \quad c_{1}=5.0 \$ \\
& q=60 \mathrm{gal} / \mathrm{min} \quad \mathrm{c}_{2}=\mathrm{c}_{3}{ }^{-0} 0.0 \$ \\
& v_{1}=v_{2}=12 \text { gallons } \quad c_{q}=1.0 \quad c_{I}=1.0 \$ / \mathrm{gal} . \\
& I_{\text {II }}=10 \text { gallons } \quad x_{0}(t)=0.53 \quad t_{i}=0.0 \\
& T_{1 m}=340^{\circ} \mathrm{K} \quad \Delta t=0.01 \\
& y_{0}(t)=0.43 \quad t_{f}=1.0 \tag{126}
\end{align*}
$$

The boundary conditions were

$$
\begin{array}{lll}
x_{1}(0)=0.53 & y_{1}(0)=0.43 & x_{2}(0)=0.53
\end{array} y_{2}(0)=0.43 \quad I(0)=1.00 \text { (1) } \begin{array}{ll}
S(0)=0.1 & I(1)=10.0
\end{array}
$$

It should be emphasized that class A was the only problem which had
final condition on the inventory.
There were only two non-linear differential equations, hence only two initial approximations, $S_{0}(t)$ and $\lambda_{6,0}(t)$, were required. The equations for the control variables, T_{1} and T_{2}, are implicit and cannot be solved directly. Hence, the initial approximations for T_{1} and T_{2} were also required. The various sets of initial approximations used for problem A are listed in Table 7.

Problem B

The same parameters used in problem A were used here, except that the final condition on the inventory was removed. As a result of this change, according to Equation (101), $\lambda_{5}(1)=0$. The boundary conditions are
$x_{1}(0)=0.53 \quad y_{1}(0)=0.43 \quad x_{2}(0)=0.53 \quad y_{2}(0)=0.43 \quad I(0)=1.0 \quad S(0)=0.1$

As in the last case, only $S_{0}(t), \lambda_{6,0}(t), T_{1,0}(t)$, and $T_{2,0}(t)$ were required as the initial approximations. They are listed in Table 8.

Problem C
Some of the parameters were changed. For clear understanding all of them are rewritten in the following

$$
\begin{array}{ll}
G_{a}=0.535 \times 10^{11} \text { per minute } & \mathrm{N}=100 \\
G_{b}=0.461 \times 10^{18} \text { per minute } & \mathrm{c}=1 \\
E_{a}=18000 \mathrm{cal} / \mathrm{mole} & c_{T}=0.0005 \$ /{ }^{\circ} \mathrm{k} \\
E_{b}=30000 \mathrm{cal} / \mathrm{mole} & \mathrm{c}_{\mathrm{A}}=0.0002 \$
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{R}=2 \mathrm{cal} / \mathrm{mole}{ }^{\circ} \mathrm{k} & \mathrm{c}_{1}=5.0 \mathrm{\$} \\
\mathrm{q}=60 \mathrm{gal} . / \mathrm{min} . & c_{2}=c_{3}=0.0 \mathrm{\$} \\
\mathrm{v}_{1}=\mathrm{v}_{2}=12 \text { gallons } & c_{q}=1.0 \\
I_{m}=20 \text { gallons } & c_{I}=1.0 \mathrm{\$} / \mathrm{ga} 1 . \\
T_{1 \mathrm{~m}}=340^{\circ} \mathrm{k} \quad \Delta t=0.01 & x_{0}(t)=0.53 \quad \mathrm{t}_{\mathrm{i}}=0.0 \\
y_{0}(\mathrm{t})=0.43 \quad \mathrm{t}_{\mathrm{f}}=1.0
\end{array}
$$

The boundary conditions were
$x_{1}(0)=0.53 \quad y_{1}(0)=0.43 \quad x_{2}(0)=0.53 \quad y_{2}(0)=0.43 \quad I(0)=8.0 \quad S(0)=0.1$

A 1ist of initial approximations is shown in Table 9.

Problem D

$$
c_{A}=0.01 \quad s(0)=1.0
$$

All other parameters were the same as in problem C. Three different initial approximations were used for this problem. They are tabulated in Table 10.

Problem :
The only difference between problems E and C is in the initial condition of the sales. In the present problem, the initial condition for sales is

$$
s(0)=0.1
$$

All others values are the same as in problem C. The values of the initial approximation used are given in Table 11.

The initial values used for the particular and homogeneous solutions are given in Table 12.

Table 7. Initial approximations for problem A.

Set No.	$T_{1,0}(t)$	$T_{2,0}(t)$	$S_{0}(t)$	$\lambda_{6,0}(t)$
$1 A$	345	345	1	0
$2 A$	345	345	30	-0.5
$3 A$	345	345	1	0

Table 8. Initial approximations for problem B.

Set No.	$T_{1,0}(t)$	$T_{2,0}(t)$	$\lambda_{0}(t)$	1
18	330	330	1	0
$2 B$	340	340	1	0

Table 9. Initial approximations for problem C.

Set No.	$T_{1,0}(t)$	$T_{2,0}(t)$	$S_{0}(t)$	$\lambda_{6,0}(t)$
$1 C$	330	345	345	1

Table 10. Initial approximations for problem D.

Set No.	$T_{1,0}(t)$	$T_{2,0}(t)$	$S_{0}(t)$	$\lambda_{6,0}(t)$
10	355	355	20	-0.5
$2 D$	345	345	50	0
$3 D$	350	350	25	-0.25

Table 11. Initial approximations for problem E.

Set No.	$T_{1,0}(t)$	$T_{2,0}(t)$	$S_{0}(t)$	$\lambda_{6,0}(t)$
$1 E$	345	345	50	0

Table 12. Initial conditions used for obtaining particular and homogeneous solutions.

			P.I.		Homo	geneous	Soluti		
	A, B	C, E	D	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
$\mathrm{x}_{1}(0)$	0.53	0.53	0.53	0	0	0	0	0	0
$y_{1}(0)$	0.43	0.43	0.43	0	0	0	0	0	0
$\mathrm{x}_{2}(0)$	0.53	0.53	0.53	0	0	0	0	0	0
$\mathrm{y}_{2}(0)$	0.43	0.43	0.43	0	0	0	0	0	0
I(0)	1.0	8.0	8.0	0	0	0	0	0	0
$s(0)$	0.1	0.1	1.0	0	0	0	0	0	0
$1^{(0)}$	0	0	0	1	0	0	0	0	0
$2^{(0)}$	0	0	0	0	1	0	0	0	0
$3^{(0)}$	0	0	0	0	0	1	0	0	0
$4^{(0)}$	0	0	0	0	0	0	1	0	0
$5^{(0)}$	0	0	0	0	0	0	0	1	0
$6^{(0)}$	0	0	0	0	0	0	0	0	1

5.6 COMPUTATIONAL ASPECTS

Basically the same procedure was followed for all the five problems. This procedure was essentially the same as that used in Chapter 4. With the initial values given in Table 12, a set of particular solutions and six sets of homogeneous solutions were obtained by numerical integration using the Runge-Kutta method.

In order to solve for six integration constants, six equations for which the final conditions were known, were selected from Equations (114) through (125). To solve this 6×6 matrix on computer, matrix inversion subroutine SIMQ supplied by IBM was used. A printout of this subroutine is shown in Appendix 3. Using these integration constants with the newly obtained particular and homogeneous solutions, the final solutions for all twelve variables were obtained. Next, using Equation (93), values of advertisement at all grid points were obtained.

For simplicity the following approximation was used to calculate the total profit.

$$
\begin{align*}
J=\sum_{t_{i}}^{t_{f}}\left[c_{1} c_{q} S\right. & +c_{2} q x_{2}+c_{3} q\left(1-x_{2}-y_{2}\right)-c_{I}\left(I_{m}-I\right)^{2} \\
& \left.-c_{A} A^{2} S^{2}-c_{T}\left\{\left(T_{1 m}-T_{1}\right)^{2}+\left(T_{1}-T_{2}\right)^{2}\right\}\right] \Delta t \tag{128}
\end{align*}
$$

Computation of T_{1} and T_{2} were rather difficult because Equations (94) and (95) are implicit in T_{1} and T_{2}. To overcome this difficulty, c_{T} was assumed to be zero and the last term in both the equations dropped out. As a result, explicit expressions were derived as

$$
\begin{align*}
& \left.T_{I}=\frac{\left(E_{a}-E_{b}\right) / R}{\operatorname{Gn}_{\mathrm{a}} \mathrm{x}_{1} E_{a}\left(\lambda_{2}-\lambda_{1}\right)} \frac{G_{b} y_{1} E_{b} \lambda_{2}}{}\right] \\
& T_{2}=\frac{\left(E_{a}-E_{b}\right) / R}{\ln _{a}\left[\frac{x_{1} E_{a}\left(\lambda_{2}-\lambda_{1}\right)}{G_{b} y_{2} E_{b} \lambda_{4}}\right]} \tag{129}
\end{align*}
$$

These equations can be solved easily, but examining these equations carefully, at final time $t=t_{f}$, the denominator would involve $\ln \left[\frac{0}{0}\right]$ which is. indeterminate.

Another approach to this difficulty was to apply the Newton-Raphson method of root finding. This method is described in Appendix 1. As indicated earlier, it is fundamentally the same as quasilinearization. To start the Newton-Raphson method, Initial approximations for both T_{1} and T_{2} were assumed to be 350.0 . With these values, T_{1} and T_{2} at the first grid points of the first iteration were solved. At other grid points, solutions of T_{1} and T_{2} at previous grid points of same iteration were used as the initial approximations. Same procedure was repeated for the next iteration.

This scheme encountered convergence problem in problems 3A, 3B, 1 D and IE. The logic was slightly modified to overcome this trouble. The procedure remained the same for the first iteration. For other iterations, solutions of T_{3} and T_{2} at the same grid point of previous iteration were used as the initial approximation. With this change the convergence difficulty was overcome in problems $3 B$ and 12 . The accuracy to check

Newton-Raphson convergence was 0.1.
All these computations completed one iteration. Further iterations were allowed until convergence was obtained.

5.7 RESULTS

Problem A
The four sets of initial approximations tried in this case are listed in Table 7. Out of these four, three sets resulted in convergence to the solution of the problem.

The convergence rates of the three control variables and the six state variables for problem lA are shown in Figs. 15 through 23. Fig. 24.shows the optimal profile of the profit function. The optimal profiles of Lagrange multipliers are shown in Figs. 25 and 26. The total profit was \$79.75.

In order to visualize the convergence rates of the control variables in more detail, they are tabulated in Tables 13 through 15.

Problem 3A did not converge to the optimal solution. It encountered Newton-Raphson convergence problem in the first iteration.

Some modifications were made to study the convergence problem.
In problem 4A, $\mathrm{T}_{1 \mathrm{~m}}$ was changed to 300 , with other values remaining the same. This problem experienced the Newton-Raphson convergence problem in iteration 2.

Again in problem 4 A , changing $\mathrm{T}_{1 \mathrm{~m}}=300$ and $\mathrm{c}_{\mathrm{A}}=0.0$, with all other values remaining the same, the advertisement curve became nearly discontinuous, but it did converge in the sense that there was little difference

Fig. 15. Convergence Rate of Temperature T_{1}, Problem 1A.

Fig. 16. Convergence Rate of Temperature T_{2}, Problem 1 A .

Fig. 17. Convergence Rate of Advertisement A, Problem $1 A$.

Fig. 18. Convergence Rate of Concentration r $_{1}$, Problem IA

Fig. 19. Convergence Rate of Concentration y_{1}, Problem IA.

Fig. 20. Convergence Rate of Concentration x_{2}, Problem IA.

Fig. 21. Convergence Rate of Concentration y_{2}, Problem $1 A$.

Fig. 22. Convergence Rate of Inventory I, Problem IA.

Fig. 23. Convergence Rate of Sales S In Problem IA.

Fig. 24. Optimal Total Profit Curve, Problem lA.

Fig. 25. Optimal Profiles of λ_{1}, λ_{2}, and λ_{4}, Problem 1A.

Fig. 26. Optimal Profiles of λ_{3}, λ_{5}, and λ_{6}, Problem LA.

Table 13. Convergence rate of $T_{1}(t)$ in problem A.

iter time	0	1	2	3	4	5	6	7	8
0.0	345.0	366.3	360.1	363.4	361.9	362.6	362.3	362.5	362.4
0.2	345.0	364.8	355.8	360.8	358.5	359.6	359.1	359.3	359.2
0.4	345.0	364.4	355.3	360.4	357.9	359.2	358.6	358.9	358.7
0.6	345.0	364.4	356.2	360.5	358.5	359.5	359.0	359.2	359.1
0.8	345.0	363.7	356.7	359.9	358.4	359.1	358.8	358.9	358.9
1.0	345.0	340.0	340.1	339.9	340.2	340.2	340.0	340.0	340.0

Table 14. Convergence rate of $\mathrm{T}_{2}(\mathrm{t})$ in problem A .

| iter | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | time

$\begin{array}{llllllllll}0.0 & 345.0 & 367.8 & 364.8 & 366.0 & 365.6 & 365.7 & 365.7 & 365.7 & 365.7\end{array}$
$\begin{array}{llllllllll}0.2 & 345.0 & 365.8 & 358.6 & 361.7 & 360.4 & 361.0 & 360.7 & 360.8 & 360.8\end{array}$
$\begin{array}{llllllllll}0.4 & 345.0 & 364.7 & 356.2 & 360.3 & 358.4 & 359.3 & 358.9 & 359.1 & 359.0\end{array}$
$\begin{array}{llllllllll}0.6 & 345.0 & 364.3 & 355.9 & 360.1 & 358.0 & 359.0 & 358.6 & 358.8 & 358.7\end{array}$
$\begin{array}{llllllllll}0.8 & 345.0 & 364.3 & 356.7 & 360.3 & 358.5 & 359.4 & 359.0 & 359.2 & 359.1\end{array}$
$\begin{array}{llllllllll}1.0 & 345.0 & 340.0 & 340.0 & 339.9 & 340.2 & 340.2 & 340.0 & 340.0 & 340.0\end{array}$

Table 15. Convergence rate of $A(t)$ in problem A.

1ter time	0	1	2	3	4	5	6	7	8
0.0		260.40	358.80	366.40	370.60	369.90	370.50	370.30	370.40
0.2		4.47	4.65	4.68	4.67	4.67	4.67	4.67	4.67
0.4	1.38	1.70	1.72	1.72	1.72	1.72	1.72	1.72	
0.6	0.43	0.67	0.69	0.69	0.69	0.69	0.69	0.69	
0.8	0.09	0.22	0.23	0.22	0.22	0.22	0.22	0.22	
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

in the results of iterations 8 and 9.

Problem B

All the three initial approximations listed in Table 8 converged to the optimal solution.

Problem 3B encountered Newton-Raphson convergence difficulty initially, but using the same grid point of the previous iteration as the starting value in the Newton-Raphson solution, the optimal solution was obtained in about 6 iterations. The optimal profiles of the six state variables and the three control variables are shown in Figs. 27, 28 and 28A. The total profit in this case was $\$ 95.79$.

Problem C
Unfortunately, for both the initial approximations given in Table 9, the problem did not converge.

In problem 1C, the computer experienced exponential overflow while calculating the control variables in the first iteration. The following values of the state variables were obtained in the first iteration

$$
I(1)=-12.62 \quad S(1)=238.76
$$

All other values were reasonable.
There are two reasons for this convergence problem: the NewtonRaphson convergence difficulty or the quasilinearization difficulty. In this particular case, the author feels that it was the Newton-Raphson convergence difficulty.

Fig. 27. Optimal Solutions of $x_{1}, y_{1}, x_{2}, y_{2}$, and I, Problem B.

Fig. 28. Optimal Profiles of A, T_{1}, T_{2}, problem B.

Fig. 28A. Optimal Profile of S , Problem B.

In problem 2C, computation was not possible in the fifth iteration because of the Newton-Raphson convergence problem. Results of the fourth iteration indicate that the sales goes to negative in the initial time and then rises up to 82.61 at the final time. Another peculiarity of this problem was the near discontinuity of the advertisement curve. A(0) is -5639.0 and $\mathrm{A}(0.01)$ is +90.54 . Such a sharp change of the variable with time can make both the Newton-Raphson method and the quasilinearization method useless.

Examining the linearized performance Equations (108) and (113), we can see that c_{A} appears in the denominator. Eence very small value of c_{A} can make the problem unstable. In this case $c_{A}=0.0002$. The author feels that this is a fairly low value and considering that Equations (108) and (113) are very sensitive to c_{A}, this was the main reason for not obtaining a solution to this problem.

In spite of this difficulty, with all other values remaining the same, $S(0)$ was changed in hope of obtaining a solution. Initially $S(0)$ was 0.1, and the following values of $S(0)$ were tried.
a. $S(0)=15.0$. The value of the advertisement was negative, $A(0)=-145.6$. This case encountered the Newton-Raphson convergence difficulty in the first iteration.
b. $S(0)=8.0$. The value of the advertisement was negative and decreasing very rapidly. A solution was not possible because of the NewtonRaphson convergence problem in the second iteration.
c. $S(0)=4.0$. The value of the advertisement was negative and decreasing rapidly. The same convergence difficulty was encountered but
this time in the fourth iteration.

It can be seen in all these cases that

1. The value of the advertisement curve was nearly discontinuous, and
2. The Newton-Raphson method caused convergence difficulty. This leads to the idea of increasing C_{A}.

Problem D

$$
c_{a}=0.01 \text { and } s(0)=1.0
$$

These two changes were made in the parameters of problem C. Table 10 shows the three initial approximations used in this problem. Sets 2 D and 3D proved to be good guesses and convergence for these sets was obtained in about 5 iterations.

This problcm had no final condition on the inventory. This is where it differs from problem A. For the purpose of comparison, the detailed results of this problem are given. Figs. 29 through 37 show the convergence rates of the three control variables and the six state variables for problem 2D. The convergence rate of the profit function is given in Fig. 38. The total profit was $\$ 66.26$. The advertisement curve as can be seen in Fig. 31 is not as sharp as the provious ones. It is a monotomically decreasing curve.

Set ID did not converge. Examining the initial approximations, only $\lambda_{6,0}(t)=-0.5$ could be a wrong guess, but the final solution of $\lambda_{6}(t)$ in tbe first iterations look reasonable. It encountered convergence problem in the calculation of T_{1} and T_{2} in the first iteration.

Fig. 29. Convergence Rate of Temperature T_{1}, Problem 2L.

Fig. 30. Convergence Rate of Temperature T_{2}, problem 2D.

Fig. 31. Convergence Rate of Advertisement A, Problem 2D.

Fig. 32. Convergence Rate of Concentration x_{1}, Problem 2D.

Fig. 33. Convergence Rate of Concentration y_{1}, Problem 2D.

Fig. 34. Convergence Rate of Concentration x_{2}, Problem 2D.

Fig. 35. Convergence Rate of Concentration y_{2}, Problem 2D.

Fig. 36. Convergence Rate of Inventory I, Problea 2D.

Fig. 37. Convergence Rate of Sales S, Problem 2D.

Fig. 38. Convergence Rate of Profit Function, Problem 2D.

As a slight modification, $S(0)=5.0$ was tried. All other parameters remain unchanged. This problem encountered the Newton-Raphson convergence difficulty in the fourth iteration. Observing the optimal profiles of all the variables, the author feels that this was the most stable problem out of the five problems tried.

Problem E

Only change in the parameters was $S(0)=0.1$, the other parameters remain unchanged. The values of the initial approximation used is given in Table 11.

Set 1 E converged to the optimal solution. The optimal profiles of the six state variables and the three control variables are shown in Figs. 40 , and 41. The total profit was $\$ 65.98$. The advertisement profile was very sharp again. Obviously, this is because of the change in the initial sales. There is not much difference from the other profiles.

In order to get an overall view, $A(0)$ and J for all the problems solved are compared in Tables 16 and 17.

On the average, this problem converged in 6 iterations with 3 digits accuracy. For 9 iterations, IBM 360/50 computer took about 16 minutes with FORTRAN IV H LEVEL compiler. The computer program is given in Appendix 3.

5.8 DISCUSSION

The results for all the problems indicate that the optimal profiles of the six state variables and the two control variables, T_{1} and T_{2} are

Fig. 39. Optimal Solutions of $x_{1}, y_{1}, x_{2}, y_{2}$, and I, Problem E.

Fig. 40. Optimal Profiles of A, T_{1} and T_{2}, problen \mathbb{E}.

Fig. 41. Optimal Profile of S, Problem E.
Table. 16. Convergence rates of $A(0)$

problem iteration	1A	2A	4A	1B	2B	3B	2D	3D	1E
1	260.4	-24.31	228.7	212.3	230.8	244.0	25.57	14.58	362.6
2	358.8	369.8	344.7	452.5	461.7	467.5	10.87	11.11	159.7
3	366.4	366.3	363.0	474.6	476.3	477.4	11.39	11.48	161.7
4	370.6	370.6	370.4	480.7	480.8	480.9	11.62	11.63	164.0
5	369.9	369.8	369.5	480.3	480.4	480.5	11.61	11.61	164.0
6	370.5	370.5	370.6	480.9	480.9	480.9	11.63	11.63	164.2
7	370.3	370.3	370.2	480.7	480.7	480.8	11.62	11.63	164.1
8	370.4	370.4	370.4	480.8	480.8	480.8	11.63	11.63	164.1

Table 17. Convergence rates of total profit J

| problem
 iteration | 1 A | 2 A | 4 A | 1 B | 2 B | 3 B | 2 D | 3 D | 1 E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 77.847 | 80.979 | 72.806 | 108.634 | 111.870 | 114.041 | 46.108 | 61.290 | 42.914 |
| 2 | 78.406 | 78.484 | 76.471 | 93.721 | 94.581 | 95.108 | 64.796 | 65.526 | 64.465 |
| 3 | 79.471 | 79.469 | 79.171 | 95.425 | 95.537 | 95.611 | 66.083 | 66.159 | 65.811 |
| 4 | 79.681 | 79.680 | 79.599 | 95.710 | 95.736 | 95.751 | 66.223 | 66.240 | 65.948 |
| 5 | 79.727 | 79.727 | 79.707 | 95.774 | 95.778 | 95.782 | 66.254 | 66.257 | 65.977 |
| 6 | 79.743 | 79.744 | 79.740 | 95.789 | 95.790 | 95.791 | 66.258 | 66.260 | 65.984 |
| 7 | 79.744 | 79.743 | 79.743 | 95.791 | 95.791 | 95.791 | 66.259 | 66.260 | 65.984 |
| 8 | 79.746 | 79.746 | 79.746 | 95.792 | 95.792 | 95.792 | 66.260 | 66.260 | 65.984 |

either increasing or decreasing slowly. The optimal profile of the advertisement A decreases very rapidly making it almost discontinuous, Surprisingly, quasilinearization did not encounter any trouble with this type of curve. The gradient technique [15] and the second variation technique [13] seemed to have failed because of this curve.

In general, convergence was obtained in 5 to 6 iterations. Tables 16 and 17 give the comparison of the convergence rates for $A(0)$ and J for all the problems solved.

Comparing the optimal curves of all the problems, it was observed that there was no significant difference in the production and temperature profiles. It may be concluded that a change in certain parameters have 1ittle effect on these profiles. However, a significant clange in the advertisement curve was noted. This can be explained as follows.

With certain starting values of production and inventory, there is a definite range of initial sales the market can absorb with reasonable advertisement. If the initial sales is too low, the market needs a very high advertisement to bring up the sales to the market capacity. On the other hand, if the initial sales is too high, the market needs negative advertisement to bring down the sales. For this reason initial sales was a critical value.

Another critical value was c_{A}. Too low a value of c_{A} means that the cost of advertisement is very little. From the cost point of view, heavy fluctuations in A would not affect the optimal solution seriously. Hence this profile was observed to be either negative or discontinuous or unstable in cases where $c_{A}=0.0002$. Stable curves were obtained with $c_{A}=0.01$.

There were two main difficulties in solving this problem. Convergence difficulties in 1. the Newton-Raphson method, and 2. the Quasilinearization method. It was because of the former difficulty that some of the problems did not give any solution. No problem failed because of the latter difficulty. If a better method for solving T_{1} and T_{2} could be used the author is optimistic that all the problems discussed here would converge to the solution.

CHAPTER 6

CONCLUSION

The numerical examples presented in this work suggest that the quasilinearization technique may be a useful tool for obtaining the solutions of nonlinear mixed boundary value problems. Because of the intimate association between the boundary value problems and optimization and control, this technique is also a useful tool for solving optimization problems and systems analysis.

The object of this work has been to illustrate the effectiveness of this method in overcoming the non-linearity difficutly in two point boundary value problems encountered in optimization. The advantage of this approach lies in its rapid rate of convergence, provided that the initial approximations are within the interval of convergence of the problem. This interval is fairly large for a number of problems. Furthermore, this interval can be enlarged by using devices such as data perturbation.

Convergence rate was found very rapid in the problems solved. This implies computational efficiency in terms of computer time for a prescribed accuracy. This is an important advantage of this method over other optimization techniques such as the gradient techniques where the convergence rate is slow particularly near the optimal solution.

The couvergence of this method is contingent on the choice of starting functions. In this work choosing correct initial approximation was not difficult. In general the basic physical knowledge of the system is enough to make a correct guess.

In the formulation of the problem the control variables can generally be eliminated. For this reason, this method is found supcrior to other optimization techniques such as dynamic programming and the gradient techniques. In the second problem, two control variables could not be eliminated from the performance equations, but still quasilinearization method worked well. It has always been the difficulty in solving thesc control variables, that some of the problems did not give a solution.

This method was observed to be more accurate than either the first variational or the second variational techniques. In the latter methods, the average control variable is used throughout the calculation of one step size. For a fast increasing or fast decreasing curve, this is not likely to give accurate results. Quasilinearization, on the other hand, uses the control variable for the calculation at the same point. For this reasn the accuracy is higher in this method.

For illustrative purposcs, only two problems have been considered. Obviously, this method can be applied to a variety of other complex problems arising in industrial management systems. In addition, it can be combined with other optimization techniques such as dyamic programing and nonlinear programing to optimize various topologically complex processes encountered in the industry. Recently, this method has been proved to be an efficient tool for reducing the dimensionality difficulty in dynamic programing.

APPENDIX 1

NEWTON-RAPHSON METHOD OF ROOT FINDING

Basically, this method is the Taylor series expansion with second and higher order terms neglected. Expanding $f\left(u_{n+1}\right)$ around u_{n}

$$
\begin{aligned}
f\left(u_{n+1}\right)= & f\left(u_{n}\right)+\left(u_{n+1}-u_{n}\right) f^{\prime}\left(u_{n}\right)+\ldots \\
& f\left(u_{n}\right)+\left(u_{n+1}-u_{n}\right) f^{\prime}\left(u_{n}\right)=0 \\
& u_{n+1}=u_{n}-\frac{f\left(u_{n}\right)}{f^{\prime}\left(u_{n}\right)}
\end{aligned}
$$

This is the Newton-Raphson equation of root finding.
Since it is essential to solve two equations (for T_{1} and T_{2}) stmultaneously in chapter 5, we derive Newton-Raphson equations for such case.

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{~T}_{1}^{\mathrm{n}+1}, \mathrm{~T}_{2}^{\mathrm{n}+1}\right) & =\mathrm{f}\left(\mathrm{~T}_{1}^{\mathrm{n}}, \mathrm{~T}_{2}^{\mathrm{n}}\right)+\left(\mathrm{T}_{1}^{\mathrm{n}+1}-\mathrm{T}_{1}^{\mathrm{n}}\right) \frac{\partial f}{\partial T_{1}} \\
& +\left(\mathrm{T}_{2}^{\mathrm{n}+1}-\mathrm{T}_{2}^{\mathrm{n}}\right) \frac{\partial \mathrm{f}}{\partial \mathrm{~T}_{2}}=0 \\
\mathrm{~g}\left(\mathrm{~T}_{1}^{\mathrm{n}+1}, \mathrm{~T}_{2}^{\mathrm{n}+1}\right) & =\mathrm{g}\left(\mathrm{~T}_{1}^{\mathrm{n}}, \mathrm{~T}_{2}^{\mathrm{n}}\right)+\left(\mathrm{T}_{1}^{\mathrm{n}+1}-\mathrm{T}_{1}^{\mathrm{n}}\right) \frac{\partial g}{\partial T_{1}} \\
& +\left(\mathrm{T}_{2}^{\mathrm{n}+1}-\mathrm{T}_{2}^{n}\right) \frac{\partial g}{\partial T_{2}}=0
\end{aligned}
$$

$$
\mathrm{T}_{1}^{\mathrm{n}+1} \frac{\partial \mathrm{f}}{\partial \mathrm{~T}_{1}}+\mathrm{T}_{2}^{\mathrm{n}+1} \frac{\partial f}{\partial \mathrm{~T}_{2}}=\mathrm{T}_{1_{\partial \mathrm{T}_{1}}^{\mathrm{n}} \frac{\partial f}{}}^{\text {(}}+\mathrm{T}_{2}^{\mathrm{n}} \frac{\partial \mathrm{f}}{\partial \mathrm{~T}_{2}}-\mathrm{f}\left(\mathrm{~T}_{1}^{\mathrm{n}}, \mathrm{~T}_{2}^{\mathrm{n}}\right)
$$

$$
\mathrm{T}_{1}^{\mathrm{n}+1} \frac{\partial g}{\partial \mathrm{~T}_{1}}+\mathrm{T}_{2}^{\mathrm{n}+1} \frac{\partial g}{\partial \mathrm{~T}_{2}}=\mathrm{T}_{1_{\partial T_{1}}^{\mathrm{n}}} \frac{\partial g}{}+\mathrm{T}_{2}^{\mathrm{n}} \frac{\partial \mathrm{~g}}{\partial \mathrm{~T}_{2}}-\mathrm{g}\left(\mathrm{~T}_{1}^{\mathrm{n}}, \mathrm{~T}_{2}^{\mathrm{n}}\right)
$$

Since $\mathrm{T}_{1}^{\mathrm{n}}$ and $\mathrm{T}_{2}^{\mathrm{n}}$ are known (initial approximation needed for first iteration), only unknowns in these equations are $\mathrm{T}_{1}^{\mathrm{n}+1}$, and $\mathrm{T}_{2}^{\mathrm{n}+1}$. This iterative procedure is carried out until desired accuracy

$$
\begin{aligned}
& \mathrm{T}_{1}^{\mathrm{n}+1}-\mathrm{T}_{1}^{\mathrm{n}}<\varepsilon \\
& \mathrm{T}_{2}^{\mathrm{n}+1}-\mathrm{T}_{2}^{\mathrm{n}}<\varepsilon
\end{aligned}
$$

is obtained.
A correct choice of initial approximation should be emphasized. Any error in this selection can make the procedure diverge.

C THIS PROGRAM SOLVES A SE1 CF FOUR UIFFERENTIAL
C EQUATIUNS TWO PGINT SPLIT BOUNDARY VALUE TYPE USING

MAIN PREGRAM

COMNCN $5 \times 2, S \times 4, P, D T, A, B, C C, C A, A N, C 1, A I M, C, J, \times 1, \times 2, \times 3, \times 4$
DIMEASION X1(105), X2(105), X3(105), X4(105),5×1(19,102),
$15 \times 2(19,102), 5 \times 3(19,102), 5 \times 4(19,102), P \times 1(102), P \times 2(102)$,
2PX3(102), PX4(102), H1 $\times 1(102), H 1 \times 2(102), H 1 \times 3(102), H 1 \times 4(102)$, $3 H 2 \times 1(102), H 2 \times 2(102), H 2 \times 3(102), H 2 \times 4: 1) 02), P R 1(105), P R 2(105)$, 4PR3(105), PRFT(105), ADVT(105)
C
C READING IN DATA
C
100 FORPAT(8F9.4)
READ $100, A, B, C, C C, C A, A N, C I, A I M$
101 FORNAT (3F9.4)
READ 101,DT,W1,W2
110 FORNAT("IVALUE OF THE CGNSIANIS*)
PRINT 110
120 FORNAY ${ }^{\prime}, A={ }^{\prime}, F B, 3,{ }^{\circ} \mathrm{B}={ }^{\prime}, \mathrm{FB}, 3,{ }^{\circ} \mathrm{C}={ }^{\prime}, \mathrm{F} 8.3,{ }^{\circ} \mathrm{CC}=1, \mathrm{~F} 8.3,{ }^{\circ} \mathrm{CA}=1$,

$\left.2^{\prime} \mathrm{L} 6, \mathrm{C}(\mathrm{T})={ }^{2}, \mathrm{~F} 9.4,{ }^{\prime} \mathrm{DT}=1, F 6.3\right)$
PRINT 120, A, B, C,CC,CA,AN,CI,AIM,WI,W2,DT
DO $130 \quad \mathrm{I}=1,101$
$5 \times 2(1,1)=W 1$
$S \times 4(1, i)=W 2$
130 CONTINUE
140 FORMAT(' X1 (0) =, F10.4, " $\quad \times 2(0)=1, F 10.4,{ }^{\prime} \quad \times 3(0)=1, F 10.4$, $\left.1^{\prime} \quad X_{i}(0)=1, F 10,4\right)$
141 FORMA (1H, 14,2X,4E20.7)

C
C
c
c
C partICular solution
C
150 FORNAT (4F10.4)
160 FORMAT("-PARTICULAR SCLUT 1ON')
PRINT 160
$p=1$.
READ $150, \times 1(1), \times 2(1), \times 3(1), \times 4(1)$
PRINT $140, \times 1(1), \times 2(1), \times 3(1), \times 4(1)$
CALL RKT
$00 \quad 170 \quad[=1,101$
P×1(1) $=\times 1(\mathrm{i})$
$\mathrm{P} \times 2(1)=\times 2(1)$
$\mathrm{P} \times 3(1)=\times 3(1)$
PX4(1) $=\times 4(1)$

170 CONTINUE
PRINT $141,(1, \times 1(1), \times 2(1), \times 3(1), \times 4(1),[=1,101,20)$
homceeneous solution first set
$\mathrm{P}=0 . \mathrm{C}$
2CO FORWAT'-HOMDGENEOUS SOLUTION SECOND SET')
PRINT 200
READ $150, \times 1(1), \times 2(1), \times 3(1), \times 4(1)$
PRINT $140, \times 1\{1\}, \times 2(1), \times 3(1), \times 411)$
CALL RKT
$00210 \quad 1=1,101$
$\mathrm{H} 2 \times 1(\mathrm{I})=\ddot{\mathrm{C}} 1(1)$
$\mathrm{H} 2 \times 2(1)=\times 2(1)$
$1: 2 \times 3\{1\}=\times 3(1)$
$H 2 \times 4(1)=\times 4(1)$
210 CONTINUE
PRINT $\{41,\{1, \times 1(1), \times 2\{1\}, \times 3(1), \times 4(1), I=1,101,20\}$
c
c
c
SOLLTION OF IMTEGRATION CONSTANTS
$\begin{aligned} P & =0.0\end{aligned}$
180 FORMATI'~HOMOGENEOUS SCLUTIUN FIRST SET'I
PRINT 180
RFAD $150, \times 1(1), \times 2\{1), \times 3(1), \times 4(1)$
PRINT $140, \times 1(1), \times 2\{1), \times 3(1), \times 4(1)$
CALL RKT
DC $150 \quad \mathrm{I}=1,101$
$\mathrm{H} 1 \times 1(1)=\times 1(1)$
H1 $\times 2$ (I) $=\times 2(I)$
H1 $1 \times 3(I)=\times 3(I)$
$\mathrm{H} 1 \times 4,(1)=\mathrm{X} 4(1)$
190 COMTINUE
PRINT $141,(1, \times 111), \times 2(1), \times 3\{1), \times 4\{1\}, 1=1,101,20\}$

220 FORMAT1259.4
REAC 220, BB1,8B2
$B 1=B E 1-P \times 3(101)$
$E 2=2[2-P \times 4(101)$
CET $=$ + $1 \times 3(101)+42 \times 4(101)-H 1 \times 4(101) * H_{2} \times 3(101)$
$A 1=\{81 * H 2 \times 4(101\}-32 \mathrm{H}+2 \times 3\{101\}) / 0 \mathrm{ET}$
$A 2=\{\mathrm{E} 2 * \mathrm{H}=1 \times 31101\}-\mathrm{B} 1+\mathrm{H} 1 \times 4(101)\} / D E T$

PRINT 230,A1,A2
C RECOVERY OF SOLUTION SUPERPOSITION PRINCIPLE
Do $250 \quad \mathrm{I}=1,101$
$S \times 1(J, 1)=P \times 1(1)+A 1 * H 1 \times 1(1)+A 2 * H 2 \times 1(1)$
$S \times 2(J, 1)=f \times 2(1)+A 1 * H 1 \times 2(1)+A 2 * H 2 \times 2\{1\}$
$5 \times 3(J, 1)=P \times 3([)+A 1 * H 1 \times 3\{1\}+A 2+H 2 \times 3(1)$
$S \times 4(\mathrm{~J}, \mathrm{I})=? \times 4(I)+A 1+41 \times 4(1)+A 2 * i+2 \times 4(1)$
250 CONTINUE

```
    26C FORMAT(" FINAL SOLUTIDN ITERATIONND 1,14,//)
```

 \(\mathrm{J} J=\mathrm{J}-\mathrm{I}\)
 PRINT 260, JJ

C
C CALCULATION OF CDNTRDL VARIABLE AND PRDFIT
C

```
    PlR=C.O
    P2R=C.0
    P3R=C.0
    00 280 I=I,10I
    ADVT(I)={S\times4(J,I)/(2.*CA))*{S\times2(J,I)/AN-I.)
    PRI(I)=FIR+OT*(C*SX2(J,i))
    PIR=FR1(I)
    PR2(|)=P2R+DT*(CI*((AIM-5XI(J,I))**2))
    P2R=PR2(l)
    PR3(I)=P3R*DT*(CA*SX2(J,I)*(ADVT(I)**2))
    F3R=PR3(1)
    PRFT(I)=[RI(I)-PR2(I)-PR3(I)
```

 PHETHナ=5.0
 280 CONTINUE
PRINT $270,(1, S \times 1(J, I), S \times 2(J, I), S \times 3(J, I), S \times 4(J, I), A D V T I)$,
1PAFI(1), I=I,10I)
290 FORNAT:-TUTA\& FROFIT \quad,FI5.3, $15 \mathrm{X}, 3 \mathrm{~F} 10.31$
PRINT 290, PRFT(101), PRI(IO1), PR2(IOI), PR3(10I)
C
C ENO OF ONE ITEQATION
C
300 CONTINLF
c
C END CF DO LODP FOR QUASILINEARIZATIDN
STO?
END
thls surrdutine is usen to integrate the feur linearlzed EQUATIOPS SIMULTANEDUSLY BY RUNGE KUTTA METHOD

```
        COMNCN SX2,SX4,P,DT,A,G,CC,CA,LN,CI,AIM,C,J,X1,X2,X3,X4
        D1MENSIDN X1(105),X2(105),X3(105),X4(1D5),A1(1D5),
    AC(1(5), ^3(105),A4(105), 81(105), B2(105),B3(105),
    2&4(1C5),C1(105),C2(105),C3(105),C4(105),D1(105),
    3C2(105),[13(105),D4(105),S\times2(19,102),S\times4(19,102)
    DD 5C0 1=1,100
    v=5\times2(J-1,I)
    W=S S4(N-1,I)
    TA=I-1
    T=TA*[T]
    Al(I)=DT*(P*A+P*B*T-X2(1))
    B1A= CC*V*W*(V**2)/(CA*AN)-W*V/(2.*CA)-CC*(V**2)/AN-
    1W*(V***)/(2.*CA*(AN***2))
    B2A=CC+2.*V*W/(CA*AN)-W/(2.*CA)-2.*CC*V/AN-3.*W*(V**2)
    1/(%.*CAb(AN尔紊2))
    B3A=V标R/(CA*AN)-V/(2.*CA)-V**3/(2.*CA*(AN**2))
    E1(I)=DT*(P*&1A-P*V*B2A-P*V*B3A+X21I)*B2A+X4(1)*B3A)
    C1(I)=DT*(P*2.*CI*A1M-2.*CI*X1(I))
        D1A=C-W*CC+3.*(%**2)*(V**2)/(4.*CA*(AN**2))+W%*2/(4.*CA)
    1-(W**2)*W/(CA*NN)+2.*CC*V*W/AN
        D2A=3.*V*(b**2)/12.*CA*(AN**2))-W**2/(CA*AN)+2.*CC*&/AN
```



```
    1(CA*⿱丶万⿱⿰㇒一乂目)
    1+2.*&C*V/AN
```



```
    1D3A)
    A2(I)=DT*!P*A+P*解(T+DT/2.)-(X2(1)+R1(I)/2.))
```



```
    1(X告(I)+D1(I)/2.)*B3A)
    C2(I)=DI*(P*2.*CI*A1M-2.*CI*(X1(I)+A1(I)/2.))
    D2(I)=DI*(1*3(I)+CI(I)/2.)+P%DIA-P*V*D2A-P*W*D3A+(X2(I)
    1+B1(I)/2.1*住A+(XG(I)+D1(1)/2.)*03A)
    A3(1)=DT*(P*A+P)& 3*(T+D1/2.)-(`2(I)+82(1;/2.))
    B3(1)=DT*(P*BIA-P*V*B2A-P*k* 33a+(X2(I)+B2(I)/2.)*&2A+
    1(X4(I)+[22(I)/2.)*B3A)
    C3(1)=DT*{苂2.*゙し1*A1N-2.*CI*!X1(1)+A2(I)/2.))
    D3(I)=DT*((X3(I)+C2(I)/2.)+P*D1A-P*V*D2A-P*V:*D3A+(X2(I)
    1*B2(1)/2.)*02A+(X4(1)&D2(1)/20.%*23A)
    AG(I)=DT*(P*A+?*C*(1+DT)-(x2(1)+03(I)))
    B4(I)=DT*iP*E1A-P*V*B2A--P年绿83A+(X2(I)+83(1))*B2A+
    1(X4(1)+D3(1))+83A)
    C4(1)=01*(P*2.*CI*AIH-2.*CI*(X1(I)*A3(1)))
```



```
    183(1))*024+(X4(1)+D3(I))*03A)
    XI(I|I)=XI(1)+(A1(I)+2.*A2(I)+2.*A3(I)+A4(II)/6.
    X2(I+1)=x2(I)+(B1(I)+2.*B2(I)+2.*83(I)P日4(I))/6.
    x3(I+1)=x3(1)+(C1(1)+2.*C2(1)+2.*C3(I)+C4(1))/6.
    x4(I*1)=x4(1)+(DIII)*2.*D2(II+2.*D3(I)+D4(I) / /b.
5C0 CONTINUE
    RETURN
```


MAIN PROGRAM

COMMCN X1,Y1,X2,Y2,A1,Q,71,Z2,Z3,Z4,Z5,Z6,TP,TQ,DT,XO, $1 G A, G E, F A, R, A Q, V 1, V 2, Y O, E B, A N, C A, C 1, A 1 M, C B, C C, C Q, C, A C$, 2CT, P, W1,W2,W3,W4,TEM1,TEM $2, \mathrm{~J}, S A Q, S 26$
DIMENSION X1(105),Y1(105), X2(105), Y2(105), A(1105), 1Q(105), Z1(105), Z2(105), Z3(105),Z4(105),Z5(105), 226(105),SX1(10,102),SY1(10,102),SX2(10,102),SY2(10,102), 3SAI(10,102), SAQ(10, 102),SZ1(10, 102),SZ2(10,102), 4SZ3(10,102),SZ4(10,102),SZ5(10,102),SZ6(10,102), 5PX1(102), PY1(102), PX2(102), PY2(102), P1(102), PQ(102), 6PZ1(102), PZ2(102), PZ3(102), PZ4(102), PZ5(102), PZ6(102), 7XO(1C5), YO(105), TEM1(10,102), TEM2(10,102) DIMENSION H1X1(102), H1Y1(102), HIX2(102), HIY2(102), 1H1A1(102), H10(102), H1Z1(102), H1Z2(102), H1Z3(102), 2H174(102), H1Z5(102), H1Z6(102), H2X1(102), H2Y1(102), $3 H 2 \times 2(102), H 2 Y 2(102), H 2 A 1(102), H 20(102), H 2 Z 1(102)$, 4H2Z2(102), H2Z3(102), H2Z4(102), H2Z5(102), H2Z6(102), 5H3X1(102), H3Y1(102), H3X2(102), H3Y2(102), H3AI(102), 6H3Q(102), H3Z1(102), H3Z2(102),H3Z3(102),H3Z4(102), 7H325(102), H3Z6(102), H4X1(102), H4Y1(102), H4X2(102), 8H4Y2(102), H4A1(102), H40(102), H4Z1(102),H4Z2(102), 9H423(102), H4Z4(102), H4Z5(102), H4Z6(102), H5 X1(102), 1H5Y1(102), H5 X2(102), H5Y2(102), H5A1(102), H5Q(102), 2H5Z1(102), H5Z2(102), H5Z3(102), H5Z4(102), H5Z5(102), 3H5Z6(102), H6X1(102), H6Y1(102), H6X2(102), H6Y2(102), 4H6A1(102), H60(102), H6Z1(102), H6Z2(102), H6Z3(102), 5H6Z4(102), H6Z5(102), H6Z6(102)
DIMENS1ON ADV(105), PR1(105), PR2(105), PR3(105), PR4(105), 1PR5(105), PR6(105), PRFT(105)

C

401 FORMAT(2E10.3,2F7.1,2F5.1,5F4.1,F5.1,F3.1)
READ $401, G A, G B, E A, E B, T P, T Q, R, A Q, V 1, V 2, A I M, A N, C$
402 FORMAT(F7.5,F4.2,F7.5,5F5.3,4F6.3,F5.1)
READ 402,CT,DT,CA,AC,CB,CC,CQ,CI,W1,W2,W3,W4,TIM
406 FORNAT (1H1, 'VALUE OF THE CONSTANTS')
PRINT 406
403 FORNAT $4 \mathrm{H}-\mathrm{GA}=, \mathrm{E} 10.3,{ }^{\prime} \mathrm{GB}={ }^{\prime}, \mathrm{El} 0.3,^{\prime} \mathrm{EA}={ }^{\circ}, \mathrm{F} 7.1,{ }^{\prime} \mathrm{EB}={ }^{\prime}$,

PRINT 403,GA,GB,EA,EB,R,AQ,V1,V2,AIM,TIM

1F4.2, CA = , F7.5, C1=',F5.3,' C2=',F5.3, C3=',
2F5.3, $\mathrm{CQ}=\mathrm{F}, \mathrm{F5.3,C} \mathrm{CI}=1, F 5.3, \mathrm{CO}(\mathrm{T})=1, F 6.3$,
$\left.3^{\circ} \mathrm{YO}(\mathrm{T})=1, F 6.3\right)$
PRINT $404, A N, C, C T, D T, C A, A C, C B, C C, C Q, C I, W 1, W 2$
405 FORMATIH-,'Tl=',E12.4,' T2=', ᄃ12.4,' QO(T)=',E10.2,

PRINT 405,TP,TQ,W3,W4
129 FORMAT ($1 H, 14,2 \mathrm{X}, 12$ E10.2)
110 FORMAT (1H-, ' X $1(0)={ }^{\prime}, F 4,2,{ }^{*} \mathrm{Y} 1(0)={ }^{\prime}, F 4.2,{ }^{*} \times 2(0)={ }^{\prime}, F 4.2$,

$2^{\prime} L 2(0)=, ~ F 4,2,{ }^{\prime} L 3(0)={ }^{\prime}, F 4,2,{ }^{\prime} L 4(0)={ }^{\prime}, F 4,2,{ }^{\prime} L 5(0)={ }^{\prime}, F 4,2$,
$\left.3^{\prime} \mathrm{L} 6(0)=, ~ F 4.2\right)$
725 FORMAT (4F15.5)
 $00 \quad 162 \quad I=1,101$
TEM1 (1, I) = TP
$\operatorname{TEM} 2(1, I)=T Q$
$S A Q(I, I)=W 3$
$S 26(1,1)=W 4$
162 CONTINUE
C

C PARTICULAR SOLUTION
C
601 FORMAT (12(F5.2))
600 FDRMAT (IH- 'PARTICULAR SOLUTION")
PRINT 600
$P=1$.
REAO $601, \times 1(1), Y 1(1), X 2(1), Y 2(1), A 1(1), Q(1), Z 1(1)$,
172(1), Z3(1), Z4(1), 25(1), Z6(1)
PRINT $110, X 1(1), Y 1(1), X 2(1), Y 2(1), A[(1), Q(1), Z 1(1):$
222(1), 23(1), Z4(1), Z5(1), 26(1)
CALL RKT
00 201 $\quad[=1,101$
PX1(1)=X111)
PYI $(I)=Y 1(I)$
$\mathrm{PX} 2(\mathrm{I})=\times 2(\mathrm{I})$
PY2(I)=Y2(I)
$P[(I)=A!(I)$
$P Q(I)=Q(I)$
PZ1(I) $=21(1)$
PZ2(I)=22(I)
PZ3(I)=23(I)
PZ4(I) $=24$ (I)
P25(1)=25(1)
PZ6(I)=Z6(1)
201 CONTINUE
PRINT 129, (I, X1(I),Y1(I), X2(I),Y2(I), AI(I), Q(I), Z1(I),
1Z2(I), Z3(I), Z4(I), Z5(I), Z6(I),I=1,101,20)
C
C
C
HOMOGENEOUS SOLUTION FIRST SET
$P=0 . C$
602 FORMAT(LH-'HOMOGENEOUS SOLUTION FIRST SET')
PRINY 602
READ $601, \times 1(1), Y 1(1), \times 2(1), Y 2(1), A(1), Q(1), Z 1(1)$,
$172(1), 23(1), 24(1), 25(1), 26(1)$

PRINT $110, \mathrm{X} 1(1), Y 1(1), \mathrm{X} 2(1), Y 2(1), A 1(1), Q(1), 21(1)$, 222(1),23(1),24(1),25(I),26(1)
CALL RKT
DI 2C2 $I=1,101$
$\mathrm{HIXI}(I)=\mathrm{XI}(\mathrm{I})$
H1Y1II)=Y1(I)
$H 1 \times 2(I)=\times 2(I)$
HIY2(I)=Y2(I)
HIAI (I)=AI! 1)
HIQ(I) $=\mathrm{Q}(\mathrm{I})$
HIZ1(I)=Z1(1)
HIZ2(I)=Z2(I)
HIZ3(I)=Z3(I)
H1Z4(I) $=$ Z4(I)
H125(I)=25(I)
H1Z6(I)=Z6(I)
202 CONIINUE
PRINT $129,(I, X 1(I), Y I(I), X 2(I), Y 2(I), A I(I), Q(I), Z 1(I)$,
1Z2(1), Z3(I),Z4(I), Z5(I), Z6(I), I=1,101,20)
homogeneous solution second set

203 CONT INUE
PRINT I29,(I, X1(I), Y1(I), X2(I), Y2(I), A1(I), Q(I), Z1(I), 122(1), Z3(I), Z4(I), Z5(I), Z6(I), I=1, 101,20)
C
C HOMOGENEOUS SOLUTION THIRD SET
c

```
    P=0.0
    604 FORMAT(IH-,'HOMOGENEOUS SOLUTION THIRO SET')
    PRINT 604
    READ 601,X1(1),Y1(1),X2(1),Y2(1),AI(1),Q(1),ZI(I),
    1Z2(1),Z3(1),Z4(1),Z5(1),Z6(1)
    PRINT 110,X1(1),Y1(1),X2(1),Y2(1),AI(1),Q(1),Z1(1),
```

222(1),23(1),24(1),25(1),26(I)

CALL RKT
$00204 \quad \mathrm{I}=\mathrm{I}, 101$
$\mathrm{H} 3 \times 1(1)=\times 1(1)$
H3Yl(I)=Y1(I)
H3 $\times 2$ (I) $=\times 2$ (I)
H3Y2(I)=Y2(I)
H3AI(I)=AI(I)
$H 3 Q(I)=Q(I)$
H321(I)=Z1(I)
H322(I)=22(I)
H323(1)=Z3(I)
H324(1) $=24(1)$
H325(I) $=25(1)$
H3Z6(I)=Z6(I)
204 CONT INUE
PRINT 129, (I, XI(I), YI(I), X2(I), Y2(I), AI(I), Q(I), ZIII), 122(I), Z3(I),Z4(I), Z5(I), Z6(I), I=I, 101,20)
C
c hOMCGENEOUS SOLUTION FOURTH SET
c
$P=0.0$
605 FORMAT ($1 \mathrm{H}-$, "HOMGGENEOUS SOLUTION FOURTH SET')
PRINT 605
READ $601, \times 1(1), Y(1), X 2(1), Y 2(1), A(1), Q(1), Z I(1)$, 1Z2(1), Z3(1), Z4(I), Z5(1), Z6(I)
PRINT 110, X1(1),Y1(1), X2(1),Y2(I), AI(1), Q(1),ZI(I), 2Z2(1),Z3(1),Z4(I),Z5(I),Z6(1)
CALL RKT
$002 \mathrm{C} 5 \quad \mathrm{I}=1,101$
H4X1(I)=X1(I)
H4Y1(I)=YI(I)
H4×2(I)=X2(1)
$\mathrm{H}_{4} \mathrm{Y} 2(\mathrm{I})=\mathrm{Y} 2(\mathrm{I})$
H4AI (I)=AI(I)
H40(I)=Q(I)
H4Z1 (I)=Z1(I)
H4Z2 (i) = Z2 (I)
H4Z3(I)=Z3(I)
H4Z4(I) = Z4 (I)
H425(I) $=7.5(1)$
13426(I)=26(1)
205 CONTINUE
PRINT 129, (I, XI(I), Y1(I), X2(I), Y2(I), AI(I), O(I), ZI(I),
1Z2(I), Z3(I),Z4(I), 25(I), Z6(I), I=1,101,20)
c
C
C
HOMOGENEDUS SOLUTION FIFTH SET
$\mathrm{P}=0 . \mathrm{C}$
606 FORMAT(IH-, 'HOMOGENEOUS SOLUTION FIFTH SET')
PRINT 606
REAO 601, X1(1),YI(1), X2(I),Y2(1), AI(I),Q(1),Z1(1), 1Z2(1), 23(1), 24(1), Z5(1), 26(I)
PRINT 110, X1(1), Yl(1), X2(1),Y2(1), AI(1), Q(1), Z1(I), 2Z2(1),23(1),24(1),25(1),26(1)

CALI RKT
D0 2C6 $\quad 1=1,101$
$\mathrm{H} 5 \times 1(1)=\times 1$ (I)
H5Y1 1 I) $=$ Y1 (I)
H5 X2(I) $=\times 2$ (I)
H5Y21I) $=$ Y2 (I)
H5AI(I)=AI(I)
$H 5 Q(I)=Q(I)$
H5Z1(I)=Z1(I)
H5Z2(I) $=22(1)$
$1 \mathrm{H} 5 \mathrm{Z3}(\mathrm{I})=23(\mathrm{I})$
H524(1)=24(1)
H57.5(I) = Z5(I)
H5Z6(I)=26(1)
206 CDNT INUE
PRINT 129, (I, XI(I), YI(I), X2(I), Y2(I), AI(I), Q(I), Z1(I), 122(I), 23(I),24(I), Z5(I), 26(I), I=1,101,20)
C
C HOMOGENEDUS SOLUTION SIXTH SET
C
$P=0.0$
607 FORNAT(1H- "HOMOGENEOUS SCLUTION SIXTH SET')
PRINT 607
READ 60I, XI(I), Y1(1), X2(1),Y2(1), AI(1), Q(1), ZI(1),
122(1),23(1),24(1),25(1),26(1)
PRINT $110, X 1(1), Y 1(I), \times 2(1), Y 2(1), A I(1), Q(1), 21(1)$,
222(1),23(1),24(1),25(1),26(1)
CALL RKI
DO 2C7 $1=1,101$
$146 \times 1(1)=\times 1(1)$
H6Y1(I) $=\mathrm{Y}_{1}(\mathrm{I})$
$H 6 \times 2(I)=\times 2(1)$
H6Y2(I) $=$ Y2(1)
H6AI(I)=AI(I)
HGQ(I) $=$ Q(I)
HGZ1(I)=Z1(I)
H6Z2(1) $=22(1)$
H623(I) $=23$ (I)
H624(1)=Z4(I)
H6Z5(I) $=25(\mathrm{I})$
H626(I) $=26$ (I)
207 CONTINUE
PRINT 129, (I, X1(I), Y1 (I), X2(I), Y2(I), AI(I), Q(I), 21(I),
122(I),23(I), Z4(I), Z5(I), Z6(I), I=1, 101,20)
C
C
C

SOLUTION INTEGRATION CONSTANTS

```
DIMEASION B(6),A(36),BB(6)
\(N=6\)
```

150 FGRMAT(6(F5.2))
READ 150 , (BBII), $I=1,6$)
800 FORMAT(1H, 'FINAL CONDITIONS', $10 \times, 6 F I 5.4)$
PRINT $800,(\mathrm{BB}(1), I=1,6)$
$B(1)=88(1)-P Z 5(101)$
$B(2)=B B(2)-P 21(101)$

C
C

$B(3)=8 B(3)-P Z 2(101)$
$B(4)=B E(4)-P 23(101)$
$B(5)=B 8(5)-P Z 4(101)$
$B(6)=B E(6)-P Z 6(101)$
$A(1)=H 125(101)$
$A(2)=H 121(101)$
$A(3)=H 122(101)$
$A(4)=H 123(101)$
$A(5)=14124(101)$
$A(6)=H 126(101)$
$A(7)=4225(101)$
$\mathrm{A}(8)=\mathrm{H} 221(101)$
$A(9)=\mathrm{H} 222(101)$
$A(10)=H 223(101)$
$A(11)=H 2 Z 4(101)$
$A(12)=H 226(101)$
$A(13)=H 325(101)$
$A(14)=H 321(101)$
A(15) $=\mathrm{H} 322(101)$
$A(16)=H 323(101)$
$A(17)=1324(101)$
$\mathrm{A}(18)=\mathrm{H} 37.6(101)$
$A(19)=H 425(101)$
$A(20)=H 421(101)$
$A(21)=H 422(101)$
$A(22)=H 423(101)$
$A(23)=H 424(101)$
$A(24)=13426(101)$
$A(25)=H 525(101)$
$A(26)=14521(101)$
$A(27)=H 522(101)$
$A(28)=H 523(101)$
$A(29)=H 524(101)$
$A(30)=H 526(101)$
$\mathrm{A}(31)=\mathrm{H} 625(101)$
$A(32)=H 621(101)$
$A(33)=H 622(101)$
$A(34)=11623(101)$
$A(35)=11624(101)$
$A(36)=H 626(101)$
$\mathrm{KS}=0$
CALL S $(M O(A, B, N, K S)$
151 FORMAT(1H-,'A1=',F15.5, 'A2 = ', F15.5, 'A3 =', F15.5, 'A4 = '*
1F15.5,'A5 =, F15.5, 'A6=', F15.5)
PRINT 151,(B(I), $I=1,6)$
RECOVERY OF SOLUTION SUPERPOSITION PRINCIPLE
DO $160 \quad \mathrm{I}=1,101$
$S \times 1(J, 1)=P \times 1(()+B(1) * H 1 \times 1(1)+B(2) * H 2 \times 1(()+B(3) * H 3 \times 1(1)+$
$18(4) * 44 \times 1(1)+8(5) * H 5 \times 1(1)+B(6) * H 6 \times 1(1)$
SYi(J,() $=P Y 1(()+B(1) * H 1 Y 1(I)+B(2) * H 2 Y 1(I)+B(3) * H 3 Y 1(()+$ $1 B(4) \div H 4 Y 1(1)+B(5) \div H 5 Y(1)+B(6) * H 6 Y(1)$
$\mathrm{S} \times 2(\mathrm{~J}, \mathrm{I})=\mathrm{P} \times 2(1)+\mathrm{B}(1) * 41 \times 2(1)+\mathrm{B}(2) *+2 \times 2(1)+8(3) * H 3 \times 2(1)+$ $18(4)$ * $44 \times 2(1)+B(5) *+5 \times 2(1)+B(6) *+16 \times 2(1)$

SY2(J,I)=PY2(I)+B(1)*HIY2(I)+B(2)*\&2Y2(I)+B(3)*H3Y2(I)+ 1B(4)*H4Y2(I)+B(5)*H5Y2(I)+B(6)*H6Y2(1)
SAI(J,I) $=P I(I)+B(I) * H I A I(I)+B(2) * H 2 A I(I)+B(3) * H 3 A I(I)+$ 1B(4)*H4AI(I)+B(5)新5AI(I)+B(6)*H6AI(I)
$S A Q(J, I)=P Q(I)+B(I) * H I Q(I)+B(2) * H 2 Q(I)+B(3) * H 3 Q(I)+$ 1B(4)*H4Q(I)+B(5)*H5Q(I)+8(6)*H6Q(I)
$S Z 1(J, I)=P Z I(I)+B(1) * 112 I(I)+B(2) * H 2 Z I(I)+B(3) * H 3 Z I(I)+$ 18(4)*H47I(I)+B(5)*H5Z1(1)+B(6)*H6Z1(I)
$S Z 2(J, I)=P Z 2(I)+B(1) * H 1 Z 2(1)+B(2) * 12 Z 2(I)+8(3) * H 3 Z 2(I) *$ 1B(4)**4Z2(1)+B(5)*H5Z2(1)+8(6)*H622(I)
$S Z 3(J, I)=P Z 3(I)+B(I) * H I Z 3(I)+B(2) * H 2 Z 3(I)+B(3) * H 3 Z 3(I) *$ IB(4)*H4Z3(1)+9(5)*H5Z3(I)*B(6)*H6Z3(I)
SZ4(J, I) $=P Z 4(I)+8(I) * H I Z 4(I)+B(2) * H 2 Z 4(I)+B(3) * H 3 Z 4(I)+$ 18: 4)* $\mathrm{H}_{4} \mathrm{Z} 4(1)+\mathrm{B}(5) * H 524(1)+B(6) * H 6 Z 4(1)$
S $/ 5(\mathrm{~J}, \mathrm{I})=\mathrm{P} Z 5(I)+\mathrm{B}(1) * H I 25(1)+\mathrm{B}(2) * H 2 Z 5(I)+\mathrm{B}(3) * H 325(I)+$ 18(4)*H4Z5(1)+B(5)*H5Z5(I)+B(6)*H675(1)
$\mathrm{S} 26(\mathrm{~J}, \mathrm{I})=\mathrm{PZ}$ 6(I)+B(1)*HIZ6(I)+B(2)*H2Z6(I)+B(3)*H3Z6(I)+ IB(4)*H4Z6(I)+B(5)*H57.6(I)+8(6)*H6Z6(1)
160 COMTINUE

161 FORMATIIHI, 'FINAL SOLUTION ITERATION NO ', 131 $\mathrm{JJ}=\mathrm{J}-1$
PRINT 161:JJ
131 FORMATI $1 \mathrm{H}, 14,3 \mathrm{X}, 6 \mathrm{E} 18,51$
PRINT $13[1,(1, S \times 1(J, I), S Y 1(J,[), S \times 2(J, I), S Y 2(J, I)$, $I S A[(J, I), S A Q(J, I), I=T, I O I)$
132 FORMAT(IH-, ADD)JIONAL STATE VARIABLFS://1
PRINT 132
PRINT 131, (I,SZI(J, I),SZ2(J,I),SZ31J,I),SZ4(J,I), 1SZ5(J,I),SZ6(J,I),I=1,101)

C
C
c
CALCULATION OF CONTROL VARIARLES AND TOTAL PROFIT
164 FORMATIIH, $14,5 \mathrm{X},{ }^{\prime}$ ADVT $={ }^{\prime}$, E1 $2.4,17 \mathrm{X},{ }^{\prime} \mathrm{T} 1={ }^{\prime}, \mathrm{EI} 4.6,3 \mathrm{X}, \mathrm{T}$ T $2={ }^{\prime}$, 1E $14.6,12 x$, 'TOTAL PROFIT',F1D.5)
$P I R=0 . D$
$P 2 R=0 . D$
$P 3 R=C .0$
$P 4 R=0.0$
P5R=C.D
P6R=C.D
DO 5CD I=1,101
$\operatorname{AnV}(I)=(S Z 6(J, I) / 12 * * C A)) *((1 . / A N)-(1 . / S A Q(J, I)))$
PRI(I)=PIR+AC*CQ*SAQ(J,I)*DT
PIR=PRI(I)
$P R 2(I)=P 2 R+C B * A Q * S \times 2(J, I) * D T$
$P 2 R=P R 2(I)$
PR3(I) $=P 3 R+C C * A Q *(I .-S \times 2(J, I)-S Y 2(J, I)) * D T$
P3R=PR31: :
PR4(I) $=P 4 R+C I *((A I M-S A I(J, I)) * 2) * D T$
$P 4 R=P R 4(I)$
$\operatorname{PR5}(I)=P 5 R+C A *(A D V(I) * 2) *(S A Q(J, 1) * * 2) * D T$ P5R=PR5(I)
[P6(I)=P6R+C1*(1]IM-7EM2(J-1,I))**2+(TEM1(J-I,I)
1-1EN2(J-1, I))**2)*01
$P 6 R=P R G(1)$
PRFT(I)=PR1(I)+PR2(I)+FR3(I) $-P R \&(I)-P R 5(I)-P R 6(I)$
500 CONIINUE
502 FOR:AT(1H-, TTOTAL PROFIT=',F13.7510X,6F15.5)
PRINT 502, PRFT(101),PR1(101), PR2(101), PR3(101), PR4(101) 1.9R5(101), PRG(101)

163 FORMAT (1H1, VALUES OF THE CONTROL VARIABLES') PRINT 163
501 FORMAT IIH, ADVT FDR PREVIOUS ITERATION TEMP
1 FQR CURRENT ITERATION", 12X, 'PROFIT FOR CURRENT ITERATION') PRINT 5Ol

C
C
C
CAlculation of temp 1 and temp 2 by Nevion raphson methou
DIMENSION TM1(202), 1:2(202)
IF (J.GE.3) GD TO 905
$T: 1(1)=350.0$
$\operatorname{TM2}(1)=350.0$
GO TI 906
$905 \operatorname{TM1}(1)=\operatorname{TEM} 1(\mathrm{~J}-1,1)$
$\operatorname{TM} 2(1)=\operatorname{TEM} 2(\mathrm{~J}-1,1)$
806 continue
DD $165 \quad \mathrm{I}=1,101$
D0 $166 \quad \mathrm{~N}=1,201$
D1T1A=(1S21(J,I)-S72(J,1))*CA*SX1(J,I)*EA)/(R*(TM1(N)**ん))

D1T1C=(EB/R-2.*TM1(N))*EXP(-EB/\{R*TMI(N)))
D1T1=D1T1A*D1T1B+D1T1C\%D1T10-4.*CI
D1 $12=2 . * \mathrm{CT}$
D211=2.*CT

D2T2R=(EA/R-2.*TM2(N))tEXP(-EA/IR*TM2(N)))
D2I $2 C=(5 Z 4(J, I) * G B * S Y 2(J, I) * E B) /\left(R *\left(T M 2(N) * * A_{1}\right)\right)$
D2I?C=(EB/P-2.*TM2(N))*EXP(-EB/(R*TM2(N)))

- D2T2=02T2A*D2I2B+D2T2C*02T2D-2.*CT

FUN1A $=(1 S Z 1(J, I)-S Z 2(J, I)) * G A * S X 1(J, I) * E A) /(R *(T M L(N) * 2))$
FUN1B=EXP(-EA/(R*TM1(N)))
FUN1C=(SZ2(J, I)*GS*SY1(J, 1)*EB)/(R*(TM1(N)**2))
FUN1E $=E X P(-F B /(R * T M 1(N)))$

FUNL = FUN1\&*FUNIBRFUNIC*FUNID-FUNLE
FUN2A $=\left((S 23(J, 1)-S 24(J, 1)) * 0 A_{4} * S \times 2(J, I) * E A\right) /(R *(T M 2(N) * * 2))$
FUN2R $=F X P(-E A /(R * T M 2(N)))$
FUN2C = (SZ4 (J, I) *GB*SY2(J,I)*EB)/(R*(TN2(N)**2))
FUN2C=EXP (-EB/(R*TN2(N)))
FUN2E=2. सCT*(TM1 (N)-TM2(N))
FUNZ=FUN2A*FUN2B+FUN2C*FUN2D+FUN2E
RHS $1=$ TM1 (N)*D1 $51+$ TH2 (N)*O1T2-FUN2
RHS2=TM1:N)*D2T1+TM2(N)*D2T2-F(iN2
$D E T R=D 1 T 1 * D 2 T 2-D 1 T 2 * D 2 T 1$
TM1 (N+1) $=($ RHS1*D2T2-RHS2*01T2)/DETR
TM2 $(N+1)=($ RHS2*D1T1-RHS1*O2T1)/DEGR

DELI $=$ TMI $(N+1)-T M 1(N)$
DEL2 $=1 M 2(N+1)-T M 2(N)$
TMNK $1=T M 1(N+1)$
$T M N W 2=T M 2(N+1)$
IE (ABS(DELI).GT.O.1) GO 10166
IF (ABSIOEL2).LE.O.1) GO TO 170
166 CONT INUE
168 FORMATI70X, 'TEMP DID NOT CONVERGE', $2 \mathrm{X}, 13,{ }^{\prime}$ UELI=',F9.3, 1' DEL2 $=$ ', F9.3)
PRINT $168, N$, OEL1,DELZ
170 TEMI(J, 1)=TMNW1
$\operatorname{TEM} 2(J, 1)=\operatorname{TMNW} 2$
IF (J.GE.3) GO TO 900
TM1 (1) $=$ TEM1 (J, I)
TM2(I)=TEM2(J,I)
GO TC 901
$9 \mathrm{CO} \operatorname{TM11}(1)=\operatorname{TEM} 1(\mathrm{~J}-1,1+1)$
$\operatorname{TM2}(1)=\operatorname{TEM} 2(\mathrm{~J}-1, I+1)$
901 CONTINUE
PRINT $164, I, \operatorname{ADV}(I), 1 E M I(J, 1), T E M 2(J, 1), P R F I(1)$
165 CONT INUE
C
C ENO CF ONE ITERATION
C
300 CONTINUE
C
C QUASILIMFARIZATION DO LOOP ENOS HERE
C
Stop
END

THIS SUBROUT INE IS USEO TO INTEGRATE 12 LINEARIZEO EQUATIONS SIMULTANEOSLY BY RUNGE KUTTA METHOO

COMMCN X1，Y1，X2，Y2，A1，Q， $21,22, Z 3, Z 4,25, Z 6, T P, T Q, O T, X 0$ ， $1 G A, G E, E A, R, A Q, V 1, V 2, Y O, E B, A N, C A, C I, A I M, C B, C C, C Q, C, A C$ ， 2CT，P，W1，W2，W3，W4，TEM1，TEM2，J，SAQ，SZ6 DIMENSION X1（105），Y1（105），X2（105），Y2（105），A1（105）， 10（105），21（105），22（105），23（105），24（105），25（105），26（105）， 2A1（1C5），A2（105），A3（105），A4（105），BI（105），B2（105），B3（105）， 3B4（105），C1（1C5），C2（105），C3（105），C4（105），01（105），02（105）， 403（105），04（105），E1（105），E2（105），E3（105），E4（105），F1（105）， 5F2（105），F3（105），F4（105），G1（105），G2（105），G3（105），G4（105）， 6H1（1C5），H2（105），H3（105），H4（105），R1（105），R2（105），R3（105）， 7R4（105），S1（105），S2（105），S3（105），S4（105），T1（105），T2（105）， عT3（105），T4（105），U1（105），U2（105），U3（105），U4（105），x0（105）， SYO（105）， $\operatorname{TEM} 1(10,102), \operatorname{TEM} 2(10,102), \operatorname{SAO}(10,102), \operatorname{SZ6}(10,102)$

$$
S P=A G / V 1
$$

$S Q=A C / V 2$
UO $130 \quad[=1,100$
TT1＝R\％TEM1 $(J-1, I)$
TT2＝R＊TEM2（J－1，I）
$X O(I)=W 1$
YO（I）$=W 2$
$V=S A C(J-1, I)$
$\mathrm{W}=\operatorname{SZE}(\mathrm{J}-1, I)$
Al（I）$=$ DT＊（P＊SP＊XO（I）－SP宽XI（I）－GA＊EXP（－EA／「T1）＊XI（I））
BlII）$=0 \mathrm{~T} *(\mathrm{P} * \mathrm{SP}$＊YO（I）－SP＊Y1（I）－－C8＊EXP（－EB／TTI）＊Y1（I）＋
1GA＊EXP（－EA／TT））＊X1（I））
CI（I）$=$ DT＊（SQ＊（X1（I）－X2（I））－GA＊EXP（－EM／TT2）＊ 2 2（I））
D1（I）＝DT＊（SQ＊（Y1（I）－Y2（I））－GB＊EXP（－EB／TI2）＊Y2（I）＋
1GA＊EXP（－EA／TT2）＊X2（I））
E1（I）＝OT＊（AQ＊Y2（I）－CQ＊Q（I））
F1A $=(C * V-C *(V * * 2) / A N+V * h /(C A * A N)-W /(2 . * C A)-W *(V * * 2) /$
112．＊CA＊（AN＊＊2）））
F2A＝（C－2．＊C＊V／AN＋W／（CA＊AV）－W＊V／（CA＊（AN＊＊2）））
F3A＝（V／（CA＊AN）－1．／（2．＊CA）－V＊＊2／（2．＊CA＊（AN＊＊2））
F1（I）$=0 T *(P * F 1 A-P * V * F 2 A-P * W * F 3 A+Q(I) * F 2 A+26(I) * F 3 A)$
G1（I）$=$ DT＊（SP＊Z1（I）－SQ＊Z3（I）＋（Z1（（）－Z21I））＊GA＊EXP（－EA／TT1））
H1（I）＝DT＊（SP＊Z2（I）－SQ＊Z4（I）＋Z2（I）＊EXP（－EB／TTI）＊GB）

S1（I）$=0$ T＊$(S Q * Z 4(I)+Z 4(I) * G 8 * E X P(-E B / T T 2)-Z 5(I) * A Q-P * C C * A Q)$
－T1（I）＝OT＊（P＊2．＊
U1A＝（AC＊CQ－C＊W＋2．＊C＊V＊W／AN＋（W＊\％2）＊V／（2．＊CA＊（AN＊＊2））
1－W＊＊2／（2．＊（A＊AN））
U2A $=(2 . * C * W / A N+W * * 2 /(2$ 。幸 $C A *(A N * * 2)))$
U3A $=12 . * C * V / A N-C+W * V /(C A *(A N * 2) 1-\hbar /(G A * A N))$
U1（I）＝DT＊（CQ＊Z5（I）＋P＊U1A－P＊V＊U2A－P＊W\％U3A＋Q（I）＊U2A＋Z6（I） $1 * U 3$ A）
$A Z(I)=0 T *(P * S P * \times O(I)-S P * 1 \times 1(I)+A 1(I) / 2 \cdot 1-G A * E X P(-E A / T T 1)$
1＊（X1（I）＋へ1（I）／2．））
$B 2(I)=0$ r＊（P＊SP＊YO（I）－SP＊（Y11I）＋B1（I）／2．1－GB＊EXP（－EB／TT1）
1＊IY1（I）＋B1（I）／2．）＋GA＊EXP（－EA／TT1）＊（X1（I）＋A1（I）／2．））
C2（I）＝OT＊（SQ＊（ $\mathrm{XI}(\mathrm{I})+\mathrm{Al}(\mathrm{I}) / 2).-(\mathrm{X} 2(\mathrm{I})+\mathrm{Cl}(\mathrm{I}) / 2))$. $1(-E B / T T 2) *(Y 2(I)+B 1(I) / 2)+.G A * E X P(-E A / T T 2) *(X 2(I)+$ 2CI（I）／2．））
$E 2(I)=D T *(A Q *(Y 2(I)+D 1(I) / 2.1-C Q *(Q(I)+F 1(I) / 2))$.
 1（Z6（I）＋UI（I）／2．）＊F3A）
G2（I）＝DT＊（SP＊（Z1（I）＋G1（I）／2．）－SQ＊（Z3（I）＋R1（I）／2．）＋（1

$H 2(I)=O T *(S P *(22(1)+H 1(I) / 2)-.S Q *(24(I)+S 1(1) / 2)+$.
1（Z2（I）＋H1（I）／2．）＊EXP（－EB／TT1）＊GB）
$R 2(I)=D T *(S Q *(Z 3(I)+R 1(I) / 2)+.(123(1)+R 1(I) / 2)-.(Z 4(I)$ $1+S 1([) / 2).) * G A * E X P(-E A / T T 2)+P * A Q *(C B-C C))$
 1EXP（－EB／TT2）－（Z5（I）＋T1（I）／2．1＊AQ－P＊CC＊AQ）
T2（I）＝DT＊（P＊2．＊CI＊AIM－2＊＊C $=(A I(I)+E 1(I) / 2.1)$

$1(Q(I)+F 1(I) / 2) * U 2 A+.126(I)+U 1(I) / 2.1 * U 3 A)$
$A 3(I)=D T *(P * S P * X D(I)-S P *(X I(I)+A 2(I) / 2)-.G A * E X P(-E A / T T 1)$
1＊（X1（I）＋A2（I）／2．））
$B 3(I)=D T *(P * S P * Y O(I)-S P *(Y 1(I)+B 2(I) / 2)-.G B * E X P(-E B / T T I)$
$1 *(Y 1(I)+82(T) / 2)+.G A * E X P(-E A / T T 1) *(X 1(I)+A 2(I) / 2)$.
$\mathrm{C} 3(1)=\mathrm{DT}$ 氺（SQ＊（（X1（1）＋A2（I）／2．）－（X21）＋C2（I）／2．））－ 1GA＊EXP（－EA／TT2）＊（X2（I）＋C2（I）／2．））
D3（I）＝DT＊（SQ＊（ $\mathrm{Y} 1(\mathrm{I})+B 2(I) / 2).-(Y 2(I)+D 2(I) / 2)).-G B * E X P$ $1(-E B / T T 2) *(Y 2(I)+B 2([) / 2)+.G A * E X P(-E A / T T 2) *(X 2(I)+$ 2C2（I）／2．）
E3（I）＝DT＊（AQ＊（Y2（I）＋D2（I）／2．）－CQ＊（Q（I）＋F2（I）／2．））
F3（I）$=D$ T＊（P＊F1A－P＊V＊F2A－P＊W＊F3A＋（Q（I）＋F2（I）／2．）＊F2A＋ 1（26（1）＋U2（I）／2．）＊F3A）
G3（I）$=\mathrm{DT} *(S P *(Z 1(I)+G 2(I) / 2)-.S Q *(Z 3(1)+R 2(I) / 2)+.(1$
1Z1（I）＋G2（I）／2．）－（Z2（I）＋H2（I）／2．））＊GA＊EXP（－EA／TT1））
H3（I）$=\mathrm{DT} *(\mathrm{SP} *(22(I)+\mathrm{H} 2(\mathrm{I}) / 2)-.\mathrm{SQ} *(24(\mathrm{I})+\mathrm{S} 2(\mathrm{I}) / 2)+$.
$1(Z 2(I)+H 2(I) / 2.1 * E X P(-[B / T(1) * G B)$

$1+S 2(1) / 2.1) * G A * E X P(-E A / T T 2)+P * A Q *(C B-C C))$
S3（I）＝DT＊（SQ＊（24（I）＋S2（I）／2．）＋（Z4（I）＋S2（I）／2．）＊GB＊
1EXP（－EB／TT2）－（25（I）＋T2（I）／2．）＊AQ－P＊CC＊AQ）
T3（I）$=D T *(P * 2 . * C I * A I M-2 . * C I *(A I(I)+E 2(I) / 2)$.
U3（I）＝DT＊（CQ＊（25（1）＋T2（1）／2．）＋P＊U1A－P＊V＊U2A－P＊W＊U3A＋
$1(Q(I)+F 2(I) / 2) * U 2 A+.(26(1)+U 2(I) / 2) * U 3 A$.
$A_{4}(I)=D T *(P * S P * X O(I)-S P *(X I(I)+A 3(I))-G A * E X P(-E A / T T 1) *$
1（X1（I）＋A3（I）））
84（I）$=D T *(P * S P * Y O(I)-S P *(Y I(I)+B 3(I))-G B * E X P(-E B / T T 1) *$
$1(Y 1(I)+B 3(I))+G A * E X P(-E A / T T 1) *(X 1(I)+A 3(I)))$
$C 4(I)=D T *(S Q *((X 1(I)+A 3(I))-(\times 2(I)+C 3(1)))-G A * E X P(-E A /$
1TT2）＊（X2（I）＋C3（I）））

ITT2）＊（Y2（I）＋B3（I））＋GA＊EXP（－EA／TT2）＊（X2（I）＋C3（I）））
E4（I）$=D T *(A Q *(Y 2(I)+D 3(I))-C Q *(Q(I)+F 3(I)))$
F4（I）$=D T *(P * F 1 A-P * V * F 2 A-P * W * F 3 A+(Q(I)+F 3(I)) * F 2 A+(26(I)$ $1+U 3(I)) * F 3 A)$
G4（I）$=$ DT＊（SP＊（Z1（I）＋G3（I））－SQ＊（Z3（I）＋R3（I））＋（（21（I）＋ 1G3（I））－（Z2（I）＋H3（I）））韺A矩XP（－EA／IT1））
H4（I）＝DT＊（SP＊（Z2（I）＋H3（I））－SQ＊（Z4（I）＋S3（I））＋（Z2（I）＋

1H3(1)) *EXP(-[8/TT1) *GB)
R4(I)=DT*(SQ*(Z3(1)+R3(I))+((23(1)+R3(1))-(24(1)+\$3(I) 1)) $=G A * E X(-E A / T T 2)+P * A Q *(C B-C C))$

S4(1)=Dr*(SOt(Z4(I)+S3(I))+(74(I)+S3(I))*GB*EXP(-EB/
1T(2)-(25(I)+T3(I))*AQ-P*CC*AQ)
T4 (1) $=$ DT*(P*2.*CI*AIM-2.*CI*(AI(I) +E3(1)))
$U 4(1)=D T *(C Q *(25(I)+T 3(I))+P * U 1 A-P * V * U 2 A-P * W * U 3 A+(Q(I)$
$1+\mathrm{F} 3(\mathrm{I}))$ tU2A+(Z6(I)+U3(I))*U3A)
$\mathrm{X} 1(1+1)=\mathrm{X} 1(\mathrm{I})+1.16 . *(\mathrm{Al}(\mathrm{I})+2 . * A 2(I)+2 . * A 3(I)+A 4(1))$
$\mathrm{Y} 1(I+1)=\mathrm{Y} 1(1)+1 \cdot 16 . *(\mathrm{Bl}(\mathrm{I})+2 . * \mathrm{~B} 2(\mathrm{I})+2 . * B 3(1)+\mathrm{B} 4(\mathrm{I}))$
$\mathrm{X} 2(1+1)=\mathrm{X} 2(1)+1.16 *(\mathrm{C} 1(\mathrm{I})+2 . * \mathrm{C} 2(1)+2 . * \mathrm{C} 3(1)+\mathrm{C} 4(1))$
$\mathrm{Y} 2(1+1)=\mathrm{Y} 2(\mathrm{I})+1.16 . *(\mathrm{D} 1(\mathrm{I})+2 . * \mathrm{D} 2(1)+2 . * \mathrm{D} 3(\mathrm{I})+\mathrm{D} 4(1))$
AI(I+1)=AI(1)+1./G.*(E1(I)+2.*E2(I)+2.*E3(I)+E4(I))
$Q(I+1)=Q(1)+1.16$. * (F1) I $)+2$. *F $2(I)+2$. *F $3(I)+F 4(I))$
Z1(1+1)=21(1)+1.16.*(G1(1)+2.*G2(I)+2.*G3(1)+G4(1))
$22(I+1)=22(I)+1.16 . *(H 1(I)+2 . * H 2(1)+2 . * H 3(I)+H 4(I))$
Z3(I+1)=23(1)+1.16.*(R1(I) +2.*R2(I)+2.*R3(I)+R4(I))
$24(1+1)=24(I)+1.16 . *(S 1(I)+2 . * S 2(I)+2 . * S 3(I)+54(I))$
$25(I+1)=25(I)+1.16 . *(T 1(I)+2 . * T 2(I)+2 * * T 3(I)+T 4(I))$
$26(1+1)=26(1)+1.16$. * (U1 (1) $)+2$.*U2 (I) +2 .*U3(I) +U4(I))
130 CONTINUE
RETURN
END

C
C
C

C
C
C

THIS SUBROUTINE IS USEO TO INVERT A SIX BY SIX MATRIX ENCOUNTERED IN THE CALCULATION OF SIX INTEGRATION CONSTANTS. IHIS IS SUPPLIEO BY IBM.

OIMENSION A(I), B(I)
FORVARO SOLUTION

$\mathrm{IJ}=\mathrm{IT}+\mathrm{I}$

IF(ABS(BIGA)-ABS(A(IJ))) $20,30,30$
$20 \mathrm{BIGA}=\mathrm{A}(\mathrm{IJ})$
IMAX =I
30 CONIINUE
TFST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
IF(ABS(BIGA)-TOL) $35,35,40$
$35 \mathrm{KS}=1$
RETURN

40 11=JヶN*(J-2)
$1 T=1$ NAX-J
DO $5 \mathrm{C} \quad \mathrm{K}=\mathrm{J}, \mathrm{N}$
I I $=\mathrm{I}$ I +N
$I 2=I I+I T$
SAVE=A(Il)
$A(I 1)=A(12)$
$A(12)=S A V E$
$50 \mathrm{~A}(\mathrm{II})=\mathrm{A}(11) / \mathrm{BIGA}$
$S A V E=B(I M A X)$
$B(I M A X)=B(J)$
B(J)=SAVE/BIGA
C
C
c
eliminate next variable

```
\(55 \mathrm{IQS}=\mathrm{N}^{*}(\mathrm{~J}-1)\)
137
    DO 65 I \(X=J Y, N\)
    \(I X J=I Q S+I X\)
    \(I T=J-I X\)
    \(006 \mathrm{C} \quad \mathrm{JX}=\mathrm{JY}, \mathrm{N}\)
    \(I X J X=N *\{J X-1\}+I X\)
    \(J J X=I X J X+I T\)
    \(60 A(I X J X)=A(I X J X)-\{A(I X J) \geqslant A(J J X))\)
    \(65 \mathrm{~B}([X)=B(I X)-\{B(J) \omega A(I X J))\)
```

C
C
C
$70 \mathrm{NY}=\mathrm{N}-1$
IT $=\mathrm{N}: N$
$0080 \quad \mathrm{~J}=1, \mathrm{NY}$
$I A=I T-J$
I $B=N-$ I
I $C=N$
DO 8C K=1, J
$B(I B)=B(I B)-A(I A) * B(I C)$
I $A=I A-N$
80 IC=IC-I
RETURN
END

REFERENCES

1. Bellman, R., Functional Equations in the Theory of Dynamic Programming, V. Positivity and Quasi-Linearity, Proc. Nat1. Acad. Sci. U.S., Vol. 41, 1955.
2. Bellman, R. and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, American Elsvier, New York, 1965.
3. Bliss, G. A., Lectures on the Calculus of Variations, Univ. of Chicago Press, Chicago, 1946.
4. Donnelly, J. K. and D. Quon, Computation of Best Fit Parameters in Nonlinear Mechanistic Rate Equations Using Quasilinearization and Data Parturbation, A.I.Ch.E., Second Joint A.I.Gh.E. - IIQPR Meeting, Tampa, Florida, May 19-22, 1968.
5. Elsgolc, L. E., Calculus of Variations, Addison-Wesley Publishing Company Inc., Reading, Massachusctts, 1961.
6. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw Hill, New York, 1956.
7. Ince, E. L., Ordinary Differential Equations, Dover, New York, 1956.
8. Kalaba, R., On Nonlinear Differential Equations, the Maxinum Operation, and Monotone Convergence, J. Math. Mech., Vol. 8, 1959.
9. Lec, E. S., Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.
10. Lee, E. S., Quasilinearization, Nonlinear Boundary Value Problems, and Optimization, Chem. Engg. Sci., Vo1. 21, 1966.
11. Lee, E. S., Quasilinearization in Optimization. A Numerical Study, A.I.Gh.E. Journal, Vol. 13, Nov. 1967.
12. Leondes, C. T., Advances in Control Systems - Theory and Applications, Academic Press, New York, Vo1. 3, 1966.
13. Rangnekar, S. K., Application of Second Variational Gradient Technique to Industrial Management Systems, Master's Thesis, Kansas State University, Jan. 1969.
14. Teichroew, D., An Introduction to Management Science - Deterministic Models, John Wiley, New York, 1964.
15. Waziruddin, S., Application of First Variational Gradient Technique to Industrial Management Systems, Master's Thesis, Kansas State University, Jan. 1969.

ACKNOWLEDGEMENT

The author wishes to express his deep sense of appreciation to his major professor, Dr. E. S. Lee for his guidance, constructive criticism, helpful suggestions and the personal interest taken in the preparation of this master's thesis.

by

PANKAJ DHIRAJLAL SHAH
B. E. (Mech.), University of Bombay Bombay, Indias 1967

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

The importance of quantitative techniques in decision making emphasizes the need of efficient techniques as a tool for solving management problems. However, fairly powerful algorithms are not yet available in solving dynamic management problems involving differential equations.

The two point boundary value problem with non-linear differential equations providcs such an example. The nonlinearity in the performance equacions does not allow the application of superposition principle.

Quasilinearization helps overcome this difficulty. It linearizes the non-linear equations and provides an algorithm which would give the solution by an iterative procedure.

The purpose of this work is to investigate the effectiveness of this recently developed tool in solving various industrial management problems.

First a brief introduction and computational procedure of quasilinearization is given. Then its application to an advertisement problem with two state variables and one control variable is discussed in detail.

Next is discussed the application of quasilinearization to an advertisement and production problem. This model has six state variables and three control variables. In addition, the profiles are fairly unstable due to the rapid change of variables with titue.

It was concluded:

1. Choosing the initial approximations to start the solution is not difficult in most cases.
2. The convergence rate is almost independent of the choice of the initial approximations.
3. This algorithm converges quadratically, if it does converge.
4. For rapidly increasing or rapidly decreasing profiles, first variational and second variational techniques seemed to have failed. On the other hand, this method encountered no problem in converging to the optimal solution.
5. Because of the intimate association between the boundary value problems and the optimization and control problems, this technique may provide a useful tool for the systems analysts.
