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INTRODUCTION

Recently there has been considerable interest in the laser annealing

1 2 3
of ion-implanted semiconductors. ' In 1975, Soviet researchers Kachurin ,

4
Shytrkov and co-workers reported the use of pulsed lasers for annealing

of ion-implantation damaged semiconductors. Up until that time, thermal

annealing in a furnace had been the only method available to repair the lattice

disorder in materials caused by ion bombardments. Laser annealing offers many

advantages over conventional thermal annealing. In addition to being a much

faster process, laser annealing can be confined to the damaged (implanted)

region to avoid the contamination and degradation associated with long term

heating of the entire crystal. This feature is especially useful in the

case of semiconductors such as GaAs that decompose at high temperatures. Most

of the laser annealing work has been done on ion-implanted silicon , probably

because of its widespread use in the fabrication of semiconductor devices. But

some laser annealing has also been done on GaAs. In both cases, there have

been reports of excellent results in terms of restoration of crystal structure

and electrical activity in the ion-implantation damaged semiconductor crystals.

As mentioned above, the earliest work in laser annealing was done using

pulsed lasers. In 1976, Klimenko and Kachurin reported the use of scanning

continuous wave (CW) Argon ion lasers for annealing. Today, both CW and

pulsed techniques have been shown to be effective although some differences

do exist in the annealed samples. While pulsed laser annealing is a much

faster process because of the very high power densities, secondary ion mass-

spectrometry (SIMS) and ion backscattering experiments on the annealed samples

revealed considerable redistribution of the implanted ions.
8 ' 9

In contrast,

no redistribution was observed in CW laser annealed samples.
10 ' 11

This feature

is important if the dopant profile is a critical requirement. Moreover, good

focusing ability of the CW laser enables annealing in precise patterns such as

in integrated circuits.

1



Although the technique of laser annealing shows great promise, researchers

are still working towards an understanding of the physical processes involved.

In the case of CW laser annealing, the absence of dopant redistribution plus

reflectivity studies suggested a solid-phase epitaxial regrowth process in

the amorphous (ion-implantation damaged) layers of silicon. On the other

hand, the basic mechanism of pulsed laser annealing is still the subject of

12 13
much research. ' For example, there has been much controversy on the

question of whether melting of the sample surface is necessary for successful

annealing by a pulsed laser.

The temperature of the sample during laser heating is one important piece

of information missing in the attempt to understand the kinetics and mechanism

of the annealing process. Theoretical temperature calculations for the case

of CW laser heating have been reported. ' In fact these calculations have

been utilized, in conjunction with epitaxial regrowth data obtained from conven-

tional furnace anneal experiments, to prove that solid-state epitaxial regrowth

is the basic mechanism in the CW laser annealing process. However, in addition

to the fact that the calculated results have not been confirmed by experimental

measurements, the accuracy of the calculations depends critically on a thorough

knowledge of the properties of the material under different temperatures. There

have also been reports of theoretical calculations of the sample temperature

during pulsed laser heating which involve numerical solutions of the heat

transport equation. Again, no experimental temperature measurements are

available to confirm the results.

In this thesis I shall demonstrate that it is possible to measure the

sample temperature during laser heating by analyzing the Raman signals that

are contained in the scattered radiation. In this method of temperature

measurement, the heating beam can be used as the Raman excitation source.

Alternatively, a small and low power probe beam (which would not cause

significant heating) can be used to measure temperatures in different regions



of the sample. In principle, the temperature information is contained in the

Raman signals through the temperature dependence of the phonon population. As

will be explained later, the Raman anti-Stokes to Stokes intensity ratio is very

simply related to the phonon population, making it easy to extract the temperature

from the Raman ratio.

This thesis reports an experiment that demonstrates the feasibility of the

Raman technique of temperature measurements. In the experiment, a focused CW

argon ion laser is used to heat a pure silicon sample. The Raman ratios

obtained are used to extract the maximum temperature as a function of absorbed

laser power density. Because of limitations in the available laser power, the

beam is focused very tightly to maximize power density and therefore the

temperature. As a result, a Raman probe beam cannot be used. To account for

the non-uniformity of temperature in the heated area, theoretical calculations of

the thermal gradient are employed in the data reduction process.

For comparison purposes, calculated maximum temperatures based on Lax's

solution to the heat conduction equation ' are also presented. The results

show good agreement between theory and experimental data. Finally, possible

reasons for the small difference that do exist between theory and experiment

are discussed. Because of the good results obtained in this investigation,

the Raman method appears to be a very promising technique for temperature

measurements during laser heating.



THEORY

Phonon Raman Scattering—Stokes and Anti-Stokes Intensity

Raman scattering is the inelastic scattering of photons. In first

order phonon Raman scattering in crystals, an incident photon of energy

-lioij is destroyed resulting in the creation of a scattered photon of energy

IW, accompanied by the creation or destruction of a phonon of energy fin .

Requirements of energy and wave vector conservation in the process give

rise to the following selection rules:

a, » in ± a (1

)

k
i

= k
s * q

where q is the phonon wave vector. The positive sign applies to the case of

phonon creation (Stokes process) while the negative sign refers to the destruc

tion of an existing phonon (anti-Stokes process). The fact that phonon

frequencies are usually much smaller than photon frequencies u, or u leads to

the approximations i^. = k
%

and |qj « 2|lc. [sin(|) where $ is the angle between

the incident and scattered photons. For a typical incident photon of wave-

vector of the order of 10 cm in a crystal, conservation of wavevector

restricts the wavevector of the scattered phonon to be also of the same order

of magnitude. Compared with the typical Brillouin Zone widths of 10
8

cm"
1

,

the Raman phonons are essentially zone-center phonons.

The intensity of the Raman lines in crystals can be found most directly

using the third order time dependent perturbation theory. The procedure,

1 ft
which was first employed by Loudon In calculations for diamond and zinc-

blend structure crystals, considers the elementary interactions between three

systems: the photons, the electrons and the lattice. For the case of Stokes

scattering in which a phonon is created, the probability per unit time that

an incident photon is destroyed in a Raman process is given by
18
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where n . , 0, n are the populations of incident photons, scattered photons and

optic phonons in the initial state; a and s are the intermediate states of the

system; q, k are the phonon and scattered photon wavevectors . Moreover, the

electronic system starts and ends in the ground state. The interaction matrix

consists of two parts: H.^Hpp+H,.. , where Hp„, the electron-photon interaction,

contributes to the first and third matrix elements, while H-. , the electron-

lattice interaction, contributes to the second matrix element. Here H„, , the

photon-lattice interaction, has been neglected assuming a very large difference

between photon and phonon energies and therefore weak interactions (in our case,

the zone center phonon energy of silicon is 64 meV compared with the typical

laser photon energy of 2.5 eV). H_
R

is given, in second quantized symbols,

- iJt-r-i, + -ilt"r.
a
k

e J+ a
k

e j VPj (4)

where p., r. are the momentum and position vectors for the j electron, n ts

the optical dielectric constant, V is the crystal volume, £. is the unit polar-

ization vector of the photon k, a. and a. are the destruction and creation

operators for the photon of energy •fito.. The matrix elements of rU for non-

polar crystals such as silicon can be expressed in terms of the deformation

i 1

R

potential a „ as

:

<B|H
F
.|«>== 1'

( ^f i + e^ f b
+

«.+ b
_
+l ret

where y is the reduced mass of the atoms in the unit cell, N is the number of

unit cells in the crystal, £ * is the unit directional vector dependent on the

optic phonon sq, R is the position vector of the sublattices , b and b" are the

creation and destruction operators for the phonon, and a is the lattice constant.

Evaluation of the matrix elements yields the following expression for the Stokes

1 R
scattering probability

1 . 4A 4

v

n
i(

n
o
+1

)|-i .1
f

J 2
(2n)
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with the Raman tensor

12
(-»1(«s

»a) -
y I

a,

6

B x a i

+ five terms
(7)

where P g=<o|P|8>, P
aQ

-<a |p |
o> are the momentum matrices. The superscripts 1,2

denote the polarization directions El ,e, of the photons »,,u . In the above
* I IS

expression, (n
Q
+l) is the phonon population factor produced as a result of the

phonon creation operator. The six terms in the Raman tensor correspond to the

six possible time orderings in the interactions between the three systems.

However, for homopolar crystals (such as silicon) which does not have infrared-

active (long wavelength) phonons, only the first term which corresponds to the

process described in the following diagram is of significance because the energy

denominator in the first term is much smaller than that of the other terms.
19

The anti-Stokes scattering probability is given by an expression very

similar to the Stokes probability

1 4n
3
e
4

I

n.n
1 o
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where the subscript as denotes the anti-Stokes quantities. In addition to the

differences in the scattered photon frequency » and the phonon occupation

number n
Q

, the Stokes and anti-Stokes probabilities differ in the Raman tensors.

However, the difference between the Raman tensors, which lies mainly in the

energy CtenomlnatorsUgtQ-w,) is small provided that the incident photon



frequency w. is not close to any transition frequency m . Concentrating only

on the quantities that are different between the Stokes and anti-Stokes cases,

and carrying out the summations, the scattering probabilities can be written as

follows:

i, ,_.„/ „,U , ^l
2 do)

(7» Stokes " (n +l)(a.ro) Rj
2
U,....Q)

2

# A-Stotos
-< no><"H R

12 «—t-as--°>|
(11)

As mentioned above, the differences between the Raman tensors are small, but

they are kept in the above expression because of the w dependence contained in

the p matrix. For dipole transitions, the frequency dependence of the matrix

or.

can be extracted by changing to the length formulation:

<0|p|B>=imJj
s
<0|D

r

|B>
( 12 )

where is the electronic displacement vector. Consequently, the ratio of the

number of Stokes scattered photons fL to the number of anti-Stokes photons N. per

unit time is

N p n +1 a,-a 3
s = r_e_ if_j

—

) (13)

where n =n (n) is the initial phonon population described by photon statistics:

„
o
.(,*W . i)-l (14)

It should be pointed out that the above ratio is of the number of photons.

If the ratio of intensities is needed, the expression must be multiplied by a

ratio of the photon energies (
—& ), giving rise to the usual a dependence of

dipole radiation. However, when the Raman radiation is detected by a photo-

o

multiplier, the number, not energy, of photons are counted, and the a expresssion

is applicable.

It should also be mentioned that equation (13) was derived assuming negli-

gible difference between the Raman tensors after the u dependence in p was
5 OS



extracted. The remaining difference, which lies mainly in the energy denominator

(ui
g

± a - lo^). is negligible provided n<<| u -oi
|

. According to Renucci et al /
21

the condition s«\a.-in
|

is indeed valid down to near resonance conditions for the
p

zone center phonon in silicon. Therefore the above expression for the Raman ratio

is applicable for our case.

Temperature Dependence of the Raman Ratio in Silicon

Many expreiments have been performed concerning the lattice dynamics in

22
silicon. With the diamond crystal structure, silicon has only one first-order

Raman-active optical phonon located at the Brillouin zone center. In group

theoretical symbols, this optical phonon belongs to the irreducible representa-

tion r-g'- Moreover, being a homopolar crystal, the longitudinal and transverse

optical phonons are degenerate at the zone center. The energy of this optical

phonon was determined experimentally both by neutron scattering data and from

one-phonon Raman studies, with the most accurate value to date being 519 cm at

22
room temperature obtained by the Raman studies.

Temperature dependence of the Raman spectra in silicon was first investigated

23
experimentally by Hart et al . In the experiment, the temperature dependence

of the linewidth, frequency and Raman intensity ratio of the zone center optical

phonon were studied over the temperature range of 20 - 770°K. In the experiment,

silicon samples with a mirror-like (111) face were uniformly heated to eight

different temperatures over the temperature range mentioned above. Moreover,

a relatively low power density of = 200 W/cm from the 514.5 nm line of an argon

ion CW laser was used throughout the experiment to avoid laser heating effects.

The temperature dependence of the Raman intensity ratio was compared with that

predicted by Bose-Einstein statistics:

R . ^nti-Stokes _ "o
.

-
fin/

kT ,. c .

' T7T7 " YTPT ' e
<
15 )

Stokes o

The result was that the experimental points fall consistently above the theoreti-

cal curve. This discrepancy between experimental data and the theory was later

8



resolved by Anastassakis et al . who pointed out that the w
4
correction must

be made to the experimental data before comparison with theory. As mentioned in

the last section, the intensity of the Raman radiation is proportional to the

fourth power of the frequency. In the case of large phonon frequencies, this

4 ]
ui correction to the intensity ratio can be significant. For the 519 cm

(500 nm wavelength), the u correction factor is : 0.8. Applying this correction

to the intensity ratio obtained by Hart, it can be shown that the data points

are in good agreement with theory. Consequently, the Raman intensity ratio is

indeed a valid probe of temperature in silicon.

Temperature Rise Induced by a Laser Beam

Theoretical calculations of the temperature rise in a solid sample during CW

laser irradiation (steady-state conditions) have been done by Lax.
15 ' 16

The

calculations are useful in this study for two reasons. In addition to being a

guideline to the experimental results, the calculations provided information

which is necessary for data reduction because of the following situation. The

finite size of the beam spot on the sample, combined with a non-uniform beam

intensity profile, inevitably produce temperature gradients on the sample.

Moreover, the low thermal conductivity values of silicon create large thermal

gradients which cannot be neglected even within the extremely small beam spots

( = 10 microns) applied in our experiment. Consequently, the Raman signal

collected during the experiment is a collection of signals originating from

different temperature regions on the sample. In order to extract the maximum

temperature rise from the experimental data, therefore, it is necessary to

know the temperature gradient wherever light scattering occurs. In principle,

such information can be obtained experimentally by collecting signals from

selected regions of the same temperature or by using a small probe beam of very

low intensity. However, the very small size of the beam spot and the relatively

9



low power of the argon laser used in this experiment make it very difficult

in practice. The theoretical thermal gradients, although not experimentally

verified, provide the best estimate under these circumstances. Moreover, for a

beam intensity profile which is heavily weighted towards the center (such as

the Gaussian beam profile), small errors in the thermal gradient should not

greatly affect the final results.

Although Lax's ' theoretical accounts of the problem of laser induced

heating has been published, it is useful to reproduce the steps leading to

the results and, especially importantly, to point out the assumptions that

entered the calculations. In fact, a critical study of the calculations should

be most helpful during the process of data analysis.

Physically, the problem involves a radially symmetric beam spot on the

sample which is very large compared with the beam area. It is also assumed in

the calculations that the attenuation length (inverse of the absorption constant)

for the incident radiation is much smaller than the thickness of the sample.

The medium can therefore be treated as semi-infinite. The dominant heat dis-

sipation mechanism in the steady-state process is assumed to be thermal conduction

alone. This is possible provided the high temperature region on the sample is

so small that heat loss due to radiation and convection is negligible compared

with heat conduction through the back of the sample. Moreover, it is assumed

that the absorption constant does not change with temperature variations. In

semiconductors such as silicon, the absorption constant is quite sensitive to

large temperature changes even for photon energies well above the direct energy

band gap. It is therefore doubtful that this assumption of a temperature

invariant absorption constant is valid for our case. However, it can be shown

from the calculations that for the special cases of spot sizes large compared

with the attenuation length, the temperature rise is quite insensitive to

variations of the absorption constant.

In the first of the two papers Dy Lax, calculations were performed assuming

10



constant thermal conductivity. However, this restriction was relaxed as the

second paper took into account temperature variations of the thermal conducti-

vity. In fact, provided that the thermal conductivity values are known as a

function of temperature (nonlinear case), it was shown that the problem could

be very simply related to the case of constant thermal conductivity (linear case).

This feature is of great importance in laser heating of silicon because the

thermal conductivity near the melting point is reduced by a factor of 8 from

the room temperature value. Figure 1 shows the recommended values of thermal

conductivity in silicon in the temperature range from 300°K to 1685°K (melting

• < 25
point)

.

The starting point of the calculations is the continuity equation with a

source:

H +div - J = G
(16)

where G is the heat input per unit volume per unit time, p is the heat density

and J is the heat flux. With conduction as the only heat dissipation mechanism,

the flux is given by

J = -KvT (17)

where K is the thermal conductivity and T is the temperature. The heat density

p can be expressed in terms of the heat capacity per unit volume C as p CT,

then the continuity equation becomes the conduction equation:

-'11
L
3t

If K is independent of temperature (linear case), the conduction equation is

c|i - div[K(T)$T] = G(r) (18)

C|I=KV 2
T + G

(19)

The nonlinear conduction equation can be reduced to the linear type by introducing

a "linear" temperature 9:

9(T) % I
*jLU dT
K(T)

~V
ai

o

where K = K(T ) and T is the room temperature as will be shown in the following

development. Using the previously mentioned recommended thermal conductivity values,

11



FIGURE 1

Recommended thermal conductivity in silicon

in the temperature range of 300 to 1685°K.
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a computer program TCONV (see appendix 1) was written following equation (20)

to generate a curve relating the linear temperature rise to the nonlinear (real)

temperatures. Figure 2 shows the resulting curve. With the above transformation,

the linear conduction equation is obtained:

Cff
= div. (K/o) + G (21)

Since there is a one-to-one correspondence between the linear and nonlinear (real)

temperatures, solutions to the linear equation can be converted to the nonlinear

case through the knowledge of K(T).

Under steady-state conditions, the time-dependent term in the equation can

be removed to yield:

v
2e=l2(r^i (22)

K
o

The heat source G has cylindrical symmetry for a radially symmetric beam spot

and a uniform, homogeneous medium:

G(r,z) al e-
az

f(r) (23 )

where a is the absorption constant, I
Q

is the maximum irradiance of the laser

beam (absorbed), z is distance into the sample, and f(r) is the radial intensity

distribution function for the beam spot. For a Gaussian beam, f (r)=exp(-r
2
/a

2
)

where a is the 1/e radius of the beam waist.

To further generalize the equation, the variables can be made unitless by

choosing a as a unit of length,

R =
r/a Z =

z
/a w = aa (24)

Then the equation becomes

v
2
e(R, 2,.=Spl .

-aI
°
a2e

"WZ

f(R) (25)

o o

Looking for homogeneous solutions, the equation can be separated into R and

Z parts with separation constant A
2

. The equation involving Z can be solved

immediately yielding an exponentially decaying function while the R equation is

just the Bessel equation in the zeroth order. Since the temperature must

14



FIGURE 2

Calculated nonlinear temperature as a function

of linear temperature rise from room temperature.
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remain finite at R=0, the only solutions to the radial equation are the zeroth

order Bessel functions. The homogeneous solution is therefore

S
homo

- r e"
AZ

J (AR)9(A)AdX (26)

where g(x) is a function determined by boundary conditions at the sample surface

(Z=0). Moreover, ,\ is continuous and unrestricted (excepted that it be real and

positive) because the sample is assumed to be semi-infinite.

To obtain a particular solution, the method of eigenfunction expansion was

employed. The differential operator in the R equation has normalized and contin-

uous eigenfunctions J (xR):

tifHR (
R$ + W^ J

o
(AR) =

< w2 -*
2

>V XR > (27)

By inspection, the particular solution can be written in the following form:

G
Part

= e
"WZ

V < R > (28)

Substitution of this solution back into the differential equation yields an

equation for v(R)

:

2

'rW^ + ^-^W ;B^ (29)

o

The functions f(R) and v(R) can be expanded in terms of the eigenfunctions:

f(R) » /" J
Q
(XR) F(x)xdX

{30)

and

v(R) =
f°o

J
o
(xR) V(x)XdX (31)

where F(X), V(X) are the Hankel transform functions^
7

of f(R) and v(R) respec-

tively. For a given heat source distribution, F(x) is known

F(X) =J^ J
Q
(XR) f(R)RdR

(32)

V(x) can then be found by substitution back into the differential equation.

The particular solution is therefore

W7 J„(XR)F(x)xdX

Vt - 8
*"WZ

Q °
, 2

(33)

W -X

17



The unknown function g(x) can now be found by imposing the boundary condition

at the sample surface. For negligible heat loss to air from the surface,

SZ
1 z=o

3e
homo ^°j

"•Z
1=0

=

Finally, the solution to the linear equation is:

u-JZ , -wz
9(R,Z,W)=Br J

n
(XR)F(,\)

He
- ^

e
dA

W -A^

The differential equation and the boundary conditions are satisfied

if a constant term is added to the above expression. Recalling the rela-

tionship between T and e
,

/_
"

- dA + constant

(34)

(35)

*]p- dT = Bf J-(AR)F(A)
We
"V

Af dA + constant (36)
T
Q

o ° u -A^

It is most convenient to adjust T
Q

such that the constant is zero. If no

heat source is present, B=0 and T= room temperature. Therefore T is the
o

room temperature. Moreover, in choosing the constant to be zero, e(R,Z,W)

is the "linear" temperature rise cause by the heating beam.

It would be convenient to express the temperature in terms of the

absorbed power P:

P ' I
Q

/" f(R)2nrdr = 2nI
Q
a
2

/" f(R)RdR - 2nI
Q
a
2
F(0)

the e(R - z ' w
'

= 2iffFToy/: jo^ R ) F^)
,We^ Z

-Ae-
HZ

W
2
-A

2
dA

(37)

(38)

The Maximum Linear Temperature Rise for a Gaussian Beam

For a Gaussian beam intensity distribution, the maximum temperature

rise occurs on the surface and at the beam center (R=Z=0),

9(0 0«l= aP
,

r F(A)dAlU,U ' WJ
2nK

o
F(0) >o Wn~

For a Gaussian function, the Hankel transform F(\)«lje'
kx

therefore

S(0,0,W)=
aP

2nK
/.<» e

kx

W+A

18
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(39)
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Although it appears natural to normalize the temperatures to the

maximum value, Lax considered it more convenient and revealing to

normalize the temperature to the absolute maximum temperature value when

W approaches infinity, which corresponds to the case of very large

absorption constant (as in a metal) or very large beam spot size compared

with the absorption length:

W°-°">= mjg £
«"*

2

<* " T7R7 (41)

Defining N(R,Z,W) such that e(R,Z,W) = 8 N(R,Z,w),
max v • » / •

n(r,z,w>
fc, /; j {3U„ t

-w 2 «jl^L dx ^ , M
W -X

Lax in his paper included results of numerical calculations of

N(R,Z,W) for several values of H. It was shown that when W=26, the value

of H(0,0,26) is approximately 0.95 which is quite close to the limiting

value (W*») of 1. For a typical radiation wavelength of 500 nm, the

absorption length of silicon at room temperature is about 1 micron.
28

Therefore a rather small beam spot of radius, say 50 microns, can bring

the linear temperature profile to approach the limiting case of H*».
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EXPERIMENTAL CONSIDERATIONS

Laser

This experiment was performed using a Coherent Radiation Model 52 argon

ion CW laser which provided both the heating beam and the excitation

radiation for the Raman studies. Both single-line and all-line operations

were used depending on the power level required. For low power data points,

the laser was tuned to the 514.5 nm line with an intracavity prism wavelength

selector. Power variations were achieved by adjusting the laser current.

However, the maximum power output of about 1.4 Watts with this single line

operation could not produce sample-melting power densities with the focusing

optics used. Therefore all-line operation, which could deliver a maximum

output power of about 3.5 Watts, was used for higher power data points.

The power distribution of the lines in the all-line laser spectrum was

experimentally measured through separating the lines by a prism (outside

the laser) and then measuring the power of each line with a photovoltaic

cell. The following table shows the relative intensities of the lines

as a result of the measurements:

Wavelength (nm) Relative Intensity

«7.9 0.065

476.5 0.29

488.0 0.94

496.5 0.25

501-7 0.15

514.5 1.00

Operating in the multi-line mode, the laser spectrum had a weighted average

of 496.5 nm which was reasonably close to the single-line 514.5 nm in terms

of heating effects. Again different power levels were obtained by varying

the laser current. Moreover, sample-melting was achieved before the laser

reached maximum power. With all-line operation, the 514.5 nm line could no

longer be used as excitation radiation for Raman scattering studies due to
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the following reason. Because of the relatively large phonon energy of about

520 cm" , the Raman signals occur in the proximity of the laser lines

neighboring the 514.5 nm line, giving rise to laser fluorescence problems.

This undesirable situation also applied to other relatively high-powered

laser lines such as the 488 nm line. Scanning through all the available

lines, it was found that only the 457.9 nm line could be used for Raman

scattering purposes. Due to this relatively weak laser excitation (the

power of the 457.9 nm line is only 2.4% of the total all-lines output), the

intensity of the Raman signal suffered. However, uncertainties arising from

weak Raman signals were brought down to acceptable levels by longer counting

times and by integration over the Raman peaks.

no
Room temperature data of Dash and Newman show that the absorption

constant of silicon at 457.9 nm (2.08x10 cm) is larger than that at 514.5

nm (1.0x10 cm" ). However, this large difference in the absorption lengths

for the two Raman excitation radiation used in the experiment did not cause

problems. As will be discussed in the section on data analysis, the

absorption lengths at these experimental laser frequencies are small enough

that the laser intensity decays much faster than the temperature in the

longitudinal direction (into the sample). In other words, all the Raman

signals detected essentially originated from the surface of the sample.

Focusing and Collecting Optics, Power Measurements

Figure 3 shows the schematic diagram of the focusing optics and the

collecting optics for the Raman signals. The focusing lens was a coated,

achromatic spherical lens of 5 cm focal length. With a diameter of about

1.5 cm, the lens was reasonably large compared with the 0.3 cm laser beam

width so that lens aberration was not serious. At the focus of the lens,

the beam waist was about 10 microns in diameter. The sample was mounted

such that the surface was at or very near the beam focus. Moreover, near

normal incidence (5 to normal) was used to ensure a uniform beam spot.
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FIGURE 3

Focusing optics and collecting optics for the

Raman signals.
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FIGURE 4

Collecting optics for specularly reflected

radiation and power monitoring system.

Dashed lines show position of beam splitter

when laser power (incident and reflected)

were measured.
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Scattered Raman signals were collected at 60° relative to the incident

beam, well away from the strong, specularly reflected radiation. The

collection lens was a multielement Vemar Telephoto lens (f=135 mm) with

the aperture set at f/2.8 when Raman data were taken. Coupled with the

25.4 cm focusing lens in front of the spectrometer slits, the collection

optics produced at the entrance slits of the spectrometer an image magni-

fication of = 2 for the beam spot on the sample.

In order to determine the power absorbed by the sample, the power of

both the incident laser radiation and the specularly reflected radiation

were measured. Figure 4 shows the experimental set-up for the collecting

and power-monitoring optics for the specularly reflected radiation. Power

measurements were done at the beginning and conclusion of each set of data

with a Scientech Model 3600 Disc Calorimeter which had a uniform spectral

response from 0.3 to 30 microns and a useful power range from 1 mW to 3

Watts. To avoid damaging the disc calorimeter and for convenient

positioning of the power meter, a beam splitter was put in the beam and

the power of the reflected portion (at 90 with respect to the beam)

was measured. At the operating laser frequencies, the power of the

reflected portion from the beam splitter was measured to be 15.5% that

of the incident beam. Moreover, the transmittance of two lenses in the

path of the incident and reflected beams were measured and found to be

the same at 95% for the operating laser frequencies.

In addition to the power measurements before and after each run,

the power of the reflected beam was continuously monitored for stability

by using a photovoltaic cell. The beam splitter in front of the photovoltaic

cell was used to position the beam onto the cell and to attenuate the beam.

Moreover, neutral density filters were used when necessary to avoid saturation

or damage to the cell. The output of the cell was fed through an amplifier

circuit and displayed on a milliammeter. Under steady-state conditions,

26



the stability of the reflected power should be indicative of the stability

of the incident laser power. During the experiments, it was observed that

with adequate warm-up of the laser, power fluctuations were generally below

11.

Sample and Sample-Mounting

The sample used was a pure, unimplanted silicon wafer roughly 5 cm in

diameter and 0.4 mm thick. Sample resistivity was approximately 5000 n-cm.

The sample surface was mechanically polished to a mirror-like finish. Before

the experiment and from time to time thereafter, the sample was carefully

cleaned with acetone to remove any dirt and oil film accumulated as a result

of exposure to air. The sample was attached to a chuck with a very thin

layer of Duco cement and then mounted on translation stages which provided

transverse and vertical movements in the plane of the sample surface. With

this translational freedom, the sample could be moved without disturbing the

focusing configurations. This feature was necessary to allow the laser beam

to avoid any damage spots or imperfections on the surface caused by previous

laser melting or residual scratches from the polishing procedure. The

sample was exposed to air throughout the experiment under room temperature

of about 300 K to simulate laser annealing conditions.

Crystal orientation performed using X-ray Laue techniques showed that

the sample had a (111) face. The sample was mounted such that the incident

laser radiation (vertically polarized) was polarized along the [Toi] direction.

Measurement of Beam Spot Size and Intensity Distribution

With the power density being an independent variable in the experiment,

accurate measurement of the beam spot size on the sample is necessary. In this

experiment, two methods were employed to ensure proper accuracy. A common

method which can measure the spatial distribution of laser power in the spot

is to map the power coming through a scanning pinhole which is confined to

move in the focal plane of the focusing lens. However, this method was not
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employed for two reasons: the size of the spot (- 10 ym) was too small to

be scanned by a pinhole, and it would be very difficult to position the

pinhole at the exact position where the sample was placed. Instead, a

modified version of the method was used. Since the two factors that affect

the spot size, diffraction and beam divergence, both scale directly with

the focal length of the focusing lens, the spot size produced by a long

focal length lens (f=57. 1 cm) was first found using the above mentioned

method. Then the actual spot size on the sample was obtained by multiplying

this 'large' spot size by the ratio 5/57.1 since the actual focusing lens

had a focal length of 5 cm. Figure 5a shows the schematic for the above

mentioned measurement procedure. Two translation stages mounted at right

angles provided tv/o dimensional freedom of movement for the pinhole

(diameter=25 microns). Detection of the radiation coming through the

pinhole was by a photovoltaic cell connected to a millivoltmeter. In

operation, the pinhole was first positioned at the center of the beam

spot indicated by a maximum signal on the voltmeter. Then using the

graduated micrometer on the translation stage, the pinhole was scanned

horizontally from one end of the spot to the other at 25 micron intervals,

with the voltmeter reading recorded at each step. To ensure that the

pinhole was in the focal plane of the lens, the lens was moved to

different positions in the line of the laser beam and the above procedure

repeated until the smallest spot size was observed. Moreover, two steps

were taken to simulate the focusing conditions under which the actual

experiment was performed: the distance of the 57.1 cm lens from the laser

was approximately the same as that of the actual focusing lens so that

diffraction and beam divergence effects could be reproduced; and the

lens size (= 10 cm diameter) was considerably larger than the beam size

(about 3 mm diameter measured at the lens) so that lens aberrations
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FIGURE 5

Two methods to measure beam spot size
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should be negligible.

Due to the fact that only the 457.9 nm radiation was used for Raman

scattering purposes when the sample was heated by all-lines of the laser,

it was necessary to obtain the beam spot size formed by the 457.9 nm

radiation within the heating beam. This was accomplished by separating

the all-line beam with a prism before focusing the 457.9 nm beam with the

f= 57.1 cm lens.

In addition to the spot size, data from the above mentioned measurement

procedure provided the intensity distribution in the beam spot. Although

small-bore lasers such as the one used in this experiment operate mostly

in the TEM
Q0

mode, mode mixing is not an uncommon occurrence. In fact, it

was observed that the single line 488 nm beam had a doughnut shaped pattern

which resembled the TEM,«* mode. Such an intensity pattern is undesirable

because it makes data analysis extremely difficult. However, it was found

that when the laser was operating in the 514.5 nm single line and in

the multi-line mode, the beam spots produced had a nice Gaussian intensity

distribution. The arguments leading to such a conclusion will be

discussed in the section on data reduction.

Before utilizing the data obtained in the spot size measurement

procedure, the question of a small but finite size pinhole was addressed.

Due to the relatively small size of the beam spot (about 120 microns

diameter) even with the long focal length lens, the 25 micron pinhole

sampled a relatively large area of the spot each time a power reading was

taken. However, knowing the size of the circular pinhole, a sampling

function could be written to unfold the experimental intensity distribution.

Assuming a Gaussian intensity distribution and using the sampling function,

a computer program was written to generate numbers to fit the experimental data

points. This operation will be discussed fully in the data reduction section.

The results showed that the intensity distributions in the beam spots measured

are Gaussian.
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In order to check the validity of the beam spot measurements in

the first method, a second but perhaps less precise method was employed to

measure the spot size when the laser was operating in the multi-line mode.

Figure 5b shows the schematic for this process. Unlike the first method,

the actual beam spot on the sample was magnified by a lens before its

size was measured. In this method, the magnifying lens was the most

important element: it must be aberration-free to produce a faithful

image, and its focal length should be short in order to produce a good

sized image at reasonable image distances. The Vemar Telephoto lens

(f«135 mm, f/nunbers from 2 to 16), which was the collection lens for the

Raman signals, met the above requirements. In operation, with the "distance"

control of the lens set at infinity, the lens was positioned such that the

beam spot coincided with the focal point of the lens. Then adjustment was

made on the "distance" control until the image of the spot was formed at

the middle of the entrance slit of the SPEX double monochromator. By

measuring object and image distances, the beam spot was found to be

magnified by a factor of 9. The image at the entrance slits was viewed

through the periscope just inside the slits after being magnified by

another factor of 10 at the eyepiece. The image size was then measured

by adjusting the calibrated slits of the monochromator. To ensure the

least amount of lens aberration which appeared as a very "grainy" structure

of the image (making estimation of the size difficult), the aperture size

in the telephoto lens was decreased until the onset of diffraction effects

observed as an increase in the image size at f/numbers larger than f/11.

According to the diffraction formula, the diffraction limited spot size

(radius) is given by:

, 1.22M 1.22M(f/J)
D ' f (43)
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where x is the wavelength, L is distance from lens to the slits, D

is the diameter of the aperture, f is the focal length of the lens, and f/#

is the f/number of the aperture. Using the typical wavelength of 500 nm,

L=l 35 cm as measured , f=13.5 cm, and f/#=1l, r was found to be 67 microns.

Compared with the image radius of 55 microns observed at the spectro-

meter slits, this value is a little bit large. However, considering the

fact that the value of r is the distance from the image center to the

first minimum of the diffraction pattern, while the observed image size

was observed at the (approximate) half-power points, the measurement is

reasonable. Moreover, this image radius of 55 microns translates to 6.1

microns for the real spot radius which compares very favorably with the

6.24 microns obtained by the previous method (for the all-line beam case).

It would be useful to compare the measured spot size to theoretically

calculated values of the diffraction limited spot size. According to

29
literature, the TEM

Q0
mode laser radiation focuses to a spot with a

Gaussian radial intensity distribution at the focal plane of the

focusing lens. Moreover, the diffraction-limited spot radius, if defined

as the 1/e radius of the intensity distribution is given by:

r »£l_

where a is the wavelength, f is the focal length of the lens, and a is the

laser beam radius at the lens. Substituting experimental values of f-5 cm,

a=0.15 cm (approximate measurement with a meter stick), x=500 nm, r was

found to be 2.7 microns. However, it should be noted that this calculated

value assumed a perfect lens and zero beam divergence, and thus represented

the theoretical minimum of the spot size. In conclusion, the experimentally

obtained spot sizes are reasonable values.
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Signal Detection and Data Acquisition

The signal detection system consisted of a SPEX Model 1401 double

monochromator with an ITT FW-130 photomul tiplier tube which contained

an S-20 cathode. The photomul tiplier tube was thermoelectrically cooled

to -20 C to lower the dark count to an average of 5 per second. When

detecting Raman signals, both the entrance slits and the exit slits

of the double monochromator were set to 200 microns, while the intermediate

slits were at 500 microns to assure maximum signal throughput. With the

previously mentioned collection optics, the image of the beam spot at the

entrance slits was less than 40 microns in diameter although serious

aberrations occurred at the focusing lens immediately in front of the

entrance slits. Therefore an entrance slit size of 200 microns comfortably

admitted all available signals from the sample even if slight shifts

occurred in the collection optics. With the 200 micron slit settings,

the resolution of the spectrometer was 4.6 cm for the 514.5 nm laser

radiation and 5.2 cm for the 457.9 nm radiation.

A measurement of the polarization state of the Raman signals (by

analyzing the signal with polarizer and polarization scrambler before

entering spectrometer) showed that the intensity ratio between the

horizontally polarized signal and the vertically polarized signal was

exactly 2:1. It was therefore necessary to obtain the calibration of the

instrumental response for the system (consisting of the collection optics,

the double monochromator and the photomultiplier) for photons of both

polarizations. This was done using an Electro-Optics Associates P101

standard lamp and a linear polarizer. Figure 6 shows the schematic for

the calibration procedure. Spectra were taken with the polarizer in both

horizontal and vertical positions. The throughput of the polarizer used

was obtained by taking the spectra of a quartz-iodine lamp with one and

then two (identical) polarizers in front of the spectrometer slits.
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FIGURE 6

Calibration of the spectral throughput of

the Raman signal collection and detection

system.
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Figure 7 is the schematic diagram of the signal detection system.

Signal pulses from the photomuitiplier were fed through a counting

circuit consisting of a preamp, amplifier, a discriminator and time

interval selector. The number of pulses counted during a selected time

interval at a given spectral location was stored in a channel of the

Canberra 8100A multichannel analyzer. This same information was displayed

digitally on a Hewlett Packard Model 5326C frequency counter. Moreover,

the rate of signal pulses was continuously monitored using a Canberra Model

1480 rate meter. At the end of a counting interval, the counting circuit

provided signals to step the spectrometer to the next spectral position

and to advance the channel in the multichannel analyzer. In the experiment,

the Raman Stokes and anti-Stokes peaks were scanned at 2 cm spectral

increments. The counting times at each spectral position varied from 10

seconds to 20 seconds depending on the signal strength.

After a complete scan through the Raman peaks, the data stored in

the multichannel analyzer were transferred to magnetic cassette tape

through a Texas Instruments Silent 733 ASR data terminal. Finally, data

reduction and analysis was done on a PDP-11/34 computer communicating

through the TI data terminal.

Beam Chopping

It was observed in the experiment that at laser power densities of

=1600 W/cm, extremely strong scattering of the laser beam in all directions

occurred after the sample had been irradiated for about 20 minutes. This

strong scattering is characteristic of sample melting as a result of

increased reflectivity and surface irregularities. Moreover, at higher

power levels, the time of irradiation before melting occurred was shortened.

This observed behavior was unexpected because theoretical calculations
16

based on the thermal diffusivity of silicon indicated that a thermal

equilibrium should be attained in a matter of microseconds. The cause
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FIGURE 7

Raman signal detection system.
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of this apparent long term heating degradation of the sample is not

understood at this time. In order to avoid the long term heating

effects, and for the fact that it took at least about 20 minutes to obtain

the necessary Raman data, a chopper (25% transmittance) was put in the

path of the laser beam when applying laser power (all-lines) densities

at around 1600 W/cm and higher. Upon detection by a photovoltaic cell

which was connected to an oscilloscope, the duration of the chopper

produced laser pulses were found to be 1 msec, with 3 msec between

pulses. Since it takes only microseconds to come to thermal equilibrium,

the laser pulses are practically continuous in terms of heating effects.

Moreover, the millisecond heating pulses simulate actual CW laser annealing

of silicon in which the typical dwell time ' of the scanning laser spot

is in the milliseconds.
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RESULTS AND ANALYSIS

As suggested in the theory and experimental sections, a number of

steps must be taken to reduce the experimental data before the laser power

dependence of the temperature is obtained. To find the beam spot sizes,

and therefore the power density, the effect due to the finite size of the

scanning pinhole needs to be removed. To extract the maximum temperature

from the Raman ratio, it is necessary first to calculate the nonlinear

(real) temperature profile for different possible maximum temperatures.

Many of these steps involve numerical computations, mostly integrations.

Fortran programs were written for these calculations. Simpson's method

was used to evaluate the integrals.

One point of clarification should be mentioned. The name Raman ratio

can mean either anti-Stokes to Stokes or Stokes to anti-Stokes intensity

ratio. For the remainder of this thesis, the name Raman ratio specified the

anti-Stokes to Stokes intensity ratio.

Absorbed Power Density

Because of the experimental arrangements, the absorbed laser power

is not simply the difference between the measured incident and reflected

powers. It is necessary to consider the power loss through the two

focusing lenses (for the incident and reflected beams). Since the

transmittance of both lenses are 95% as measured, the expression for the

absorbed power is:

p

P ,
= 95P - — (4!>)

abs
u - y^

0.95

where P
Q

and P
r

are the measured incident and reflected power.

Figures 8 through 10 show, respectively, the measured intensity

profiles obtained by the scanning pinhole method for the three beam

spots produced by the single-line 514.5 nm, the 457.9 nm component of
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FIGURE 8

Beam intensity profile (radial direction)

produced by the single-line 514.5 nm laser

beam at the focus of the 57.1 cm. lens.

Solid dots are data points. Solid line

is computer fit assuming an actual Gaussian

intensity distribution.
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FIGURE 9

Beam intensity profile (radial) produced

by the 457.9 nm component of the multi-

line laser radiation at the focus of the

57.1 cm lens. Solid line is computer fit

assuming an actual Gaussian intensity

distribution in the beam spot.
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FIGURE 10

Beam intensity profile (radial) produced by the

multi-line laser radiation at the focus of the

57.1 cm lens. Solid line is computer fit assuming

a Gaussian intensity distribution in the real

beam spot.
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the multi-line output, and the full multi-line laser radiations. As

mentioned before, these results do not represent the actual profiles

because of the size of the pinhole. Dividing the area of the pinhole into

infinitesimal squares and then integrating over the circle (see appendix 2

yields the following expression that relates the experimental intensity

distribution function to the real one which is assumed to be Gaussian:

2

FfZ) =— —-
1

' /T
r
2

221 2 /- 2

•
e'

s
erf f f5^

) ds (46)
Z-r a

a

where F(Z) is the experimental intensity distribution in the radial

direction Z, a is the 1/e radius of the Gaussian function, and r is the

pinhole radius (=12.5 microns).

In practice, a Fortran program RADIUS (see appendix 2) was written

which worked in two steps: it generated F(Z) for a given Gaussian radius a

and for values of Z that correspond to the experimental points, then it

calculated the sum of the square of the differences between data points

and calculated points. By trial and error, the value of a which gave the

least value for the sum was thus obtained. Finally, using the same program

and the best value of a, a detailed curve of F(Z) was generated so that it

could be plotted and compared with data. The solid lines in figures 8

through 10 are the calculated curves. The fits are generally quite gcod

indicating that the actual intensity distributions are close to Gaussian

in nature. Moreover, using the best values of a and multiplying by the

ratio of focal lengths (5/57.1) as mentioned in the experimental sections,

the 1/e radii of the beam spots were found to be 4.6 microns, 5.58 microns,

and 6.11 microns for the single-line 514.5 nm, "multi-line" 457.9 nm

and the all-line laser beams, respectively.

A word should be said about the power density. It has become

customary in the literature
11

to use the power divided by the 1/e beam
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radius (P/a) as the measurement of the power density of a CW laser with a

radially symmetric beam profile. That it is a relevant parameter is evident

in the solution to the heat transport equation. As mentioned in the theory

section, the linear maximum temperature rise is given by:

o

where N(0,0,W) is normally a weak function of the beam radius except in

cases where the beam radius is much smaller than the absorption length.

Throughout our analysis, therefore, power density will correspond to the

ratio of power to beam radius.

The Raman Data

Figure 11 displays the typical Raman spectra for two different absorbed

powers, viz. 4.7 W/cm and 1570 W/cm. In addition to the expected relative

increase in the anti-Stokes intensity in going from low to high powers,

the Raman peaks are seen to broaden and become slightly asymmetric. More

precisely, the shoulder of the peak is higher closer to the laser line

(lower phonon frequencies) at elevated temperatures. Moreover, we observed

no consistent shift in the position of the peak maxima.

23
Hart et al. reported the line broadening and frequency shifting

behavior in silicon under uniform heating up to 770°K. Their results

indicate a phonon frequency downshift of ^2 cm per 100°K increase in

temperature. Bearing in mind that our Raman spectra are collections of

signals from different temperature regions, it is not clear that the Raman

peaks should show the same behavior. However, with the high temperature

region in the spot center and with a Gaussian beam distribution (see figure

12), most of the Raman signal should come from the high temperature region.

Therefore one would expect a shift in the peak position proportional to

laser power. Moreover, the peaks should have a higher shoulder on the

side further away from the laser line. Both these predictions were not
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FIGURE 11

First-order Raman Stokes and anti-Stokes

spectra of silicon for two (absorbed) power

densities: 4.7 W/cm and 1570 W/cm which

correspond to 300°K (room temperature) and

a peak temperature of 950°K. Note asymmetry

and broadening of the Raman peaks at high

temperature.
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observed in our results.

The discrepancy between the results and predictions based on Hart's

findings can perhaps be explained by the fact that a region of high pressure

exists in the sample as a result of thermal expansion. Ueinstein and

Piermarini studied the effect of hydrostatic pressure (up to 125 kbar)

on the Raman spectra of silicon at room temperature. Two results of

interest to us are: 1) the zone center phonon frequency increases with

pressure and 2) there is no consistent and systematic pressure effect on

the first-order peak intensity below about 100 kbar, which is a pressure

substantially higher than the pressure that could be achieved by thermal

expansion. The second result suggests that the Raman intensity ratio is

not pressure dependent. On the other hand, the magnitude of the increase

in the phonon frequency due to pressure can be estimated using data from

the Weinstein and Piermarini article. The volume change of silicon from

absolute zero to melting (1685°K) is about 1.85 while the (room temperature)

Gru'neisen constant is = 1 for the zone center phonon. For the phonon fre-

quency of 519 cm" in silicon, this would mean a maximum possible frequency

shift of about 10 cm" . This frequency shift will not compensate for the

temperature effect (about 28 cm" shift from room temperature to melting),

but it is at least a plausible explanation for the lack of large phonon

shift at high temperatures. Moreover, it should be pointed out that with

laser heating, the pressure on the sample is not uniform in all directions.

In fact, the radially symmetric stress in our case resembles the uniaxial

stress which has been shown to produce a splitting in the triply degenerate

32
optical phonon. This effect, combined with the pressure variations in the

sample due to a temperature gradient, makes analysis of the Raman lineshape

and peak frequency very difficult.

With all the above considerations, it is not likely that the Raman

ratio can be accurately represented by the ratio of the peak heights.

An integration over the peaks before calculating the ratio would be
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more reasonable. Moreover, such a procedure can reduce the statistical

uncertainties in the measurements. In practice, the peaks were integrated

between the half-maximum points. The background counts were obtained by

summing over 10 channels (20 cm" ) on either side of the peaks and then

averaging.

Corrections For instrumental Efficiency

Instrumental efficiency correction was applied to the experimental

Raman ratios so that the actual ratio from the sample could be obtained.

As mentioned in the experimental section, the ratio of the number of

horizontally polarized photons to vertically polarized photons is 2:1.

Therefore, the real Raman ratio is given by (see appendix 3):

R - R

2H
s+

V
s

l

o 12H
A+

V
A .

where R
Q

is the ratio before the correction; H,V correspond to the

instrumental efficiency for horizontally and vertically polarized

radiation, respectively; the subscripts A and S denote the quantity

being at the anti-Stokes or Stokes frequency.

The following table shows experimental values of H
s

, V,., H., V. for

Raman excitation wavelengths 457.9 nm and 514.5 nm and for the phonon

wavenumber 519 cm :

H
A

V
A

H
S

V
S

457. 9nm 8.51 6.98 8.19 6.98

514. 5nm 7.83 6.14 6.63 5.12

Substituting these numbers into equation (48) results in instrumental

correction factors for the 457.9 nm and 514.5 nm excited Raman ratios

as 0.965 and 0.889 respectively.
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3
The ui Correction

As discussed in the theory section, the Raman ratio in terms of

number of photons is proportional to the ratio of the scattered photon

frequencies raised to the third power. This w factor is a fixed number

for a given Raman excitation frequency, and car, be viewed as a correction

factor for the Raman ratio:

p
corr

3
"n

where the notations are the same as were used in the theory section.

The calculation of R
corr

is the last step in the manipulation of

the experimental Raman data. The rest of the data reduction process

involves the generation of a maximum temperature vs. R curve usinq
corr 3

the theoretically calculated temperature profiles and the previously

obtained beam spot sizes.

Raman Ratio as a Function of Peak Temperature

The previously obtained equation for the Raman ratio must be revised

due to variations in temperature in the region where Raman scattering

occurs. Variations in temperature affect the phonon distribution n .

o

Assuming that the temperature is known as a function of position, the

phonon distribution function is known everywhere. With the cylindrical

symmetry of the problem, the Raman intensity (in number of photons) can

be written as an integral of signals from rings of radius r and thickness

dz on the sample: r

''anti-Stokes "
»A5 f

e"
(a

L
+a

AS
)z

dz [" n e
3

(2nr)dr (49)

r
2

N 3 f
' (o

L
+a

AS
)z

. f , xl , a
2 „ VJ (50)

N
Stokes '"S

e M ( n +1)e (2nr > dr
' o

where a
L>

a
AS , a

$
are the absorption constants at the Raman excitation

frequency, the anti-Stokes frequency, and the Stokes frequency respectively;

a is the beam spot radius. The factors (t»
L
+e»

AS
) and (o, +a ) account for
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the absorption experienced by the incident and scattered photons. Assuming

negligible change in the absorption constant in going from the Stokes to

anti-Stokes frequency, both (<»
L
+a

AS ) and (a'
L
+o

s
) are approximately equal

to 2a
L

. Converting to dimensionless variables by using a as a length unit

as was done in the theory section, the corrected Raman ratio can best

be expressed in the inverse form:

R
2

. e "'-* dZ )_ e
~ K

RdRi:
-2wiz „ r . -R

£

- " i +
-z r- ("J

corr
f -2Wi Z An r „ -R^ .„
J e L dZ I nRe dR
o J o o

Here the population factor n for a given maximum temperature (temperature

at spot center) can be found for all positions by using equations derived

by Lax, which contain an integral. The expression for R therefore

involves triple integrals. To carry out such calculations would require

extremely long running time on the computer plus the possibility of

inadequate numerical accuracy as a result of truncation errors and

limited increments for the integrations. However, it was observed

that the integration in the z direction should contribute very little

to the Raman ratio because of the small absorption length in silicon.

To illustrate this point, figure 12 shows the temperature profile

together with the Raman beam irradiance e"
a L

z
f n the z-direction for the

multi-line heating case (W=7.6). The temperature profile (at R=0) is

for a peak temperature of 1300°K and is calculated using equations of Lax:

W f , f,D,."* We-*
Z
-xe-

HZ
2

N(R,Z,W) - ^ I J UR)e
~A

"e "--" "'

dA (42)
'o U -X

and subsequent conversion to real temperatures (see Appendix 4 for program

TEMPRZ). The absorption constant a for the 457.9 nm Raman radiation is

2.08 x 10 cm" from Dash and Newman. Compared with the temperature

profile, it can be seen that the beam irradiance is an extremely sensitive
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FIGURE 12

Calculated temperature profiles and beam

irradiance (dashed lines) profiles in the

radial and longitudinal (z) directions for

the multi-line heating case (W=7.6) and

for a peak temperature of 1300°K. The

irradiance profile in the z direction is

for the 457.9 nm Raman radiation.
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function of z. Therefore the integration in the z-direction can be

de-coupled from the radial integral. Moreover, the Raman radiation

samples only the region very close to the surface. Consequently, the

population factor n (R,Z) can be approximated by n (R,0) in the radial

integral. The expression for the Raman ratio becomes:

t-1

F— " 1 + I I i
n (R,0)Re"

R
dR~T

corr L. > a
u J

(52)

To obtain the Raman ratio as a function of peak temperature, the

following procedure was taken: 1) the linear temperature profile was

calculated, 2) real temperature profiles T(R,0) were obtained for dif-

ferent peak temperatures, and 3) knowing T(R), the phonon distribution

factor n
Q
(R) was known, and therefore %

corr
was obtained by performing

the integration over R. In practice, three programs were written to

carry out these steps. The program TEMPR (appendix 5) calculated the

normalized linear temperature N(R,Z,W) with Z=0:

(a 2

N(R,0,W) = 4- -2 dA (53)
J o W+A

A total of 51 points were obtained for N(R) between R=0 and 3 at

increments of 0.06 in anticipation of the following integral. The

limit R=3 is sufficient although theoretically R should go to infinity

because it can be shown that for a Gaussian beam, the circular area of

radius 3a (a is 1/e radius) contains 99.987% of the total power while

the population n
Q

increases by less than a factor of 2 going from room

temperature to melting. On the other hand, the R-increments of 0.06 was

chosen because integrations (in the following radial integration) with

half as many divisions in R (increments of 0.12) showed essentially no

significant loss in accuracy (the results agree to within 0.5% of the

more accurate results).



The second program TTEMPR (appendix 6) produces the real temperature as

a function of R for each maximum temperature (at R=0). It worked in two steps:

1) N(R) from the first result was renormalized to a maximum linear temperature

that corresponds to a real peak temperature in question, and 2) the linear

temperature profiles were converted to the real temperature profiles in a point

by point conversion process. The conversion curve, which was previously calcu-

lated from thermal conductivity data, consisted of 43 points ranging from room

temperature to the melting point. Linear interpolation was used in the conver-

sion process. Thus 28 temperature profiles corresponding to 28 peak temperatures

ranging from 300°K to 1650°K at 50°K increments were produced for each beam

radius.

Once the temperature profiles are known, the Raman ratio vs. maximum (peak)

temperature curve can be calculated. Program RATI02 (appendix 7) was written

for this calculation, which is essentially the integration process with the

integration limits for R being zero and 3 as discussed above. Care was taken to

account for the difference in spot size between the heat beam and the Raman

probe when the laser was operating in the multi-line mode. A simple change was

made to equation (52) for the Raman ratio to this effect:

1

i \r rV "-
1

B "1*-j n Re"
K B dR (54)

corr 2i
d \jo ° K *'

Here 6 is the ratio of the heat beam radius to the Raman probe beam radius.

Using experimental values of 6.11 and 5.58 microns (see section on absorbed

power density), e is 1.095 for the multi-line heating case. In the case of

single-line laser heating (514.5 nm), g was set to 1. Figure 13 shows the re-

sulting curves of Raman ratio vs. peak temperature for the single-line and

multi-line heating cases.

Peak Temperature as a Function of Power Density

Using the Raman ratio vs. peak temperature curves and the experimental

values of R
corT , the relation between absorbed power density and peak

temperature was obtained. The results are shown in figure 14. Instead of
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FIGURE 13

Calculated curves of the Raman ratio as

a function of peak temperature. The lower

curve is for the single-line 514.5 nm case

(W=4.6). The upper curve is for the multi-

line heating case (W=7.6) with the 457.9 nm

Raman excitation.
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FIGURE 14

Peak temperature as a function of power

density. The open circles represent

experimental data taken with single-line

514.5 nm beam. The triangles represent

experimental data taken with the multi-line

heating beam and with the 457.9 nm Raman

excitation. The cross represents minimum

power density that produced sample melting.

The solid curves are theoretical (nonlinear)

results assuming a constant room temperature

absorption constant. The dashed curve is the

theoretical results for W-»>. All the multi-line

data points at 1600 W/cm and higher power levels

were taken with chopper in laser beam.
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reading off values from the ratio vs. temperature curves, a program RTCONV

(see appendix 8) was written using linear interpolation to convert R
corr

into temperature. Representative error bars were put on two sets of data

points. The error estimates were made based on the statistical fluctuations

in the photon counts and on the precision of the power measurements and

spot size determinations.

In addition to the temperatures obtained through Raman ratios, we also

obtained experimentally the power needed to melt the sample under milti-

line laser radiation (see figure 14). The power of the laser was vary

slowly increased (chopper in beam) until the sample started to melt which

could easily be identified as a sudden and extremely strong scattering of

the laser radiation in all directions. This change in the scattering

pattern is expected for two reasons: 1) the sample surface becomes

irregular as it melts and 2) the reflectivity of the sample undergoes a

rise as it becomes liquid.

For comparison, the peak temperatures predicted by calculations

using Lax's equations are also shown in figure 14. Since the linear

profile N(R,0,W) was already found in the previous process of data

reduction, it was most convenient to express the linear maximum temperature

a(0,0, W) as:

0(O,O ' W) =
(i) mr N (°'°' W > (41)
• ' o

where P/a is the power density. A program TPOWD (appendix 9) was written

which used the linear to nonlinear temperature conversion curve and the

above equation to generate the theoretical curves.

Despite some scattering in the data points, it is clear from

figure 14 that the experimental points fall consistently above the

theoretical predictions. In an attempt to explain the differences,

we analyzed possible systematic errors in the experimental data, namely

the power density measurements and the Raman measurements. The data
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point obtained by direct observation of the melting power density of

the sample falls in line with the other data points and, since it is a

direct observation, gives strong support to the Raman temperature

measurements. On the other hand, in order to force the experimental

points to fit the theoretical curves, the beam spot radii must be

reduced by roughly 20%. For the case of a 4.6 microns radius, it must

be reduced to 3.7 microns. In addition to the fact that the spot sizes

are measured and double checked with two different methods, it is unlikely

that a spot radius of 3.7 microns can be obtained for the following

reason. According to estimates discussed in the experimental section,

the minimum value for the radius is 2.7 microns assuming perfect lens

and zero laser beam divergence, both of which are unrealistic conditions.

Consequently, no reasonable systematic adjustments can be made to the

experimental data.

Turning to the theoretical calculations and the underlying assumptions

and approximations which were discussed in detail in the theory section,

it is readily seen that the assumption of a fixed absorption constant

cannot be applied to the case of silicon. However, since we are not

aware of any experimental data on the high temperature dependence of

the absorption constant a in silicon, it is impossible to construct a

realistic theoretical temperature vs. power density curve. On the other

hand, it is possible to establish some guidelines towards the behavior

of the absorption constant at higher temperatures. According to Dash

28
and Newman , the energy band gap in silicon decreases at a rate of

roughly 5x10" eV/°K between the temperatures 77°K and 300°K. Moreover,

the absorption constant vs. photon energy curves for the two temperatures

are approximately parallel. Assuming that such behavior continues into

the high temperature regions, the absorption constant can be found by a

horizontal displacement of the curve corresponding to the amount of
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shift in the band gap. For a temperature rise of 1000°K and for the

photon energy of 2.5 eV (the average energy of the multi-line Ar laser

photon), the absorption constant is found to increase by a factor of 4

from the room temperature value. The value of W (defined as a. times

the spot radius) therefore changes from 7.6 to 30 in the case of the

multi-line radiation. As mentioned in the theory section, the behavior

of the linear beam profile N(0,0,W) approaches the limiting behavior

(W-x») at these W values. Recalling the expression for the maximum

1 inear temperature:

This equation therefore provides a more realistic temperature vs.

power density curve in the high temperature regions.

On the other hand, an increase in the absorption constant can

also affect the peak temperatures derived from the Raman ratios. To

determine the extent of the change, a Raman ratio vs. peak temperature

curve was developed for W=30. The results are displayed in Table 1

together with W=7.6 values for comparison purposes. It can be seen that

for the same peak temperature, the maximum change in the Raman ratio in

going from W=7.6 to W»30 is less than 2% producing an upshift in tempera-

ture of less than 40°K at the highest temperature data points. The

shift should be much smaller for the lower temperature data points

although the exact amount is not known because of a lack of absorption

constant data. Since the shifts in the temperatures are not large

compared with the experimental uncertainties, no attempt was made to

move the data points to suit higher absorption constants.

The theoretical temperature vs. power density curve for the limiting

values of W is also shown in figure 14. As expected, this curve gives

much better fit to the data for high temperatures. However, it can be

seen that even for the lower temperature 514.5 nm data, the fit is very
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TABLE 1

Calculated Raman ratios as a function

of peak temperature for the two cases:

W=30 and W=7.6.
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good. This behavior is unexpected because with the gradual increase of

the absorption constant, the temperature curve should rise gradually

from the W=4.6 curve into the limiting curve. The cause of this behavior

is not understood, although one possible factor is the uncertainty in the

room temperature thermal conductivity value which is believed to be

accurate only to within 5%. Since the calculated temperature is directly

proportional to the inverse of this thermal conductivity value, the

uncertainty in the entire theoretical curve is also 5%.

69



SUMMARY AND CONCLUSIONS

The Raman technique has been shown to be a feasible way to

measure sample temperature during heating of pure silicon by a Gaussian

beam. In conjunction with theoretically calculated temperature gradients,

it was shown that the Raman ratio can be used to extract the temperature

rise. Uncertainties in the calculated temperature gradients are not

critical because the resulting maximum temperature derived from the

Raman data is insensitive to small errors in the temperature gradient.

Of course, no theoretical calculations would need be invoked in the Raman

method of temperature measurement if one had available large heated areas

that allow for the use of a small, low-powered Raman probe beam. On

the other hand, we have shown that in silicon, temperature variations

in the absorption constant cannot be neglected in theoretical calculations

of the temperature rise. Moreover, the data show that the closed-form

solutions of the nonlinear heat conduction equation proposed by Lax do

provide a way to predict accurately the temperature rise in the case of

large absorption constants and large beam spot sizes.

With the confirmation of the Raman temperature measurement technique

in pure silicon samples, the next step would be temperature measurements

in ion-implanted samples during laser annealing. Here the technique would

be clearly superior to theoretical calculations because the Raman technique

will not be affected by subtle uncertainties in the properties of the

material such as absorption constant and thermal conductivity. Moreover,

the theoretical calculations do not account for the heat of recrystalli-

zation which is released as the damaged silicon changes into single

crystal material during laser annealing.

Future experiments have also been planned to extend the Raman tech-

nique to temperature measurements during pulsed laser annealing. With

adequate instrumentation such as a silicon intensified target (SIT)
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detector that can detect the entire Raman spectrum at the same time,

and using a time-delayed Raman probe beam, it should be possible to

obtain a time-resolved temperature profile which traces the temperature

during and after the application of the heating laser pulse. It is

hoped that the experience gained in this present study will help in the

progress of the planned experiments and in the understanding of the basic

mechanisms of the laser annealing process.



APPENDIX 1

Program TCONV

The Fortran program TCONV computes the linear temperature rise

(above room temperature) as a function of the nonlinear temperature T

following equation of Lax:

nT

e(T) = £111 dT
T

K
dT

(20)

o

The thermal conductivity values are taken from C.Y. Ho et al . .

Following is the program listing for TCONV.

THIS PROGRAM CALCULATES LINEAR TEMP RISE AS A FUNCTION
DF NONLINEAR TEMP
EQUATION OF M. LAX IS USED

C SIMPSON'S METHOD USED FOR INTEGRATION

C INPUT IS DATA FILE CCDND. DAT) CONTAINING THERMAL
C CONDUCTIVITY VALUES FROM RDOM TEMP TO 1675K
C AT £5 DEGREE -INTERVALS

C OUTPUT VALUES AS FOLLOWS:
C T = NONLINEAR TEMP FROM 350K TO 1650K AT 50 DEGREE INTERVAL;
C RTEMP = CORRESPONDING LINEAR TEMP RISE ABOVE 300K
C

DIMENSION Y<56)
OPEN CUN I T=3 . NAME= ' DK : COND . DAT '

, TYPE= '" OLD ' >

READ ''3.10 CO CY<I> »I= 1»56>
tOC FORMAT (10F6.3>

H=£!5.

T =35u.
SUM-Y<1>+4*Y<2>+Y<3>
1 = 1

C
C 3*1. 43 CROOM TEMP CONDUCT I V I T Y> =4 . 44
C

1 1 RTEMP= <"H*SUM'> .-"4 . 44
TYPE SOO.TjRTEMP

200 FORMAT C3F 16.7:)

IFCT .GE. 1650. > GO TO 32
T=T+5Ci.
1 = 1 + 3

SUM=SUM+Y ( I ::> +4*Y <I + 1) +Y <I +3)
GO TO 1

1

£3 CONTINUE
STDP
END
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APPENDIX 2

Effect of Pinhole on the Observed Intensity in Beam Spot

The observed intensity is a collection of radiation coming through

the pinhole. Figure 15 shows the geometry of the set-up. The pinhole

moves on a line described by 00', the beam spot center and the center of

the pinhole. Dividing the pinhole (radius r) into infinitesimal squares

of area dA=dydx, and assuming a Gaussian intensity distribution in the

beam spot (1/e radius = a), the relative intensity F(Z) observed with

pinhole at a distance Z from the beam center can be found by an integration

over the area of the pinhole

F(Z) - -i
nr

_f/(Z+X)V

))

dydx = —j-

nr

z±x]
2

+r
{ a

J
f

e dx
-r o

/r
2
-x

2

fyj
2

e

pinhole

The y-integral can be represented by the error function. Putting the

integral into the form of the error function with a change of variable

t=y/a:

r+r _[Z±X]
2

rl C~ 2

F(Z) =^ "fa e
[

a
J

dx
nr

7^
a

e
_t

dt

>-r

r+r

'n
r
2
m 2

erf IJF- dx

dy

Finally, a further change of variables s=(Z+x)/a yields the more symmetric

expression for the observed intensity:

,2

F(Z)
1

71!-(*!'

l+r o2 \JT ,

a e'
S

erf [^das^

Z-r

a

ds

The Fortran program RADIUS was written to perform the computation

of F(Z). The listing follows.
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FIGURE 15

Geometry of pinhole in the beam spot
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RADIUS
C THIS PROGRAM UNFOLDS THE GAUSSIAN PROFILE SAMPLED BY A
C SMALL BUT FINITE SIZE CIRCULAR AREA
C THE RESULTING FUNCTION FOP A GIVEN GAUSSIAN RADIUS IS FITTED

TO DATA
C OUTPUT: UNFOLDED FUNCTION AND SUM OF SQUARES
C INPUT AS FOLLOWS:
C N = NUMBER DF DATA POINTS
C ARRAY DATA' I

) IS ARRAY OF DATA POINTS! NORMAL I ZED l.l I TH MAXIMUM
C VALUE"

1

C 1.1 = l..'E RADIUS OF THE GAUSSIAN FUNCTION IN UNITS OF 25 MICRONS
C R = PINHOLE RADIUS IN UNITS OF S5 MICRON"
C FNOP » NORMAL I ZAT I ON FACTOR FOP THE FIT CURVE TO ALLOW
C FDR VARIATIONS IN THE PEAK INTENSITY
C ZMAX,ZMIN,ZINC ARE MAXIMUM AND MINIMUM Z AND Z INCREMENT
C FOP Z VALUES TO MATCH THOSE OF THE DATA. SLIGHT VARIATIONS
C IN ZMAX and zmin can shift the LOCATION of the PEAK TO
C OBTAIN THE BEST FIT TO THE DATA POINTS:
C ALL THE LENGTH VALUES IN THE PROGRAM ARE IN UNITS
C OF £5 MICRONS
C NI = MINIMUM NUMBER OF DIVISIONS IN THE INTEGRATION
C THE NUMBER OF DIVISIONS FOR INTEGRATION IS INCREASED 'DOUBLED)
C UNTIL TWO CONSECUTIVE INTEGRATIONS AGREE TO 0.0001

C
DIMENSION DATA<£0) ,FIT.<20> »TI <10>
LOG I CALM A<15),C,D>E

C
C F<S> IS THE INTEGRAND
C

F <:S> =ERF CSQPT ( P*R- (W*S-Z> +*&> /W) --EXP <S*S)
CALL PRINT C'TYPE IN DATA FILENAME, DK: F ILNAM. TYP')
ACCEPT 100,

A

100 FORMAT' 15A1)
OPEN CUN I T = 1 , NAME=A , TYPE" OLD )

READ<1>£00) N. . DATAii;. . 1 = 1 ,N)
£0 FORMAT ' I £ -

< 1 OF* . 3> ,.

CALL PPINTCTYPE MAXZ.MINZ AND ZINC IN F6.30
ACCEPT 3 , ZMAX , ZM I N , Z I NC

300 FORMAT <3F6.3>
555 CALL PRINT.: 'GAUSSIAN RADIUS PARAMETER FIT" -?')

ACCEPT 4 0,1,1

400 FORMAT 'F16.7:.
CALL PRINT'' PINHOLE RADIUS"?')
ACCEPT 123 j

R

123 FORMAT 'F 16. 7)

CALL PRINT-: 'MINIMUM NUMBER OF DIVISIONS: FOR INTEGRATION-:
ACCEPT 456, N

I

456 FORMAT': 14)
CALL PRINT'' PEAK OF FIT CURVE NORMALIZED TO'>
ACCEPT 797, FNOP

797 FORMAT <F5. 3)
TYPE 333

333 FORMAT
. JWANT CALCULATED NUMBERS?')
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ACCEPT S0Q»E
IF<E .ME. "i" > GO TD 3 34
TYPE 450

450 FORMAT ' . 8>:• 'Z'. isx .'FIT
334 ZS=ZMIN

NH»N+1
no i i = i. hh

C
C DP INTEGRATION FDR EACH Z

Z=ABS <ZS)
IF<I .EQ. NH> Z=0.
FN I =N

I

IN

C DIFFERENCE BETWEEN INT LIMITS IS £R.-U
C

El = <Z-R>.''l.l

B£* iZ+R) -'M

DD 5 M= 1.10
IN»IFIX<FNI + 0.5>
H=£»R,."I,I»FNI>
TI,IDH=H+H

11 SUM4«0.0
:UN£=U.
S=B1+H
J=l

£1 SUN4=SUM4+F CSD
SUM£=SUM£+F CS+HJ
IFCJ . Gt. IN-3) GO TD 31
J=J+£
S = S+TI,IOH
GD TD 21

i_:

C INVERSE OF SQRTCPD = 0.5641Q958
C
31 TI ':M> = i:i.56418958»<'M*l.l,J,"R»R:)*'H.'3.ir>*i4. Q»SUM4+2 0*SUMe

1+4. i:i*fcb2-h:>>

FNI=FNI»£. ij

IF<M .EQ. D GD TD 5
M1=M
M£=M-1
IF'JTI 'M-'-TI (MS) .LE. 0.0001) GD TD 41

5 CONTINUE
C

C GENERATE FIT CURVE

41 FIT' I ... =TI 'HI!
IF(E .NB. 'V') GD TD 335
TYPE 6 . Z , F I T <: I :. . I , I N . R . i.i

600 FORMAT.' . £F1|6. 7, 15. 16. 2F1 n. 3':.

335 ZS=ZS+ZINC
1 CONTINUE
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c

C NORMALIZE CURVE TO PERK=FNOR
C

FMAX=FITCNH>
DD 15 1=1.

n

15 F I T CI ) =F I T a ) /F«flX»FNOR

C CALCULATE SUM DF SQUARES
SUM»0.
no 3 i = i,n

3 SUM=S:UM+CDATRCI)-FITCI)) •*£
TYPE 710 j SUM

7 1 FORMAT C ' '
r

' SUM DF SQUARES'" ' > E 1 6 .
7-<

)

TYPE 144
144 FORMAT': IWANT MOPMALIZED FIT?')

ACCEPT SO 0>D
IF CD .ME. 'Y') 60 TO £45
TYPE SI

3

913 FDPMATc ',SX. 'Z. 11X, NORMALIZED FIT')
Z=ZMIM
DO 16 1=1 -M
type 914.z.fitu)

16 z=z+zinc
si 4 fopmatc '»£f16.7)
£45 TYPE 15S
15S FORMAT C'TTRY AGAIN?')

ACCEPT SOOiC
SOU FORMAT (Hi:'

IFCC .EG!. 'Y') GO TO 555
STOP
EMD
FUNCTION ERF CSX)

C THIS PROGRAM CALCULATES: ERROR FUNCTION OF X IN DOUBLE PRECISION
C OUTPUT IS SINGLE PRECISION
C NORMALIZATION FACTOR IS £.<"SC'RT CP I)

C INTEGRATION LIMIT IS ZERO TO X
DOUBLE PRECISION X.Z.T
X=DBLE CSX)

T=l. 0- <1. 0+ 0. 32739U*X)
Z=DLDG '. 0. £54S£S5S£»T-0. £S44Sb73(:.*T»*£+l . 42141 374 1*T»»3

1 -1 . 45315£0£7»T»*4+1 . 0614O54S9*T**S>-X*X
EPF=SNGL CI . 0-DEXP CZ)

)

RETURN
EMD
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APPENDIX 3

Instrumental Efficiency Correction to the Raman Ratio: Polarized Radiation

In the experiment it was observed that the ratio of number of

photons polarized in the horizontal direction to that in the vertical

direction is 2:1. Therefore if h is the number of horizontally polarized

Raman photons, and v is the vertical component emitted by the sample per

unit time, then h=2v. The number of Raman photons N detected by the

spectrometer per unit time is given by

N = Hh + Vv = v(2H+V)

where H and V are the instrumental efficiencies for the horizontally and

vertically polarized photons. Then the real Raman ratio R is given by

R - V^ .

2H
s
+V

s _ f

2H
s
+V

s

2H
A+

V
A

N
s

"
[ 2H

A+
V
A

where R
Q

= N^/N- is the Raman ratio as detected by the spectrometer. The

subscripts A and S for N refer to the anti-Stokes and Stokes components;

while H
A

and V
A

are the instrumental efficiencies for the horizontally and

vertically polarized radiation at anti-Stokes frequency. Similarly, t-L and

Vc are the quantities at the Stokes frequency.
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APPENDIX 4

Program TEMPRZ

The Fortran program TEHPRZ was used to compute the linear temperature

profiles in both the radial and longitudinal directions. Calculations are

based on the equation by Lax:

_w,2 ue
-* Z -, P

- WZ

W
2
-A

N(R.Z.W) = % J (xR)e^ We
t -f

'"

- dA (42)

The zeroth order Bessel function is evaluated using a polynomial

32
approximation.



TEMPRZ

THIS PROGRAM CALCULATES LINEAR TEMP PROFILES N'R.Z.W'
M. LAX'S equation: rpe used

OUTPUT IS DfiTR FILE 'TPP0F2 . DAT' WHICH CONTAINS RN RPRflY IN
TWO DIMENSIONS REPRESENTING R AND Z

INPUT RS FOLLOWS:
R£ = MAXIMUM VALUE OF P IN N'R.Z.Wj
Z2 = MAXIMUM VALUE OF Z IN N'P.Z.l.O
MR = NUMBER OF P VALUES IN N<R.Z>W) EVALUATED
MZ = NUMBER OF Z VALUES IN N'P,Z,W> EVALUATED
U = PRODUCT OF 1, E BERN RADIUS AND RESORPTION CONSTANT
N = NUMBER OF DIVISIONS USED IN THE INTEGRATION (SIMPSON'S PULE?

ALL R,Z VALUES APE IN UNITS OF THE BEAM RADIUS
IN THIS PROGRAM THE UPPER LIMIT OF INTEGRATION IS SET RT 10

DIMENSION STRING <41, 51)

F<Y> IS INTEGRAND
F <Y> «EESS CY*P) • W, EXP CV»Z> -Y'EXP th)*Z) > / <EXP <YV>V4. > <W*W-Y*Y> "

TYPE 500
500 FORMAT </" TYPE IN THE FOLLOWING VALUES;-,

1
' MA;; I MUM VALUE FOR R IS')
ACCEPT 510.R2

510 FORMAT CF4. lj

TYPE 600
600 FORMAT' - NUMBER OF DIVISIONS FOP INTEGRATION IN R IS:')

ACCEPT 5£0jN
52 FORMAT <I 3*

TYPE 700
700 FORMAT (.-' VALUE OF BEAM WRIST RADIUS IS :

<-,

ACCEPT 510.W
TYPE 800

800 FORMRT.C- MAXIMUM VALUE OF Z IS '">

ACCEPT 510)23
TYPE 1000

1000 FORMAT C" NUMBER OF PDINTS IN R IS I O
ACCEPT 580. MR
TYPE 1100

1100 FORMAT </" NUMBER OF POINTS IN Z IS : •":.

ACCEPT 58 0.. MZ
Z=0.
FMZ=MZ-1
FMP=MP-1
PINC = R8. FNP
ZINC=ZS-'FMZ
DO 51 K=1,MZ
VMAX=1 0.

VMIN=0.
FN=N
H=VMAX/FN
TWOH=H+H
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P=0. (J

J=l
i sun4=0. o

SUM2=0.
X=H
1 = 1

£ SUM4«SUM4+F (X>
SUM£=SUM2+F CX+»
IF<I.GE.N-3> GO TD 3

1 = 1+2
X-X+TWQH
GO TD 2

C
C SQUfiPE PDDT OF PI = 1.7724539

TEMPN=U»H 2. 0* •4. Q*SUM4+2. 0*SUM£+F (VNIN) +4. 0*F < VMfiv-H>
1 +F (VMfiX) > - 1 . 7724539
STRING* <Kj J) "TEMPN
J-J+l
r=p+rinc
ifcr.le.r2:) gd td 1

type 11>z,p, tempo
11 FDP(1RT('1X,3F16.7>

Z=Z+ZINC
51 CONTINUE

OPEN <IJMIT=2. NRME='DK: TPR0F2. DRT" . TYPE='NEW)
WRITE <a, 1 Ci o > < (STRING <K»L) »L»1»MR> -K = l .MZ)

100 FDPMRTfSFl n.7)
STOP
END

f:

C ZERDTH ORDER EESSEL FUNCTION
FUNCTION BESSOO
DOUBLE PRECISION DBESS. DSORT, DCOS,F,E,Z
F <:y:> =. 79788456-. OQ000077*Y-. 00552?40*Y**2.-. 00009512*Y<

1 + . 00137237»Y>»4. -. nu072805*T»»5. +. 000144?6*Y»*6.
E < Y> «XD- . 785393 1 6- . 04 1 66397*Y- . 03954»Y**2

.

1-. 00054125*Y**4. -. 00029333»Y»*5. +. 00013558*Y**6
1+. 00262573*Y**3.
XD«DBLE <>0

1 IF(X.LE.3.>G0 TD 2
Z=3..-'XD
DEESS=F ( z> DCOS CB <Z> > /"DSQRT ''XB''

BESS=SNGL CDBESS)
RETURN

2 Z=<>:ii.-'3.::'*':>:ii,'3..:'

DEESS=1 . -2. 2499997»Z+1 . £656208»Z*«2. -. 3163866*Z**3
1 + . 0444479+Z*»4.-. 0039444*Z**!5. +. 0O0£l*Z»-»6
BESS*SN6L <DBESS>
RETURN
END
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APPENDIX 5

Program TEMPR

The program TEMPR calculates the linear temperature profile in

the radial direction and on the sample surface based on Lax's equation

with z set to zero:

N(R,0,W) =
j|j

(AR)e w—m— dA (53)

This program differs from the program TEKPRZ (appendix 4) in the following

respects: 1) it calculates only radial temperature profile at sample

surface, 2) the accuracy of the integration is controlled by automatically

increasing the number of divisions in integration until a given accuracy

requirement is met (see program listing). This procedure cannot be done

in the program TEMPRZ because the running time on the computer would

become prohibitively long. Consequently, the results from TEMPR are

more accurate.

Following is the program listing for TEMPR.

83



TEMPR
C THIS PROGRAM CALCULATES LINEAR TEMP PPDFILE IN RADIAL DIPECTIDM
C Z IS SET TD ZEPD 'DM SURFACE DF SAMPLE)
C THE INPUT VARIABLES APE RS FOLLOWS!
C R2 = MAXIMUM VALUE DF P IN THE TEMPERATURE PROFILE
C M = NUMBER DF POINTS IN THE TEMP FPDFILE
C N = MINIMUM NUMBER' DF DIVISIONS IN THE INTEGRATION
C N MUST BE EVEN IN SIMPSON'S METHOD
C W = PRODUCT OF BERM RADIUS AND ABSORPTION CONSTANT
C VMAX = UPPER LIMIT IN THE INTEGRATION
C ACS = ACCURACY TEST IN THE INTEGRATION : DETERMINES THE RPPPDPIRTE
C NUMBER DF DIVISIONS FOP INTEGRATION
C OUTPUT IS LINEAR TEMP FILE NAMED TPPOF.DAT

C
DIMENSION STRINGC51) iT<10)
LOGICAL*! HNS

v

C F<y> IS THE INTEGRAN FPDM M.LAX'S THEDPY
C

f<Y)=bess ':y*p:».' cexp<y*y^4. 0)*<w+Y))
TYRE 500

500 FORMAT'"-"' TYPE IN THE FOLLOWING VALUES!'-'
1 "IMRHIMUM VALUE FOR R IN F4.1 IS*')

ACCEPT 510»R2
510 FORMAT <F4.1>

TYPE 300
800 FORMAT <' fNUMBER OF POINTS IN P IS CI3)!')

ACCEPT 560jM
5b FORMAT <I3)

TYPE 6 00
600 FORMAT C'STYPE NUMBER DF DIVISIONS FOP INTEGRATION:

ACCEPT 560»N
TYPE 700

700 FORMAT C'$VALUE DF BERM WRIST RADIUS»ABS CONST. = '":

ACCEPT 510jW
TYPE 321

321 FORMAT <' SUPPER LIMIT FOR INTEGRATION"?')
ACCEPT 51 0» VMAX
TYPE 79

79 FORMAT C "iACCURACY OF INTEGRATION"')
ACCEPT Sl.RCC

81 FORMAT <F9. 7)
TYPE 34

34 FORMAT <'$WANT PRINTED RESULTS?'";'
ACCEPT 35»ANS

35 FORMAT <A1)
IF CANS .NE. -Y") GD TD 67
TYPE 22

c£ FORMAT'' '.7X>'R'»13X>'TEMPN'»9X>'K2')
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C SET UP PARAMETERS FDR INTEGRATION
C

67 VMIN=0.0
FM=M
P.INOR2 FM
R=0. u

J=l
M=M+1

1 K=l
FN=N
NX=N

4 h=vmh:-;/fm
TI.IDH=H+H
SUM4=0.
SUM£=0.
X=H
1 = 1

£ SUM4=SUM4+F QO
SUM2«SUM2-t-F <X+H:>

IF<I.GE.MX-3J 50 TD 3
1 = 1+2
X«X+TWOH
GO TD £

C

C TEMPN IS LINEAR TEMP NORMALIZED TD MAXIMUM POSSIBLE VALUE
C RS SUGGESTED BY LAX
C SQUARE ROOT DF PI = 1 . 7724539
C

TEMPN=i,J»H,-3. u*,:4. »SUM4+2. Q»SUM2+F<VMIN>+4. 0*F<VMAX-H>
1 +F(VMRXV> ,'1.7724539

'

DOUBLE NUMBER DF DIVISIONS FDP INTEGRATION
PROCEDURE REPEATED UNTIL TWO CONSECUTIVE INT. YIELD RESULTS THRTAGREE TD WITHIN THE REQUIRED ACCURACY < ACC >

"

l_.

T <K) =TEMPN
K=K + 1

FN=FN*2.
NX=IFIX<FN+0.5)
IFCK . LE. £:> GO TD 4
K2=K-1
Kl=K-2
IF<ABSCr<K£>-T<Kl>J> .GT. ACOGO TD 4
IFCANS .ME. 'Y'JGO TD 12
TYPE 1 1,P, TEMPM, K£

11 FORMAT C '.£F 16. 7, 16)
12 STRING < J.) =TEMPM

J=J+1
F-R+PIMC
IF<R.LE.R2) GD TD 1
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c
C STORE TEMP. PROFILE IN FILE! TO BE UIED IN NEXT INTEGRATION
C

OPEN UNIT=1 ,NhME=''DKsTPRDF. DAT' , TYPE= ' NEW

'

>

WPITE'-li 100) (STPINR<J:) jJ=1»M)
100 FDPMHT '8F10.7>

"TOP
END

C
C ZEROTH ORDER EESSEL FUNCTION
i_

FUNCTION BESS<X)
DOUBLE FPEC I S I ON DBESS , DSOPT . DCDS • F , B .

Z

F Civ =.79738456-. 00000077*Y-. 055274 0*'t'*€.-. 0000951£»Y»»
1+. 00137£37*Y»»4. -. 00072305*Y-»»5. +. 000 1 4476»Y**6

.

B <Y> »XB-. 78539316-. 04166397*Y-. 00003954*Y-»»£.
1-. 000541£5»Y»*4. -. 0OO29333*Y**5. +. 0013558*Y*-*6.
1+. 00262573*Y»*3.
XD-DBLEW

1 IF<X.LE.3.> GO TO £
Z=3. --XD

DEESS=F <Z> DCDS < E <2) > -DSOPT (XD)
EESS=SN6L <DBESS>
RETURN

£ z=«<:d.-3.:>»(xd-'3.:)
DEESS=1 . -£. £499997»Z + 1 . 26562 08*2£.-. 31 63866*Z»*3.

1 + . 0444479-»Z»*4.-. 0039444*Z**5. +. 00021»2*»6
BESS»SNSL<DBESS>
RETURN
END
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APPENDIX 6

Program TTEMPR

This program takes the linear temperatures generated in program

TEMPR and converts them into nonlinear temperature profiles: one

profile for each nonlinear peak temperature. The temperature conversion

curve, which is part of the input to this program, is previously generated

in the program TCONV. Following is the program listing for TTEMPR.
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TTEMPR
C THIS PROGRP.M PRODUCES TRUE (NON-LINEAR;. TEMP AS A

FUNCTION DF p FDP EfiCH GIVEN MAXIMUM TEMP.
OUTPUT IS A TWO-DIMENSIONAL APPAY TEMP •

I . J) :

I DENOTES TMAX. J DEMOTES P
C READ IN RRRP.YS LINEAR TMAX. LINEAR TEMP PROFILE.
C AND TEMP. CDNVEPSION CURVE
C THE INPUT VARIABLES APE AS FOLLOWS:
C APPAY TPPOF (i;. IS LINEAR TEMP FROM PRCGFRM TEMPP2
C APPAY TMAXL(I> IS LINEAR MAXIMUM TEMP FILE CORRESPOND I NG
C TO TRUE TEMFEPATUPES FROM 300 TO 1650k IN INCREMENTS
C OF 30 DEGREES
C APPAY TCONV'I) IS CONVERSION CURVE FROM PROGRAM COND.FOP
C LINEAR INTEPOLATION IS USED IN CONVERSION PROCESS
C

DIMENSION TEMP'£8.^r> . TPP.0F<51>> TMAXL ''28.' . TCDNV<43>
OPEN CUN I T = 1 . NAME= ' DK : TPPOF . DAT ' . TYPE- ' DLD '

)

READ (1.100) CTPROFa;. , I = 1 - 5 1 >

100 FORMAT (8F10.7)
OPEN (UMIT=2,NAME = 'DK:TFILE.DRT'.TYPE=-0LIi :•

READ (£.£00:. No <TMflXL<I) > 1*1 ttO
£00 FORMAT < I£- < 1 0F7. 2>

>

OPEN (.UN I T = 3 . NAME= ' DK : TCONV . DAT ' . TYPE" ' OLD >

READ (3.

3

30 FORMAT i

1

DO 1 1=1.

N

DO 2 J=1.51

iO:. (TCONV (I) . 1 = 1 .43
F7. 1>

NORMALIZE TEMP. TO LINEAR MAX. TEMP.

TEMP H . J.) =TMAXL ( I ) TPPOF ( J> -' TPROF ( 1 >

I A IS TEMP TO THE NEAREST DEGREE

I A= I F I X ( TEMP < I , J ) + . 5)

CONVERSION TO PEAL TEMPERATURES

DO 3 K=l,43
IF(10»(K-1) .LE. I A) GO TO 3
RK=10*<K-1!>
TEMP a , J) =TCONV <K> - (TCONV c"K > -TCONV <X- 1 > > (PK -TEMP ( I . . I :•

':• ' 1 .

GO TO £
CONT I NUE
CONTINUE
CONT I NUE

STORE REAL TEMP PROFILES IN FILE TEMP. HAT FOR
SUBSEQUENT INTEGRATION

OPEN CUN I T=4 . NAME =
' DK : TEMP . DAT '

. TYPE" 'NEW ' "'

WRITE (4.400:. < (TEMP ( I , J) . J= 1 . 5 1 ; . 1 = 1 , N>
400 FORMAT .10F7.£>

CLOSE CUr( I T=4 . D 1 3P0SE= ' SAVE ' >

STOP
END



APPENDIX 7

Program RATI02

This program uses the temperature profiles computed in the program

TTEMPR in calculating Raman ratio as a function of peak temperatures

following equation (54):

r -rV
i
— = i + —
corr 2e

+ b L i;
Re

" R 3
dR ]

"

(54)

The program listing for RATI02 follows:



PATI02
C THIS: PROGRAM CALCULATES PAMAN PflTID AS fl FUNCTION
C DF MAX I MUM TEMP RT PERM CENTER
C THE INPUT VARIABLES RPE RS FOLLOWS:
C RPPRY TEMPO, J) IS TRUE TEMPERATURE PROFILES CALCULATED
C IN THE PROGRAM TTEMPP - - --

C N = NUMBER DF POINTS IN THE PRMRN RATIO - TEMP CURVE
C RINC = INCREMENTS IN P IN THE INTEGRATION. IT l'~'
'-: DICTATES BY NUMBER OF POINTS IN THE TEMP PROFILE
C COR = RRTIO OF HERT BEAM RADIUS TO PROBE BEAM RADIUS

DIMENSION TEMPC28»51)
TYPE 100

100 FOPMRT <V< THIS PROGRAM CALCULATES: A-STDKES TO STOKES RATIO"r INPUT IS TEMP.HRT FILE. P VALUES TO 3 IN RINC INCREMENTS')
TY'PE 200

£00 FORMAT O" TYPE IN THE NUMBER OF POINTS FOP TEMP-PATIO CURVES')ACCEPT 300.

N

' '

300 FORMAT (12)
TYPE 29

29 FORMAT ( JINCPEMENTS IN P = ')

ACCEPT 3,3, p INC
32 FORMAT CF5. 3)

OPEN ..UN IT=1 , NAME-' DK : TEMP . DAT' . TYPE- ' OLD ' )
READ CI .40 0.' (CTEMPCI, J) , J«l,31) , I = 1,N'.

400 FORMAT CJ0F7.2)
TYPE 68

68 FORMAT ('^CORRECTION FACTOR-HEAT BEAM.-PPOBE BERM= ')
ACCEPT 39, COR

39 FORMAT <F9. 7)
COR 1 = 1., COR
DO 1 1 = 1, N
P=0.
DO 2 J=l 51

POP IS POPULATION FACTOR
747.27 IS EXPONENTIAL FACTOR (EXCEPT TEMP) FDR 519

C URVENUMBEP PHONDN
"

C
POP= 1 . ,' (EXP (747. 27/ TEMP (I , J) ) -1 . )
TEMP CI) J) =p*p[]p,. e;,;p (COR*COR*R»R)

2 R=R+PINC
SUM2=0.
SUM4=0.
DD 3 K=2,4S,2
SUM4=SUM4+TEMP

•:
I

. K)
3 SUM2-SUM2 +TEMP ( I . H: + 1

)

i^EMPa^o^^
PRTIO=l. RRTIO

I TYPE 5 00. RRTIO
500 FDRMAT(F16.7)

STOP
END
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APPENDIX 8

Program RTCONV

Using the Raman ratio vs. Peak temperature curve generated in

program RATI02, this program converts the experimentally obtained

Raman ratios into peak temperatures. The listing of program RTCONV

follows:

RTCONV
C THIS PROGRAM CONVERTS RAMAN A-S PflTID INTO MAX TEMP
C INPUT VARIABLES APE AS FOLLOWS:
C APPAY PATIO'-D IS DATA FILE DF THE EXPERIMENTALLY
C OBTAINED PAMAN PATIOS
C CONV(I) IS APPAY OF POINTS IN THE PATIO-TEMP
C CONVERSION : THEY APE RESULTS FROM PROGRAM FATI02
C LINEAR INTERPOLATION IS USED IN CONVERSION PROCESS
C RESULTS APE ROUNDED TO NEAREST DEGREE
C

DIMENSION PATI0<4fiJ, CONVOO)
LOGICAL*l FILER < 15) iFILECUS)
CALL GTLIN (FILER, "TYPE FILENAME OF PAMAN PATIO, DK : FILNM. TVP'
CALL GTLIN <F ILEC •

" TYPE NAME OF CONVERSION FILE, DK : F ILNM. TYP

'

OPEN <JJNIT=l.NAME=FILEP,TYPE='OLD'>
READ < 1 , 1 ' N > ' PAT I D < I ) , I = 1 , N

)

OPEN (UN I T=£, NAME=F I LEC , TYPE" ' OL D )

PEADCSiaciir-. i,i, (coNva:) , i=i,£s:>

i F4 . 1 >

100 FORMAT !'I£.'<3F 10. ?y>
£00 FORMAT (F4. \s (8F1 0. ?>)

TYPE 30 0, I.I

30 FDPMATC ,' BEAM RADIUS
DO 1 1=1,

N

DO £ J=l, £3
IF(CONV(J) .LE. PAT 10 (1)')

F.l-J

T- 'FJ-1 . :> »50. +300.
TEMP=T-50. (CONV (J) -PATIO
ITEMP=IFIX'TEMP+0.=,:>
TYPE 4 , PAT 1 I , I TEMP

40 FORMAT (' ' ,F1 0. 7,11 n':.

GO TO 1

£ CONTINUE
1 C DNT I NUE

STOP
END

(CONV -convcj-i:



APPENDIX 9

Program TPOWD

This program computes the theoretical peak temperature vs. power

density (P/a) curve following equation of Lax:

e(0 '°- w) =
[9 mr N(0 -°' w)

< 41 )

1 ;

The value of fl(0,0,W) was computed previously as a part of the results

in program TEMPR. Following is the program listing for the program TPOWD.

TPOWD
C THIS PPC6PRM CALCULATES MAX TEMP AS A FUNCTION
C DF POWER DENSITY
C INPUT VARIABLES APE AS FOLLOWS!
C TMAXL(l) IS ARRAY OF LINEAR MRX TEMP CORRESPONDING
C TD PERL TEMP DF 300 TD 1650k IN 50 DEGREE INCREMENT:
C N = NUMBER DF POINTS IN THE TMAXL FILE
C lil « PRODUCT DF BERM PhD I US AND RBSDPPTIDN CONSTANT
C FRC = LINEAR WAX TEMP FDR R GIVEN U
C FRC IS FOUND IN RESULTS DF PRDGPRM TEMPP2
C

DIMENSION TMAXL (30)
OPEN <UNIT-1»NAME='TFILE2. DAT' »TYPE»'OLDO
READ <1>1 0) N . (TMAXL < I > > I = 1 - N>

1 FORMRT ( 1 2 - ( 1 OF?. c
•

>

CLOSE (UN I T= 1 . D I SPOSE*'SAVE ' "f

CALL PRINT (' TYPE IN VALUE OF U IN F4.1 O
ACCEPT 2

200 FORMAT (F4.1)
CALL PRINT < TYPE IN VALUE DF N(0.0,l.O IN F9. ?
ACCEPT 300. FAC

30 FORMAT (F9.71
SPP=SORT<3. 14159271
DO 1 1 = 1 >N

C
C VALUE DF THERMAL CONDUCTIVITY AT PODM TEMP = 1.43
C

PD=TMAXL < l:> 2. 0*SPP»1 . 48- FRC
1 TYPE 440 j TMAXL (I • i PD
44 FORMAT <' '.2F16.r>

STOP
END

92



REFERENCES

1. Science 201, 333 (1978).

2. Physics Today, July 1978, p. 17.

3. G. A. Kachurin, N. B. Pridachin, and L. S. Smirnov, Sov. Phys.

- Semicond. 9, 946 (1975).

4. E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov,

M. F. Galyatudinov, and R. M. Bayazitov, Sov. Phys. - Semicond. 9_,

1309 (1975).

5. J. C. C. Fan, R. L. Chapman, J. P. Donnelly, G. W. Turner, and

C. 0. Bozler, Appl . Phys. Lett. 34 (11), 730 (1979) and references

therein.

6. A. G. Klimenko, E. A. Klimenko, and V. I. Donin, Sov. J. Quantum

Electron. 5, 1289 (1975).

7. G. A. Kachurin, E. V. Nidaev, A. V. Khodyachikh, and L. A. Kovaleva,

Sov. Phys. - Semicond. 10, 1128 (1976).

8. R. T. Young, C. W. White, G. J. Clark, J. Narayan, W. H. Christie,

M. Murakami, P. W. King, and S. D. Kramer, Appl. Phys. Lett. 32 (3),

139 (1978).

9. G. K. Celler, J. M, Poate, and L. C. Kimerling, Appl. Phys. Lett.

32 (3), 464 (1978).

10. A. Gat, J. F. Gibbons, T. J. Magee, J. Peng, P. Williams, V. Deline,

and C. A. Evans, Jr., Appl. Phys. Lett. 33 (5), 389 (1978).

11. J. S. Williams, W. L. Brown, J. J. Leamy, J. M. Poate, J. W.

Rodgers, D. Rousseau, G. A. Rozgonyi , J. A. Shelnutt, and T. T.

Sheng, Appl. Phys. Lett. 33 (6), 542 (1978).

12. Y. S. Liu and K. L. Wang, Appl. Phys. Lett. 34 (6), 363 (1979)

and references therein.

13. D. H. Auston, J. A. Golovchenko, A. L. Simons, C. M. Surko, and

T. N. C. Venkatesan, Appl. Phys. Lett. 34 (11), 777 (1979).

93



14. Bull. Am. Phys. Soc. 24 (3), 314 (1979).

15. H. Lax, J. Appl. Phys. 48, 3919 (1977).

16. M. Lax, Appl. Phys. Lett. 33 (8), 786 (1978).

17. C. M. Surko, A. L. Simons, D. H. Auston, J. A. Golovchenko,

R. E. Slusher, and T. N. C. Venkatesan, Appl. Phys. Lett. 34 (10),

635 (1979) and references therein.

18. R. Loudon, Proc. Roy. Soc. A275 , 218 (1963).

19. R. Loudon, Adv. in Phys. 13, 423 (1964).

20. See for example E. Merzbacher, Quantum Mechanics (2nd. ed., John

Wiley and Sons, Inc., New York, 1970) P. 465.

21. J. B. Renucci, R. N. Tyte, and M. Cardona, Phys. Rev. B JJ_, 3885

(1975).

22. P. Temple and C. Hathaway, Phys. Rev. B 7, 3685 (1973) and references

therein.

23. T. R. Hart, R. L. Aggarwal , and B. Lax, Phys. Rev. B X, 638 (1970).

24. E. Anastassakis, H. C. Hwang, and C. H. Perry, Phys. Rev. B 4, 2493

(1971).

25. C. Y. Ho, R. W. Powell, and P. E. Liley, J. Phys. Chem. Ref. Data,

Vol. 3, Suppl. 1, 588 (1974).

26. See for example H. S. Carslaw and J. C. Jaeger, Conduction of Heat

i" Solids (Oxford U. P., London, 1947) P. 6.

27. See for example P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw Hill, New York, 1953) P. 944.

28. W. C. Dash and R. Newman, Phys. Rev. 99, 1151 (1955).

29. J. F. Ready, Effects of High Power Laser Radiation (Academic Press,

Inc. , New York, 1971) P. 20.

30. B. A. Weinstein and G. J. Piermarini, Phys. Rev. B ]_2 (4), 1172 (1975)

31. E. Anastassakis, A. Pinczuk, and E. Burstein, Solid State Comm. 8,

133 (1970).

94



32. H. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical

Functions (Dover Publications, Inc., New York, 1972).

95



RAMAN MEASUREMENTS OF TEMPERATURE DURING

CONTINUOUS WAVE LASER- INDUCED

HEATING OF SILICON

by

HO WAI LO

B.S., North Texas State University, 1976

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Physics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1979



The temperature rise in a pure silicon wafer during continuous

heating by &n argon ion laser has been measured, in si_tu , by analyzing

the anti-Stokes to Stokes intensity ratio of the first order phonon Raman

line. Laser beam spots with Gaussian intensity profiles were used.

Application of a wide range of laser power levels produced peak temper-

atures ranging from room temperature to the melting point. The effect

of non-uniform temperatures across the heated area was deconvoluted by

using theoretically calculated temperature gradients in the data

reduction process. The resulting peak temperatures agree well with

theoretical predictions based on Lax's solutions to the nonlinear heat

diffusion equation when adjustments are made to the temperature-sensi-

tive absorption constant. The Raman data also show evidence of strain

effects on the sample at elevated temperatures.


