


# **TABLE OF CONTENTS**

#### **2007 Performance Tests**

| Objectives and Procedures                                           |                        |
|---------------------------------------------------------------------|------------------------|
| Variety Characterization                                            |                        |
| Southeast, Mound Valley, Labette County, Seeded 2005                | Table 1                |
| North Central, Belleville, Republic County, Seeded 2004             | Table 2                |
| South Central, Hutchinson, Reno County, Seeded 2004                 | Table 3                |
| Northwest Irrigated, Colby, Thomas County, Seeded 2006              | Table 4                |
| Southwest Irrigated, Garden City, Finney County, Seeded 2006        | Table 5                |
| 2007 Entries With Disease and Insect Resistance Ratings for Release | ased Varieties Table 6 |
| Electronic Access and University Research Policy                    | back cover             |

W-L Research, Inc.

Madison, WI

608-295-3566

(W-L)

## **Entrants in 2007 Kansas Alfalfa Performance Tests.**

Johnston Seed Co

(Johnston)

Enid, OK

580-233-5800

Monsanto Seed

St. Louis, MO

800-335-2676

(Monsanto)

AgriPro Seed (AgriPro) Slater, IA 877-247-4776 agripro.com

Allied Seed

Macon, MO

660-385-6690

(Allied)

KSU - Foundation Seed (KS AES & USDA) Manhattan, KS 785-532-6115

alliedseed.com CroPlan Genetics (CroPlan Genetics) St. Paul, MN 800-851-8810

 800-851-8810
 Mycogen Seeds (Mycogen)

 Dairyland Seed Co. (Dairyland)
 Indianapolis, IN 317-337-7568

 West Bend, WI 800-236-0163
 NC+ Hybrids

dairylandseed.com Foundation Seed Division (NE AES & USDA)

Lincoln, NE 877-229-1363 Garst Seed Co.

(Garst) Greensburg, KS 620-546-5955

garstseed.com

Great Plains Research Co.

(Cimarron USA) Apex, NC 800-874-7945 CimarronUSA.com NC+ Hybrids (NC+) Lincoln, NE 800-365-9804 www.nc-plus.com

PGI Alfalfa, Inc. (PGI) Woodland, CA 866-744-5710

Pioneer Hi-Bred, Intl., Inc.

(Pioneer Brand) Johnston, IA 800-247-6803

Syngenta Seeds, Inc. (NK)

Golden Valley, MN 763-593-7324 nk-us.com

## 2007 PERFORMANCE TESTS

## **Objectives and Procedures**

The Kansas Agricultural Experiment Station established an official alfalfa testing program in 1980 to provide Kansas growers with unbiased performance comparisons of alfalfa varieties marketed in the state. Each year, private companies are asked to enter varieties voluntarily at the locations slated for establishment that year. Announcements and entry forms are mailed to private companies in June for entry in fall-seeded tests. Companies enter varieties of their choice and pay entry fees to cover part of the costs of conducting Most tests are planted in mid-August or the tests. September, but the Southeast Kansas test usually is planted in the spring. Individual tests are conducted for a minimum of three years. New tests typically are established during the final production year of the previous test, or more frequently if there is enough interest.

Descriptive information is presented with the results for each test. This information, including soil type, establishment methods, fertilization, pest control, irrigation, harvest dates, and growing conditions unique to that location, can help explain test and/or variety performance.

Forage yields were estimated by harvesting four replications of each variety with a plot harvester. The amount of forage produced from a specific area (35 to 80 ft²) was weighed, and a subsample was taken to determine moisture content. This information was used to convert the plot weights to tons of dry matter per acre for each cutting, the season total, and the total for each previous season, as presented in Tables 1 through 5. The forage yield over the lifetime of a particular test is presented as the total tons of dry matter produced per acre, as the total tons of 15% moisture hay, and as a percentage of the test average.

Each table is separated into three sections. The first lists released cultivars that are generally available on the seed market or soon will be. The second section includes experimental cultivars that were entered in the test before being released for sale. These experimental lines often represent an earlier generation of seed than that used for the released cultivars. The third section includes summary statistics unique to that test.

At the bottom of each column, the Least Significant Difference (LSD) is listed at the 0.05 and 0.20 levels. These values indicate how large a difference is needed to be confident that one variety is superior to another. Differences between varieties that are equal to or greater than the 0.05 LSD have only a 1 in 20 chance of being due to chance or error. Differences equal to or greater than the 0.20 LSD have a 1 in 5 chance of being caused by chance or error.

The Coefficient of Variability (CV) provides an estimate of the consistency of the results of a particular test. In these tests, CVs less than 10% generally indicate reliable, uniform data, whereas CVs of 10 to 15% are not uncommon and generally indicate that the data are acceptable for rough comparisons. Tests with CVs greater than 15% still may be useful, but variety comparisons lack precision.

The Mean Coefficient of Variability (MCV) is similar to the CV in that it serves as an indicator of test precision. The MCV is calculated by dividing the 0.05 LSD by the test mean (average) and multiplying by 100. The MCV reveals the percentage difference required to detect differences between varieties with 95% confidence. Many alfalfa breeders and testers agree that tests with MCV values greater than 10% are of little benefit.

## **Variety Characterization**

For variety selection, producers should consider the performance of a variety in each of the current tests in which it appears, its performance over time and locations relative to familiar or check varieties, and the disease and insect resistance characteristics that are potentially important in specific situations.

Tables 1 through 5 contain updated yield data from individual tests currently in progress. First-season yields for a spring-planted test often are more variable than yields in subsequent years. Season totals are important, but yield distribution during the season might differ among varieties. Examine yields from individual cuttings to determine if differences in yield distribution exist. Yield totals over many years provide the best measure of variety performance over time.

Table 6 provides winter survival, disease and insectresistance, multi-foliolate expression, and continuous
grazing tolerance ratings for released varieties. These ratings
were obtained primarily from the annual "Winter Survival,
Fall Dormancy & Pest Resistance Ratings for Alfalfa
Varieties" pamphlet published by the National Alfalfa
Alliance (NAAIC). That report summarizes information
submitted by developers of alfalfa varieties as part of the
variety registration process. The Association of Official
Seed Certifying Agencies (AOSCA) National Alfalfa
Variety Review Board (NAVRB) reviewed the ratings
before they were published. Companies submitting varieties
for the tests provided ratings for some unregistered varieties.
Experimental varieties are also listed in Table 6 for brand
identification.

Table 1. Southeast Kansas, Mound Valley Alfalfa Performance Test, Seeded April 14, 2005.

Joe Moyer, agronomist

Southeast Ag. Research Center, Mound Valley, Parsons silty clay loam The extremely wet spring conditions reduced stands of some plots in the fourth rep by early

Plots 5'x20'; 3'x20' harvested 20-50-200 lb/a of N-P-K in March

The extremely wet spring conditions reduced stands of some plots in the fourth rep by early June, so it was abandoned. By the end of August, growth had slowed because moisture was limited.

|                      |      |           |       |       |       | Fora     | ge Yield | i     |      |       |                  |        |  |  |
|----------------------|------|-----------|-------|-------|-------|----------|----------|-------|------|-------|------------------|--------|--|--|
|                      |      | tons/acre |       |       |       |          |          |       |      |       |                  |        |  |  |
|                      |      |           |       |       | Dr    | y Matter |          |       |      |       | Total,           | Total, |  |  |
|                      |      |           | 2007  |       |       |          |          |       |      |       | 15% <sup>°</sup> | % of   |  |  |
| NAME                 | 4-12 | 6-6       | 7-16  | 8-27  | 11-1  |          | 2007     | 2006  | 2005 | Total | Moist.           | Mean   |  |  |
| RELEASED CULTIVARS   |      |           |       |       |       |          |          |       |      |       |                  |        |  |  |
| FSG505               | 1.19 | 1.64      | 1.40  | 0.61  | 0.82  |          | 5.67     | 2.13  | 4.51 | 12.31 | 14.48            | 107    |  |  |
| FSG408DP             | 1.12 | 1.67      | 1.28  | 0.68  | 0.82  |          | 5.58     | 1.87  | 4.27 | 11.73 | 13.80            | 102    |  |  |
| 6530                 | 1.12 | 1.76      | 1.44  | 0.60  | 0.76  |          | 5.68     | 1.88  | 4.14 | 11.69 | 13.76            | 102    |  |  |
| Cimarron VL400       | 1.21 | 1.62      | 1.36  | 0.59  | 0.83  |          | 5.61     | 1.83  | 4.19 | 11.62 | 13.67            | 101    |  |  |
| Good as Gold II      | 1.14 | 1.54      | 1.02  | 0.55  | 0.75  |          | 5.00     | 2.08  | 4.46 | 11.54 | 13.57            | 100    |  |  |
| WL 357 HQ            | 1.14 | 1.49      | 1.16  | 0.60  | 0.85  |          | 5.24     | 1.89  | 4.28 | 11.41 | 13.43            | 99     |  |  |
| Kanza                | 1.06 | 1.44      | 1.20  | 0.60  | 0.74  |          | 5.04     | 1.89  | 4.46 | 11.39 | 13.40            | 99     |  |  |
| 6420                 | 1.17 | 1.70      | 1.03  | 0.53  | 0.78  |          | 5.22     | 1.95  | 4.09 | 11.26 | 13.25            | 98     |  |  |
| Perry                | 1.14 | 1.55      | 1.03  | 0.54  | 0.75  |          | 5.02     | 1.95  | 4.13 | 11.10 | 13.06            | 97     |  |  |
| Integrity            | 1.09 | 1.63      | 1.23  | 0.60  | 0.73  |          | 5.28     | 1.82  | 3.89 | 10.99 | 12.93            | 96     |  |  |
| EXPERIMENTAL STRAINS |      |           |       |       |       |          |          |       |      |       |                  |        |  |  |
| AA112E               | 1.12 | 1.63      | 1.47  | 0.73  | 0.76  |          | 5.71     | 1.95  | 4.21 | 11.87 | 13.97            | 103    |  |  |
| CW 15030             | 1.13 | 1.67      | 1.21  | 0.50  | 0.67  |          | 5.18     | 2.00  | 4.14 | 11.31 | 13.31            | 98     |  |  |
| AA108E               | 1.15 | 1.65      | 1.47  | 0.53  | 0.68  |          | 5.48     | 1.73  | 3.88 | 11.10 | 13.06            | 97     |  |  |
| SUMMARY STATISTICS   |      |           |       |       |       |          |          |       |      |       |                  |        |  |  |
| Average              | 1.14 | 1.61      | 1.25  | 0.59  | 0.77  |          | 5.36     | 1.92  | 4.20 | 11.49 | 13.51            | 100    |  |  |
| LSD (0.05)           | 0.09 | 0.33      | 0.32  | 0.15  | 0.22  |          | 0.47     | 0.20  | 0.33 | 0.61  | 0.72             | 5      |  |  |
| LSD (0.20)           | 0.06 | 0.21      | 0.20  | 0.10  | 0.14  |          | 0.30     | 0.13  | 0.21 | 0.39  | 0.46             | 3      |  |  |
| CV (%)               | 4.25 | 10.71     | 13.29 | 13.71 | 14.68 |          | 5.96     | 7.11  | 5.53 | 3.64  | 3.64             | 4      |  |  |
| MCV (%)              | 7.16 | 18.04     | 22.39 | 23.11 | 24.73 |          | 8.70     | 10.20 | 7.93 | 5.31  | 5.31             | 5      |  |  |

Table 2. North Central Kansas, Belleville Alfalfa Performance Test, Seeded September 1, 2004.

Barney Gordon, agronomist

North Central Kansas Exp. Field, Belleville, Crete silt loam

20 lb. seed/acre

Plots 5'x15'; 3'x15' harvested 11-52-0 lb/a of N-P-K in February

First cutting was lost due to the freeze on April 6, 7, and 8. Regrowth was very slow after the freeze.

|                      |       |       |       | Forage Yield | d    |      |       |        |        |
|----------------------|-------|-------|-------|--------------|------|------|-------|--------|--------|
|                      |       |       |       | tons/acre    |      |      |       |        |        |
|                      |       |       |       | Dry Matter   |      |      |       | Total, | Total, |
| NAME                 |       |       | 2007  |              |      |      |       | 15%    | % of   |
| NAME                 | 6-11  | 7-13  | 8-14  | 2007         | 2006 | 2005 | Total | Moist. | Mean   |
| RELEASED CULTIVARS   |       |       |       |              |      |      |       |        |        |
| Good as Gold II      | 2.67  | 1.81  | 1.50  | 5.99         | 4.92 | 6.83 | 17.74 | 20.87  | 108    |
| DKA42-15             | 2.59  | 1.64  | 1.29  | 5.52         | 4.73 | 6.73 | 16.97 | 19.97  | 103    |
| Reward II            | 2.73  | 1.62  | 1.26  | 5.61         | 4.71 | 6.66 | 16.97 | 19.96  | 103    |
| WL 335 HQ            | 2.59  | 1.60  | 1.22  | 5.42         | 4.70 | 6.67 | 16.79 | 19.75  | 102    |
| 6415                 | 2.42  | 1.59  | 1.28  | 5.29         | 4.54 | 6.75 | 16.57 | 19.50  | 101    |
| HybriForce-420/wet   | 2.58  | 1.66  | 1.19  | 5.44         | 4.41 | 6.67 | 16.52 | 19.43  | 101    |
| Pioneer 54V46        | 2.48  | 1.61  | 1.20  | 5.29         | 4.51 | 6.68 | 16.48 | 19.39  | 100    |
| 6400HT               | 2.61  | 1.65  | 1.19  | 5.46         | 4.31 | 6.65 | 16.42 | 19.32  | 100    |
| Genoa                | 2.44  | 1.69  | 1.21  | 5.34         | 4.53 | 6.46 | 16.33 | 19.21  | 99     |
| Kanza                | 2.32  | 1.64  | 1.38  | 5.34         | 4.52 | 6.24 | 16.10 | 18.94  | 98     |
| DKA50-18             | 2.50  | 1.65  | 1.28  | 5.43         | 4.37 | 6.22 | 16.02 | 18.84  | 98     |
| WL 357 HQ            | 2.45  | 1.64  | 1.48  | 5.56         | 4.11 | 6.12 | 15.79 | 18.58  | 96     |
| EXPERIMENTAL STRAINS |       |       |       |              |      |      |       |        |        |
| DS361HY              | 2.40  | 1.53  | 1.32  | 5.24         | 4.56 | 6.34 | 16.14 | 18.99  | 98     |
| DS362HY              | 2.48  | 1.43  | 1.24  | 5.14         | 4.50 | 6.47 | 16.11 | 18.95  | 98     |
| DS416                | 2.56  | 1.47  | 1.12  | 5.15         | 4.23 | 6.58 | 15.95 | 18.76  | 97     |
| DS415                | 2.20  | 1.42  | 1.39  | 5.00         | 4.26 | 6.52 | 15.79 | 18.57  | 96     |
| SUMMARY STATISTICS   |       |       |       |              |      |      |       |        |        |
| Average              | 2.50  | 1.60  | 1.28  | 5.39         | 4.49 | 6.54 | 16.42 | 19.31  | 100    |
| LSD (0.05)           | 0.36  | 0.29  | 0.28  | 0.54         | 0.31 | 0.30 | 0.69  | 0.82   | 4      |
| LSD (0.20)           | 0.23  | 0.18  | 0.18  | 0.35         | 0.20 | 0.19 | 0.45  | 0.53   | 3      |
| CV (%)               | 10.21 | 12.54 | 15.42 | 7.06         | 4.85 | 3.23 | 2.96  | 2.96   | 3      |
| MCV (%)              | 14.55 | 17.85 | 21.96 | 10.06        | 6.91 | 4.60 | 4.22  | 4.22   | 4      |

Table 3. South Central Kansas, Hutchinson Alfalfa Performance Test, Seeded September 1, 2004.

Bill Heer, agronomist

South Central Kansas Exp. Field, Hutchinson, Ost silt loam

10 lb. seed/acre

Plots 5'x24', 3'x18' harvested

75-40-0 lb/a of N-P-K before planting

First cutting was lost to freeze in April. Regrowth and cuttings were delayed by wet weather in May and June, and yields were further injured by hot, dry weather ending in September.

|                      |       |       |              | Forage Yiel | d     |      |       |               |                     |
|----------------------|-------|-------|--------------|-------------|-------|------|-------|---------------|---------------------|
|                      |       |       |              | tons/acre   |       |      |       |               |                     |
|                      |       |       |              | Dry Matter  |       |      |       | Total,        | Total,              |
| NAME                 | 5-31  | 7-14  | 2007<br>8-15 | 2007        | 2006  | 2005 | Total | 15%<br>Moist. | % of<br><u>Mean</u> |
| RELEASED CULTIVARS   |       |       |              |             |       |      |       |               |                     |
| Good as Gold II      | 1.66  | 1.74  | 0.89         | 4.29        | 1.06  | 4.53 | 9.88  | 11.62         | 108                 |
| WL 335 HQ            | 1.68  | 1.90  | 1.05         | 4.63        | 1.06  | 4.16 | 9.85  | 11.59         | 108                 |
| FSG408DP             | 1.58  | 1.84  | 0.90         | 4.33        | 0.98  | 4.21 | 9.52  | 11.20         | 104                 |
| Perry                | 1.60  | 1.92  | 1.01         | 4.53        | 0.91  | 4.00 | 9.45  | 11.11         | 104                 |
| 6400HT               | 1.58  | 1.71  | 0.82         | 4.11        | 0.84  | 4.26 | 9.20  | 10.82         | 101                 |
| DKA50-18             | 1.45  | 1.79  | 0.94         | 4.18        | 0.84  | 3.96 | 8.98  | 10.56         | 98                  |
| Kanza                | 1.54  | 1.81  | 0.86         | 4.20        | 0.75  | 4.00 | 8.95  | 10.53         | 98                  |
| Jade III             | 1.51  | 1.80  | 0.66         | 3.97        | 0.78  | 4.17 | 8.92  | 10.50         | 98                  |
| Genoa                | 1.60  | 1.84  | 0.83         | 4.27        | 0.71  | 3.92 | 8.90  | 10.47         | 98                  |
| 6420                 | 1.56  | 1.73  | 0.66         | 3.95        | 0.86  | 4.08 | 8.89  | 10.45         | 97                  |
| WL 357 HQ            | 1.57  | 1.70  | 0.87         | 4.14        | 0.65  | 4.06 | 8.86  | 10.42         | 97                  |
| FSG406               | 1.47  | 1.76  | 0.75         | 3.98        | 0.80  | 3.99 | 8.76  | 10.31         | 96                  |
| HybriForce-420/wet   | 1.29  | 2.02  | 0.85         | 4.15        | 0.67  | 3.91 | 8.73  | 10.27         | 96                  |
| FSG505               | 1.39  | 1.74  | 0.81         | 3.94        | 0.74  | 3.80 | 8.47  | 9.96          | 93                  |
| DKA42-15             | 1.38  | 1.61  | 0.68         | 3.67        | 0.83  | 3.87 | 8.37  | 9.85          | 92                  |
| FSG351               | 1.41  | 1.73  | 0.71         | 3.84        | 0.68  | 3.73 | 8.25  | 9.71          | 90                  |
| EXPERIMENTAL STRAINS |       |       |              |             |       |      |       |               |                     |
| 405                  | 1.78  | 1.97  | 1.07         | 4.82        | 1.05  | 4.45 | 10.32 | 12.14         | 113                 |
| CW 15030             | 1.43  | 1.92  | 0.80         | 4.15        | 0.99  | 3.98 | 9.12  | 10.73         | 100                 |
| 406                  | 1.69  | 1.84  | 0.92         | 4.45        | 0.84  | 3.73 | 9.02  | 10.61         | 99                  |
| 404                  | 1.70  | 1.72  | 0.62         | 4.05        | 0.71  | 4.17 | 8.93  | 10.51         | 98                  |
| 407                  | 1.47  | 1.86  | 0.66         | 3.99        | 0.81  | 3.82 | 8.61  | 10.13         | 94                  |
| SUMMARY STATISTICS   |       |       |              |             |       |      |       |               |                     |
| Average              | 1.54  | 1.81  | 0.90         | 4.25        | 0.84  | 4.04 | 9.12  | 10.73         | 100                 |
| LSD (0.05)           | 0.24  | 0.27  | 1.06         | 1.12        | 0.27  | 0.37 | 1.21  | 1.43          | 13                  |
| LSD (0.20)           | 0.15  | 0.17  | 0.18         | 0.73        | 0.18  | 0.24 | 0.79  | 0.92          | 9                   |
| CV (%)               | 10.92 | 10.46 | 23.42        | 18.65       | 23.25 | 6.52 | 9.40  | 9.40          | 9                   |
| MCV (%)              | 15.44 | 14.79 | 33.13        | 26.38       | 32.89 | 9.21 | 13.29 | 13.29         | 13                  |

Table 4. Northwest Kansas, Colby Alfalfa Performance Test, Seeded August 24, 2006.

24.63 18.44 17.52 17.49

Pat Evans, agronomist

Northwest Research-Extension Center, Colby, Keith silt loam

18 lb. seed/acre

MCV (%)

Plots 3'x20'; 3'x17' harvested

14-46-0 lb/a of N-P-K before planting

Growing conditions were normal with no insect problems.

11.08 11.08

11

|                    |       |            |       |       | Farana Wiald           |               |                |  |  |  |  |  |  |  |  |
|--------------------|-------|------------|-------|-------|------------------------|---------------|----------------|--|--|--|--|--|--|--|--|
|                    |       |            |       |       | Forage Yield tons/acre |               |                |  |  |  |  |  |  |  |  |
|                    |       | Dry Matter |       |       |                        |               |                |  |  |  |  |  |  |  |  |
|                    | •     |            | 2007  |       | Diy macco.             | Total,<br>15% | Total,<br>% of |  |  |  |  |  |  |  |  |
| NAME               | 6-4   | 7-6        |       | 9-13  | Total                  | Moist.        |                |  |  |  |  |  |  |  |  |
| RELEASED CULTIVARS |       |            |       |       |                        |               |                |  |  |  |  |  |  |  |  |
| Hybri+421          | 3.42  | 2.48       | 1.68  | 1.42  | 8.99                   | 10.58         | 107            |  |  |  |  |  |  |  |  |
| Pioneer 54Q25      | 3.03  | 2.47       | 1.76  | 1.60  | 8.87                   | 10.44         | 105            |  |  |  |  |  |  |  |  |
| Kanza              | 2.85  | 2.51       | 1.82  | 1.45  | 8.62                   | 10.14         | 102            |  |  |  |  |  |  |  |  |
| Pioneer 54V09      | 3.12  | 2.27       | 1.76  | 1.45  | 8.59                   | 10.11         | 102            |  |  |  |  |  |  |  |  |
| Mountaineer 2.0    | 3.10  | 2.38       | 1.75  | 1.34  | 8.57                   | 10.08         | 102            |  |  |  |  |  |  |  |  |
| 4A421              | 2.96  | 2.40       | 1.80  | 1.41  | 8.57                   | 10.08         | 102            |  |  |  |  |  |  |  |  |
| Rebound 5.0        | 3.24  | 2.17       | 1.66  | 1.50  | 8.56                   | 10.07         | 102            |  |  |  |  |  |  |  |  |
| DKA41-18RR         | 2.95  | 2.41       | 1.63  | 1.47  | 8.47                   | 9.96          | 101            |  |  |  |  |  |  |  |  |
| Pioneer 54V46      | 3.17  | 2.26       | 1.62  | 1.34  | 8.38                   | 9.86          | 100            |  |  |  |  |  |  |  |  |
| WL 343 HQ          | 2.88  | 2.14       | 1.83  | 1.40  | 8.25                   | 9.70          | 98             |  |  |  |  |  |  |  |  |
| Jade III           | 2.71  | 2.39       | 1.71  | 1.33  | 8.14                   | 9.57          | 97             |  |  |  |  |  |  |  |  |
| WL 355 RR          | 2.82  | 2.12       | 1.69  | 1.51  | 8.13                   | 9.57          | 97             |  |  |  |  |  |  |  |  |
| 6400HT             | 3.11  | 2.14       | 1.74  | 1.14  | 8.13                   | 9.56          | 97             |  |  |  |  |  |  |  |  |
| 4G418RR            | 2.82  | 2.15       | 1.69  | 1.40  | 8.07                   | 9.49          | 96             |  |  |  |  |  |  |  |  |
| Perry              | 2.47  | 2.15       | 1.72  | 1.51  | 7.85                   | 9.23          | 93             |  |  |  |  |  |  |  |  |
| SUMMARY STATISTICS |       |            |       |       |                        |               |                |  |  |  |  |  |  |  |  |
| Average            | 2.98  | 2.30       | 1.72  | 1.42  | 8.41                   | 9.90          | 100            |  |  |  |  |  |  |  |  |
| LSD (0.05)         | 0.73  | 0.42       | 0.30  | 0.25  | 0.93                   | 1.10          | 11             |  |  |  |  |  |  |  |  |
| LSD (0.20)         | 0.47  | 0.27       | 0.19  | 0.16  | 0.60                   | 0.71          | 7              |  |  |  |  |  |  |  |  |
| CV (%)             | 17.26 | 12.93      | 12.28 | 12.26 | 7.77                   | 7.77          | 8              |  |  |  |  |  |  |  |  |

Table 5. Southwest Kansas, Garden City Alfalfa Performance Test, Seeded August 30, 2006.

Monty Spangler, agronomist

Southwest Research-Extension Center, Garden City, Keith silt loam 30 lb. seed/acre

Plots 3'x20'; 3'x20' harvested

22-100-0 lb/a of N-P-K after first cutting

Second and third cuttings were delayed by rains. Very hot in July and August with little moisture until early September.

|                      |      |      |              |      |       | Forage Yield |               |                     |
|----------------------|------|------|--------------|------|-------|--------------|---------------|---------------------|
|                      |      |      |              |      |       | tons/acre    |               |                     |
|                      |      |      |              |      | Dry   | Matter       | Total,        | Total,              |
| NAME                 | 5-18 | 7-2  | 2007<br>8-6  | 9-4  | 10-16 | Total        | 15%<br>Moist. | % of<br><u>Mean</u> |
| RELEASED CULTIVARS   |      |      |              |      |       |              |               |                     |
| Marvel               | 3.16 | 3.62 | 3.17         | 1.64 | 1.40  | 12.99        | 15.28         | 105                 |
| 6415                 | 3.00 | 3.82 | 3.18         | 1.59 | 1.39  | 12.96        | 15.25         | 105                 |
| Rebound 5.0          | 3.08 | 3.76 | 3.14         | 1.53 | 1.31  | 12.82        | 15.08         | 104                 |
| Pioneer 54V09        | 2.94 | 3.77 | 3.18         | 1.55 | 1.29  | 12.73        | 14.97         | 103                 |
| FSG505               | 3.16 | 3.61 | 3.00         | 1.53 | 1.37  | 12.66        | 14.90         | 103                 |
| GH 727               | 2.98 | 3.68 | 2.98         | 1.59 | 1.40  | 12.61        | 14.84         | 103                 |
| Genoa                | 3.01 | 3.66 | 3.02         | 1.56 | 1.37  | 12.61        | 14.84         | 102                 |
| Expedition           | 3.03 | 3.67 | 2.98         | 1.58 | 1.35  | 12.59        | 14.81         | 102                 |
| WL 355 RR            | 2.88 | 3.55 | 3.29         | 1.56 | 1.32  | 12.59        | 14.81         | 102                 |
| 6530                 | 2.84 | 3.77 | 3.28         | 1.47 | 1.23  | 12.59        | 14.81         | 102                 |
| Mariner III          | 3.10 | 3.60 | 3.20<br>3.12 | 1.48 | 1.30  | 12.59        | 14.81         | 102                 |
| FSG406               |      | 3.67 |              | 1.50 | 1.28  |              |               | 102                 |
| WL 357 HQ            | 2.95 | 3.56 | 3.18         | 1.56 | 1.40  | 12.57        | 14.79         |                     |
|                      | 2.92 |      | 3.10         |      |       | 12.54        | 14.75         | 102                 |
| 4A421                | 3.01 | 3.56 | 3.08         | 1.54 | 1.30  | 12.48        | 14.69         | 101                 |
| 6420                 | 3.27 | 3.42 | 3.03         | 1.47 | 1.30  | 12.48        | 14.68         | 101                 |
| Reward II            | 3.22 | 3.71 | 2.86         | 1.40 | 1.28  | 12.48        | 14.68         | 101                 |
| Pioneer 54Q25        | 3.20 | 3.43 | 3.06         | 1.50 | 1.29  | 12.47        | 14.67         | 101                 |
| Pioneer 54V46        | 3.02 | 3.65 | 2.95         | 1.49 | 1.31  | 12.42        | 14.61         | 101                 |
| Hybri+421            | 3.06 | 3.65 | 2.92         | 1.49 | 1.23  | 12.33        | 14.51         | 100                 |
| DKA41-18RR           | 2.84 | 3.39 | 3.27         | 1.49 | 1.31  | 12.30        | 14.46         | 100                 |
| Mountaineer 2.0      | 2.88 | 3.72 | 3.01         | 1.42 | 1.25  | 12.27        | 14.44         | 100                 |
| 4G418RR              | 2.73 | 3.54 | 3.20         | 1.50 | 1.31  | 12.27        | 14.43         | 100                 |
| FSG408DP             | 3.16 | 3.52 | 2.83         | 1.40 | 1.23  | 12.14        | 14.28         | 99                  |
| Artesian Sunrise     | 2.74 | 3.42 | 3.01         | 1.51 | 1.41  | 12.08        | 14.21         | 98                  |
| Cimarron VL400       | 2.78 | 3.64 | 3.06         | 1.40 | 1.16  | 12.03        | 14.16         | 98                  |
| Escalade             | 2.88 | 3.44 | 2.81         | 1.51 | 1.28  | 11.92        | 14.02         | 97                  |
| Phoenix              | 2.76 | 3.39 | 2.99         | 1.40 | 1.23  | 11.77        | 13.85         | 96                  |
| WL 343 HQ            | 2.72 | 3.34 | 2.85         | 1.51 | 1.27  | 11.68        | 13.74         | 95                  |
| Perry                | 2.90 | 3.33 | 2.90         | 1.38 | 1.13  | 11.63        | 13.68         | 94                  |
| Kanza                | 2.89 | 3.10 | 2.74         | 1.54 | 1.30  | 11.57        | 13.61         | 94                  |
| MP04                 | 2.64 | 3.43 | 2.78         | 1.39 | 1.16  | 11.39        | 13.40         | 92                  |
| EXPERIMENTAL STRAINS |      |      |              |      |       |              |               |                     |
| 4S419                | 3.34 | 3.57 | 3.34         | 1.62 | 1.42  | 13.30        | 15.64         | 108                 |
| FG 52M146            | 2.74 | 3.60 | 3.35         | 1.62 | 1.42  | 12.72        | 14.97         | 103                 |
| msSunstra-614        | 2.92 | 3.40 | 3.11         | 1.51 | 1.39  | 12.32        | 14.49         | 100                 |
| msSunstra-613        | 2.90 | 3.66 | 2.98         | 1.45 | 1.30  | 12.28        | 14.44         | 100                 |
| I Chg 04             | 2.80 | 3.52 | 3.03         | 1.44 | 1.17  | 11.95        | 14.06         | 97                  |
| DS961                | 2.70 | 3.10 | 2.71         | 1.53 | 1.44  | 11.48        | 13.51         | 93                  |
| DS253                | 2.63 | 3.00 | 2.92         | 1.49 | 1.40  | 11.43        | 13.45         | 93                  |
| SUMMARY STATISTICS   |      |      |              |      |       |              |               |                     |
| Average              | 2.94 | 3.53 | 3.04         | 1.50 |       | 12.32        | 14.49         | 100                 |
| LSD (0.05)           | 0.28 | 0.30 | 0.43         | 0.10 | 0.08  | 0.61         | 0.72          | 5                   |
| LSD (0.20)           | 0.18 | 0.20 | 0.28         | 0.07 | 0.05  | 0.40         | 0.47          | 3                   |
| CV (%)               | 6.90 | 6.08 | 10.17        | 4.91 | 4.49  | 3.55         | 3.55          | 4                   |
| MCV (%)              | 9.67 | 8.51 | 14.25        | 6.88 | 6.29  | 4.98         | 4.98          | 5                   |

| Table 6. 2007 Performance Test entries with disease and insect resistance ratings for released varieties. |
|-----------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|

|                              | -      |       |       |       |     |       |         |    |        |        |     | A    |     |              |     |        |     | na insect res |     |       |          |      |      |       |      |       |      |      |      | Α     |      |       | _    |    |   |
|------------------------------|--------|-------|-------|-------|-----|-------|---------|----|--------|--------|-----|------|-----|--------------|-----|--------|-----|---------------|-----|-------|----------|------|------|-------|------|-------|------|------|------|-------|------|-------|------|----|---|
|                              |        |       |       |       |     | Р     | s       |    | В      |        |     | P    | _   | R            |     | М      |     |               |     |       |          |      |      | Р     | s    |       | В    |      |      | P     |      |       |      | м  |   |
| Brand                        | w      | В     | ٧     | F     | Α   | -     | _       | Р  |        | s      |     |      |     | K            | Р   |        | G   | Brand         | w   | В     | ٧        | F    | Α    | -     | -    | Р     |      | s    |      | Н     |      |       | Р    |    | G |
| Name                         |        |       |       |       |     |       |         |    |        |        |     |      |     | Ν            |     |        |     | Name          |     |       |          |      |      |       |      |       |      |      |      | 2     |      |       |      |    |   |
|                              |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| ABI                          |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     | KS AES & USI  |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| AA108E                       | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | Kanza         | -   | R     | -        | -    | -    | -     | R    | R     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| AA112E                       | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | Monsanto      |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Allied                       |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     | DKA41-18RR    | -   | -     | -        | -    | -    | -     | -    | -     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| CW 15030                     | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | DKA42-15      |     |       |          |      |      |       | R    |       |      |      | Н    |       | -    | -     | -    | Н  | - |
| Escalade<br>FSG351           | -      |       | R     |       |     |       | MR<br>R |    | -<br>D | -<br>D | R   | -    | -   | -            | -   | -      | -   | DKA50-18      |     |       |          |      | Н    | Н     | R    | K     | -    | К    | Н    | -     | -    | -     | -    | Н  | - |
| FSG406                       |        |       |       |       |     |       | -       |    | -<br>- |        | Н   | -    |     | П            | -   | -<br>Н | -   | msSUNSTRA/    | Dai | iryia | and      |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| FSG408DP                     |        |       |       |       |     |       | -       |    |        |        |     | -    |     |              | -   | -      | -   | 404<br>405    | -   | -     | -        | -    | -    | -     | -    | -     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| FSG505                       |        |       |       |       |     |       | R       |    |        |        |     | -    |     |              | -   | _      | -   | 406           | -   | -     | -        | -    | -    | -     | -    | -     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| Mariner III                  |        |       |       |       |     |       | -       |    |        |        |     |      |     |              | -   | _      | _   | 407           | -   | -     | -        | -    | -    | -     | -    | -     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| Marvel                       |        |       |       |       |     |       | R       |    |        |        |     |      |     |              |     | Н      | _   | Mycogen       |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Phoenix                      |        |       |       |       |     |       |         |    |        |        |     |      |     | MR           |     | -      | _   | 4A421         | _   | н     | н        | н    | н    | н     | Н    | н     | _    | _    | н    | _     | _    | М     | _    | _  | _ |
| Cimarron US                  |        | •     | •     | •     | • • | •     |         | •  |        | •      |     |      |     |              |     |        |     | 4G418RR       | _   | -     | -        | -    | -    | -     | -    | -     | _    | _    | _    | _     | _    | -     | _    | _  | _ |
| Cimarron                     |        | R     | R     | Н     | Н   | Н     | Н       | Н  | R      | R      | R   | _    | s   | _            | -   | _      | _   | 4S419         | _   | _     | _        | _    | _    | _     | _    | _     | _    | _    | _    | _     | _    | _     | _    | _  | _ |
| VL400                        |        |       |       |       |     |       |         |    |        |        |     |      | _   |              |     |        |     | NC+           |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| I Chg 04                     | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | Hybri+421     | 2   | Н     | R        | Н    | Н    | Н     | R    | R     | _    | R    | R    | _     | _    | Н     | _    | _  | _ |
| MP04                         | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | Jade III      | 2   | Н     | R        | Н    | Н    | Н     | R    | R     | R    | R    | R    | -     | -    | Н     | -    | _  | - |
| Croplan Gene                 | etics  | S     |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     | NE AES & USI  |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Artesian                     | -      | M     | R     | R     | Н   | Н     | Н       | Н  | R      | R      | -   | -    | -   | R            | -   | Н      | -   | Perry         | -   | R     | -        | -    | L    | -     | М    | R     | -    | -    | _    | -     | -    | -     | М    | _  | - |
| Sunrise                      | _      |       | _     |       |     |       | _       |    |        |        | _   |      |     | _            |     |        |     | NK            |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Mountaineer<br>2.0           | 2      | Н     | R     | Н     | Н   | Н     | R       | Н  | -      | Н      | R   | -    | -   | R            | -   | Н      | -   | Expedition    | 3   | R     | Н        | Н    | Н    | Н     | R    | -     | -    | R    | Н    | -     | -    | R     | -    | -  | - |
| Rebound 5.0                  | 2      | н     | н     | н     | н   | н     | -       | R  | _      | _      | н   | _    | _   | _            |     | Н      | _   | Genoa         | 1   | Н     | Н        | Н    | Н    | Н     | -    | R     | -    | R    | Н    | -     | -    | -     | -    | -  | - |
| Dairyland Sec                |        | • • • | • • • | • • • |     | • • • |         | 11 |        |        | • • |      |     |              |     |        |     | PGI           |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| DS253                        | -<br>- | _     | _     | _     | _   | _     | _       | _  | _      | _      | _   | _    | _   | _            | _   | _      | _   | Integrity     | -   | Н     | Н        | Н    | Н    | Н     | -    | -     | -    | -    | Н    | R     | -    | -     | -    | -  | Υ |
| DS361HY                      | _      | _     | _     | _     | _   | _     | _       | _  | _      | _      | _   | _    | _   | _            | _   | _      | _   | Reward II     | 2   | Н     | R        | Н    | R    | Н     | R    | R     | R    | R    | R    | -     | -    | Н     | -    | -  | - |
| DS362HY                      | _      | _     | _     | _     | _   | _     | _       | _  | _      | _      | _   | _    | _   | _            | -   | _      | _   | Pioneer       |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| DS415                        | -      | _     | _     | _     | _   | _     | _       | _  | _      | _      | _   | _    | _   | -            | -   | -      | _   | 54Q25         |     |       |          |      |      |       |      |       |      |      |      | -     |      |       | -    | -  | - |
| DS416                        | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | 54V09         |     |       |          |      |      |       |      |       |      |      |      | MR    |      |       |      | -  | - |
| DS961                        | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | 54V46         | -   | R     | Н        | Н    | Н    | Н     | R    | R     | L    | M    | Н    | R     | -    | Н     | -    | -  | - |
| HybriForce-                  | 2      | Н     | R     | Н     | R   | Н     | R       | R  | -      | Н      | R   | -    | -   | Н            | -   | -      | -   | W-L Research  |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| 420/wet                      |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     | WL 335 HQ     |     |       |          |      |      |       | R    |       |      |      |      |       | -    | -     | -    | Н  | - |
| msSunstra-                   | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | WL 343 HQ     | 1   | Н     | Н        | Н    | Н    | Н     | -    | Н     | -    | R    | Н    | -     | -    | -     | -    | Н  |   |
| 613                          |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     | WL 355 RR     | -   | -     | -        | -    | -    | -     | -    | -     | -    | -    | -    | -     | -    | -     | -    | -  | - |
| msSunstra-<br>614            | -      | -     | -     | -     | -   | -     | -       | -  | -      | -      | -   | -    | -   | -            | -   | -      | -   | WL 357 HQ     | 2   | н     | Н        | Н    | н    | Н     | -    | Н     | -    | -    | Н    | -     | -    | -     | -    | -  | - |
| Forage Genet                 | ics    |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| FG 52M146                    | -      | _     | _     | _     | _   | _     | _       | _  | _      | _      | _   | _    | _   | _            | _   | _      | _   |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Garst                        |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| 6400HT                       | 2      | Н     | Н     | Н     | Н   | Н     | _       | Н  | _      | _      | Н   | _    | _   | -            | -   | _      | Υ   |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| 6415                         |        |       |       |       |     |       |         |    |        |        |     |      |     | -            |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| 6420                         |        |       |       |       |     |       |         |    |        |        |     |      |     | Н            |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| 6530                         | -      | Н     | Н     | Н     | Н   | Н     | -       | Н  | -      | R      | Н   | М    | -   | -            | -   | -      | -   |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Golden Harve                 | st     |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| GH 727                       | 1      | Н     | Н     | Н     | Н   | Н     | -       | R  | -      | R      | Н   | -    | -   | -            | -   | Н      |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Johnston                     |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| Good as Gold                 | -      | Н     | R     | Н     | R   | Н     | -       | R  | -      | М      | М   | -    | -   | Н            | -   | -      | -   |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| II                           |        |       |       |       |     |       |         |    |        |        |     |      |     |              |     |        |     |               |     |       |          |      |      |       |      |       |      |      |      |       |      |       |      |    |   |
| *14.0                        |        | -     |       |       |     |       |         |    | _      |        | _   |      |     |              |     |        |     |               | _   | _     | _        |      |      |       |      |       |      |      |      |       |      |       |      |    | _ |
| *WS = Winter<br>BW = Bacteri |        |       | ι, 1  | = S   | upe | rio   | r       |    |        |        |     |      |     | falfa<br>mat |     |        |     |               | G   | i [ = | Co       | ntir | luoi | us (  | graz | ing   | tole | erar | nce  | , Y/I | N    |       |      |    |   |
| VW = Verticill               |        |       | t     |       |     |       |         |    |        |        |     |      |     |              |     |        | ot  | rot race 1    |     |       |          |      | F    | est   | res  | sista | anc  | e ra | tino | gs:   |      |       |      |    |   |
| FW = Fusariu                 | m v    | vilt  |       |       |     |       |         |    | Α      | ŀΡΗ    | 2 = | Αp   | har | nom          | yce | s ro   | ot  | rot race 2    | C   | ode   | <u> </u> | Res  |      |       | cla  |       |      |      |      | Res   | ista | ant p | olar | ts |   |
| AN = Anthrac                 | nos    | e ra  | ace   | 1     |     |       |         |    | S      | RK     | N = | : So | uth | ern          | roc | ot kr  | not | nematode      |     | S     |          | Suc  | cen  | tible | _    |       |      |      |      |       | 0    | 5%    |      |    |   |

\*WS = Winter survival, 1 = superior
BW = Bacterial wilt
VW = Verticillium wilt
FW = Fusarium wilt
AN = Anthracnose race 1
PRR = Phytophthora root rot
SAA = Spotted alfalfa aphid
PA = Pea aphid

APH1 = Aphanomyces root rot race 1
APH2 = Aphanomyces root rot race 2
SRKN = Southern root knot nematode
NRKN = Northern root knot nematode
PL = Potato leafhopper

PRR = Phytophthora root rot SAA = Spotted alfalfa aphid PL = Potato leafhopper MLE = Multi-foliolate expression

Disease and insect resistance ratings are from the National Alfalfa Alliance, NAAIC

S Susceptible
L Low Resistance
M Moderate Resistance
R Resistance
H High Resistance
- Not adequately tested

0-5% 6-14% ce 15-30% 31-50% >50%

descriptions, or from developers of the varieties.

For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication, plus more, is available for viewing or downloading.

## The URL is http://kscroptests.agron.ksu.edu

Excerpts from the University Research Policy Agreement with Cooperating Seed Companies

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 988 '2007 Kansas Performance Tests with Alfalfa Varieties,' or the Kansas Crop Performance Test Web site, http://kscroptests.agron.ksu.edu, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), 2007 Kansas Performance Tests with Alfalfa Varieties, Kansas State University, January 2008.

# **Contributors**

# Main Station, Manhattan

Jane Lingenfelser, Assistant Agronomist (Senior Author)
James R. Cochrane, Assistant Scientist

## **Research Centers**

Pat Evans, Colby Joseph Moyer, Mound Valley Monty Spangler, Garden City

# **Experiment Fields**

Barney Gordon, Belleville William Heer, Hutchinson

**NOTE:** Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

This Report of Progress was edited, designed, and printed by the Department of Communications at Kansas State University

## Kansas State University Agricultural Experiment Station and Cooperative Extension Service

SRP 988 January 2008