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CHAPTER 1
INTRODUCTION

The problems considered in this report are optimization of system re-
liability of a complex system and optimization of producticn scheduling
and inventory control subject to some linear and/or monlinéar conmstraints,
The opgimizstion method employed is the sequential unconstrained minimization
technique (8UMI'). This method is copsidered as one of the simplest and the
most efficient methods for solving the constrained nonlinear programming
problems,

The purposes of this report are twofold, The first is to present a
result of implementing SUMT by a combination of the Hooke and Jeeves pattern
search technique [13,14] and a heuristic programming technique [19]., The
second is to present results of the-optimizaticn study of system reliability
of a complex system and production scheduling and inventory contrcl
problems by means cf the developed technique,

The principle of the sequential unconstrained minimizaticn technique
(SUMT) is a transformation of a constrained minimization problem into a
sequence of unconstrained minimization problem. This transformation enables
us éo use well developed unconstrained optimization techniques to sclve
the constrained problem without inventing a new technique for such a con-
strained optimization problem. The method was first proposed by Carroll
in 1959 [4,5] and further developed by Fiacco and McCormick [8,3,10,11,17].
In 196%, Fiacco and McCormick developed a gemeral algorithm based on SUMT,

and in 19653, they proposed a method which is called SUMI without parameters.

By using this method, the difficulty of chocsing the penalty parameters



can be avcocided, although there are still scme difficulties exist., There
is a general computer program previded by McCormick, Mylander and Fiacco
called "RAC Cemputer Program Implementing the Sequential Unconstrained
Minimization Techniqus for Nonlinear Programming," (IBM SHARE number 3189)
{17]. 1In this computer program, the unconstrained minimization technique
used is the second crder gradient method.

Difficulties which arise from use of the second order gradient method
as a unconstrained minimization technique in SUMT becomes predominate in
a 1argé size and/or ﬁery complex nonlinear problem. The difficulties
arise particularly in taking correctly the first order and second order
partial derivatives of very complex nonlinear functions which most ef
practical problews have. Therefore, a new algorithm which using 2 much
simpler direct search technique is very desirable.

For the above reasecn, a new techunique of implementing SUMT by Houoke
and Jeeves pattern search technique to be its unconstvzined minimizarion

process is zuggesred [6] and is developed. The procsdures are presented

18]
w

in Chapter 3 in details, Hooke and Jeeves pattern search technique [13,14]
is different from the gradient method by the decision making process to
decide.the direction of search., The direction of search in the gradient
metﬁod is in the steepest decent direction while that of the Hocke and
Jeeves pattern search technique is determined by direct compérison of the
values of the objective function at two points depart from each cther for
a finite step. For this reascn, when the pattern search is getting close
to the boundary of somé inequality constraints, it shall frequently go out
of the feasible region bourded by inequality constraintsz. and the sezarch

might be terminated 2% some point near the boundary which might not be the



real constrained optimum, A heuristic programming technique was developed
by Paviani and Himmelblaﬁ [19], which provides a method for applying a
sequential simplex pattern search routine [2,3,6a2,18] to a coustrained
problem, The method enables to make turns at the pattern search near the
boundary of comstraints., This heuristic idea is employed here in order to
handle the boundary of inequality constraints [6]. The details of the |
method are described in Chapter 3 and a general FORTRAN-IV program together
with detailed computer diagrams is presented in Appendix.

This newly developed method ic utilized to obtain optimum solutions of
two exémples of production scheduling and inventory control in chapter 4.
The first problem is a simple two dimensional problem usedrfor demonstrating
the procedure of £he algorithm in details and the second problem is a 20-
dimensional problem used for demonstratinz the capacity and practicability
of the technique, Both problems have previocusly been solved by using the
RAC program introduced before [15].

Much has been written about the optimization of the feliability of a
system, Usually the increase in the system reliability is due to adding
redundancies. Previously, with redundant components in parallel or in
series were considered [7, 23, 24, 25, 26]., The problem becomes con-
siderecly more difficult when the redundant units of the system camnct
be reduced to parallel or series configurations,

In attempting to optimize the reliability of such a complex system
a major difficulty is encountered in that the reliability expression is not
a separable function and thus cannct be analyzed as a multistage process.
Thus another approach is used to sclve this type of problemlwhere the

reliability is obtained by Bayes' theorem which utilizes conditional



probabilities [1], With this in mind 2 mathematical model for the nonlinear
system reliability subject to constraints is formulated, The nonlinecar
programming problem of optimizing the system reliability is then solved

" by SUMT using RAC computer program [17] in Chapter 2,

The same relisbility problem is also solved by the newly developed
techniquerand the results are presented in Chapter 5. Far less preparatory
work is fequired and the partial derivatives of objective-function and
functions of inequality and equality_constraints are not needed. By
comparing the fesults with that obtained in Chapter 2, we can conclude
thatr the newly developed technique is workable and much simpler than the
origiﬁal technigue méntioued_is. Thus the new technique is capable of

solving a wide range of practical cptimization problems.
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CHAPTER 2
OFTIMAL RELIABILITY OF A COMPLEX SYSTEM

2,1 INTRODUCTION

Much has been written about the optimization of the reliability of a
system, Usually these problems are concerned with optimizing some ob-
jective function subject to constraints where the increase in the system
reliability is due to adding redundancies. In previous work, the svstenms
treated usually have redundant compouents in parallel or ir series
(4, 14, 15, 16). The problem becomes censiderablyv more difficult when
the redundant units of the system cannot be reduced to parsallel aed
series configurations. One such example is shown in Fig. 1. In the
system, unit 1 is backed up by & parallel unit 4, There are two egual
paths, where cach path hzs unit Z in series with the stage formed by
unit 1 and unit 4. These two equal paths orerate in parailel so that
if at least one of them is good the cutput is assured. However, because
unit 2 does not have a high degree of raliability, a third unit, unit 3,
is inserted into the circuit., Therefore, the following operations are
possible: 2-1, 2-4, 3-1, and 3--4, and each coperation has two equal
paths,

In attempting to optimiza the reliehility of such a configuration a
major difficulty is encounterad in that the reliabiiity expression is uot
a separable function+ ard thus cannot be analyzed as a multistsge pracess.

Thus another anproach is used to solve this type of pretliem wheve the

n
+A function is separable if f{xl, Bos eees xn) = -El f(xi).
l:



teliability is obtained by Bayes' theorem which utilizes conditional
probabilities {1). With this in.mind a mathematical model for the non-
linear system reliability subject to constr;ints is forrmulated. The
nonlinesr programming problem of optimizing the system reliabilizy is

then solved by the sequential uncdnstrained minimization techniqua {SCHT)
(5, 6, 7, 8). This method appears to be onz of the more efficient methods

of solving constrained nonlinear optimization problems,

2,2 SYSTEM RELIABILITY USING CON]_)ITIOI;IAL PROBABILITIES

In a complex system where the redundant units cannot be reduced to a
parallel cr series configuraticn the reliability is obtained by using Bayes'
Theorem involving conditional probabilities, Razovsky [1].

In solving this problem, a simplified form of Bayes' probability
theorem is used. The theorem says that if A is an event which depeunds on
one of two mutually exclusive events Bi and Bj of which cne must necessarily

occur, then the probability of the occurence of A is given by
P(A) = P(a, given Bi) . P(Bi) + P(A, given Bj) . P(Bj) (1)

To put this theorem in the context of a reliability problem, let us
denote the event of a system'’s failure by A and the survival by Bi and

the failure by B, of a component or unit on whose operaticm the system

J
reliability depends. The probahility of system failure P{A}, then, aquals
the probability of system failure given that a specified compenent in the
systemn is good, P{A, given Bi), times the probability that the component
is gouod, P(Bi), plus the probability of system failura given that the

component is bad, P(A, given Bj), times the probabiliity that ths componant

is bad, P(B,). Thus if K is a component upon whose state, whether good
3 ;



or bad, the system reliability depends, we say that the probability of

system failure, P (system failure), is equal to

P(System failure given component K is good) « P(K is good)

+ P(System failure given component K is bad) « P(K is bad). {2)

Let Qs represent the probability of system failure, Rk the probability
that coﬁponent K is geod, and Qk the probability that component K is bad,

then we obtain the usual expression for system unreliability

Qs = Qs(given K is good) - Rk + Qs(given K is bad) - Qk' (3)

The system reliabilitv, RS, is then

o § o (
R =1 Q (4)

Equation (3) now enables us to calculate the reliabilitv of complex
systems. To illustrate we will obtain the reliability of the system
presented in Fig., 1. Component 3 for K is selected for the key compenent

in equaticn (3), thus we have the expression for system unreliability

= ; : . ; ; . 3
Qs Qs(lf 3 is good) R3 + Qs(lf 3 is bad) QB' 7 {5)

If component 3 is good the system can fail if the twe paths, which contain
unit 2 in series with the stage formed by units 1 and 4 in parallel, fail,
With these two paths in parallel, the system's unreliability, given unit

3 is good, is
Q_(if 3 is good) = [(1-1{1)(1-R4)]2. (6)

If on the other hand unit 3 is bad the system will fail onlv if both

pacallel paths fail, and the system's unreliability, if 3 is bad, is

2
Qs(if 3 is bag} = {1 - thl - R2{1 - (1—R1){1-R4)}} (7}



Fig.l. A schemaiic diogram of a complex
sysiermn.

10
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where {1 -_R2[1 - (1—R1)(1-R4)]} is the unreliability of the path which
has unit 2 in series with the stage formed by units 1 and 4.

Using equation (5) the unreliability of the system ie
2 ya
= - - . - - - - 17 . s
Qs [(L Rl)(l R4)] Ry + {1 Rz[l, (L Rl)(l R4)1J (1 R3)° (8)
The gystem reliability is given by equation (4).

2,3 TFORMULATION OF AN OPTIMIZATION PROBLEM
The problem of maximizing the reliability of the complex system

given in Fig, 1 which is subject to a single coustraint can be stated as

follows:
Maximize
Rs = &= Qs )
= 1- R, [(1-R,)(1-R,)1?
3L U-Ry 4
2
- (-R{1 - R,[1 - (1-R))(1-R)1} 9
subject to
je %€ (10)
i i
whére
o,
C. = K,R, * (11)
i i1 '

The system reliability, Rs’ given by equation (9} can be obtained from
equations (4) and (8), The constraint given by equaticn (10) can be
interpreted as follows: Ci can represen*® the weight, the cest, or the

volume of each unit or compcnent of the system, and the summation of the

weight, the cost, or the volume of the system muet be lesg than C. The

!
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weight, cost, or volume of each unit or component of the system is a
function of reliability which can be expressed by equation (11), where

K, is a proportionality constant and o

1 » the expomential factor, relates

b

Ci and the reliability. Usually 3y is less than one.
The solution of the above constrained nonlinear programming problem

can be obtained by the technique which is described irn the following

section.

2.4 SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT) -
The general noalinear programming problem with ncnlinear inequality

constraints is one where x is selected to

minimize f(x)
subject to (12)

g (0 20, i=1,2, ...,

where ¥ is an n-dimernsional column vector (Kl, Kyy sees xn)T. The super-
script T denctes transposition., If the variables are required to be non-
negative, such constraints are included in the gi’s. The functions, f(x)
and gi(x), i=1, 2, ..., m, can take a linear or nonlinear foirm.

The following algorithm is presented [5, 6, 7, 8] to sclve this

prcblem, First define the function (called the P function)

1

) (13}

P(x, rk) = f(x) + I :

0r~18

1 &

where T is a positive constant. The subscript k indicates the number

of times the P function has been sclved, The conditions imposed on the
P fupction are as focllows:

(1)

k)

=t

k=11, 2, ..., is a positiva resl nuzber and r, > ¥, >

LI > T

k

> +.. > 0, This indicates that {rk} is a strictlv mounotonic



decreasing sequence and T~ G as k » =,

1, 2, ..., m} is non-empty. This

W

(2) Rp = {x | gi(x) >0, i
condition indicates tiat at least one point must exist within the interior
of the feasibtle regioa,

(3) The functicns f(x), gl(x), iea s gm(x) are twice continuously
differentiable,

{4) The function f{x) is convex.

(5) The functions gl(x}, ¢ 5 gm(x) are concave.

(6) For every finite M, {x | £(x) < M; xeR} is a hounded set, where

R={x|gi(!{)_>_0,i=—'l, 2’ sy m},

ig, for eackh r » 0,

[ atte ] ol

(7) The function P(x, rk) = f(x) + T

] gi(x)

1
strictly convex for x;RO. This also indicates that either f(x) is
strictly convex or one of the functions Bys eevs By is strictly concave,

Practical experience indicates that the problems given by equation
(1} can be solved even when these conditious are not met, The three

conditions which are absclutely required tc cbtain any usefuvl results

are conditions {1), (2), and (6). Condition (1) guarantees that the

seguential ninimization of the P function will eventually lead to the

Condition (2) eliminates

problems with equality constraints., Conditicn (6) eliminates problems

having local minimum at infipite points.

+

The characteristics of the P functicon ara as follows:

(1} lim r

(2) lim f[x(rk)} = u#,



1k

(3) 1im,P[x(rk), rk] = y*

)

(4) {f[x(rk)]} is a monotonically decreasing sequence,

(5 { E g, ( )} is a monotonically increasing sequence,
i=1

The proofs of these characteristics are presented in detail by
Fiacco and McCormick [5, 6, 7, 8).

Intuitive Concept of P Function

%x) 1g the | foneion of Squstoen L1J) can. e

The term rk

I e~18

i=1 &4

considered as a pemalty factor attached to the objective functicn f(x}

e i e e TR T

"By adding the penalty term, the minimization of the P function will
- assure a minimum to be in the interior of the inequality constrained
\ region by aveiding crossing the boundaries of the feasible region.

Since the feasible boundary is defined by one or more of the g, (x) = 0,

m

i=1], ..., m, the value of Ty 'Zl g, Pl

will approach infinity as the
value of x approaches ome of the boundary lines, Hence the value of x _
will tend to remain inside the inequality-conmstrained region, _

The motivation behind this formulation of the P function is the
transformat;on of the original constralned problem into a sequence of
unconstrained minimization problems. The desirability of this trans-—
formation lies in the fact that numercus methods for minimizing an

unconstrained function are known and newer methods are continually being

developed [2, 3, 9, 10, 11, 13].



Computational Procedure
The procedure for using SUMT is summarized below i5 E].

(1) Select the initial wvalue of. r

e P 5

arb;trarlly or use Lhe formu;a

for the selection YO,KHEiCh,iS availaglgm;pmxﬁiareaaaaL&].
1Ty TR 22 AV

e e i T

(2) Select a feasible starting point xo = (xg, xg, e sy xo). If

the feasible point can not be easily obtained, select xo arbitrarily.
B OO o

The computer program [12] will minimize the following P functioa and

obtain a feasible point.

-

P(x, r ) = -8 (x) + T, Z gt(x)

teT

wheze gs(xo) <0and T = {t i gt(xo) > 0}, DMote that the constraint
function gs(x) > 0 is violated.

(3) Hinimize the P function for the current value of r, by using

k
the second-order optimum gradient method.
(4) Check to see if the stopping criterion such as
E(x(xr )]
———— ,
Gx(r] ~ L ° G2l

is satisfied., If it is satisfied the solutjon is optimal; otherwise gc

to step 5. The dual function, G[x(rk)], is defined as [5]

m

Glx(r)] = flx(r)] - £ ] e
i=

ALY 1)

(5) Set k=%l andr, = T, /C, where C > 1, Repeat the itsration
Lo s o krl %
T ey ’_‘Mf T N J‘“v\d_,./‘“‘u#—-—q_. s
from step 3.
\I\/\¢f\_~'

The procedures described above must satisfy two stopping criteria

before anv meaningful optimal colution can be obtzined. The stopping
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5]

criterion used for terminating the minimization of the P functio

[Step 3] may be one of the following

T BZP(x r)
(1) |9 P (x,1) i-a;-4—| vxP(x,r)] < ¢ (16a)
or
-1 P(x,r ) - P(x,x, )
T aZP(x r) i T | ’
(ii) IVXP {x.r) laxl Bx | VxP(x,r)| < 5 (16h)
or
(111} |VxP(x,r)E < eg' (16c)
The first stopping criterion was used thfoughout this study with
€' in the range of 10 e to lO 5. The stopping criterion for terminating

S N

overall minimization of f[x(r )] may take the following form in addition

to the form given by equation {(14).

o 1

i 121 g, (x(r )T © ¢ wr

The first form equation (14), was used in the numerical examples
presented in this work with £ generally ranging from 10“3 to 10-5. The
procedure should not be terminated until both criteria given by equations
(14) and (16) are satisfied. If these stopping criteria are not satisfied
within a specified time limit, the iterations should be terminated.

We used a computer program entitled "RAC Computer Program Implementing

the Sequential Unconstrained Minimization Technique for Nonlinear

Programming" which is available for solving the example problems., Its
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SHARE number is 3189 [12]. The program is written im FORTRAN IV and can
be used on IBM 360. With minor modificaticns the program can be rum on

any sufficiently large computer with a FORTRAN compiler,

2.5 A NUMERICAL EXAMPLE
The nonlinear programming problem formulated in the preceding section

is restated again and the objective is to maximize

2
R, =1 - Ry[(1-R))(1-R,)]

2
- (1—R3) {1- R2[1 - (1-—Rl)(l-—R4)]} (18)
subject to the constraint
o o o o
: 1. 2 3 . 4
2K, R, " + 2K,R,” + KRy + 2K R, < C . (19)

The constants Kl, Kys KB’ and R4- the constraint, C, and the exponential

~

constant a., i=1, 2, 3, 4, are as follows:

Ky

100, K2 = 100, K3 = 200, K, = 150,

C

I
[
-
[ye]
-
L2
-
B~
.

800, o 0.6, i=

i
The problem is formulated in SUMT format as follows:
Minimize

_f(x) = -RS

2

= -1+ Ry[(1-R) (1-R )17 + (L-R){L - R,[1 - (1R (-1}

subject to the constraints
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G.l C!2 (13 0‘.
gl(x) =C - (ZKlR_l_ + 2K2R2 + K3R3 + K R ) >0
gi+1(x) =1-R >0, i=1, 2, 3, 4

The P function of equatioen (13) is

P(x,rk) = -1+ Rg[(l'Rl)(l'R4)]2 + (1—R3){1 - R2[1 - (l—Rl)(1¢R4)]}2

1

+ 1, [ = + E(——*—)j

o o, o
1 2. 4 i=1
- + + gE:
C (2K R1 2K R2 K- R3 “éRé

The optimal solutioms which were obtained by starting from two
different points, namely, [Rl, Rys RB’ R4] = [0.7, 0.7, 0.7, 0.7} and

[Rl, R R,1 = [0.6, 0.6, 0.5, 0.6] are presented in Table 1. The

20 R3s Ryl
solutions are almost identical, that is, the optimal system reliability
is Rs equal to 0,99996 with the cost of 799,78 for the first starting
point and RS equal to 0,99995 with the cost of 759.28 for the second
starting point. Recall that the constraint on the cost is 800, Note

that the optimal components reliabilities are almest the same for both

starting poiats. mhe stopping criterion for termlnatlng the minimization

e S

of the P funetion at each k iteration is el 10 5, and the stopping

e s e R R ) T T 1 S i £y A BT N e S VR Py e e v
N e e

criterion for termlnating the over all mlnlmlzation of f[x\r )] is e =10 .,

e e T AT S it o St AT S R s

et - = T TS AT T

e
For the first starting point, it required 10 iterations for the P functions

with a total of 152 functional values calculated, and for the second point,
11 iterations were required for the P functiens with a total of 167

functional values calculated,
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Tables 2a and 2b present some suboptimal solutions according to
different stopping criterions, From these tables, we can sec that the
number of iterations, k, is dictated by the final stopping criterion, €,

and that the number of functional wvalues calculated for each iteration

is dictated by the stopping criterion for each iteration, £'. The number

- -]
of iterations, k, increases from 4 for e = 10 2 to 10 for e = 10 b, and

the number of functional values calculated for each iteration increases
from an average of 1 for e' = 10-2 to an average of 14 for ' = 10 .
Although the cost for each suboptimum solution is near the cost constraint
of 800, the systems reliability and corresponding set of compcnents

reliabilities are different for each combination of €' and €. The

highest system reliability is obtained when the stopping critericns are

' =107 and € = 107",

Results given in Tables 3a and 3b show that the system reliability,
RS, is monectonically increasing as the iteration k increases., The value
of the P function approaches that of the f function (= —Rs) as the
iterations proceed, Thus the minimization of the P function will eventually

lead to the minimizaticn of f functiom.

2,6 DISCUSSION

This approach provides a practical method for soiving a very complex ; ﬁf

reliability problem., The system may be one where the redundant componénté

cannot be reduced to a parallel or series configuration. The reliability ~

function is obtained by using Bayes' theorem and a mathematical medel

is formulated for the constrained nonlinear programming problem., ~The

?solution of the problem is ohtained by the sequential unconstrained
P ——

<
‘minimization technique (SUMT). As is evident from the resu:lts obtained

4

i
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in solving the example problem this is an efficient method for solving

a difficult problem.

vd . . . .
¥ The complex reliability system presented in Fig. 1. can be identified

te many practical systems concerning with the space life support systeus.

r

S

{ shown in Fig, 1. The unit 2 represents each of the two microphones of the

One such example is a communication system of a two man space capsule as

headsets of each astronaut in the capsule, Unit 3 is a hand microphone
which may be picked up by either astronaut, There are two different type
c¢f amplifiers irn the system with units 1 and 4 respectively., Such a
system is identical to that we have studied in this chapter,

“Ano;hgr example is a high pressure oxygen supply system as shown in

Fig. 2. The high pressure oxygen in the cabin is supplied through a system

e

of regulators and valves from a high pressure oxygen storage tank. There
are two pairs Sf the sub-systems of check valves, shut-off valwves and non-
return automatic shut-off valves in the system, The function of these
valves is to stop the reverse flow of air from the cabin to the gas tank
in case of pressure-drop and to close the lins supply if there is same
sudden pressure drop in header line or the cabin in order to avcid the
wastage of the gas.

Each pair of the valve systems consists of two alternative branches.
One consists of a non-return automatic emergency shut off valve, and the
other comnsists of a check valve and a shut off valve in series. Any
branch of the two pairs (totally four branches) is capable of supplying
sufficient gas to the cabin,

There are three alternative pathes between the 0, tank and the

pairs of valves., The 02 can pass through either of the two regulator to
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the pair of valves connected to that regulator then supply to the cabin,
It also can pass through a seléctcr valve to either of the twe pairs of
valves then supply to the cabin.

Suppose the reliability of the high pressure D2 tank can be con-
sidered as 1, and denote the reliability for the regulators (they are
the same kind of regulators and have the same reliability) by R2, the
reliability for the selector valve by R,; the reliability for the non-
return automatic emergency valve by Rl; and the reliability for the

series of check valve and shut-off valve by R Then the system can be

4"
reduced to the system presented in Fig,., 1 which has been studied in this
chapter,

By grouping all the parallel as well as series parts of a complex
reliability system into local sub-systems in the whole system and treating
them as single components, the system can often be reduced te such con-

figuration that Bayes' theorem of conditional probability shall be able

to be employed.
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CHAPTER 3

IMPLEMENTATTION OF SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE
BY HOOKE AND JEEVES PATTERN SEARCH AND HEURISTIC PROGRAMMING
3.1. INTRODUCTION
The generzl nonlinear programming problem with nonlinear (and/or linear)

inequality and/or equality comstraints is to choose x to

minimize f(x) )
subject to
gi(x) >0,1i=1,2, ..., m} (3.1)
and
hj(x) =0, i=1, 2, ve0, 2}

where x is an n-dimensional vector (xl, Xps sees xn}. To solve this
problem, there are a number of techniques developed recentlyv. Among them,
a technique which was originally proposed by Carroll [1,2] and further

develcped by Fiacco and McCormic [3,4,5,6,7] is introduced here,

This technique, known as the sequential uncenstrained mininization

technique (SUMI), is considered as one of the simplest and most efficient

methods for soiving the problem given by equation (3.1). The basic scheme

of this technique is that a constrained minimization problem is transformed
into a sequence of unconstrained minimization problems which cen be optimized
by any available techniques for solving unconstrained minimizaticnm.

The unconstrained minimization technique which is employed here is the

well-known Hooke and Jeeves pattern search technique [§,9], For increasing

*
the efficiency of the method, scme modifications have been made, Among
these modifications, a heuristic programming technique [10] is used to

handle the inequality constraints of the problem given by equation (3.1).
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The method and its computational procedure is illustrated in details in

' . %
the following sections of this chapter.

3.2, SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT)
The SUMT technique for solving the problem given in equation (3.1)

is based on the minimization of a function

rof =

Pixr

N~

m
= f(x) + . Z llgi(x) + T, )

h%(x) (3.2)
i=1 j

k

1
4

over a strictly monotonic decreasing sequence {rk}. Under certain
restrictions, the sequence of values of the P funection, P(x,rk), are
respectively minimized by a sequence cf {x(rk)} over a strictly monotonic
decreasing sequence {rk}, converges to the constrained optimum values
of the original objective function, f(x). The essential requirement
is the convexity of the P functiocn.

The intuitive concept of P function is descrilbed below:

Since the sequence {rk} is strictly monotonic decreasing, as r, + 0
1.8

the third term of the P function defined in equation (3.2), T

rafka

h‘]?(}l} y

I I~

3
L

x|

(x) = 0 for j 1,2,...,2. VWhile we are

will approach to = unless h

3

minimizing P function, the formulation of P function in equation (3.2)
will force all equality constraints to be zero,
m

Z llgi(x), when we start
i=1

For the second term of the P functionm, .

at a point which is inside the feasible region bounded by inequality

*Develoments of this modified method and the computer program for im-
plementing SUMI by the Hooke and Jeeves pattern search technique were
not financially supported by any source., The possibility of developing
the method and computer pregram vas suggested to the author by Professors
L. T. Fan and C, L, Hwang (11).
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m
constraints to minimize the P functiom, Ty Z l/gi(x) will epproach
T i=1

to infinity as the value of x approaches tc one of the boundary of the
inequality constraints given by equation (3.1), gi(x) > 0. Hence, the
value of x will tend to remain inside the ipequality-constrained feasible
region,

The motivation behind this formulation of P function is the trans-
formation of the original constrained problem into a sequence of un-
constrained minimization problem, {P(x,r,)}.

The solution to the problem then is to define the P function as
shown in equation (3,2) first., To search for the minimum P function
value it is started at an arbitrary point which is inside the feasible
region bounded by the inequality constraints., After a minimum P function

value is reached, the value of r, is reduced, and a search is repeated

k
again starting from the previous minimum point of the P function. By
employing a strictly monotonic decreasing sequence {rk}, a monotonic
decreasing sequence {Pmin(x,r J} inside the feasible region bounded by
the inequality constraints is obtained, The equality comstraints,
hj(x) =0 for j = 1,2,...,%, will be satisfied by the nature of the

formulation of the P function automatically as Ty tends to zero as

explained before,

m
When .~ 0, the second term of equaticn (3.2), T Z l/g. ap-
L g =1
2
proaches to zero, while the third term, T 2 Z hg(x), is forced to
. 321

approach teo zero as described before. In other wards, as T, o,
P(x,rk} + f{x), where x is the optimum point which yields the winimum

P(x,rk) and is the optimun point of the problem given in equation (3,1}.
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Further nmathematical proof of the convergence of the method can be

seen in reference [3,4,5,6,%].

3.3. COMPUTATIUNAL PROCEDURE

The computational procedure for using SUMT with Hooke and Jeeves
pattern search iechnique is summarized below (refer to Fig. 1).

(}) Select a starting point xo = (xg, xg, LG xg)-and initial
values of the penalty coefficient rg, an initial tolerance limit of the
viclation to constraints, BO, and the initial step-sizes needed in
search processes, do.

(2) Select a feasible starting point by minimizing the total weight
of violation, if the initial starting point chosen, xO, is out of the

feasible region bounded by the inequality counstraints. The total weight

of violation, TGH, is defined as [10]

1
2,00 . < 2,02
TeH = | J g (x)+ ] h_(x)
teT seR

s 0 .
where T = {tjg (x ) < 0} and R = {s[hs(xo) # 0}. Note that TGH includes

t

only the viclated comnstraints.
{3) Define P function as [6,7]

1
. T2
P(X’rk),- f(x) + I, g E;f;; + T

where gi(x) >0,1i=1, 2, ..., m are inequality constraints, and

hj(x) =y, Y= Ay By cas

, % are equality constraints,
(4) Minimize P function by Hooke and Jeeves pattern search

technique. After every move during the search, it is checked if the

move goes out of the feasible regiom or met, If the move is cut of the
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feasible region, got to step 5; if not, after the optimum x is reached
for the current P(x,rk), go to step 6.

(5) Move back to the near-feasible region and then return to step 4.
The near-feasible region is defined as the region that all the points

in that region satisfy the following condition [10].

B-TGH > 0

where B is the tolerance limit of violation which is sequentially de-
creased éfter every violation to the inequality constraints during the
search.

(6) Check if the optimum, X, obtained in step 4 is inside the
feasible region or not. If x is feasible, go to step 8, and it it is
near-feasible or not feasible, go to step 7.

(7) Move the optimum x in the infeasible region into the feasible
region along the direction toward the last optimum point, them go to
step 8.

(8) Check if a stopping criteriom such as

|

is satisfied. The solution is the optimal ome if the criterion is

£(x)

-1
G(x,rk)

< g

satisfied; otherwise, go to step 9. The dual value G(x,rk), is defined

as [6,7]
m, B 2
G(x,rk) = f(x) - Ty ) -—%§3-+ T 2 ) h?(x)
" i=1 B4 3=1

(9) Set k = k+1;

G.
* = 1 i -] ;® d
than 1; aad dk+1 d /(k+1}, d} 1 to be the stgrtlng step-sizes; and go

, = er i and r
rk+1 rk/C, where C 1s a constant and greate
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back to step 3.

The following secfions present in details procedures of each step
described above. The basic Hooke and Jeeves pattern search is presented
in Section 3.5,

3.4, PROCEDURE-FOR SELECTING A FEASIBLE STARTING PQINT FROM THE IN-
FEASTBLE INITIAL POINT

The procedure for selecting a feasible starting point when the
initial point is out of the feasible region bounded by inequality con-
straints, gi(x) >0 fori=1,2,.,., m, is based on Hooke and Jeeves
pattern search technique, For increasing the spéed and efficiency of
the process, some modifications from the basic Hooke and Jeeves pattern
search technique have been made,

Note that in above description of the feasible regiorn only the in-
equality constraints are included., The violation to equality comstraints
is not considered here but it is taken into account in the SUMT formu-
lation automaticallﬁ as explained in Section 3,2 [6,7].

The procedure is summarized below (refer to Fig., 2).

(1) Start at the input dinitial point, Xgs which is out of the
feasible region bounded by the inequality constraints and needs to be
moved into the feasible regiom.

(2) Compute the weight of violation, TGH, at the initial point: [10]

N

or =3 ] g, 1P+ ] ™®
teT scR

where T = {tlgt(xo) < 0} and R = {slhs(xo) # 0} . Note, again, that

TGH includes only the violated constraints,
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(3) Make an exploratory move to minimize TGH from xo. Note that,
the objective function to be minimized in this step is TGH which has
been defined in step 2, For increasing the efficiency of the process,
two modifications are made here. First, the starting step-szizec used
is twice the input iunitial starting step-sizes, which is used in min-
imizing the P(x,rk) function as described in Section 3,5. Second,
after every successful move, the feasibility is checked; whenever a
move has reached a point which is inside the feasible region bounded by
inequality constraints, the process of selecting a feasible starting
point is terminated. And the feasible point obtained is used as the
desired feasible starting point.

(4) Check if the exploratory move has made any progress; in the
other words, it searches a new point which has a less value of TGH than
the base point of the exploratory move does., If it does not, cut down
the step-sizes and go back to step 2, if it does, go to step 5.

(5) Convert the exploratory move point to be the new base point;
let it be xo.

(6) Make a pattern move along the line conmecting the two base
points to a new pattern move point xP,
(7) Check if xP has a less value of TGH than 0 does. Return to

step 3 if the answer is negative, If xP does make progress, check if it
is in cthe feasible vegion bounded by thé inequality constraints, Terminate
- P

the process of selecting a feasible starting point and usze X as the

P

P is feasible, Otherwise, set xo = X

feasible starting point if x and

return to step 3,
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3,5, COMPUTATIONAL PROCEDURE FOR MINIMIZING P(x,t ) FUXCI{ION BY THE
HOOKE AND JEEVES PATTERJ SEARCH

The computational procedure for minimizing the P(x,rk) function
is the basic Hooke and Jeeves pattern search technique [8,9], The method
is a sequential search routine for searching a point % = (xl, Xos sees xn)
which minimize the function, P(x,r. ). A descriptive flow diazgram of the
method-is given in Fig. 3. The procedure consists of two types of moves:

Exploratory and Pattern.

A move is defined as the procedure of going from a given point to the
following point. A move is a success if the value of the ?(x,rk} de—
creases; otherwise, it is a failure. The first type of move is an
exploratory move which is designed to explore the local behavior of the
function, P(x,r,). The success or failure of the exploratory move is
utilized by combining it into a pattern which indicates a probable
direction for a successful move [8,9].

The exploratory move is performed as follows:

(1) Introduce a2 starting point x with a prescribed step size di

in each of the independent variables X5 =3, 2, sni, W

{(2) Compute the function, P(x,rk), where x = (xl, Rps sees x,).

Set i = 1,
(3) Compute Pi(x,rk) at the trial ﬁoint

X = (xl, Xps sess Xy + d o . xn);

1
(4) Compare Pi(x,rk) with P(x,z, ):
(i) If Pi(x,rk) < P(x,r, ), set P(x,rk) = Pi(x,rk), X = (xl, X5
L ] xn)=(x1’ le "8y xi+di’ v ey Xn), and]’.'-‘i‘*‘l.

Consider this trial point as a starting point, and

repeat from step 3.
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(ii) 1If Ei(x,rk) z_P(x,rk?, set x = (xl, Koo aeey X = Zdi,
— xn). Compute Pi(x,r )}, and see if Pi(x,r ) < P(x,r,).
If this move is a successthe new trial point is retained.
Set P(x,r,) = Pi(x,rk), X = (xl, Kgs enes Xys enes xn) =
(xl, Xys enesy X - Zdi, o xﬁ), and!i = i+l, and repeat
from step 3. If again Pi(x,r } z_P(x,rk), then the move
is a failure and X, remains unchanged, that is,

X = (gl, LIYIRTRTIE SPRPP xn).

i!
Set 1 = i+l and repeat from step 3.

The point Xy obtained at the end of the exploratory moves, which is
reached by repeating step 3 until i = n, is defined as a base point. The
starting point introduced in step 1 of the exploratory move is a starting
base point or point obtained by the pattern move,

" The pattern move is designed to utilize the information acquired
in the exploratory move, and executes the actual minimization of the
function by moving in the direction of the established pattern, The
pattern move is a simple step from the current base to the point

+ ( *
X =3t (xg - %)
*l ) » - -
Xy is either the starting base point or the preceding base point,
Following the pattern move a series of exploratory moves is conducted
to further improve the pattern. If the pattern move followed by the
exploratory moves brings no improvement, the pattern move is a failure,
Then we return to the last base which becomes 2 starting base and the
process is repeated.
If the exploratory moves from any starting base do not yield a point

which is better thar this base, all the step sizes are reduced and the
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moves are repzated. Convergence is assumed when the step sizes, di's,

have been reduced below predetermined limits,

The following modifications are made so that the above method

originally developed for unconstrained minimization shall be able to

handle inequality constraints,

(i) During the exploratory moves, every successful move is checked

(i1)

to see if it goes out of the feasible region bounded by the
inequality constraints, If it is so, it will be moved back
into feasible or near-feasible region according to the
procedure described in Section 3.6, and then continue on the
regular search routine.

After making a pattern move, the function, P(x,rk), is
evaluated., Check if the pattern move make progress. If

the pattern move makes nc progress, return to the base point
and make an explorstory move from the base point, If the
pattern move makes progress, check if the pattern move point
is feasible (subject to the inequality comstraints only).
Move back into the feasible or the near-feasible region

bounded by the inequality constraints according to the

- procedure described in Section 3,6 if the success pattern move

is infeasible,

3.6. PROCEDURE FOR MOVING AN INFEASTBLE POINT INTO THE FEASIBLE OR NEAR-
FEASIBLE REGION BOUNDED BY INEQUALITY CONSTRAINTS

The procedure for moving anm infeasible point into the feasible or

the near-feasible region bounded by the inequality constraints .is based

on a simplified Hooke and Jeeves pattern search., Since the optimum will
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be located at somewhere very close to the boundary of the set of con-
straints for most of the constrained problems, the moving procedure
used here consists of small step size exploratory moves only. Pattern
moves are not used,
The procedure is summarized below (refer to Fig. 4).
(1) Start at the infeasible point, x, which is to be moved into the
feesible or the near-feasible region bounded by inequality constraints.
(2) Compute the weight of violation, TGH, at x,
RRs
2
TGH = { ) [gt(x)]2 + ) [hS(x)l2

teT seR

where T = {t]gt(x) < 0} and R = {s[hs(x) # 0}.

(3) Decide the tolerance limit, B, which is sequentially decreased,
for example 3/4 of the preceding value, after each moving back process.
The starting tolerance limit, BO, for the k--th sub-optimua search is
defined as [10]

B = 0.5 3 a,/n
i=1

where di is the starting step-sizes of the i-th dimension for the k-th
sub-optimum search; n is the dimension of the problem., This implies
that the starting tolerance limit for the k-th sub-optimum is set

to be a half of the average starting step-sizes. After an infeasible
point is moved back to the feasib}e or near-feasible region bounded by
inequality constraints, the size of the tolerance linit is decreased.

(4) Check if x is at least in the near-feasible region. i£ the

answer is positive, go to step 7, otherwise, set x as the base point
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and go to step 5. The near-feasible region is defined as the point set
A = {x|B - TeH > 0},

{5) 8tart at the base point and make an exploratory move for
minimizing TGH, with step-sizes ome half of the current step-sizes
entered to this routine. Whenever a move is feasible or near-feasible,
go to step 7; otherwise go to step 6.

(6) Check if the.exploratory move makes progress. If the answer
is positive, set the exploratory move point tc be the new base point
and go to step 5. Otherwise, reduce step-sizes then start at the old
base point, go to step 5.

(7) Reduce the tolerance limit B which will be used as the starting
tolerance limit for next moving back procedure when a preceding move go
out of the feasible region again; set the point which satisfies the

formula
B- TG >0

to be x and terminate the process of moving back procedure.
3.7. PROCEDURE FOR MOVING THE NEAR-FEASIBLE k-TH SUB-OPTIMUM INTO THE
FEASIBLE REGION

After the k-th sub-optimum has been reached, it is desirable to
have the optimumApoint in the feasible region subject to all the inequality
conétraints.

If the optimal point for P(x,rk) is in the near-feasible regicn but
not in the feasible region, it will be moved back into the feasible

region by the following procedure (refer to Fig. 5).
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(1) Compute the weight of violation, TGH, at the near-feasible k-th
sub-optimum, xg.
1
0,2 0, 2%

e =} ] le 01"+ T [ Gy)]

where T = {t]gt(xg) < 0} and R = {s[hs(xg) # 0},

(2) Move xg toward xg_l, the feasible (k-1)-th sub-optimum for a

1 4

small step § to obtain a new point xg .
(3) Set 0 = xo'and check if 0 is feasible If P is not feasible
T *x *k . *x ’

: 0. . ’
go to step 2; if X, is feasible, terminate the process.
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CHAPTER 4

SUMT IMPLEMENTED BY HOOKE AND JEEVES SEARCH TECHNIQUE

APPLIED TO PRODUCTION SCHEDULING PROBLEMS

4,1 INTRODUCTION

To illustrate the sequential unconstrained minimization technique
(SUMT) implemented by the Hooke and Jeeves pattern search technique,
two production scheduling problems, a two dimensional production
scheduling problem with four inequality constraints [1, 3] and a twenty
dimensional personnel and production planning problem with forty in-
equality constraints [2, 3, 5], are considered here,

The problems and their solutions are described in the following
sections of this chapter.
4,2 A PRODUCTION SCHEDULING AND INVENTORY CONTROL PROBLEM

The problem is to winimize the sum of the production cost and inventory
cost subject to the constraints of non-negative inventory and the maximum
capacity of machine which produces the desired items. The demand of each
period is known and must be satisfied.

The cost for changing the production level and for carrying inventory

are given by

2

C(Bi = ei_l) = Cost due to the change in productioﬁ level
from the (i-1)th period to the i-th period,
D(E - Ii)2 = Inventory cost at the i-th period,

where C, D, and E are positive comstants, ei and Ii are the production

level and the inventory level at the i-th pericd respectively.

The problem is to find * = (Ef, B%, cees 9;) which minimizes
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n
_ 5 2
£(8) = _Z [cCo, -"e, ;)" + DE - 1,)7] (4.1)
i=1
subject to
Ii=Ii—1+ei—Qi 0’ i=1, 2, nn-,n
and (4.2)
ogeiiu, 1=1,2, eau, n

where M is the maximum production capacity, Qi represents the sales
at the i-th pericd, 60 and IO are the production level and inventory

level at the initial period respectively.

NUMERICAL EXAMPLE 1

For this example, a two period producti;n and inventory system is
presented, The optimal decision variable 8% = (Bi, 65) will be determined
by solving the foilowing problem,
Minimize

_ 2 2 2 2
rf(B) = C(Bl - 00) + D(E - Il) + C(92 - el) + D(E - 12) (4.3)

subject to

3

32(9)=12=Il+ 2—Q2_’:"_0
r (4.4)
g4(8)=M-— 22_0 1

The values of C, D, E, M, 90, IO, and Qi’ i 1, 2, are given as

c = 100, D = 20, E = 10, M = 30,

8, = 15, =12, Q- 19,

0

!
(9%
(=]

-
o
[+
"
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To illustrzte the procedure the contour lines for equal values of
total cost, given by equation (4.3), are shown in Fig., 1. The shaded

area represents the feasible region bounded by the inequality constraints

**_ k% . k%
1"‘(81362)

18.21), of the original unconstrained problem [1] is apparently located

given by equation (4.4). The global minimum, 9 = (17.82,

outside the feasible region,

The P function of this problem is

4
a4
P(8, r,) = f(8) + r, }
E k ge1 800
= 100(6, ~ 15)% + 20(28 - 8.)% + 100(6. - 6,)% + 20(38 - 8. - 8.)2
1 1 2= 9% 178,

+rk[6 1878, To,-28" 0 -8, "30-0

1 1 1 1]
1 1, ¢ g 1 2

The step by step procedure of SUMT implemented by the Hooke and Jeeves
pattern search technigue is as follows:

= 3000, This value of r. has been

(1) Let the initial value of r be r 0

0
selected arbitrarily.

(2) Let the initial starting point 60 = {25, 29). Note that BO is in
the feasible region,

* * &

(3) Obtain the optimal solution, 6 = (61, 62) = (19.75, 19.00), by
minimizing the P function for the current value of r. The minimi-
zation technique used is the Hooke and Jeeves pattern search
technique (details have besn discussed in Chapter 3).

(4) Check if the stopping criterion is satisfied., The values of the

%
objective function evaluated at 60 and 6 are f(eo) = 16,900 and

%
f(8 ) = 3,418.75 respectively. It indicates the rapid rate of
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convergence at the first iteration. The stopping criterionm,

4o -~ 1, has the value 7,71 > 10-4. This indicates that more

(6
G(8)

iterations are needed, Iteratidn will be terminated if

£(8 -4
IE%&%'”‘N .

(35) Le£ r, = r0f4 = 750, Return to step 3.

The computational results of the problem are shown in Tables 4.1,
and 4.2, Table 4.1 shows the results of starting from a feasible point
(25, 29) followed by a series of iterations which converge tc¢ the
constrained minimum (18.000, 18.350), Table 4.2 shows the results of
starting frqm an infeasible point (5, 10) followed by a series of
iterations which also converge to the constrained minimum (18.000, 18,362),
The same problem has been solved by employing SUMT with RAC computer
program which uses a second order gradient method as the minimization
process [4], The results obtained by these two different programs in
= 25, 8

Table 4,32 (for starting at @ = 29) and in Table 4.,3b (for

1 2
starting at 81 = 5, 62 = 10) [3]. These results are identical, It is
worth noting again that both the computer programs have self-adjusting
procedures tc transfer an infeasible starting point to a reasonable
feasible starting point before proceeding to iterations [Step 2]. The
both cases of starting at two different points have fequired the same
amount of computing time, 1.68 minutes by RAC program and 0.6 minute

by the present program, on IBM 360/50. (Both use the WATFOR processor).

Note that in Table 4.2 the iteration makes practically no moves

since k = 13. The final stopping criterion is not satisfied at the
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of Production And Inventory Problem

g Point (25,29)]

Number of Value of Value of Value of
Iteration -
k r . 8. By £ P
0 3000 25 29 16900 21040
b 3000 19,7500 19,0000 3685.00 623,76
2 750 19,1875 15,5000 3325.9L 4168,.L8
3 187.5 18,6875 18,6333 3100,9%4 3k26,72
I 16,88 18,4063 18.5833 302L,61 3153.36
5 11,72 18,0239 18,3313 2968,75 3387.05
6 2,930 18,1475  18,k222 2980, 58 3001,27
7 0.7324 18,0239 18,341k 2968.37 2999,25
8 0.1831 18,0024 18,3261 2966, 8k 3043.32
9 0,04578 18,0003 18,3261 29€€,69 3133.37
10 0,0114%  18.0127 18,350k 2967,58 2968,48
11 0.002861 18,9971 18,3551 - 2967.19 2967.59
12 0.0007153 18,0019 18,3512 2966, 83 2667 .20
13 0.0001788 18,0004 18,3500 2966.73 2967.18
1k © 0.0000kk7 18,0002  18,3L99 2966.90

2066.71



Table 4.2 Computer Results of Production and Inventory Problem

[Infeasible Starting Point (5, 10)]

Number of Value of Value of Value of
Iteration
k T 81 32 f p
3000 5.000 10.000 33660 34390
0 3000 23,000 18.000 9580 11090
1 3000 20.000 20.000 3860 6210
2 750 18.250 19.000 3345 4156.12
3 187.5 18.750 19.000 3125 3427.94
4 46.88 18.469 18.500 3041.5 3154.85
5 11.72 18.2437 18.5000 2994.0 3045.44
6 2.93 18,0058 18,3317 2967.06 3477.19
7 0.732 18.0839 18.4150 2973.65 2982.59
B 0.183 18,0189 18,3669 2968, 05 2977.78
9 ‘ 0.0458 18.0122 18.3669 2967.59 2971.35
10 0.01145 18.0065 18,3628 2967.18 2968.94
11 0.002862 18.0021 18,3628 2966.90 2968.29
12 0.000713 18. 0005 18,3615 2966, 79 2968.35
13 0.000178 18,0000 18.3615 2966.76 2970.67
14 0.0000445 18,0000 18. 3615 2966.76 2968.23
15 0.00001112 18.0000 18.3615 2966.76 2967.49
16 0.00000278 18.0000 18,3615 2966.76 ¥
17 0.000000642 18.0000 18,3615 2966.76 2966.76

*
On the boundary.
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end of the 13th iteration, The value of T is reduced and the iteraticn

goes to k = 14, Because the value of T, is decreasing as k increasing,

the dual comparison term used in the final stopping criterion is de-

creasing., The final stopping criterion is finally satisfied at k = 17,
Note that at k = 16, the value of P function is 4w (for avoiding

this critical situation which eséentially will cause overflow in

computation, a large finite number (,1049,) is used to replace +=),

The reason for this is that ﬁhe sub-optimum point is right on the bounding

of an inequality constraint; thus the value of the P function becomes

infinity. Recall that the P function is defined as

1
P(x,r,) = f(x) + z-—"““
k k78 (x)

Figure 1 shows the locus of convergence for both the case for
feasible starting point and the case for feasible starting point and the
case for infeasible starting point.

NUMERICAL-EXAMPLE 2

For demonstrating the solution to a problem involving the equality
constraints, the above numerical example is modified by adding an equality
conétraint, namely,

h(8) = Bl - 82 -5=0
This implies that the production level in the first period is five unit

largef than that in the second pericd.

The problem is restated as follows:
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Minimize

-2

' 2 2 2
f(e)=c(el—eo) +1;(E-11) +C(ez"9) +D(E-12)

1

subject to

B1(®) = Tg+ 8y - Q 20
g,(0) = I, +6,-0Q, >0
g4(8) =M -8,2>0
g,(8) =M -8, >0

h(8) = 81 ~ 32 - 5=0

-With the same numerical values given in numerical example 1, the solutions
obtained are presented in Tables 4.3c and 4,3d.

Duringﬁtﬁe early iterations, say, from k = 1 to k = 3 or 4, the
equality constraint does not play any significant effect to the searches.
However, as k increased, tke value of T, approaches to a small nuxbers,
the penalfy of violation to the equality constraint becomes significant.
The search after Kk = § or 5 in both Table 4.3c and Table 4,3d, as one can
see that, the equality constraint is forced to approach to zero, Recall

that the formulation of the P-function with equality constraints is

defined as

1
' 1 T 7wl
) L
P(x,rk) = f(x) + L Z e + L Z hj(x)
i®i 3
-1
As T, 0, the penalty to equality constraints hj's, Ty 2 z h;(x), becomes
“d
very large. When minimizing the P-function, all the h,'s will be forced

3

to appreach to zero, -
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Fig. 4--lc. Production scheduling problem involving
two decision variables ; contour lines
indicate equal quantities of fotal cost
given by equation (4. 3).



The optimum of this numerical example is (61, 62) = (19,03, 14,04},
The route of the iterations start from two different starting points,
(25,29) and (5,10) is shown in Fig. 4-1la. Note that the selected
feasible starting point searched from the infeasible initial point,
(5,10), are different for these two numerical examples, one with in-
equality constraints only, and the other, with inequality comnstraints
and equality constraints.
4.3 A PERSONNEL AND PRODUCTION éCHEDULING PROBLEM

To demonstrate the capability and préctical nature of the method, it
is employed to obtain the solution of a problem based on the well known
modeliof Holt, Modigliani, Muth and Simen [2]. The problem is to find
the optimal operation cost in a paint factory by comsidering the monthly
production gnd work force level as decision variables in four different
sub-costs, namely, the cost of regular payroll, the cost of hiring and
firing, the cost of overtime, and thg inventory cost. The schematic
diagram of the system is shown in Fig, 2, The problem is to minimize the
sum of all four different costs over a planning period subject to the
constraints of non-negative inventory and non-negative overtime cost,
(The main reasons of considering non-negative otertime cost will be dis-
cussed later.) The demand of each period is known in advance and must

be satisfied.

Let
n = a month in the planning hgrizon
N = the duration, in months
En = production rate at the n—th month
W_ = work force level in the n-th month
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Qn = demand at the n-th month

Ln = inventory level at the end of the n-th month

Inventory level at the end of each month is represented by the re-
cursive relationship among current demand, current production and in-

ventory level of the preceding month,

In = In—l + Pn - Qn' n=1, 2, ..., N

The model considers the following monthly operatiom cost,
1. Regular payroll cost = 340.0 Wn

2. Hiring and lay off cost = 64.3 (Wn - R

Wn—l)
3. Overtime cost = 0.2 (P - 5.7 W )2 + 51,2 P -~ 281.0W
n n n n

4, Inventory cost = 00,0825 (In - 320.0)2

The system can then be represented by the following mathematical

model,
Minimize
N
BBy B wems B MiaWos casy Wy = J 8,
n=1
subject to
I =I +P -'Q >0, I1=l, 2, 'II’N_l

n n—-1 n n-—

IN-—1+PN‘QN3If

2

and

2
0.2(Pn = 5-67‘Jn) + 51.2Pn o 281.0Wn_>_ O, n= l, 2’ " ey N

where

- 2
s_ = [360,00 1+ [64.3(0 - W )]

2
+ [O'Z(Pn - 5.67wn) + 51.2P_ - 281.0wnl

+ [0.0825(1_ - 320.0) 2]
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The reason cf considering the non-negative overtime cost is due to
the characteristics of its mathematical formula., Taubert [5] found that
minimizing the total costs over the planning period by selacting a
certain Wn and Pn combination contributed a negative overtime cost to the
objective function., Since the negative cost is illogibal in the context
of the original paint factory example, a careful examination has been

carried out by investigating the overtime cost equatiom.

Overtime cost = 0,2(P_ - 5.,67W )2 + 51.,2P - 281.,0W
n n n n

The equation is in quadratic form and can have negative cost contours
as plotted in Fig. 3 [3, 5]. Thefefore, the constraint of the nomn-
negative overtime cost should be imposed.

A NUMERICAL EXAMPLE

To demonstrate the technique, a numberical example of the model with

ten stages is studied.

The numerical data used are as follows:

Dem%nd: Ql = 430, Q6 = 375,
Q2 = 447, Q7 = 292,
Q3 = 440, Qg = 458,
Q, = 316, Q9 = 400,
Q5 = 397, Q10=350.

The initial inventory, I, = 263, the inventory for the last month, If = 263

0

and the initial work force level W = 81,

The starting point is chosen arbitrarily at xo = (Pg, W?, Pg, Wg, Pg,

o 0 0 0 .0 0 0 0 0 0 0 0 0 .0,._
Was Bys Wy oy By W, Boy W, Poy Wo, Bg, Wo, Byo, Wi) = (500, 90,

500, 90, 500, 90, 506, 90, 500, 90, 500, 90, 500, 90, 500, 90, 500, 90, 500,

90)., The final result is obtained in 9 iteration (k=9) when the stopping
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-5
criterion is € = 10 and the starting penalty coefficient is ry =

3.352 x 106. The value of T, is computed by the formula
0 ‘4 7 1 :
ig =
i

The results are presented in Table 4.4,

Table 4.5 lists the optimal results obtained by employing the RAC
computer program and the present program for comparison. The results
obtained by both methods are almost identical.

The computing time is 15,12 minutes for the RAC program and is 8
minutes for the present program; on IBM 360/50 (use the WATFOR processor),
4.4 DISCUSSION AND CONCLUDING REMARKS

"The developed technique is a workable technique; and because of its
simplicity it can be applied to a wide range of practical problems. The
important advantages of this technique over the original available RAC
technique'are that the new technique does not need to evaluate any
derivatives, and requires less computing time,.

Thefe is a disadvantage that exploratory moves with small step sizes
in the Hooke and Jeaves pattern search may produce the values of P-
functional identical in all significant digits for a large numerical
value problem. A double precision specification which specifies more

significant digits in a computer may be able to overcome this disadvantage.



[}
p'e)

BEPVPC  SLEVPE (9°19) (1°29) (8°'29) (9°€9) (8'v9) (9°99) (8°89) (9°12) (L°ve) (6°LL)

9°0pS 8°/L9S €°8LE 9°LSE 0°L9% T1°9LE T1°'S8S 6°9Iv 8°Svv 8°89Y¥ ST°1S 6
AN A A A 4 A (9°19) (1°29) (8°29) (9°¢9) (8°¥9) (9:99) (8'89) (9'1L) (L*vL) (6°LL)

9°0pg  8'L9E E£°BLE 9°LSE 0°L9¢ T1'9LE £°€8E ZTLIY T'vby v°69F L0IX9¥0°Z 8
LVL VYT SES'PPT (9°19) (1°29) (8-°29) (5°¢9) (8°v9) (5°99) (£'89) (9°1L) (9°vL) (6°LL)

9'LYC €789 0°GLE 8°LSES ¥$°99¢ 0°SLE T1°S8E I°LIv 6°€VP S'TILV Noﬂxmmq.m L
81Z°SPZ  9TL'+¥2 (2°19) (2°29) (6°29) (9°'¢9) (8°'v9) (5+99) (9*89) (v 1L) (S'vi) (8°LL)

0°0S€ 0°G9E S°G8S 8°GSS T1°.L9€ 9'9LE 6°188 9'vIv 9°Ivy £°ZLV mcﬁxvhm.n 9
y9L 9V 9L0°SPT (2*19) (2°29) (6°29) (s°9) (L*¥9) (£:99) (5°89) (¥-1z) (S'¥L) (8°iL)

8°ZS¢ 0'0LE S°0BE €£°19¢ +°89¢ 9°LLS §£°'S8E ¥°'SIy £°Zvr 8°89F qoﬁxﬁm.ﬂ S
ot 6¥Z  C88SHT (¢°19) (0°z9) (9°29) (1'¢9) (£°¥9) (6°'s9) (2°'89) (1°1L) (¢ vL) (L°'iL)

G'65¢ 0'SLS 8°6LE 8°79¢ 0°0LE 8°8.€ S°L8¢ E£°'SIv S£°'Zvyr 0°69% qoﬂxmmm.m v
6£S°85Z  SYLTLVT (re19) (£°19) (0°z9) (v°z9) (¥°£9) (0°59) (£°29) (s-0L) (8°sL) (v'LL)

§°89% S'SLE S'I8E S°S9E 0°ILE STGLE 0°68% 0°9TY S'Evy €LY 0TXS60°C ¢
605682 S¥8‘eTST (£709) (¥ 09) (9:09) (6°09) (8°19) (s°£9) (6°s9) (¥*69) (z°g£L) (Z°LL)

S°8LE 0°€8C 0°€8E S°L9E S'TLE 0°I8E 0°C6E ST0TP 0°TISY £°L8Y OTXISE"8 r
¥82°6Sy  0CZ0°£0¢E (z°89) (0°99) (£°99) (S°wL) (L-sz) (L°sL) (ete2) (L-gL) (L°sL) (L°gL) :

0°22S 0°TLZv 0°SIy O0°SIv 0°SIy 0°STy O0°STy 0°STy 0°SIv 0°L9Y ocﬂxmmn.m I
005°99: 0Q0Z°ET9 (06) (06) (06) (06) (06) (06) (66) (06) (06) (06)

00S 00S 00S 00§ 00§ 00S 00S 00S 00§ 00S 0
e
Mg Enos O Ew Ew w o O G T Ew Ew (") aoﬂumwepH
30 30 - 84 by &g Lr 54 ¥ 4 ¢ 4 30 30
anyejp suep JO OnlEep aniep Iaquny

(se3e35-usl) BuIINPSYOS UCTIONPOI4 PUB [IUUOSIIJ FO SITNSVY 193ndwo)y ¢y 91qel,



70

Table 4.5. Comparison of the Optimal Solution of the Perscmiel and Production
Planning Preblem
Month RAC Program New Program
Pn Wn Pn ﬁn
0 81.0 81.0
1 468.6 77.8 468.8 77.9
2 443.0 74.7 443.8 74.7
3 416.4 71.6 416.9 71.6
4 382.2 68.8 383.1 68.8
5 577.7 66.6 376.1 66.6
6 368.3 64.9 367.0 64.8
7 358.8 €3.6 357.6 63.6
8 379.4 62.9 378.3 62.8
9 368.0 62,1 367.8 62.1
10 344.8 61.6 346.6 61.6

Total cost = 244,336

Total cost = 244,375
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CHAPTER 5
OPTIMIZATION OF A COMPLEX SYSTEM RELIABILITY

5,1 INTRODUCTION

In this chapter the reliability of a complex system studied in
Chapter 2 is again investigated, Two optimization problems associated
with this system are considered and the results are compared to the
results obtained in Chapter 2,

The first problem is the maximization of system reliability which

—

is identical to the problem studied in Chapter 2. The problem is to

b

A

i
find the optimal component reliabilities for the components of the complex |

system shown in Fig. 1 in Chapter 2.£?The system reliability is maximized

=

subject te a nonlinear cost function. The second problem is to minimize

' _,ni 4
Uity

the cost of the system, In this problem, constraints of a minimal ve-
quired syétem reliability and a minimum component reliszbility for each
component must be satisfied. ; oot

The method used to solve the above two problems in this chapter is
the method developed in Chapter 3.

Th; éﬁrposes of this chapter are: (1) to demonstrate the usefulmess
of the method developed in Chapter 3, particularly to the system reli-
ability optimization problems, and (2) to compare the capacity and ef-
ficiency of this method with that of the method used in the RAC program,

The optimal solution of the cost minimization problem cannot be
obtained by the RAC program, however, an optimal soluticn can be obtained

by employing the new method, The reasons of the particular difficulty in

-~ e

Ey

system reliability optimization problem is explained in section 5,5. For

the problem of maximizipg the system reliability subject to cost constraint,



the same results are obtained by the RAC program and by the new method,.
The computer time requirement, however, has substantial difference, The
RAC program requires over 20 minutes on an IBM 360/50 computer and the
new method it requires less than cne minute (55 seconds) on the same

computer,

5.2 FOﬁMULATIONS OF TWO SYSTEM RELIABILITY PROBLEMS

For the convenience the complex system reliability problem in
chgpte:MZ is briefly summarized below, The diagram which shows the con-
figgratipn of this system is presented in Fig 1 in chapter 21 In the
system, unit 1 is backed up in a parallel by unit 4. There are two
equal paths, where each path has unit 2 in series with the stage formed
by units 1 and 4, These two equal paths operate in parallel so that if
at least one of them is good the output is assured. However, because
unit 2 does not have a high degree of reliability, a third unit, unit 3,
ls inserted into the circuit. Therefore, the following operations are
possible: 2-1, 2-4, 3-1, and 3-4, and each operation has two equal
paths.

By applying Bayes' theorem of conditional probability, the following

expression of the reliability of this system has been derived (see

T3

chapter 2).
'R.S =1 - Qs
where (5.1)
_ 2 ; 2
Q = [(1~R1)(1-R4)] Ry + {l-R2[1—(1—R1)(1-R4)_]} (1-R,)

The two optimization problems studied with this system can be

summarized as follows:
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The first problem is to find the optimal component reliability,

¢ e —— e o

R,, which maximize the system reliability, R , subject to a2 maximal
i® s

cost functional comstraint. It can be restated as;

Maximize
RS =1 - QS
= 1- R, [(1-R,)(1-R,))?
3 1 4
_ .2
- (1-R3) {1~R2[1—(1~R1) (1—1{4)] }
subject to
Z C. <C
i t7
where (5.2)
L '
Ci = KiRi . Ki and a, are constants

-The second problem is to find the optimal component reliability,

Ri’ which minimize the cost function, C. It can be restated as;

Minimize
C= % Ci
i
where (5.3)
ay )
Ci = KiRi . Ki and o, are constants

subject to a minimal system reliability constraint

By 2 Rn (5.4)

where Rmin is a constant minimal system reliability required; and the
system reliability, R_, is given by Equation (2.1).
The cost function Ci in equations (5.2) aand (5.3) can represent

the weight, cost, or volume of each component of the system, and the



surmation of Ci_ghenrgggresent the total weight, the total cost, or

the total volﬁ;; of the system, The weight, cost, or volume of =zach
unit or component of the system is a function of reliability which can
be expressed by equations (5.2) and (5.3), where Ki is a proportionality
constant and ars the exponential factor, relates Ci and the reliability.

Usually-ai is less than one,

5.3. THE PROBLEM OF MAXIMIZING SYSTEM RELIABILITY
The numerical example solved in chapter 2 is resolved by the new

developed technique. The problem is to find the optimal Ri which maximize

2
RS =1 - R3[(1"R1)(1—R4)]
L 2
subject to the constraint
vl a o a
1 N 2 3 4 :
2K1Rl + Zszz + K3R3 + 2K4R4 < C. (5.6)

The constants Kl, K2, K3, and Ké, the constraint, C, and the exponential
constant oy i=1, 2,3, 4, are follows:

Kl = 100, K2 = 100, K, = 200, K4 = 150,
C

I
]

800, a, = 0.6, 1=1, 2,3, 4.

i
The problem is formulated in SUMT format as follows:
Minimize

f(x) - R

s

L]

2 2
-1+ R3[(1-Rl)(l—R4)] oz (l—Rs){l‘— R2[1 - (l_Rl)(l_RA)]}

subject to the constraints

Gl U.Z @ 0.3 0.4
gl(x) =C- (2KlR1 + 2R, R, + KgR," + KR, ) >0 (5.8)
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(x) =1 -R, >0, i=1, 2,3, & : (5.9)

841 i

The P function for this problem is

P(x,rp) = £(x) + 1 E /g, (x)

2 2

=-1+% R3[(1—R1)(1—R4)] + (1-R3){1 - 32[1 = (1-R1)(1-R4)]}

4
1 1 .
* rk ul a2 u3 u4 * 'El( _Ri)]
C- (R~ + R, "+ KRy + KR, )P
(5.10)

where x is the row vector of (Rl, Ri’ R3, R4)'

The optimal solutions obtained from two sets of different starting
components reliabilities, namely, [Rl’ R2, R3, R4] = [e.7, 0,7, 0,7, 0.7]
and [R;, R,, Ry, R4] = [0.6, 0.6, 0.6, 0.6], are presented in Table 5,1
together with the corresponding results obtained in Chapter 2. The
solutions are almost identical, that is, the optimal system reliability,
Rs, of 0.999998 with the cost of 799.733 for the first set of starting
components reliasbilities, and the optimal system relisbility, Rs, of
0.999997 with the cost of 799.908 for the second set of starting com~
ponents reliagbilities are obtained, Recall that the constraint on the

cost is 800, The optimal components reliabilities are almost the

same for the both starting sets cof the starting points. The stopping

criterion for temminating the minimizatlion of the P function at each k
iteration is that terminating when the number of cit-down step-size
operations in the Hooke and Jeeves pattern search is 3, and the final

. A . ; ] -4
stopping criterion for terminating thes problem is ¢ = 10 ', For the
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Table 5.1,

Comparison of the Optimal Solutions

Program Numbzr of Compongnt reliability
iterated B R, Ry R,
0 0.7 0.7 0.7 0.7
RAC
10 0.9876 0.9936 0.6972 0.6941
0 0.6 0.6 0.6 0.6
Program
11 0.9889 0.9921 0.7019 0.5886
0 0.7 8.7 0.7 8.7
New
12 0.997626 0.998399 0.682652 ¢.69Lgs5i
0 0.6 0.6 0.6 0.6
Program
12 0.997L409 0.998117 0.68281"

0.702590




i 4

>f the System Bleliability Maximization Problem

System
Reliability

R
s

0.99996

Stopning criteria

0.99995

0.959998

0.999997

Cost for each  for final Computing time
k €
exceeds 2C min.
e1=10"2 e=10"%
T99.78
exceeds 20 nin,
799.28 e1=10" e=10""
(botn problenms
o
Y 799.733 TNCUT=3 e=10"7  together)
799.908 INCUT=3 =107 90.% sec.




‘Table 5.2a. Computei' Rezults ol th
[Start at R, = 0.
Iteration Times of f-value Vaiue of
calculated at r R.’L RP
each iteration k ' T
2,21k x 1072 0.6 0.6
1 70 .21k x 1072 6.6200 6.7156
2 68 Se535% 1073 0.7900 0. 7300
3 59 1.38% x 1075 0.8700 0.8700
L 89 3.459 x 1o'h- 0.872499 0.9112°
5 T2 8.648 x 1077 0.96k099 0. ghoTh
| ~

6 174 2.162 x 10 - 0.944307 0.9581¢
T 202 5.405 x 107° 0.973031  0.9307¢
8 129 1.351 x 10'6 0.983L15 0.95817
9 110 3.378 x 107 0.985665 0.99262
10 85 8.4L6 x _"I.O—8 0.993554 €.96550
11 76 2.111 x 10'8 0.9550L5 0.9572¢
12 60 5.279 x 1077 0.997kC9 0.99811




, for ail i]

Sysvem Reliablllty Maxinization Problem

=

R, Ry, -P (=R) Cost

) 0.6 0.6 0.664T7 0.8862 662.4
0.5850 0.6175 0.677501 o.gzhaé'r 683.298
0.6600 0.6750 0.88815 0.970k93 - 753.h31
0.7400 0.70833 0.991246 0.991240 776.258
0 0.791250 0.736458 0.986L39 0.996132 796.919
9 G. 767740 0.722707 0994712 0.997902 798.961
§  0.73074E 0.707252 0.997960 0.999207 798. 889
s gpisEEL 0.693293  0.999216 0.9997L0 798.831
3 0.710138 0.688581 0.999691 0.999898 759.273
5 0.704067 0.687510 0.999878 0.999960 795. 504
3 0. 703067  0-685176 0.999952 0.99598% 799.680
 ouqozsgol  0-6832TL  0.999981  0.99999%  799.730
0.7025%0 L 0.682617  0.999992 0.999997 799.538

78



Table 5,2b. Computer Results of the Syst

[Stert at R, = 0.7, lor
i _

Iteretion Tires of f-value Value of |
X Ziiﬁ”??ﬁ?itiin Tk K "2 |
0.7' 0.7 |

1 68 1.788 x 1072 0.64000¢C 0.73oo¢
2 100 B.4TL x 1072 0.726250 .0.8162a
q 61 1.118 x 1075 0.816250  0.87625l
L ikg 2.79% x 107" 0.87812L 0.9212k|
5 38 6.986 x 1077 0.88112L 0.52724
6 126 1,747 x 1077 0.913037 0.9k532
T 232 4.366 x 1070 0.969679 0.98001
8 i15 1.092 x 1070 0.953835 0.98912
S 9L 2.729 x 1077 0.990263 C.99327
10 68 6.822 x 1070 0.993763 G.G957"
1z 69 1.706 x 1670 0.996263  0.99720
12 €9 b.264 x 1077 0.997625 0.5953¢




eri Reliability Maximization Froblem

B all i]

- Y » :B;
0.7 0.7 0.7161 0.9548 T26€.6
0.610000 ‘0.63250d 0.726307  0.936015  €95.180

' 0.711250 0.783750 0.906109 0.992678 .  752.153
0.791250  0.783750  0.967770  0.992678  790.570
0.76687h 0.T74L8L3 0.988329 0.996569 T97.343
C.76387k 0.750843 0.99h753 9.996927 798.672
0.7Lk0%436 0.736226 0.997489 0.998211  799.632
0.692296 0.715007 0.999295 0.999699 T99.637
0.667223  0.702855  0.999731  0.999911  799.305
0.685080 0.698569 0.999894 0.999965 799.322
0.684080  0.697069  0.999958  0.999986  799.593
0.682652 6.6956ho 0.999983 0.999994 799.568
0.682652 0.999998  799.733

0.694958

0.999993

T9
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first set of starting points, it takes 12 jterations for P functions,
k = 12, with totally 1192 f-functional values evaluated, And for the
second set, 12 iterations for P functions, k = 12, with totally 1194
f-functional values evaluated,

Tables 5-2a and 5-2b present the iteratijon results converging to
the optimal solution. Results given in these tables show that the system
reliability, Rs’ is monotonically increasing as iteration k increases.
fhe value of P function approaches to that of f function (= —RS) as the
iteration proceeds, Thus the minimization of P function will eventually
lead us to the minimization of f function,

The values of x, used in Tables 5.2a and 5.,2b are determined by

) - (5.11)
0 i gi(xo)

f(xo) =r

where X, is the initial point. The basis for of this selection procedure
is to render the value of the penalty of the constraints to be approximately

the same order of magnitude as the value of the f-function at the starting

point in the P-function formulation

S
g; (xo)

B(xy, 1) = £(x,) * x, E
The compufer time consumed to obtain each set of the solutions pre-
sented in Tables 5,2a and 5.2b is 45 seconds respectively on an IBM 350/50
computer by using the Watfor processcr. Recall that the same precblems

solved by the RAC program, as presented in Chapter 2, ccnsumes ovar 20

minutes on the same computer.

5.4, THE COST FUNCTION MINIMIZATION PROBLEM
The numerical example of this preblem studied is restated helow. The

objective is to find the optimal Ri's which minimize
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ey a, 7 o a,
C= 2K1Rl + 2K2R2 + K3R3 + 2K4R4 (5.11)
subject to the constraints
2 2
Rpin 21 R3IA-R)DIAR)IT - A-R){I-R,[1 - (1-R,) (1-R) 1} (5.12)
By 2By i | (5.19
The numerical values of parameters are
Kl = 100, K2 = 100, K3 = 200, K4 = 150
C = 800, @, = 0.6, i=1,2,3,4.
Bmin = 0.9, Ri,min = 0.5, i=1,2,3,4.
The problem is formulated in SUMT format as follows:
‘Minimize
f(x) = C
o o o o
1 2 < 4 3
2K1R1 + 21<2R2 + K3R3 + 21(41{4 (5.14)
subject to the constraints
i 2
gl(x) =1 - RS[(l—Rl)(l-RA)} - (1~R3){1 - Rz[l - (l_Rl)(l-Ré)]} - Rmin-—
(5.15)
gi_l_l\x) = Ri - Ri,min >0, i=1,2,3,4, : (5.16)

The P fuaction for this problem is
P(x,rk) = f{x) + 2N g lfgi(x)

o a a o
, 1 2 3 4
2L1R1 + 2K2R2 + K3R3 + 2K4R4
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+ rk{ - ) 1 5
1- R3[(1-R1)(1—R4)} - (l—R3) 1—R2[l - (1—Rl)(1—R4) -

Rmin
. 1
+ ) Qﬁ—f:?{—'““a} (5.17)
i=1 i i,min

where x-is the row vector of (Rl, R2, R3, R4).

For this problem, the RAC program failes to satisfy the special
requirement that the wviolable non~negativity constraints should never
be violated during the search. The results obtained by applying the
new developed program is presented in Tables 5.3, 5.4a and 5,4b.

The optimal solutions obtained from two sets of different starting
components reliabilities, namely, [Rl, R,s Ry, R&] = [0.6, 0.6, 0.6, 0.6]

and [R._, R2’ R3, R,] = [0.7, 0.7, 0.7, 0.7] are presented in Table 5.3.

4
The solutions are almost identical, that is, the optimal minimuﬁ'cost,

C, of 642,249 with the system reliability, Rs, of 0.900159 for the first
set of starting components reliabilities, and the optimal minimum cost,
C, of 642 428 with the system reliability, RS’ of 0,900021 for the

second set of starting coﬁponents reliabilities are obtained, Recall
thét the constraint on the system reliability is 0.9. The optimal com-
ponents reiiabilities are almost tﬁe same for both starting sets. The
stopping criterion for terminating minimization of the P function at each
iteration is that terminating when the number of cut-down step-size
operations is 3, And the final stopping criterion for terminating the
problem is & = 10-4. For the first set of starting points, . it takes

12 iterations for P functions, k = 12, with totally 1896 f-functional

values calculated, And for the second set, 14 jterations for P functioms,



Table 5.3 .

Optimal Sc

Iteration Iteration Values of Component Reliabil
of ), of £ : J
R R R
Kk " 1 2 3
0 0.6 0.6 0.6
12 0.502711 0.834631 0.500k38
(o] 0.7 0.7 c.7
1L 0.512435 0.825132

0.5005L5 |




lution of the Cost Minimization Problem

S@opping criteria

ities ‘System reliability
R, Rs Cecst for each k for final ¢
“ ' ' VINCUT' ' THETA'
0.6 0.8992 667 .k
3 1077
| 0.50202L 0.900159 64z .249
l
L 0.7 0.95L48 72¢€ .6
3 107°

0.501431 0.900021 6lhz.L28




Table S5.4a., Computer results of the cos

[Start at R, = 0.6,
i

Iteration Times of f-value Value of
k calcu}ated §t ry R1 R2
each iteration
0.6 0.6
0 0.640000 0. 640600
1 70 1.470 0.605000 ' 0.645000
2 87 0.3675 0.554999 0.795500
3 67 0.09182 0.541666 0.821666
4 44 0.02297 0.531666  0.806656
5 107 0.005743 0.513666 0.82866%
6 101 0.001436 0.507302 0.833211
7 68 0.0003589 0.503968  0.835711
8 52 0.00008973 0.503199 0.834942
9 189 0.00002243 0.502712 0.834632
10 51 0.000005608 0.502712  0.834652
11 1009 0.000001402 0.502711 0.834631
12 51 6. 0000063505 0.502711 0.834631




t function mimimization problem,

for all i]
3
R, R P (= Cost) R,

0.6 0.6 828.0 662.4 0.5892 -
0.600000 0.600000 981.8 676.9
0.600000 | 0.640000 848,140 654.796.- 0.912690
0.559999 : . 0.580000 704.935 673.866 0.927331
0.519999 :  0.533333  672.318 658.077 0.916563
0.500999 :  0.518332  656.939 650.045 0.906742
0.506995 .  0.507332  649.202 - 645.493 0.903444
0.503362 «  0.503696  645.501 643,648 0.901716
0.501695 0.501821  643.660 642,738 0.900850
0.500926 0.501821 642.817 642,395 0.900363
0.500439 0.501494  644.016 642,124 0.900012
0.500439  0.501452  649.370 642,114 0.900001
0.500438 0.501451 665.640 642,113 0.900000
0.500438 0.502024  642.252 642.249 0.900159




.-Table 5.4b, Computer results of the co
| [Start at R; = 0.7,
Iteration Times of f-value Value of :

k calcu%ated at T, Ry Rz

_each iteration )
| 0.7 0.7

i} 81 4.749 0.745000 0.8%2500
2 102 1,187 0.043749 0.793750
3 g9 0.2968 0.581249 0.798749
3 84 0.07421 0.549374 0.806249
5 76 0.01855 0.526874 0.818249
6 91 0.004638 0.515965 0.82574¢
7 58 0.001159 0.514089 0.825749
8 68 0.0002899 0.513224 0.826325
9 497 0.00007247 0.512688 0.825730
10 358 0.00001812 0.512412 0.825519
11 51 0.000004529 0.512412  0.82551¢
12 288 0.000001132 0.512433 0.825194
13 1006 0.0000002831 0.512435 0.825132
14 59 0.00000007977 0.512435 0.825132




st function mirimization problem.

for all i}
: : t
as R4 ‘P ;= Cost} Rs '

0.7 0.7 908.3 726.6 0.9548
0. 715000 0.670000 890,124 747,532 0.980070
0.610000 0.589374 756.752 694.7§3- 0.946418
0.5524429 0.546874 696,952 668.156 0.924405
0.526240  0.524999  668.814 655.247 . 0.912314
0.512749 0.512999 655,177 648.439 ¢.9205870
0.505931 0.506692 648.484 645.156 0.902995
0.502806 0.503723 645.279 643,667 0.901447
0.501652 0.501704 643,706 642,946 0.900739
0.501116 0.501194 642.998 | 642.586 0.500259
0,500379- 0.501078 642.807 642,443 0.900056
0.500879 0.501978 642.679 642,656 5.900298'
0.500560 0,.501531 642,481 €42.461 - 0.900065%
0.500549 0.561470- 642.4438 642,438 6.900031

~ 0.500549 0.501431 642.432 642,428 0.500021




END

OF
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k = 14, with totally 2918 f-functional valuds calculated,

Results given in Tables 5.4a and 5.4b show that the cost of the
system, C, is monotonically decreasing as iteration k increases. The
value of the P function approaches to that of the f function (=C) as the
iteration proceeds. Thus the minimization of the P function will
eventually lead us to the minimization of f function,

Again, the values of r A are determined from Equation (5,11) as

0
explained in Section 5.3.

The computer time consumed to obtain both sets of the results pre-
sented in Tables 5.4a and 5,4b is 75 seconds on an IBM 360/50 computer
by using the Watfor processor.

It is worth noting that the starting point R® = (Rl, R2, R3, R4) =
(0.6, 0.6, 0.6, 0.6) in Table 5.4a is in infeasible region. The system
relisbility given by R® is 0.8892 which is less than By nine OF 09
Therefore, before the P-function minimization routine is started, a new
feasible point is searched first., The point (0.64, 0,64, 0.6, 0.6) in
the second row of Table 5.,4a is thus selected and is used as the feasible

starting point to start the minimization procedure, The method used to

search this new feasible starting point has been discussed in Chapter 3.

5,5 CONCLUDING REMARKS

From the results presented in this chapter and those in Chapter 4,
several concusions can be drawn.

(1) The procedure of selecting thé initial value of penalty coef-
ficient, Tos is valid and convenient, In this procedure the vélue of
the sum of the penalty terms is made-approximately the same order of

magnitude of the f-function at the initial point, Xgs that is,
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_.l.
2

f(xo) I Z g h?(xo) (5.18)

gi(xu) 3

Equation (5.18) is solved for r, and this value is used as the starting r.

0

(2) The modified Hooke and Jeeves pattern search technique has
been proven to be a successful one in the solution of the numerical
examples studied in this chapter. As shown in Table 1, the optimal
solutions obtained by employing the RAC program and that by the new program
developed in the present work are almost identical.

(3) The number of functional values evaluated by applying the new
comppter program is large, This can be a significant disadvantage,
especially when the f-function and/or comstraint functions cannot be
evaluated in a straight forward manner, for example, the functions are
nonlinear differential equations.

(4) The computing time compared in Table 5.1 shows the big difference
on the time consumptions by the two different programs for the same
system reliability maximization problem, Only 90.4 seconds are needed
for obtaining the two solutions by the new computer program developed in
this work., While either problem needs to consume over 20 minutes by the
RAC program,

(5) The optimal solution for the cost minimization problem can be
obtained by the new program while the RAC program fails to give an
solution,

(6) Theras is a difficulty in the optimization of the cost minimization
problem mentioned, The feasible region bounded by the given constraints

is very narrow and so the constraints is violated freguently. Usually,
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in most techniques such as the RAC program and the method developed in
Chapter 3, there provided some modification to move a point in the in-
feasible region back to the feasible région. In maximizing the system
reliability problem both programs does not give rise to much difficulty.
However, in the minimizing cost problem for this particular character
of system reliability optimization problems the RAC program fails to

solve the problem, Because the cost function to be minimized is

~ 0.6 0.6
C= 2KR" + KR, +K

0.6 0.6
3R3 + 2K4R4

K,, K, and K, are constants and R, is the component reliability

2% 73 4 i

i

where Kl’

for the ith component which involve R terms, When C is minimized,

Ri's, essentially, decrease. The non-negativity constraints over

component reliabilities are violable. When the non-negativity con-—

. . . 0.6 . . .
straints are violated, the respective R1 8 is mathematically undefined

and so is the cost function,
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APPENDIX

COMPUTER PROGRAM FOR IMPLEMENTING SUMT BY

HOOKE AND JEEVES PATTERN SEARCH TECHNIQUE

The computer flow chart which illustrates the computational pro-
cedure is presented in Fig. 1, 2, 3, 4 and 5; the FORTRAN program
symbols, their explanations and corresponding mathematical notations
are summarized in Table 1, The computer program listing follows the

symbol table,
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- ( START )

Select  initial

starting point

& Selzct g feasible

initial point _
’ siorfinog point

. feasible €

' YES
Define P function: [_
Plx,r)=fsr 3 Vg
If @ move is 5{-'/22: ﬁg‘j 1 <
out of fooeible . 7
]

region, move bach
into nzarfcasible o Minimize P (x, rk)
by Hoolie & Jzoves Poit-
ern Szarch, %

region. -

Move irto

fecasible region

b

NO- Set
k=k+ |

this the
dphimum solution fo fha
problam?

(S0P )
~ Fig.1. Descriptive flow diagram for SUMT with Hooke ond
Jeevas Paflern Search.



( ENTER )

!

Start ot the input infeasible starfing point

Y
Compute the weight of violation:

Tor = {2 (g (X2 +2lhs ]2} "2 for ol g,(x) LO, b, #0

- "

¥ [ | T 1
Sfort ot base point

¥

Moke exploratory move fo minimize TGH with siep-sizas

twice the input siop sizes.{ Exit when a move is fecsible)

exnlorotery movad ,
N : s Cut cdown step-sizes  f——o
moke progress ©
Set new basc point
feke pattern v i
Ma P 1 gyh 7 Set pattern

move point t_o.

YES the new bosz

pafiern mgve mcke

) " it feasible ¢
progress ¢ '

- point.

L =

Fig.2 . Descriptive flow diagram for selecting a ffecas,ib!e '
starting point.



( ENTER ) ' ' , 93

3

Compute the F'(X,rk) af starting point
for k-th suboptimum sezarch.

R i 1

Start at base point

*’ If ¢ move go outcf

Mcke exploratory move the feasible region,
' move back according
fo procedure in Fig 4.

exploratory raove

raake progress?

step size YES -
small enough “(Exj r )

Sc¢t nev: base peint

{ | y NO
NMoke paitorn move : g
: Cut dovin step sizes
patiern move ]

¥

rmoke progress—

Move back into
| feasibls region (or
‘near-feasible region)
according to Fig.4.

Set new base point

¥

Fig.3 . Descriptive flow diagram for Hooke and Jeeves Patiemn
© Search for minimizing P (X, r ) function. '




ok

t E;l-'l_'.i": i

Stort @t the infeasible point which

nced to be pulled back into

near-feasible region.

L
éomPufe the vigight of violation: 7

s - _
TGH:{%[‘J’“”] +5g[hsm)2}”2._for dl g{x)LO, hy=0

4
Decide the tolerance limit, B

Stort ot bose point W
¥

Make exploratory move

for minimizing TGH, with

YES for cvory rove

it B-TeHi > 09

step-sizes ’/2 of the

NO entered step-sizes.

v

Decicoss the

Sct

| new bozs|
-point

exploratory mov
make progress §

tolerance limil,B

' EXIT : ]

Cut down step sizcs

Fig.4. Descriptive flow diogram for moving on infsasible point
| ‘beck into. near feasible region.
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CENTER

Compute the weignht of violoﬂon T R P
- o2 Treo Y2 72 :
- TGH = {Z{g?(xka +§[hs(xk.)] } Ffor al gy L0, hg#0

where Xy is  the entering k ~th sub-optimum .. et

Lt

o
k

sub-—- opliraum for o step to ¢ new poist
ol
k o

Move Xo toward X, the feasible (k—1)-th

X

- . - - l'i - - -
Fig.5. - Descriptive flow.diagram for moving the
near—feasible k-th sub-optimum into
feasible region.



96 .

Table 1. Program Symbols and Explanation

Program Mathematical
Svmbols Explanation - Symbols
B tolerence limits for comstraint violation
BX (1) base point in Hooke and Jeeves pattern search
D(I) step-size in Hooke and Jeeves pattern search di
FG(J) (j)th inequality constraint value at point FX(I) gj
FH(K) (k)th equality constraint value at point FX(I) hk
FP P-function value at point FX(I) P
FRAC the fraction of step-sizes used in pulling back
infeasible point to the feasible region
FX(I) the intermediate suboptimum point during search
FY f-function value at point FX(I) f
FTGH the intermediate least value of TGH during pulling-back
procedure
G(J) {(j)th inEquaiity constraint value at point X(I) gj
H(K) (k)th equality constraint value at point X(I) hk
IB program control code, IB = 1 means that the point is
on the bcocundary
ICHECK program control code, ICHECK = 1 means that ITMAX is
' exceeded '
ICUT input option code for initial step-sizes set-up
IDPM problem number
INCUT stopping criterion for stopping each k-iteratiom
ISTYE input option code for initial step-sizes set-up
ITER nurcber of times of calculating f-functional values within
a k-iteration
ITMAX specified maximum number of calculating f-functional
values within each k-iteration
LOST progran contrcl code,INST # O means that some g, < 0
MG total number of inequality constraints m
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Table 1., Program Symbols and Explanation (continued)

Program Mathematical
Symbols Explanation Symbols
MH total number of equality constraints )
MAXP specified maximum number of k-iteratioms
N total number of decision variables n
NAME1
NAME 2 three parts of the name of the input problem
(6 characters)
NAME 3
NOBP number of moves go out of the feasible region
NOCUT number of cut-down step-size operations
NOEXP number of exploratory moves
NOIT total number of times of calculating f-functional values
from the very beginning :
NOITB number of moves iterated in the infeasible region
NOITP number of moves iterated in the feasible region
NOPAT number of pattern moves
NOPM number of input problem sets
NOPULL number of times of the operations pulling back suboptimum
to the feasible region
NOR number of k _ k
ox(1) suboptimum point : xo
P P-functionsl value at point X(1) : P
PB initial tolerence limit of constraint violation
PD(1} initial step-size ) dg
PENAY penalty value to inequality counstraints Ty Z l/gj
13
_ . A 2.2
DEMAZ penalty value to equality comstraints T, . hj
3
PX(1) pattern move point in Hooke and Jeeves pattern search



o8

Table 1. Program Symbols and Explanaticn {continued)

Program Mathematical
Symbols Explanation Symbols
PULL a fraction used to pull back suboptimum to the
feasible region
penalty coefficient X
RATIO reducing rate for reducing R C
STGH least value of TGH during searching a feasible
starting point procedure
1
2 2 #
TGH weight of violation to constraints (Z & + X hs)
k s
THETA final stopping criterion €
X(I) a point X,
XB(NB) a point in dulling-back processes X,
Y f-functional value at point X(1) f
f {
YSTOP computed value of ¢ i inl
f—rkz-;-+ rk2 Tn?
18 i
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The problems considered in this report are optimization of system re-
liability of a complex system and optimization of production scheduling and
inventory countrol.subject to some linear and/or nonlinear constraints, The
optimization method employed is the sequential unconstrained minimization
technique (SUMT),

The purposes of this report are twofold. The first is to present a
result of implementing SUMT by a combination of the Hooke and Jeeves pattern
search technique and a heuristic programming technique, The second is to
present resulis of employing the developed technique to the optimization
of system reliability of a complex system and production scheduling and
inventory control problems.

There is a general computer program available entitled "RAC Computer
program Implementing the Sequential Unconstrained Minimization Technique
for Nonlinear Programming”. In This computer program, the unconstrained
minimization technique used is the second order gradient method, Dif-
ficulties which arise from use of the second order gradient method as a
unconéérained minimization technique in SUMT becomes predominate in a
large size and/or very complex nonlinear problem, The difficuliies arised
particularly in taking correctly the first order and second order partial
derivatives of complex nonlinear functions which most of practical problems
have, Therefore, a new algorithm which using a much simpler direct
search technique is very desirable, For this reason, a new technique of
implementing SUMT by the Hooke and Jeeves pattern searéh teéhnique to
be its unconstrained minimization has been developed.

This newly developed method is utilized to obtain the optimum
solutions of two examples of production scheduling and inventory control

problems, The first problem is a simple two dimensional problem used for



demonstrating the procedure of the algorithm in details and the second
problem is a 20-dimensional problem used for demonstrating the capacity
and practicability of the technique.

The problem of optimizing a system reliability becomes considerably

more difficult when the redundant units of

e

the system cannot be reduced

o i v

to pure parallel or series configurations, In such a complex system the

system reliability is obtained by Bayes' theorem which utilizes con-
ditional probabilities, A mathematiﬁal model for the nonlinear system
reliability subject to constraints is formulated., The nonlinear pro-
gramming problem of optimizing the system reliability is then solved by
SUMT using RAC computer program and by the newly developed technique

and the results are compared.



